Linux Audio

Check our new training course

Loading...
v3.15
  1/*
  2 * kernel/stop_machine.c
  3 *
  4 * Copyright (C) 2008, 2005	IBM Corporation.
  5 * Copyright (C) 2008, 2005	Rusty Russell rusty@rustcorp.com.au
  6 * Copyright (C) 2010		SUSE Linux Products GmbH
  7 * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
  8 *
  9 * This file is released under the GPLv2 and any later version.
 10 */
 11#include <linux/completion.h>
 12#include <linux/cpu.h>
 13#include <linux/init.h>
 14#include <linux/kthread.h>
 15#include <linux/export.h>
 16#include <linux/percpu.h>
 17#include <linux/sched.h>
 18#include <linux/stop_machine.h>
 19#include <linux/interrupt.h>
 20#include <linux/kallsyms.h>
 21#include <linux/smpboot.h>
 22#include <linux/atomic.h>
 23#include <linux/lglock.h>
 24
 25/*
 26 * Structure to determine completion condition and record errors.  May
 27 * be shared by works on different cpus.
 28 */
 29struct cpu_stop_done {
 30	atomic_t		nr_todo;	/* nr left to execute */
 31	bool			executed;	/* actually executed? */
 32	int			ret;		/* collected return value */
 33	struct completion	completion;	/* fired if nr_todo reaches 0 */
 34};
 35
 36/* the actual stopper, one per every possible cpu, enabled on online cpus */
 37struct cpu_stopper {
 
 
 38	spinlock_t		lock;
 39	bool			enabled;	/* is this stopper enabled? */
 40	struct list_head	works;		/* list of pending works */
 
 
 41};
 42
 43static DEFINE_PER_CPU(struct cpu_stopper, cpu_stopper);
 44static DEFINE_PER_CPU(struct task_struct *, cpu_stopper_task);
 45static bool stop_machine_initialized = false;
 46
 47/*
 48 * Avoids a race between stop_two_cpus and global stop_cpus, where
 49 * the stoppers could get queued up in reverse order, leading to
 50 * system deadlock. Using an lglock means stop_two_cpus remains
 51 * relatively cheap.
 52 */
 53DEFINE_STATIC_LGLOCK(stop_cpus_lock);
 54
 55static void cpu_stop_init_done(struct cpu_stop_done *done, unsigned int nr_todo)
 56{
 57	memset(done, 0, sizeof(*done));
 58	atomic_set(&done->nr_todo, nr_todo);
 59	init_completion(&done->completion);
 60}
 61
 62/* signal completion unless @done is NULL */
 63static void cpu_stop_signal_done(struct cpu_stop_done *done, bool executed)
 64{
 65	if (done) {
 66		if (executed)
 67			done->executed = true;
 68		if (atomic_dec_and_test(&done->nr_todo))
 69			complete(&done->completion);
 70	}
 
 
 
 71}
 72
 73/* queue @work to @stopper.  if offline, @work is completed immediately */
 74static void cpu_stop_queue_work(unsigned int cpu, struct cpu_stop_work *work)
 75{
 76	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
 77	struct task_struct *p = per_cpu(cpu_stopper_task, cpu);
 78
 79	unsigned long flags;
 
 80
 81	spin_lock_irqsave(&stopper->lock, flags);
 82
 83	if (stopper->enabled) {
 84		list_add_tail(&work->list, &stopper->works);
 85		wake_up_process(p);
 86	} else
 87		cpu_stop_signal_done(work->done, false);
 88
 89	spin_unlock_irqrestore(&stopper->lock, flags);
 
 
 90}
 91
 92/**
 93 * stop_one_cpu - stop a cpu
 94 * @cpu: cpu to stop
 95 * @fn: function to execute
 96 * @arg: argument to @fn
 97 *
 98 * Execute @fn(@arg) on @cpu.  @fn is run in a process context with
 99 * the highest priority preempting any task on the cpu and
100 * monopolizing it.  This function returns after the execution is
101 * complete.
102 *
103 * This function doesn't guarantee @cpu stays online till @fn
104 * completes.  If @cpu goes down in the middle, execution may happen
105 * partially or fully on different cpus.  @fn should either be ready
106 * for that or the caller should ensure that @cpu stays online until
107 * this function completes.
108 *
109 * CONTEXT:
110 * Might sleep.
111 *
112 * RETURNS:
113 * -ENOENT if @fn(@arg) was not executed because @cpu was offline;
114 * otherwise, the return value of @fn.
115 */
116int stop_one_cpu(unsigned int cpu, cpu_stop_fn_t fn, void *arg)
117{
118	struct cpu_stop_done done;
119	struct cpu_stop_work work = { .fn = fn, .arg = arg, .done = &done };
120
121	cpu_stop_init_done(&done, 1);
122	cpu_stop_queue_work(cpu, &work);
 
