Linux Audio

Check our new training course

Loading...
v3.15
  1/*
  2 * RTC subsystem, interface functions
  3 *
  4 * Copyright (C) 2005 Tower Technologies
  5 * Author: Alessandro Zummo <a.zummo@towertech.it>
  6 *
  7 * based on arch/arm/common/rtctime.c
  8 *
  9 * This program is free software; you can redistribute it and/or modify
 10 * it under the terms of the GNU General Public License version 2 as
 11 * published by the Free Software Foundation.
 12*/
 13
 14#include <linux/rtc.h>
 15#include <linux/sched.h>
 16#include <linux/module.h>
 17#include <linux/log2.h>
 18#include <linux/workqueue.h>
 19
 20static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer);
 21static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer);
 22
 23static int __rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
 24{
 25	int err;
 26	if (!rtc->ops)
 27		err = -ENODEV;
 28	else if (!rtc->ops->read_time)
 29		err = -EINVAL;
 30	else {
 31		memset(tm, 0, sizeof(struct rtc_time));
 32		err = rtc->ops->read_time(rtc->dev.parent, tm);
 33	}
 34	return err;
 35}
 36
 37int rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
 38{
 39	int err;
 40
 41	err = mutex_lock_interruptible(&rtc->ops_lock);
 42	if (err)
 43		return err;
 44
 45	err = __rtc_read_time(rtc, tm);
 46	mutex_unlock(&rtc->ops_lock);
 47	return err;
 48}
 49EXPORT_SYMBOL_GPL(rtc_read_time);
 50
 51int rtc_set_time(struct rtc_device *rtc, struct rtc_time *tm)
 52{
 53	int err;
 54
 55	err = rtc_valid_tm(tm);
 56	if (err != 0)
 57		return err;
 58
 59	err = mutex_lock_interruptible(&rtc->ops_lock);
 60	if (err)
 61		return err;
 62
 63	if (!rtc->ops)
 64		err = -ENODEV;
 65	else if (rtc->ops->set_time)
 66		err = rtc->ops->set_time(rtc->dev.parent, tm);
 67	else if (rtc->ops->set_mmss) {
 68		unsigned long secs;
 69		err = rtc_tm_to_time(tm, &secs);
 70		if (err == 0)
 71			err = rtc->ops->set_mmss(rtc->dev.parent, secs);
 72	} else
 73		err = -EINVAL;
 74
 75	pm_stay_awake(rtc->dev.parent);
 76	mutex_unlock(&rtc->ops_lock);
 77	/* A timer might have just expired */
 78	schedule_work(&rtc->irqwork);
 79	return err;
 80}
 81EXPORT_SYMBOL_GPL(rtc_set_time);
 82
 83int rtc_set_mmss(struct rtc_device *rtc, unsigned long secs)
 84{
 85	int err;
 86
 87	err = mutex_lock_interruptible(&rtc->ops_lock);
 88	if (err)
 89		return err;
 90
 91	if (!rtc->ops)
 92		err = -ENODEV;
 93	else if (rtc->ops->set_mmss)
 94		err = rtc->ops->set_mmss(rtc->dev.parent, secs);
 95	else if (rtc->ops->read_time && rtc->ops->set_time) {
 96		struct rtc_time new, old;
 97
 98		err = rtc->ops->read_time(rtc->dev.parent, &old);
 99		if (err == 0) {
100			rtc_time_to_tm(secs, &new);
101
102			/*
103			 * avoid writing when we're going to change the day of
104			 * the month. We will retry in the next minute. This
105			 * basically means that if the RTC must not drift
106			 * by more than 1 minute in 11 minutes.
107			 */
108			if (!((old.tm_hour == 23 && old.tm_min == 59) ||
109				(new.tm_hour == 23 && new.tm_min == 59)))
110				err = rtc->ops->set_time(rtc->dev.parent,
111						&new);
112		}
113	} else {
114		err = -EINVAL;
115	}
 
