Linux Audio

Check our new training course

Loading...
v3.15
 
   1/* Basic authentication token and access key management
   2 *
   3 * Copyright (C) 2004-2008 Red Hat, Inc. All Rights Reserved.
   4 * Written by David Howells (dhowells@redhat.com)
   5 *
   6 * This program is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU General Public License
   8 * as published by the Free Software Foundation; either version
   9 * 2 of the License, or (at your option) any later version.
  10 */
  11
  12#include <linux/module.h>
  13#include <linux/init.h>
  14#include <linux/poison.h>
  15#include <linux/sched.h>
  16#include <linux/slab.h>
  17#include <linux/security.h>
  18#include <linux/workqueue.h>
  19#include <linux/random.h>
  20#include <linux/err.h>
  21#include "internal.h"
  22
  23struct kmem_cache *key_jar;
  24struct rb_root		key_serial_tree; /* tree of keys indexed by serial */
  25DEFINE_SPINLOCK(key_serial_lock);
  26
  27struct rb_root	key_user_tree; /* tree of quota records indexed by UID */
  28DEFINE_SPINLOCK(key_user_lock);
  29
  30unsigned int key_quota_root_maxkeys = 200;	/* root's key count quota */
  31unsigned int key_quota_root_maxbytes = 20000;	/* root's key space quota */
  32unsigned int key_quota_maxkeys = 200;		/* general key count quota */
  33unsigned int key_quota_maxbytes = 20000;	/* general key space quota */
  34
  35static LIST_HEAD(key_types_list);
  36static DECLARE_RWSEM(key_types_sem);
  37
  38/* We serialise key instantiation and link */
  39DEFINE_MUTEX(key_construction_mutex);
  40
  41#ifdef KEY_DEBUGGING
  42void __key_check(const struct key *key)
  43{
  44	printk("__key_check: key %p {%08x} should be {%08x}\n",
  45	       key, key->magic, KEY_DEBUG_MAGIC);
  46	BUG();
  47}
  48#endif
  49
  50/*
  51 * Get the key quota record for a user, allocating a new record if one doesn't
  52 * already exist.
  53 */
  54struct key_user *key_user_lookup(kuid_t uid)
  55{
  56	struct key_user *candidate = NULL, *user;
  57	struct rb_node *parent = NULL;
  58	struct rb_node **p;
  59
  60try_again:
 
  61	p = &key_user_tree.rb_node;
  62	spin_lock(&key_user_lock);
  63
  64	/* search the tree for a user record with a matching UID */
  65	while (*p) {
  66		parent = *p;
  67		user = rb_entry(parent, struct key_user, node);
  68
  69		if (uid_lt(uid, user->uid))
  70			p = &(*p)->rb_left;
  71		else if (uid_gt(uid, user->uid))
  72			p = &(*p)->rb_right;
  73		else
  74			goto found;
  75	}
  76
  77	/* if we get here, we failed to find a match in the tree */
  78	if (!candidate) {
  79		/* allocate a candidate user record if we don't already have
  80		 * one */
  81		spin_unlock(&key_user_lock);
  82
  83		user = NULL;
  84		candidate = kmalloc(sizeof(struct key_user), GFP_KERNEL);
  85		if (unlikely(!candidate))
  86			goto out;
  87
  88		/* the allocation may have scheduled, so we need to repeat the
  89		 * search lest someone else added the record whilst we were
  90		 * asleep */
  91		goto try_again;
  92	}
  93
  94	/* if we get here, then the user record still hadn't appeared on the
  95	 * second pass - so we use the candidate record */
  96	atomic_set(&candidate->usage, 1);
  97	atomic_set(&candidate->nkeys, 0);
  98	atomic_set(&candidate->nikeys, 0);
  99	candidate->uid = uid;
 100	candidate->qnkeys = 0;
 101	candidate->qnbytes = 0;
 102	spin_lock_init(&candidate->lock);
 103	mutex_init(&candidate->cons_lock);
 104
 105	rb_link_node(&candidate->node, parent, p);
 106	rb_insert_color(&candidate->node, &key_user_tree);
 107	spin_unlock(&key_user_lock);
 108	user = candidate;
 109	goto out;
 110
 111	/* okay - we found a user record for this UID */
 112found:
 113	atomic_inc(&user->usage);
 114	spin_unlock(&key_user_lock);
 115	kfree(candidate);
 116out:
 117	return user;
 118}
 119
 120/*
 121 * Dispose of a user structure
 122 */
 123void key_user_put(struct key_user *user)
 124{
 125	if (atomic_dec_and_lock(&user->usage, &key_user_lock)) {
 126		rb_erase(&user->node, &key_user_tree);
 127		spin_unlock(&key_user_lock);
 128
 129		kfree(user);
 130	}
 131}
 132
 133/*
 134 * Allocate a serial number for a key.  These are assigned randomly to avoid
 135 * security issues through covert channel problems.
 136 */
 137static inline void key_alloc_serial(struct key *key)
 138{
 139	struct rb_node *parent, **p;
 140	struct key *xkey;
 141
 142	/* propose a random serial number and look for a hole for it in the
 143	 * serial number tree */
 144	do {
 145		get_random_bytes(&key->serial, sizeof(key->serial));
 146
 147		key->serial >>= 1; /* negative numbers are not permitted */
 148	} while (key->serial < 3);
 149
 150	spin_lock(&key_serial_lock);
 151
 152attempt_insertion:
 153	parent = NULL;
 154	p = &key_serial_tree.rb_node;
 155
 156	while (*p) {
 157		parent = *p;
 158		xkey = rb_entry(parent, struct key, serial_node);
 159
 160		if (key->serial < xkey->serial)
 161			p = &(*p)->rb_left;
 162		else if (key->serial > xkey->serial)
 163			p = &(*p)->rb_right;
 164		else
 165			goto serial_exists;
 166	}
 167
 168	/* we've found a suitable hole - arrange for this key to occupy it */
 169	rb_link_node(&key->serial_node, parent, p);
 170	rb_insert_color(&key->serial_node, &key_serial_tree);
 171
 172	spin_unlock(&key_serial_lock);
 173	return;
 174
 175	/* we found a key with the proposed serial number - walk the tree from
 176	 * that point looking for the next unused serial number */
 177serial_exists:
 178	for (;;) {
 179		key->serial++;
 180		if (key->serial < 3) {
 181			key->serial = 3;
 182			goto attempt_insertion;
 183		}
 184
 185		parent = rb_next(parent);
 186		if (!parent)
 187			goto attempt_insertion;
 188
 189		xkey = rb_entry(parent, struct key, serial_node);
 190		if (key->serial < xkey->serial)
 191			goto attempt_insertion;
 192	}
 193}
 194
 195/**
 196 * key_alloc - Allocate a key of the specified type.
 197 * @type: The type of key to allocate.
 198 * @desc: The key description to allow the key to be searched out.
 199 * @uid: The owner of the new key.
 200 * @gid: The group ID for the new key's group permissions.
 201 * @cred: The credentials specifying UID namespace.
 202 * @perm: The permissions mask of the new key.
 203 * @flags: Flags specifying quota properties.
 
 204 *
 205 * Allocate a key of the specified type with the attributes given.  The key is
 206 * returned in an uninstantiated state and the caller needs to instantiate the
 207 * key before returning.
 208 *
 
 
 
 209 * The user's key count quota is updated to reflect the creation of the key and
 210 * the user's key data quota has the default for the key type reserved.  The
 211 * instantiation function should amend this as necessary.  If insufficient
 212 * quota is available, -EDQUOT will be returned.
 213 *
 214 * The LSM security modules can prevent a key being created, in which case
 215 * -EACCES will be returned.
 216 *
 217 * Returns a pointer to the new key if successful and an error code otherwise.
 218 *
 219 * Note that the caller needs to ensure the key type isn't uninstantiated.
 220 * Internally this can be done by locking key_types_sem.  Externally, this can
 221 * be done by either never unregistering the key type, or making sure
 222 * key_alloc() calls don't race with module unloading.
 223 */
 224struct key *key_alloc(struct key_type *type, const char *desc,
 225		      kuid_t uid, kgid_t gid, const struct cred *cred,
 226		      key_perm_t perm, unsigned long flags)
 
 227{
 228	struct key_user *user = NULL;
 229	struct key *key;
 230	size_t desclen, quotalen;
 231	int ret;
 232
 233	key = ERR_PTR(-EINVAL);
 234	if (!desc || !*desc)
 235		goto error;
 236
 237	if (type->vet_description) {
 238		ret = type->vet_description(desc);
 239		if (ret < 0) {
 240			key = ERR_PTR(ret);
 241			goto error;
 242		}
 243	}
 244
 245	desclen = strlen(desc);
 246	quotalen = desclen + 1 + type->def_datalen;
 247
 248	/* get hold of the key tracking for this user */
 249	user = key_user_lookup(uid);
 250	if (!user)
 251		goto no_memory_1;
 252
 253	/* check that the user's quota permits allocation of another key and
 254	 * its description */
 255	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
 256		unsigned maxkeys = uid_eq(uid, GLOBAL_ROOT_UID) ?
 257			key_quota_root_maxkeys : key_quota_maxkeys;
 258		unsigned maxbytes = uid_eq(uid, GLOBAL_ROOT_UID) ?
 259			key_quota_root_maxbytes : key_quota_maxbytes;
 260
 261		spin_lock(&user->lock);
 262		if (!(flags & KEY_ALLOC_QUOTA_OVERRUN)) {
 263			if (user->qnkeys + 1 >= maxkeys ||
 264			    user->qnbytes + quotalen >= maxbytes ||
 265			    user->qnbytes + quotalen < user->qnbytes)
 266				goto no_quota;
 267		}
 268
 269		user->qnkeys++;
 270		user->qnbytes += quotalen;
 271		spin_unlock(&user->lock);
 272	}
 273
 274	/* allocate and initialise the key and its description */
 275	key = kmem_cache_zalloc(key_jar, GFP_KERNEL);
 276	if (!key)
 277		goto no_memory_2;
 278
 279	if (desc) {
 280		key->index_key.desc_len = desclen;
 281		key->index_key.description = kmemdup(desc, desclen + 1, GFP_KERNEL);
 282		if (!key->description)
 283			goto no_memory_3;
 284	}
 285
 286	atomic_set(&key->usage, 1);
 287	init_rwsem(&key->sem);
 288	lockdep_set_class(&key->sem, &type->lock_class);
 289	key->index_key.type = type;
 290	key->user = user;
 291	key->quotalen = quotalen;
 292	key->datalen = type->def_datalen;
 293	key->uid = uid;
 294	key->gid = gid;
 295	key->perm = perm;
 
