Linux Audio

Check our new training course

Loading...
v3.15
   1/* Basic authentication token and access key management
   2 *
   3 * Copyright (C) 2004-2008 Red Hat, Inc. All Rights Reserved.
   4 * Written by David Howells (dhowells@redhat.com)
   5 *
   6 * This program is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU General Public License
   8 * as published by the Free Software Foundation; either version
   9 * 2 of the License, or (at your option) any later version.
  10 */
  11
  12#include <linux/module.h>
  13#include <linux/init.h>
  14#include <linux/poison.h>
  15#include <linux/sched.h>
  16#include <linux/slab.h>
  17#include <linux/security.h>
  18#include <linux/workqueue.h>
  19#include <linux/random.h>
  20#include <linux/err.h>
 
  21#include "internal.h"
  22
  23struct kmem_cache *key_jar;
  24struct rb_root		key_serial_tree; /* tree of keys indexed by serial */
  25DEFINE_SPINLOCK(key_serial_lock);
  26
  27struct rb_root	key_user_tree; /* tree of quota records indexed by UID */
  28DEFINE_SPINLOCK(key_user_lock);
  29
  30unsigned int key_quota_root_maxkeys = 200;	/* root's key count quota */
  31unsigned int key_quota_root_maxbytes = 20000;	/* root's key space quota */
  32unsigned int key_quota_maxkeys = 200;		/* general key count quota */
  33unsigned int key_quota_maxbytes = 20000;	/* general key space quota */
  34
  35static LIST_HEAD(key_types_list);
  36static DECLARE_RWSEM(key_types_sem);
  37
 
 
 
  38/* We serialise key instantiation and link */
  39DEFINE_MUTEX(key_construction_mutex);
  40
 
 
 
 
 
  41#ifdef KEY_DEBUGGING
  42void __key_check(const struct key *key)
  43{
  44	printk("__key_check: key %p {%08x} should be {%08x}\n",
  45	       key, key->magic, KEY_DEBUG_MAGIC);
  46	BUG();
  47}
  48#endif
  49
  50/*
  51 * Get the key quota record for a user, allocating a new record if one doesn't
  52 * already exist.
  53 */
  54struct key_user *key_user_lookup(kuid_t uid)
  55{
  56	struct key_user *candidate = NULL, *user;
  57	struct rb_node *parent = NULL;
  58	struct rb_node **p;
  59
  60try_again:
  61	p = &key_user_tree.rb_node;
  62	spin_lock(&key_user_lock);
  63
  64	/* search the tree for a user record with a matching UID */
  65	while (*p) {
  66		parent = *p;
  67		user = rb_entry(parent, struct key_user, node);
  68
  69		if (uid_lt(uid, user->uid))
 
 
 
 
  70			p = &(*p)->rb_left;
  71		else if (uid_gt(uid, user->uid))
  72			p = &(*p)->rb_right;
  73		else
  74			goto found;
  75	}
  76
  77	/* if we get here, we failed to find a match in the tree */
  78	if (!candidate) {
  79		/* allocate a candidate user record if we don't already have
  80		 * one */
  81		spin_unlock(&key_user_lock);
  82
  83		user = NULL;
  84		candidate = kmalloc(sizeof(struct key_user), GFP_KERNEL);
  85		if (unlikely(!candidate))
  86			goto out;
  87
  88		/* the allocation may have scheduled, so we need to repeat the
  89		 * search lest someone else added the record whilst we were
  90		 * asleep */
  91		goto try_again;
  92	}
  93
  94	/* if we get here, then the user record still hadn't appeared on the
  95	 * second pass - so we use the candidate record */
  96	atomic_set(&candidate->usage, 1);
  97	atomic_set(&candidate->nkeys, 0);
  98	atomic_set(&candidate->nikeys, 0);
  99	candidate->uid = uid;
 
 100	candidate->qnkeys = 0;
 101	candidate->qnbytes = 0;
 102	spin_lock_init(&candidate->lock);
 103	mutex_init(&candidate->cons_lock);
 104
 105	rb_link_node(&candidate->node, parent, p);
 106	rb_insert_color(&candidate->node, &key_user_tree);
 107	spin_unlock(&key_user_lock);
 108	user = candidate;
 109	goto out;
 110
 111	/* okay - we found a user record for this UID */
 112found:
 113	atomic_inc(&user->usage);
 114	spin_unlock(&key_user_lock);
 115	kfree(candidate);
 116out:
 117	return user;
 118}
 119
 120/*
 121 * Dispose of a user structure
 122 */
 123void key_user_put(struct key_user *user)
 124{
 125	if (atomic_dec_and_lock(&user->usage, &key_user_lock)) {
 126		rb_erase(&user->node, &key_user_tree);
 127		spin_unlock(&key_user_lock);
 
 128
 129		kfree(user);
 130	}
 131}
 132
 133/*
 134 * Allocate a serial number for a key.  These are assigned randomly to avoid
 135 * security issues through covert channel problems.
 136 */
 137static inline void key_alloc_serial(struct key *key)
 138{
 139	struct rb_node *parent, **p;
 140	struct key *xkey;
 141
 142	/* propose a random serial number and look for a hole for it in the
 143	 * serial number tree */
 144	do {
 145		get_random_bytes(&key->serial, sizeof(key->serial));
 146
 147		key->serial >>= 1; /* negative numbers are not permitted */
 148	} while (key->serial < 3);
 149
 150	spin_lock(&key_serial_lock);
 151
 152attempt_insertion:
 153	parent = NULL;
 154	p = &key_serial_tree.rb_node;
 155
 156	while (*p) {
 157		parent = *p;
 158		xkey = rb_entry(parent, struct key, serial_node);
 159
 160		if (key->serial < xkey->serial)
 161			p = &(*p)->rb_left;
 162		else if (key->serial > xkey->serial)
 163			p = &(*p)->rb_right;
 164		else
 165			goto serial_exists;
 166	}
 167
 168	/* we've found a suitable hole - arrange for this key to occupy it */
 169	rb_link_node(&key->serial_node, parent, p);
 170	rb_insert_color(&key->serial_node, &key_serial_tree);
 171
 172	spin_unlock(&key_serial_lock);
 173	return;
 174
 175	/* we found a key with the proposed serial number - walk the tree from
 176	 * that point looking for the next unused serial number */
 177serial_exists:
 178	for (;;) {
 179		key->serial++;
 180		if (key->serial < 3) {
 181			key->serial = 3;
 182			goto attempt_insertion;
 183		}
 184
 185		parent = rb_next(parent);
 186		if (!parent)
 187			goto attempt_insertion;
 188
 189		xkey = rb_entry(parent, struct key, serial_node);
 190		if (key->serial < xkey->serial)
 191			goto attempt_insertion;
 192	}
 193}
 194
 195/**
 196 * key_alloc - Allocate a key of the specified type.
 197 * @type: The type of key to allocate.
 198 * @desc: The key description to allow the key to be searched out.
 199 * @uid: The owner of the new key.
 200 * @gid: The group ID for the new key's group permissions.
 201 * @cred: The credentials specifying UID namespace.
 202 * @perm: The permissions mask of the new key.
 203 * @flags: Flags specifying quota properties.
 204 *
 205 * Allocate a key of the specified type with the attributes given.  The key is
 206 * returned in an uninstantiated state and the caller needs to instantiate the
 207 * key before returning.
 208 *
 209 * The user's key count quota is updated to reflect the creation of the key and
 210 * the user's key data quota has the default for the key type reserved.  The
 211 * instantiation function should amend this as necessary.  If insufficient
 212 * quota is available, -EDQUOT will be returned.
 213 *
 214 * The LSM security modules can prevent a key being created, in which case
 215 * -EACCES will be returned.
 216 *
 217 * Returns a pointer to the new key if successful and an error code otherwise.
 218 *
 219 * Note that the caller needs to ensure the key type isn't uninstantiated.
 220 * Internally this can be done by locking key_types_sem.  Externally, this can
 221 * be done by either never unregistering the key type, or making sure
 222 * key_alloc() calls don't race with module unloading.
 223 */
 224struct key *key_alloc(struct key_type *type, const char *desc,
 225		      kuid_t uid, kgid_t gid, const struct cred *cred,
 226		      key_perm_t perm, unsigned long flags)
 227{
 228	struct key_user *user = NULL;
 229	struct key *key;
 230	size_t desclen, quotalen;
 231	int ret;
 232
 233	key = ERR_PTR(-EINVAL);
 234	if (!desc || !*desc)
 235		goto error;
 236
 237	if (type->vet_description) {
 238		ret = type->vet_description(desc);
 239		if (ret < 0) {
 240			key = ERR_PTR(ret);
 241			goto error;
 242		}
 243	}
 244
 245	desclen = strlen(desc);
 246	quotalen = desclen + 1 + type->def_datalen;
 247
 248	/* get hold of the key tracking for this user */
 249	user = key_user_lookup(uid);
 250	if (!user)
 251		goto no_memory_1;
 252
 253	/* check that the user's quota permits allocation of another key and
 254	 * its description */
 255	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
 256		unsigned maxkeys = uid_eq(uid, GLOBAL_ROOT_UID) ?
 257			key_quota_root_maxkeys : key_quota_maxkeys;
 258		unsigned maxbytes = uid_eq(uid, GLOBAL_ROOT_UID) ?
 259			key_quota_root_maxbytes : key_quota_maxbytes;
 260
 261		spin_lock(&user->lock);
 262		if (!(flags & KEY_ALLOC_QUOTA_OVERRUN)) {
 263			if (user->qnkeys + 1 >= maxkeys ||
 264			    user->qnbytes + quotalen >= maxbytes ||
 265			    user->qnbytes + quotalen < user->qnbytes)
 266				goto no_quota;
 267		}
 268
 269		user->qnkeys++;
 270		user->qnbytes += quotalen;
 271		spin_unlock(&user->lock);
 272	}
 273
 274	/* allocate and initialise the key and its description */
 275	key = kmem_cache_zalloc(key_jar, GFP_KERNEL);
 276	if (!key)
 277		goto no_memory_2;
 278
 279	if (desc) {
 280		key->index_key.desc_len = desclen;
 281		key->index_key.description = kmemdup(desc, desclen + 1, GFP_KERNEL);
 282		if (!key->description)
 283			goto no_memory_3;
 284	}
 285
 286	atomic_set(&key->usage, 1);
 287	init_rwsem(&key->sem);
 288	lockdep_set_class(&key->sem, &type->lock_class);
 289	key->index_key.type = type;
 290	key->user = user;
 291	key->quotalen = quotalen;
 292	key->datalen = type->def_datalen;
 293	key->uid = uid;
 294	key->gid = gid;
 295	key->perm = perm;
 