 
116
117	pm_stay_awake(rtc->dev.parent);
118	mutex_unlock(&rtc->ops_lock);
119	/* A timer might have just expired */
120	schedule_work(&rtc->irqwork);
121
122	return err;
123}
124EXPORT_SYMBOL_GPL(rtc_set_mmss);
125
126static int rtc_read_alarm_internal(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
127{
128	int err;
129
130	err = mutex_lock_interruptible(&rtc->ops_lock);
131	if (err)
132		return err;
133
134	if (rtc->ops == NULL)
135		err = -ENODEV;
136	else if (!rtc->ops->read_alarm)
137		err = -EINVAL;
138	else {
139		memset(alarm, 0, sizeof(struct rtc_wkalrm));
140		err = rtc->ops->read_alarm(rtc->dev.parent, alarm);
141	}
142
143	mutex_unlock(&rtc->ops_lock);
144	return err;
145}
146
147int __rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
148{
149	int err;
150	struct rtc_time before, now;
151	int first_time = 1;
152	unsigned long t_now, t_alm;
153	enum { none, day, month, year } missing = none;
154	unsigned days;
155
156	/* The lower level RTC driver may return -1 in some fields,
157	 * creating invalid alarm->time values, for reasons like:
158	 *
159	 *   - The hardware may not be capable of filling them in;
160	 *     many alarms match only on time-of-day fields, not
161	 *     day/month/year calendar data.
162	 *
163	 *   - Some hardware uses illegal values as "wildcard" match
164	 *     values, which non-Linux firmware (like a BIOS) may try
165	 *     to set up as e.g. "alarm 15 minutes after each hour".
166	 *     Linux uses only oneshot alarms.
167	 *
168	 * When we see that here, we deal with it by using values from
169	 * a current RTC timestamp for any missing (-1) values.  The
170	 * RTC driver prevents "periodic alarm" modes.
171	 *
172	 * But this can be racey, because some fields of the RTC timestamp
173	 * may have wrapped in the interval since we read the RTC alarm,
174	 * which would lead to us inserting inconsistent values in place
175	 * of the -1 fields.
176	 *
177	 * Reading the alarm and timestamp in the reverse sequence
178	 * would have the same race condition, and not solve the issue.
179	 *
180	 * So, we must first read the RTC timestamp,
181	 * then read the RTC alarm value,
182	 * and then read a second RTC timestamp.
183	 *
184	 * If any fields of the second timestamp have changed
185	 * when compared with the first timestamp, then we know
186	 * our timestamp may be inconsistent with that used by
187	 * the low-level rtc_read_alarm_internal() function.
188	 *
189	 * So, when the two timestamps disagree, we just loop and do
190	 * the process again to get a fully consistent set of values.
191	 *
192	 * This could all instead be done in the lower level driver,
193	 * but since more than one lower level RTC implementation needs it,
194	 * then it's probably best best to do it here instead of there..
195	 */
196
197	/* Get the "before" timestamp */
198	err = rtc_read_time(rtc, &before);
199	if (err < 0)
200		return err;
201	do {
202		if (!first_time)
203			memcpy(&before, &now, sizeof(struct rtc_time));
204		first_time = 0;
205
206		/* get the RTC alarm values, which may be incomplete */
207		err = rtc_read_alarm_internal(rtc, alarm);
208		if (err)
209			return err;
210
211		/* full-function RTCs won't have such missing fields */
212		if (rtc_valid_tm(&alarm->time) == 0)
213			return 0;
214
215		/* get the "after" timestamp, to detect wrapped fields */
216		err = rtc_read_time(rtc, &now);
217		if (err < 0)
218			return err;
219
220		/* note that tm_sec is a "don't care" value here: */
221	} while (   before.tm_min   != now.tm_min
222		 || before.tm_hour  != now.tm_hour
223		 || before.tm_mon   != now.tm_mon
224		 || before.tm_year  != now.tm_year);
225
226	/* Fill in the missing alarm fields using the timestamp; we
227	 * know there's at least one since alarm->time is invalid.
228	 */
229	if (alarm->time.tm_sec == -1)
230		alarm->time.tm_sec = now.tm_sec;
231	if (alarm->time.tm_min == -1)
232		alarm->time.tm_min = now.tm_min;
233	if (alarm->time.tm_hour == -1)
234		alarm->time.tm_hour = now.tm_hour;
235
236	/* For simplicity, only support date rollover for now */
237	if (alarm->time.tm_mday < 1 || alarm->time.tm_mday > 31) {
238		alarm->time.tm_mday = now.tm_mday;
239		missing = day;
240	}
241	if ((unsigned)alarm->time.tm_mon >= 12) {
242		alarm->time.tm_mon = now.tm_mon;
243		if (missing == none)
244			missing = month;
245	}
246	if (alarm->time.tm_year == -1) {
247		alarm->time.tm_year = now.tm_year;
248		if (missing == none)
249			missing = year;
250	}
251
252	/* with luck, no rollover is needed */
253	rtc_tm_to_time(&now, &t_now);
254	rtc_tm_to_time(&alarm->time, &t_alm);
255	if (t_now < t_alm)
256		goto done;
257
258	switch (missing) {
259
260	/* 24 hour rollover ... if it's now 10am Monday, an alarm that
261	 * that will trigger at 5am will do so at 5am Tuesday, which
262	 * could also be in the next month or year.  This is a common
263	 * case, especially for PCs.
264	 */
265	case day:
266		dev_dbg(&rtc->dev, "alarm rollover: %s\n", "day");
267		t_alm += 24 * 60 * 60;
268		rtc_time_to_tm(t_alm, &alarm->time);
269		break;
270
271	/* Month rollover ... if it's the 31th, an alarm on the 3rd will
272	 * be next month.  An alarm matching on the 30th, 29th, or 28th
273	 * may end up in the month after that!  Many newer PCs support
274	 * this type of alarm.
275	 */
276	case month:
277		dev_dbg(&rtc->dev, "alarm rollover: %s\n", "month");
278		do {
279			if (alarm->time.tm_mon < 11)
280				alarm->time.tm_mon++;
281			else {
282				alarm->time.tm_mon = 0;
283				alarm->time.tm_year++;
284			}
285			days = rtc_month_days(alarm->time.tm_mon,
286					alarm->time.tm_year);
287		} while (days < alarm->time.tm_mday);
288		break;
289
290	/* Year rollover ... easy except for leap years! */
291	case year:
292		dev_dbg(&rtc->dev, "alarm rollover: %s\n", "year");
293		do {
294			alarm->time.tm_year++;
295		} while (rtc_valid_tm(&alarm->time) != 0);
296		break;
297
298	default:
299		dev_warn(&rtc->dev, "alarm rollover not handled\n");
300	}
301
302done:
303	return 0;
304}
305
306int rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
307{
308	int err;
309
310	err = mutex_lock_interruptible(&rtc->ops_lock);
311	if (err)
312		return err;
313	if (rtc->ops == NULL)
314		err = -ENODEV;
315	else if (!rtc->ops->read_alarm)
316		err = -EINVAL;
317	else {
318		memset(alarm, 0, sizeof(struct rtc_wkalrm));
319		alarm->enabled = rtc->aie_timer.enabled;
320		alarm->time = rtc_ktime_to_tm(rtc->aie_timer.node.expires);
321	}
322	mutex_unlock(&rtc->ops_lock);
323
324	return err;
325}
326EXPORT_SYMBOL_GPL(rtc_read_alarm);
327
328static int __rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
329{
330	struct rtc_time tm;
331	long now, scheduled;
332	int err;
333
334	err = rtc_valid_tm(&alarm->time);
335	if (err)
336		return err;
337	rtc_tm_to_time(&alarm->time, &scheduled);
338
339	/* Make sure we're not setting alarms in the past */
340	err = __rtc_read_time(rtc, &tm);
341	rtc_tm_to_time(&tm, &now);
342	if (scheduled <= now)
343		return -ETIME;
344	/*
345	 * XXX - We just checked to make sure the alarm time is not
346	 * in the past, but there is still a race window where if
347	 * the is alarm set for the next second and the second ticks
348	 * over right here, before we set the alarm.
349	 */
350
351	if (!rtc->ops)
352		err = -ENODEV;
353	else if (!rtc->ops->set_alarm)
354		err = -EINVAL;
355	else
356		err = rtc->ops->set_alarm(rtc->dev.parent, alarm);
357
358	return err;
359}
360
361int rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
362{
363	int err;
364
365	err = rtc_valid_tm(&alarm->time);
366	if (err != 0)
367		return err;
368
369	err = mutex_lock_interruptible(&rtc->ops_lock);
370	if (err)
371		return err;
372	if (rtc->aie_timer.enabled)
373		rtc_timer_remove(rtc, &rtc->aie_timer);
374
375	rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time);
376	rtc->aie_timer.period = ktime_set(0, 0);
377	if (alarm->enabled)
378		err = rtc_timer_enqueue(rtc, &rtc->aie_timer);
379
380	mutex_unlock(&rtc->ops_lock);
381	return err;
382}
383EXPORT_SYMBOL_GPL(rtc_set_alarm);
384
385/* Called once per device from rtc_device_register */
386int rtc_initialize_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
387{
388	int err;
389	struct rtc_time now;
390
391	err = rtc_valid_tm(&alarm->time);
392	if (err != 0)
393		return err;
394
395	err = rtc_read_time(rtc, &now);
396	if (err)
397		return err;
398
399	err = mutex_lock_interruptible(&rtc->ops_lock);
400	if (err)
401		return err;
402
403	rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time);
404	rtc->aie_timer.period = ktime_set(0, 0);
405
406	/* Alarm has to be enabled & in the futrure for us to enqueue it */
407	if (alarm->enabled && (rtc_tm_to_ktime(now).tv64 <
408			 rtc->aie_timer.node.expires.tv64)) {
409
410		rtc->aie_timer.enabled = 1;
411		timerqueue_add(&rtc->timerqueue, &rtc->aie_timer.node);
412	}
413	mutex_unlock(&rtc->ops_lock);
414	return err;
415}
416EXPORT_SYMBOL_GPL(rtc_initialize_alarm);
417
418
419
420int rtc_alarm_irq_enable(struct rtc_device *rtc, unsigned int enabled)
421{
422	int err = mutex_lock_interruptible(&rtc->ops_lock);
423	if (err)
424		return err;
425
426	if (rtc->aie_timer.enabled != enabled) {
427		if (enabled)
428			err = rtc_timer_enqueue(rtc, &rtc->aie_timer);
429		else
430			rtc_timer_remove(rtc, &rtc->aie_timer);
431	}
432
433	if (err)
434		/* nothing */;
435	else if (!rtc->ops)
436		err = -ENODEV;
437	else if (!rtc->ops->alarm_irq_enable)
438		err = -EINVAL;
439	else
440		err = rtc->ops->alarm_irq_enable(rtc->dev.parent, enabled);
441
442	mutex_unlock(&rtc->ops_lock);
443	return err;
444}
445EXPORT_SYMBOL_GPL(rtc_alarm_irq_enable);
446
447int rtc_update_irq_enable(struct rtc_device *rtc, unsigned int enabled)
448{
449	int err = mutex_lock_interruptible(&rtc->ops_lock);
450	if (err)
451		return err;
452
453#ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
454	if (enabled == 0 && rtc->uie_irq_active) {
455		mutex_unlock(&rtc->ops_lock);
456		return rtc_dev_update_irq_enable_emul(rtc, 0);
457	}
458#endif
459	/* make sure we're changing state */
460	if (rtc->uie_rtctimer.enabled == enabled)
461		goto out;
462
463	if (rtc->uie_unsupported) {
464		err = -EINVAL;
465		goto out;
466	}
467
468	if (enabled) {
469		struct rtc_time tm;
470		ktime_t now, onesec;
471
472		__rtc_read_time(rtc, &tm);
473		onesec = ktime_set(1, 0);
474		now = rtc_tm_to_ktime(tm);
475		rtc->uie_rtctimer.node.expires = ktime_add(now, onesec);
476		rtc->uie_rtctimer.period = ktime_set(1, 0);
477		err = rtc_timer_enqueue(rtc, &rtc->uie_rtctimer);
478	} else
479		rtc_timer_remove(rtc, &rtc->uie_rtctimer);
480
481out:
482	mutex_unlock(&rtc->ops_lock);
483#ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
484	/*
485	 * Enable emulation if the driver did not provide
486	 * the update_irq_enable function pointer or if returned
487	 * -EINVAL to signal that it has been configured without
488	 * interrupts or that are not available at the moment.
489	 */
490	if (err == -EINVAL)
491		err = rtc_dev_update_irq_enable_emul(rtc, enabled);
492#endif
493	return err;
494
495}
496EXPORT_SYMBOL_GPL(rtc_update_irq_enable);
497
498
499/**
500 * rtc_handle_legacy_irq - AIE, UIE and PIE event hook
501 * @rtc: pointer to the rtc device
502 *
503 * This function is called when an AIE, UIE or PIE mode interrupt
504 * has occurred (or been emulated).
505 *
506 * Triggers the registered irq_task function callback.
507 */
508void rtc_handle_legacy_irq(struct rtc_device *rtc, int num, int mode)
509{
510	unsigned long flags;
511
512	/* mark one irq of the appropriate mode */
513	spin_lock_irqsave(&rtc->irq_lock, flags);
514	rtc->irq_data = (rtc->irq_data + (num << 8)) | (RTC_IRQF|mode);
515	spin_unlock_irqrestore(&rtc->irq_lock, flags);
516
517	/* call the task func */
518	spin_lock_irqsave(&rtc->irq_task_lock, flags);
519	if (rtc->irq_task)
520		rtc->irq_task->func(rtc->irq_task->private_data);
521	spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
522
523	wake_up_interruptible(&rtc->irq_queue);
524	kill_fasync(&rtc->async_queue, SIGIO, POLL_IN);
525}
526
527
528/**
529 * rtc_aie_update_irq - AIE mode rtctimer hook