 
 296
 297	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA))
 298		key->flags |= 1 << KEY_FLAG_IN_QUOTA;
 299	if (flags & KEY_ALLOC_TRUSTED)
 300		key->flags |= 1 << KEY_FLAG_TRUSTED;
 
 
 301
 302#ifdef KEY_DEBUGGING
 303	key->magic = KEY_DEBUG_MAGIC;
 304#endif
 305
 306	/* let the security module know about the key */
 307	ret = security_key_alloc(key, cred, flags);
 308	if (ret < 0)
 309		goto security_error;
 310
 311	/* publish the key by giving it a serial number */
 
 312	atomic_inc(&user->nkeys);
 313	key_alloc_serial(key);
 314
 315error:
 316	return key;
 317
 318security_error:
 319	kfree(key->description);
 320	kmem_cache_free(key_jar, key);
 321	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
 322		spin_lock(&user->lock);
 323		user->qnkeys--;
 324		user->qnbytes -= quotalen;
 325		spin_unlock(&user->lock);
 326	}
 327	key_user_put(user);
 328	key = ERR_PTR(ret);
 329	goto error;
 330
 331no_memory_3:
 332	kmem_cache_free(key_jar, key);
 333no_memory_2:
 334	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
 335		spin_lock(&user->lock);
 336		user->qnkeys--;
 337		user->qnbytes -= quotalen;
 338		spin_unlock(&user->lock);
 339	}
 340	key_user_put(user);
 341no_memory_1:
 342	key = ERR_PTR(-ENOMEM);
 343	goto error;
 344
 345no_quota:
 346	spin_unlock(&user->lock);
 347	key_user_put(user);
 348	key = ERR_PTR(-EDQUOT);
 349	goto error;
 350}
 351EXPORT_SYMBOL(key_alloc);
 352
 353/**
 354 * key_payload_reserve - Adjust data quota reservation for the key's payload
 355 * @key: The key to make the reservation for.
 356 * @datalen: The amount of data payload the caller now wants.
 357 *
 358 * Adjust the amount of the owning user's key data quota that a key reserves.
 359 * If the amount is increased, then -EDQUOT may be returned if there isn't
 360 * enough free quota available.
 361 *
 362 * If successful, 0 is returned.
 363 */
 364int key_payload_reserve(struct key *key, size_t datalen)
 365{
 366	int delta = (int)datalen - key->datalen;
 367	int ret = 0;
 368
 369	key_check(key);
 370
 371	/* contemplate the quota adjustment */
 372	if (delta != 0 && test_bit(KEY_FLAG_IN_QUOTA, &key->flags)) {
 373		unsigned maxbytes = uid_eq(key->user->uid, GLOBAL_ROOT_UID) ?
 374			key_quota_root_maxbytes : key_quota_maxbytes;
 375
 376		spin_lock(&key->user->lock);
 377
 378		if (delta > 0 &&
 379		    (key->user->qnbytes + delta >= maxbytes ||
 380		     key->user->qnbytes + delta < key->user->qnbytes)) {
 381			ret = -EDQUOT;
 382		}
 383		else {
 384			key->user->qnbytes += delta;
 385			key->quotalen += delta;
 386		}
 387		spin_unlock(&key->user->lock);
 388	}
 389
 390	/* change the recorded data length if that didn't generate an error */
 391	if (ret == 0)
 392		key->datalen = datalen;
 393
 394	return ret;
 395}
 396EXPORT_SYMBOL(key_payload_reserve);
 397
 398/*
 
 
 
 
 
 
 
 
 
 
 
 
 399 * Instantiate a key and link it into the target keyring atomically.  Must be
 400 * called with the target keyring's semaphore writelocked.  The target key's
 401 * semaphore need not be locked as instantiation is serialised by
 402 * key_construction_mutex.
 403 */
 404static int __key_instantiate_and_link(struct key *key,
 405				      struct key_preparsed_payload *prep,
 406				      struct key *keyring,
 407				      struct key *authkey,
 408				      struct assoc_array_edit **_edit)
 409{
 410	int ret, awaken;
 411
 412	key_check(key);
 413	key_check(keyring);
 414
 415	awaken = 0;
 416	ret = -EBUSY;
 417
 418	mutex_lock(&key_construction_mutex);
 419
 420	/* can't instantiate twice */
 421	if (!test_bit(KEY_FLAG_INSTANTIATED, &key->flags)) {
 422		/* instantiate the key */
 423		ret = key->type->instantiate(key, prep);
 424
 425		if (ret == 0) {
 426			/* mark the key as being instantiated */
 427			atomic_inc(&key->user->nikeys);
 428			set_bit(KEY_FLAG_INSTANTIATED, &key->flags);
 429
 430			if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
 431				awaken = 1;
 432
 433			/* and link it into the destination keyring */
 434			if (keyring)
 
 
 
 435				__key_link(key, _edit);
 
 436
 437			/* disable the authorisation key */
 438			if (authkey)
 439				key_revoke(authkey);
 
 
 
 
 
 440		}
 441	}
 442
 443	mutex_unlock(&key_construction_mutex);
 444
 445	/* wake up anyone waiting for a key to be constructed */
 446	if (awaken)
 447		wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT);
 448
 449	return ret;
 450}
 451
 452/**
 453 * key_instantiate_and_link - Instantiate a key and link it into the keyring.
 454 * @key: The key to instantiate.
 455 * @data: The data to use to instantiate the keyring.
 456 * @datalen: The length of @data.
 457 * @keyring: Keyring to create a link in on success (or NULL).
 458 * @authkey: The authorisation token permitting instantiation.
 459 *
 460 * Instantiate a key that's in the uninstantiated state using the provided data
 461 * and, if successful, link it in to the destination keyring if one is
 462 * supplied.
 463 *
 464 * If successful, 0 is returned, the authorisation token is revoked and anyone
 465 * waiting for the key is woken up.  If the key was already instantiated,
 466 * -EBUSY will be returned.
 467 */
 468int key_instantiate_and_link(struct key *key,
 469			     const void *data,
 470			     size_t datalen,
 471			     struct key *keyring,
 472			     struct key *authkey)
 473{
 474	struct key_preparsed_payload prep;
 475	struct assoc_array_edit *edit;
 476	int ret;
 477
 478	memset(&prep, 0, sizeof(prep));
 479	prep.data = data;
 480	prep.datalen = datalen;
 481	prep.quotalen = key->type->def_datalen;
 
 482	if (key->type->preparse) {
 483		ret = key->type->preparse(&prep);
 484		if (ret < 0)
 485			goto error;
 486	}
 487
 488	if (keyring) {
 
 
 
 
 489		ret = __key_link_begin(keyring, &key->index_key, &edit);
 490		if (ret < 0)
 491			goto error_free_preparse;
 
 
 
 
 
 
 
 
 
 492	}
 493
 494	ret = __key_instantiate_and_link(key, &prep, keyring, authkey, &edit);
 495
 
 496	if (keyring)
 497		__key_link_end(keyring, &key->index_key, edit);
 498
 499error_free_preparse:
 500	if (key->type->preparse)
 501		key->type->free_preparse(&prep);
 502error:
 503	return ret;
 504}
 505
 506EXPORT_SYMBOL(key_instantiate_and_link);
 507
 508/**
 509 * key_reject_and_link - Negatively instantiate a key and link it into the keyring.
 510 * @key: The key to instantiate.
 511 * @timeout: The timeout on the negative key.
 512 * @error: The error to return when the key is hit.
 513 * @keyring: Keyring to create a link in on success (or NULL).
 514 * @authkey: The authorisation token permitting instantiation.
 515 *
 516 * Negatively instantiate a key that's in the uninstantiated state and, if
 517 * successful, set its timeout and stored error and link it in to the
 518 * destination keyring if one is supplied.  The key and any links to the key
 519 * will be automatically garbage collected after the timeout expires.
 520 *
 521 * Negative keys are used to rate limit repeated request_key() calls by causing
 522 * them to return the stored error code (typically ENOKEY) until the negative
 523 * key expires.
 524 *
 525 * If successful, 0 is returned, the authorisation token is revoked and anyone
 526 * waiting for the key is woken up.  If the key was already instantiated,
 527 * -EBUSY will be returned.
 528 */
 529int key_reject_and_link(struct key *key,
 530			unsigned timeout,
 531			unsigned error,
 532			struct key *keyring,
 533			struct key *authkey)
 534{
 535	struct assoc_array_edit *edit;
 536	struct timespec now;
 537	int ret, awaken, link_ret = 0;
 538
 539	key_check(key);
 540	key_check(keyring);
 541
 542	awaken = 0;
 543	ret = -EBUSY;
 544
 545	if (keyring)
 546		link_ret = __key_link_begin(keyring, &key->index_key, &edit);
 
 
 
 
 
 
 
 
 