 
 
 
 296
 297	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA))
 298		key->flags |= 1 << KEY_FLAG_IN_QUOTA;
 299	if (flags & KEY_ALLOC_TRUSTED)
 300		key->flags |= 1 << KEY_FLAG_TRUSTED;
 301
 302#ifdef KEY_DEBUGGING
 303	key->magic = KEY_DEBUG_MAGIC;
 304#endif
 305
 306	/* let the security module know about the key */
 307	ret = security_key_alloc(key, cred, flags);
 308	if (ret < 0)
 309		goto security_error;
 310
 311	/* publish the key by giving it a serial number */
 312	atomic_inc(&user->nkeys);
 313	key_alloc_serial(key);
 314
 315error:
 316	return key;
 317
 318security_error:
 319	kfree(key->description);
 320	kmem_cache_free(key_jar, key);
 321	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
 322		spin_lock(&user->lock);
 323		user->qnkeys--;
 324		user->qnbytes -= quotalen;
 325		spin_unlock(&user->lock);
 326	}
 327	key_user_put(user);
 328	key = ERR_PTR(ret);
 329	goto error;
 330
 331no_memory_3:
 332	kmem_cache_free(key_jar, key);
 333no_memory_2:
 334	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
 335		spin_lock(&user->lock);
 336		user->qnkeys--;
 337		user->qnbytes -= quotalen;
 338		spin_unlock(&user->lock);
 339	}
 340	key_user_put(user);
 341no_memory_1:
 342	key = ERR_PTR(-ENOMEM);
 343	goto error;
 344
 345no_quota:
 346	spin_unlock(&user->lock);
 347	key_user_put(user);
 348	key = ERR_PTR(-EDQUOT);
 349	goto error;
 350}
 351EXPORT_SYMBOL(key_alloc);
 352
 353/**
 354 * key_payload_reserve - Adjust data quota reservation for the key's payload
 355 * @key: The key to make the reservation for.
 356 * @datalen: The amount of data payload the caller now wants.
 357 *
 358 * Adjust the amount of the owning user's key data quota that a key reserves.
 359 * If the amount is increased, then -EDQUOT may be returned if there isn't
 360 * enough free quota available.
 361 *
 362 * If successful, 0 is returned.
 363 */
 364int key_payload_reserve(struct key *key, size_t datalen)
 365{
 366	int delta = (int)datalen - key->datalen;
 367	int ret = 0;
 368
 369	key_check(key);
 370
 371	/* contemplate the quota adjustment */
 372	if (delta != 0 && test_bit(KEY_FLAG_IN_QUOTA, &key->flags)) {
 373		unsigned maxbytes = uid_eq(key->user->uid, GLOBAL_ROOT_UID) ?
 374			key_quota_root_maxbytes : key_quota_maxbytes;
 375
 376		spin_lock(&key->user->lock);
 377
 378		if (delta > 0 &&
 379		    (key->user->qnbytes + delta >= maxbytes ||
 380		     key->user->qnbytes + delta < key->user->qnbytes)) {
 381			ret = -EDQUOT;
 382		}
 383		else {
 384			key->user->qnbytes += delta;
 385			key->quotalen += delta;
 386		}
 387		spin_unlock(&key->user->lock);
 388	}
 389
 390	/* change the recorded data length if that didn't generate an error */
 391	if (ret == 0)
 392		key->datalen = datalen;
 393
 394	return ret;
 395}
 396EXPORT_SYMBOL(key_payload_reserve);
 397
 398/*
 399 * Instantiate a key and link it into the target keyring atomically.  Must be
 400 * called with the target keyring's semaphore writelocked.  The target key's
 401 * semaphore need not be locked as instantiation is serialised by
 402 * key_construction_mutex.
 403 */
 404static int __key_instantiate_and_link(struct key *key,
 405				      struct key_preparsed_payload *prep,
 
 406				      struct key *keyring,
 407				      struct key *authkey,
 408				      struct assoc_array_edit **_edit)
 409{
 410	int ret, awaken;
 411
 412	key_check(key);
 413	key_check(keyring);
 414
 415	awaken = 0;
 416	ret = -EBUSY;
 417
 418	mutex_lock(&key_construction_mutex);
 419
 420	/* can't instantiate twice */
 421	if (!test_bit(KEY_FLAG_INSTANTIATED, &key->flags)) {
 422		/* instantiate the key */
 423		ret = key->type->instantiate(key, prep);
 424
 425		if (ret == 0) {
 426			/* mark the key as being instantiated */
 427			atomic_inc(&key->user->nikeys);
 428			set_bit(KEY_FLAG_INSTANTIATED, &key->flags);
 429
 430			if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
 431				awaken = 1;
 432
 433			/* and link it into the destination keyring */
 434			if (keyring)
 435				__key_link(key, _edit);
 436
 437			/* disable the authorisation key */
 438			if (authkey)
 439				key_revoke(authkey);
 440		}
 441	}
 442
 443	mutex_unlock(&key_construction_mutex);
 444
 445	/* wake up anyone waiting for a key to be constructed */
 446	if (awaken)
 447		wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT);
 448
 449	return ret;
 450}
 451
 452/**
 453 * key_instantiate_and_link - Instantiate a key and link it into the keyring.
 454 * @key: The key to instantiate.
 455 * @data: The data to use to instantiate the keyring.
 456 * @datalen: The length of @data.
 457 * @keyring: Keyring to create a link in on success (or NULL).
 458 * @authkey: The authorisation token permitting instantiation.
 459 *
 460 * Instantiate a key that's in the uninstantiated state using the provided data
 461 * and, if successful, link it in to the destination keyring if one is
 462 * supplied.
 463 *
 464 * If successful, 0 is returned, the authorisation token is revoked and anyone
 465 * waiting for the key is woken up.  If the key was already instantiated,
 466 * -EBUSY will be returned.
 467 */
 468int key_instantiate_and_link(struct key *key,
 469			     const void *data,
 470			     size_t datalen,
 471			     struct key *keyring,
 472			     struct key *authkey)
 473{
 474	struct key_preparsed_payload prep;
 475	struct assoc_array_edit *edit;
 476	int ret;
 477
 478	memset(&prep, 0, sizeof(prep));
 479	prep.data = data;
 480	prep.datalen = datalen;
 481	prep.quotalen = key->type->def_datalen;
 482	if (key->type->preparse) {
 483		ret = key->type->preparse(&prep);
 484		if (ret < 0)
 485			goto error;
 486	}
 487
 488	if (keyring) {
 489		ret = __key_link_begin(keyring, &key->index_key, &edit);
 
 490		if (ret < 0)
 491			goto error_free_preparse;
 492	}
 493
 494	ret = __key_instantiate_and_link(key, &prep, keyring, authkey, &edit);
 
 495
 496	if (keyring)
 497		__key_link_end(keyring, &key->index_key, edit);
 498
 499error_free_preparse:
 500	if (key->type->preparse)
 501		key->type->free_preparse(&prep);
 502error:
 503	return ret;
 504}
 505
 506EXPORT_SYMBOL(key_instantiate_and_link);
 507
 508/**
 509 * key_reject_and_link - Negatively instantiate a key and link it into the keyring.
 510 * @key: The key to instantiate.
 511 * @timeout: The timeout on the negative key.
 512 * @error: The error to return when the key is hit.
 513 * @keyring: Keyring to create a link in on success (or NULL).
 514 * @authkey: The authorisation token permitting instantiation.
 515 *
 516 * Negatively instantiate a key that's in the uninstantiated state and, if
 517 * successful, set its timeout and stored error and link it in to the
 518 * destination keyring if one is supplied.  The key and any links to the key
 519 * will be automatically garbage collected after the timeout expires.
 520 *
 521 * Negative keys are used to rate limit repeated request_key() calls by causing
 522 * them to return the stored error code (typically ENOKEY) until the negative
 523 * key expires.
 524 *
 525 * If successful, 0 is returned, the authorisation token is revoked and anyone
 526 * waiting for the key is woken up.  If the key was already instantiated,
 527 * -EBUSY will be returned.
 528 */
 529int key_reject_and_link(struct key *key,
 530			unsigned timeout,
 531			unsigned error,
 532			struct key *keyring,
 533			struct key *authkey)
 534{
 535	struct assoc_array_edit *edit;
 536	struct timespec now;
 537	int ret, awaken, link_ret = 0;
 538
 539	key_check(key);
 540	key_check(keyring);
 541
 542	awaken = 0;
 543	ret = -EBUSY;
 544
 545	if (keyring)
 546		link_ret = __key_link_begin(keyring, &key->index_key, &edit);
 