530 * @private: pointer to the rtc_device
531 *
532 * This functions is called when the aie_timer expires.
533 */
534void rtc_aie_update_irq(void *private)
535{
536	struct rtc_device *rtc = (struct rtc_device *)private;
537	rtc_handle_legacy_irq(rtc, 1, RTC_AF);
538}
539
540
541/**
542 * rtc_uie_update_irq - UIE mode rtctimer hook
543 * @private: pointer to the rtc_device
544 *
545 * This functions is called when the uie_timer expires.
546 */
547void rtc_uie_update_irq(void *private)
548{
549	struct rtc_device *rtc = (struct rtc_device *)private;
550	rtc_handle_legacy_irq(rtc, 1,  RTC_UF);
551}
552
553
554/**
555 * rtc_pie_update_irq - PIE mode hrtimer hook
556 * @timer: pointer to the pie mode hrtimer
557 *
558 * This function is used to emulate PIE mode interrupts
559 * using an hrtimer. This function is called when the periodic
560 * hrtimer expires.
561 */
562enum hrtimer_restart rtc_pie_update_irq(struct hrtimer *timer)
563{
564	struct rtc_device *rtc;
565	ktime_t period;
566	int count;
567	rtc = container_of(timer, struct rtc_device, pie_timer);
568
569	period = ktime_set(0, NSEC_PER_SEC/rtc->irq_freq);
570	count = hrtimer_forward_now(timer, period);
571
572	rtc_handle_legacy_irq(rtc, count, RTC_PF);
573
574	return HRTIMER_RESTART;
575}
576
577/**
578 * rtc_update_irq - Triggered when a RTC interrupt occurs.
579 * @rtc: the rtc device
580 * @num: how many irqs are being reported (usually one)
581 * @events: mask of RTC_IRQF with one or more of RTC_PF, RTC_AF, RTC_UF
582 * Context: any
583 */
584void rtc_update_irq(struct rtc_device *rtc,
585		unsigned long num, unsigned long events)
586{
587	if (unlikely(IS_ERR_OR_NULL(rtc)))
588		return;
589
590	pm_stay_awake(rtc->dev.parent);
591	schedule_work(&rtc->irqwork);
592}
593EXPORT_SYMBOL_GPL(rtc_update_irq);
594
595static int __rtc_match(struct device *dev, const void *data)
596{
597	const char *name = data;
598
599	if (strcmp(dev_name(dev), name) == 0)
600		return 1;
601	return 0;
602}
603
604struct rtc_device *rtc_class_open(const char *name)
605{
606	struct device *dev;
607	struct rtc_device *rtc = NULL;
608
609	dev = class_find_device(rtc_class, NULL, name, __rtc_match);
610	if (dev)
611		rtc = to_rtc_device(dev);
612
613	if (rtc) {
614		if (!try_module_get(rtc->owner)) {
615			put_device(dev);
616			rtc = NULL;
617		}
618	}
619
620	return rtc;
621}
622EXPORT_SYMBOL_GPL(rtc_class_open);
623
624void rtc_class_close(struct rtc_device *rtc)
625{
626	module_put(rtc->owner);
627	put_device(&rtc->dev);
628}
629EXPORT_SYMBOL_GPL(rtc_class_close);
630
631int rtc_irq_register(struct rtc_device *rtc, struct rtc_task *task)
632{
633	int retval = -EBUSY;
634
635	if (task == NULL || task->func == NULL)
636		return -EINVAL;
637
638	/* Cannot register while the char dev is in use */
639	if (test_and_set_bit_lock(RTC_DEV_BUSY, &rtc->flags))
640		return -EBUSY;
641
642	spin_lock_irq(&rtc->irq_task_lock);
643	if (rtc->irq_task == NULL) {
644		rtc->irq_task = task;
645		retval = 0;
646	}
647	spin_unlock_irq(&rtc->irq_task_lock);
648
649	clear_bit_unlock(RTC_DEV_BUSY, &rtc->flags);
650
651	return retval;
652}
653EXPORT_SYMBOL_GPL(rtc_irq_register);
654
655void rtc_irq_unregister(struct rtc_device *rtc, struct rtc_task *task)
656{
657	spin_lock_irq(&rtc->irq_task_lock);
658	if (rtc->irq_task == task)
659		rtc->irq_task = NULL;
660	spin_unlock_irq(&rtc->irq_task_lock);
661}
662EXPORT_SYMBOL_GPL(rtc_irq_unregister);
663
664static int rtc_update_hrtimer(struct rtc_device *rtc, int enabled)
665{
666	/*
667	 * We always cancel the timer here first, because otherwise
668	 * we could run into BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
669	 * when we manage to start the timer before the callback
670	 * returns HRTIMER_RESTART.
671	 *
672	 * We cannot use hrtimer_cancel() here as a running callback
673	 * could be blocked on rtc->irq_task_lock and hrtimer_cancel()
674	 * would spin forever.
675	 */
676	if (hrtimer_try_to_cancel(&rtc->pie_timer) < 0)
677		return -1;
678
679	if (enabled) {
680		ktime_t period = ktime_set(0, NSEC_PER_SEC / rtc->irq_freq);
681
682		hrtimer_start(&rtc->pie_timer, period, HRTIMER_MODE_REL);
683	}
684	return 0;
685}
686
687/**
688 * rtc_irq_set_state - enable/disable 2^N Hz periodic IRQs
689 * @rtc: the rtc device
690 * @task: currently registered with rtc_irq_register()
691 * @enabled: true to enable periodic IRQs
692 * Context: any
693 *
694 * Note that rtc_irq_set_freq() should previously have been used to
695 * specify the desired frequency of periodic IRQ task->func() callbacks.
696 */
697int rtc_irq_set_state(struct rtc_device *rtc, struct rtc_task *task, int enabled)
698{
699	int err = 0;
700	unsigned long flags;
701
702retry:
703	spin_lock_irqsave(&rtc->irq_task_lock, flags);
704	if (rtc->irq_task != NULL && task == NULL)
705		err = -EBUSY;
706	else if (rtc->irq_task != task)
707		err = -EACCES;
708	else {
709		if (rtc_update_hrtimer(rtc, enabled) < 0) {
710			spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
711			cpu_relax();
712			goto retry;
713		}
714		rtc->pie_enabled = enabled;
715	}
716	spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
717	return err;
718}
719EXPORT_SYMBOL_GPL(rtc_irq_set_state);
720
721/**
722 * rtc_irq_set_freq - set 2^N Hz periodic IRQ frequency for IRQ
723 * @rtc: the rtc device
724 * @task: currently registered with rtc_irq_register()
725 * @freq: positive frequency with which task->func() will be called
726 * Context: any
727 *
728 * Note that rtc_irq_set_state() is used to enable or disable the
729 * periodic IRQs.
730 */
731int rtc_irq_set_freq(struct rtc_device *rtc, struct rtc_task *task, int freq)
732{
733	int err = 0;
734	unsigned long flags;
735
736	if (freq <= 0 || freq > RTC_MAX_FREQ)
737		return -EINVAL;
738retry:
739	spin_lock_irqsave(&rtc->irq_task_lock, flags);
740	if (rtc->irq_task != NULL && task == NULL)
741		err = -EBUSY;
742	else if (rtc->irq_task != task)
743		err = -EACCES;
744	else {
745		rtc->irq_freq = freq;
746		if (rtc->pie_enabled && rtc_update_hrtimer(rtc, 1) < 0) {
747			spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
748			cpu_relax();
749			goto retry;
750		}
751	}
752	spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
753	return err;
754}
755EXPORT_SYMBOL_GPL(rtc_irq_set_freq);
756
757/**
758 * rtc_timer_enqueue - Adds a rtc_timer to the rtc_device timerqueue
759 * @rtc rtc device
760 * @timer timer being added.
761 *
762 * Enqueues a timer onto the rtc devices timerqueue and sets
763 * the next alarm event appropriately.
764 *
765 * Sets the enabled bit on the added timer.
766 *
767 * Must hold ops_lock for proper serialization of timerqueue
768 */
769static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer)
770{
771	timer->enabled = 1;
772	timerqueue_add(&rtc->timerqueue, &timer->node);
773	if (&timer->node == timerqueue_getnext(&rtc->timerqueue)) {
774		struct rtc_wkalrm alarm;
775		int err;
776		alarm.time = rtc_ktime_to_tm(timer->node.expires);
777		alarm.enabled = 1;
778		err = __rtc_set_alarm(rtc, &alarm);
779		if (err == -ETIME) {
780			pm_stay_awake(rtc->dev.parent);
781			schedule_work(&rtc->irqwork);
782		} else if (err) {
783			timerqueue_del(&rtc->timerqueue, &timer->node);
784			timer->enabled = 0;
785			return err;
786		}
787	}
788	return 0;
789}
790
791static void rtc_alarm_disable(struct rtc_device *rtc)
792{
793	if (!rtc->ops || !rtc->ops->alarm_irq_enable)
794		return;
795
796	rtc->ops->alarm_irq_enable(rtc->dev.parent, false);
797}
798
799/**
800 * rtc_timer_remove - Removes a rtc_timer from the rtc_device timerqueue
801 * @rtc rtc device
802 * @timer timer being removed.
803 *
804 * Removes a timer onto the rtc devices timerqueue and sets
805 * the next alarm event appropriately.
806 *
807 * Clears the enabled bit on the removed timer.
808 *
809 * Must hold ops_lock for proper serialization of timerqueue
810 */
811static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer)
812{
813	struct timerqueue_node *next = timerqueue_getnext(&rtc->timerqueue);
814	timerqueue_del(&rtc->timerqueue, &timer->node);
815	timer->enabled = 0;
816	if (next == &timer->node) {
817		struct rtc_wkalrm alarm;
818		int err;
819		next = timerqueue_getnext(&rtc->timerqueue);
820		if (!next) {
821			rtc_alarm_disable(rtc);
822			return;
823		}
824		alarm.time = rtc_ktime_to_tm(next->expires);
825		alarm.enabled = 1;
826		err = __rtc_set_alarm(rtc, &alarm);
827		if (err == -ETIME) {
828			pm_stay_awake(rtc->dev.parent);
829			schedule_work(&rtc->irqwork);
830		}
831	}
832}
833
834/**
835 * rtc_timer_do_work - Expires rtc timers
836 * @rtc rtc device
837 * @timer timer being removed.
838 *
839 * Expires rtc timers. Reprograms next alarm event if needed.
840 * Called via worktask.
841 *
842 * Serializes access to timerqueue via ops_lock mutex
843 */
844void rtc_timer_do_work(struct work_struct *work)
845{
846	struct rtc_timer *timer;
847	struct timerqueue_node *next;
848	ktime_t now;
849	struct rtc_time tm;
850
851	struct rtc_device *rtc =
852		container_of(work, struct rtc_device, irqwork);
853
854	mutex_lock(&rtc->ops_lock);
855again:
856	__rtc_read_time(rtc, &tm);
857	now = rtc_tm_to_ktime(tm);
858	while ((next = timerqueue_getnext(&rtc->timerqueue))) {
859		if (next->expires.tv64 > now.tv64)
860			break;
861
862		/* expire timer */
863		timer = container_of(next, struct rtc_timer, node);
864		timerqueue_del(&rtc->timerqueue, &timer->node);
865		timer->enabled = 0;
866		if (timer->task.func)
867			timer->task.func(timer->task.private_data);
868
869		/* Re-add/fwd periodic timers */
870		if (ktime_to_ns(timer->period)) {
871			timer->node.expires = ktime_add(timer->node.expires,
872							timer->period);
873			timer->enabled = 1;
874			timerqueue_add(&rtc->timerqueue, &timer->node);
875		}
876	}
877
878	/* Set next alarm */
879	if (next) {
880		struct rtc_wkalrm alarm;
881		int err;
882		alarm.time = rtc_ktime_to_tm(next->expires);
883		alarm.enabled = 1;
884		err = __rtc_set_alarm(rtc, &alarm);
885		if (err == -ETIME)
886			goto again;
887	} else
888		rtc_alarm_disable(rtc);
889
890	pm_relax(rtc->dev.parent);
891	mutex_unlock(&rtc->ops_lock);
892}
893
894
895/* rtc_timer_init - Initializes an rtc_timer
896 * @timer: timer to be intiialized
897 * @f: function pointer to be called when timer fires
898 * @data: private data passed to function pointer
899 *
900 * Kernel interface to initializing an rtc_timer.
901 */
902void rtc_timer_init(struct rtc_timer *timer, void (*f)(void *p), void *data)
903{
904	timerqueue_init(&timer->node);
905	timer->enabled = 0;
906	timer->task.func = f;
907	timer->task.private_data = data;
908}
909
910/* rtc_timer_start - Sets an rtc_timer to fire in the future
911 * @ rtc: rtc device to be used
912 * @ timer: timer being set
913 * @ expires: time at which to expire the timer
914 * @ period: period that the timer will recur
915 *
916 * Kernel interface to set an rtc_timer
917 */
918int rtc_timer_start(struct rtc_device *rtc, struct rtc_timer *timer,
919			ktime_t expires, ktime_t period)
920{
921	int ret = 0;
922	mutex_lock(&rtc->ops_lock);
923	if (timer->enabled)
924		rtc_timer_remove(rtc, timer);
925
926	timer->node.expires = expires;
927	timer->period = period;
928
929	ret = rtc_timer_enqueue(rtc, timer);
930
931	mutex_unlock(&rtc->ops_lock);
932	return ret;
933}
934
935/* rtc_timer_cancel - Stops an rtc_timer
936 * @ rtc: rtc device to be used
937 * @ timer: timer being set
938 *
939 * Kernel interface to cancel an rtc_timer
940 */
941int rtc_timer_cancel(struct rtc_device *rtc, struct rtc_timer *timer)
942{
943	int ret = 0;
944	mutex_lock(&rtc->ops_lock);
945	if (timer->enabled)
946		rtc_timer_remove(rtc, timer);
947	mutex_unlock(&rtc->ops_lock);
948	return ret;
949}
950
951
v3.1
  1/*
  2 * RTC subsystem, interface functions
  3 *
  4 * Copyright (C) 2005 Tower Technologies
  5 * Author: Alessandro Zummo <a.zummo@towertech.it>
  6 *
  7 * based on arch/arm/common/rtctime.c
  8 *
  9 * This program is free software; you can redistribute it and/or modify
 10 * it under the terms of the GNU General Public License version 2 as
 11 * published by the Free Software Foundation.
 12*/
 13
 14#include <linux/rtc.h>
 15#include <linux/sched.h>
 
