Linux Audio

Check our new training course

Loading...
v3.15
 
  1/*
  2 * RTC subsystem, interface functions
  3 *
  4 * Copyright (C) 2005 Tower Technologies
  5 * Author: Alessandro Zummo <a.zummo@towertech.it>
  6 *
  7 * based on arch/arm/common/rtctime.c
  8 *
  9 * This program is free software; you can redistribute it and/or modify
 10 * it under the terms of the GNU General Public License version 2 as
 11 * published by the Free Software Foundation.
 12*/
 13
 14#include <linux/rtc.h>
 15#include <linux/sched.h>
 16#include <linux/module.h>
 17#include <linux/log2.h>
 18#include <linux/workqueue.h>
 19
 
 
 
 20static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer);
 21static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer);
 22
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 23static int __rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
 24{
 25	int err;
 26	if (!rtc->ops)
 
 27		err = -ENODEV;
 28	else if (!rtc->ops->read_time)
 29		err = -EINVAL;
 30	else {
 31		memset(tm, 0, sizeof(struct rtc_time));
 32		err = rtc->ops->read_time(rtc->dev.parent, tm);
 
 
 
 
 
 
 
 
 
 
 
 33	}
 34	return err;
 35}
 36
 37int rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
 38{
 39	int err;
 40
 41	err = mutex_lock_interruptible(&rtc->ops_lock);
 42	if (err)
 43		return err;
 44
 45	err = __rtc_read_time(rtc, tm);
 46	mutex_unlock(&rtc->ops_lock);
 
 
 47	return err;
 48}
 49EXPORT_SYMBOL_GPL(rtc_read_time);
 50
 51int rtc_set_time(struct rtc_device *rtc, struct rtc_time *tm)
 52{
 53	int err;
 54
 55	err = rtc_valid_tm(tm);
 56	if (err != 0)
 57		return err;
 58
 59	err = mutex_lock_interruptible(&rtc->ops_lock);
 60	if (err)
 61		return err;
 62
 63	if (!rtc->ops)
 64		err = -ENODEV;
 65	else if (rtc->ops->set_time)
 66		err = rtc->ops->set_time(rtc->dev.parent, tm);
 67	else if (rtc->ops->set_mmss) {
 68		unsigned long secs;
 69		err = rtc_tm_to_time(tm, &secs);
 70		if (err == 0)
 71			err = rtc->ops->set_mmss(rtc->dev.parent, secs);
 72	} else
 73		err = -EINVAL;
 74
 75	pm_stay_awake(rtc->dev.parent);
 76	mutex_unlock(&rtc->ops_lock);
 77	/* A timer might have just expired */
 78	schedule_work(&rtc->irqwork);
 79	return err;
 80}
 81EXPORT_SYMBOL_GPL(rtc_set_time);
 82
 83int rtc_set_mmss(struct rtc_device *rtc, unsigned long secs)
 84{
 85	int err;
 86
 87	err = mutex_lock_interruptible(&rtc->ops_lock);
 88	if (err)
 89		return err;
 90
 91	if (!rtc->ops)
 92		err = -ENODEV;
 93	else if (rtc->ops->set_mmss)
 94		err = rtc->ops->set_mmss(rtc->dev.parent, secs);
 95	else if (rtc->ops->read_time && rtc->ops->set_time) {
 96		struct rtc_time new, old;
 97
 98		err = rtc->ops->read_time(rtc->dev.parent, &old);
 99		if (err == 0) {
100			rtc_time_to_tm(secs, &new);
101
102			/*
103			 * avoid writing when we're going to change the day of
104			 * the month. We will retry in the next minute. This
105			 * basically means that if the RTC must not drift
106			 * by more than 1 minute in 11 minutes.
107			 */
108			if (!((old.tm_hour == 23 && old.tm_min == 59) ||
109				(new.tm_hour == 23 && new.tm_min == 59)))
110				err = rtc->ops->set_time(rtc->dev.parent,
111						&new);
112		}
113	} else {
114		err = -EINVAL;
115	}
116
117	pm_stay_awake(rtc->dev.parent);
118	mutex_unlock(&rtc->ops_lock);
119	/* A timer might have just expired */
120	schedule_work(&rtc->irqwork);
121
 
122	return err;
123}
124EXPORT_SYMBOL_GPL(rtc_set_mmss);
125
126static int rtc_read_alarm_internal(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
 
127{
128	int err;
129
130	err = mutex_lock_interruptible(&rtc->ops_lock);
131	if (err)
132		return err;
133
134	if (rtc->ops == NULL)
135		err = -ENODEV;
136	else if (!rtc->ops->read_alarm)
137		err = -EINVAL;
138	else {
139		memset(alarm, 0, sizeof(struct rtc_wkalrm));
 
 
 
 
 
 
 
 
 
 
140		err = rtc->ops->read_alarm(rtc->dev.parent, alarm);
141	}
142
143	mutex_unlock(&rtc->ops_lock);
 
 
144	return err;
145}
146
147int __rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
148{
149	int err;
150	struct rtc_time before, now;
151	int first_time = 1;
152	unsigned long t_now, t_alm;
153	enum { none, day, month, year } missing = none;
154	unsigned days;
155
156	/* The lower level RTC driver may return -1 in some fields,
157	 * creating invalid alarm->time values, for reasons like:
158	 *
159	 *   - The hardware may not be capable of filling them in;
160	 *     many alarms match only on time-of-day fields, not
161	 *     day/month/year calendar data.
162	 *
163	 *   - Some hardware uses illegal values as "wildcard" match
164	 *     values, which non-Linux firmware (like a BIOS) may try
165	 *     to set up as e.g. "alarm 15 minutes after each hour".
166	 *     Linux uses only oneshot alarms.
167	 *
168	 * When we see that here, we deal with it by using values from
169	 * a current RTC timestamp for any missing (-1) values.  The
170	 * RTC driver prevents "periodic alarm" modes.
171	 *
172	 * But this can be racey, because some fields of the RTC timestamp
173	 * may have wrapped in the interval since we read the RTC alarm,
174	 * which would lead to us inserting inconsistent values in place
175	 * of the -1 fields.
176	 *
177	 * Reading the alarm and timestamp in the reverse sequence
178	 * would have the same race condition, and not solve the issue.
179	 *
180	 * So, we must first read the RTC timestamp,
181	 * then read the RTC alarm value,
182	 * and then read a second RTC timestamp.
183	 *
184	 * If any fields of the second timestamp have changed
185	 * when compared with the first timestamp, then we know
186	 * our timestamp may be inconsistent with that used by
187	 * the low-level rtc_read_alarm_internal() function.
188	 *
189	 * So, when the two timestamps disagree, we just loop and do
190	 * the process again to get a fully consistent set of values.
191	 *
192	 * This could all instead be done in the lower level driver,
193	 * but since more than one lower level RTC implementation needs it,
194	 * then it's probably best best to do it here instead of there..
195	 */
196
197	/* Get the "before" timestamp */
198	err = rtc_read_time(rtc, &before);
199	if (err < 0)
200		return err;
201	do {
202		if (!first_time)
203			memcpy(&before, &now, sizeof(struct rtc_time));
204		first_time = 0;
205
206		/* get the RTC alarm values, which may be incomplete */
207		err = rtc_read_alarm_internal(rtc, alarm);
208		if (err)
209			return err;
210
211		/* full-function RTCs won't have such missing fields */
212		if (rtc_valid_tm(&alarm->time) == 0)
 
213			return 0;
 
214
215		/* get the "after" timestamp, to detect wrapped fields */
216		err = rtc_read_time(rtc, &now);
217		if (err < 0)
218			return err;
219
220		/* note that tm_sec is a "don't care" value here: */
221	} while (   before.tm_min   != now.tm_min
222		 || before.tm_hour  != now.tm_hour
223		 || before.tm_mon   != now.tm_mon
224		 || before.tm_year  != now.tm_year);
225
226	/* Fill in the missing alarm fields using the timestamp; we
227	 * know there's at least one since alarm->time is invalid.
228	 */
229	if (alarm->time.tm_sec == -1)
230		alarm->time.tm_sec = now.tm_sec;
231	if (alarm->time.tm_min == -1)
232		alarm->time.tm_min = now.tm_min;
233	if (alarm->time.tm_hour == -1)
234		alarm->time.tm_hour = now.tm_hour;
235
236	/* For simplicity, only support date rollover for now */
237	if (alarm->time.tm_mday < 1 || alarm->time.tm_mday > 31) {
238		alarm->time.tm_mday = now.tm_mday;
239		missing = day;
240	}
241	if ((unsigned)alarm->time.tm_mon >= 12) {
242		alarm->time.tm_mon = now.tm_mon;
243		if (missing == none)
244			missing = month;
245	}
246	if (alarm->time.tm_year == -1) {
247		alarm->time.tm_year = now.tm_year;
248		if (missing == none)
249			missing = year;
250	}
251
 