 547
 548	mutex_lock(&key_construction_mutex);
 549
 550	/* can't instantiate twice */
 551	if (!test_bit(KEY_FLAG_INSTANTIATED, &key->flags)) {
 552		/* mark the key as being negatively instantiated */
 553		atomic_inc(&key->user->nikeys);
 554		key->type_data.reject_error = -error;
 555		smp_wmb();
 556		set_bit(KEY_FLAG_NEGATIVE, &key->flags);
 557		set_bit(KEY_FLAG_INSTANTIATED, &key->flags);
 558		now = current_kernel_time();
 559		key->expiry = now.tv_sec + timeout;
 560		key_schedule_gc(key->expiry + key_gc_delay);
 561
 562		if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
 563			awaken = 1;
 564
 565		ret = 0;
 566
 567		/* and link it into the destination keyring */
 568		if (keyring && link_ret == 0)
 569			__key_link(key, &edit);
 570
 571		/* disable the authorisation key */
 572		if (authkey)
 573			key_revoke(authkey);
 574	}
 575
 576	mutex_unlock(&key_construction_mutex);
 577
 578	if (keyring)
 579		__key_link_end(keyring, &key->index_key, edit);
 580
 581	/* wake up anyone waiting for a key to be constructed */
 582	if (awaken)
 583		wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT);
 584
 585	return ret == 0 ? link_ret : ret;
 586}
 587EXPORT_SYMBOL(key_reject_and_link);
 588
 589/**
 590 * key_put - Discard a reference to a key.
 591 * @key: The key to discard a reference from.
 592 *
 593 * Discard a reference to a key, and when all the references are gone, we
 594 * schedule the cleanup task to come and pull it out of the tree in process
 595 * context at some later time.
 596 */
 597void key_put(struct key *key)
 598{
 599	if (key) {
 600		key_check(key);
 601
 602		if (atomic_dec_and_test(&key->usage))
 603			schedule_work(&key_gc_work);
 604	}
 605}
 606EXPORT_SYMBOL(key_put);
 607
 608/*
 609 * Find a key by its serial number.
 610 */
 611struct key *key_lookup(key_serial_t id)
 612{
 613	struct rb_node *n;
 614	struct key *key;
 615
 616	spin_lock(&key_serial_lock);
 617
 618	/* search the tree for the specified key */
 619	n = key_serial_tree.rb_node;
 620	while (n) {
 621		key = rb_entry(n, struct key, serial_node);
 622
 623		if (id < key->serial)
 624			n = n->rb_left;
 625		else if (id > key->serial)
 626			n = n->rb_right;
 627		else
 628			goto found;
 629	}
 630
 631not_found:
 632	key = ERR_PTR(-ENOKEY);
 633	goto error;
 634
 635found:
 636	/* pretend it doesn't exist if it is awaiting deletion */
 637	if (atomic_read(&key->usage) == 0)
 638		goto not_found;
 639
 640	/* this races with key_put(), but that doesn't matter since key_put()
 641	 * doesn't actually change the key
 642	 */
 643	__key_get(key);
 
 644
 645error:
 646	spin_unlock(&key_serial_lock);
 647	return key;
 648}
 649
 650/*
 651 * Find and lock the specified key type against removal.
 652 *
 653 * We return with the sem read-locked if successful.  If the type wasn't
 654 * available -ENOKEY is returned instead.
 655 */
 656struct key_type *key_type_lookup(const char *type)
 657{
 658	struct key_type *ktype;
 659
 660	down_read(&key_types_sem);
 661
 662	/* look up the key type to see if it's one of the registered kernel
 663	 * types */
 664	list_for_each_entry(ktype, &key_types_list, link) {
 665		if (strcmp(ktype->name, type) == 0)
 666			goto found_kernel_type;
 667	}
 668
 669	up_read(&key_types_sem);
 670	ktype = ERR_PTR(-ENOKEY);
 671
 672found_kernel_type:
 673	return ktype;
 674}
 675
 676void key_set_timeout(struct key *key, unsigned timeout)
 677{
 678	struct timespec now;
 679	time_t expiry = 0;
 680
 681	/* make the changes with the locks held to prevent races */
 682	down_write(&key->sem);
 683
 684	if (timeout > 0) {
 685		now = current_kernel_time();
 686		expiry = now.tv_sec + timeout;
 687	}
 688
 689	key->expiry = expiry;
 690	key_schedule_gc(key->expiry + key_gc_delay);
 691
 692	up_write(&key->sem);
 693}
 694EXPORT_SYMBOL_GPL(key_set_timeout);
 695
 696/*
 697 * Unlock a key type locked by key_type_lookup().
 698 */
 699void key_type_put(struct key_type *ktype)
 700{
 701	up_read(&key_types_sem);
 702}
 703
 704/*
 705 * Attempt to update an existing key.
 706 *
 707 * The key is given to us with an incremented refcount that we need to discard
 708 * if we get an error.
 709 */
 710static inline key_ref_t __key_update(key_ref_t key_ref,
 711				     struct key_preparsed_payload *prep)
 712{
 713	struct key *key = key_ref_to_ptr(key_ref);
 714	int ret;
 715
 716	/* need write permission on the key to update it */
 717	ret = key_permission(key_ref, KEY_WRITE);
 718	if (ret < 0)
 719		goto error;
 720
 721	ret = -EEXIST;
 722	if (!key->type->update)
 723		goto error;
 724
 725	down_write(&key->sem);
 726
 727	ret = key->type->update(key, prep);
 728	if (ret == 0)
 729		/* updating a negative key instantiates it */
 730		clear_bit(KEY_FLAG_NEGATIVE, &key->flags);
 731
 732	up_write(&key->sem);
 733
 734	if (ret < 0)
 735		goto error;
 736out:
 737	return key_ref;
 738
 739error:
 740	key_put(key);
 741	key_ref = ERR_PTR(ret);
 742	goto out;
 743}
 744
 745/**
 746 * key_create_or_update - Update or create and instantiate a key.
 747 * @keyring_ref: A pointer to the destination keyring with possession flag.
 748 * @type: The type of key.
 749 * @description: The searchable description for the key.
 750 * @payload: The data to use to instantiate or update the key.
 751 * @plen: The length of @payload.
 752 * @perm: The permissions mask for a new key.
 753 * @flags: The quota flags for a new key.
 754 *
 755 * Search the destination keyring for a key of the same description and if one
 756 * is found, update it, otherwise create and instantiate a new one and create a
 757 * link to it from that keyring.
 758 *
 759 * If perm is KEY_PERM_UNDEF then an appropriate key permissions mask will be
 760 * concocted.
 761 *
 762 * Returns a pointer to the new key if successful, -ENODEV if the key type
 763 * wasn't available, -ENOTDIR if the keyring wasn't a keyring, -EACCES if the
 764 * caller isn't permitted to modify the keyring or the LSM did not permit
 765 * creation of the key.
 766 *
 767 * On success, the possession flag from the keyring ref will be tacked on to
 768 * the key ref before it is returned.
 769 */
 770key_ref_t key_create_or_update(key_ref_t keyring_ref,
 771			       const char *type,
 772			       const char *description,
 773			       const void *payload,
 774			       size_t plen,
 775			       key_perm_t perm,
 776			       unsigned long flags)
 777{
 778	struct keyring_index_key index_key = {
 779		.description	= description,
 780	};
 781	struct key_preparsed_payload prep;
 782	struct assoc_array_edit *edit;
 783	const struct cred *cred = current_cred();
 784	struct key *keyring, *key = NULL;
 785	key_ref_t key_ref;
 786	int ret;
 
 787
 788	/* look up the key type to see if it's one of the registered kernel
 789	 * types */
 790	index_key.type = key_type_lookup(type);
 791	if (IS_ERR(index_key.type)) {
 792		key_ref = ERR_PTR(-ENODEV);
 793		goto error;
 794	}
 795
 796	key_ref = ERR_PTR(-EINVAL);
 797	if (!index_key.type->match || !index_key.type->instantiate ||
 798	    (!index_key.description && !index_key.type->preparse))
 799		goto error_put_type;
 800
 801	keyring = key_ref_to_ptr(keyring_ref);
 802
 803	key_check(keyring);
 804
 
 
 
 805	key_ref = ERR_PTR(-ENOTDIR);
 806	if (keyring->type != &key_type_keyring)
 807		goto error_put_type;
 808
 809	memset(&prep, 0, sizeof(prep));
 810	prep.data = payload;
 811	prep.datalen = plen;
 812	prep.quotalen = index_key.type->def_datalen;
 813	prep.trusted = flags & KEY_ALLOC_TRUSTED;
 814	if (index_key.type->preparse) {
 815		ret = index_key.type->preparse(&prep);
 816		if (ret < 0) {
 817			key_ref = ERR_PTR(ret);
 818			goto error_put_type;
 819		}
 820		if (!index_key.description)
 821			index_key.description = prep.description;
 822		key_ref = ERR_PTR(-EINVAL);
 823		if (!index_key.description)
 824			goto error_free_prep;
 825	}
 826	index_key.desc_len = strlen(index_key.description);
 
 827
 828	key_ref = ERR_PTR(-EPERM);
 829	if (!prep.trusted && test_bit(KEY_FLAG_TRUSTED_ONLY, &keyring->flags))
 
 830		goto error_free_prep;
 831	flags |= prep.trusted ? KEY_ALLOC_TRUSTED : 0;
 832
 833	ret = __key_link_begin(keyring, &index_key, &edit);
 834	if (ret < 0) {
 835		key_ref = ERR_PTR(ret);
 836		goto error_free_prep;
 
 
 
 
 
 
 
 
 