 16#include <linux/log2.h>
 17#include <linux/workqueue.h>
 18
 19static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer);
 20static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer);
 21
 22static int __rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
 23{
 24	int err;
 25	if (!rtc->ops)
 26		err = -ENODEV;
 27	else if (!rtc->ops->read_time)
 28		err = -EINVAL;
 29	else {
 30		memset(tm, 0, sizeof(struct rtc_time));
 31		err = rtc->ops->read_time(rtc->dev.parent, tm);
 32	}
 33	return err;
 34}
 35
 36int rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
 37{
 38	int err;
 39
 40	err = mutex_lock_interruptible(&rtc->ops_lock);
 41	if (err)
 42		return err;
 43
 44	err = __rtc_read_time(rtc, tm);
 45	mutex_unlock(&rtc->ops_lock);
 46	return err;
 47}
 48EXPORT_SYMBOL_GPL(rtc_read_time);
 49
 50int rtc_set_time(struct rtc_device *rtc, struct rtc_time *tm)
 51{
 52	int err;
 53
 54	err = rtc_valid_tm(tm);
 55	if (err != 0)
 56		return err;
 57
 58	err = mutex_lock_interruptible(&rtc->ops_lock);
 59	if (err)
 60		return err;
 61
 62	if (!rtc->ops)
 63		err = -ENODEV;
 64	else if (rtc->ops->set_time)
 65		err = rtc->ops->set_time(rtc->dev.parent, tm);
 66	else if (rtc->ops->set_mmss) {
 67		unsigned long secs;
 68		err = rtc_tm_to_time(tm, &secs);
 69		if (err == 0)
 70			err = rtc->ops->set_mmss(rtc->dev.parent, secs);
 71	} else
 72		err = -EINVAL;
 73
 