 
 
 
 
 
 
252	/* with luck, no rollover is needed */
253	rtc_tm_to_time(&now, &t_now);
254	rtc_tm_to_time(&alarm->time, &t_alm);
255	if (t_now < t_alm)
256		goto done;
257
258	switch (missing) {
259
260	/* 24 hour rollover ... if it's now 10am Monday, an alarm that
261	 * that will trigger at 5am will do so at 5am Tuesday, which
262	 * could also be in the next month or year.  This is a common
263	 * case, especially for PCs.
264	 */
265	case day:
266		dev_dbg(&rtc->dev, "alarm rollover: %s\n", "day");
267		t_alm += 24 * 60 * 60;
268		rtc_time_to_tm(t_alm, &alarm->time);
269		break;
270
271	/* Month rollover ... if it's the 31th, an alarm on the 3rd will
272	 * be next month.  An alarm matching on the 30th, 29th, or 28th
273	 * may end up in the month after that!  Many newer PCs support
274	 * this type of alarm.
275	 */
276	case month:
277		dev_dbg(&rtc->dev, "alarm rollover: %s\n", "month");
278		do {
279			if (alarm->time.tm_mon < 11)
280				alarm->time.tm_mon++;
281			else {
282				alarm->time.tm_mon = 0;
283				alarm->time.tm_year++;
284			}
285			days = rtc_month_days(alarm->time.tm_mon,
286					alarm->time.tm_year);
287		} while (days < alarm->time.tm_mday);
288		break;
289
290	/* Year rollover ... easy except for leap years! */
291	case year:
292		dev_dbg(&rtc->dev, "alarm rollover: %s\n", "year");
293		do {
294			alarm->time.tm_year++;
295		} while (rtc_valid_tm(&alarm->time) != 0);
 
296		break;
297
298	default:
299		dev_warn(&rtc->dev, "alarm rollover not handled\n");
300	}
301
 
 
302done:
303	return 0;
 
 
 
 
304}
305
306int rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
307{
308	int err;
309
310	err = mutex_lock_interruptible(&rtc->ops_lock);
311	if (err)
312		return err;
313	if (rtc->ops == NULL)
314		err = -ENODEV;
315	else if (!rtc->ops->read_alarm)
316		err = -EINVAL;
317	else {
318		memset(alarm, 0, sizeof(struct rtc_wkalrm));
319		alarm->enabled = rtc->aie_timer.enabled;
320		alarm->time = rtc_ktime_to_tm(rtc->aie_timer.node.expires);
321	}
322	mutex_unlock(&rtc->ops_lock);
323
 
324	return err;
325}
326EXPORT_SYMBOL_GPL(rtc_read_alarm);
327
328static int __rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
329{
330	struct rtc_time tm;
331	long now, scheduled;
332	int err;
333
334	err = rtc_valid_tm(&alarm->time);
335	if (err)
336		return err;
337	rtc_tm_to_time(&alarm->time, &scheduled);
 
338
339	/* Make sure we're not setting alarms in the past */
340	err = __rtc_read_time(rtc, &tm);
341	rtc_tm_to_time(&tm, &now);
 
 
342	if (scheduled <= now)
343		return -ETIME;
344	/*
345	 * XXX - We just checked to make sure the alarm time is not
346	 * in the past, but there is still a race window where if
347	 * the is alarm set for the next second and the second ticks
348	 * over right here, before we set the alarm.
349	 */
350
 
 
351	if (!rtc->ops)
352		err = -ENODEV;
353	else if (!rtc->ops->set_alarm)
354		err = -EINVAL;
355	else
356		err = rtc->ops->set_alarm(rtc->dev.parent, alarm);
357
 
358	return err;
359}
360
361int rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
362{
363	int err;
364
 
 
 
 
 
365	err = rtc_valid_tm(&alarm->time);
366	if (err != 0)
367		return err;
368
 
 
 
 
369	err = mutex_lock_interruptible(&rtc->ops_lock);
370	if (err)
371		return err;
372	if (rtc->aie_timer.enabled)
373		rtc_timer_remove(rtc, &rtc->aie_timer);
374
375	rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time);
376	rtc->aie_timer.period = ktime_set(0, 0);
377	if (alarm->enabled)
378		err = rtc_timer_enqueue(rtc, &rtc->aie_timer);
379
380	mutex_unlock(&rtc->ops_lock);
 
381	return err;
382}
383EXPORT_SYMBOL_GPL(rtc_set_alarm);
384
385/* Called once per device from rtc_device_register */
386int rtc_initialize_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
387{
388	int err;
389	struct rtc_time now;
390
391	err = rtc_valid_tm(&alarm->time);
392	if (err != 0)
393		return err;
394
395	err = rtc_read_time(rtc, &now);
396	if (err)
397		return err;
398
399	err = mutex_lock_interruptible(&rtc->ops_lock);
400	if (err)
401		return err;
402
403	rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time);
404	rtc->aie_timer.period = ktime_set(0, 0);
405
406	/* Alarm has to be enabled & in the futrure for us to enqueue it */
407	if (alarm->enabled && (rtc_tm_to_ktime(now).tv64 <
408			 rtc->aie_timer.node.expires.tv64)) {
409
 
 
 
410		rtc->aie_timer.enabled = 1;
411		timerqueue_add(&rtc->timerqueue, &rtc->aie_timer.node);
 
412	}
413	mutex_unlock(&rtc->ops_lock);
414	return err;
415}
416EXPORT_SYMBOL_GPL(rtc_initialize_alarm);
417
418
419
420int rtc_alarm_irq_enable(struct rtc_device *rtc, unsigned int enabled)
421{
422	int err = mutex_lock_interruptible(&rtc->ops_lock);
 
 
423	if (err)
424		return err;
425
426	if (rtc->aie_timer.enabled != enabled) {
427		if (enabled)
428			err = rtc_timer_enqueue(rtc, &rtc->aie_timer);
429		else
430			rtc_timer_remove(rtc, &rtc->aie_timer);
431	}
432
433	if (err)
434		/* nothing */;
435	else if (!rtc->ops)
436		err = -ENODEV;
437	else if (!rtc->ops->alarm_irq_enable)
438		err = -EINVAL;
439	else
440		err = rtc->ops->alarm_irq_enable(rtc->dev.parent, enabled);
441
442	mutex_unlock(&rtc->ops_lock);
 
 
443	return err;
444}
445EXPORT_SYMBOL_GPL(rtc_alarm_irq_enable);
446
447int rtc_update_irq_enable(struct rtc_device *rtc, unsigned int enabled)
448{
449	int err = mutex_lock_interruptible(&rtc->ops_lock);
 
 
450	if (err)
451		return err;
452
453#ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
454	if (enabled == 0 && rtc->uie_irq_active) {
455		mutex_unlock(&rtc->ops_lock);
456		return rtc_dev_update_irq_enable_emul(rtc, 0);
457	}
458#endif
459	/* make sure we're changing state */
460	if (rtc->uie_rtctimer.enabled == enabled)
461		goto out;
462
463	if (rtc->uie_unsupported) {
464		err = -EINVAL;
465		goto out;
466	}
467
468	if (enabled) {
469		struct rtc_time tm;
470		ktime_t now, onesec;
471
472		__rtc_read_time(rtc, &tm);
473		onesec = ktime_set(1, 0);
474		now = rtc_tm_to_ktime(tm);
475		rtc->uie_rtctimer.node.expires = ktime_add(now, onesec);
476		rtc->uie_rtctimer.period = ktime_set(1, 0);
477		err = rtc_timer_enqueue(rtc, &rtc->uie_rtctimer);
478	} else
479		rtc_timer_remove(rtc, &rtc->uie_rtctimer);
 
