Linux Audio

Check our new training course

Loading...
v3.15
   1/* Basic authentication token and access key management
   2 *
   3 * Copyright (C) 2004-2008 Red Hat, Inc. All Rights Reserved.
   4 * Written by David Howells (dhowells@redhat.com)
   5 *
   6 * This program is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU General Public License
   8 * as published by the Free Software Foundation; either version
   9 * 2 of the License, or (at your option) any later version.
  10 */
  11
  12#include <linux/module.h>
  13#include <linux/init.h>
  14#include <linux/poison.h>
  15#include <linux/sched.h>
  16#include <linux/slab.h>
  17#include <linux/security.h>
  18#include <linux/workqueue.h>
  19#include <linux/random.h>
  20#include <linux/err.h>
 
  21#include "internal.h"
  22
  23struct kmem_cache *key_jar;
  24struct rb_root		key_serial_tree; /* tree of keys indexed by serial */
  25DEFINE_SPINLOCK(key_serial_lock);
  26
  27struct rb_root	key_user_tree; /* tree of quota records indexed by UID */
  28DEFINE_SPINLOCK(key_user_lock);
  29
  30unsigned int key_quota_root_maxkeys = 200;	/* root's key count quota */
  31unsigned int key_quota_root_maxbytes = 20000;	/* root's key space quota */
  32unsigned int key_quota_maxkeys = 200;		/* general key count quota */
  33unsigned int key_quota_maxbytes = 20000;	/* general key space quota */
  34
  35static LIST_HEAD(key_types_list);
  36static DECLARE_RWSEM(key_types_sem);
  37
  38/* We serialise key instantiation and link */
  39DEFINE_MUTEX(key_construction_mutex);
  40
  41#ifdef KEY_DEBUGGING
  42void __key_check(const struct key *key)
  43{
  44	printk("__key_check: key %p {%08x} should be {%08x}\n",
  45	       key, key->magic, KEY_DEBUG_MAGIC);
  46	BUG();
  47}
  48#endif
  49
  50/*
  51 * Get the key quota record for a user, allocating a new record if one doesn't
  52 * already exist.
  53 */
  54struct key_user *key_user_lookup(kuid_t uid)
  55{
  56	struct key_user *candidate = NULL, *user;
  57	struct rb_node *parent = NULL;
  58	struct rb_node **p;
  59
  60try_again:
  61	p = &key_user_tree.rb_node;
  62	spin_lock(&key_user_lock);
  63
  64	/* search the tree for a user record with a matching UID */
  65	while (*p) {
  66		parent = *p;
  67		user = rb_entry(parent, struct key_user, node);
  68
  69		if (uid_lt(uid, user->uid))
  70			p = &(*p)->rb_left;
  71		else if (uid_gt(uid, user->uid))
 
 
 
 
  72			p = &(*p)->rb_right;
  73		else
  74			goto found;
  75	}
  76
  77	/* if we get here, we failed to find a match in the tree */
  78	if (!candidate) {
  79		/* allocate a candidate user record if we don't already have
  80		 * one */
  81		spin_unlock(&key_user_lock);
  82
  83		user = NULL;
  84		candidate = kmalloc(sizeof(struct key_user), GFP_KERNEL);
  85		if (unlikely(!candidate))
  86			goto out;
  87
  88		/* the allocation may have scheduled, so we need to repeat the
  89		 * search lest someone else added the record whilst we were
  90		 * asleep */
  91		goto try_again;
  92	}
  93
  94	/* if we get here, then the user record still hadn't appeared on the
  95	 * second pass - so we use the candidate record */
  96	atomic_set(&candidate->usage, 1);
  97	atomic_set(&candidate->nkeys, 0);
  98	atomic_set(&candidate->nikeys, 0);
  99	candidate->uid = uid;
 
 100	candidate->qnkeys = 0;
 101	candidate->qnbytes = 0;
 102	spin_lock_init(&candidate->lock);
 103	mutex_init(&candidate->cons_lock);
 104
 105	rb_link_node(&candidate->node, parent, p);
 106	rb_insert_color(&candidate->node, &key_user_tree);
 107	spin_unlock(&key_user_lock);
 108	user = candidate;
 109	goto out;
 110
 111	/* okay - we found a user record for this UID */
 112found:
 113	atomic_inc(&user->usage);
 114	spin_unlock(&key_user_lock);
 115	kfree(candidate);
 116out:
 117	return user;
 118}
 119
 120/*
 121 * Dispose of a user structure
 122 */
 123void key_user_put(struct key_user *user)
 124{
 125	if (atomic_dec_and_lock(&user->usage, &key_user_lock)) {
 126		rb_erase(&user->node, &key_user_tree);
 127		spin_unlock(&key_user_lock);
 
 128
 129		kfree(user);
 130	}
 131}
 132
 133/*
 134 * Allocate a serial number for a key.  These are assigned randomly to avoid
 135 * security issues through covert channel problems.
 136 */
 137static inline void key_alloc_serial(struct key *key)
 138{
 139	struct rb_node *parent, **p;
 140	struct key *xkey;
 141
 142	/* propose a random serial number and look for a hole for it in the
 143	 * serial number tree */
 144	do {
 145		get_random_bytes(&key->serial, sizeof(key->serial));
 146
 147		key->serial >>= 1; /* negative numbers are not permitted */
 148	} while (key->serial < 3);
 149
 150	spin_lock(&key_serial_lock);
 151
 152attempt_insertion:
 153	parent = NULL;
 154	p = &key_serial_tree.rb_node;
 155
 156	while (*p) {
 157		parent = *p;
 158		xkey = rb_entry(parent, struct key, serial_node);
 159
 160		if (key->serial < xkey->serial)
 161			p = &(*p)->rb_left;
 162		else if (key->serial > xkey->serial)
 163			p = &(*p)->rb_right;
 164		else
 165			goto serial_exists;
 166	}
 167
 168	/* we've found a suitable hole - arrange for this key to occupy it */
 169	rb_link_node(&key->serial_node, parent, p);
 170	rb_insert_color(&key->serial_node, &key_serial_tree);
 171
 172	spin_unlock(&key_serial_lock);
 173	return;
 174
 175	/* we found a key with the proposed serial number - walk the tree from
 176	 * that point looking for the next unused serial number */
 177serial_exists:
 178	for (;;) {
 179		key->serial++;
 180		if (key->serial < 3) {
 181			key->serial = 3;
 182			goto attempt_insertion;
 183		}
 184
 185		parent = rb_next(parent);
 186		if (!parent)
 187			goto attempt_insertion;
 188
 189		xkey = rb_entry(parent, struct key, serial_node);
 190		if (key->serial < xkey->serial)
 191			goto attempt_insertion;
 192	}
 193}
 194
 195/**
 196 * key_alloc - Allocate a key of the specified type.
 197 * @type: The type of key to allocate.
 198 * @desc: The key description to allow the key to be searched out.
 199 * @uid: The owner of the new key.
 200 * @gid: The group ID for the new key's group permissions.
 201 * @cred: The credentials specifying UID namespace.
 202 * @perm: The permissions mask of the new key.
 203 * @flags: Flags specifying quota properties.
 204 *
 205 * Allocate a key of the specified type with the attributes given.  The key is
 206 * returned in an uninstantiated state and the caller needs to instantiate the
 207 * key before returning.
 208 *
 209 * The user's key count quota is updated to reflect the creation of the key and
 210 * the user's key data quota has the default for the key type reserved.  The
 211 * instantiation function should amend this as necessary.  If insufficient
 212 * quota is available, -EDQUOT will be returned.
 213 *
 214 * The LSM security modules can prevent a key being created, in which case
 215 * -EACCES will be returned.
 216 *
 217 * Returns a pointer to the new key if successful and an error code otherwise.
 218 *
 219 * Note that the caller needs to ensure the key type isn't uninstantiated.
 220 * Internally this can be done by locking key_types_sem.  Externally, this can
 221 * be done by either never unregistering the key type, or making sure
 222 * key_alloc() calls don't race with module unloading.
 223 */
 224struct key *key_alloc(struct key_type *type, const char *desc,
 225		      kuid_t uid, kgid_t gid, const struct cred *cred,
 226		      key_perm_t perm, unsigned long flags)
 227{
 228	struct key_user *user = NULL;
 229	struct key *key;
 230	size_t desclen, quotalen;
 231	int ret;
 232
 233	key = ERR_PTR(-EINVAL);
 234	if (!desc || !*desc)
 235		goto error;
 236
 237	if (type->vet_description) {
 238		ret = type->vet_description(desc);
 239		if (ret < 0) {
 240			key = ERR_PTR(ret);
 241			goto error;
 242		}
 243	}
 244
 245	desclen = strlen(desc);
 246	quotalen = desclen + 1 + type->def_datalen;
 247
 248	/* get hold of the key tracking for this user */
 249	user = key_user_lookup(uid);
 250	if (!user)
 251		goto no_memory_1;
 252
 253	/* check that the user's quota permits allocation of another key and
 254	 * its description */
 255	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
 256		unsigned maxkeys = uid_eq(uid, GLOBAL_ROOT_UID) ?
 257			key_quota_root_maxkeys : key_quota_maxkeys;
 258		unsigned maxbytes = uid_eq(uid, GLOBAL_ROOT_UID) ?
 259			key_quota_root_maxbytes : key_quota_maxbytes;
 260
 261		spin_lock(&user->lock);
 262		if (!(flags & KEY_ALLOC_QUOTA_OVERRUN)) {
 263			if (user->qnkeys + 1 >= maxkeys ||
 264			    user->qnbytes + quotalen >= maxbytes ||
 265			    user->qnbytes + quotalen < user->qnbytes)
 266				goto no_quota;
 267		}
 268
 269		user->qnkeys++;
 270		user->qnbytes += quotalen;
 271		spin_unlock(&user->lock);
 272	}
 273
 274	/* allocate and initialise the key and its description */
 275	key = kmem_cache_zalloc(key_jar, GFP_KERNEL);
 276	if (!key)
 277		goto no_memory_2;
 278
 279	if (desc) {
 280		key->index_key.desc_len = desclen;
 281		key->index_key.description = kmemdup(desc, desclen + 1, GFP_KERNEL);
 282		if (!key->description)
 283			goto no_memory_3;
 284	}
 285
 286	atomic_set(&key->usage, 1);
 287	init_rwsem(&key->sem);
 288	lockdep_set_class(&key->sem, &type->lock_class);
 289	key->index_key.type = type;
 290	key->user = user;
 291	key->quotalen = quotalen;
 292	key->datalen = type->def_datalen;
 293	key->uid = uid;
 294	key->gid = gid;
 295	key->perm = perm;
 