 74	mutex_unlock(&rtc->ops_lock);
 
 
 75	return err;
 76}
 77EXPORT_SYMBOL_GPL(rtc_set_time);
 78
 79int rtc_set_mmss(struct rtc_device *rtc, unsigned long secs)
 80{
 81	int err;
 82
 83	err = mutex_lock_interruptible(&rtc->ops_lock);
 84	if (err)
 85		return err;
 86
 87	if (!rtc->ops)
 88		err = -ENODEV;
 89	else if (rtc->ops->set_mmss)
 90		err = rtc->ops->set_mmss(rtc->dev.parent, secs);
 91	else if (rtc->ops->read_time && rtc->ops->set_time) {
 92		struct rtc_time new, old;
 93
 94		err = rtc->ops->read_time(rtc->dev.parent, &old);
 95		if (err == 0) {
 96			rtc_time_to_tm(secs, &new);
 97
 98			/*
 99			 * avoid writing when we're going to change the day of
100			 * the month. We will retry in the next minute. This
101			 * basically means that if the RTC must not drift
102			 * by more than 1 minute in 11 minutes.
103			 */
104			if (!((old.tm_hour == 23 && old.tm_min == 59) ||
105				(new.tm_hour == 23 && new.tm_min == 59)))
106				err = rtc->ops->set_time(rtc->dev.parent,
107						&new);
108		}
 
 
109	}
110	else
111		err = -EINVAL;
112
 
113	mutex_unlock(&rtc->ops_lock);
 