 837	}
 838
 839	/* if we're going to allocate a new key, we're going to have
 840	 * to modify the keyring */
 841	ret = key_permission(keyring_ref, KEY_WRITE);
 842	if (ret < 0) {
 843		key_ref = ERR_PTR(ret);
 844		goto error_link_end;
 845	}
 846
 847	/* if it's possible to update this type of key, search for an existing
 848	 * key of the same type and description in the destination keyring and
 849	 * update that instead if possible
 850	 */
 851	if (index_key.type->update) {
 852		key_ref = find_key_to_update(keyring_ref, &index_key);
 853		if (key_ref)
 854			goto found_matching_key;
 855	}
 856
 857	/* if the client doesn't provide, decide on the permissions we want */
 858	if (perm == KEY_PERM_UNDEF) {
 859		perm = KEY_POS_VIEW | KEY_POS_SEARCH | KEY_POS_LINK | KEY_POS_SETATTR;
 860		perm |= KEY_USR_VIEW;
 861
 862		if (index_key.type->read)
 863			perm |= KEY_POS_READ;
 864
 865		if (index_key.type == &key_type_keyring ||
 866		    index_key.type->update)
 867			perm |= KEY_POS_WRITE;
 868	}
 869
 870	/* allocate a new key */
 871	key = key_alloc(index_key.type, index_key.description,
 872			cred->fsuid, cred->fsgid, cred, perm, flags);
 873	if (IS_ERR(key)) {
 874		key_ref = ERR_CAST(key);
 875		goto error_link_end;
 876	}
 877
 878	/* instantiate it and link it into the target keyring */
 879	ret = __key_instantiate_and_link(key, &prep, keyring, NULL, &edit);
 880	if (ret < 0) {
 881		key_put(key);
 882		key_ref = ERR_PTR(ret);
 883		goto error_link_end;
 884	}
 885
 886	key_ref = make_key_ref(key, is_key_possessed(keyring_ref));
 887
 888error_link_end:
 889	__key_link_end(keyring, &index_key, edit);
 890error_free_prep:
 891	if (index_key.type->preparse)
 892		index_key.type->free_preparse(&prep);
 893error_put_type:
 894	key_type_put(index_key.type);
 895error:
 896	return key_ref;
 897
 898 found_matching_key:
 899	/* we found a matching key, so we're going to try to update it
 900	 * - we can drop the locks first as we have the key pinned
 901	 */
 902	__key_link_end(keyring, &index_key, edit);
 903
 
 
 
 
 
 
 
 
 
 
 904	key_ref = __key_update(key_ref, &prep);
 905	goto error_free_prep;
 906}
 907EXPORT_SYMBOL(key_create_or_update);
 908
 909/**
 910 * key_update - Update a key's contents.
 911 * @key_ref: The pointer (plus possession flag) to the key.
 912 * @payload: The data to be used to update the key.
 913 * @plen: The length of @payload.
 914 *
 915 * Attempt to update the contents of a key with the given payload data.  The
 916 * caller must be granted Write permission on the key.  Negative keys can be
 917 * instantiated by this method.
 918 *
 919 * Returns 0 on success, -EACCES if not permitted and -EOPNOTSUPP if the key
 920 * type does not support updating.  The key type may return other errors.
 921 */
 922int key_update(key_ref_t key_ref, const void *payload, size_t plen)
 923{
 924	struct key_preparsed_payload prep;
 925	struct key *key = key_ref_to_ptr(key_ref);
 926	int ret;
 927
 928	key_check(key);
 929
 930	/* the key must be writable */
 931	ret = key_permission(key_ref, KEY_WRITE);
 932	if (ret < 0)
 933		goto error;
 934
 935	/* attempt to update it if supported */
 936	ret = -EOPNOTSUPP;
 937	if (!key->type->update)
 938		goto error;
 939
 940	memset(&prep, 0, sizeof(prep));
 941	prep.data = payload;
 942	prep.datalen = plen;
 943	prep.quotalen = key->type->def_datalen;
 
 944	if (key->type->preparse) {
 945		ret = key->type->preparse(&prep);
 946		if (ret < 0)
 947			goto error;
 948	}
 949
 950	down_write(&key->sem);
 951
 952	ret = key->type->update(key, &prep);
 953	if (ret == 0)
 954		/* updating a negative key instantiates it */
 955		clear_bit(KEY_FLAG_NEGATIVE, &key->flags);
 956
 957	up_write(&key->sem);
 958
 
 959	if (key->type->preparse)
 960		key->type->free_preparse(&prep);
 961error:
 962	return ret;
 963}
 964EXPORT_SYMBOL(key_update);
 965
 966/**
 967 * key_revoke - Revoke a key.
 968 * @key: The key to be revoked.
 969 *
 970 * Mark a key as being revoked and ask the type to free up its resources.  The
 971 * revocation timeout is set and the key and all its links will be
 972 * automatically garbage collected after key_gc_delay amount of time if they
 973 * are not manually dealt with first.
 974 */
 975void key_revoke(struct key *key)
 976{
 977	struct timespec now;
 978	time_t time;
 979
 980	key_check(key);
 981
 982	/* make sure no one's trying to change or use the key when we mark it
 983	 * - we tell lockdep that we might nest because we might be revoking an
 984	 *   authorisation key whilst holding the sem on a key we've just
 985	 *   instantiated
 986	 */
 987	down_write_nested(&key->sem, 1);
 988	if (!test_and_set_bit(KEY_FLAG_REVOKED, &key->flags) &&
 989	    key->type->revoke)
 990		key->type->revoke(key);
 991
 992	/* set the death time to no more than the expiry time */
 993	now = current_kernel_time();
 994	time = now.tv_sec;
 995	if (key->revoked_at == 0 || key->revoked_at > time) {
 996		key->revoked_at = time;
 997		key_schedule_gc(key->revoked_at + key_gc_delay);
 998	}
 999
1000	up_write(&key->sem);
1001}
1002EXPORT_SYMBOL(key_revoke);
1003
1004/**
1005 * key_invalidate - Invalidate a key.
1006 * @key: The key to be invalidated.
1007 *
1008 * Mark a key as being invalidated and have it cleaned up immediately.  The key
1009 * is ignored by all searches and other operations from this point.
1010 */
1011void key_invalidate(struct key *key)
1012{
1013	kenter("%d", key_serial(key));
1014
1015	key_check(key);
1016
1017	if (!test_bit(KEY_FLAG_INVALIDATED, &key->flags)) {
1018		down_write_nested(&key->sem, 1);
1019		if (!test_and_set_bit(KEY_FLAG_INVALIDATED, &key->flags))
1020			key_schedule_gc_links();
1021		up_write(&key->sem);
1022	}
1023}
1024EXPORT_SYMBOL(key_invalidate);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1025
1026/**
1027 * register_key_type - Register a type of key.
1028 * @ktype: The new key type.
1029 *
1030 * Register a new key type.
1031 *
1032 * Returns 0 on success or -EEXIST if a type of this name already exists.
1033 */
1034int register_key_type(struct key_type *ktype)
1035{
1036	struct key_type *p;
1037	int ret;
1038
1039	memset(&ktype->lock_class, 0, sizeof(ktype->lock_class));
1040
1041	ret = -EEXIST;
1042	down_write(&key_types_sem);
1043
1044	/* disallow key types with the same name */
1045	list_for_each_entry(p, &key_types_list, link) {
1046		if (strcmp(p->name, ktype->name) == 0)
1047			goto out;
1048	}
1049
1050	/* store the type */
1051	list_add(&ktype->link, &key_types_list);
1052
1053	pr_notice("Key type %s registered\n", ktype->name);
1054	ret = 0;
1055
1056out:
1057	up_write(&key_types_sem);
1058	return ret;
1059}
1060EXPORT_SYMBOL(register_key_type);
1061
1062/**
1063 * unregister_key_type - Unregister a type of key.
1064 * @ktype: The key type.
1065 *
1066 * Unregister a key type and mark all the extant keys of this type as dead.
1067 * Those keys of this type are then destroyed to get rid of their payloads and
1068 * they and their links will be garbage collected as soon as possible.
1069 */
1070void unregister_key_type(struct key_type *ktype)
1071{
1072	down_write(&key_types_sem);
1073	list_del_init(&ktype->link);
1074	downgrade_write(&key_types_sem);
1075	key_gc_keytype(ktype);
1076	pr_notice("Key type %s unregistered\n", ktype->name);
1077	up_read(&key_types_sem);
1078}
1079EXPORT_SYMBOL(unregister_key_type);
1080
1081/*
1082 * Initialise the key management state.
1083 */
1084void __init key_init(void)
1085{
1086	/* allocate a slab in which we can store keys */
1087	key_jar = kmem_cache_create("key_jar", sizeof(struct key),
1088			0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1089
1090	/* add the special key types */
1091	list_add_tail(&key_type_keyring.link, &key_types_list);
1092	list_add_tail(&key_type_dead.link, &key_types_list);
1093	list_add_tail(&key_type_user.link, &key_types_list);
1094	list_add_tail(&key_type_logon.link, &key_types_list);
1095
1096	/* record the root user tracking */
1097	rb_link_node(&root_key_user.node,
1098		     NULL,
1099		     &key_user_tree.rb_node);
1100
1101	rb_insert_color(&root_key_user.node,
1102			&key_user_tree);
1103}
v5.4
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/* Basic authentication token and access key management
   3 *
   4 * Copyright (C) 2004-2008 Red Hat, Inc. All Rights Reserved.
   5 * Written by David Howells (dhowells@redhat.com)
 
 
 
 
 
   6 */
   7
   8#include <linux/export.h>
   9#include <linux/init.h>
  10#include <linux/poison.h>
  11#include <linux/sched.h>
  12#include <linux/slab.h>
  13#include <linux/security.h>
  14#include <linux/workqueue.h>
  15#include <linux/random.h>
  16#include <linux/err.h>
  17#include "internal.h"
  18
  19struct kmem_cache *key_jar;
  20struct rb_root		key_serial_tree; /* tree of keys indexed by serial */
  21DEFINE_SPINLOCK(key_serial_lock);
  22
  23struct rb_root	key_user_tree; /* tree of quota records indexed by UID */
  24DEFINE_SPINLOCK(key_user_lock);
  25
  26unsigned int key_quota_root_maxkeys = 1000000;	/* root's key count quota */
  27unsigned int key_quota_root_maxbytes = 25000000; /* root's key space quota */
  28unsigned int key_quota_maxkeys = 200;		/* general key count quota */
  29unsigned int key_quota_maxbytes = 20000;	/* general key space quota */
  30
  31static LIST_HEAD(key_types_list);
  32static DECLARE_RWSEM(key_types_sem);
  33
  34/* We serialise key instantiation and link */
  35DEFINE_MUTEX(key_construction_mutex);
  36
  37#ifdef KEY_DEBUGGING
  38void __key_check(const struct key *key)
  39{
  40	printk("__key_check: key %p {%08x} should be {%08x}\n",
  41	       key, key->magic, KEY_DEBUG_MAGIC);
  42	BUG();
  43}
  44#endif
  45
  46/*
  47 * Get the key quota record for a user, allocating a new record if one doesn't
  48 * already exist.
  49 */
  50struct key_user *key_user_lookup(kuid_t uid)
  51{
  52	struct key_user *candidate = NULL, *user;
  53	struct rb_node *parent, **p;
 