 
 
 
 296
 297	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA))
 298		key->flags |= 1 << KEY_FLAG_IN_QUOTA;
 299	if (flags & KEY_ALLOC_TRUSTED)
 300		key->flags |= 1 << KEY_FLAG_TRUSTED;
 301
 302#ifdef KEY_DEBUGGING
 303	key->magic = KEY_DEBUG_MAGIC;
 304#endif
 305
 306	/* let the security module know about the key */
 307	ret = security_key_alloc(key, cred, flags);
 308	if (ret < 0)
 309		goto security_error;
 310
 311	/* publish the key by giving it a serial number */
 312	atomic_inc(&user->nkeys);
 313	key_alloc_serial(key);
 314
 315error:
 316	return key;
 317
 318security_error:
 319	kfree(key->description);
 320	kmem_cache_free(key_jar, key);
 321	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
 322		spin_lock(&user->lock);
 323		user->qnkeys--;
 324		user->qnbytes -= quotalen;
 325		spin_unlock(&user->lock);
 326	}
 327	key_user_put(user);
 328	key = ERR_PTR(ret);
 329	goto error;
 330
 331no_memory_3:
 332	kmem_cache_free(key_jar, key);
 333no_memory_2:
 334	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
 335		spin_lock(&user->lock);
 336		user->qnkeys--;
 337		user->qnbytes -= quotalen;
 338		spin_unlock(&user->lock);
 339	}
 340	key_user_put(user);
 341no_memory_1:
 342	key = ERR_PTR(-ENOMEM);
 343	goto error;
 344
 345no_quota:
 346	spin_unlock(&user->lock);
 347	key_user_put(user);
 348	key = ERR_PTR(-EDQUOT);
 349	goto error;
 350}
 351EXPORT_SYMBOL(key_alloc);
 352
 353/**
 354 * key_payload_reserve - Adjust data quota reservation for the key's payload
 355 * @key: The key to make the reservation for.
 356 * @datalen: The amount of data payload the caller now wants.
 357 *
 358 * Adjust the amount of the owning user's key data quota that a key reserves.
 359 * If the amount is increased, then -EDQUOT may be returned if there isn't
 360 * enough free quota available.
 361 *
 362 * If successful, 0 is returned.
 363 */
 364int key_payload_reserve(struct key *key, size_t datalen)
 365{
 366	int delta = (int)datalen - key->datalen;
 367	int ret = 0;
 368
 369	key_check(key);
 370
 371	/* contemplate the quota adjustment */
 372	if (delta != 0 && test_bit(KEY_FLAG_IN_QUOTA, &key->flags)) {
 373		unsigned maxbytes = uid_eq(key->user->uid, GLOBAL_ROOT_UID) ?
 374			key_quota_root_maxbytes : key_quota_maxbytes;
 375
 376		spin_lock(&key->user->lock);
 377
 378		if (delta > 0 &&
 379		    (key->user->qnbytes + delta >= maxbytes ||
 380		     key->user->qnbytes + delta < key->user->qnbytes)) {
 381			ret = -EDQUOT;
 382		}
 383		else {
 384			key->user->qnbytes += delta;
 385			key->quotalen += delta;
 386		}
 387		spin_unlock(&key->user->lock);
 388	}
 389
 390	/* change the recorded data length if that didn't generate an error */
 391	if (ret == 0)
 392		key->datalen = datalen;
 393
 394	return ret;
 395}
 396EXPORT_SYMBOL(key_payload_reserve);
 397
 398/*
 399 * Instantiate a key and link it into the target keyring atomically.  Must be
 400 * called with the target keyring's semaphore writelocked.  The target key's
 401 * semaphore need not be locked as instantiation is serialised by
 402 * key_construction_mutex.
 403 */
 404static int __key_instantiate_and_link(struct key *key,
 405				      struct key_preparsed_payload *prep,
 
 406				      struct key *keyring,
 407				      struct key *authkey,
 408				      struct assoc_array_edit **_edit)
 409{
 410	int ret, awaken;
 411
 412	key_check(key);
 413	key_check(keyring);
 414
 415	awaken = 0;
 416	ret = -EBUSY;
 417
 418	mutex_lock(&key_construction_mutex);
 419
 420	/* can't instantiate twice */
 421	if (!test_bit(KEY_FLAG_INSTANTIATED, &key->flags)) {
 422		/* instantiate the key */
 423		ret = key->type->instantiate(key, prep);
 424
 425		if (ret == 0) {
 426			/* mark the key as being instantiated */
 427			atomic_inc(&key->user->nikeys);
 428			set_bit(KEY_FLAG_INSTANTIATED, &key->flags);
 429
 430			if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
 431				awaken = 1;
 432
 433			/* and link it into the destination keyring */
 434			if (keyring)
 435				__key_link(key, _edit);
 436
 437			/* disable the authorisation key */
 438			if (authkey)
 439				key_revoke(authkey);
 440		}
 441	}
 442
 443	mutex_unlock(&key_construction_mutex);
 444
 445	/* wake up anyone waiting for a key to be constructed */
 446	if (awaken)
 447		wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT);
 448
 449	return ret;
 450}
 451
 452/**
 453 * key_instantiate_and_link - Instantiate a key and link it into the keyring.
 454 * @key: The key to instantiate.
 455 * @data: The data to use to instantiate the keyring.
 456 * @datalen: The length of @data.
 457 * @keyring: Keyring to create a link in on success (or NULL).
 458 * @authkey: The authorisation token permitting instantiation.
 459 *
 460 * Instantiate a key that's in the uninstantiated state using the provided data
 461 * and, if successful, link it in to the destination keyring if one is
 462 * supplied.
 463 *
 464 * If successful, 0 is returned, the authorisation token is revoked and anyone
 465 * waiting for the key is woken up.  If the key was already instantiated,
 466 * -EBUSY will be returned.
 467 */
 468int key_instantiate_and_link(struct key *key,
 469			     const void *data,
 470			     size_t datalen,
 471			     struct key *keyring,
 472			     struct key *authkey)
 473{
 474	struct key_preparsed_payload prep;
 475	struct assoc_array_edit *edit;
 476	int ret;
 477
 478	memset(&prep, 0, sizeof(prep));
 479	prep.data = data;
 480	prep.datalen = datalen;
 481	prep.quotalen = key->type->def_datalen;
 482	if (key->type->preparse) {
 483		ret = key->type->preparse(&prep);
 484		if (ret < 0)
 485			goto error;
 486	}
 487
 488	if (keyring) {
 489		ret = __key_link_begin(keyring, &key->index_key, &edit);
 
 490		if (ret < 0)
 491			goto error_free_preparse;
 492	}
 493
 494	ret = __key_instantiate_and_link(key, &prep, keyring, authkey, &edit);
 
 495
 496	if (keyring)
 497		__key_link_end(keyring, &key->index_key, edit);
 498
 499error_free_preparse:
 500	if (key->type->preparse)
 501		key->type->free_preparse(&prep);
 502error:
 503	return ret;
 504}
 505
 506EXPORT_SYMBOL(key_instantiate_and_link);
 507
 508/**
 509 * key_reject_and_link - Negatively instantiate a key and link it into the keyring.
 510 * @key: The key to instantiate.
 511 * @timeout: The timeout on the negative key.
 512 * @error: The error to return when the key is hit.
 513 * @keyring: Keyring to create a link in on success (or NULL).
 514 * @authkey: The authorisation token permitting instantiation.
 515 *
 516 * Negatively instantiate a key that's in the uninstantiated state and, if
 517 * successful, set its timeout and stored error and link it in to the
 518 * destination keyring if one is supplied.  The key and any links to the key
 519 * will be automatically garbage collected after the timeout expires.
 520 *
 521 * Negative keys are used to rate limit repeated request_key() calls by causing
 522 * them to return the stored error code (typically ENOKEY) until the negative
 523 * key expires.
 524 *
 525 * If successful, 0 is returned, the authorisation token is revoked and anyone
 526 * waiting for the key is woken up.  If the key was already instantiated,
 527 * -EBUSY will be returned.
 528 */
 529int key_reject_and_link(struct key *key,
 530			unsigned timeout,
 531			unsigned error,
 532			struct key *keyring,
 533			struct key *authkey)
 534{
 535	struct assoc_array_edit *edit;
 536	struct timespec now;
 537	int ret, awaken, link_ret = 0;
 538
 539	key_check(key);
 540	key_check(keyring);
 541
 542	awaken = 0;
 543	ret = -EBUSY;
 544
 545	if (keyring)
 546		link_ret = __key_link_begin(keyring, &key->index_key, &edit);
 