 
114
115	return err;
116}
117EXPORT_SYMBOL_GPL(rtc_set_mmss);
118
119static int rtc_read_alarm_internal(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
120{
121	int err;
122
123	err = mutex_lock_interruptible(&rtc->ops_lock);
124	if (err)
125		return err;
126
127	if (rtc->ops == NULL)
128		err = -ENODEV;
129	else if (!rtc->ops->read_alarm)
130		err = -EINVAL;
131	else {
132		memset(alarm, 0, sizeof(struct rtc_wkalrm));
133		err = rtc->ops->read_alarm(rtc->dev.parent, alarm);
134	}
135
136	mutex_unlock(&rtc->ops_lock);
137	return err;
138}
139
140int __rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
141{
142	int err;
143	struct rtc_time before, now;
144	int first_time = 1;
145	unsigned long t_now, t_alm;
146	enum { none, day, month, year } missing = none;
147	unsigned days;
148
149	/* The lower level RTC driver may return -1 in some fields,
150	 * creating invalid alarm->time values, for reasons like:
151	 *
152	 *   - The hardware may not be capable of filling them in;
153	 *     many alarms match only on time-of-day fields, not
154	 *     day/month/year calendar data.
155	 *
156	 *   - Some hardware uses illegal values as "wildcard" match
157	 *     values, which non-Linux firmware (like a BIOS) may try
158	 *     to set up as e.g. "alarm 15 minutes after each hour".
159	 *     Linux uses only oneshot alarms.
160	 *
161	 * When we see that here, we deal with it by using values from
162	 * a current RTC timestamp for any missing (-1) values.  The
163	 * RTC driver prevents "periodic alarm" modes.
164	 *
165	 * But this can be racey, because some fields of the RTC timestamp
166	 * may have wrapped in the interval since we read the RTC alarm,
167	 * which would lead to us inserting inconsistent values in place
168	 * of the -1 fields.
169	 *
170	 * Reading the alarm and timestamp in the reverse sequence
171	 * would have the same race condition, and not solve the issue.
172	 *
173	 * So, we must first read the RTC timestamp,
174	 * then read the RTC alarm value,
175	 * and then read a second RTC timestamp.
176	 *
177	 * If any fields of the second timestamp have changed
178	 * when compared with the first timestamp, then we know
179	 * our timestamp may be inconsistent with that used by
180	 * the low-level rtc_read_alarm_internal() function.
181	 *
182	 * So, when the two timestamps disagree, we just loop and do
183	 * the process again to get a fully consistent set of values.
184	 *
185	 * This could all instead be done in the lower level driver,
186	 * but since more than one lower level RTC implementation needs it,
187	 * then it's probably best best to do it here instead of there..
188	 */
189
190	/* Get the "before" timestamp */
191	err = rtc_read_time(rtc, &before);
192	if (err < 0)
193		return err;
194	do {
195		if (!first_time)
196			memcpy(&before, &now, sizeof(struct rtc_time));
197		first_time = 0;
198
199		/* get the RTC alarm values, which may be incomplete */
200		err = rtc_read_alarm_internal(rtc, alarm);
201		if (err)
202			return err;
203
204		/* full-function RTCs won't have such missing fields */
205		if (rtc_valid_tm(&alarm->time) == 0)
206			return 0;
207
208		/* get the "after" timestamp, to detect wrapped fields */
209		err = rtc_read_time(rtc, &now);
210		if (err < 0)
211			return err;
212
213		/* note that tm_sec is a "don't care" value here: */
214	} while (   before.tm_min   != now.tm_min
215		 || before.tm_hour  != now.tm_hour
216		 || before.tm_mon   != now.tm_mon
217		 || before.tm_year  != now.tm_year);
218
219	/* Fill in the missing alarm fields using the timestamp; we
220	 * know there's at least one since alarm->time is invalid.
221	 */
222	if (alarm->time.tm_sec == -1)
223		alarm->time.tm_sec = now.tm_sec;
224	if (alarm->time.tm_min == -1)
225		alarm->time.tm_min = now.tm_min;
226	if (alarm->time.tm_hour == -1)
227		alarm->time.tm_hour = now.tm_hour;
228
229	/* For simplicity, only support date rollover for now */
230	if (alarm->time.tm_mday == -1) {
231		alarm->time.tm_mday = now.tm_mday;
232		missing = day;
233	}
234	if (alarm->time.tm_mon == -1) {
235		alarm->time.tm_mon = now.tm_mon;
236		if (missing == none)
237			missing = month;
238	}
239	if (alarm->time.tm_year == -1) {
240		alarm->time.tm_year = now.tm_year;
241		if (missing == none)
242			missing = year;
243	}
244
245	/* with luck, no rollover is needed */
246	rtc_tm_to_time(&now, &t_now);
247	rtc_tm_to_time(&alarm->time, &t_alm);
248	if (t_now < t_alm)
249		goto done;
250
251	switch (missing) {
252
253	/* 24 hour rollover ... if it's now 10am Monday, an alarm that
254	 * that will trigger at 5am will do so at 5am Tuesday, which
255	 * could also be in the next month or year.  This is a common
256	 * case, especially for PCs.
257	 */
258	case day:
259		dev_dbg(&rtc->dev, "alarm rollover: %s\n", "day");
260		t_alm += 24 * 60 * 60;
261		rtc_time_to_tm(t_alm, &alarm->time);
262		break;
263
264	/* Month rollover ... if it's the 31th, an alarm on the 3rd will
265	 * be next month.  An alarm matching on the 30th, 29th, or 28th
266	 * may end up in the month after that!  Many newer PCs support
267	 * this type of alarm.
268	 */
269	case month:
270		dev_dbg(&rtc->dev, "alarm rollover: %s\n", "month");
271		do {
272			if (alarm->time.tm_mon < 11)
273				alarm->time.tm_mon++;
274			else {
275				alarm->time.tm_mon = 0;
276				alarm->time.tm_year++;
277			}
278			days = rtc_month_days(alarm->time.tm_mon,
279					alarm->time.tm_year);
280		} while (days < alarm->time.tm_mday);
281		break;
282
283	/* Year rollover ... easy except for leap years! */
284	case year:
285		dev_dbg(&rtc->dev, "alarm rollover: %s\n", "year");
286		do {
287			alarm->time.tm_year++;
288		} while (rtc_valid_tm(&alarm->time) != 0);
289		break;
290
291	default:
292		dev_warn(&rtc->dev, "alarm rollover not handled\n");
293	}
294
295done:
296	return 0;
297}
298
299int rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
300{
301	int err;
302
303	err = mutex_lock_interruptible(&rtc->ops_lock);
304	if (err)
305		return err;
306	if (rtc->ops == NULL)
307		err = -ENODEV;
308	else if (!rtc->ops->read_alarm)
309		err = -EINVAL;
310	else {
311		memset(alarm, 0, sizeof(struct rtc_wkalrm));
312		alarm->enabled = rtc->aie_timer.enabled;
313		alarm->time = rtc_ktime_to_tm(rtc->aie_timer.node.expires);
314	}
315	mutex_unlock(&rtc->ops_lock);
316
317	return err;
318}
319EXPORT_SYMBOL_GPL(rtc_read_alarm);
320
321static int __rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
322{
323	struct rtc_time tm;
324	long now, scheduled;
325	int err;
326
327	err = rtc_valid_tm(&alarm->time);
328	if (err)
329		return err;
330	rtc_tm_to_time(&alarm->time, &scheduled);
331
332	/* Make sure we're not setting alarms in the past */
333	err = __rtc_read_time(rtc, &tm);
334	rtc_tm_to_time(&tm, &now);
335	if (scheduled <= now)
336		return -ETIME;
337	/*
338	 * XXX - We just checked to make sure the alarm time is not
339	 * in the past, but there is still a race window where if
340	 * the is alarm set for the next second and the second ticks
341	 * over right here, before we set the alarm.
342	 */
343
344	if (!rtc->ops)
345		err = -ENODEV;
346	else if (!rtc->ops->set_alarm)
347		err = -EINVAL;
348	else
349		err = rtc->ops->set_alarm(rtc->dev.parent, alarm);
350
351	return err;
352}
353
354int rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
355{
356	int err;
357
358	err = rtc_valid_tm(&alarm->time);
359	if (err != 0)
360		return err;
361
362	err = mutex_lock_interruptible(&rtc->ops_lock);
363	if (err)
364		return err;
365	if (rtc->aie_timer.enabled) {
366		rtc_timer_remove(rtc, &rtc->aie_timer);
367	}
368	rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time);
369	rtc->aie_timer.period = ktime_set(0, 0);
370	if (alarm->enabled) {
371		err = rtc_timer_enqueue(rtc, &rtc->aie_timer);
372	}
373	mutex_unlock(&rtc->ops_lock);
374	return err;
375}
376EXPORT_SYMBOL_GPL(rtc_set_alarm);
377
378/* Called once per device from rtc_device_register */
379int rtc_initialize_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
380{
381	int err;
 
382
383	err = rtc_valid_tm(&alarm->time);
384	if (err != 0)
385		return err;
386
 
 
 
 
387	err = mutex_lock_interruptible(&rtc->ops_lock);
388	if (err)
389		return err;
390
391	rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time);
392	rtc->aie_timer.period = ktime_set(0, 0);
393	if (alarm->enabled) {
 
 
 
 
394		rtc->aie_timer.enabled = 1;
395		timerqueue_add(&rtc->timerqueue, &rtc->aie_timer.node);
396	}
397	mutex_unlock(&rtc->ops_lock);
398	return err;
399}
400EXPORT_SYMBOL_GPL(rtc_initialize_alarm);
401
402
403
404int rtc_alarm_irq_enable(struct rtc_device *rtc, unsigned int enabled)
405{
406	int err = mutex_lock_interruptible(&rtc->ops_lock);
407	if (err)
408		return err;
409
410	if (rtc->aie_timer.enabled != enabled) {
411		if (enabled)
412			err = rtc_timer_enqueue(rtc, &rtc->aie_timer);
413		else
414			rtc_timer_remove(rtc, &rtc->aie_timer);
415	}
416
417	if (err)
418		/* nothing */;
419	else if (!rtc->ops)
420		err = -ENODEV;
421	else if (!rtc->ops->alarm_irq_enable)
422		err = -EINVAL;
423	else
424		err = rtc->ops->alarm_irq_enable(rtc->dev.parent, enabled);
425
426	mutex_unlock(&rtc->ops_lock);
427	return err;
428}
429EXPORT_SYMBOL_GPL(rtc_alarm_irq_enable);
430
431int rtc_update_irq_enable(struct rtc_device *rtc, unsigned int enabled)
432{
433	int err = mutex_lock_interruptible(&rtc->ops_lock);
434	if (err)
435		return err;
436
437#ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
438	if (enabled == 0 && rtc->uie_irq_active) {
439		mutex_unlock(&rtc->ops_lock);
440		return rtc_dev_update_irq_enable_emul(rtc, 0);
441	}
442#endif
443	/* make sure we're changing state */
444	if (rtc->uie_rtctimer.enabled == enabled)
445		goto out;
446
 
 
 
 
 