123	wait_for_completion(&done.completion);
124	return done.executed ? done.ret : -ENOENT;
125}
126
127/* This controls the threads on each CPU. */
128enum multi_stop_state {
129	/* Dummy starting state for thread. */
130	MULTI_STOP_NONE,
131	/* Awaiting everyone to be scheduled. */
132	MULTI_STOP_PREPARE,
133	/* Disable interrupts. */
134	MULTI_STOP_DISABLE_IRQ,
135	/* Run the function */
136	MULTI_STOP_RUN,
137	/* Exit */
138	MULTI_STOP_EXIT,
139};
140
141struct multi_stop_data {
142	int			(*fn)(void *);
143	void			*data;
144	/* Like num_online_cpus(), but hotplug cpu uses us, so we need this. */
145	unsigned int		num_threads;
146	const struct cpumask	*active_cpus;
147
148	enum multi_stop_state	state;
149	atomic_t		thread_ack;
150};
151
152static void set_state(struct multi_stop_data *msdata,
153		      enum multi_stop_state newstate)
154{
155	/* Reset ack counter. */
156	atomic_set(&msdata->thread_ack, msdata->num_threads);
157	smp_wmb();
158	msdata->state = newstate;
159}
160
161/* Last one to ack a state moves to the next state. */
162static void ack_state(struct multi_stop_data *msdata)
163{
164	if (atomic_dec_and_test(&msdata->thread_ack))
165		set_state(msdata, msdata->state + 1);
166}
167
168/* This is the cpu_stop function which stops the CPU. */
169static int multi_cpu_stop(void *data)
170{
171	struct multi_stop_data *msdata = data;
172	enum multi_stop_state curstate = MULTI_STOP_NONE;
173	int cpu = smp_processor_id(), err = 0;
174	unsigned long flags;
175	bool is_active;
176
177	/*
178	 * When called from stop_machine_from_inactive_cpu(), irq might
179	 * already be disabled.  Save the state and restore it on exit.
180	 */
181	local_save_flags(flags);
182
183	if (!msdata->active_cpus)
184		is_active = cpu == cpumask_first(cpu_online_mask);
185	else
186		is_active = cpumask_test_cpu(cpu, msdata->active_cpus);
187
188	/* Simple state machine */
189	do {
190		/* Chill out and ensure we re-read multi_stop_state. */
191		cpu_relax();
192		if (msdata->state != curstate) {
193			curstate = msdata->state;
194			switch (curstate) {
195			case MULTI_STOP_DISABLE_IRQ:
196				local_irq_disable();
197				hard_irq_disable();
198				break;
199			case MULTI_STOP_RUN:
200				if (is_active)
201					err = msdata->fn(msdata->data);
202				break;
203			default:
204				break;
205			}
206			ack_state(msdata);
207		}
208	} while (curstate != MULTI_STOP_EXIT);
209
210	local_irq_restore(flags);
211	return err;
212}
213
214struct irq_cpu_stop_queue_work_info {
215	int cpu1;
216	int cpu2;
217	struct cpu_stop_work *work1;
218	struct cpu_stop_work *work2;
219};
220
221/*
222 * This function is always run with irqs and preemption disabled.
223 * This guarantees that both work1 and work2 get queued, before
224 * our local migrate thread gets the chance to preempt us.
225 */
226static void irq_cpu_stop_queue_work(void *arg)
227{
228	struct irq_cpu_stop_queue_work_info *info = arg;
229	cpu_stop_queue_work(info->cpu1, info->work1);
230	cpu_stop_queue_work(info->cpu2, info->work2);
231}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
232
 
 
233/**
234 * stop_two_cpus - stops two cpus
235 * @cpu1: the cpu to stop
236 * @cpu2: the other cpu to stop
237 * @fn: function to execute
238 * @arg: argument to @fn
239 *
240 * Stops both the current and specified CPU and runs @fn on one of them.
241 *
242 * returns when both are completed.
243 */
244int stop_two_cpus(unsigned int cpu1, unsigned int cpu2, cpu_stop_fn_t fn, void *arg)
245{
246	struct cpu_stop_done done;
247	struct cpu_stop_work work1, work2;
248	struct irq_cpu_stop_queue_work_info call_args;
249	struct multi_stop_data msdata;
250
251	preempt_disable();
252	msdata = (struct multi_stop_data){
253		.fn = fn,
254		.data = arg,
255		.num_threads = 2,
256		.active_cpus = cpumask_of(cpu1),
257	};
258
259	work1 = work2 = (struct cpu_stop_work){
260		.fn = multi_cpu_stop,
261		.arg = &msdata,
262		.done = &done
263	};
264
265	call_args = (struct irq_cpu_stop_queue_work_info){
266		.cpu1 = cpu1,
267		.cpu2 = cpu2,
268		.work1 = &work1,
269		.work2 = &work2,
270	};
271
272	cpu_stop_init_done(&done, 2);
273	set_state(&msdata, MULTI_STOP_PREPARE);
274
275	/*
276	 * If we observe both CPUs active we know _cpu_down() cannot yet have
277	 * queued its stop_machine works and therefore ours will get executed
278	 * first. Or its not either one of our CPUs that's getting unplugged,
279	 * in which case we don't care.
280	 *
281	 * This relies on the stopper workqueues to be FIFO.
282	 */
283	if (!cpu_active(cpu1) || !cpu_active(cpu2)) {
284		preempt_enable();
285		return -ENOENT;
286	}
287
288	lg_local_lock(&stop_cpus_lock);
289	/*
290	 * Queuing needs to be done by the lowest numbered CPU, to ensure
291	 * that works are always queued in the same order on every CPU.
292	 * This prevents deadlocks.
293	 */
294	smp_call_function_single(min(cpu1, cpu2),
295				 &irq_cpu_stop_queue_work,
296				 &call_args, 1);
297	lg_local_unlock(&stop_cpus_lock);
298	preempt_enable();
299
300	wait_for_completion(&done.completion);
301
302	return done.executed ? done.ret : -ENOENT;
303}
304
305/**
306 * stop_one_cpu_nowait - stop a cpu but don't wait for completion
307 * @cpu: cpu to stop
308 * @fn: function to execute
309 * @arg: argument to @fn
 
310 *
311 * Similar to stop_one_cpu() but doesn't wait for completion.  The
312 * caller is responsible for ensuring @work_buf is currently unused
313 * and will remain untouched until stopper starts executing @fn.
314 *
315 * CONTEXT:
316 * Don't care.
 