 547
 548	mutex_lock(&key_construction_mutex);
 549
 550	/* can't instantiate twice */
 551	if (!test_bit(KEY_FLAG_INSTANTIATED, &key->flags)) {
 552		/* mark the key as being negatively instantiated */
 553		atomic_inc(&key->user->nikeys);
 554		key->type_data.reject_error = -error;
 555		smp_wmb();
 556		set_bit(KEY_FLAG_NEGATIVE, &key->flags);
 557		set_bit(KEY_FLAG_INSTANTIATED, &key->flags);
 
 558		now = current_kernel_time();
 559		key->expiry = now.tv_sec + timeout;
 560		key_schedule_gc(key->expiry + key_gc_delay);
 561
 562		if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
 563			awaken = 1;
 564
 565		ret = 0;
 566
 567		/* and link it into the destination keyring */
 568		if (keyring && link_ret == 0)
 569			__key_link(key, &edit);
 570
 571		/* disable the authorisation key */
 572		if (authkey)
 573			key_revoke(authkey);
 574	}
 575
 576	mutex_unlock(&key_construction_mutex);
 577
 578	if (keyring)
 579		__key_link_end(keyring, &key->index_key, edit);
 580
 581	/* wake up anyone waiting for a key to be constructed */
 582	if (awaken)
 583		wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT);
 584
 585	return ret == 0 ? link_ret : ret;
 586}
 587EXPORT_SYMBOL(key_reject_and_link);
 588
 589/**
 590 * key_put - Discard a reference to a key.
 591 * @key: The key to discard a reference from.
 592 *
 593 * Discard a reference to a key, and when all the references are gone, we
 594 * schedule the cleanup task to come and pull it out of the tree in process
 595 * context at some later time.
 596 */
 597void key_put(struct key *key)
 598{
 599	if (key) {
 600		key_check(key);
 601
 602		if (atomic_dec_and_test(&key->usage))
 603			schedule_work(&key_gc_work);
 604	}
 605}
 606EXPORT_SYMBOL(key_put);
 607
 608/*
 609 * Find a key by its serial number.
 610 */
 611struct key *key_lookup(key_serial_t id)
 612{
 613	struct rb_node *n;
 614	struct key *key;
 615
 616	spin_lock(&key_serial_lock);
 617
 618	/* search the tree for the specified key */
 619	n = key_serial_tree.rb_node;
 620	while (n) {
 621		key = rb_entry(n, struct key, serial_node);
 622
 623		if (id < key->serial)
 624			n = n->rb_left;
 625		else if (id > key->serial)
 626			n = n->rb_right;
 627		else
 628			goto found;
 629	}
 630
 631not_found:
 632	key = ERR_PTR(-ENOKEY);
 633	goto error;
 634
 635found:
 636	/* pretend it doesn't exist if it is awaiting deletion */
 637	if (atomic_read(&key->usage) == 0)
 638		goto not_found;
 639
 640	/* this races with key_put(), but that doesn't matter since key_put()
 641	 * doesn't actually change the key
 642	 */
 643	__key_get(key);
 644
 645error:
 646	spin_unlock(&key_serial_lock);
 647	return key;
 648}
 649
 650/*
 651 * Find and lock the specified key type against removal.
 652 *
 653 * We return with the sem read-locked if successful.  If the type wasn't
 654 * available -ENOKEY is returned instead.
 655 */
 656struct key_type *key_type_lookup(const char *type)
 657{
 658	struct key_type *ktype;
 659
 660	down_read(&key_types_sem);
 661
 662	/* look up the key type to see if it's one of the registered kernel
 663	 * types */
 664	list_for_each_entry(ktype, &key_types_list, link) {
 665		if (strcmp(ktype->name, type) == 0)
 666			goto found_kernel_type;
 667	}
 668
 669	up_read(&key_types_sem);
 670	ktype = ERR_PTR(-ENOKEY);
 671
 672found_kernel_type:
 673	return ktype;
 674}
 675
 676void key_set_timeout(struct key *key, unsigned timeout)
 677{
 678	struct timespec now;
 679	time_t expiry = 0;
 680
 681	/* make the changes with the locks held to prevent races */
 682	down_write(&key->sem);
 683
 684	if (timeout > 0) {
 685		now = current_kernel_time();
 686		expiry = now.tv_sec + timeout;
 687	}
 688
 689	key->expiry = expiry;
 690	key_schedule_gc(key->expiry + key_gc_delay);
 691
 692	up_write(&key->sem);
 693}
 694EXPORT_SYMBOL_GPL(key_set_timeout);
 695
 696/*
 697 * Unlock a key type locked by key_type_lookup().
 698 */
 699void key_type_put(struct key_type *ktype)
 700{
 701	up_read(&key_types_sem);
 702}
 703
 704/*
 705 * Attempt to update an existing key.
 706 *
 707 * The key is given to us with an incremented refcount that we need to discard
 708 * if we get an error.
 709 */
 710static inline key_ref_t __key_update(key_ref_t key_ref,
 711				     struct key_preparsed_payload *prep)
 712{
 713	struct key *key = key_ref_to_ptr(key_ref);
 714	int ret;
 715
 716	/* need write permission on the key to update it */
 717	ret = key_permission(key_ref, KEY_WRITE);
 718	if (ret < 0)
 719		goto error;
 720
 721	ret = -EEXIST;
 722	if (!key->type->update)
 723		goto error;
 724
 725	down_write(&key->sem);
 726
 727	ret = key->type->update(key, prep);
 728	if (ret == 0)
 729		/* updating a negative key instantiates it */
 730		clear_bit(KEY_FLAG_NEGATIVE, &key->flags);
 731
 732	up_write(&key->sem);
 733
 734	if (ret < 0)
 735		goto error;
 736out:
 737	return key_ref;
 738
 739error:
 740	key_put(key);
 741	key_ref = ERR_PTR(ret);
 742	goto out;
 743}
 744
 745/**
 746 * key_create_or_update - Update or create and instantiate a key.
 747 * @keyring_ref: A pointer to the destination keyring with possession flag.
 748 * @type: The type of key.
 749 * @description: The searchable description for the key.
 750 * @payload: The data to use to instantiate or update the key.
 751 * @plen: The length of @payload.
 752 * @perm: The permissions mask for a new key.
 753 * @flags: The quota flags for a new key.
 754 *
 755 * Search the destination keyring for a key of the same description and if one
 756 * is found, update it, otherwise create and instantiate a new one and create a
 757 * link to it from that keyring.
 758 *
 759 * If perm is KEY_PERM_UNDEF then an appropriate key permissions mask will be
 760 * concocted.
 761 *
 762 * Returns a pointer to the new key if successful, -ENODEV if the key type
 763 * wasn't available, -ENOTDIR if the keyring wasn't a keyring, -EACCES if the
 764 * caller isn't permitted to modify the keyring or the LSM did not permit
 765 * creation of the key.
 766 *
 767 * On success, the possession flag from the keyring ref will be tacked on to
 768 * the key ref before it is returned.
 769 */
 770key_ref_t key_create_or_update(key_ref_t keyring_ref,
 771			       const char *type,
 772			       const char *description,
 773			       const void *payload,
 774			       size_t plen,
 775			       key_perm_t perm,
 776			       unsigned long flags)
 777{
 778	struct keyring_index_key index_key = {
 779		.description	= description,
 780	};
 781	struct key_preparsed_payload prep;
 782	struct assoc_array_edit *edit;
 783	const struct cred *cred = current_cred();
 