447	if (enabled) {
448		struct rtc_time tm;
449		ktime_t now, onesec;
450
451		__rtc_read_time(rtc, &tm);
452		onesec = ktime_set(1, 0);
453		now = rtc_tm_to_ktime(tm);
454		rtc->uie_rtctimer.node.expires = ktime_add(now, onesec);
455		rtc->uie_rtctimer.period = ktime_set(1, 0);
456		err = rtc_timer_enqueue(rtc, &rtc->uie_rtctimer);
457	} else
458		rtc_timer_remove(rtc, &rtc->uie_rtctimer);
459
460out:
461	mutex_unlock(&rtc->ops_lock);
462#ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
463	/*
464	 * Enable emulation if the driver did not provide
465	 * the update_irq_enable function pointer or if returned
466	 * -EINVAL to signal that it has been configured without
467	 * interrupts or that are not available at the moment.
468	 */
469	if (err == -EINVAL)
470		err = rtc_dev_update_irq_enable_emul(rtc, enabled);
471#endif
472	return err;
473
474}
475EXPORT_SYMBOL_GPL(rtc_update_irq_enable);
476
477
478/**
479 * rtc_handle_legacy_irq - AIE, UIE and PIE event hook
480 * @rtc: pointer to the rtc device
481 *
482 * This function is called when an AIE, UIE or PIE mode interrupt
483 * has occurred (or been emulated).
484 *
485 * Triggers the registered irq_task function callback.
486 */
487void rtc_handle_legacy_irq(struct rtc_device *rtc, int num, int mode)
488{
489	unsigned long flags;
490
491	/* mark one irq of the appropriate mode */
492	spin_lock_irqsave(&rtc->irq_lock, flags);
493	rtc->irq_data = (rtc->irq_data + (num << 8)) | (RTC_IRQF|mode);
494	spin_unlock_irqrestore(&rtc->irq_lock, flags);
495
496	/* call the task func */
497	spin_lock_irqsave(&rtc->irq_task_lock, flags);
498	if (rtc->irq_task)
499		rtc->irq_task->func(rtc->irq_task->private_data);
500	spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
501
502	wake_up_interruptible(&rtc->irq_queue);
503	kill_fasync(&rtc->async_queue, SIGIO, POLL_IN);
504}
505
506
507/**
508 * rtc_aie_update_irq - AIE mode rtctimer hook
509 * @private: pointer to the rtc_device
510 *
511 * This functions is called when the aie_timer expires.
512 */
513void rtc_aie_update_irq(void *private)
514{
515	struct rtc_device *rtc = (struct rtc_device *)private;
516	rtc_handle_legacy_irq(rtc, 1, RTC_AF);
517}
518
519
520/**
521 * rtc_uie_update_irq - UIE mode rtctimer hook
522 * @private: pointer to the rtc_device
523 *
524 * This functions is called when the uie_timer expires.
525 */
526void rtc_uie_update_irq(void *private)
527{
528	struct rtc_device *rtc = (struct rtc_device *)private;
529	rtc_handle_legacy_irq(rtc, 1,  RTC_UF);
530}
531
532
533/**
534 * rtc_pie_update_irq - PIE mode hrtimer hook
535 * @timer: pointer to the pie mode hrtimer
536 *
537 * This function is used to emulate PIE mode interrupts
538 * using an hrtimer. This function is called when the periodic
539 * hrtimer expires.
540 */
541enum hrtimer_restart rtc_pie_update_irq(struct hrtimer *timer)
542{
543	struct rtc_device *rtc;
544	ktime_t period;
545	int count;
546	rtc = container_of(timer, struct rtc_device, pie_timer);
547
548	period = ktime_set(0, NSEC_PER_SEC/rtc->irq_freq);
549	count = hrtimer_forward_now(timer, period);
550
551	rtc_handle_legacy_irq(rtc, count, RTC_PF);
552
553	return HRTIMER_RESTART;
554}
555
556/**
557 * rtc_update_irq - Triggered when a RTC interrupt occurs.
558 * @rtc: the rtc device
559 * @num: how many irqs are being reported (usually one)
560 * @events: mask of RTC_IRQF with one or more of RTC_PF, RTC_AF, RTC_UF
561 * Context: any
562 */
563void rtc_update_irq(struct rtc_device *rtc,
564		unsigned long num, unsigned long events)
565{
 
 
 
 
566	schedule_work(&rtc->irqwork);
567}
568EXPORT_SYMBOL_GPL(rtc_update_irq);
569
570static int __rtc_match(struct device *dev, void *data)
571{
572	char *name = (char *)data;
573
574	if (strcmp(dev_name(dev), name) == 0)
575		return 1;
576	return 0;
577}
578
579struct rtc_device *rtc_class_open(char *name)
580{
581	struct device *dev;
582	struct rtc_device *rtc = NULL;
583
584	dev = class_find_device(rtc_class, NULL, name, __rtc_match);
585	if (dev)
586		rtc = to_rtc_device(dev);
587
588	if (rtc) {
589		if (!try_module_get(rtc->owner)) {
590			put_device(dev);
591			rtc = NULL;
592		}
593	}
594
595	return rtc;
596}
597EXPORT_SYMBOL_GPL(rtc_class_open);
598
599void rtc_class_close(struct rtc_device *rtc)
600{
601	module_put(rtc->owner);
602	put_device(&rtc->dev);
603}
604EXPORT_SYMBOL_GPL(rtc_class_close);
605
606int rtc_irq_register(struct rtc_device *rtc, struct rtc_task *task)
607{
608	int retval = -EBUSY;
609
610	if (task == NULL || task->func == NULL)
611		return -EINVAL;
612
613	/* Cannot register while the char dev is in use */
614	if (test_and_set_bit_lock(RTC_DEV_BUSY, &rtc->flags))
615		return -EBUSY;
616
617	spin_lock_irq(&rtc->irq_task_lock);
618	if (rtc->irq_task == NULL) {
619		rtc->irq_task = task;
620		retval = 0;
621	}
622	spin_unlock_irq(&rtc->irq_task_lock);
623
624	clear_bit_unlock(RTC_DEV_BUSY, &rtc->flags);
625
626	return retval;
627}
628EXPORT_SYMBOL_GPL(rtc_irq_register);
629
630void rtc_irq_unregister(struct rtc_device *rtc, struct rtc_task *task)
631{
632	spin_lock_irq(&rtc->irq_task_lock);
633	if (rtc->irq_task == task)
634		rtc->irq_task = NULL;
635	spin_unlock_irq(&rtc->irq_task_lock);
636}
637EXPORT_SYMBOL_GPL(rtc_irq_unregister);
638
639static int rtc_update_hrtimer(struct rtc_device *rtc, int enabled)
640{
641	/*
642	 * We always cancel the timer here first, because otherwise
643	 * we could run into BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
644	 * when we manage to start the timer before the callback
645	 * returns HRTIMER_RESTART.
646	 *
647	 * We cannot use hrtimer_cancel() here as a running callback
648	 * could be blocked on rtc->irq_task_lock and hrtimer_cancel()
649	 * would spin forever.
650	 */
651	if (hrtimer_try_to_cancel(&rtc->pie_timer) < 0)
652		return -1;
653
654	if (enabled) {
655		ktime_t period = ktime_set(0, NSEC_PER_SEC / rtc->irq_freq);
656
657		hrtimer_start(&rtc->pie_timer, period, HRTIMER_MODE_REL);
658	}
659	return 0;
660}
661
662/**
663 * rtc_irq_set_state - enable/disable 2^N Hz periodic IRQs
664 * @rtc: the rtc device
665 * @task: currently registered with rtc_irq_register()
666 * @enabled: true to enable periodic IRQs
667 * Context: any
668 *
669 * Note that rtc_irq_set_freq() should previously have been used to
670 * specify the desired frequency of periodic IRQ task->func() callbacks.
671 */
672int rtc_irq_set_state(struct rtc_device *rtc, struct rtc_task *task, int enabled)
673{
674	int err = 0;
675	unsigned long flags;
676
677retry:
678	spin_lock_irqsave(&rtc->irq_task_lock, flags);
679	if (rtc->irq_task != NULL && task == NULL)
680		err = -EBUSY;
681	if (rtc->irq_task != task)
682		err = -EACCES;
683	if (!err) {
684		if (rtc_update_hrtimer(rtc, enabled) < 0) {
685			spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
686			cpu_relax();
687			goto retry;
688		}
689		rtc->pie_enabled = enabled;
690	}
691	spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
692	return err;
693}
694EXPORT_SYMBOL_GPL(rtc_irq_set_state);
695
696/**
697 * rtc_irq_set_freq - set 2^N Hz periodic IRQ frequency for IRQ
698 * @rtc: the rtc device
699 * @task: currently registered with rtc_irq_register()
700 * @freq: positive frequency with which task->func() will be called
701 * Context: any
702 *
703 * Note that rtc_irq_set_state() is used to enable or disable the
704 * periodic IRQs.
705 */
706int rtc_irq_set_freq(struct rtc_device *rtc, struct rtc_task *task, int freq)
707{
708	int err = 0;
709	unsigned long flags;
710
711	if (freq <= 0 || freq > RTC_MAX_FREQ)
712		return -EINVAL;
713retry:
714	spin_lock_irqsave(&rtc->irq_task_lock, flags);
715	if (rtc->irq_task != NULL && task == NULL)
716		err = -EBUSY;
717	if (rtc->irq_task != task)
718		err = -EACCES;
719	if (!err) {
720		rtc->irq_freq = freq;
721		if (rtc->pie_enabled && rtc_update_hrtimer(rtc, 1) < 0) {
722			spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
723			cpu_relax();
724			goto retry;
725		}
726	}
727	spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
728	return err;
729}
730EXPORT_SYMBOL_GPL(rtc_irq_set_freq);
731
732/**
733 * rtc_timer_enqueue - Adds a rtc_timer to the rtc_device timerqueue
734 * @rtc rtc device
735 * @timer timer being added.
736 *
737 * Enqueues a timer onto the rtc devices timerqueue and sets
738 * the next alarm event appropriately.
739 *
740 * Sets the enabled bit on the added timer.
741 *
742 * Must hold ops_lock for proper serialization of timerqueue
743 */
744static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer)
745{
746	timer->enabled = 1;
747	timerqueue_add(&rtc->timerqueue, &timer->node);
748	if (&timer->node == timerqueue_getnext(&rtc->timerqueue)) {
749		struct rtc_wkalrm alarm;
750		int err;
751		alarm.time = rtc_ktime_to_tm(timer->node.expires);
752		alarm.enabled = 1;
753		err = __rtc_set_alarm(rtc, &alarm);
754		if (err == -ETIME)
 