 
 
 
317 */
318void stop_one_cpu_nowait(unsigned int cpu, cpu_stop_fn_t fn, void *arg,
319			struct cpu_stop_work *work_buf)
320{
321	*work_buf = (struct cpu_stop_work){ .fn = fn, .arg = arg, };
322	cpu_stop_queue_work(cpu, work_buf);
323}
324
325/* static data for stop_cpus */
326static DEFINE_MUTEX(stop_cpus_mutex);
327static DEFINE_PER_CPU(struct cpu_stop_work, stop_cpus_work);
328
329static void queue_stop_cpus_work(const struct cpumask *cpumask,
330				 cpu_stop_fn_t fn, void *arg,
331				 struct cpu_stop_done *done)
332{
333	struct cpu_stop_work *work;
334	unsigned int cpu;
335
336	/* initialize works and done */
337	for_each_cpu(cpu, cpumask) {
338		work = &per_cpu(stop_cpus_work, cpu);
339		work->fn = fn;
340		work->arg = arg;
341		work->done = done;
342	}
343
344	/*
345	 * Disable preemption while queueing to avoid getting
346	 * preempted by a stopper which might wait for other stoppers
347	 * to enter @fn which can lead to deadlock.
348	 */
349	lg_global_lock(&stop_cpus_lock);
350	for_each_cpu(cpu, cpumask)
351		cpu_stop_queue_work(cpu, &per_cpu(stop_cpus_work, cpu));
 
 
 
 
 
 
352	lg_global_unlock(&stop_cpus_lock);
 
 
353}
354
355static int __stop_cpus(const struct cpumask *cpumask,
356		       cpu_stop_fn_t fn, void *arg)
357{
358	struct cpu_stop_done done;
359
360	cpu_stop_init_done(&done, cpumask_weight(cpumask));
361	queue_stop_cpus_work(cpumask, fn, arg, &done);
 
362	wait_for_completion(&done.completion);
363	return done.executed ? done.ret : -ENOENT;
364}
365
366/**
367 * stop_cpus - stop multiple cpus
368 * @cpumask: cpus to stop
369 * @fn: function to execute
370 * @arg: argument to @fn
371 *
372 * Execute @fn(@arg) on online cpus in @cpumask.  On each target cpu,
373 * @fn is run in a process context with the highest priority
374 * preempting any task on the cpu and monopolizing it.  This function
375 * returns after all executions are complete.
376 *
377 * This function doesn't guarantee the cpus in @cpumask stay online
378 * till @fn completes.  If some cpus go down in the middle, execution
379 * on the cpu may happen partially or fully on different cpus.  @fn
380 * should either be ready for that or the caller should ensure that
381 * the cpus stay online until this function completes.
382 *
383 * All stop_cpus() calls are serialized making it safe for @fn to wait
384 * for all cpus to start executing it.
385 *
386 * CONTEXT:
387 * Might sleep.
388 *
389 * RETURNS:
390 * -ENOENT if @fn(@arg) was not executed at all because all cpus in
391 * @cpumask were offline; otherwise, 0 if all executions of @fn
392 * returned 0, any non zero return value if any returned non zero.
393 */
394int stop_cpus(const struct cpumask *cpumask, cpu_stop_fn_t fn, void *arg)
395{
396	int ret;
397
398	/* static works are used, process one request at a time */
399	mutex_lock(&stop_cpus_mutex);
400	ret = __stop_cpus(cpumask, fn, arg);
401	mutex_unlock(&stop_cpus_mutex);
402	return ret;
403}
404
405/**
406 * try_stop_cpus - try to stop multiple cpus
407 * @cpumask: cpus to stop
408 * @fn: function to execute
409 * @arg: argument to @fn
410 *
411 * Identical to stop_cpus() except that it fails with -EAGAIN if
412 * someone else is already using the facility.
413 *
414 * CONTEXT:
415 * Might sleep.
416 *
417 * RETURNS:
418 * -EAGAIN if someone else is already stopping cpus, -ENOENT if
419 * @fn(@arg) was not executed at all because all cpus in @cpumask were
420 * offline; otherwise, 0 if all executions of @fn returned 0, any non
421 * zero return value if any returned non zero.
422 */
423int try_stop_cpus(const struct cpumask *cpumask, cpu_stop_fn_t fn, void *arg)
424{
425	int ret;
426
427	/* static works are used, process one request at a time */
428	if (!mutex_trylock(&stop_cpus_mutex))
429		return -EAGAIN;
430	ret = __stop_cpus(cpumask, fn, arg);
431	mutex_unlock(&stop_cpus_mutex);
432	return ret;
433}
434
435static int cpu_stop_should_run(unsigned int cpu)
436{
437	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
438	unsigned long flags;
439	int run;
440
441	spin_lock_irqsave(&stopper->lock, flags);
442	run = !list_empty(&stopper->works);
443	spin_unlock_irqrestore(&stopper->lock, flags);
444	return run;
445}
446
447static void cpu_stopper_thread(unsigned int cpu)
448{
449	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
450	struct cpu_stop_work *work;
451	int ret;
452
453repeat:
454	work = NULL;
455	spin_lock_irq(&stopper->lock);
456	if (!list_empty(&stopper->works)) {
457		work = list_first_entry(&stopper->works,
458					struct cpu_stop_work, list);
459		list_del_init(&work->list);
460	}
461	spin_unlock_irq(&stopper->lock);
462
463	if (work) {
464		cpu_stop_fn_t fn = work->fn;
465		void *arg = work->arg;
466		struct cpu_stop_done *done = work->done;
467		char ksym_buf[KSYM_NAME_LEN] __maybe_unused;
468
469		/* cpu stop callbacks are not allowed to sleep */
470		preempt_disable();
471
 