 784	struct key *keyring, *key = NULL;
 785	key_ref_t key_ref;
 786	int ret;
 787
 788	/* look up the key type to see if it's one of the registered kernel
 789	 * types */
 790	index_key.type = key_type_lookup(type);
 791	if (IS_ERR(index_key.type)) {
 792		key_ref = ERR_PTR(-ENODEV);
 793		goto error;
 794	}
 795
 796	key_ref = ERR_PTR(-EINVAL);
 797	if (!index_key.type->match || !index_key.type->instantiate ||
 798	    (!index_key.description && !index_key.type->preparse))
 799		goto error_put_type;
 800
 801	keyring = key_ref_to_ptr(keyring_ref);
 802
 803	key_check(keyring);
 804
 805	key_ref = ERR_PTR(-ENOTDIR);
 806	if (keyring->type != &key_type_keyring)
 807		goto error_put_type;
 808
 809	memset(&prep, 0, sizeof(prep));
 810	prep.data = payload;
 811	prep.datalen = plen;
 812	prep.quotalen = index_key.type->def_datalen;
 813	prep.trusted = flags & KEY_ALLOC_TRUSTED;
 814	if (index_key.type->preparse) {
 815		ret = index_key.type->preparse(&prep);
 816		if (ret < 0) {
 817			key_ref = ERR_PTR(ret);
 818			goto error_put_type;
 819		}
 820		if (!index_key.description)
 821			index_key.description = prep.description;
 822		key_ref = ERR_PTR(-EINVAL);
 823		if (!index_key.description)
 824			goto error_free_prep;
 825	}
 826	index_key.desc_len = strlen(index_key.description);
 827
 828	key_ref = ERR_PTR(-EPERM);
 829	if (!prep.trusted && test_bit(KEY_FLAG_TRUSTED_ONLY, &keyring->flags))
 830		goto error_free_prep;
 831	flags |= prep.trusted ? KEY_ALLOC_TRUSTED : 0;
 832
 833	ret = __key_link_begin(keyring, &index_key, &edit);
 834	if (ret < 0) {
 835		key_ref = ERR_PTR(ret);
 836		goto error_free_prep;
 837	}
 838
 839	/* if we're going to allocate a new key, we're going to have
 840	 * to modify the keyring */
 841	ret = key_permission(keyring_ref, KEY_WRITE);
 842	if (ret < 0) {
 843		key_ref = ERR_PTR(ret);
 844		goto error_link_end;
 845	}
 846
 847	/* if it's possible to update this type of key, search for an existing
 848	 * key of the same type and description in the destination keyring and
 849	 * update that instead if possible
 850	 */
 851	if (index_key.type->update) {
 852		key_ref = find_key_to_update(keyring_ref, &index_key);
 853		if (key_ref)
 
 854			goto found_matching_key;
 855	}
 856
 857	/* if the client doesn't provide, decide on the permissions we want */
 858	if (perm == KEY_PERM_UNDEF) {
 859		perm = KEY_POS_VIEW | KEY_POS_SEARCH | KEY_POS_LINK | KEY_POS_SETATTR;
 860		perm |= KEY_USR_VIEW;
 861
 862		if (index_key.type->read)
 863			perm |= KEY_POS_READ;
 864
 865		if (index_key.type == &key_type_keyring ||
 866		    index_key.type->update)
 867			perm |= KEY_POS_WRITE;
 868	}
 869
 870	/* allocate a new key */
 871	key = key_alloc(index_key.type, index_key.description,
 872			cred->fsuid, cred->fsgid, cred, perm, flags);
 873	if (IS_ERR(key)) {
 874		key_ref = ERR_CAST(key);
 875		goto error_link_end;
 876	}
 877
 878	/* instantiate it and link it into the target keyring */
 879	ret = __key_instantiate_and_link(key, &prep, keyring, NULL, &edit);
 
 880	if (ret < 0) {
 881		key_put(key);
 882		key_ref = ERR_PTR(ret);
 883		goto error_link_end;
 884	}
 885
 886	key_ref = make_key_ref(key, is_key_possessed(keyring_ref));
 887
 888error_link_end:
 889	__key_link_end(keyring, &index_key, edit);
 890error_free_prep:
 891	if (index_key.type->preparse)
 892		index_key.type->free_preparse(&prep);
 893error_put_type:
 894	key_type_put(index_key.type);
 895error:
 896	return key_ref;
 897
 898 found_matching_key:
 899	/* we found a matching key, so we're going to try to update it
 900	 * - we can drop the locks first as we have the key pinned
 901	 */
 902	__key_link_end(keyring, &index_key, edit);
 