480
481out:
482	mutex_unlock(&rtc->ops_lock);
483#ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
484	/*
485	 * Enable emulation if the driver did not provide
486	 * the update_irq_enable function pointer or if returned
487	 * -EINVAL to signal that it has been configured without
488	 * interrupts or that are not available at the moment.
489	 */
490	if (err == -EINVAL)
491		err = rtc_dev_update_irq_enable_emul(rtc, enabled);
492#endif
493	return err;
494
495}
496EXPORT_SYMBOL_GPL(rtc_update_irq_enable);
497
498
499/**
500 * rtc_handle_legacy_irq - AIE, UIE and PIE event hook
501 * @rtc: pointer to the rtc device
502 *
503 * This function is called when an AIE, UIE or PIE mode interrupt
504 * has occurred (or been emulated).
505 *
506 * Triggers the registered irq_task function callback.
507 */
508void rtc_handle_legacy_irq(struct rtc_device *rtc, int num, int mode)
509{
510	unsigned long flags;
511
512	/* mark one irq of the appropriate mode */
513	spin_lock_irqsave(&rtc->irq_lock, flags);
514	rtc->irq_data = (rtc->irq_data + (num << 8)) | (RTC_IRQF|mode);
515	spin_unlock_irqrestore(&rtc->irq_lock, flags);
516
517	/* call the task func */
518	spin_lock_irqsave(&rtc->irq_task_lock, flags);
519	if (rtc->irq_task)
520		rtc->irq_task->func(rtc->irq_task->private_data);
521	spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
522
523	wake_up_interruptible(&rtc->irq_queue);
524	kill_fasync(&rtc->async_queue, SIGIO, POLL_IN);
525}
526
527
528/**
529 * rtc_aie_update_irq - AIE mode rtctimer hook
530 * @private: pointer to the rtc_device
531 *
532 * This functions is called when the aie_timer expires.
533 */
534void rtc_aie_update_irq(void *private)
535{
536	struct rtc_device *rtc = (struct rtc_device *)private;
537	rtc_handle_legacy_irq(rtc, 1, RTC_AF);
538}
539
540
541/**
542 * rtc_uie_update_irq - UIE mode rtctimer hook
543 * @private: pointer to the rtc_device
544 *
545 * This functions is called when the uie_timer expires.
546 */
547void rtc_uie_update_irq(void *private)
548{
549	struct rtc_device *rtc = (struct rtc_device *)private;
550	rtc_handle_legacy_irq(rtc, 1,  RTC_UF);
551}
552
553
554/**
555 * rtc_pie_update_irq - PIE mode hrtimer hook
556 * @timer: pointer to the pie mode hrtimer
557 *
558 * This function is used to emulate PIE mode interrupts
559 * using an hrtimer. This function is called when the periodic
560 * hrtimer expires.
561 */
562enum hrtimer_restart rtc_pie_update_irq(struct hrtimer *timer)
563{
564	struct rtc_device *rtc;
565	ktime_t period;
566	int count;
 
567	rtc = container_of(timer, struct rtc_device, pie_timer);
568
569	period = ktime_set(0, NSEC_PER_SEC/rtc->irq_freq);
570	count = hrtimer_forward_now(timer, period);
571
572	rtc_handle_legacy_irq(rtc, count, RTC_PF);
573
574	return HRTIMER_RESTART;
575}
576
577/**
578 * rtc_update_irq - Triggered when a RTC interrupt occurs.
579 * @rtc: the rtc device
580 * @num: how many irqs are being reported (usually one)
581 * @events: mask of RTC_IRQF with one or more of RTC_PF, RTC_AF, RTC_UF
582 * Context: any
583 */
584void rtc_update_irq(struct rtc_device *rtc,
585		unsigned long num, unsigned long events)
586{
587	if (unlikely(IS_ERR_OR_NULL(rtc)))
588		return;
589
590	pm_stay_awake(rtc->dev.parent);
591	schedule_work(&rtc->irqwork);
592}
593EXPORT_SYMBOL_GPL(rtc_update_irq);
594
595static int __rtc_match(struct device *dev, const void *data)
596{
597	const char *name = data;
598
599	if (strcmp(dev_name(dev), name) == 0)
600		return 1;
601	return 0;
602}
603
604struct rtc_device *rtc_class_open(const char *name)
605{
606	struct device *dev;
607	struct rtc_device *rtc = NULL;
608
609	dev = class_find_device(rtc_class, NULL, name, __rtc_match);
610	if (dev)
611		rtc = to_rtc_device(dev);
612
613	if (rtc) {
614		if (!try_module_get(rtc->owner)) {
615			put_device(dev);
616			rtc = NULL;
617		}
618	}
619
620	return rtc;
621}
622EXPORT_SYMBOL_GPL(rtc_class_open);
623
624void rtc_class_close(struct rtc_device *rtc)
625{
626	module_put(rtc->owner);
627	put_device(&rtc->dev);
628}
629EXPORT_SYMBOL_GPL(rtc_class_close);
630
631int rtc_irq_register(struct rtc_device *rtc, struct rtc_task *task)
632{
633	int retval = -EBUSY;
634
635	if (task == NULL || task->func == NULL)
636		return -EINVAL;
637
638	/* Cannot register while the char dev is in use */
639	if (test_and_set_bit_lock(RTC_DEV_BUSY, &rtc->flags))
640		return -EBUSY;
641
642	spin_lock_irq(&rtc->irq_task_lock);
643	if (rtc->irq_task == NULL) {
644		rtc->irq_task = task;
645		retval = 0;
646	}
647	spin_unlock_irq(&rtc->irq_task_lock);
648
649	clear_bit_unlock(RTC_DEV_BUSY, &rtc->flags);
650
651	return retval;
652}
653EXPORT_SYMBOL_GPL(rtc_irq_register);
654
655void rtc_irq_unregister(struct rtc_device *rtc, struct rtc_task *task)
656{
657	spin_lock_irq(&rtc->irq_task_lock);
658	if (rtc->irq_task == task)
659		rtc->irq_task = NULL;
660	spin_unlock_irq(&rtc->irq_task_lock);
661}
662EXPORT_SYMBOL_GPL(rtc_irq_unregister);
663
664static int rtc_update_hrtimer(struct rtc_device *rtc, int enabled)
665{
666	/*
667	 * We always cancel the timer here first, because otherwise
668	 * we could run into BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
669	 * when we manage to start the timer before the callback
670	 * returns HRTIMER_RESTART.
671	 *
672	 * We cannot use hrtimer_cancel() here as a running callback
673	 * could be blocked on rtc->irq_task_lock and hrtimer_cancel()
674	 * would spin forever.
675	 */
676	if (hrtimer_try_to_cancel(&rtc->pie_timer) < 0)
677		return -1;
678
679	if (enabled) {
680		ktime_t period = ktime_set(0, NSEC_PER_SEC / rtc->irq_freq);
681
682		hrtimer_start(&rtc->pie_timer, period, HRTIMER_MODE_REL);
683	}
684	return 0;
685}
686
687/**
688 * rtc_irq_set_state - enable/disable 2^N Hz periodic IRQs
689 * @rtc: the rtc device
690 * @task: currently registered with rtc_irq_register()
691 * @enabled: true to enable periodic IRQs
692 * Context: any
693 *
694 * Note that rtc_irq_set_freq() should previously have been used to
695 * specify the desired frequency of periodic IRQ task->func() callbacks.
696 */
697int rtc_irq_set_state(struct rtc_device *rtc, struct rtc_task *task, int enabled)
698{
699	int err = 0;
700	unsigned long flags;
701
702retry:
703	spin_lock_irqsave(&rtc->irq_task_lock, flags);
704	if (rtc->irq_task != NULL && task == NULL)
705		err = -EBUSY;
706	else if (rtc->irq_task != task)
707		err = -EACCES;
708	else {
709		if (rtc_update_hrtimer(rtc, enabled) < 0) {
710			spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
711			cpu_relax();
712			goto retry;
713		}
714		rtc->pie_enabled = enabled;
715	}
716	spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
717	return err;
718}
719EXPORT_SYMBOL_GPL(rtc_irq_set_state);
720
721/**
722 * rtc_irq_set_freq - set 2^N Hz periodic IRQ frequency for IRQ
723 * @rtc: the rtc device
724 * @task: currently registered with rtc_irq_register()
725 * @freq: positive frequency with which task->func() will be called
726 * Context: any
727 *
728 * Note that rtc_irq_set_state() is used to enable or disable the
729 * periodic IRQs.
730 */
731int rtc_irq_set_freq(struct rtc_device *rtc, struct rtc_task *task, int freq)
732{
733	int err = 0;
734	unsigned long flags;
735
736	if (freq <= 0 || freq > RTC_MAX_FREQ)
737		return -EINVAL;
738retry:
739	spin_lock_irqsave(&rtc->irq_task_lock, flags);
740	if (rtc->irq_task != NULL && task == NULL)
741		err = -EBUSY;
742	else if (rtc->irq_task != task)
743		err = -EACCES;
744	else {
745		rtc->irq_freq = freq;
746		if (rtc->pie_enabled && rtc_update_hrtimer(rtc, 1) < 0) {
747			spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
748			cpu_relax();
749			goto retry;
750		}
751	}
752	spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
753	return err;
754}
755EXPORT_SYMBOL_GPL(rtc_irq_set_freq);
756
757/**
758 * rtc_timer_enqueue - Adds a rtc_timer to the rtc_device timerqueue
759 * @rtc rtc device
760 * @timer timer being added.
761 *
762 * Enqueues a timer onto the rtc devices timerqueue and sets
763 * the next alarm event appropriately.
764 *
765 * Sets the enabled bit on the added timer.
766 *
767 * Must hold ops_lock for proper serialization of timerqueue
768 */
769static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer)
770{
 
 
 
 
771	timer->enabled = 1;
 
 
 
 
 
 
 
 
 