 547
 548	mutex_lock(&key_construction_mutex);
 549
 550	/* can't instantiate twice */
 551	if (!test_bit(KEY_FLAG_INSTANTIATED, &key->flags)) {
 552		/* mark the key as being negatively instantiated */
 553		atomic_inc(&key->user->nikeys);
 554		key->type_data.reject_error = -error;
 555		smp_wmb();
 556		set_bit(KEY_FLAG_NEGATIVE, &key->flags);
 557		set_bit(KEY_FLAG_INSTANTIATED, &key->flags);
 
 558		now = current_kernel_time();
 559		key->expiry = now.tv_sec + timeout;
 560		key_schedule_gc(key->expiry + key_gc_delay);
 561
 562		if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
 563			awaken = 1;
 564
 565		ret = 0;
 566
 567		/* and link it into the destination keyring */
 568		if (keyring && link_ret == 0)
 569			__key_link(key, &edit);
 570
 571		/* disable the authorisation key */
 572		if (authkey)
 573			key_revoke(authkey);
 574	}
 575
 576	mutex_unlock(&key_construction_mutex);
 577
 578	if (keyring)
 579		__key_link_end(keyring, &key->index_key, edit);
 580
 581	/* wake up anyone waiting for a key to be constructed */
 582	if (awaken)
 583		wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT);
 584
 585	return ret == 0 ? link_ret : ret;
 586}
 587EXPORT_SYMBOL(key_reject_and_link);
 588
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 589/**
 590 * key_put - Discard a reference to a key.
 591 * @key: The key to discard a reference from.
 592 *
 593 * Discard a reference to a key, and when all the references are gone, we
 594 * schedule the cleanup task to come and pull it out of the tree in process
 595 * context at some later time.
 596 */
 597void key_put(struct key *key)
 598{
 599	if (key) {
 600		key_check(key);
 601
 602		if (atomic_dec_and_test(&key->usage))
 603			schedule_work(&key_gc_work);
 604	}
 605}
 606EXPORT_SYMBOL(key_put);
 607
 608/*
 609 * Find a key by its serial number.
 610 */
 611struct key *key_lookup(key_serial_t id)
 612{
 613	struct rb_node *n;
 614	struct key *key;
 615
 616	spin_lock(&key_serial_lock);
 617
 618	/* search the tree for the specified key */
 619	n = key_serial_tree.rb_node;
 620	while (n) {
 621		key = rb_entry(n, struct key, serial_node);
 622
 623		if (id < key->serial)
 624			n = n->rb_left;
 625		else if (id > key->serial)
 626			n = n->rb_right;
 627		else
 628			goto found;
 629	}
 630
 631not_found:
 632	key = ERR_PTR(-ENOKEY);
 633	goto error;
 634
 635found:
 636	/* pretend it doesn't exist if it is awaiting deletion */
 637	if (atomic_read(&key->usage) == 0)
 638		goto not_found;
 639
 640	/* this races with key_put(), but that doesn't matter since key_put()
 641	 * doesn't actually change the key
 642	 */
 643	__key_get(key);
 644
 645error:
 646	spin_unlock(&key_serial_lock);
 647	return key;
 648}
 649
 650/*
 651 * Find and lock the specified key type against removal.
 652 *
 653 * We return with the sem read-locked if successful.  If the type wasn't
 654 * available -ENOKEY is returned instead.
 655 */
 656struct key_type *key_type_lookup(const char *type)
 657{
 658	struct key_type *ktype;
 659
 660	down_read(&key_types_sem);
 661
 662	/* look up the key type to see if it's one of the registered kernel
 663	 * types */
 664	list_for_each_entry(ktype, &key_types_list, link) {
 665		if (strcmp(ktype->name, type) == 0)
 666			goto found_kernel_type;
 667	}
 668
 669	up_read(&key_types_sem);
 670	ktype = ERR_PTR(-ENOKEY);
 671
 672found_kernel_type:
 673	return ktype;
 674}
 675
 676void key_set_timeout(struct key *key, unsigned timeout)
 677{
 678	struct timespec now;
 679	time_t expiry = 0;
 680
 681	/* make the changes with the locks held to prevent races */
 682	down_write(&key->sem);
 683
 684	if (timeout > 0) {
 685		now = current_kernel_time();
 686		expiry = now.tv_sec + timeout;
 687	}
 688
 689	key->expiry = expiry;
 690	key_schedule_gc(key->expiry + key_gc_delay);
 691
 692	up_write(&key->sem);
 693}
 694EXPORT_SYMBOL_GPL(key_set_timeout);
 695
 696/*
 697 * Unlock a key type locked by key_type_lookup().
 698 */
 699void key_type_put(struct key_type *ktype)
 700{
 701	up_read(&key_types_sem);
 702}
 703
 704/*
 705 * Attempt to update an existing key.
 706 *
 707 * The key is given to us with an incremented refcount that we need to discard
 708 * if we get an error.
 709 */
 710static inline key_ref_t __key_update(key_ref_t key_ref,
 711				     struct key_preparsed_payload *prep)
 712{
 713	struct key *key = key_ref_to_ptr(key_ref);
 714	int ret;
 715
 716	/* need write permission on the key to update it */
 717	ret = key_permission(key_ref, KEY_WRITE);
 718	if (ret < 0)
 719		goto error;
 720
 721	ret = -EEXIST;
 722	if (!key->type->update)
 723		goto error;
 724
 725	down_write(&key->sem);
 726
 727	ret = key->type->update(key, prep);
 728	if (ret == 0)
 729		/* updating a negative key instantiates it */
 730		clear_bit(KEY_FLAG_NEGATIVE, &key->flags);
 731
 732	up_write(&key->sem);
 733
 734	if (ret < 0)
 735		goto error;
 736out:
 737	return key_ref;
 738
 739error:
 740	key_put(key);
 741	key_ref = ERR_PTR(ret);
 742	goto out;
 743}
 744
 745/**
 746 * key_create_or_update - Update or create and instantiate a key.
 747 * @keyring_ref: A pointer to the destination keyring with possession flag.
 748 * @type: The type of key.
 749 * @description: The searchable description for the key.
 750 * @payload: The data to use to instantiate or update the key.
 751 * @plen: The length of @payload.
 752 * @perm: The permissions mask for a new key.
 753 * @flags: The quota flags for a new key.
 754 *
 755 * Search the destination keyring for a key of the same description and if one
 756 * is found, update it, otherwise create and instantiate a new one and create a
 757 * link to it from that keyring.
 758 *
 759 * If perm is KEY_PERM_UNDEF then an appropriate key permissions mask will be
 760 * concocted.
 761 *
 762 * Returns a pointer to the new key if successful, -ENODEV if the key type
 763 * wasn't available, -ENOTDIR if the keyring wasn't a keyring, -EACCES if the
 764 * caller isn't permitted to modify the keyring or the LSM did not permit
 765 * creation of the key.
 766 *
 767 * On success, the possession flag from the keyring ref will be tacked on to
 768 * the key ref before it is returned.
 769 */
 770key_ref_t key_create_or_update(key_ref_t keyring_ref,
 771			       const char *type,
 772			       const char *description,
 773			       const void *payload,
 774			       size_t plen,
 775			       key_perm_t perm,
 776			       unsigned long flags)
 777{
 778	struct keyring_index_key index_key = {
 779		.description	= description,
 780	};
 781	struct key_preparsed_payload prep;
 782	struct assoc_array_edit *edit;
 783	const struct cred *cred = current_cred();
 
 784	struct key *keyring, *key = NULL;
 785	key_ref_t key_ref;
 786	int ret;
 787
 788	/* look up the key type to see if it's one of the registered kernel
 789	 * types */
 790	index_key.type = key_type_lookup(type);
 791	if (IS_ERR(index_key.type)) {
 792		key_ref = ERR_PTR(-ENODEV);
 793		goto error;
 794	}
 795
 796	key_ref = ERR_PTR(-EINVAL);
 797	if (!index_key.type->match || !index_key.type->instantiate ||
 798	    (!index_key.description && !index_key.type->preparse))
 799		goto error_put_type;
 800
 801	keyring = key_ref_to_ptr(keyring_ref);
 802
 803	key_check(keyring);
 804
 805	key_ref = ERR_PTR(-ENOTDIR);
 806	if (keyring->type != &key_type_keyring)
 807		goto error_put_type;
 808
 809	memset(&prep, 0, sizeof(prep));
 810	prep.data = payload;
 811	prep.datalen = plen;
 812	prep.quotalen = index_key.type->def_datalen;
 813	prep.trusted = flags & KEY_ALLOC_TRUSTED;
 814	if (index_key.type->preparse) {
 815		ret = index_key.type->preparse(&prep);
 816		if (ret < 0) {
 817			key_ref = ERR_PTR(ret);
 818			goto error_put_type;
 819		}
 820		if (!index_key.description)
 821			index_key.description = prep.description;
 822		key_ref = ERR_PTR(-EINVAL);
 823		if (!index_key.description)
 824			goto error_free_prep;
 825	}
 826	index_key.desc_len = strlen(index_key.description);
 827
 828	key_ref = ERR_PTR(-EPERM);
 829	if (!prep.trusted && test_bit(KEY_FLAG_TRUSTED_ONLY, &keyring->flags))
 830		goto error_free_prep;
 831	flags |= prep.trusted ? KEY_ALLOC_TRUSTED : 0;
 832
 833	ret = __key_link_begin(keyring, &index_key, &edit);
 834	if (ret < 0) {
 835		key_ref = ERR_PTR(ret);
 836		goto error_free_prep;
 837	}
 838
 839	/* if we're going to allocate a new key, we're going to have
 840	 * to modify the keyring */
 841	ret = key_permission(keyring_ref, KEY_WRITE);
 842	if (ret < 0) {
 843		key_ref = ERR_PTR(ret);
 844		goto error_link_end;
 845	}
 846
 847	/* if it's possible to update this type of key, search for an existing
 848	 * key of the same type and description in the destination keyring and
 849	 * update that instead if possible
 850	 */
 851	if (index_key.type->update) {
 852		key_ref = find_key_to_update(keyring_ref, &index_key);
 853		if (key_ref)
 