  54
  55try_again:
  56	parent = NULL;
  57	p = &key_user_tree.rb_node;
  58	spin_lock(&key_user_lock);
  59
  60	/* search the tree for a user record with a matching UID */
  61	while (*p) {
  62		parent = *p;
  63		user = rb_entry(parent, struct key_user, node);
  64
  65		if (uid_lt(uid, user->uid))
  66			p = &(*p)->rb_left;
  67		else if (uid_gt(uid, user->uid))
  68			p = &(*p)->rb_right;
  69		else
  70			goto found;
  71	}
  72
  73	/* if we get here, we failed to find a match in the tree */
  74	if (!candidate) {
  75		/* allocate a candidate user record if we don't already have
  76		 * one */
  77		spin_unlock(&key_user_lock);
  78
  79		user = NULL;
  80		candidate = kmalloc(sizeof(struct key_user), GFP_KERNEL);
  81		if (unlikely(!candidate))
  82			goto out;
  83
  84		/* the allocation may have scheduled, so we need to repeat the
  85		 * search lest someone else added the record whilst we were
  86		 * asleep */
  87		goto try_again;
  88	}
  89
  90	/* if we get here, then the user record still hadn't appeared on the
  91	 * second pass - so we use the candidate record */
  92	refcount_set(&candidate->usage, 1);
  93	atomic_set(&candidate->nkeys, 0);
  94	atomic_set(&candidate->nikeys, 0);
  95	candidate->uid = uid;
  96	candidate->qnkeys = 0;
  97	candidate->qnbytes = 0;
  98	spin_lock_init(&candidate->lock);
  99	mutex_init(&candidate->cons_lock);
 100
 101	rb_link_node(&candidate->node, parent, p);
 102	rb_insert_color(&candidate->node, &key_user_tree);
 103	spin_unlock(&key_user_lock);
 104	user = candidate;
 105	goto out;
 106
 107	/* okay - we found a user record for this UID */
 108found:
 109	refcount_inc(&user->usage);
 110	spin_unlock(&key_user_lock);
 111	kfree(candidate);
 112out:
 113	return user;
 114}
 115
 116/*
 117 * Dispose of a user structure
 118 */
 119void key_user_put(struct key_user *user)
 120{
 121	if (refcount_dec_and_lock(&user->usage, &key_user_lock)) {
 122		rb_erase(&user->node, &key_user_tree);
 123		spin_unlock(&key_user_lock);
 124
 125		kfree(user);
 126	}
 127}
 128
 129/*
 130 * Allocate a serial number for a key.  These are assigned randomly to avoid
 131 * security issues through covert channel problems.
 132 */
 133static inline void key_alloc_serial(struct key *key)
 134{
 135	struct rb_node *parent, **p;
 136	struct key *xkey;
 137
 138	/* propose a random serial number and look for a hole for it in the
 139	 * serial number tree */
 140	do {
 141		get_random_bytes(&key->serial, sizeof(key->serial));
 142
 143		key->serial >>= 1; /* negative numbers are not permitted */
 144	} while (key->serial < 3);
 145
 146	spin_lock(&key_serial_lock);
 147
 148attempt_insertion:
 149	parent = NULL;
 150	p = &key_serial_tree.rb_node;
 151
 152	while (*p) {
 153		parent = *p;
 154		xkey = rb_entry(parent, struct key, serial_node);
 155
 156		if (key->serial < xkey->serial)
 157			p = &(*p)->rb_left;
 158		else if (key->serial > xkey->serial)
 159			p = &(*p)->rb_right;
 160		else
 161			goto serial_exists;
 162	}
 163
 164	/* we've found a suitable hole - arrange for this key to occupy it */
 165	rb_link_node(&key->serial_node, parent, p);
 166	rb_insert_color(&key->serial_node, &key_serial_tree);
 167
 168	spin_unlock(&key_serial_lock);
 169	return;
 170
 171	/* we found a key with the proposed serial number - walk the tree from
 172	 * that point looking for the next unused serial number */
 173serial_exists:
 174	for (;;) {
 175		key->serial++;
 176		if (key->serial < 3) {
 177			key->serial = 3;
 178			goto attempt_insertion;
 179		}
 180
 181		parent = rb_next(parent);
 182		if (!parent)
 183			goto attempt_insertion;
 184
 185		xkey = rb_entry(parent, struct key, serial_node);
 186		if (key->serial < xkey->serial)
 187			goto attempt_insertion;
 188	}
 189}
 190
 191/**
 192 * key_alloc - Allocate a key of the specified type.
 193 * @type: The type of key to allocate.
 194 * @desc: The key description to allow the key to be searched out.
 195 * @uid: The owner of the new key.
 196 * @gid: The group ID for the new key's group permissions.
 197 * @cred: The credentials specifying UID namespace.
 198 * @perm: The permissions mask of the new key.
 199 * @flags: Flags specifying quota properties.
 200 * @restrict_link: Optional link restriction for new keyrings.
 201 *
 202 * Allocate a key of the specified type with the attributes given.  The key is
 203 * returned in an uninstantiated state and the caller needs to instantiate the
 204 * key before returning.
 205 *
 206 * The restrict_link structure (if not NULL) will be freed when the
 207 * keyring is destroyed, so it must be dynamically allocated.
 208 *
 209 * The user's key count quota is updated to reflect the creation of the key and
 210 * the user's key data quota has the default for the key type reserved.  The
 211 * instantiation function should amend this as necessary.  If insufficient
 212 * quota is available, -EDQUOT will be returned.
 213 *
 214 * The LSM security modules can prevent a key being created, in which case
 215 * -EACCES will be returned.
 216 *
 217 * Returns a pointer to the new key if successful and an error code otherwise.
 218 *
 219 * Note that the caller needs to ensure the key type isn't uninstantiated.
 220 * Internally this can be done by locking key_types_sem.  Externally, this can
 221 * be done by either never unregistering the key type, or making sure
 222 * key_alloc() calls don't race with module unloading.
 223 */
 224struct key *key_alloc(struct key_type *type, const char *desc,
 225		      kuid_t uid, kgid_t gid, const struct cred *cred,
 226		      key_perm_t perm, unsigned long flags,
 227		      struct key_restriction *restrict_link)
 228{
 229	struct key_user *user = NULL;
 230	struct key *key;
 231	size_t desclen, quotalen;
 232	int ret;
 233
 234	key = ERR_PTR(-EINVAL);
 235	if (!desc || !*desc)
 236		goto error;
 237
 238	if (type->vet_description) {
 239		ret = type->vet_description(desc);
 240		if (ret < 0) {
 241			key = ERR_PTR(ret);
 242			goto error;
 243		}
 244	}
 245
 246	desclen = strlen(desc);
 247	quotalen = desclen + 1 + type->def_datalen;
 248
 249	/* get hold of the key tracking for this user */
 250	user = key_user_lookup(uid);
 251	if (!user)
 252		goto no_memory_1;
 253
 254	/* check that the user's quota permits allocation of another key and
 255	 * its description */
 256	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
 257		unsigned maxkeys = uid_eq(uid, GLOBAL_ROOT_UID) ?
 258			key_quota_root_maxkeys : key_quota_maxkeys;
 259		unsigned maxbytes = uid_eq(uid, GLOBAL_ROOT_UID) ?
 260			key_quota_root_maxbytes : key_quota_maxbytes;
 261
 262		spin_lock(&user->lock);
 263		if (!(flags & KEY_ALLOC_QUOTA_OVERRUN)) {
 264			if (user->qnkeys + 1 > maxkeys ||
 265			    user->qnbytes + quotalen > maxbytes ||
 266			    user->qnbytes + quotalen < user->qnbytes)
 267				goto no_quota;
 268		}
 269
 270		user->qnkeys++;
 271		user->qnbytes += quotalen;
 272		spin_unlock(&user->lock);
 273	}
 274
 275	/* allocate and initialise the key and its description */
 276	key = kmem_cache_zalloc(key_jar, GFP_KERNEL);
 277	if (!key)
 278		goto no_memory_2;
 279
 280	key->index_key.desc_len = desclen;
 281	key->index_key.description = kmemdup(desc, desclen + 1, GFP_KERNEL);
 282	if (!key->index_key.description)
 283		goto no_memory_3;
 284	key->index_key.type = type;
 285	key_set_index_key(&key->index_key);
 286
 287	refcount_set(&key->usage, 1);
 288	init_rwsem(&key->sem);
 289	lockdep_set_class(&key->sem, &type->lock_class);
 