 
772	timerqueue_add(&rtc->timerqueue, &timer->node);
773	if (&timer->node == timerqueue_getnext(&rtc->timerqueue)) {
 
774		struct rtc_wkalrm alarm;
775		int err;
 
776		alarm.time = rtc_ktime_to_tm(timer->node.expires);
777		alarm.enabled = 1;
778		err = __rtc_set_alarm(rtc, &alarm);
779		if (err == -ETIME) {
780			pm_stay_awake(rtc->dev.parent);
781			schedule_work(&rtc->irqwork);
782		} else if (err) {
783			timerqueue_del(&rtc->timerqueue, &timer->node);
 
784			timer->enabled = 0;
785			return err;
786		}
787	}
788	return 0;
789}
790
791static void rtc_alarm_disable(struct rtc_device *rtc)
792{
793	if (!rtc->ops || !rtc->ops->alarm_irq_enable)
794		return;
795
796	rtc->ops->alarm_irq_enable(rtc->dev.parent, false);
 
797}
798
799/**
800 * rtc_timer_remove - Removes a rtc_timer from the rtc_device timerqueue
801 * @rtc rtc device
802 * @timer timer being removed.
803 *
804 * Removes a timer onto the rtc devices timerqueue and sets
805 * the next alarm event appropriately.
806 *
807 * Clears the enabled bit on the removed timer.
808 *
809 * Must hold ops_lock for proper serialization of timerqueue
810 */
811static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer)
812{
813	struct timerqueue_node *next = timerqueue_getnext(&rtc->timerqueue);
 
814	timerqueue_del(&rtc->timerqueue, &timer->node);
 
815	timer->enabled = 0;
816	if (next == &timer->node) {
817		struct rtc_wkalrm alarm;
818		int err;
 
819		next = timerqueue_getnext(&rtc->timerqueue);
820		if (!next) {
821			rtc_alarm_disable(rtc);
822			return;
823		}
824		alarm.time = rtc_ktime_to_tm(next->expires);
825		alarm.enabled = 1;
826		err = __rtc_set_alarm(rtc, &alarm);
827		if (err == -ETIME) {
828			pm_stay_awake(rtc->dev.parent);
829			schedule_work(&rtc->irqwork);
830		}
831	}
832}
833
834/**
835 * rtc_timer_do_work - Expires rtc timers
836 * @rtc rtc device
837 * @timer timer being removed.
838 *
839 * Expires rtc timers. Reprograms next alarm event if needed.
840 * Called via worktask.
841 *
842 * Serializes access to timerqueue via ops_lock mutex
843 */
844void rtc_timer_do_work(struct work_struct *work)
845{
846	struct rtc_timer *timer;
847	struct timerqueue_node *next;
848	ktime_t now;
849	struct rtc_time tm;
850
851	struct rtc_device *rtc =
852		container_of(work, struct rtc_device, irqwork);
853
854	mutex_lock(&rtc->ops_lock);
855again:
856	__rtc_read_time(rtc, &tm);
857	now = rtc_tm_to_ktime(tm);
858	while ((next = timerqueue_getnext(&rtc->timerqueue))) {
859		if (next->expires.tv64 > now.tv64)
860			break;
861
862		/* expire timer */
863		timer = container_of(next, struct rtc_timer, node);
864		timerqueue_del(&rtc->timerqueue, &timer->node);
 
865		timer->enabled = 0;
866		if (timer->task.func)
867			timer->task.func(timer->task.private_data);
868
 
869		/* Re-add/fwd periodic timers */
870		if (ktime_to_ns(timer->period)) {
871			timer->node.expires = ktime_add(timer->node.expires,
872							timer->period);
873			timer->enabled = 1;
874			timerqueue_add(&rtc->timerqueue, &timer->node);
 
875		}
876	}
877
878	/* Set next alarm */
879	if (next) {
880		struct rtc_wkalrm alarm;
881		int err;
 
 
882		alarm.time = rtc_ktime_to_tm(next->expires);
883		alarm.enabled = 1;
 
884		err = __rtc_set_alarm(rtc, &alarm);
885		if (err == -ETIME)
 
 
 
 
 
 
 
 
 
 
886			goto again;
887	} else
 
888		rtc_alarm_disable(rtc);
 
889
890	pm_relax(rtc->dev.parent);
891	mutex_unlock(&rtc->ops_lock);
892}
893
894
895/* rtc_timer_init - Initializes an rtc_timer
896 * @timer: timer to be intiialized
897 * @f: function pointer to be called when timer fires
898 * @data: private data passed to function pointer
899 *
900 * Kernel interface to initializing an rtc_timer.
901 */
902void rtc_timer_init(struct rtc_timer *timer, void (*f)(void *p), void *data)
 
903{
904	timerqueue_init(&timer->node);
905	timer->enabled = 0;
906	timer->task.func = f;
907	timer->task.private_data = data;
908}
909
910/* rtc_timer_start - Sets an rtc_timer to fire in the future
911 * @ rtc: rtc device to be used
912 * @ timer: timer being set
913 * @ expires: time at which to expire the timer
914 * @ period: period that the timer will recur
915 *
916 * Kernel interface to set an rtc_timer
917 */
918int rtc_timer_start(struct rtc_device *rtc, struct rtc_timer *timer,
919			ktime_t expires, ktime_t period)
920{
921	int ret = 0;
 
922	mutex_lock(&rtc->ops_lock);
923	if (timer->enabled)
924		rtc_timer_remove(rtc, timer);
925
926	timer->node.expires = expires;
927	timer->period = period;
928
929	ret = rtc_timer_enqueue(rtc, timer);
930
931	mutex_unlock(&rtc->ops_lock);
932	return ret;
933}
934
935/* rtc_timer_cancel - Stops an rtc_timer
936 * @ rtc: rtc device to be used
937 * @ timer: timer being set
938 *
939 * Kernel interface to cancel an rtc_timer
940 */
941int rtc_timer_cancel(struct rtc_device *rtc, struct rtc_timer *timer)
942{
943	int ret = 0;
944	mutex_lock(&rtc->ops_lock);
945	if (timer->enabled)
946		rtc_timer_remove(rtc, timer);
947	mutex_unlock(&rtc->ops_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
948	return ret;
949}
950
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
951
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * RTC subsystem, interface functions
   4 *
   5 * Copyright (C) 2005 Tower Technologies
   6 * Author: Alessandro Zummo <a.zummo@towertech.it>
   7 *
   8 * based on arch/arm/common/rtctime.c
   9 */
 
 
 
 
  10
  11#include <linux/rtc.h>
  12#include <linux/sched.h>
  13#include <linux/module.h>
  14#include <linux/log2.h>
  15#include <linux/workqueue.h>
  16
  17#define CREATE_TRACE_POINTS
  18#include <trace/events/rtc.h>
  19
  20static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer);
  21static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer);
  22
  23static void rtc_add_offset(struct rtc_device *rtc, struct rtc_time *tm)
  24{
  25	time64_t secs;
  26
  27	if (!rtc->offset_secs)
  28		return;
  29
  30	secs = rtc_tm_to_time64(tm);
  31
  32	/*
  33	 * Since the reading time values from RTC device are always in the RTC
  34	 * original valid range, but we need to skip the overlapped region
  35	 * between expanded range and original range, which is no need to add
  36	 * the offset.
  37	 */
  38	if ((rtc->start_secs > rtc->range_min && secs >= rtc->start_secs) ||
  39	    (rtc->start_secs < rtc->range_min &&
  40	     secs <= (rtc->start_secs + rtc->range_max - rtc->range_min)))
  41		return;
  42
  43	rtc_time64_to_tm(secs + rtc->offset_secs, tm);
  44}
  45
  46static void rtc_subtract_offset(struct rtc_device *rtc, struct rtc_time *tm)
  47{
  48	time64_t secs;
  49
  50	if (!rtc->offset_secs)
  51		return;
  52
  53	secs = rtc_tm_to_time64(tm);
  54
  55	/*
  56	 * If the setting time values are in the valid range of RTC hardware
  57	 * device, then no need to subtract the offset when setting time to RTC
  58	 * device. Otherwise we need to subtract the offset to make the time
  59	 * values are valid for RTC hardware device.
  60	 */
  61	if (secs >= rtc->range_min && secs <= rtc->range_max)
  62		return;
  63
  64	rtc_time64_to_tm(secs - rtc->offset_secs, tm);
  65}
  66
  67static int rtc_valid_range(struct rtc_device *rtc, struct rtc_time *tm)
  68{
  69	if (rtc->range_min != rtc->range_max) {
  70		time64_t time = rtc_tm_to_time64(tm);
  71		time64_t range_min = rtc->set_start_time ? rtc->start_secs :
  72			rtc->range_min;
  73		time64_t range_max = rtc->set_start_time ?
  74			(rtc->start_secs + rtc->range_max - rtc->range_min) :
  75			rtc->range_max;
  76
  77		if (time < range_min || time > range_max)
  78			return -ERANGE;
  79	}
  80
  81	return 0;
  82}
  83
  84static int __rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
  85{
  86	int err;
  87
  88	if (!rtc->ops) {
  89		err = -ENODEV;
  90	} else if (!rtc->ops->read_time) {
  91		err = -EINVAL;
  92	} else {
  93		memset(tm, 0, sizeof(struct rtc_time));
  94		err = rtc->ops->read_time(rtc->dev.parent, tm);
  95		if (err < 0) {
  96			dev_dbg(&rtc->dev, "read_time: fail to read: %d\n",
  97				err);
  98			return err;
  99		}
 100
 101		rtc_add_offset(rtc, tm);
 102
 103		err = rtc_valid_tm(tm);
 104		if (err < 0)
 105			dev_dbg(&rtc->dev, "read_time: rtc_time isn't valid\n");
 106	}
 107	return err;
 108}
 109
 110int rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
 111{
 112	int err;
 113
 114	err = mutex_lock_interruptible(&rtc->ops_lock);
 115	if (err)
 116		return err;
 117
 118	err = __rtc_read_time(rtc, tm);
 119	mutex_unlock(&rtc->ops_lock);
 120
 121	trace_rtc_read_time(rtc_tm_to_time64(tm), err);
 122	return err;
 123}
 124EXPORT_SYMBOL_GPL(rtc_read_time);
 125
 126int rtc_set_time(struct rtc_device *rtc, struct rtc_time *tm)
 127{
 128	int err;
 129
 130	err = rtc_valid_tm(tm);
 131	if (err != 0)
 132		return err;
 133
 134	err = rtc_valid_range(rtc, tm);
 135	if (err)
 136		return err;
 137
 138	rtc_subtract_offset(rtc, tm);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 139
 140	err = mutex_lock_interruptible(&rtc->ops_lock);
 141	if (err)
 142		return err;
 143
 144	if (!rtc->ops)
 145		err = -ENODEV;
 146	else if (rtc->ops->set_time)
 147		err = rtc->ops->set_time(rtc->dev.parent, tm);
 148	else
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 149		err = -EINVAL;
 