 854			goto found_matching_key;
 855	}
 856
 857	/* if the client doesn't provide, decide on the permissions we want */
 858	if (perm == KEY_PERM_UNDEF) {
 859		perm = KEY_POS_VIEW | KEY_POS_SEARCH | KEY_POS_LINK | KEY_POS_SETATTR;
 860		perm |= KEY_USR_VIEW;
 861
 862		if (index_key.type->read)
 863			perm |= KEY_POS_READ;
 864
 865		if (index_key.type == &key_type_keyring ||
 866		    index_key.type->update)
 867			perm |= KEY_POS_WRITE;
 868	}
 869
 870	/* allocate a new key */
 871	key = key_alloc(index_key.type, index_key.description,
 872			cred->fsuid, cred->fsgid, cred, perm, flags);
 873	if (IS_ERR(key)) {
 874		key_ref = ERR_CAST(key);
 875		goto error_link_end;
 876	}
 877
 878	/* instantiate it and link it into the target keyring */
 879	ret = __key_instantiate_and_link(key, &prep, keyring, NULL, &edit);
 
 880	if (ret < 0) {
 881		key_put(key);
 882		key_ref = ERR_PTR(ret);
 883		goto error_link_end;
 884	}
 885
 886	key_ref = make_key_ref(key, is_key_possessed(keyring_ref));
 887
 888error_link_end:
 889	__key_link_end(keyring, &index_key, edit);
 890error_free_prep:
 891	if (index_key.type->preparse)
 892		index_key.type->free_preparse(&prep);
 893error_put_type:
 894	key_type_put(index_key.type);
 895error:
 896	return key_ref;
 897
 898 found_matching_key:
 899	/* we found a matching key, so we're going to try to update it
 900	 * - we can drop the locks first as we have the key pinned
 901	 */
 902	__key_link_end(keyring, &index_key, edit);
 
 903
 904	key_ref = __key_update(key_ref, &prep);
 905	goto error_free_prep;
 906}
 907EXPORT_SYMBOL(key_create_or_update);
 908
 909/**
 910 * key_update - Update a key's contents.
 911 * @key_ref: The pointer (plus possession flag) to the key.
 912 * @payload: The data to be used to update the key.
 913 * @plen: The length of @payload.
 914 *
 915 * Attempt to update the contents of a key with the given payload data.  The
 916 * caller must be granted Write permission on the key.  Negative keys can be
 917 * instantiated by this method.
 918 *
 919 * Returns 0 on success, -EACCES if not permitted and -EOPNOTSUPP if the key
 920 * type does not support updating.  The key type may return other errors.
 921 */
 922int key_update(key_ref_t key_ref, const void *payload, size_t plen)
 923{
 924	struct key_preparsed_payload prep;
 925	struct key *key = key_ref_to_ptr(key_ref);
 926	int ret;
 927
 928	key_check(key);
 929
 930	/* the key must be writable */
 931	ret = key_permission(key_ref, KEY_WRITE);
 932	if (ret < 0)
 933		goto error;
 934
 935	/* attempt to update it if supported */
 936	ret = -EOPNOTSUPP;
 937	if (!key->type->update)
 938		goto error;
 939
 940	memset(&prep, 0, sizeof(prep));
 941	prep.data = payload;
 942	prep.datalen = plen;
 943	prep.quotalen = key->type->def_datalen;
 944	if (key->type->preparse) {
 945		ret = key->type->preparse(&prep);
 946		if (ret < 0)
 947			goto error;
 948	}
 949
 950	down_write(&key->sem);
 951
 952	ret = key->type->update(key, &prep);
 953	if (ret == 0)
 954		/* updating a negative key instantiates it */
 955		clear_bit(KEY_FLAG_NEGATIVE, &key->flags);
 956
 957	up_write(&key->sem);
 958
 959	if (key->type->preparse)
 960		key->type->free_preparse(&prep);
 961error:
 962	return ret;
 963}
 964EXPORT_SYMBOL(key_update);
 965
 966/**
 967 * key_revoke - Revoke a key.
 968 * @key: The key to be revoked.
 969 *
 970 * Mark a key as being revoked and ask the type to free up its resources.  The
 971 * revocation timeout is set and the key and all its links will be
 972 * automatically garbage collected after key_gc_delay amount of time if they
 973 * are not manually dealt with first.
 974 */
 975void key_revoke(struct key *key)
 976{
 977	struct timespec now;
 978	time_t time;
 979
 980	key_check(key);
 981
 982	/* make sure no one's trying to change or use the key when we mark it
 983	 * - we tell lockdep that we might nest because we might be revoking an
 984	 *   authorisation key whilst holding the sem on a key we've just
 985	 *   instantiated
 986	 */
 987	down_write_nested(&key->sem, 1);
 988	if (!test_and_set_bit(KEY_FLAG_REVOKED, &key->flags) &&
 989	    key->type->revoke)
 990		key->type->revoke(key);
 991
 992	/* set the death time to no more than the expiry time */
 993	now = current_kernel_time();
 994	time = now.tv_sec;
 995	if (key->revoked_at == 0 || key->revoked_at > time) {
 996		key->revoked_at = time;
 997		key_schedule_gc(key->revoked_at + key_gc_delay);
 998	}
 999
1000	up_write(&key->sem);
1001}
1002EXPORT_SYMBOL(key_revoke);
1003
1004/**
1005 * key_invalidate - Invalidate a key.
1006 * @key: The key to be invalidated.
1007 *
1008 * Mark a key as being invalidated and have it cleaned up immediately.  The key
1009 * is ignored by all searches and other operations from this point.
1010 */
1011void key_invalidate(struct key *key)
1012{
1013	kenter("%d", key_serial(key));
1014
1015	key_check(key);
1016
1017	if (!test_bit(KEY_FLAG_INVALIDATED, &key->flags)) {
1018		down_write_nested(&key->sem, 1);
1019		if (!test_and_set_bit(KEY_FLAG_INVALIDATED, &key->flags))
1020			key_schedule_gc_links();
1021		up_write(&key->sem);
1022	}
1023}
1024EXPORT_SYMBOL(key_invalidate);
1025
1026/**
1027 * register_key_type - Register a type of key.
1028 * @ktype: The new key type.
1029 *
1030 * Register a new key type.
1031 *
1032 * Returns 0 on success or -EEXIST if a type of this name already exists.
1033 */
1034int register_key_type(struct key_type *ktype)
1035{
1036	struct key_type *p;
1037	int ret;
1038
1039	memset(&ktype->lock_class, 0, sizeof(ktype->lock_class));
1040
1041	ret = -EEXIST;
1042	down_write(&key_types_sem);
1043
1044	/* disallow key types with the same name */
1045	list_for_each_entry(p, &key_types_list, link) {
1046		if (strcmp(p->name, ktype->name) == 0)
1047			goto out;
1048	}
1049
1050	/* store the type */
1051	list_add(&ktype->link, &key_types_list);
1052
1053	pr_notice("Key type %s registered\n", ktype->name);
1054	ret = 0;
1055
1056out:
1057	up_write(&key_types_sem);
1058	return ret;
1059}
1060EXPORT_SYMBOL(register_key_type);
1061
1062/**
1063 * unregister_key_type - Unregister a type of key.
1064 * @ktype: The key type.
1065 *
1066 * Unregister a key type and mark all the extant keys of this type as dead.
1067 * Those keys of this type are then destroyed to get rid of their payloads and
1068 * they and their links will be garbage collected as soon as possible.
1069 */
1070void unregister_key_type(struct key_type *ktype)
1071{
 
 
 
1072	down_write(&key_types_sem);
 