 903
 904	key_ref = __key_update(key_ref, &prep);
 905	goto error_free_prep;
 906}
 907EXPORT_SYMBOL(key_create_or_update);
 908
 909/**
 910 * key_update - Update a key's contents.
 911 * @key_ref: The pointer (plus possession flag) to the key.
 912 * @payload: The data to be used to update the key.
 913 * @plen: The length of @payload.
 914 *
 915 * Attempt to update the contents of a key with the given payload data.  The
 916 * caller must be granted Write permission on the key.  Negative keys can be
 917 * instantiated by this method.
 918 *
 919 * Returns 0 on success, -EACCES if not permitted and -EOPNOTSUPP if the key
 920 * type does not support updating.  The key type may return other errors.
 921 */
 922int key_update(key_ref_t key_ref, const void *payload, size_t plen)
 923{
 924	struct key_preparsed_payload prep;
 925	struct key *key = key_ref_to_ptr(key_ref);
 926	int ret;
 927
 928	key_check(key);
 929
 930	/* the key must be writable */
 931	ret = key_permission(key_ref, KEY_WRITE);
 932	if (ret < 0)
 933		goto error;
 934
 935	/* attempt to update it if supported */
 936	ret = -EOPNOTSUPP;
 937	if (!key->type->update)
 938		goto error;
 939
 940	memset(&prep, 0, sizeof(prep));
 941	prep.data = payload;
 942	prep.datalen = plen;
 943	prep.quotalen = key->type->def_datalen;
 944	if (key->type->preparse) {
 945		ret = key->type->preparse(&prep);
 946		if (ret < 0)
 947			goto error;
 948	}
 949
 950	down_write(&key->sem);
 951
 952	ret = key->type->update(key, &prep);
 953	if (ret == 0)
 954		/* updating a negative key instantiates it */
 955		clear_bit(KEY_FLAG_NEGATIVE, &key->flags);
 956
 957	up_write(&key->sem);
 958
 959	if (key->type->preparse)
 960		key->type->free_preparse(&prep);
 961error:
 962	return ret;
 963}
 964EXPORT_SYMBOL(key_update);
 965
 966/**
 967 * key_revoke - Revoke a key.
 968 * @key: The key to be revoked.
 969 *
 970 * Mark a key as being revoked and ask the type to free up its resources.  The
 971 * revocation timeout is set and the key and all its links will be
 972 * automatically garbage collected after key_gc_delay amount of time if they
 973 * are not manually dealt with first.
 974 */
 975void key_revoke(struct key *key)
 976{
 977	struct timespec now;
 978	time_t time;
 979
 980	key_check(key);
 981
 982	/* make sure no one's trying to change or use the key when we mark it
 983	 * - we tell lockdep that we might nest because we might be revoking an
 984	 *   authorisation key whilst holding the sem on a key we've just
 985	 *   instantiated
 986	 */
 987	down_write_nested(&key->sem, 1);
 988	if (!test_and_set_bit(KEY_FLAG_REVOKED, &key->flags) &&
 989	    key->type->revoke)
 990		key->type->revoke(key);
 991
 992	/* set the death time to no more than the expiry time */
 993	now = current_kernel_time();
 994	time = now.tv_sec;
 995	if (key->revoked_at == 0 || key->revoked_at > time) {
 996		key->revoked_at = time;
 997		key_schedule_gc(key->revoked_at + key_gc_delay);
 998	}
 999
1000	up_write(&key->sem);
1001}
1002EXPORT_SYMBOL(key_revoke);
1003
1004/**
1005 * key_invalidate - Invalidate a key.
1006 * @key: The key to be invalidated.
1007 *
1008 * Mark a key as being invalidated and have it cleaned up immediately.  The key
1009 * is ignored by all searches and other operations from this point.
1010 */
1011void key_invalidate(struct key *key)
1012{
1013	kenter("%d", key_serial(key));
1014
1015	key_check(key);
1016
1017	if (!test_bit(KEY_FLAG_INVALIDATED, &key->flags)) {
1018		down_write_nested(&key->sem, 1);
1019		if (!test_and_set_bit(KEY_FLAG_INVALIDATED, &key->flags))
1020			key_schedule_gc_links();
1021		up_write(&key->sem);
1022	}
1023}
1024EXPORT_SYMBOL(key_invalidate);
1025
1026/**
1027 * register_key_type - Register a type of key.
1028 * @ktype: The new key type.
1029 *
1030 * Register a new key type.
1031 *
1032 * Returns 0 on success or -EEXIST if a type of this name already exists.
1033 */
1034int register_key_type(struct key_type *ktype)
1035{
1036	struct key_type *p;
1037	int ret;
1038
1039	memset(&ktype->lock_class, 0, sizeof(ktype->lock_class));
1040
1041	ret = -EEXIST;
1042	down_write(&key_types_sem);
1043
1044	/* disallow key types with the same name */
1045	list_for_each_entry(p, &key_types_list, link) {
1046		if (strcmp(p->name, ktype->name) == 0)
1047			goto out;
1048	}
1049
1050	/* store the type */
1051	list_add(&ktype->link, &key_types_list);
1052
1053	pr_notice("Key type %s registered\n", ktype->name);
1054	ret = 0;
1055
1056out:
1057	up_write(&key_types_sem);
1058	return ret;
1059}
1060EXPORT_SYMBOL(register_key_type);
1061
1062/**
1063 * unregister_key_type - Unregister a type of key.
1064 * @ktype: The key type.
1065 *
1066 * Unregister a key type and mark all the extant keys of this type as dead.
1067 * Those keys of this type are then destroyed to get rid of their payloads and
1068 * they and their links will be garbage collected as soon as possible.
1069 */
1070void unregister_key_type(struct key_type *ktype)
1071{
1072	down_write(&key_types_sem);
1073	list_del_init(&ktype->link);
1074	downgrade_write(&key_types_sem);
1075	key_gc_keytype(ktype);
1076	pr_notice("Key type %s unregistered\n", ktype->name);
1077	up_read(&key_types_sem);
1078}
1079EXPORT_SYMBOL(unregister_key_type);
1080
1081/*
1082 * Initialise the key management state.
1083 */
1084void __init key_init(void)
1085{
1086	/* allocate a slab in which we can store keys */
1087	key_jar = kmem_cache_create("key_jar", sizeof(struct key),
1088			0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1089
1090	/* add the special key types */
1091	list_add_tail(&key_type_keyring.link, &key_types_list);
1092	list_add_tail(&key_type_dead.link, &key_types_list);
1093	list_add_tail(&key_type_user.link, &key_types_list);
1094	list_add_tail(&key_type_logon.link, &key_types_list);
1095
1096	/* record the root user tracking */
1097	rb_link_node(&root_key_user.node,
1098		     NULL,
1099		     &key_user_tree.rb_node);
1100
1101	rb_insert_color(&root_key_user.node,
1102			&key_user_tree);
1103}
v3.5.6
   1/* Basic authentication token and access key management
   2 *
   3 * Copyright (C) 2004-2008 Red Hat, Inc. All Rights Reserved.
   4 * Written by David Howells (dhowells@redhat.com)
   5 *
   6 * This program is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU General Public License
   8 * as published by the Free Software Foundation; either version
   9 * 2 of the License, or (at your option) any later version.
  10 */
  11
  12#include <linux/module.h>
  13#include <linux/init.h>
  14#include <linux/poison.h>
  15#include <linux/sched.h>
  16#include <linux/slab.h>
  17#include <linux/security.h>
  18#include <linux/workqueue.h>
  19#include <linux/random.h>
  20#include <linux/err.h>
  21#include <linux/user_namespace.h>
  22#include "internal.h"
  23
  24struct kmem_cache *key_jar;
  25struct rb_root		key_serial_tree; /* tree of keys indexed by serial */
  26DEFINE_SPINLOCK(key_serial_lock);
  27
  28struct rb_root	key_user_tree; /* tree of quota records indexed by UID */
  29DEFINE_SPINLOCK(key_user_lock);
  30
  31unsigned int key_quota_root_maxkeys = 200;	/* root's key count quota */
  32unsigned int key_quota_root_maxbytes = 20000;	/* root's key space quota */
  33unsigned int key_quota_maxkeys = 200;		/* general key count quota */
  34unsigned int key_quota_maxbytes = 20000;	/* general key space quota */
  35
  36static LIST_HEAD(key_types_list);
  37static DECLARE_RWSEM(key_types_sem);
  38
  39/* We serialise key instantiation and link */
  40DEFINE_MUTEX(key_construction_mutex);
  41
  42#ifdef KEY_DEBUGGING
  43void __key_check(const struct key *key)
  44{
  45	printk("__key_check: key %p {%08x} should be {%08x}\n",
  46	       key, key->magic, KEY_DEBUG_MAGIC);
  47	BUG();
  48}
  49#endif
  50
  51/*
  52 * Get the key quota record for a user, allocating a new record if one doesn't
  53 * already exist.
  54 */
  55struct key_user *key_user_lookup(uid_t uid, struct user_namespace *user_ns)
  56{
  57	struct key_user *candidate = NULL, *user;
  58	struct rb_node *parent = NULL;
  59	struct rb_node **p;
  60
  61try_again:
  62	p = &key_user_tree.rb_node;
  63	spin_lock(&key_user_lock);
  64
  65	/* search the tree for a user record with a matching UID */
  66	while (*p) {
  67		parent = *p;
  68		user = rb_entry(parent, struct key_user, node);
  69
  70		if (uid < user->uid)
  71			p = &(*p)->rb_left;
  72		else if (uid > user->uid)
  73			p = &(*p)->rb_right;
  74		else if (user_ns < user->user_ns)
  75			p = &(*p)->rb_left;
  76		else if (user_ns > user->user_ns)
  77			p = &(*p)->rb_right;
  78		else
  79			goto found;
  80	}
  81
  82	/* if we get here, we failed to find a match in the tree */
  83	if (!candidate) {
  84		/* allocate a candidate user record if we don't already have
  85		 * one */
  86		spin_unlock(&key_user_lock);
  87
  88		user = NULL;
  89		candidate = kmalloc(sizeof(struct key_user), GFP_KERNEL);
  90		if (unlikely(!candidate))
  91			goto out;
  92
  93		/* the allocation may have scheduled, so we need to repeat the
  94		 * search lest someone else added the record whilst we were
  95		 * asleep */
  96		goto try_again;
  97	}
  98
  99	/* if we get here, then the user record still hadn't appeared on the
 100	 * second pass - so we use the candidate record */
 101	atomic_set(&candidate->usage, 1);
 102	atomic_set(&candidate->nkeys, 0);
 103	atomic_set(&candidate->nikeys, 0);
 104	candidate->uid = uid;
 105	candidate->user_ns = get_user_ns(user_ns);
 106	candidate->qnkeys = 0;
 107	candidate->qnbytes = 0;
 108	spin_lock_init(&candidate->lock);
 109	mutex_init(&candidate->cons_lock);
 110
 111	rb_link_node(&candidate->node, parent, p);
 112	rb_insert_color(&candidate->node, &key_user_tree);
 113	spin_unlock(&key_user_lock);
 114	user = candidate;
 115	goto out;
 116
 117	/* okay - we found a user record for this UID */
 118found:
 119	atomic_inc(&user->usage);
 120	spin_unlock(&key_user_lock);
 121	kfree(candidate);
 122out:
 123	return user;
 124}
 125
 126/*
 127 * Dispose of a user structure
 128 */
 129void key_user_put(struct key_user *user)
 130{
 131	if (atomic_dec_and_lock(&user->usage, &key_user_lock)) {
 132		rb_erase(&user->node, &key_user_tree);
 133		spin_unlock(&key_user_lock);
 134		put_user_ns(user->user_ns);
 135
 136		kfree(user);
 137	}
 138}
 139
 140/*
 141 * Allocate a serial number for a key.  These are assigned randomly to avoid
 142 * security issues through covert channel problems.
 143 */
 144static inline void key_alloc_serial(struct key *key)
 145{
 146	struct rb_node *parent, **p;
 147	struct key *xkey;
 148
 149	/* propose a random serial number and look for a hole for it in the
 150	 * serial number tree */
 151	do {
 152		get_random_bytes(&key->serial, sizeof(key->serial));
 153
 154		key->serial >>= 1; /* negative numbers are not permitted */
 155	} while (key->serial < 3);
 156
 157	spin_lock(&key_serial_lock);
 158
 159attempt_insertion:
 160	parent = NULL;
 161	p = &key_serial_tree.rb_node;
 162
 163	while (*p) {
 164		parent = *p;
 165		xkey = rb_entry(parent, struct key, serial_node);
 166
 167		if (key->serial < xkey->serial)
 168			p = &(*p)->rb_left;
 169		else if (key->serial > xkey->serial)
 170			p = &(*p)->rb_right;
 171		else
 172			goto serial_exists;
 173	}
 174
 175	/* we've found a suitable hole - arrange for this key to occupy it */
 176	rb_link_node(&key->serial_node, parent, p);
 177	rb_insert_color(&key->serial_node, &key_serial_tree);
 178
 179	spin_unlock(&key_serial_lock);
 180	return;
 181
 182	/* we found a key with the proposed serial number - walk the tree from
 183	 * that point looking for the next unused serial number */
 184serial_exists:
 185	for (;;) {
 186		key->serial++;
 187		if (key->serial < 3) {
 188			key->serial = 3;
 189			goto attempt_insertion;
 190		}
 191
 192		parent = rb_next(parent);
 193		if (!parent)
 194			goto attempt_insertion;
 195
 196		xkey = rb_entry(parent, struct key, serial_node);
 197		if (key->serial < xkey->serial)
 198			goto attempt_insertion;
 199	}
 200}
 201
 202/**
 203 * key_alloc - Allocate a key of the specified type.
 204 * @type: The type of key to allocate.
 205 * @desc: The key description to allow the key to be searched out.
 206 * @uid: The owner of the new key.
 207 * @gid: The group ID for the new key's group permissions.
 208 * @cred: The credentials specifying UID namespace.
 209 * @perm: The permissions mask of the new key.
 210 * @flags: Flags specifying quota properties.
 211 *
 212 * Allocate a key of the specified type with the attributes given.  The key is
 213 * returned in an uninstantiated state and the caller needs to instantiate the
 214 * key before returning.
 215 *
 216 * The user's key count quota is updated to reflect the creation of the key and
 217 * the user's key data quota has the default for the key type reserved.  The
 218 * instantiation function should amend this as necessary.  If insufficient
 219 * quota is available, -EDQUOT will be returned.
 220 *
 221 * The LSM security modules can prevent a key being created, in which case
 222 * -EACCES will be returned.
 223 *
 224 * Returns a pointer to the new key if successful and an error code otherwise.
 225 *
 226 * Note that the caller needs to ensure the key type isn't uninstantiated.
 227 * Internally this can be done by locking key_types_sem.  Externally, this can
 228 * be done by either never unregistering the key type, or making sure
 229 * key_alloc() calls don't race with module unloading.
 230 */
 231struct key *key_alloc(struct key_type *type, const char *desc,
 232		      uid_t uid, gid_t gid, const struct cred *cred,
 233		      key_perm_t perm, unsigned long flags)
 234{
 235	struct key_user *user = NULL;
 236	struct key *key;
 237	size_t desclen, quotalen;
 238	int ret;
 239
 240	key = ERR_PTR(-EINVAL);
 241	if (!desc || !*desc)
 242		goto error;
 243
 244	if (type->vet_description) {
 245		ret = type->vet_description(desc);
 246		if (ret < 0) {
 247			key = ERR_PTR(ret);
 248			goto error;
 249		}
 250	}
 251
 252	desclen = strlen(desc) + 1;
 253	quotalen = desclen + type->def_datalen;
 254
 255	/* get hold of the key tracking for this user */
 256	user = key_user_lookup(uid, cred->user_ns);
 257	if (!user)
 258		goto no_memory_1;
 259
 260	/* check that the user's quota permits allocation of another key and
 261	 * its description */
 262	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
 263		unsigned maxkeys = (uid == 0) ?
 264			key_quota_root_maxkeys : key_quota_maxkeys;
 265		unsigned maxbytes = (uid == 0) ?
 266			key_quota_root_maxbytes : key_quota_maxbytes;
 267
 268		spin_lock(&user->lock);
 269		if (!(flags & KEY_ALLOC_QUOTA_OVERRUN)) {
 270			if (user->qnkeys + 1 >= maxkeys ||
 271			    user->qnbytes + quotalen >= maxbytes ||
 272			    user->qnbytes + quotalen < user->qnbytes)
 273				goto no_quota;
 274		}
 275
 276		user->qnkeys++;
 277		user->qnbytes += quotalen;
 278		spin_unlock(&user->lock);
 279	}
 280
 281	/* allocate and initialise the key and its description */
 282	key = kmem_cache_alloc(key_jar, GFP_KERNEL);
 283	if (!key)
 284		goto no_memory_2;
 285
 286	if (desc) {
 287		key->description = kmemdup(desc, desclen, GFP_KERNEL);
 