 150
 151	pm_stay_awake(rtc->dev.parent);
 152	mutex_unlock(&rtc->ops_lock);
 153	/* A timer might have just expired */
 154	schedule_work(&rtc->irqwork);
 155
 156	trace_rtc_set_time(rtc_tm_to_time64(tm), err);
 157	return err;
 158}
 159EXPORT_SYMBOL_GPL(rtc_set_time);
 160
 161static int rtc_read_alarm_internal(struct rtc_device *rtc,
 162				   struct rtc_wkalrm *alarm)
 163{
 164	int err;
 165
 166	err = mutex_lock_interruptible(&rtc->ops_lock);
 167	if (err)
 168		return err;
 169
 170	if (!rtc->ops) {
 171		err = -ENODEV;
 172	} else if (!rtc->ops->read_alarm) {
 173		err = -EINVAL;
 174	} else {
 175		alarm->enabled = 0;
 176		alarm->pending = 0;
 177		alarm->time.tm_sec = -1;
 178		alarm->time.tm_min = -1;
 179		alarm->time.tm_hour = -1;
 180		alarm->time.tm_mday = -1;
 181		alarm->time.tm_mon = -1;
 182		alarm->time.tm_year = -1;
 183		alarm->time.tm_wday = -1;
 184		alarm->time.tm_yday = -1;
 185		alarm->time.tm_isdst = -1;
 186		err = rtc->ops->read_alarm(rtc->dev.parent, alarm);
 187	}
 188
 189	mutex_unlock(&rtc->ops_lock);
 190
 191	trace_rtc_read_alarm(rtc_tm_to_time64(&alarm->time), err);
 192	return err;
 193}
 194
 195int __rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
 196{
 197	int err;
 198	struct rtc_time before, now;
 199	int first_time = 1;
 200	time64_t t_now, t_alm;
 201	enum { none, day, month, year } missing = none;
 202	unsigned int days;
 203
 204	/* The lower level RTC driver may return -1 in some fields,
 205	 * creating invalid alarm->time values, for reasons like:
 206	 *
 207	 *   - The hardware may not be capable of filling them in;
 208	 *     many alarms match only on time-of-day fields, not
 209	 *     day/month/year calendar data.
 210	 *
 211	 *   - Some hardware uses illegal values as "wildcard" match
 212	 *     values, which non-Linux firmware (like a BIOS) may try
 213	 *     to set up as e.g. "alarm 15 minutes after each hour".
 214	 *     Linux uses only oneshot alarms.
 215	 *
 216	 * When we see that here, we deal with it by using values from
 217	 * a current RTC timestamp for any missing (-1) values.  The
 218	 * RTC driver prevents "periodic alarm" modes.
 219	 *
 220	 * But this can be racey, because some fields of the RTC timestamp
 221	 * may have wrapped in the interval since we read the RTC alarm,
 222	 * which would lead to us inserting inconsistent values in place
 223	 * of the -1 fields.
 224	 *
 225	 * Reading the alarm and timestamp in the reverse sequence
 226	 * would have the same race condition, and not solve the issue.
 227	 *
 228	 * So, we must first read the RTC timestamp,
 229	 * then read the RTC alarm value,
 230	 * and then read a second RTC timestamp.
 231	 *
 232	 * If any fields of the second timestamp have changed
 233	 * when compared with the first timestamp, then we know
 234	 * our timestamp may be inconsistent with that used by
 235	 * the low-level rtc_read_alarm_internal() function.
 236	 *
 237	 * So, when the two timestamps disagree, we just loop and do
 238	 * the process again to get a fully consistent set of values.
 239	 *
 240	 * This could all instead be done in the lower level driver,
 241	 * but since more than one lower level RTC implementation needs it,
 242	 * then it's probably best best to do it here instead of there..
 243	 */
 244
 245	/* Get the "before" timestamp */
 246	err = rtc_read_time(rtc, &before);
 247	if (err < 0)
 248		return err;
 249	do {
 250		if (!first_time)
 251			memcpy(&before, &now, sizeof(struct rtc_time));
 252		first_time = 0;
 253
 254		/* get the RTC alarm values, which may be incomplete */
 255		err = rtc_read_alarm_internal(rtc, alarm);
 256		if (err)
 257			return err;
 258
 259		/* full-function RTCs won't have such missing fields */
 260		if (rtc_valid_tm(&alarm->time) == 0) {
 261			rtc_add_offset(rtc, &alarm->time);
 262			return 0;
 263		}
 264
 265		/* get the "after" timestamp, to detect wrapped fields */
 266		err = rtc_read_time(rtc, &now);
 267		if (err < 0)
 268			return err;
 269
 270		/* note that tm_sec is a "don't care" value here: */
 271	} while (before.tm_min  != now.tm_min ||
 272		 before.tm_hour != now.tm_hour ||
 273		 before.tm_mon  != now.tm_mon ||
 274		 before.tm_year != now.tm_year);
 275
 276	/* Fill in the missing alarm fields using the timestamp; we
 277	 * know there's at least one since alarm->time is invalid.
 278	 */
 279	if (alarm->time.tm_sec == -1)
 280		alarm->time.tm_sec = now.tm_sec;
 281	if (alarm->time.tm_min == -1)
 282		alarm->time.tm_min = now.tm_min;
 283	if (alarm->time.tm_hour == -1)
 284		alarm->time.tm_hour = now.tm_hour;
 285
 286	/* For simplicity, only support date rollover for now */
 287	if (alarm->time.tm_mday < 1 || alarm->time.tm_mday > 31) {
 288		alarm->time.tm_mday = now.tm_mday;
 289		missing = day;
 290	}
 291	if ((unsigned int)alarm->time.tm_mon >= 12) {
 292		alarm->time.tm_mon = now.tm_mon;
 293		if (missing == none)
 294			missing = month;
 295	}
 296	if (alarm->time.tm_year == -1) {
 297		alarm->time.tm_year = now.tm_year;
 298		if (missing == none)
 299			missing = year;
 300	}
 301
 302	/* Can't proceed if alarm is still invalid after replacing
 303	 * missing fields.
 304	 */
 305	err = rtc_valid_tm(&alarm->time);
 306	if (err)
 307		goto done;
 308
 309	/* with luck, no rollover is needed */
 310	t_now = rtc_tm_to_time64(&now);
 311	t_alm = rtc_tm_to_time64(&alarm->time);
 312	if (t_now < t_alm)
 313		goto done;
 314
 315	switch (missing) {
 