 290	key->user = user;
 291	key->quotalen = quotalen;
 292	key->datalen = type->def_datalen;
 293	key->uid = uid;
 294	key->gid = gid;
 295	key->perm = perm;
 296	key->restrict_link = restrict_link;
 297	key->last_used_at = ktime_get_real_seconds();
 298
 299	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA))
 300		key->flags |= 1 << KEY_FLAG_IN_QUOTA;
 301	if (flags & KEY_ALLOC_BUILT_IN)
 302		key->flags |= 1 << KEY_FLAG_BUILTIN;
 303	if (flags & KEY_ALLOC_UID_KEYRING)
 304		key->flags |= 1 << KEY_FLAG_UID_KEYRING;
 305
 306#ifdef KEY_DEBUGGING
 307	key->magic = KEY_DEBUG_MAGIC;
 308#endif
 309
 310	/* let the security module know about the key */
 311	ret = security_key_alloc(key, cred, flags);
 312	if (ret < 0)
 313		goto security_error;
 314
 315	/* publish the key by giving it a serial number */
 316	refcount_inc(&key->domain_tag->usage);
 317	atomic_inc(&user->nkeys);
 318	key_alloc_serial(key);
 319
 320error:
 321	return key;
 322
 323security_error:
 324	kfree(key->description);
 325	kmem_cache_free(key_jar, key);
 326	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
 327		spin_lock(&user->lock);
 328		user->qnkeys--;
 329		user->qnbytes -= quotalen;
 330		spin_unlock(&user->lock);
 331	}
 332	key_user_put(user);
 333	key = ERR_PTR(ret);
 334	goto error;
 335
 336no_memory_3:
 337	kmem_cache_free(key_jar, key);
 338no_memory_2:
 339	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
 340		spin_lock(&user->lock);
 341		user->qnkeys--;
 342		user->qnbytes -= quotalen;
 343		spin_unlock(&user->lock);
 344	}
 345	key_user_put(user);
 346no_memory_1:
 347	key = ERR_PTR(-ENOMEM);
 348	goto error;
 349
 350no_quota:
 351	spin_unlock(&user->lock);
 352	key_user_put(user);
 353	key = ERR_PTR(-EDQUOT);
 354	goto error;
 355}
 356EXPORT_SYMBOL(key_alloc);
 357
 358/**
 359 * key_payload_reserve - Adjust data quota reservation for the key's payload
 360 * @key: The key to make the reservation for.
 361 * @datalen: The amount of data payload the caller now wants.
 362 *
 363 * Adjust the amount of the owning user's key data quota that a key reserves.
 364 * If the amount is increased, then -EDQUOT may be returned if there isn't
 365 * enough free quota available.
 366 *
 367 * If successful, 0 is returned.
 368 */
 369int key_payload_reserve(struct key *key, size_t datalen)
 370{
 371	int delta = (int)datalen - key->datalen;
 372	int ret = 0;
 373
 374	key_check(key);
 375
 376	/* contemplate the quota adjustment */
 377	if (delta != 0 && test_bit(KEY_FLAG_IN_QUOTA, &key->flags)) {
 378		unsigned maxbytes = uid_eq(key->user->uid, GLOBAL_ROOT_UID) ?
 379			key_quota_root_maxbytes : key_quota_maxbytes;
 380
 381		spin_lock(&key->user->lock);
 382
 383		if (delta > 0 &&
 384		    (key->user->qnbytes + delta >= maxbytes ||
 385		     key->user->qnbytes + delta < key->user->qnbytes)) {
 386			ret = -EDQUOT;
 387		}
 388		else {
 389			key->user->qnbytes += delta;
 390			key->quotalen += delta;
 391		}
 392		spin_unlock(&key->user->lock);
 393	}
 394
 395	/* change the recorded data length if that didn't generate an error */
 396	if (ret == 0)
 397		key->datalen = datalen;
 398
 399	return ret;
 400}
 401EXPORT_SYMBOL(key_payload_reserve);
 402
 403/*
 404 * Change the key state to being instantiated.
 405 */
 406static void mark_key_instantiated(struct key *key, int reject_error)
 407{
 408	/* Commit the payload before setting the state; barrier versus
 409	 * key_read_state().
 410	 */
 411	smp_store_release(&key->state,
 412			  (reject_error < 0) ? reject_error : KEY_IS_POSITIVE);
 413}
 414
 415/*
 416 * Instantiate a key and link it into the target keyring atomically.  Must be
 417 * called with the target keyring's semaphore writelocked.  The target key's
 418 * semaphore need not be locked as instantiation is serialised by
 419 * key_construction_mutex.
 420 */
 421static int __key_instantiate_and_link(struct key *key,
 422				      struct key_preparsed_payload *prep,
 423				      struct key *keyring,
 424				      struct key *authkey,
 425				      struct assoc_array_edit **_edit)
 426{
 427	int ret, awaken;
 428
 429	key_check(key);
 430	key_check(keyring);
 431
 432	awaken = 0;
 433	ret = -EBUSY;
 434
 435	mutex_lock(&key_construction_mutex);
 436
 437	/* can't instantiate twice */
 438	if (key->state == KEY_IS_UNINSTANTIATED) {
 439		/* instantiate the key */
 440		ret = key->type->instantiate(key, prep);
 441
 442		if (ret == 0) {
 443			/* mark the key as being instantiated */
 444			atomic_inc(&key->user->nikeys);
 445			mark_key_instantiated(key, 0);
 446
 447			if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
 448				awaken = 1;
 449
 450			/* and link it into the destination keyring */
 451			if (keyring) {
 452				if (test_bit(KEY_FLAG_KEEP, &keyring->flags))
 453					set_bit(KEY_FLAG_KEEP, &key->flags);
 454
 455				__key_link(key, _edit);
 456			}
 457
 458			/* disable the authorisation key */
 459			if (authkey)
 460				key_invalidate(authkey);
 461
 462			if (prep->expiry != TIME64_MAX) {
 463				key->expiry = prep->expiry;
 464				key_schedule_gc(prep->expiry + key_gc_delay);
 465			}
 466		}
 467	}
 468
 469	mutex_unlock(&key_construction_mutex);
 470
 471	/* wake up anyone waiting for a key to be constructed */
 472	if (awaken)
 473		wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT);
 474
 475	return ret;
 476}
 477
 478/**
 479 * key_instantiate_and_link - Instantiate a key and link it into the keyring.
 480 * @key: The key to instantiate.
 481 * @data: The data to use to instantiate the keyring.
 482 * @datalen: The length of @data.
 483 * @keyring: Keyring to create a link in on success (or NULL).
 484 * @authkey: The authorisation token permitting instantiation.
 485 *
 486 * Instantiate a key that's in the uninstantiated state using the provided data
 487 * and, if successful, link it in to the destination keyring if one is
 488 * supplied.
 489 *
 490 * If successful, 0 is returned, the authorisation token is revoked and anyone
 491 * waiting for the key is woken up.  If the key was already instantiated,
 492 * -EBUSY will be returned.
 493 */
 494int key_instantiate_and_link(struct key *key,
 495			     const void *data,
 496			     size_t datalen,
 497			     struct key *keyring,
 498			     struct key *authkey)
 499{
 500	struct key_preparsed_payload prep;
 501	struct assoc_array_edit *edit = NULL;
 502	int ret;
 503
 504	memset(&prep, 0, sizeof(prep));
 505	prep.data = data;
 506	prep.datalen = datalen;
 507	prep.quotalen = key->type->def_datalen;
 508	prep.expiry = TIME64_MAX;
 509	if (key->type->preparse) {
 510		ret = key->type->preparse(&prep);
 511		if (ret < 0)
 512			goto error;
 513	}
 514
 515	if (keyring) {
 516		ret = __key_link_lock(keyring, &key->index_key);
 517		if (ret < 0)
 518			goto error;
 519
 520		ret = __key_link_begin(keyring, &key->index_key, &edit);
 521		if (ret < 0)
 522			goto error_link_end;
 523
 524		if (keyring->restrict_link && keyring->restrict_link->check) {
 525			struct key_restriction *keyres = keyring->restrict_link;
 526
 527			ret = keyres->check(keyring, key->type, &prep.payload,
 528					    keyres->key);
 529			if (ret < 0)
 530				goto error_link_end;
 531		}
 532	}
 533
 534	ret = __key_instantiate_and_link(key, &prep, keyring, authkey, &edit);
 535
 536error_link_end:
 537	if (keyring)
 538		__key_link_end(keyring, &key->index_key, edit);
 539
 540error:
 541	if (key->type->preparse)
 542		key->type->free_preparse(&prep);
 
 543	return ret;
 544}
 545
 546EXPORT_SYMBOL(key_instantiate_and_link);
 547
 548/**
 549 * key_reject_and_link - Negatively instantiate a key and link it into the keyring.
 550 * @key: The key to instantiate.
 551 * @timeout: The timeout on the negative key.
 552 * @error: The error to return when the key is hit.
 553 * @keyring: Keyring to create a link in on success (or NULL).
 554 * @authkey: The authorisation token permitting instantiation.
 555 *
 556 * Negatively instantiate a key that's in the uninstantiated state and, if
 557 * successful, set its timeout and stored error and link it in to the
 558 * destination keyring if one is supplied.  The key and any links to the key
 559 * will be automatically garbage collected after the timeout expires.
 560 *
 561 * Negative keys are used to rate limit repeated request_key() calls by causing
 562 * them to return the stored error code (typically ENOKEY) until the negative
 563 * key expires.
 564 *
 565 * If successful, 0 is returned, the authorisation token is revoked and anyone
 566 * waiting for the key is woken up.  If the key was already instantiated,
 567 * -EBUSY will be returned.
 568 */
 569int key_reject_and_link(struct key *key,
 570			unsigned timeout,
 571			unsigned error,
 572			struct key *keyring,
 573			struct key *authkey)
 574{
 575	struct assoc_array_edit *edit = NULL;
 
 576	int ret, awaken, link_ret = 0;
 577
 578	key_check(key);
 579	key_check(keyring);
 580
 581	awaken = 0;
 582	ret = -EBUSY;
 583
 584	if (keyring) {
 585		if (keyring->restrict_link)
 586			return -EPERM;
 587
 588		link_ret = __key_link_lock(keyring, &key->index_key);
 589		if (link_ret == 0) {
 590			link_ret = __key_link_begin(keyring, &key->index_key, &edit);
 591			if (link_ret < 0)
 592				__key_link_end(keyring, &key->index_key, edit);
 593		}
 594	}
 595
 596	mutex_lock(&key_construction_mutex);
 597
 598	/* can't instantiate twice */
 599	if (key->state == KEY_IS_UNINSTANTIATED) {
 600		/* mark the key as being negatively instantiated */
 601		atomic_inc(&key->user->nikeys);
 602		mark_key_instantiated(key, -error);
 603		key->expiry = ktime_get_real_seconds() + timeout;
 
 
 