 
472		ret = fn(arg);
473		if (ret)
474			done->ret = ret;
475
476		/* restore preemption and check it's still balanced */
477		preempt_enable();
 
478		WARN_ONCE(preempt_count(),
479			  "cpu_stop: %s(%p) leaked preempt count\n",
480			  kallsyms_lookup((unsigned long)fn, NULL, NULL, NULL,
481					  ksym_buf), arg);
482
483		cpu_stop_signal_done(done, true);
484		goto repeat;
485	}
486}
487
 
 
 
 
 
 
 
 
 
 
 
 
488extern void sched_set_stop_task(int cpu, struct task_struct *stop);
489
490static void cpu_stop_create(unsigned int cpu)
491{
492	sched_set_stop_task(cpu, per_cpu(cpu_stopper_task, cpu));
493}
494
495static void cpu_stop_park(unsigned int cpu)
496{
497	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
498	struct cpu_stop_work *work;
499	unsigned long flags;
500
501	/* drain remaining works */
502	spin_lock_irqsave(&stopper->lock, flags);
503	list_for_each_entry(work, &stopper->works, list)
504		cpu_stop_signal_done(work->done, false);
505	stopper->enabled = false;
506	spin_unlock_irqrestore(&stopper->lock, flags);
507}
508
509static void cpu_stop_unpark(unsigned int cpu)
510{
511	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
512
513	spin_lock_irq(&stopper->lock);
514	stopper->enabled = true;
515	spin_unlock_irq(&stopper->lock);
516}
517
518static struct smp_hotplug_thread cpu_stop_threads = {
519	.store			= &cpu_stopper_task,
520	.thread_should_run	= cpu_stop_should_run,
521	.thread_fn		= cpu_stopper_thread,
522	.thread_comm		= "migration/%u",
523	.create			= cpu_stop_create,
524	.setup			= cpu_stop_unpark,
525	.park			= cpu_stop_park,
526	.pre_unpark		= cpu_stop_unpark,
527	.selfparking		= true,
528};
529
530static int __init cpu_stop_init(void)
531{
532	unsigned int cpu;
533
534	for_each_possible_cpu(cpu) {
535		struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
536
537		spin_lock_init(&stopper->lock);
538		INIT_LIST_HEAD(&stopper->works);
539	}
540
541	BUG_ON(smpboot_register_percpu_thread(&cpu_stop_threads));
 
542	stop_machine_initialized = true;
543	return 0;
544}
545early_initcall(cpu_stop_init);
546
547#ifdef CONFIG_STOP_MACHINE
548
549int __stop_machine(int (*fn)(void *), void *data, const struct cpumask *cpus)
550{
551	struct multi_stop_data msdata = {
552		.fn = fn,
553		.data = data,
554		.num_threads = num_online_cpus(),
555		.active_cpus = cpus,
556	};
557
558	if (!stop_machine_initialized) {
559		/*
560		 * Handle the case where stop_machine() is called
561		 * early in boot before stop_machine() has been
562		 * initialized.
563		 */
564		unsigned long flags;
565		int ret;
566
567		WARN_ON_ONCE(msdata.num_threads != 1);
568
569		local_irq_save(flags);
570		hard_irq_disable();
571		ret = (*fn)(data);
572		local_irq_restore(flags);
573
574		return ret;
575	}
576
577	/* Set the initial state and stop all online cpus. */
578	set_state(&msdata, MULTI_STOP_PREPARE);
579	return stop_cpus(cpu_online_mask, multi_cpu_stop, &msdata);
580}
581
582int stop_machine(int (*fn)(void *), void *data, const struct cpumask *cpus)
583{
584	int ret;
585
586	/* No CPUs can come up or down during this. */
587	get_online_cpus();
588	ret = __stop_machine(fn, data, cpus);
589	put_online_cpus();
590	return ret;
591}
592EXPORT_SYMBOL_GPL(stop_machine);
593
594/**
595 * stop_machine_from_inactive_cpu - stop_machine() from inactive CPU
596 * @fn: the function to run
597 * @data: the data ptr for the @fn()
598 * @cpus: the cpus to run the @fn() on (NULL = any online cpu)
599 *
600 * This is identical to stop_machine() but can be called from a CPU which
601 * is not active.  The local CPU is in the process of hotplug (so no other
602 * CPU hotplug can start) and not marked active and doesn't have enough
603 * context to sleep.
604 *
605 * This function provides stop_machine() functionality for such state by
606 * using busy-wait for synchronization and executing @fn directly for local
607 * CPU.
608 *
609 * CONTEXT:
610 * Local CPU is inactive.  Temporarily stops all active CPUs.
611 *
612 * RETURNS:
613 * 0 if all executions of @fn returned 0, any non zero return value if any
614 * returned non zero.
615 */
616int stop_machine_from_inactive_cpu(int (*fn)(void *), void *data,
617				  const struct cpumask *cpus)
618{
619	struct multi_stop_data msdata = { .fn = fn, .data = data,
620					    .active_cpus = cpus };
621	struct cpu_stop_done done;
622	int ret;
623
624	/* Local CPU must be inactive and CPU hotplug in progress. */
625	BUG_ON(cpu_active(raw_smp_processor_id()));
626	msdata.num_threads = num_active_cpus() + 1;	/* +1 for local */
627
628	/* No proper task established and can't sleep - busy wait for lock. */
629	while (!mutex_trylock(&stop_cpus_mutex))
630		cpu_relax();
631
632	/* Schedule work on other CPUs and execute directly for local CPU */
633	set_state(&msdata, MULTI_STOP_PREPARE);
634	cpu_stop_init_done(&done, num_active_cpus());
635	queue_stop_cpus_work(cpu_active_mask, multi_cpu_stop, &msdata,
636			     &done);
637	ret = multi_cpu_stop(&msdata);
638
639	/* Busy wait for completion. */
640	while (!completion_done(&done.completion))
641		cpu_relax();
642
643	mutex_unlock(&stop_cpus_mutex);
644	return ret ?: done.ret;
645}
646
647#endif	/* CONFIG_STOP_MACHINE */
v4.6
  1/*
  2 * kernel/stop_machine.c
  3 *
  4 * Copyright (C) 2008, 2005	IBM Corporation.
  5 * Copyright (C) 2008, 2005	Rusty Russell rusty@rustcorp.com.au
  6 * Copyright (C) 2010		SUSE Linux Products GmbH
  7 * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
  8 *
  9 * This file is released under the GPLv2 and any later version.
 10 */
 11#include <linux/completion.h>
 12#include <linux/cpu.h>
 13#include <linux/init.h>
 14#include <linux/kthread.h>
 15#include <linux/export.h>
 16#include <linux/percpu.h>
 17#include <linux/sched.h>
 18#include <linux/stop_machine.h>
 19#include <linux/interrupt.h>
 20#include <linux/kallsyms.h>
 21#include <linux/smpboot.h>
 22#include <linux/atomic.h>
 23#include <linux/lglock.h>
 24
 25/*
 26 * Structure to determine completion condition and record errors.  May
 27 * be shared by works on different cpus.
 28 */
 29struct cpu_stop_done {
 30	atomic_t		nr_todo;	/* nr left to execute */
 