 316	/* 24 hour rollover ... if it's now 10am Monday, an alarm that
 317	 * that will trigger at 5am will do so at 5am Tuesday, which
 318	 * could also be in the next month or year.  This is a common
 319	 * case, especially for PCs.
 320	 */
 321	case day:
 322		dev_dbg(&rtc->dev, "alarm rollover: %s\n", "day");
 323		t_alm += 24 * 60 * 60;
 324		rtc_time64_to_tm(t_alm, &alarm->time);
 325		break;
 326
 327	/* Month rollover ... if it's the 31th, an alarm on the 3rd will
 328	 * be next month.  An alarm matching on the 30th, 29th, or 28th
 329	 * may end up in the month after that!  Many newer PCs support
 330	 * this type of alarm.
 331	 */
 332	case month:
 333		dev_dbg(&rtc->dev, "alarm rollover: %s\n", "month");
 334		do {
 335			if (alarm->time.tm_mon < 11) {
 336				alarm->time.tm_mon++;
 337			} else {
 338				alarm->time.tm_mon = 0;
 339				alarm->time.tm_year++;
 340			}
 341			days = rtc_month_days(alarm->time.tm_mon,
 342					      alarm->time.tm_year);
 343		} while (days < alarm->time.tm_mday);
 344		break;
 345
 346	/* Year rollover ... easy except for leap years! */
 347	case year:
 348		dev_dbg(&rtc->dev, "alarm rollover: %s\n", "year");
 349		do {
 350			alarm->time.tm_year++;
 351		} while (!is_leap_year(alarm->time.tm_year + 1900) &&
 352			 rtc_valid_tm(&alarm->time) != 0);
 353		break;
 354
 355	default:
 356		dev_warn(&rtc->dev, "alarm rollover not handled\n");
 357	}
 358
 359	err = rtc_valid_tm(&alarm->time);
 360
 361done:
 362	if (err)
 363		dev_warn(&rtc->dev, "invalid alarm value: %ptR\n",
 364			 &alarm->time);
 365
 366	return err;
 367}
 368
 369int rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
 370{
 371	int err;
 372
 373	err = mutex_lock_interruptible(&rtc->ops_lock);
 374	if (err)
 375		return err;
 376	if (!rtc->ops) {
 377		err = -ENODEV;
 378	} else if (!rtc->ops->read_alarm) {
 379		err = -EINVAL;
 380	} else {
 381		memset(alarm, 0, sizeof(struct rtc_wkalrm));
 382		alarm->enabled = rtc->aie_timer.enabled;
 383		alarm->time = rtc_ktime_to_tm(rtc->aie_timer.node.expires);
 384	}
 385	mutex_unlock(&rtc->ops_lock);
 386
 387	trace_rtc_read_alarm(rtc_tm_to_time64(&alarm->time), err);
 388	return err;
 389}
 390EXPORT_SYMBOL_GPL(rtc_read_alarm);
 391
 392static int __rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
 393{
 394	struct rtc_time tm;
 395	time64_t now, scheduled;
 396	int err;
 397
 398	err = rtc_valid_tm(&alarm->time);
 399	if (err)
 400		return err;
 401
 402	scheduled = rtc_tm_to_time64(&alarm->time);
 403
 404	/* Make sure we're not setting alarms in the past */
 405	err = __rtc_read_time(rtc, &tm);
 406	if (err)
 407		return err;
 408	now = rtc_tm_to_time64(&tm);
 409	if (scheduled <= now)
 410		return -ETIME;
 411	/*
 412	 * XXX - We just checked to make sure the alarm time is not
 413	 * in the past, but there is still a race window where if
 414	 * the is alarm set for the next second and the second ticks
 415	 * over right here, before we set the alarm.
 416	 */
 417
 418	rtc_subtract_offset(rtc, &alarm->time);
 419
 420	if (!rtc->ops)
 421		err = -ENODEV;
 422	else if (!rtc->ops->set_alarm)
 423		err = -EINVAL;
 424	else
 425		err = rtc->ops->set_alarm(rtc->dev.parent, alarm);
 426
 427	trace_rtc_set_alarm(rtc_tm_to_time64(&alarm->time), err);
 428	return err;
 429}
 430
 431int rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
 432{
 433	int err;
 434
 435	if (!rtc->ops)
 436		return -ENODEV;
 437	else if (!rtc->ops->set_alarm)
 438		return -EINVAL;
 439
 440	err = rtc_valid_tm(&alarm->time);
 441	if (err != 0)
 442		return err;
 443
 444	err = rtc_valid_range(rtc, &alarm->time);
 445	if (err)
 446		return err;
 447
 448	err = mutex_lock_interruptible(&rtc->ops_lock);
 449	if (err)
 450		return err;
 451	if (rtc->aie_timer.enabled)
 452		rtc_timer_remove(rtc, &rtc->aie_timer);
 453
 454	rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time);
 455	rtc->aie_timer.period = 0;
 456	if (alarm->enabled)
 457		err = rtc_timer_enqueue(rtc, &rtc->aie_timer);
 458
 459	mutex_unlock(&rtc->ops_lock);
 460
 461	return err;
 462}
 463EXPORT_SYMBOL_GPL(rtc_set_alarm);
 464
 465/* Called once per device from rtc_device_register */
 466int rtc_initialize_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
 467{
 468	int err;
 469	struct rtc_time now;
 470
 471	err = rtc_valid_tm(&alarm->time);
 472	if (err != 0)
 473		return err;
 474
 475	err = rtc_read_time(rtc, &now);
 476	if (err)
 477		return err;
 478
 479	err = mutex_lock_interruptible(&rtc->ops_lock);
 480	if (err)
 481		return err;
 482
 483	rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time);
 484	rtc->aie_timer.period = 0;
 
 
 
 
 485
 486	/* Alarm has to be enabled & in the future for us to enqueue it */
 487	if (alarm->enabled && (rtc_tm_to_ktime(now) <
 488			 rtc->aie_timer.node.expires)) {
 489		rtc->aie_timer.enabled = 1;
 490		timerqueue_add(&rtc->timerqueue, &rtc->aie_timer.node);
 491		trace_rtc_timer_enqueue(&rtc->aie_timer);
 492	}
 493	mutex_unlock(&rtc->ops_lock);
 494	return err;
 495}
 496EXPORT_SYMBOL_GPL(rtc_initialize_alarm);
 497
 
 
 498int rtc_alarm_irq_enable(struct rtc_device *rtc, unsigned int enabled)
 499{
 500	int err;
 501
 502	err = mutex_lock_interruptible(&rtc->ops_lock);
 503	if (err)
 504		return err;
 505
 506	if (rtc->aie_timer.enabled != enabled) {
 507		if (enabled)
 508			err = rtc_timer_enqueue(rtc, &rtc->aie_timer);
 509		else
 510			rtc_timer_remove(rtc, &rtc->aie_timer);
 511	}
 512
 513	if (err)
 514		/* nothing */;
 515	else if (!rtc->ops)
 516		err = -ENODEV;
 517	else if (!rtc->ops->alarm_irq_enable)
 518		err = -EINVAL;
 519	else
 520		err = rtc->ops->alarm_irq_enable(rtc->dev.parent, enabled);
 521
 522	mutex_unlock(&rtc->ops_lock);
 523
 524	trace_rtc_alarm_irq_enable(enabled, err);
 525	return err;
 526}
 527EXPORT_SYMBOL_GPL(rtc_alarm_irq_enable);
 528
 529int rtc_update_irq_enable(struct rtc_device *rtc, unsigned int enabled)
 530{
 531	int err;
 532
 533	err = mutex_lock_interruptible(&rtc->ops_lock);
 534	if (err)
 535		return err;
 536
 537#ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
 538	if (enabled == 0 && rtc->uie_irq_active) {
 539		mutex_unlock(&rtc->ops_lock);
 540		return rtc_dev_update_irq_enable_emul(rtc, 0);
 541	}
 542#endif
 543	/* make sure we're changing state */
 544	if (rtc->uie_rtctimer.enabled == enabled)
 545		goto out;
 546
 547	if (rtc->uie_unsupported) {
 548		err = -EINVAL;
 549		goto out;
 550	}
 551
 552	if (enabled) {
 553		struct rtc_time tm;
 554		ktime_t now, onesec;
 555
 556		__rtc_read_time(rtc, &tm);
 557		onesec = ktime_set(1, 0);
 558		now = rtc_tm_to_ktime(tm);
 559		rtc->uie_rtctimer.node.expires = ktime_add(now, onesec);
 560		rtc->uie_rtctimer.period = ktime_set(1, 0);
 561		err = rtc_timer_enqueue(rtc, &rtc->uie_rtctimer);
 562	} else {
 563		rtc_timer_remove(rtc, &rtc->uie_rtctimer);
 564	}
 565
 566out:
 567	mutex_unlock(&rtc->ops_lock);
 568#ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
 569	/*
 570	 * Enable emulation if the driver returned -EINVAL to signal that it has
 571	 * been configured without interrupts or they are not available at the
 572	 * moment.
 