 
 604		key_schedule_gc(key->expiry + key_gc_delay);
 605
 606		if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
 607			awaken = 1;
 608
 609		ret = 0;
 610
 611		/* and link it into the destination keyring */
 612		if (keyring && link_ret == 0)
 613			__key_link(key, &edit);
 614
 615		/* disable the authorisation key */
 616		if (authkey)
 617			key_invalidate(authkey);
 618	}
 619
 620	mutex_unlock(&key_construction_mutex);
 621
 622	if (keyring && link_ret == 0)
 623		__key_link_end(keyring, &key->index_key, edit);
 624
 625	/* wake up anyone waiting for a key to be constructed */
 626	if (awaken)
 627		wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT);
 628
 629	return ret == 0 ? link_ret : ret;
 630}
 631EXPORT_SYMBOL(key_reject_and_link);
 632
 633/**
 634 * key_put - Discard a reference to a key.
 635 * @key: The key to discard a reference from.
 636 *
 637 * Discard a reference to a key, and when all the references are gone, we
 638 * schedule the cleanup task to come and pull it out of the tree in process
 639 * context at some later time.
 640 */
 641void key_put(struct key *key)
 642{
 643	if (key) {
 644		key_check(key);
 645
 646		if (refcount_dec_and_test(&key->usage))
 647			schedule_work(&key_gc_work);
 648	}
 649}
 650EXPORT_SYMBOL(key_put);
 651
 652/*
 653 * Find a key by its serial number.
 654 */
 655struct key *key_lookup(key_serial_t id)
 656{
 657	struct rb_node *n;
 658	struct key *key;
 659
 660	spin_lock(&key_serial_lock);
 661
 662	/* search the tree for the specified key */
 663	n = key_serial_tree.rb_node;
 664	while (n) {
 665		key = rb_entry(n, struct key, serial_node);
 666
 667		if (id < key->serial)
 668			n = n->rb_left;
 669		else if (id > key->serial)
 670			n = n->rb_right;
 671		else
 672			goto found;
 673	}
 674
 675not_found:
 676	key = ERR_PTR(-ENOKEY);
 677	goto error;
 678
 679found:
 680	/* A key is allowed to be looked up only if someone still owns a
 681	 * reference to it - otherwise it's awaiting the gc.
 
 
 
 
 682	 */
 683	if (!refcount_inc_not_zero(&key->usage))
 684		goto not_found;
 685
 686error:
 687	spin_unlock(&key_serial_lock);
 688	return key;
 689}
 690
 691/*
 692 * Find and lock the specified key type against removal.
 693 *
 694 * We return with the sem read-locked if successful.  If the type wasn't
 695 * available -ENOKEY is returned instead.
 696 */
 697struct key_type *key_type_lookup(const char *type)
 698{
 699	struct key_type *ktype;
 700
 701	down_read(&key_types_sem);
 702
 703	/* look up the key type to see if it's one of the registered kernel
 704	 * types */
 705	list_for_each_entry(ktype, &key_types_list, link) {
 706		if (strcmp(ktype->name, type) == 0)
 707			goto found_kernel_type;
 708	}
 709
 710	up_read(&key_types_sem);
 711	ktype = ERR_PTR(-ENOKEY);
 712
 713found_kernel_type:
 714	return ktype;
 715}
 716
 717void key_set_timeout(struct key *key, unsigned timeout)
 718{
 719	time64_t expiry = 0;
 
 720
 721	/* make the changes with the locks held to prevent races */
 722	down_write(&key->sem);
 723
 724	if (timeout > 0)
 725		expiry = ktime_get_real_seconds() + timeout;
 
 
 726
 727	key->expiry = expiry;
 728	key_schedule_gc(key->expiry + key_gc_delay);
 729
 730	up_write(&key->sem);
 731}
 732EXPORT_SYMBOL_GPL(key_set_timeout);
 733
 734/*
 735 * Unlock a key type locked by key_type_lookup().
 736 */
 737void key_type_put(struct key_type *ktype)
 738{
 739	up_read(&key_types_sem);
 740}
 741
 742/*
 743 * Attempt to update an existing key.
 744 *
 745 * The key is given to us with an incremented refcount that we need to discard
 746 * if we get an error.
 747 */
 748static inline key_ref_t __key_update(key_ref_t key_ref,
 749				     struct key_preparsed_payload *prep)
 750{
 751	struct key *key = key_ref_to_ptr(key_ref);
 752	int ret;
 753
 754	/* need write permission on the key to update it */
 755	ret = key_permission(key_ref, KEY_NEED_WRITE);
 756	if (ret < 0)
 757		goto error;
 758
 759	ret = -EEXIST;
 760	if (!key->type->update)
 761		goto error;
 762
 763	down_write(&key->sem);
 764
 765	ret = key->type->update(key, prep);
 766	if (ret == 0)
 767		/* Updating a negative key positively instantiates it */
 768		mark_key_instantiated(key, 0);
 769
 770	up_write(&key->sem);
 771
 772	if (ret < 0)
 773		goto error;
 774out:
 775	return key_ref;
 776
 777error:
 778	key_put(key);
 779	key_ref = ERR_PTR(ret);
 780	goto out;
 781}
 782
 783/**
 784 * key_create_or_update - Update or create and instantiate a key.
 785 * @keyring_ref: A pointer to the destination keyring with possession flag.
 786 * @type: The type of key.
 787 * @description: The searchable description for the key.
 788 * @payload: The data to use to instantiate or update the key.
 789 * @plen: The length of @payload.
 790 * @perm: The permissions mask for a new key.
 791 * @flags: The quota flags for a new key.
 792 *
 793 * Search the destination keyring for a key of the same description and if one
 794 * is found, update it, otherwise create and instantiate a new one and create a
 795 * link to it from that keyring.
 796 *
 797 * If perm is KEY_PERM_UNDEF then an appropriate key permissions mask will be
 798 * concocted.
 799 *
 800 * Returns a pointer to the new key if successful, -ENODEV if the key type
 801 * wasn't available, -ENOTDIR if the keyring wasn't a keyring, -EACCES if the
 802 * caller isn't permitted to modify the keyring or the LSM did not permit
 803 * creation of the key.
 804 *
 805 * On success, the possession flag from the keyring ref will be tacked on to
 806 * the key ref before it is returned.
 807 */
 808key_ref_t key_create_or_update(key_ref_t keyring_ref,
 809			       const char *type,
 810			       const char *description,
 811			       const void *payload,
 812			       size_t plen,
 813			       key_perm_t perm,
 814			       unsigned long flags)
 815{
 816	struct keyring_index_key index_key = {
 817		.description	= description,
 818	};
 819	struct key_preparsed_payload prep;
 820	struct assoc_array_edit *edit = NULL;
 821	const struct cred *cred = current_cred();
 822	struct key *keyring, *key = NULL;
 823	key_ref_t key_ref;
 824	int ret;
 825	struct key_restriction *restrict_link = NULL;
 826
 827	/* look up the key type to see if it's one of the registered kernel
 828	 * types */
 829	index_key.type = key_type_lookup(type);
 830	if (IS_ERR(index_key.type)) {
 831		key_ref = ERR_PTR(-ENODEV);
 832		goto error;
 833	}
 834
 835	key_ref = ERR_PTR(-EINVAL);
 836	if (!index_key.type->instantiate ||
 837	    (!index_key.description && !index_key.type->preparse))
 838		goto error_put_type;
 839
 840	keyring = key_ref_to_ptr(keyring_ref);
 841
 842	key_check(keyring);
 843
 844	if (!(flags & KEY_ALLOC_BYPASS_RESTRICTION))
 845		restrict_link = keyring->restrict_link;
 846
 847	key_ref = ERR_PTR(-ENOTDIR);
 848	if (keyring->type != &key_type_keyring)
 849		goto error_put_type;
 850
 851	memset(&prep, 0, sizeof(prep));
 852	prep.data = payload;
 853	prep.datalen = plen;
 854	prep.quotalen = index_key.type->def_datalen;
 855	prep.expiry = TIME64_MAX;
 856	if (index_key.type->preparse) {
 857		ret = index_key.type->preparse(&prep);
 858		if (ret < 0) {
 859			key_ref = ERR_PTR(ret);
 860			goto error_free_prep;
 861		}
 862		if (!index_key.description)
 863			index_key.description = prep.description;
 864		key_ref = ERR_PTR(-EINVAL);
 865		if (!index_key.description)
 866			goto error_free_prep;
 867	}
 868	index_key.desc_len = strlen(index_key.description);
 869	key_set_index_key(&index_key);
 870
 871	ret = __key_link_lock(keyring, &index_key);
 872	if (ret < 0) {
 873		key_ref = ERR_PTR(ret);
 874		goto error_free_prep;
 875	}
 876
 877	ret = __key_link_begin(keyring, &index_key, &edit);
 878	if (ret < 0) {
 879		key_ref = ERR_PTR(ret);
 880		goto error_link_end;
 881	}
 882
 883	if (restrict_link && restrict_link->check) {
 884		ret = restrict_link->check(keyring, index_key.type,
 885					   &prep.payload, restrict_link->key);
 886		if (ret < 0) {
 887			key_ref = ERR_PTR(ret);
 888			goto error_link_end;
 889		}
 890	}
 891
 892	/* if we're going to allocate a new key, we're going to have
 893	 * to modify the keyring */
 894	ret = key_permission(keyring_ref, KEY_NEED_WRITE);
 895	if (ret < 0) {
 896		key_ref = ERR_PTR(ret);
 897		goto error_link_end;
 898	}
 899
 900	/* if it's possible to update this type of key, search for an existing
 901	 * key of the same type and description in the destination keyring and
 902	 * update that instead if possible
 903	 */
 904	if (index_key.type->update) {
 905		key_ref = find_key_to_update(keyring_ref, &index_key);
 906		if (key_ref)
 907			goto found_matching_key;
 908	}
 909
 910	/* if the client doesn't provide, decide on the permissions we want */
 911	if (perm == KEY_PERM_UNDEF) {
 912		perm = KEY_POS_VIEW | KEY_POS_SEARCH | KEY_POS_LINK | KEY_POS_SETATTR;
 913		perm |= KEY_USR_VIEW;
 914
 915		if (index_key.type->read)
 916			perm |= KEY_POS_READ;
 917
 918		if (index_key.type == &key_type_keyring ||
 919		    index_key.type->update)
 920			perm |= KEY_POS_WRITE;
 921	}
 922
 923	/* allocate a new key */
 924	key = key_alloc(index_key.type, index_key.description,
 925			cred->fsuid, cred->fsgid, cred, perm, flags, NULL);
 926	if (IS_ERR(key)) {
 927		key_ref = ERR_CAST(key);
 928		goto error_link_end;
 929	}
 930
 931	/* instantiate it and link it into the target keyring */
 932	ret = __key_instantiate_and_link(key, &prep, keyring, NULL, &edit);
 933	if (ret < 0) {
 934		key_put(key);
 935		key_ref = ERR_PTR(ret);
 936		goto error_link_end;
 937	}
 938
 939	key_ref = make_key_ref(key, is_key_possessed(keyring_ref));
 940
 941error_link_end:
 942	__key_link_end(keyring, &index_key, edit);
 943error_free_prep:
 944	if (index_key.type->preparse)
 945		index_key.type->free_preparse(&prep);
 946error_put_type:
 947	key_type_put(index_key.type);
 948error:
 949	return key_ref;
 950
 951 found_matching_key:
 952	/* we found a matching key, so we're going to try to update it
 953	 * - we can drop the locks first as we have the key pinned
 954	 */
 955	__key_link_end(keyring, &index_key, edit);
 956
 957	key = key_ref_to_ptr(key_ref);
 958	if (test_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags)) {
 959		ret = wait_for_key_construction(key, true);
 960		if (ret < 0) {
 961			key_ref_put(key_ref);
 962			key_ref = ERR_PTR(ret);
 963			goto error_free_prep;
 964		}
 965	}
 966
 967	key_ref = __key_update(key_ref, &prep);
 968	goto error_free_prep;
 969}
 970EXPORT_SYMBOL(key_create_or_update);
 971
 972/**
 973 * key_update - Update a key's contents.
 974 * @key_ref: The pointer (plus possession flag) to the key.
 975 * @payload: The data to be used to update the key.
 976 * @plen: The length of @payload.
 977 *
 978 * Attempt to update the contents of a key with the given payload data.  The
 979 * caller must be granted Write permission on the key.  Negative keys can be
 980 * instantiated by this method.
 981 *
 982 * Returns 0 on success, -EACCES if not permitted and -EOPNOTSUPP if the key
 983 * type does not support updating.  The key type may return other errors.
 984 */
 985int key_update(key_ref_t key_ref, const void *payload, size_t plen)
 986{
 987	struct key_preparsed_payload prep;
 988	struct key *key = key_ref_to_ptr(key_ref);
 989	int ret;
 990
 991	key_check(key);
 992
 993	/* the key must be writable */
 994	ret = key_permission(key_ref, KEY_NEED_WRITE);
 995	if (ret < 0)
 996		return ret;
 997
 998	/* attempt to update it if supported */
 