 288		if (!key->description)
 289			goto no_memory_3;
 290	}
 291
 292	atomic_set(&key->usage, 1);
 293	init_rwsem(&key->sem);
 294	lockdep_set_class(&key->sem, &type->lock_class);
 295	key->type = type;
 296	key->user = user;
 297	key->quotalen = quotalen;
 298	key->datalen = type->def_datalen;
 299	key->uid = uid;
 300	key->gid = gid;
 301	key->perm = perm;
 302	key->flags = 0;
 303	key->expiry = 0;
 304	key->payload.data = NULL;
 305	key->security = NULL;
 306
 307	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA))
 308		key->flags |= 1 << KEY_FLAG_IN_QUOTA;
 309
 310	memset(&key->type_data, 0, sizeof(key->type_data));
 311
 312#ifdef KEY_DEBUGGING
 313	key->magic = KEY_DEBUG_MAGIC;
 314#endif
 315
 316	/* let the security module know about the key */
 317	ret = security_key_alloc(key, cred, flags);
 318	if (ret < 0)
 319		goto security_error;
 320
 321	/* publish the key by giving it a serial number */
 322	atomic_inc(&user->nkeys);
 323	key_alloc_serial(key);
 324
 325error:
 326	return key;
 327
 328security_error:
 329	kfree(key->description);
 330	kmem_cache_free(key_jar, key);
 331	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
 332		spin_lock(&user->lock);
 333		user->qnkeys--;
 334		user->qnbytes -= quotalen;
 335		spin_unlock(&user->lock);
 336	}
 337	key_user_put(user);
 338	key = ERR_PTR(ret);
 339	goto error;
 340
 341no_memory_3:
 342	kmem_cache_free(key_jar, key);
 343no_memory_2:
 344	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
 345		spin_lock(&user->lock);
 346		user->qnkeys--;
 347		user->qnbytes -= quotalen;
 348		spin_unlock(&user->lock);
 349	}
 350	key_user_put(user);
 351no_memory_1:
 352	key = ERR_PTR(-ENOMEM);
 353	goto error;
 354
 355no_quota:
 356	spin_unlock(&user->lock);
 357	key_user_put(user);
 358	key = ERR_PTR(-EDQUOT);
 359	goto error;
 360}
 361EXPORT_SYMBOL(key_alloc);
 362
 363/**
 364 * key_payload_reserve - Adjust data quota reservation for the key's payload
 365 * @key: The key to make the reservation for.
 366 * @datalen: The amount of data payload the caller now wants.
 367 *
 368 * Adjust the amount of the owning user's key data quota that a key reserves.
 369 * If the amount is increased, then -EDQUOT may be returned if there isn't
 370 * enough free quota available.
 371 *
 372 * If successful, 0 is returned.
 373 */
 374int key_payload_reserve(struct key *key, size_t datalen)
 375{
 376	int delta = (int)datalen - key->datalen;
 377	int ret = 0;
 378
 379	key_check(key);
 380
 381	/* contemplate the quota adjustment */
 382	if (delta != 0 && test_bit(KEY_FLAG_IN_QUOTA, &key->flags)) {
 383		unsigned maxbytes = (key->user->uid == 0) ?
 384			key_quota_root_maxbytes : key_quota_maxbytes;
 385
 386		spin_lock(&key->user->lock);
 387
 388		if (delta > 0 &&
 389		    (key->user->qnbytes + delta >= maxbytes ||
 390		     key->user->qnbytes + delta < key->user->qnbytes)) {
 391			ret = -EDQUOT;
 392		}
 393		else {
 394			key->user->qnbytes += delta;
 395			key->quotalen += delta;
 396		}
 397		spin_unlock(&key->user->lock);
 398	}
 399
 400	/* change the recorded data length if that didn't generate an error */
 401	if (ret == 0)
 402		key->datalen = datalen;
 403
 404	return ret;
 405}
 406EXPORT_SYMBOL(key_payload_reserve);
 407
 408/*
 409 * Instantiate a key and link it into the target keyring atomically.  Must be
 410 * called with the target keyring's semaphore writelocked.  The target key's
 411 * semaphore need not be locked as instantiation is serialised by
 412 * key_construction_mutex.
 413 */
 414static int __key_instantiate_and_link(struct key *key,
 415				      const void *data,
 416				      size_t datalen,
 417				      struct key *keyring,
 418				      struct key *authkey,
 419				      unsigned long *_prealloc)
 420{
 421	int ret, awaken;
 422
 423	key_check(key);
 424	key_check(keyring);
 425
 426	awaken = 0;
 427	ret = -EBUSY;
 428
 429	mutex_lock(&key_construction_mutex);
 430
 431	/* can't instantiate twice */
 432	if (!test_bit(KEY_FLAG_INSTANTIATED, &key->flags)) {
 433		/* instantiate the key */
 434		ret = key->type->instantiate(key, data, datalen);
 435
 436		if (ret == 0) {
 437			/* mark the key as being instantiated */
 438			atomic_inc(&key->user->nikeys);
 439			set_bit(KEY_FLAG_INSTANTIATED, &key->flags);
 440
 441			if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
 442				awaken = 1;
 443
 444			/* and link it into the destination keyring */
 445			if (keyring)
 446				__key_link(keyring, key, _prealloc);
 447
 448			/* disable the authorisation key */
 449			if (authkey)
 450				key_revoke(authkey);
 451		}
 452	}
 453
 454	mutex_unlock(&key_construction_mutex);
 455
 456	/* wake up anyone waiting for a key to be constructed */
 457	if (awaken)
 458		wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT);
 459
 460	return ret;
 461}
 462
 463/**
 464 * key_instantiate_and_link - Instantiate a key and link it into the keyring.
 465 * @key: The key to instantiate.
 466 * @data: The data to use to instantiate the keyring.
 467 * @datalen: The length of @data.
 468 * @keyring: Keyring to create a link in on success (or NULL).
 469 * @authkey: The authorisation token permitting instantiation.
 470 *
 471 * Instantiate a key that's in the uninstantiated state using the provided data
 472 * and, if successful, link it in to the destination keyring if one is
 473 * supplied.
 474 *
 475 * If successful, 0 is returned, the authorisation token is revoked and anyone
 476 * waiting for the key is woken up.  If the key was already instantiated,
 477 * -EBUSY will be returned.
 478 */
 479int key_instantiate_and_link(struct key *key,
 480			     const void *data,
 481			     size_t datalen,
 482			     struct key *keyring,
 483			     struct key *authkey)
 484{
 485	unsigned long prealloc;
 
 486	int ret;
 487
 
 
 
 
 
 
 
 
 
 
 488	if (keyring) {
 489		ret = __key_link_begin(keyring, key->type, key->description,
 490				       &prealloc);
 491		if (ret < 0)
 492			return ret;
 493	}
 494
 495	ret = __key_instantiate_and_link(key, data, datalen, keyring, authkey,
 496					 &prealloc);
 497
 498	if (keyring)
 499		__key_link_end(keyring, key->type, prealloc);
 500
 
 
 