 573	 */
 574	if (err == -EINVAL)
 575		err = rtc_dev_update_irq_enable_emul(rtc, enabled);
 576#endif
 577	return err;
 
 578}
 579EXPORT_SYMBOL_GPL(rtc_update_irq_enable);
 580
 
 581/**
 582 * rtc_handle_legacy_irq - AIE, UIE and PIE event hook
 583 * @rtc: pointer to the rtc device
 584 *
 585 * This function is called when an AIE, UIE or PIE mode interrupt
 586 * has occurred (or been emulated).
 587 *
 
 588 */
 589void rtc_handle_legacy_irq(struct rtc_device *rtc, int num, int mode)
 590{
 591	unsigned long flags;
 592
 593	/* mark one irq of the appropriate mode */
 594	spin_lock_irqsave(&rtc->irq_lock, flags);
 595	rtc->irq_data = (rtc->irq_data + (num << 8)) | (RTC_IRQF | mode);
 596	spin_unlock_irqrestore(&rtc->irq_lock, flags);
 597
 
 
 
 
 
 
 598	wake_up_interruptible(&rtc->irq_queue);
 599	kill_fasync(&rtc->async_queue, SIGIO, POLL_IN);
 600}
 601
 
 602/**
 603 * rtc_aie_update_irq - AIE mode rtctimer hook
 604 * @rtc: pointer to the rtc_device
 605 *
 606 * This functions is called when the aie_timer expires.
 607 */
 608void rtc_aie_update_irq(struct rtc_device *rtc)
 609{
 
 610	rtc_handle_legacy_irq(rtc, 1, RTC_AF);
 611}
 612
 
 613/**
 614 * rtc_uie_update_irq - UIE mode rtctimer hook
 615 * @rtc: pointer to the rtc_device
 616 *
 617 * This functions is called when the uie_timer expires.
 618 */
 619void rtc_uie_update_irq(struct rtc_device *rtc)
 620{
 
 621	rtc_handle_legacy_irq(rtc, 1,  RTC_UF);
 622}
 623
 
 624/**
 625 * rtc_pie_update_irq - PIE mode hrtimer hook
 626 * @timer: pointer to the pie mode hrtimer
 627 *
 628 * This function is used to emulate PIE mode interrupts
 629 * using an hrtimer. This function is called when the periodic
 630 * hrtimer expires.
 631 */
 632enum hrtimer_restart rtc_pie_update_irq(struct hrtimer *timer)
 633{
 634	struct rtc_device *rtc;
 635	ktime_t period;
 636	u64 count;
 637
 638	rtc = container_of(timer, struct rtc_device, pie_timer);
 639
 640	period = NSEC_PER_SEC / rtc->irq_freq;
 641	count = hrtimer_forward_now(timer, period);
 642
 643	rtc_handle_legacy_irq(rtc, count, RTC_PF);
 644
 645	return HRTIMER_RESTART;
 646}
 647
 648/**
 649 * rtc_update_irq - Triggered when a RTC interrupt occurs.
 650 * @rtc: the rtc device
 651 * @num: how many irqs are being reported (usually one)
 652 * @events: mask of RTC_IRQF with one or more of RTC_PF, RTC_AF, RTC_UF
 653 * Context: any
 654 */
 655void rtc_update_irq(struct rtc_device *rtc,
 656		    unsigned long num, unsigned long events)
 657{
 658	if (IS_ERR_OR_NULL(rtc))
 659		return;
 660
 661	pm_stay_awake(rtc->dev.parent);
 662	schedule_work(&rtc->irqwork);
 663}
 664EXPORT_SYMBOL_GPL(rtc_update_irq);
 665
 
 
 
 
 
 
 
 
 
 666struct rtc_device *rtc_class_open(const char *name)
 667{
 668	struct device *dev;
 669	struct rtc_device *rtc = NULL;
 670
 671	dev = class_find_device_by_name(rtc_class, name);
 672	if (dev)
 673		rtc = to_rtc_device(dev);
 674
 675	if (rtc) {
 676		if (!try_module_get(rtc->owner)) {
 677			put_device(dev);
 678			rtc = NULL;
 679		}
 680	}
 681
 682	return rtc;
 683}
 684EXPORT_SYMBOL_GPL(rtc_class_open);
 685
 686void rtc_class_close(struct rtc_device *rtc)
 687{
 688	module_put(rtc->owner);
 689	put_device(&rtc->dev);
 690}
 691EXPORT_SYMBOL_GPL(rtc_class_close);
 692
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 693static int rtc_update_hrtimer(struct rtc_device *rtc, int enabled)
 694{
 695	/*
 696	 * We always cancel the timer here first, because otherwise
 697	 * we could run into BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
 698	 * when we manage to start the timer before the callback
 699	 * returns HRTIMER_RESTART.
 700	 *
 701	 * We cannot use hrtimer_cancel() here as a running callback
 702	 * could be blocked on rtc->irq_task_lock and hrtimer_cancel()
 703	 * would spin forever.
 704	 */
 705	if (hrtimer_try_to_cancel(&rtc->pie_timer) < 0)
 706		return -1;
 707
 708	if (enabled) {
 709		ktime_t period = NSEC_PER_SEC / rtc->irq_freq;
 710
 711		hrtimer_start(&rtc->pie_timer, period, HRTIMER_MODE_REL);
 712	}
 713	return 0;
 714}
 715
 716/**
 717 * rtc_irq_set_state - enable/disable 2^N Hz periodic IRQs
 718 * @rtc: the rtc device
 
 719 * @enabled: true to enable periodic IRQs
 720 * Context: any
 721 *
 722 * Note that rtc_irq_set_freq() should previously have been used to
 723 * specify the desired frequency of periodic IRQ.
 724 */
 725int rtc_irq_set_state(struct rtc_device *rtc, int enabled)
 726{
 727	int err = 0;
 
 728
 729	while (rtc_update_hrtimer(rtc, enabled) < 0)
 730		cpu_relax();
 731
 732	rtc->pie_enabled = enabled;
 733
 734	trace_rtc_irq_set_state(enabled, err);
 
 
 
 
 
 
 
 
 
 735	return err;
 736}
 
 737
 738/**
 739 * rtc_irq_set_freq - set 2^N Hz periodic IRQ frequency for IRQ
 740 * @rtc: the rtc device
 741 * @freq: positive frequency
 
 742 * Context: any
 743 *
 744 * Note that rtc_irq_set_state() is used to enable or disable the
 745 * periodic IRQs.
 746 */
 747int rtc_irq_set_freq(struct rtc_device *rtc, int freq)
 748{
 749	int err = 0;
 
 750
 751	if (freq <= 0 || freq > RTC_MAX_FREQ)
 752		return -EINVAL;
 753
 754	rtc->irq_freq = freq;
 755	while (rtc->pie_enabled && rtc_update_hrtimer(rtc, 1) < 0)
 756		cpu_relax();
 757
 758	trace_rtc_irq_set_freq(freq, err);
 
 
 
 
 
 
 
 
 