 31	int			ret;		/* collected return value */
 32	struct completion	completion;	/* fired if nr_todo reaches 0 */
 33};
 34
 35/* the actual stopper, one per every possible cpu, enabled on online cpus */
 36struct cpu_stopper {
 37	struct task_struct	*thread;
 38
 39	spinlock_t		lock;
 40	bool			enabled;	/* is this stopper enabled? */
 41	struct list_head	works;		/* list of pending works */
 42
 43	struct cpu_stop_work	stop_work;	/* for stop_cpus */
 44};
 45
 46static DEFINE_PER_CPU(struct cpu_stopper, cpu_stopper);
 
 47static bool stop_machine_initialized = false;
 48
 49/*
 50 * Avoids a race between stop_two_cpus and global stop_cpus, where
 51 * the stoppers could get queued up in reverse order, leading to
 52 * system deadlock. Using an lglock means stop_two_cpus remains
 53 * relatively cheap.
 54 */
 55DEFINE_STATIC_LGLOCK(stop_cpus_lock);
 56
 57static void cpu_stop_init_done(struct cpu_stop_done *done, unsigned int nr_todo)
 58{
 59	memset(done, 0, sizeof(*done));
 60	atomic_set(&done->nr_todo, nr_todo);
 61	init_completion(&done->completion);
 62}
 63
 64/* signal completion unless @done is NULL */
 65static void cpu_stop_signal_done(struct cpu_stop_done *done)
 66{
 67	if (atomic_dec_and_test(&done->nr_todo))
 68		complete(&done->completion);
 69}
 70
 71static void __cpu_stop_queue_work(struct cpu_stopper *stopper,
 72					struct cpu_stop_work *work)
 73{
 74	list_add_tail(&work->list, &stopper->works);
 75	wake_up_process(stopper->thread);
 76}
 77
 78/* queue @work to @stopper.  if offline, @work is completed immediately */
 79static bool cpu_stop_queue_work(unsigned int cpu, struct cpu_stop_work *work)
 80{
 81	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
 
 
 82	unsigned long flags;
 83	bool enabled;
 84
 85	spin_lock_irqsave(&stopper->lock, flags);
 86	enabled = stopper->enabled;
 87	if (enabled)
 88		__cpu_stop_queue_work(stopper, work);
 89	else if (work->done)
 90		cpu_stop_signal_done(work->done);
 