 
1073	list_del_init(&ktype->link);
1074	downgrade_write(&key_types_sem);
1075	key_gc_keytype(ktype);
1076	pr_notice("Key type %s unregistered\n", ktype->name);
1077	up_read(&key_types_sem);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1078}
1079EXPORT_SYMBOL(unregister_key_type);
1080
1081/*
1082 * Initialise the key management state.
1083 */
1084void __init key_init(void)
1085{
1086	/* allocate a slab in which we can store keys */
1087	key_jar = kmem_cache_create("key_jar", sizeof(struct key),
1088			0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1089
1090	/* add the special key types */
1091	list_add_tail(&key_type_keyring.link, &key_types_list);
1092	list_add_tail(&key_type_dead.link, &key_types_list);
1093	list_add_tail(&key_type_user.link, &key_types_list);
1094	list_add_tail(&key_type_logon.link, &key_types_list);
1095
1096	/* record the root user tracking */
1097	rb_link_node(&root_key_user.node,
1098		     NULL,
1099		     &key_user_tree.rb_node);
1100
1101	rb_insert_color(&root_key_user.node,
1102			&key_user_tree);
1103}
v3.1
   1/* Basic authentication token and access key management
   2 *
   3 * Copyright (C) 2004-2008 Red Hat, Inc. All Rights Reserved.
   4 * Written by David Howells (dhowells@redhat.com)
   5 *
   6 * This program is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU General Public License
   8 * as published by the Free Software Foundation; either version
   9 * 2 of the License, or (at your option) any later version.
  10 */
  11
  12#include <linux/module.h>
  13#include <linux/init.h>
  14#include <linux/poison.h>
  15#include <linux/sched.h>
  16#include <linux/slab.h>
  17#include <linux/security.h>
  18#include <linux/workqueue.h>
  19#include <linux/random.h>
  20#include <linux/err.h>
  21#include <linux/user_namespace.h>
  22#include "internal.h"
  23
  24static struct kmem_cache	*key_jar;
  25struct rb_root		key_serial_tree; /* tree of keys indexed by serial */
  26DEFINE_SPINLOCK(key_serial_lock);
  27
  28struct rb_root	key_user_tree; /* tree of quota records indexed by UID */
  29DEFINE_SPINLOCK(key_user_lock);
  30
  31unsigned int key_quota_root_maxkeys = 200;	/* root's key count quota */
  32unsigned int key_quota_root_maxbytes = 20000;	/* root's key space quota */
  33unsigned int key_quota_maxkeys = 200;		/* general key count quota */
  34unsigned int key_quota_maxbytes = 20000;	/* general key space quota */
  35
  36static LIST_HEAD(key_types_list);
  37static DECLARE_RWSEM(key_types_sem);
  38
  39static void key_cleanup(struct work_struct *work);
  40static DECLARE_WORK(key_cleanup_task, key_cleanup);
  41
  42/* We serialise key instantiation and link */
  43DEFINE_MUTEX(key_construction_mutex);
  44
  45/* Any key who's type gets unegistered will be re-typed to this */
  46static struct key_type key_type_dead = {
  47	.name		= "dead",
  48};
  49
  50#ifdef KEY_DEBUGGING
  51void __key_check(const struct key *key)
  52{
  53	printk("__key_check: key %p {%08x} should be {%08x}\n",
  54	       key, key->magic, KEY_DEBUG_MAGIC);
  55	BUG();
  56}
  57#endif
  58
  59/*
  60 * Get the key quota record for a user, allocating a new record if one doesn't
  61 * already exist.
  62 */
  63struct key_user *key_user_lookup(uid_t uid, struct user_namespace *user_ns)
  64{
  65	struct key_user *candidate = NULL, *user;
  66	struct rb_node *parent = NULL;
  67	struct rb_node **p;
  68
  69try_again:
  70	p = &key_user_tree.rb_node;
  71	spin_lock(&key_user_lock);
  72
  73	/* search the tree for a user record with a matching UID */
  74	while (*p) {
  75		parent = *p;
  76		user = rb_entry(parent, struct key_user, node);
  77
  78		if (uid < user->uid)
  79			p = &(*p)->rb_left;
  80		else if (uid > user->uid)
  81			p = &(*p)->rb_right;
  82		else if (user_ns < user->user_ns)
  83			p = &(*p)->rb_left;
  84		else if (user_ns > user->user_ns)
  85			p = &(*p)->rb_right;
  86		else
  87			goto found;
  88	}
  89
  90	/* if we get here, we failed to find a match in the tree */
  91	if (!candidate) {
  92		/* allocate a candidate user record if we don't already have
  93		 * one */
  94		spin_unlock(&key_user_lock);
  95
  96		user = NULL;
  97		candidate = kmalloc(sizeof(struct key_user), GFP_KERNEL);
  98		if (unlikely(!candidate))
  99			goto out;
 100
 101		/* the allocation may have scheduled, so we need to repeat the
 102		 * search lest someone else added the record whilst we were
 103		 * asleep */
 104		goto try_again;
 105	}
 106
 107	/* if we get here, then the user record still hadn't appeared on the
 108	 * second pass - so we use the candidate record */
 109	atomic_set(&candidate->usage, 1);
 110	atomic_set(&candidate->nkeys, 0);
 111	atomic_set(&candidate->nikeys, 0);
 112	candidate->uid = uid;
 113	candidate->user_ns = get_user_ns(user_ns);
 114	candidate->qnkeys = 0;
 115	candidate->qnbytes = 0;
 116	spin_lock_init(&candidate->lock);
 117	mutex_init(&candidate->cons_lock);
 118
 119	rb_link_node(&candidate->node, parent, p);
 120	rb_insert_color(&candidate->node, &key_user_tree);
 121	spin_unlock(&key_user_lock);
 122	user = candidate;
 123	goto out;
 124
 125	/* okay - we found a user record for this UID */
 126found:
 127	atomic_inc(&user->usage);
 128	spin_unlock(&key_user_lock);
 129	kfree(candidate);
 130out:
 131	return user;
 132}
 133
 134/*
 135 * Dispose of a user structure
 136 */
 137void key_user_put(struct key_user *user)
 138{
 139	if (atomic_dec_and_lock(&user->usage, &key_user_lock)) {
 140		rb_erase(&user->node, &key_user_tree);
 141		spin_unlock(&key_user_lock);
 142		put_user_ns(user->user_ns);
 143
 144		kfree(user);
 145	}
 146}
 147
 148/*
 149 * Allocate a serial number for a key.  These are assigned randomly to avoid
 150 * security issues through covert channel problems.
 151 */
 152static inline void key_alloc_serial(struct key *key)
 153{
 154	struct rb_node *parent, **p;
 155	struct key *xkey;
 156
 157	/* propose a random serial number and look for a hole for it in the
 158	 * serial number tree */
 159	do {
 160		get_random_bytes(&key->serial, sizeof(key->serial));
 161
 162		key->serial >>= 1; /* negative numbers are not permitted */
 163	} while (key->serial < 3);
 164
 165	spin_lock(&key_serial_lock);
 166
 167attempt_insertion:
 168	parent = NULL;
 169	p = &key_serial_tree.rb_node;
 170
 171	while (*p) {
 172		parent = *p;
 173		xkey = rb_entry(parent, struct key, serial_node);
 174
 175		if (key->serial < xkey->serial)
 176			p = &(*p)->rb_left;
 177		else if (key->serial > xkey->serial)
 178			p = &(*p)->rb_right;
 179		else
 180			goto serial_exists;
 181	}
 182
 183	/* we've found a suitable hole - arrange for this key to occupy it */
 184	rb_link_node(&key->serial_node, parent, p);
 185	rb_insert_color(&key->serial_node, &key_serial_tree);
 186
 187	spin_unlock(&key_serial_lock);
 188	return;
 189
 190	/* we found a key with the proposed serial number - walk the tree from
 191	 * that point looking for the next unused serial number */
 192serial_exists:
 193	for (;;) {
 194		key->serial++;
 195		if (key->serial < 3) {
 196			key->serial = 3;
 197			goto attempt_insertion;
 198		}
 199
 200		parent = rb_next(parent);
 201		if (!parent)
 202			goto attempt_insertion;
 203
 204		xkey = rb_entry(parent, struct key, serial_node);
 205		if (key->serial < xkey->serial)
 206			goto attempt_insertion;
 207	}
 208}
 209
 210/**
 211 * key_alloc - Allocate a key of the specified type.
 212 * @type: The type of key to allocate.
 213 * @desc: The key description to allow the key to be searched out.
 214 * @uid: The owner of the new key.
 215 * @gid: The group ID for the new key's group permissions.
 216 * @cred: The credentials specifying UID namespace.
 217 * @perm: The permissions mask of the new key.
 218 * @flags: Flags specifying quota properties.
 219 *
 220 * Allocate a key of the specified type with the attributes given.  The key is
 221 * returned in an uninstantiated state and the caller needs to instantiate the
 222 * key before returning.
 223 *
 224 * The user's key count quota is updated to reflect the creation of the key and
 225 * the user's key data quota has the default for the key type reserved.  The
 226 * instantiation function should amend this as necessary.  If insufficient
 227 * quota is available, -EDQUOT will be returned.
 228 *
 229 * The LSM security modules can prevent a key being created, in which case
 230 * -EACCES will be returned.
 231 *
 232 * Returns a pointer to the new key if successful and an error code otherwise.
 233 *
 234 * Note that the caller needs to ensure the key type isn't uninstantiated.
 235 * Internally this can be done by locking key_types_sem.  Externally, this can
 236 * be done by either never unregistering the key type, or making sure
 237 * key_alloc() calls don't race with module unloading.
 238 */
 239struct key *key_alloc(struct key_type *type, const char *desc,
 240		      uid_t uid, gid_t gid, const struct cred *cred,
 241		      key_perm_t perm, unsigned long flags)
 242{
 243	struct key_user *user = NULL;
 244	struct key *key;
 245	size_t desclen, quotalen;
 246	int ret;
 247
 248	key = ERR_PTR(-EINVAL);
 249	if (!desc || !*desc)
 250		goto error;
 251
 252	if (type->vet_description) {
 253		ret = type->vet_description(desc);
 254		if (ret < 0) {
 255			key = ERR_PTR(ret);
 256			goto error;
 257		}
 258	}
 259
 260	desclen = strlen(desc) + 1;
 261	quotalen = desclen + type->def_datalen;
 262
 263	/* get hold of the key tracking for this user */
 264	user = key_user_lookup(uid, cred->user->user_ns);
 265	if (!user)
 266		goto no_memory_1;
 267
 268	/* check that the user's quota permits allocation of another key and
 269	 * its description */
 270	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
 271		unsigned maxkeys = (uid == 0) ?
 272			key_quota_root_maxkeys : key_quota_maxkeys;
 273		unsigned maxbytes = (uid == 0) ?
 274			key_quota_root_maxbytes : key_quota_maxbytes;
 275
 276		spin_lock(&user->lock);
 277		if (!(flags & KEY_ALLOC_QUOTA_OVERRUN)) {
 278			if (user->qnkeys + 1 >= maxkeys ||
 279			    user->qnbytes + quotalen >= maxbytes ||
 280			    user->qnbytes + quotalen < user->qnbytes)
 281				goto no_quota;
 282		}
 283
 284		user->qnkeys++;
 285		user->qnbytes += quotalen;
 286		spin_unlock(&user->lock);
 287	}
 288
 289	/* allocate and initialise the key and its description */
 290	key = kmem_cache_alloc(key_jar, GFP_KERNEL);
 291	if (!key)
 292		goto no_memory_2;
 293
 294	if (desc) {
 295		key->description = kmemdup(desc, desclen, GFP_KERNEL);
 