 759	return err;
 760}
 
 761
 762/**
 763 * rtc_timer_enqueue - Adds a rtc_timer to the rtc_device timerqueue
 764 * @rtc rtc device
 765 * @timer timer being added.
 766 *
 767 * Enqueues a timer onto the rtc devices timerqueue and sets
 768 * the next alarm event appropriately.
 769 *
 770 * Sets the enabled bit on the added timer.
 771 *
 772 * Must hold ops_lock for proper serialization of timerqueue
 773 */
 774static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer)
 775{
 776	struct timerqueue_node *next = timerqueue_getnext(&rtc->timerqueue);
 777	struct rtc_time tm;
 778	ktime_t now;
 779
 780	timer->enabled = 1;
 781	__rtc_read_time(rtc, &tm);
 782	now = rtc_tm_to_ktime(tm);
 783
 784	/* Skip over expired timers */
 785	while (next) {
 786		if (next->expires >= now)
 787			break;
 788		next = timerqueue_iterate_next(next);
 789	}
 790
 791	timerqueue_add(&rtc->timerqueue, &timer->node);
 792	trace_rtc_timer_enqueue(timer);
 793	if (!next || ktime_before(timer->node.expires, next->expires)) {
 794		struct rtc_wkalrm alarm;
 795		int err;
 796
 797		alarm.time = rtc_ktime_to_tm(timer->node.expires);
 798		alarm.enabled = 1;
 799		err = __rtc_set_alarm(rtc, &alarm);
 800		if (err == -ETIME) {
 801			pm_stay_awake(rtc->dev.parent);
 802			schedule_work(&rtc->irqwork);
 803		} else if (err) {
 804			timerqueue_del(&rtc->timerqueue, &timer->node);
 805			trace_rtc_timer_dequeue(timer);
 806			timer->enabled = 0;
 807			return err;
 808		}
 809	}
 810	return 0;
 811}
 812
 813static void rtc_alarm_disable(struct rtc_device *rtc)
 814{
 815	if (!rtc->ops || !rtc->ops->alarm_irq_enable)
 816		return;
 817
 818	rtc->ops->alarm_irq_enable(rtc->dev.parent, false);
 819	trace_rtc_alarm_irq_enable(0, 0);
 820}
 821
 822/**
 823 * rtc_timer_remove - Removes a rtc_timer from the rtc_device timerqueue
 824 * @rtc rtc device
 825 * @timer timer being removed.
 826 *
 827 * Removes a timer onto the rtc devices timerqueue and sets
 828 * the next alarm event appropriately.
 829 *
 830 * Clears the enabled bit on the removed timer.
 831 *
 832 * Must hold ops_lock for proper serialization of timerqueue
 833 */
 834static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer)
 835{
 836	struct timerqueue_node *next = timerqueue_getnext(&rtc->timerqueue);
 837
 838	timerqueue_del(&rtc->timerqueue, &timer->node);
 839	trace_rtc_timer_dequeue(timer);
 840	timer->enabled = 0;
 841	if (next == &timer->node) {
 842		struct rtc_wkalrm alarm;
 843		int err;
 844
 845		next = timerqueue_getnext(&rtc->timerqueue);
 846		if (!next) {
 847			rtc_alarm_disable(rtc);
 848			return;
 849		}
 850		alarm.time = rtc_ktime_to_tm(next->expires);
 851		alarm.enabled = 1;
 852		err = __rtc_set_alarm(rtc, &alarm);
 853		if (err == -ETIME) {
 854			pm_stay_awake(rtc->dev.parent);
 855			schedule_work(&rtc->irqwork);
 856		}
 857	}
 858}
 859
 860/**
 861 * rtc_timer_do_work - Expires rtc timers
 862 * @rtc rtc device
 863 * @timer timer being removed.
 864 *
 865 * Expires rtc timers. Reprograms next alarm event if needed.
 866 * Called via worktask.
 867 *
 868 * Serializes access to timerqueue via ops_lock mutex
 869 */
 870void rtc_timer_do_work(struct work_struct *work)
 871{
 872	struct rtc_timer *timer;
 873	struct timerqueue_node *next;
 874	ktime_t now;
 875	struct rtc_time tm;
 876
 877	struct rtc_device *rtc =
 878		container_of(work, struct rtc_device, irqwork);
 879
 880	mutex_lock(&rtc->ops_lock);
 881again:
 882	__rtc_read_time(rtc, &tm);
 883	now = rtc_tm_to_ktime(tm);
 884	while ((next = timerqueue_getnext(&rtc->timerqueue))) {
 885		if (next->expires > now)
 886			break;
 887
 888		/* expire timer */
 889		timer = container_of(next, struct rtc_timer, node);
 890		timerqueue_del(&rtc->timerqueue, &timer->node);
 891		trace_rtc_timer_dequeue(timer);
 892		timer->enabled = 0;
 893		if (timer->func)
 894			timer->func(timer->rtc);
 895
 896		trace_rtc_timer_fired(timer);
 897		/* Re-add/fwd periodic timers */
 898		if (ktime_to_ns(timer->period)) {
 899			timer->node.expires = ktime_add(timer->node.expires,
 900							timer->period);
 901			timer->enabled = 1;
 902			timerqueue_add(&rtc->timerqueue, &timer->node);
 903			trace_rtc_timer_enqueue(timer);
 904		}
 905	}
 906
 907	/* Set next alarm */
 908	if (next) {
 909		struct rtc_wkalrm alarm;
 910		int err;
 911		int retry = 3;
 912
 913		alarm.time = rtc_ktime_to_tm(next->expires);
 914		alarm.enabled = 1;
 915reprogram:
 916		err = __rtc_set_alarm(rtc, &alarm);
 917		if (err == -ETIME) {
 918			goto again;
 919		} else if (err) {
 920			if (retry-- > 0)
 921				goto reprogram;
 922
 923			timer = container_of(next, struct rtc_timer, node);
 924			timerqueue_del(&rtc->timerqueue, &timer->node);
 925			trace_rtc_timer_dequeue(timer);
 926			timer->enabled = 0;
 927			dev_err(&rtc->dev, "__rtc_set_alarm: err=%d\n", err);
 928			goto again;
 929		}
 930	} else {
 931		rtc_alarm_disable(rtc);
 932	}
 933
 934	pm_relax(rtc->dev.parent);
 935	mutex_unlock(&rtc->ops_lock);
 936}
 937
 
 938/* rtc_timer_init - Initializes an rtc_timer
 939 * @timer: timer to be intiialized
 940 * @f: function pointer to be called when timer fires
 941 * @rtc: pointer to the rtc_device
 942 *
 943 * Kernel interface to initializing an rtc_timer.
 944 */
 945void rtc_timer_init(struct rtc_timer *timer, void (*f)(struct rtc_device *r),
 946		    struct rtc_device *rtc)
 947{
 948	timerqueue_init(&timer->node);
 949	timer->enabled = 0;
 950	timer->func = f;
 951	timer->rtc = rtc;
 952}
 953
 954/* rtc_timer_start - Sets an rtc_timer to fire in the future
 955 * @ rtc: rtc device to be used
 956 * @ timer: timer being set
 957 * @ expires: time at which to expire the timer
 958 * @ period: period that the timer will recur
 959 *
 960 * Kernel interface to set an rtc_timer
 961 */
 962int rtc_timer_start(struct rtc_device *rtc, struct rtc_timer *timer,
 963		    ktime_t expires, ktime_t period)
 964{
 965	int ret = 0;
 966
 967	mutex_lock(&rtc->ops_lock);
 968	if (timer->enabled)
 969		rtc_timer_remove(rtc, timer);
 970
 971	timer->node.expires = expires;
 972	timer->period = period;
 973
 974	ret = rtc_timer_enqueue(rtc, timer);
 975
 976	mutex_unlock(&rtc->ops_lock);
 977	return ret;
 978}
 979
 980/* rtc_timer_cancel - Stops an rtc_timer
 981 * @ rtc: rtc device to be used
 982 * @ timer: timer being set
 983 *
 984 * Kernel interface to cancel an rtc_timer
 985 */
 986void rtc_timer_cancel(struct rtc_device *rtc, struct rtc_timer *timer)
 987{
 
 988	mutex_lock(&rtc->ops_lock);
 989	if (timer->enabled)
 990		rtc_timer_remove(rtc, timer);
 991	mutex_unlock(&rtc->ops_lock);
 992}
 993
 994/**
 995 * rtc_read_offset - Read the amount of rtc offset in parts per billion
 996 * @ rtc: rtc device to be used
 997 * @ offset: the offset in parts per billion
 998 *
 999 * see below for details.
1000 *
1001 * Kernel interface to read rtc clock offset
1002 * Returns 0 on success, or a negative number on error.
1003 * If read_offset() is not implemented for the rtc, return -EINVAL
1004 */
1005int rtc_read_offset(struct rtc_device *rtc, long *offset)
1006{
1007	int ret;
1008
1009	if (!rtc->ops)
1010		return -ENODEV;
1011
1012	if (!rtc->ops->read_offset)
1013		return -EINVAL;
1014
1015	mutex_lock(&rtc->ops_lock);
1016	ret = rtc->ops->read_offset(rtc->dev.parent, offset);
1017	mutex_unlock(&rtc->ops_lock);
1018
1019	trace_rtc_read_offset(*offset, ret);
1020	return ret;
1021}
1022
1023/**
1024 * rtc_set_offset - Adjusts the duration of the average second
1025 * @ rtc: rtc device to be used
1026 * @ offset: the offset in parts per billion
1027 *
1028 * Some rtc's allow an adjustment to the average duration of a second
1029 * to compensate for differences in the actual clock rate due to temperature,
1030 * the crystal, capacitor, etc.
1031 *
1032 * The adjustment applied is as follows:
1033 *   t = t0 * (1 + offset * 1e-9)
1034 * where t0 is the measured length of 1 RTC second with offset = 0
1035 *
1036 * Kernel interface to adjust an rtc clock offset.
1037 * Return 0 on success, or a negative number on error.
1038 * If the rtc offset is not setable (or not implemented), return -EINVAL
1039 */
1040int rtc_set_offset(struct rtc_device *rtc, long offset)
1041{
1042	int ret;
1043
1044	if (!rtc->ops)
1045		return -ENODEV;
1046
1047	if (!rtc->ops->set_offset)
1048		return -EINVAL;
1049
1050	mutex_lock(&rtc->ops_lock);
1051	ret = rtc->ops->set_offset(rtc->dev.parent, offset);
1052	mutex_unlock(&rtc->ops_lock);
1053
1054	trace_rtc_set_offset(offset, ret);
1055	return ret;
1056}