 
 91	spin_unlock_irqrestore(&stopper->lock, flags);
 92
 93	return enabled;
 94}
 95
 96/**
 97 * stop_one_cpu - stop a cpu
 98 * @cpu: cpu to stop
 99 * @fn: function to execute
100 * @arg: argument to @fn
101 *
102 * Execute @fn(@arg) on @cpu.  @fn is run in a process context with
103 * the highest priority preempting any task on the cpu and
104 * monopolizing it.  This function returns after the execution is
105 * complete.
106 *
107 * This function doesn't guarantee @cpu stays online till @fn
108 * completes.  If @cpu goes down in the middle, execution may happen
109 * partially or fully on different cpus.  @fn should either be ready
110 * for that or the caller should ensure that @cpu stays online until
111 * this function completes.
112 *
113 * CONTEXT:
114 * Might sleep.
115 *
116 * RETURNS:
117 * -ENOENT if @fn(@arg) was not executed because @cpu was offline;
118 * otherwise, the return value of @fn.
119 */
120int stop_one_cpu(unsigned int cpu, cpu_stop_fn_t fn, void *arg)
121{
122	struct cpu_stop_done done;
123	struct cpu_stop_work work = { .fn = fn, .arg = arg, .done = &done };
124
125	cpu_stop_init_done(&done, 1);
126	if (!cpu_stop_queue_work(cpu, &work))
127		return -ENOENT;
128	wait_for_completion(&done.completion);
129	return done.ret;
130}
131
132/* This controls the threads on each CPU. */
133enum multi_stop_state {
134	/* Dummy starting state for thread. */
135	MULTI_STOP_NONE,
136	/* Awaiting everyone to be scheduled. */
137	MULTI_STOP_PREPARE,
138	/* Disable interrupts. */
139	MULTI_STOP_DISABLE_IRQ,
140	/* Run the function */
141	MULTI_STOP_RUN,
142	/* Exit */
143	MULTI_STOP_EXIT,
144};
145
146struct multi_stop_data {
147	cpu_stop_fn_t		fn;
148	void			*data;
149	/* Like num_online_cpus(), but hotplug cpu uses us, so we need this. */
150	unsigned int		num_threads;
151	const struct cpumask	*active_cpus;
152
153	enum multi_stop_state	state;
154	atomic_t		thread_ack;
155};
156
157static void set_state(struct multi_stop_data *msdata,
158		      enum multi_stop_state newstate)
159{
160	/* Reset ack counter. */
161	atomic_set(&msdata->thread_ack, msdata->num_threads);
162	smp_wmb();
163	msdata->state = newstate;
164}
165
166/* Last one to ack a state moves to the next state. */
167static void ack_state(struct multi_stop_data *msdata)
168{
169	if (atomic_dec_and_test(&msdata->thread_ack))
170		set_state(msdata, msdata->state + 1);
171}
172
173/* This is the cpu_stop function which stops the CPU. */
174static int multi_cpu_stop(void *data)
175{
176	struct multi_stop_data *msdata = data;
177	enum multi_stop_state curstate = MULTI_STOP_NONE;
178	int cpu = smp_processor_id(), err = 0;
179	unsigned long flags;
180	bool is_active;
181
182	/*
183	 * When called from stop_machine_from_inactive_cpu(), irq might
184	 * already be disabled.  Save the state and restore it on exit.
185	 */
186	local_save_flags(flags);
187
188	if (!msdata->active_cpus)
189		is_active = cpu == cpumask_first(cpu_online_mask);
190	else
191		is_active = cpumask_test_cpu(cpu, msdata->active_cpus);
192
193	/* Simple state machine */
194	do {
195		/* Chill out and ensure we re-read multi_stop_state. */
196		cpu_relax();
197		if (msdata->state != curstate) {
198			curstate = msdata->state;
199			switch (curstate) {
200			case MULTI_STOP_DISABLE_IRQ:
201				local_irq_disable();
202				hard_irq_disable();
203				break;
204			case MULTI_STOP_RUN:
205				if (is_active)
206					err = msdata->fn(msdata->data);
207				break;
208			default:
209				break;
210			}
211			ack_state(msdata);
212		}
213	} while (curstate != MULTI_STOP_EXIT);
214
215	local_irq_restore(flags);
216	return err;
217}
218
219static int cpu_stop_queue_two_works(int cpu1, struct cpu_stop_work *work1,
220				    int cpu2, struct cpu_stop_work *work2)
 
 
 
 
 
 
 
 
 
 
 
221{
222	struct cpu_stopper *stopper1 = per_cpu_ptr(&cpu_stopper, cpu1);
223	struct cpu_stopper *stopper2 = per_cpu_ptr(&cpu_stopper, cpu2);
224	int err;
225
226	lg_double_lock(&stop_cpus_lock, cpu1, cpu2);
227	spin_lock_irq(&stopper1->lock);
228	spin_lock_nested(&stopper2->lock, SINGLE_DEPTH_NESTING);
229
230	err = -ENOENT;
231	if (!stopper1->enabled || !stopper2->enabled)
232		goto unlock;
233
234	err = 0;
235	__cpu_stop_queue_work(stopper1, work1);
236	__cpu_stop_queue_work(stopper2, work2);
237unlock:
238	spin_unlock(&stopper2->lock);
239	spin_unlock_irq(&stopper1->lock);
240	lg_double_unlock(&stop_cpus_lock, cpu1, cpu2);
241
242	return err;
243}
244/**
245 * stop_two_cpus - stops two cpus
246 * @cpu1: the cpu to stop
247 * @cpu2: the other cpu to stop
248 * @fn: function to execute
249 * @arg: argument to @fn
250 *
251 * Stops both the current and specified CPU and runs @fn on one of them.
252 *
253 * returns when both are completed.
254 */
255int stop_two_cpus(unsigned int cpu1, unsigned int cpu2, cpu_stop_fn_t fn, void *arg)
256{
257	struct cpu_stop_done done;
258	struct cpu_stop_work work1, work2;
 
259	struct multi_stop_data msdata;
260
 
261	msdata = (struct multi_stop_data){
262		.fn = fn,
263		.data = arg,
264		.num_threads = 2,
265		.active_cpus = cpumask_of(cpu1),
266	};
267
268	work1 = work2 = (struct cpu_stop_work){
269		.fn = multi_cpu_stop,
270		.arg = &msdata,
271		.done = &done
272	};
273
 
 
 
 
 
 
 
274	cpu_stop_init_done(&done, 2);
275	set_state(&msdata, MULTI_STOP_PREPARE);
276
277	if (cpu1 > cpu2)
278		swap(cpu1, cpu2);
279	if (cpu_stop_queue_two_works(cpu1, &work1, cpu2, &work2))
 
 
 
 
 
 
 
280		return -ENOENT;
 
 
 
 
 
 
 
 
 
 
 
 
 
281
282	wait_for_completion(&done.completion);
283	return done.ret;
 
284}
285
286/**
287 * stop_one_cpu_nowait - stop a cpu but don't wait for completion
288 * @cpu: cpu to stop
289 * @fn: function to execute
290 * @arg: argument to @fn
291 * @work_buf: pointer to cpu_stop_work structure
292 *
293 * Similar to stop_one_cpu() but doesn't wait for completion.  The
294 * caller is responsible for ensuring @work_buf is currently unused
295 * and will remain untouched until stopper starts executing @fn.
296 *
297 * CONTEXT:
298 * Don't care.
299 *
300 * RETURNS:
301 * true if cpu_stop_work was queued successfully and @fn will be called,
302 * false otherwise.
303 */
304bool stop_one_cpu_nowait(unsigned int cpu, cpu_stop_fn_t fn, void *arg,
305			struct cpu_stop_work *work_buf)
306{
307	*work_buf = (struct cpu_stop_work){ .fn = fn, .arg = arg, };
308	return cpu_stop_queue_work(cpu, work_buf);
309}
310
311/* static data for stop_cpus */
312static DEFINE_MUTEX(stop_cpus_mutex);
 