 296		if (!key->description)
 297			goto no_memory_3;
 298	}
 299
 300	atomic_set(&key->usage, 1);
 301	init_rwsem(&key->sem);
 302	key->type = type;
 
 303	key->user = user;
 304	key->quotalen = quotalen;
 305	key->datalen = type->def_datalen;
 306	key->uid = uid;
 307	key->gid = gid;
 308	key->perm = perm;
 309	key->flags = 0;
 310	key->expiry = 0;
 311	key->payload.data = NULL;
 312	key->security = NULL;
 313
 314	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA))
 315		key->flags |= 1 << KEY_FLAG_IN_QUOTA;
 316
 317	memset(&key->type_data, 0, sizeof(key->type_data));
 318
 319#ifdef KEY_DEBUGGING
 320	key->magic = KEY_DEBUG_MAGIC;
 321#endif
 322
 323	/* let the security module know about the key */
 324	ret = security_key_alloc(key, cred, flags);
 325	if (ret < 0)
 326		goto security_error;
 327
 328	/* publish the key by giving it a serial number */
 329	atomic_inc(&user->nkeys);
 330	key_alloc_serial(key);
 331
 332error:
 333	return key;
 334
 335security_error:
 336	kfree(key->description);
 337	kmem_cache_free(key_jar, key);
 338	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
 339		spin_lock(&user->lock);
 340		user->qnkeys--;
 341		user->qnbytes -= quotalen;
 342		spin_unlock(&user->lock);
 343	}
 344	key_user_put(user);
 345	key = ERR_PTR(ret);
 346	goto error;
 347
 348no_memory_3:
 349	kmem_cache_free(key_jar, key);
 350no_memory_2:
 351	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
 352		spin_lock(&user->lock);
 353		user->qnkeys--;
 354		user->qnbytes -= quotalen;
 355		spin_unlock(&user->lock);
 356	}
 357	key_user_put(user);
 358no_memory_1:
 359	key = ERR_PTR(-ENOMEM);
 360	goto error;
 361
 362no_quota:
 363	spin_unlock(&user->lock);
 364	key_user_put(user);
 365	key = ERR_PTR(-EDQUOT);
 366	goto error;
 367}
 368EXPORT_SYMBOL(key_alloc);
 369
 370/**
 371 * key_payload_reserve - Adjust data quota reservation for the key's payload
 372 * @key: The key to make the reservation for.
 373 * @datalen: The amount of data payload the caller now wants.
 374 *
 375 * Adjust the amount of the owning user's key data quota that a key reserves.
 376 * If the amount is increased, then -EDQUOT may be returned if there isn't
 377 * enough free quota available.
 378 *
 379 * If successful, 0 is returned.
 380 */
 381int key_payload_reserve(struct key *key, size_t datalen)
 382{
 383	int delta = (int)datalen - key->datalen;
 384	int ret = 0;
 385
 386	key_check(key);
 387
 388	/* contemplate the quota adjustment */
 389	if (delta != 0 && test_bit(KEY_FLAG_IN_QUOTA, &key->flags)) {
 390		unsigned maxbytes = (key->user->uid == 0) ?
 391			key_quota_root_maxbytes : key_quota_maxbytes;
 392
 393		spin_lock(&key->user->lock);
 394
 395		if (delta > 0 &&
 396		    (key->user->qnbytes + delta >= maxbytes ||
 397		     key->user->qnbytes + delta < key->user->qnbytes)) {
 398			ret = -EDQUOT;
 399		}
 400		else {
 401			key->user->qnbytes += delta;
 402			key->quotalen += delta;
 403		}
 404		spin_unlock(&key->user->lock);
 405	}
 406
 407	/* change the recorded data length if that didn't generate an error */
 408	if (ret == 0)
 409		key->datalen = datalen;
 410
 411	return ret;
 412}
 413EXPORT_SYMBOL(key_payload_reserve);
 414
 415/*
 416 * Instantiate a key and link it into the target keyring atomically.  Must be
 417 * called with the target keyring's semaphore writelocked.  The target key's
 418 * semaphore need not be locked as instantiation is serialised by
 419 * key_construction_mutex.
 420 */
 421static int __key_instantiate_and_link(struct key *key,
 422				      const void *data,
 423				      size_t datalen,
 424				      struct key *keyring,
 425				      struct key *authkey,
 426				      unsigned long *_prealloc)
 427{
 428	int ret, awaken;
 429
 430	key_check(key);
 431	key_check(keyring);
 432
 433	awaken = 0;
 434	ret = -EBUSY;
 435
 436	mutex_lock(&key_construction_mutex);
 437
 438	/* can't instantiate twice */
 439	if (!test_bit(KEY_FLAG_INSTANTIATED, &key->flags)) {
 440		/* instantiate the key */
 441		ret = key->type->instantiate(key, data, datalen);
 442
 443		if (ret == 0) {
 444			/* mark the key as being instantiated */
 445			atomic_inc(&key->user->nikeys);
 446			set_bit(KEY_FLAG_INSTANTIATED, &key->flags);
 447
 448			if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
 449				awaken = 1;
 450
 451			/* and link it into the destination keyring */
 452			if (keyring)
 453				__key_link(keyring, key, _prealloc);
 454
 455			/* disable the authorisation key */
 456			if (authkey)
 457				key_revoke(authkey);
 458		}
 459	}
 460
 461	mutex_unlock(&key_construction_mutex);
 462
 463	/* wake up anyone waiting for a key to be constructed */
 464	if (awaken)
 465		wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT);
 466
 467	return ret;
 468}
 469
 470/**
 471 * key_instantiate_and_link - Instantiate a key and link it into the keyring.
 472 * @key: The key to instantiate.
 473 * @data: The data to use to instantiate the keyring.
 474 * @datalen: The length of @data.
 475 * @keyring: Keyring to create a link in on success (or NULL).
 476 * @authkey: The authorisation token permitting instantiation.
 477 *
 478 * Instantiate a key that's in the uninstantiated state using the provided data
 479 * and, if successful, link it in to the destination keyring if one is
 480 * supplied.
 481 *
 482 * If successful, 0 is returned, the authorisation token is revoked and anyone
 483 * waiting for the key is woken up.  If the key was already instantiated,
 484 * -EBUSY will be returned.
 485 */
 486int key_instantiate_and_link(struct key *key,
 487			     const void *data,
 488			     size_t datalen,
 489			     struct key *keyring,
 490			     struct key *authkey)
 491{
 492	unsigned long prealloc;
 
 493	int ret;
 494
 
 
 
 
 
 
 
 
 
 
 495	if (keyring) {
 496		ret = __key_link_begin(keyring, key->type, key->description,
 497				       &prealloc);
 498		if (ret < 0)
 499			return ret;
 500	}
 501
 502	ret = __key_instantiate_and_link(key, data, datalen, keyring, authkey,
 503					 &prealloc);
 504
 505	if (keyring)
 506		__key_link_end(keyring, key->type, prealloc);
 507
 
 
 
 
 508	return ret;
 509}
 510
 511EXPORT_SYMBOL(key_instantiate_and_link);
 512
 513/**
 514 * key_reject_and_link - Negatively instantiate a key and link it into the keyring.
 515 * @key: The key to instantiate.
 516 * @timeout: The timeout on the negative key.
 517 * @error: The error to return when the key is hit.
 518 * @keyring: Keyring to create a link in on success (or NULL).
 519 * @authkey: The authorisation token permitting instantiation.
 520 *
 521 * Negatively instantiate a key that's in the uninstantiated state and, if
 522 * successful, set its timeout and stored error and link it in to the
 523 * destination keyring if one is supplied.  The key and any links to the key
 524 * will be automatically garbage collected after the timeout expires.
 525 *
 526 * Negative keys are used to rate limit repeated request_key() calls by causing
 527 * them to return the stored error code (typically ENOKEY) until the negative
 528 * key expires.
 529 *
 530 * If successful, 0 is returned, the authorisation token is revoked and anyone
 531 * waiting for the key is woken up.  If the key was already instantiated,
 532 * -EBUSY will be returned.
 533 */
 534int key_reject_and_link(struct key *key,
 535			unsigned timeout,
 536			unsigned error,
 537			struct key *keyring,
 538			struct key *authkey)
 539{
 540	unsigned long prealloc;
 541	struct timespec now;
 542	int ret, awaken, link_ret = 0;
 543
 544	key_check(key);
 545	key_check(keyring);
 546
 547	awaken = 0;
 548	ret = -EBUSY;
 549
 550	if (keyring)
 551		link_ret = __key_link_begin(keyring, key->type,
 552					    key->description, &prealloc);
 553
 554	mutex_lock(&key_construction_mutex);
 555
 556	/* can't instantiate twice */
 557	if (!test_bit(KEY_FLAG_INSTANTIATED, &key->flags)) {
 558		/* mark the key as being negatively instantiated */
 559		atomic_inc(&key->user->nikeys);
 