755			schedule_work(&rtc->irqwork);
756		else if (err) {
757			timerqueue_del(&rtc->timerqueue, &timer->node);
758			timer->enabled = 0;
759			return err;
760		}
761	}
762	return 0;
763}
764
 
 
 
 
 
 
 
 
765/**
766 * rtc_timer_remove - Removes a rtc_timer from the rtc_device timerqueue
767 * @rtc rtc device
768 * @timer timer being removed.
769 *
770 * Removes a timer onto the rtc devices timerqueue and sets
771 * the next alarm event appropriately.
772 *
773 * Clears the enabled bit on the removed timer.
774 *
775 * Must hold ops_lock for proper serialization of timerqueue
776 */
777static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer)
778{
779	struct timerqueue_node *next = timerqueue_getnext(&rtc->timerqueue);
780	timerqueue_del(&rtc->timerqueue, &timer->node);
781	timer->enabled = 0;
782	if (next == &timer->node) {
783		struct rtc_wkalrm alarm;
784		int err;
785		next = timerqueue_getnext(&rtc->timerqueue);
786		if (!next)
 
787			return;
 
788		alarm.time = rtc_ktime_to_tm(next->expires);
789		alarm.enabled = 1;
790		err = __rtc_set_alarm(rtc, &alarm);
791		if (err == -ETIME)
 
792			schedule_work(&rtc->irqwork);
 
793	}
794}
795
796/**
797 * rtc_timer_do_work - Expires rtc timers
798 * @rtc rtc device
799 * @timer timer being removed.
800 *
801 * Expires rtc timers. Reprograms next alarm event if needed.
802 * Called via worktask.
803 *
804 * Serializes access to timerqueue via ops_lock mutex
805 */
806void rtc_timer_do_work(struct work_struct *work)
807{
808	struct rtc_timer *timer;
809	struct timerqueue_node *next;
810	ktime_t now;
811	struct rtc_time tm;
812
813	struct rtc_device *rtc =
814		container_of(work, struct rtc_device, irqwork);
815
816	mutex_lock(&rtc->ops_lock);
817again:
818	__rtc_read_time(rtc, &tm);
819	now = rtc_tm_to_ktime(tm);
820	while ((next = timerqueue_getnext(&rtc->timerqueue))) {
821		if (next->expires.tv64 > now.tv64)
822			break;
823
824		/* expire timer */
825		timer = container_of(next, struct rtc_timer, node);
826		timerqueue_del(&rtc->timerqueue, &timer->node);
827		timer->enabled = 0;
828		if (timer->task.func)
829			timer->task.func(timer->task.private_data);
830
831		/* Re-add/fwd periodic timers */
832		if (ktime_to_ns(timer->period)) {
833			timer->node.expires = ktime_add(timer->node.expires,
834							timer->period);
835			timer->enabled = 1;
836			timerqueue_add(&rtc->timerqueue, &timer->node);
837		}
838	}
839
840	/* Set next alarm */
841	if (next) {
842		struct rtc_wkalrm alarm;
843		int err;
844		alarm.time = rtc_ktime_to_tm(next->expires);
845		alarm.enabled = 1;
846		err = __rtc_set_alarm(rtc, &alarm);
847		if (err == -ETIME)
848			goto again;
849	}
 
850
 
851	mutex_unlock(&rtc->ops_lock);
852}
853
854
855/* rtc_timer_init - Initializes an rtc_timer
856 * @timer: timer to be intiialized
857 * @f: function pointer to be called when timer fires
858 * @data: private data passed to function pointer
859 *
860 * Kernel interface to initializing an rtc_timer.
861 */
862void rtc_timer_init(struct rtc_timer *timer, void (*f)(void* p), void* data)
863{
864	timerqueue_init(&timer->node);
865	timer->enabled = 0;
866	timer->task.func = f;
867	timer->task.private_data = data;
868}
869
870/* rtc_timer_start - Sets an rtc_timer to fire in the future
871 * @ rtc: rtc device to be used
872 * @ timer: timer being set
873 * @ expires: time at which to expire the timer
874 * @ period: period that the timer will recur
875 *
876 * Kernel interface to set an rtc_timer
877 */
878int rtc_timer_start(struct rtc_device *rtc, struct rtc_timer* timer,
879			ktime_t expires, ktime_t period)
880{
881	int ret = 0;
882	mutex_lock(&rtc->ops_lock);
883	if (timer->enabled)
884		rtc_timer_remove(rtc, timer);
885
886	timer->node.expires = expires;
887	timer->period = period;
888
889	ret = rtc_timer_enqueue(rtc, timer);
890
891	mutex_unlock(&rtc->ops_lock);
892	return ret;
893}
894
895/* rtc_timer_cancel - Stops an rtc_timer
896 * @ rtc: rtc device to be used
897 * @ timer: timer being set
898 *
899 * Kernel interface to cancel an rtc_timer
900 */
901int rtc_timer_cancel(struct rtc_device *rtc, struct rtc_timer* timer)
902{
903	int ret = 0;
904	mutex_lock(&rtc->ops_lock);
905	if (timer->enabled)
906		rtc_timer_remove(rtc, timer);
907	mutex_unlock(&rtc->ops_lock);
908	return ret;
909}
910
911