313
314static bool queue_stop_cpus_work(const struct cpumask *cpumask,
315				 cpu_stop_fn_t fn, void *arg,
316				 struct cpu_stop_done *done)
317{
318	struct cpu_stop_work *work;
319	unsigned int cpu;
320	bool queued = false;
 
 
 
 
 
 
 
321
322	/*
323	 * Disable preemption while queueing to avoid getting
324	 * preempted by a stopper which might wait for other stoppers
325	 * to enter @fn which can lead to deadlock.
326	 */
327	lg_global_lock(&stop_cpus_lock);
328	for_each_cpu(cpu, cpumask) {
329		work = &per_cpu(cpu_stopper.stop_work, cpu);
330		work->fn = fn;
331		work->arg = arg;
332		work->done = done;
333		if (cpu_stop_queue_work(cpu, work))
334			queued = true;
335	}
336	lg_global_unlock(&stop_cpus_lock);
337
338	return queued;
339}
340
341static int __stop_cpus(const struct cpumask *cpumask,
342		       cpu_stop_fn_t fn, void *arg)
343{
344	struct cpu_stop_done done;
345
346	cpu_stop_init_done(&done, cpumask_weight(cpumask));
347	if (!queue_stop_cpus_work(cpumask, fn, arg, &done))
348		return -ENOENT;
349	wait_for_completion(&done.completion);
350	return done.ret;
351}
352
353/**
354 * stop_cpus - stop multiple cpus
355 * @cpumask: cpus to stop
356 * @fn: function to execute
357 * @arg: argument to @fn
358 *
359 * Execute @fn(@arg) on online cpus in @cpumask.  On each target cpu,
360 * @fn is run in a process context with the highest priority
361 * preempting any task on the cpu and monopolizing it.  This function
362 * returns after all executions are complete.
363 *
364 * This function doesn't guarantee the cpus in @cpumask stay online
365 * till @fn completes.  If some cpus go down in the middle, execution
366 * on the cpu may happen partially or fully on different cpus.  @fn
367 * should either be ready for that or the caller should ensure that
368 * the cpus stay online until this function completes.
369 *
370 * All stop_cpus() calls are serialized making it safe for @fn to wait
371 * for all cpus to start executing it.
372 *
373 * CONTEXT:
374 * Might sleep.
375 *
376 * RETURNS:
377 * -ENOENT if @fn(@arg) was not executed at all because all cpus in
378 * @cpumask were offline; otherwise, 0 if all executions of @fn
379 * returned 0, any non zero return value if any returned non zero.
380 */
381int stop_cpus(const struct cpumask *cpumask, cpu_stop_fn_t fn, void *arg)
382{
383	int ret;
384
385	/* static works are used, process one request at a time */
386	mutex_lock(&stop_cpus_mutex);
387	ret = __stop_cpus(cpumask, fn, arg);
388	mutex_unlock(&stop_cpus_mutex);
389	return ret;
390}
391
392/**
393 * try_stop_cpus - try to stop multiple cpus
394 * @cpumask: cpus to stop
395 * @fn: function to execute
396 * @arg: argument to @fn
397 *
398 * Identical to stop_cpus() except that it fails with -EAGAIN if
399 * someone else is already using the facility.
400 *
401 * CONTEXT:
402 * Might sleep.
403 *
404 * RETURNS:
405 * -EAGAIN if someone else is already stopping cpus, -ENOENT if
406 * @fn(@arg) was not executed at all because all cpus in @cpumask were
407 * offline; otherwise, 0 if all executions of @fn returned 0, any non
408 * zero return value if any returned non zero.
409 */
410int try_stop_cpus(const struct cpumask *cpumask, cpu_stop_fn_t fn, void *arg)
411{
412	int ret;
413
414	/* static works are used, process one request at a time */
415	if (!mutex_trylock(&stop_cpus_mutex))
416		return -EAGAIN;
417	ret = __stop_cpus(cpumask, fn, arg);
418	mutex_unlock(&stop_cpus_mutex);
419	return ret;
420}
421
422static int cpu_stop_should_run(unsigned int cpu)
423{
424	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
425	unsigned long flags;
426	int run;
427
428	spin_lock_irqsave(&stopper->lock, flags);
429	run = !list_empty(&stopper->works);
430	spin_unlock_irqrestore(&stopper->lock, flags);
431	return run;
432}
433
434static void cpu_stopper_thread(unsigned int cpu)
435{
436	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
437	struct cpu_stop_work *work;
 
438
439repeat:
440	work = NULL;
441	spin_lock_irq(&stopper->lock);
442	if (!list_empty(&stopper->works)) {
443		work = list_first_entry(&stopper->works,
444					struct cpu_stop_work, list);
445		list_del_init(&work->list);
446	}
447	spin_unlock_irq(&stopper->lock);
448
449	if (work) {
450		cpu_stop_fn_t fn = work->fn;
451		void *arg = work->arg;
452		struct cpu_stop_done *done = work->done;
453		int ret;
 
 
 