 
 560		set_bit(KEY_FLAG_NEGATIVE, &key->flags);
 561		set_bit(KEY_FLAG_INSTANTIATED, &key->flags);
 562		key->type_data.reject_error = -error;
 563		now = current_kernel_time();
 564		key->expiry = now.tv_sec + timeout;
 565		key_schedule_gc(key->expiry + key_gc_delay);
 566
 567		if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
 568			awaken = 1;
 569
 570		ret = 0;
 571
 572		/* and link it into the destination keyring */
 573		if (keyring && link_ret == 0)
 574			__key_link(keyring, key, &prealloc);
 575
 576		/* disable the authorisation key */
 577		if (authkey)
 578			key_revoke(authkey);
 579	}
 580
 581	mutex_unlock(&key_construction_mutex);
 582
 583	if (keyring)
 584		__key_link_end(keyring, key->type, prealloc);
 585
 586	/* wake up anyone waiting for a key to be constructed */
 587	if (awaken)
 588		wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT);
 589
 590	return ret == 0 ? link_ret : ret;
 591}
 592EXPORT_SYMBOL(key_reject_and_link);
 593
 594/*
 595 * Garbage collect keys in process context so that we don't have to disable
 596 * interrupts all over the place.
 597 *
 598 * key_put() schedules this rather than trying to do the cleanup itself, which
 599 * means key_put() doesn't have to sleep.
 600 */
 601static void key_cleanup(struct work_struct *work)
 602{
 603	struct rb_node *_n;
 604	struct key *key;
 605
 606go_again:
 607	/* look for a dead key in the tree */
 608	spin_lock(&key_serial_lock);
 609
 610	for (_n = rb_first(&key_serial_tree); _n; _n = rb_next(_n)) {
 611		key = rb_entry(_n, struct key, serial_node);
 612
 613		if (atomic_read(&key->usage) == 0)
 614			goto found_dead_key;
 615	}
 616
 617	spin_unlock(&key_serial_lock);
 618	return;
 619
 620found_dead_key:
 621	/* we found a dead key - once we've removed it from the tree, we can
 622	 * drop the lock */
 623	rb_erase(&key->serial_node, &key_serial_tree);
 624	spin_unlock(&key_serial_lock);
 625
 626	key_check(key);
 627
 628	security_key_free(key);
 629
 630	/* deal with the user's key tracking and quota */
 631	if (test_bit(KEY_FLAG_IN_QUOTA, &key->flags)) {
 632		spin_lock(&key->user->lock);
 633		key->user->qnkeys--;
 634		key->user->qnbytes -= key->quotalen;
 635		spin_unlock(&key->user->lock);
 636	}
 637
 638	atomic_dec(&key->user->nkeys);
 639	if (test_bit(KEY_FLAG_INSTANTIATED, &key->flags))
 640		atomic_dec(&key->user->nikeys);
 641
 642	key_user_put(key->user);
 643
 644	/* now throw away the key memory */
 645	if (key->type->destroy)
 646		key->type->destroy(key);
 647
 648	kfree(key->description);
 649
 650#ifdef KEY_DEBUGGING
 651	key->magic = KEY_DEBUG_MAGIC_X;
 652#endif
 653	kmem_cache_free(key_jar, key);
 654
 655	/* there may, of course, be more than one key to destroy */
 656	goto go_again;
 657}
 658
 659/**
 660 * key_put - Discard a reference to a key.
 661 * @key: The key to discard a reference from.
 662 *
 663 * Discard a reference to a key, and when all the references are gone, we
 664 * schedule the cleanup task to come and pull it out of the tree in process
 665 * context at some later time.
 666 */
 667void key_put(struct key *key)
 668{
 669	if (key) {
 670		key_check(key);
 671
 672		if (atomic_dec_and_test(&key->usage))
 673			schedule_work(&key_cleanup_task);
 674	}
 675}
 676EXPORT_SYMBOL(key_put);
 677
 678/*
 679 * Find a key by its serial number.
 680 */
 681struct key *key_lookup(key_serial_t id)
 682{
 683	struct rb_node *n;
 684	struct key *key;
 685
 686	spin_lock(&key_serial_lock);
 687
 688	/* search the tree for the specified key */
 689	n = key_serial_tree.rb_node;
 690	while (n) {
 691		key = rb_entry(n, struct key, serial_node);
 692
 693		if (id < key->serial)
 694			n = n->rb_left;
 695		else if (id > key->serial)
 696			n = n->rb_right;
 697		else
 698			goto found;
 699	}
 700
 701not_found:
 702	key = ERR_PTR(-ENOKEY);
 703	goto error;
 704
 705found:
 706	/* pretend it doesn't exist if it is awaiting deletion */
 707	if (atomic_read(&key->usage) == 0)
 708		goto not_found;
 709
 710	/* this races with key_put(), but that doesn't matter since key_put()
 711	 * doesn't actually change the key
 712	 */
 713	atomic_inc(&key->usage);
 714
 715error:
 716	spin_unlock(&key_serial_lock);
 717	return key;
 718}
 719
 720/*
 721 * Find and lock the specified key type against removal.
 722 *
 723 * We return with the sem read-locked if successful.  If the type wasn't
 724 * available -ENOKEY is returned instead.
 725 */
 726struct key_type *key_type_lookup(const char *type)
 727{
 728	struct key_type *ktype;
 729
 730	down_read(&key_types_sem);
 731
 732	/* look up the key type to see if it's one of the registered kernel
 733	 * types */
 734	list_for_each_entry(ktype, &key_types_list, link) {
 735		if (strcmp(ktype->name, type) == 0)
 736			goto found_kernel_type;
 737	}
 738
 739	up_read(&key_types_sem);
 740	ktype = ERR_PTR(-ENOKEY);
 741
 742found_kernel_type:
 743	return ktype;
 744}
 745
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 746/*
 747 * Unlock a key type locked by key_type_lookup().
 748 */
 749void key_type_put(struct key_type *ktype)
 750{
 751	up_read(&key_types_sem);
 752}
 753
 754/*
 755 * Attempt to update an existing key.
 756 *
 757 * The key is given to us with an incremented refcount that we need to discard
 758 * if we get an error.
 759 */
 760static inline key_ref_t __key_update(key_ref_t key_ref,
 761				     const void *payload, size_t plen)
 762{
 763	struct key *key = key_ref_to_ptr(key_ref);
 764	int ret;
 765
 766	/* need write permission on the key to update it */
 767	ret = key_permission(key_ref, KEY_WRITE);
 768	if (ret < 0)
 769		goto error;
 770
 771	ret = -EEXIST;
 772	if (!key->type->update)
 773		goto error;
 774
 775	down_write(&key->sem);
 776
 777	ret = key->type->update(key, payload, plen);
 778	if (ret == 0)
 779		/* updating a negative key instantiates it */
 780		clear_bit(KEY_FLAG_NEGATIVE, &key->flags);
 781
 782	up_write(&key->sem);
 783
 784	if (ret < 0)
 785		goto error;
 786out:
 787	return key_ref;
 788
 789error:
 790	key_put(key);
 791	key_ref = ERR_PTR(ret);
 792	goto out;
 793}
 794
 795/**
 796 * key_create_or_update - Update or create and instantiate a key.
 797 * @keyring_ref: A pointer to the destination keyring with possession flag.
 798 * @type: The type of key.
 799 * @description: The searchable description for the key.
 800 * @payload: The data to use to instantiate or update the key.
 801 * @plen: The length of @payload.
 802 * @perm: The permissions mask for a new key.
 803 * @flags: The quota flags for a new key.
 804 *
 805 * Search the destination keyring for a key of the same description and if one
 806 * is found, update it, otherwise create and instantiate a new one and create a
 807 * link to it from that keyring.
 808 *
 809 * If perm is KEY_PERM_UNDEF then an appropriate key permissions mask will be
 810 * concocted.
 811 *
 812 * Returns a pointer to the new key if successful, -ENODEV if the key type
 813 * wasn't available, -ENOTDIR if the keyring wasn't a keyring, -EACCES if the
 814 * caller isn't permitted to modify the keyring or the LSM did not permit
 815 * creation of the key.
 816 *
 817 * On success, the possession flag from the keyring ref will be tacked on to
 818 * the key ref before it is returned.
 819 */
 820key_ref_t key_create_or_update(key_ref_t keyring_ref,
 821			       const char *type,
 822			       const char *description,
 823			       const void *payload,
 824			       size_t plen,
 825			       key_perm_t perm,
 826			       unsigned long flags)
 827{
 828	unsigned long prealloc;
 
 
 
 
 829	const struct cred *cred = current_cred();
 830	struct key_type *ktype;
 831	struct key *keyring, *key = NULL;
 832	key_ref_t key_ref;
 833	int ret;
 834
 835	/* look up the key type to see if it's one of the registered kernel
 836	 * types */
 837	ktype = key_type_lookup(type);
 838	if (IS_ERR(ktype)) {
 839		key_ref = ERR_PTR(-ENODEV);
 840		goto error;
 841	}
 842
 843	key_ref = ERR_PTR(-EINVAL);
 844	if (!ktype->match || !ktype->instantiate)
 845		goto error_2;
 