 
 501	return ret;
 502}
 503
 504EXPORT_SYMBOL(key_instantiate_and_link);
 505
 506/**
 507 * key_reject_and_link - Negatively instantiate a key and link it into the keyring.
 508 * @key: The key to instantiate.
 509 * @timeout: The timeout on the negative key.
 510 * @error: The error to return when the key is hit.
 511 * @keyring: Keyring to create a link in on success (or NULL).
 512 * @authkey: The authorisation token permitting instantiation.
 513 *
 514 * Negatively instantiate a key that's in the uninstantiated state and, if
 515 * successful, set its timeout and stored error and link it in to the
 516 * destination keyring if one is supplied.  The key and any links to the key
 517 * will be automatically garbage collected after the timeout expires.
 518 *
 519 * Negative keys are used to rate limit repeated request_key() calls by causing
 520 * them to return the stored error code (typically ENOKEY) until the negative
 521 * key expires.
 522 *
 523 * If successful, 0 is returned, the authorisation token is revoked and anyone
 524 * waiting for the key is woken up.  If the key was already instantiated,
 525 * -EBUSY will be returned.
 526 */
 527int key_reject_and_link(struct key *key,
 528			unsigned timeout,
 529			unsigned error,
 530			struct key *keyring,
 531			struct key *authkey)
 532{
 533	unsigned long prealloc;
 534	struct timespec now;
 535	int ret, awaken, link_ret = 0;
 536
 537	key_check(key);
 538	key_check(keyring);
 539
 540	awaken = 0;
 541	ret = -EBUSY;
 542
 543	if (keyring)
 544		link_ret = __key_link_begin(keyring, key->type,
 545					    key->description, &prealloc);
 546
 547	mutex_lock(&key_construction_mutex);
 548
 549	/* can't instantiate twice */
 550	if (!test_bit(KEY_FLAG_INSTANTIATED, &key->flags)) {
 551		/* mark the key as being negatively instantiated */
 552		atomic_inc(&key->user->nikeys);
 
 
 553		set_bit(KEY_FLAG_NEGATIVE, &key->flags);
 554		set_bit(KEY_FLAG_INSTANTIATED, &key->flags);
 555		key->type_data.reject_error = -error;
 556		now = current_kernel_time();
 557		key->expiry = now.tv_sec + timeout;
 558		key_schedule_gc(key->expiry + key_gc_delay);
 559
 560		if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
 561			awaken = 1;
 562
 563		ret = 0;
 564
 565		/* and link it into the destination keyring */
 566		if (keyring && link_ret == 0)
 567			__key_link(keyring, key, &prealloc);
 568
 569		/* disable the authorisation key */
 570		if (authkey)
 571			key_revoke(authkey);
 572	}
 573
 574	mutex_unlock(&key_construction_mutex);
 575
 576	if (keyring)
 577		__key_link_end(keyring, key->type, prealloc);
 578
 579	/* wake up anyone waiting for a key to be constructed */
 580	if (awaken)
 581		wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT);
 582
 583	return ret == 0 ? link_ret : ret;
 584}
 585EXPORT_SYMBOL(key_reject_and_link);
 586
 587/**
 588 * key_put - Discard a reference to a key.
 589 * @key: The key to discard a reference from.
 590 *
 591 * Discard a reference to a key, and when all the references are gone, we
 592 * schedule the cleanup task to come and pull it out of the tree in process
 593 * context at some later time.
 594 */
 595void key_put(struct key *key)
 596{
 597	if (key) {
 598		key_check(key);
 599
 600		if (atomic_dec_and_test(&key->usage))
 601			queue_work(system_nrt_wq, &key_gc_work);
 602	}
 603}
 604EXPORT_SYMBOL(key_put);
 605
 606/*
 607 * Find a key by its serial number.
 608 */
 609struct key *key_lookup(key_serial_t id)
 610{
 611	struct rb_node *n;
 612	struct key *key;
 613
 614	spin_lock(&key_serial_lock);
 615
 616	/* search the tree for the specified key */
 617	n = key_serial_tree.rb_node;
 618	while (n) {
 619		key = rb_entry(n, struct key, serial_node);
 620
 621		if (id < key->serial)
 622			n = n->rb_left;
 623		else if (id > key->serial)
 624			n = n->rb_right;
 625		else
 626			goto found;
 627	}
 628
 629not_found:
 630	key = ERR_PTR(-ENOKEY);
 631	goto error;
 632
 633found:
 634	/* pretend it doesn't exist if it is awaiting deletion */
 635	if (atomic_read(&key->usage) == 0)
 636		goto not_found;
 637
 638	/* this races with key_put(), but that doesn't matter since key_put()
 639	 * doesn't actually change the key
 640	 */
 641	atomic_inc(&key->usage);
 642
 643error:
 644	spin_unlock(&key_serial_lock);
 645	return key;
 646}
 647
 648/*
 649 * Find and lock the specified key type against removal.
 650 *
 651 * We return with the sem read-locked if successful.  If the type wasn't
 652 * available -ENOKEY is returned instead.
 653 */
 654struct key_type *key_type_lookup(const char *type)
 655{
 656	struct key_type *ktype;
 657
 658	down_read(&key_types_sem);
 659
 660	/* look up the key type to see if it's one of the registered kernel
 661	 * types */
 662	list_for_each_entry(ktype, &key_types_list, link) {
 663		if (strcmp(ktype->name, type) == 0)
 664			goto found_kernel_type;
 665	}
 666
 667	up_read(&key_types_sem);
 668	ktype = ERR_PTR(-ENOKEY);
 669
 670found_kernel_type:
 671	return ktype;
 672}
 673
 674void key_set_timeout(struct key *key, unsigned timeout)
 675{
 676	struct timespec now;
 677	time_t expiry = 0;
 678
 679	/* make the changes with the locks held to prevent races */
 680	down_write(&key->sem);
 681
 682	if (timeout > 0) {
 683		now = current_kernel_time();
 684		expiry = now.tv_sec + timeout;
 685	}
 686
 687	key->expiry = expiry;
 688	key_schedule_gc(key->expiry + key_gc_delay);
 689
 690	up_write(&key->sem);
 691}
 692EXPORT_SYMBOL_GPL(key_set_timeout);
 693
 694/*
 695 * Unlock a key type locked by key_type_lookup().
 696 */
 697void key_type_put(struct key_type *ktype)
 698{
 699	up_read(&key_types_sem);
 700}
 701
 702/*
 703 * Attempt to update an existing key.
 704 *
 705 * The key is given to us with an incremented refcount that we need to discard
 706 * if we get an error.
 707 */
 708static inline key_ref_t __key_update(key_ref_t key_ref,
 709				     const void *payload, size_t plen)
 710{
 711	struct key *key = key_ref_to_ptr(key_ref);
 712	int ret;
 713
 714	/* need write permission on the key to update it */
 715	ret = key_permission(key_ref, KEY_WRITE);
 716	if (ret < 0)
 717		goto error;
 718
 719	ret = -EEXIST;
 720	if (!key->type->update)
 721		goto error;
 722
 723	down_write(&key->sem);
 724
 725	ret = key->type->update(key, payload, plen);
 726	if (ret == 0)
 727		/* updating a negative key instantiates it */
 728		clear_bit(KEY_FLAG_NEGATIVE, &key->flags);
 729
 730	up_write(&key->sem);
 731
 732	if (ret < 0)
 733		goto error;
 734out:
 735	return key_ref;
 736
 737error:
 738	key_put(key);
 739	key_ref = ERR_PTR(ret);
 740	goto out;
 741}
 742
 743/**
 744 * key_create_or_update - Update or create and instantiate a key.
 745 * @keyring_ref: A pointer to the destination keyring with possession flag.
 746 * @type: The type of key.
 747 * @description: The searchable description for the key.
 748 * @payload: The data to use to instantiate or update the key.
 749 * @plen: The length of @payload.
 750 * @perm: The permissions mask for a new key.
 751 * @flags: The quota flags for a new key.
 752 *
 753 * Search the destination keyring for a key of the same description and if one
 754 * is found, update it, otherwise create and instantiate a new one and create a
 755 * link to it from that keyring.
 756 *
 757 * If perm is KEY_PERM_UNDEF then an appropriate key permissions mask will be
 758 * concocted.
 759 *
 760 * Returns a pointer to the new key if successful, -ENODEV if the key type
 761 * wasn't available, -ENOTDIR if the keyring wasn't a keyring, -EACCES if the
 762 * caller isn't permitted to modify the keyring or the LSM did not permit
 763 * creation of the key.
 764 *
 765 * On success, the possession flag from the keyring ref will be tacked on to
 766 * the key ref before it is returned.
 767 */
 768key_ref_t key_create_or_update(key_ref_t keyring_ref,
 769			       const char *type,
 770			       const char *description,
 771			       const void *payload,
 772			       size_t plen,
 773			       key_perm_t perm,
 774			       unsigned long flags)
 775{
 776	unsigned long prealloc;
 
 
 
 
 777	const struct cred *cred = current_cred();
 778	struct key_type *ktype;
 779	struct key *keyring, *key = NULL;
 780	key_ref_t key_ref;
 781	int ret;
 782
 783	/* look up the key type to see if it's one of the registered kernel
 784	 * types */
 785	ktype = key_type_lookup(type);
 786	if (IS_ERR(ktype)) {
 787		key_ref = ERR_PTR(-ENODEV);
 788		goto error;
 789	}
 790
 791	key_ref = ERR_PTR(-EINVAL);
 792	if (!ktype->match || !ktype->instantiate)
 793		goto error_2;
 