 999	if (!key->type->update)
1000		return -EOPNOTSUPP;
1001
1002	memset(&prep, 0, sizeof(prep));
1003	prep.data = payload;
1004	prep.datalen = plen;
1005	prep.quotalen = key->type->def_datalen;
1006	prep.expiry = TIME64_MAX;
1007	if (key->type->preparse) {
1008		ret = key->type->preparse(&prep);
1009		if (ret < 0)
1010			goto error;
1011	}
1012
1013	down_write(&key->sem);
1014
1015	ret = key->type->update(key, &prep);
1016	if (ret == 0)
1017		/* Updating a negative key positively instantiates it */
1018		mark_key_instantiated(key, 0);
1019
1020	up_write(&key->sem);
1021
1022error:
1023	if (key->type->preparse)
1024		key->type->free_preparse(&prep);
 
1025	return ret;
1026}
1027EXPORT_SYMBOL(key_update);
1028
1029/**
1030 * key_revoke - Revoke a key.
1031 * @key: The key to be revoked.
1032 *
1033 * Mark a key as being revoked and ask the type to free up its resources.  The
1034 * revocation timeout is set and the key and all its links will be
1035 * automatically garbage collected after key_gc_delay amount of time if they
1036 * are not manually dealt with first.
1037 */
1038void key_revoke(struct key *key)
1039{
1040	time64_t time;
 
1041
1042	key_check(key);
1043
1044	/* make sure no one's trying to change or use the key when we mark it
1045	 * - we tell lockdep that we might nest because we might be revoking an
1046	 *   authorisation key whilst holding the sem on a key we've just
1047	 *   instantiated
1048	 */
1049	down_write_nested(&key->sem, 1);
1050	if (!test_and_set_bit(KEY_FLAG_REVOKED, &key->flags) &&
1051	    key->type->revoke)
1052		key->type->revoke(key);
1053
1054	/* set the death time to no more than the expiry time */
1055	time = ktime_get_real_seconds();
 
1056	if (key->revoked_at == 0 || key->revoked_at > time) {
1057		key->revoked_at = time;
1058		key_schedule_gc(key->revoked_at + key_gc_delay);
1059	}
1060
1061	up_write(&key->sem);
1062}
1063EXPORT_SYMBOL(key_revoke);
1064
1065/**
1066 * key_invalidate - Invalidate a key.
1067 * @key: The key to be invalidated.
1068 *
1069 * Mark a key as being invalidated and have it cleaned up immediately.  The key
1070 * is ignored by all searches and other operations from this point.
1071 */
1072void key_invalidate(struct key *key)
1073{
1074	kenter("%d", key_serial(key));
1075
1076	key_check(key);
1077
1078	if (!test_bit(KEY_FLAG_INVALIDATED, &key->flags)) {
1079		down_write_nested(&key->sem, 1);
1080		if (!test_and_set_bit(KEY_FLAG_INVALIDATED, &key->flags))
1081			key_schedule_gc_links();
1082		up_write(&key->sem);
1083	}
1084}
1085EXPORT_SYMBOL(key_invalidate);
1086
1087/**
1088 * generic_key_instantiate - Simple instantiation of a key from preparsed data
1089 * @key: The key to be instantiated
1090 * @prep: The preparsed data to load.
1091 *
1092 * Instantiate a key from preparsed data.  We assume we can just copy the data
1093 * in directly and clear the old pointers.
1094 *
1095 * This can be pointed to directly by the key type instantiate op pointer.
1096 */
1097int generic_key_instantiate(struct key *key, struct key_preparsed_payload *prep)
1098{
1099	int ret;
1100
1101	pr_devel("==>%s()\n", __func__);
1102
1103	ret = key_payload_reserve(key, prep->quotalen);
1104	if (ret == 0) {
1105		rcu_assign_keypointer(key, prep->payload.data[0]);
1106		key->payload.data[1] = prep->payload.data[1];
1107		key->payload.data[2] = prep->payload.data[2];
1108		key->payload.data[3] = prep->payload.data[3];
1109		prep->payload.data[0] = NULL;
1110		prep->payload.data[1] = NULL;
1111		prep->payload.data[2] = NULL;
1112		prep->payload.data[3] = NULL;
1113	}
1114	pr_devel("<==%s() = %d\n", __func__, ret);
1115	return ret;
1116}
1117EXPORT_SYMBOL(generic_key_instantiate);
1118
1119/**
1120 * register_key_type - Register a type of key.
1121 * @ktype: The new key type.
1122 *
1123 * Register a new key type.
1124 *
1125 * Returns 0 on success or -EEXIST if a type of this name already exists.
1126 */
1127int register_key_type(struct key_type *ktype)
1128{
1129	struct key_type *p;
1130	int ret;
1131
1132	memset(&ktype->lock_class, 0, sizeof(ktype->lock_class));
1133
1134	ret = -EEXIST;
1135	down_write(&key_types_sem);
1136
1137	/* disallow key types with the same name */
1138	list_for_each_entry(p, &key_types_list, link) {
1139		if (strcmp(p->name, ktype->name) == 0)
1140			goto out;
1141	}
1142
1143	/* store the type */
1144	list_add(&ktype->link, &key_types_list);
1145
1146	pr_notice("Key type %s registered\n", ktype->name);
1147	ret = 0;
1148
1149out:
1150	up_write(&key_types_sem);
1151	return ret;
1152}
1153EXPORT_SYMBOL(register_key_type);
1154
1155/**
1156 * unregister_key_type - Unregister a type of key.
1157 * @ktype: The key type.
1158 *
1159 * Unregister a key type and mark all the extant keys of this type as dead.
1160 * Those keys of this type are then destroyed to get rid of their payloads and
1161 * they and their links will be garbage collected as soon as possible.
1162 */
1163void unregister_key_type(struct key_type *ktype)
1164{
1165	down_write(&key_types_sem);
1166	list_del_init(&ktype->link);
1167	downgrade_write(&key_types_sem);
1168	key_gc_keytype(ktype);
1169	pr_notice("Key type %s unregistered\n", ktype->name);
1170	up_read(&key_types_sem);
1171}
1172EXPORT_SYMBOL(unregister_key_type);
1173
1174/*
1175 * Initialise the key management state.
1176 */
1177void __init key_init(void)
1178{
1179	/* allocate a slab in which we can store keys */
1180	key_jar = kmem_cache_create("key_jar", sizeof(struct key),
1181			0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1182
1183	/* add the special key types */
1184	list_add_tail(&key_type_keyring.link, &key_types_list);
1185	list_add_tail(&key_type_dead.link, &key_types_list);
1186	list_add_tail(&key_type_user.link, &key_types_list);
1187	list_add_tail(&key_type_logon.link, &key_types_list);
1188
1189	/* record the root user tracking */
1190	rb_link_node(&root_key_user.node,
1191		     NULL,
1192		     &key_user_tree.rb_node);
1193
1194	rb_insert_color(&root_key_user.node,
1195			&key_user_tree);
1196}