 846
 847	keyring = key_ref_to_ptr(keyring_ref);
 848
 849	key_check(keyring);
 850
 851	key_ref = ERR_PTR(-ENOTDIR);
 852	if (keyring->type != &key_type_keyring)
 853		goto error_2;
 854
 855	ret = __key_link_begin(keyring, ktype, description, &prealloc);
 856	if (ret < 0)
 857		goto error_2;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 858
 859	/* if we're going to allocate a new key, we're going to have
 860	 * to modify the keyring */
 861	ret = key_permission(keyring_ref, KEY_WRITE);
 862	if (ret < 0) {
 863		key_ref = ERR_PTR(ret);
 864		goto error_3;
 865	}
 866
 867	/* if it's possible to update this type of key, search for an existing
 868	 * key of the same type and description in the destination keyring and
 869	 * update that instead if possible
 870	 */
 871	if (ktype->update) {
 872		key_ref = __keyring_search_one(keyring_ref, ktype, description,
 873					       0);
 874		if (!IS_ERR(key_ref))
 875			goto found_matching_key;
 876	}
 877
 878	/* if the client doesn't provide, decide on the permissions we want */
 879	if (perm == KEY_PERM_UNDEF) {
 880		perm = KEY_POS_VIEW | KEY_POS_SEARCH | KEY_POS_LINK | KEY_POS_SETATTR;
 881		perm |= KEY_USR_VIEW | KEY_USR_SEARCH | KEY_USR_LINK | KEY_USR_SETATTR;
 882
 883		if (ktype->read)
 884			perm |= KEY_POS_READ | KEY_USR_READ;
 885
 886		if (ktype == &key_type_keyring || ktype->update)
 887			perm |= KEY_USR_WRITE;
 
 888	}
 889
 890	/* allocate a new key */
 891	key = key_alloc(ktype, description, cred->fsuid, cred->fsgid, cred,
 892			perm, flags);
 893	if (IS_ERR(key)) {
 894		key_ref = ERR_CAST(key);
 895		goto error_3;
 896	}
 897
 898	/* instantiate it and link it into the target keyring */
 899	ret = __key_instantiate_and_link(key, payload, plen, keyring, NULL,
 900					 &prealloc);
 901	if (ret < 0) {
 902		key_put(key);
 903		key_ref = ERR_PTR(ret);
 904		goto error_3;
 905	}
 906
 907	key_ref = make_key_ref(key, is_key_possessed(keyring_ref));
 908
 909 error_3:
 910	__key_link_end(keyring, ktype, prealloc);
 911 error_2:
 912	key_type_put(ktype);
 913 error:
 
 
 
 914	return key_ref;
 915
 916 found_matching_key:
 917	/* we found a matching key, so we're going to try to update it
 918	 * - we can drop the locks first as we have the key pinned
 919	 */
 920	__key_link_end(keyring, ktype, prealloc);
 921	key_type_put(ktype);
 922
 923	key_ref = __key_update(key_ref, payload, plen);
 924	goto error;
 925}
 926EXPORT_SYMBOL(key_create_or_update);
 927
 928/**
 929 * key_update - Update a key's contents.
 930 * @key_ref: The pointer (plus possession flag) to the key.
 931 * @payload: The data to be used to update the key.
 932 * @plen: The length of @payload.
 933 *
 934 * Attempt to update the contents of a key with the given payload data.  The
 935 * caller must be granted Write permission on the key.  Negative keys can be
 936 * instantiated by this method.
 937 *
 938 * Returns 0 on success, -EACCES if not permitted and -EOPNOTSUPP if the key
 939 * type does not support updating.  The key type may return other errors.
 940 */
 941int key_update(key_ref_t key_ref, const void *payload, size_t plen)
 942{
 
 943	struct key *key = key_ref_to_ptr(key_ref);
 944	int ret;
 945
 946	key_check(key);
 947
 948	/* the key must be writable */
 949	ret = key_permission(key_ref, KEY_WRITE);
 950	if (ret < 0)
 951		goto error;
 952
 953	/* attempt to update it if supported */
 954	ret = -EOPNOTSUPP;
 955	if (key->type->update) {
 956		down_write(&key->sem);
 957
 958		ret = key->type->update(key, payload, plen);
 959		if (ret == 0)
 960			/* updating a negative key instantiates it */
 961			clear_bit(KEY_FLAG_NEGATIVE, &key->flags);
 
 
 
 
 
 962
 963		up_write(&key->sem);
 964	}
 
 
 
 
 
 
 965
 966 error:
 
 
 967	return ret;
 968}
 969EXPORT_SYMBOL(key_update);
 970
 971/**
 972 * key_revoke - Revoke a key.
 973 * @key: The key to be revoked.
 974 *
 975 * Mark a key as being revoked and ask the type to free up its resources.  The
 976 * revocation timeout is set and the key and all its links will be
 977 * automatically garbage collected after key_gc_delay amount of time if they
 978 * are not manually dealt with first.
 979 */
 980void key_revoke(struct key *key)
 981{
 982	struct timespec now;
 983	time_t time;
 984
 985	key_check(key);
 986
 987	/* make sure no one's trying to change or use the key when we mark it
 988	 * - we tell lockdep that we might nest because we might be revoking an
 989	 *   authorisation key whilst holding the sem on a key we've just
 990	 *   instantiated
 991	 */
 992	down_write_nested(&key->sem, 1);
 993	if (!test_and_set_bit(KEY_FLAG_REVOKED, &key->flags) &&
 994	    key->type->revoke)
 995		key->type->revoke(key);
 996
 997	/* set the death time to no more than the expiry time */
 998	now = current_kernel_time();
 999	time = now.tv_sec;
1000	if (key->revoked_at == 0 || key->revoked_at > time) {
1001		key->revoked_at = time;
1002		key_schedule_gc(key->revoked_at + key_gc_delay);
1003	}
1004
1005	up_write(&key->sem);
1006}
1007EXPORT_SYMBOL(key_revoke);
1008
1009/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1010 * register_key_type - Register a type of key.
1011 * @ktype: The new key type.
1012 *
1013 * Register a new key type.
1014 *
1015 * Returns 0 on success or -EEXIST if a type of this name already exists.
1016 */
1017int register_key_type(struct key_type *ktype)
1018{
1019	struct key_type *p;
1020	int ret;
1021
 
 
1022	ret = -EEXIST;
1023	down_write(&key_types_sem);
1024
1025	/* disallow key types with the same name */
1026	list_for_each_entry(p, &key_types_list, link) {
1027		if (strcmp(p->name, ktype->name) == 0)
1028			goto out;
1029	}
1030
1031	/* store the type */
1032	list_add(&ktype->link, &key_types_list);
 
 
1033	ret = 0;
1034
1035out:
1036	up_write(&key_types_sem);
1037	return ret;
1038}
1039EXPORT_SYMBOL(register_key_type);
1040
1041/**
1042 * unregister_key_type - Unregister a type of key.
1043 * @ktype: The key type.
1044 *
1045 * Unregister a key type and mark all the extant keys of this type as dead.
1046 * Those keys of this type are then destroyed to get rid of their payloads and
1047 * they and their links will be garbage collected as soon as possible.
1048 */
1049void unregister_key_type(struct key_type *ktype)
1050{
1051	struct rb_node *_n;
1052	struct key *key;
1053
1054	down_write(&key_types_sem);
1055
1056	/* withdraw the key type */
1057	list_del_init(&ktype->link);
1058
1059	/* mark all the keys of this type dead */
1060	spin_lock(&key_serial_lock);
1061
1062	for (_n = rb_first(&key_serial_tree); _n; _n = rb_next(_n)) {
1063		key = rb_entry(_n, struct key, serial_node);
1064
1065		if (key->type == ktype) {
1066			key->type = &key_type_dead;
1067			set_bit(KEY_FLAG_DEAD, &key->flags);
1068		}
1069	}
1070
1071	spin_unlock(&key_serial_lock);
1072
1073	/* make sure everyone revalidates their keys */
1074	synchronize_rcu();
1075
1076	/* we should now be able to destroy the payloads of all the keys of
1077	 * this type with impunity */
1078	spin_lock(&key_serial_lock);
1079
1080	for (_n = rb_first(&key_serial_tree); _n; _n = rb_next(_n)) {
1081		key = rb_entry(_n, struct key, serial_node);
1082
1083		if (key->type == ktype) {
1084			if (ktype->destroy)
1085				ktype->destroy(key);
1086			memset(&key->payload, KEY_DESTROY, sizeof(key->payload));
1087		}
1088	}
1089
1090	spin_unlock(&key_serial_lock);
1091	up_write(&key_types_sem);
1092
1093	key_schedule_gc(0);
1094}
1095EXPORT_SYMBOL(unregister_key_type);
1096
1097/*
1098 * Initialise the key management state.
1099 */
1100void __init key_init(void)
1101{
1102	/* allocate a slab in which we can store keys */
1103	key_jar = kmem_cache_create("key_jar", sizeof(struct key),
1104			0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1105
1106	/* add the special key types */
1107	list_add_tail(&key_type_keyring.link, &key_types_list);
1108	list_add_tail(&key_type_dead.link, &key_types_list);
1109	list_add_tail(&key_type_user.link, &key_types_list);
 
1110
1111	/* record the root user tracking */
1112	rb_link_node(&root_key_user.node,
1113		     NULL,
1114		     &key_user_tree.rb_node);
1115
1116	rb_insert_color(&root_key_user.node,
1117			&key_user_tree);
1118}