454
455		/* cpu stop callbacks must not sleep, make in_atomic() == T */
456		preempt_count_inc();
457		ret = fn(arg);
458		if (done) {
459			if (ret)
460				done->ret = ret;
461			cpu_stop_signal_done(done);
462		}
463		preempt_count_dec();
464		WARN_ONCE(preempt_count(),
465			  "cpu_stop: %pf(%p) leaked preempt count\n", fn, arg);
 
 
 
 
466		goto repeat;
467	}
468}
469
470void stop_machine_park(int cpu)
471{
472	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
473	/*
474	 * Lockless. cpu_stopper_thread() will take stopper->lock and flush
475	 * the pending works before it parks, until then it is fine to queue
476	 * the new works.
477	 */
478	stopper->enabled = false;
479	kthread_park(stopper->thread);
480}
481
482extern void sched_set_stop_task(int cpu, struct task_struct *stop);
483
484static void cpu_stop_create(unsigned int cpu)
485{
486	sched_set_stop_task(cpu, per_cpu(cpu_stopper.thread, cpu));
487}
488
489static void cpu_stop_park(unsigned int cpu)
490{
491	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
 
 
492
493	WARN_ON(!list_empty(&stopper->works));
 
 
 
 
 
494}
495
496void stop_machine_unpark(int cpu)
497{
498	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
499
 
500	stopper->enabled = true;
501	kthread_unpark(stopper->thread);
502}
503
504static struct smp_hotplug_thread cpu_stop_threads = {
505	.store			= &cpu_stopper.thread,
506	.thread_should_run	= cpu_stop_should_run,
507	.thread_fn		= cpu_stopper_thread,
508	.thread_comm		= "migration/%u",
509	.create			= cpu_stop_create,
 
510	.park			= cpu_stop_park,
 
511	.selfparking		= true,
512};
513
514static int __init cpu_stop_init(void)
515{
516	unsigned int cpu;
517
518	for_each_possible_cpu(cpu) {
519		struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
520
521		spin_lock_init(&stopper->lock);
522		INIT_LIST_HEAD(&stopper->works);
523	}
524
525	BUG_ON(smpboot_register_percpu_thread(&cpu_stop_threads));
526	stop_machine_unpark(raw_smp_processor_id());
527	stop_machine_initialized = true;
528	return 0;
529}
530early_initcall(cpu_stop_init);
531
532static int __stop_machine(cpu_stop_fn_t fn, void *data, const struct cpumask *cpus)
 
 
533{
534	struct multi_stop_data msdata = {
535		.fn = fn,
536		.data = data,
537		.num_threads = num_online_cpus(),
538		.active_cpus = cpus,
539	};
540
541	if (!stop_machine_initialized) {
542		/*
543		 * Handle the case where stop_machine() is called
544		 * early in boot before stop_machine() has been
545		 * initialized.
546		 */
547		unsigned long flags;
548		int ret;
549
550		WARN_ON_ONCE(msdata.num_threads != 1);
551
552		local_irq_save(flags);
553		hard_irq_disable();
554		ret = (*fn)(data);
555		local_irq_restore(flags);
556
557		return ret;
558	}
559
560	/* Set the initial state and stop all online cpus. */
561	set_state(&msdata, MULTI_STOP_PREPARE);
562	return stop_cpus(cpu_online_mask, multi_cpu_stop, &msdata);
563}
564
565int stop_machine(cpu_stop_fn_t fn, void *data, const struct cpumask *cpus)
566{
567	int ret;
568
569	/* No CPUs can come up or down during this. */
570	get_online_cpus();
571	ret = __stop_machine(fn, data, cpus);
572	put_online_cpus();
573	return ret;
574}
575EXPORT_SYMBOL_GPL(stop_machine);
576
577/**
578 * stop_machine_from_inactive_cpu - stop_machine() from inactive CPU
579 * @fn: the function to run
580 * @data: the data ptr for the @fn()
581 * @cpus: the cpus to run the @fn() on (NULL = any online cpu)
582 *
583 * This is identical to stop_machine() but can be called from a CPU which
584 * is not active.  The local CPU is in the process of hotplug (so no other
585 * CPU hotplug can start) and not marked active and doesn't have enough
586 * context to sleep.
587 *
588 * This function provides stop_machine() functionality for such state by
589 * using busy-wait for synchronization and executing @fn directly for local
590 * CPU.
591 *
592 * CONTEXT:
593 * Local CPU is inactive.  Temporarily stops all active CPUs.
594 *
595 * RETURNS:
596 * 0 if all executions of @fn returned 0, any non zero return value if any
597 * returned non zero.
598 */
599int stop_machine_from_inactive_cpu(cpu_stop_fn_t fn, void *data,
600				  const struct cpumask *cpus)
601{
602	struct multi_stop_data msdata = { .fn = fn, .data = data,
603					    .active_cpus = cpus };
604	struct cpu_stop_done done;
605	int ret;
606
607	/* Local CPU must be inactive and CPU hotplug in progress. */
608	BUG_ON(cpu_active(raw_smp_processor_id()));
609	msdata.num_threads = num_active_cpus() + 1;	/* +1 for local */
610
611	/* No proper task established and can't sleep - busy wait for lock. */
612	while (!mutex_trylock(&stop_cpus_mutex))
613		cpu_relax();
614
615	/* Schedule work on other CPUs and execute directly for local CPU */
616	set_state(&msdata, MULTI_STOP_PREPARE);
617	cpu_stop_init_done(&done, num_active_cpus());
618	queue_stop_cpus_work(cpu_active_mask, multi_cpu_stop, &msdata,
619			     &done);
620	ret = multi_cpu_stop(&msdata);
621
622	/* Busy wait for completion. */
623	while (!completion_done(&done.completion))
624		cpu_relax();
625
626	mutex_unlock(&stop_cpus_mutex);
627	return ret ?: done.ret;
628}