 794
 795	keyring = key_ref_to_ptr(keyring_ref);
 796
 797	key_check(keyring);
 798
 799	key_ref = ERR_PTR(-ENOTDIR);
 800	if (keyring->type != &key_type_keyring)
 801		goto error_2;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 802
 803	ret = __key_link_begin(keyring, ktype, description, &prealloc);
 804	if (ret < 0)
 805		goto error_2;
 
 
 806
 807	/* if we're going to allocate a new key, we're going to have
 808	 * to modify the keyring */
 809	ret = key_permission(keyring_ref, KEY_WRITE);
 810	if (ret < 0) {
 811		key_ref = ERR_PTR(ret);
 812		goto error_3;
 813	}
 814
 815	/* if it's possible to update this type of key, search for an existing
 816	 * key of the same type and description in the destination keyring and
 817	 * update that instead if possible
 818	 */
 819	if (ktype->update) {
 820		key_ref = __keyring_search_one(keyring_ref, ktype, description,
 821					       0);
 822		if (!IS_ERR(key_ref))
 823			goto found_matching_key;
 824	}
 825
 826	/* if the client doesn't provide, decide on the permissions we want */
 827	if (perm == KEY_PERM_UNDEF) {
 828		perm = KEY_POS_VIEW | KEY_POS_SEARCH | KEY_POS_LINK | KEY_POS_SETATTR;
 829		perm |= KEY_USR_VIEW | KEY_USR_SEARCH | KEY_USR_LINK | KEY_USR_SETATTR;
 830
 831		if (ktype->read)
 832			perm |= KEY_POS_READ | KEY_USR_READ;
 833
 834		if (ktype == &key_type_keyring || ktype->update)
 835			perm |= KEY_USR_WRITE;
 
 836	}
 837
 838	/* allocate a new key */
 839	key = key_alloc(ktype, description, cred->fsuid, cred->fsgid, cred,
 840			perm, flags);
 841	if (IS_ERR(key)) {
 842		key_ref = ERR_CAST(key);
 843		goto error_3;
 844	}
 845
 846	/* instantiate it and link it into the target keyring */
 847	ret = __key_instantiate_and_link(key, payload, plen, keyring, NULL,
 848					 &prealloc);
 849	if (ret < 0) {
 850		key_put(key);
 851		key_ref = ERR_PTR(ret);
 852		goto error_3;
 853	}
 854
 855	key_ref = make_key_ref(key, is_key_possessed(keyring_ref));
 856
 857 error_3:
 858	__key_link_end(keyring, ktype, prealloc);
 859 error_2:
 860	key_type_put(ktype);
 861 error:
 
 
 
 862	return key_ref;
 863
 864 found_matching_key:
 865	/* we found a matching key, so we're going to try to update it
 866	 * - we can drop the locks first as we have the key pinned
 867	 */
 868	__key_link_end(keyring, ktype, prealloc);
 869	key_type_put(ktype);
 870
 871	key_ref = __key_update(key_ref, payload, plen);
 872	goto error;
 873}
 874EXPORT_SYMBOL(key_create_or_update);
 875
 876/**
 877 * key_update - Update a key's contents.
 878 * @key_ref: The pointer (plus possession flag) to the key.
 879 * @payload: The data to be used to update the key.
 880 * @plen: The length of @payload.
 881 *
 882 * Attempt to update the contents of a key with the given payload data.  The
 883 * caller must be granted Write permission on the key.  Negative keys can be
 884 * instantiated by this method.
 885 *
 886 * Returns 0 on success, -EACCES if not permitted and -EOPNOTSUPP if the key
 887 * type does not support updating.  The key type may return other errors.
 888 */
 889int key_update(key_ref_t key_ref, const void *payload, size_t plen)
 890{
 
 891	struct key *key = key_ref_to_ptr(key_ref);
 892	int ret;
 893
 894	key_check(key);
 895
 896	/* the key must be writable */
 897	ret = key_permission(key_ref, KEY_WRITE);
 898	if (ret < 0)
 899		goto error;
 900
 901	/* attempt to update it if supported */
 902	ret = -EOPNOTSUPP;
 903	if (key->type->update) {
 904		down_write(&key->sem);
 905
 906		ret = key->type->update(key, payload, plen);
 907		if (ret == 0)
 908			/* updating a negative key instantiates it */
 909			clear_bit(KEY_FLAG_NEGATIVE, &key->flags);
 
 
 
 
 
 910
 911		up_write(&key->sem);
 912	}
 
 
 
 
 
 
 913
 914 error:
 
 
 915	return ret;
 916}
 917EXPORT_SYMBOL(key_update);
 918
 919/**
 920 * key_revoke - Revoke a key.
 921 * @key: The key to be revoked.
 922 *
 923 * Mark a key as being revoked and ask the type to free up its resources.  The
 924 * revocation timeout is set and the key and all its links will be
 925 * automatically garbage collected after key_gc_delay amount of time if they
 926 * are not manually dealt with first.
 927 */
 928void key_revoke(struct key *key)
 929{
 930	struct timespec now;
 931	time_t time;
 932
 933	key_check(key);
 934
 935	/* make sure no one's trying to change or use the key when we mark it
 936	 * - we tell lockdep that we might nest because we might be revoking an
 937	 *   authorisation key whilst holding the sem on a key we've just
 938	 *   instantiated
 939	 */
 940	down_write_nested(&key->sem, 1);
 941	if (!test_and_set_bit(KEY_FLAG_REVOKED, &key->flags) &&
 942	    key->type->revoke)
 943		key->type->revoke(key);
 944
 945	/* set the death time to no more than the expiry time */
 946	now = current_kernel_time();
 947	time = now.tv_sec;
 948	if (key->revoked_at == 0 || key->revoked_at > time) {
 949		key->revoked_at = time;
 950		key_schedule_gc(key->revoked_at + key_gc_delay);
 951	}
 952
 953	up_write(&key->sem);
 954}
 955EXPORT_SYMBOL(key_revoke);
 956
 957/**
 958 * key_invalidate - Invalidate a key.
 959 * @key: The key to be invalidated.
 960 *
 961 * Mark a key as being invalidated and have it cleaned up immediately.  The key
 962 * is ignored by all searches and other operations from this point.
 963 */
 964void key_invalidate(struct key *key)
 965{
 966	kenter("%d", key_serial(key));
 967
 968	key_check(key);
 969
 970	if (!test_bit(KEY_FLAG_INVALIDATED, &key->flags)) {
 971		down_write_nested(&key->sem, 1);
 972		if (!test_and_set_bit(KEY_FLAG_INVALIDATED, &key->flags))
 973			key_schedule_gc_links();
 974		up_write(&key->sem);
 975	}
 976}
 977EXPORT_SYMBOL(key_invalidate);
 978
 979/**
 980 * register_key_type - Register a type of key.
 981 * @ktype: The new key type.
 982 *
 983 * Register a new key type.
 984 *
 985 * Returns 0 on success or -EEXIST if a type of this name already exists.
 986 */
 987int register_key_type(struct key_type *ktype)
 988{
 989	struct key_type *p;
 990	int ret;
 991
 992	memset(&ktype->lock_class, 0, sizeof(ktype->lock_class));
 993
 994	ret = -EEXIST;
 995	down_write(&key_types_sem);
 996
 997	/* disallow key types with the same name */
 998	list_for_each_entry(p, &key_types_list, link) {
 999		if (strcmp(p->name, ktype->name) == 0)
1000			goto out;
1001	}
1002
1003	/* store the type */
1004	list_add(&ktype->link, &key_types_list);
1005
1006	pr_notice("Key type %s registered\n", ktype->name);
1007	ret = 0;
1008
1009out:
1010	up_write(&key_types_sem);
1011	return ret;
1012}
1013EXPORT_SYMBOL(register_key_type);
1014
1015/**
1016 * unregister_key_type - Unregister a type of key.
1017 * @ktype: The key type.
1018 *
1019 * Unregister a key type and mark all the extant keys of this type as dead.
1020 * Those keys of this type are then destroyed to get rid of their payloads and
1021 * they and their links will be garbage collected as soon as possible.
1022 */
1023void unregister_key_type(struct key_type *ktype)
1024{
1025	down_write(&key_types_sem);
1026	list_del_init(&ktype->link);
1027	downgrade_write(&key_types_sem);
1028	key_gc_keytype(ktype);
1029	pr_notice("Key type %s unregistered\n", ktype->name);
1030	up_read(&key_types_sem);
1031}
1032EXPORT_SYMBOL(unregister_key_type);
1033
1034/*
1035 * Initialise the key management state.
1036 */
1037void __init key_init(void)
1038{
1039	/* allocate a slab in which we can store keys */
1040	key_jar = kmem_cache_create("key_jar", sizeof(struct key),
1041			0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1042
1043	/* add the special key types */
1044	list_add_tail(&key_type_keyring.link, &key_types_list);
1045	list_add_tail(&key_type_dead.link, &key_types_list);
1046	list_add_tail(&key_type_user.link, &key_types_list);
1047	list_add_tail(&key_type_logon.link, &key_types_list);
1048
1049	/* record the root user tracking */
1050	rb_link_node(&root_key_user.node,
1051		     NULL,
1052		     &key_user_tree.rb_node);
1053
1054	rb_insert_color(&root_key_user.node,
1055			&key_user_tree);
1056}