Linux Audio

Check our new training course

Loading...
v3.15
 
  1/*
  2 * fs/f2fs/segment.h
  3 *
  4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5 *             http://www.samsung.com/
  6 *
  7 * This program is free software; you can redistribute it and/or modify
  8 * it under the terms of the GNU General Public License version 2 as
  9 * published by the Free Software Foundation.
 10 */
 11#include <linux/blkdev.h>
 
 12
 13/* constant macro */
 14#define NULL_SEGNO			((unsigned int)(~0))
 15#define NULL_SECNO			((unsigned int)(~0))
 16
 17#define DEF_RECLAIM_PREFREE_SEGMENTS	5	/* 5% over total segments */
 
 
 
 18
 19/* L: Logical segment # in volume, R: Relative segment # in main area */
 20#define GET_L2R_SEGNO(free_i, segno)	(segno - free_i->start_segno)
 21#define GET_R2L_SEGNO(free_i, segno)	(segno + free_i->start_segno)
 22
 23#define IS_DATASEG(t)	(t <= CURSEG_COLD_DATA)
 24#define IS_NODESEG(t)	(t >= CURSEG_HOT_NODE)
 
 
 
 
 25
 26#define IS_CURSEG(sbi, seg)						\
 27	((seg == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno) ||	\
 28	 (seg == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno) ||	\
 29	 (seg == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno) ||	\
 30	 (seg == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno) ||	\
 31	 (seg == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno) ||	\
 32	 (seg == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno))
 33
 34#define IS_CURSEC(sbi, secno)						\
 35	((secno == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno /		\
 36	  sbi->segs_per_sec) ||	\
 37	 (secno == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno /		\
 38	  sbi->segs_per_sec) ||	\
 39	 (secno == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno /		\
 40	  sbi->segs_per_sec) ||	\
 41	 (secno == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno /		\
 42	  sbi->segs_per_sec) ||	\
 43	 (secno == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno /		\
 44	  sbi->segs_per_sec) ||	\
 45	 (secno == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno /		\
 46	  sbi->segs_per_sec))	\
 47
 48#define START_BLOCK(sbi, segno)						\
 49	(SM_I(sbi)->seg0_blkaddr +					\
 50	 (GET_R2L_SEGNO(FREE_I(sbi), segno) << sbi->log_blocks_per_seg))
 51#define NEXT_FREE_BLKADDR(sbi, curseg)					\
 52	(START_BLOCK(sbi, curseg->segno) + curseg->next_blkoff)
 
 
 
 
 
 
 
 
 
 
 
 
 
 53
 54#define MAIN_BASE_BLOCK(sbi)	(SM_I(sbi)->main_blkaddr)
 
 55
 56#define GET_SEGOFF_FROM_SEG0(sbi, blk_addr)				\
 57	((blk_addr) - SM_I(sbi)->seg0_blkaddr)
 
 
 58#define GET_SEGNO_FROM_SEG0(sbi, blk_addr)				\
 59	(GET_SEGOFF_FROM_SEG0(sbi, blk_addr) >> sbi->log_blocks_per_seg)
 60#define GET_BLKOFF_FROM_SEG0(sbi, blk_addr)				\
 61	(GET_SEGOFF_FROM_SEG0(sbi, blk_addr) & (sbi->blocks_per_seg - 1))
 62
 63#define GET_SEGNO(sbi, blk_addr)					\
 64	(((blk_addr == NULL_ADDR) || (blk_addr == NEW_ADDR)) ?		\
 65	NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi),			\
 66		GET_SEGNO_FROM_SEG0(sbi, blk_addr)))
 67#define GET_SECNO(sbi, segno)					\
 68	((segno) / sbi->segs_per_sec)
 69#define GET_ZONENO_FROM_SEGNO(sbi, segno)				\
 70	((segno / sbi->segs_per_sec) / sbi->secs_per_zone)
 
 
 
 
 
 
 71
 72#define GET_SUM_BLOCK(sbi, segno)				\
 73	((sbi->sm_info->ssa_blkaddr) + segno)
 74
 75#define GET_SUM_TYPE(footer) ((footer)->entry_type)
 76#define SET_SUM_TYPE(footer, type) ((footer)->entry_type = type)
 77
 78#define SIT_ENTRY_OFFSET(sit_i, segno)					\
 79	(segno % sit_i->sents_per_block)
 80#define SIT_BLOCK_OFFSET(sit_i, segno)					\
 81	(segno / SIT_ENTRY_PER_BLOCK)
 82#define	START_SEGNO(sit_i, segno)		\
 83	(SIT_BLOCK_OFFSET(sit_i, segno) * SIT_ENTRY_PER_BLOCK)
 84#define SIT_BLK_CNT(sbi)			\
 85	((TOTAL_SEGS(sbi) + SIT_ENTRY_PER_BLOCK - 1) / SIT_ENTRY_PER_BLOCK)
 86#define f2fs_bitmap_size(nr)			\
 87	(BITS_TO_LONGS(nr) * sizeof(unsigned long))
 88#define TOTAL_SEGS(sbi)	(SM_I(sbi)->main_segments)
 89#define TOTAL_SECS(sbi)	(sbi->total_sections)
 90
 91#define SECTOR_FROM_BLOCK(sbi, blk_addr)				\
 92	(((sector_t)blk_addr) << (sbi)->log_sectors_per_block)
 93#define SECTOR_TO_BLOCK(sbi, sectors)					\
 94	(sectors >> (sbi)->log_sectors_per_block)
 95#define MAX_BIO_BLOCKS(max_hw_blocks)					\
 96	(min((int)max_hw_blocks, BIO_MAX_PAGES))
 97
 98/*
 99 * indicate a block allocation direction: RIGHT and LEFT.
100 * RIGHT means allocating new sections towards the end of volume.
101 * LEFT means the opposite direction.
102 */
103enum {
104	ALLOC_RIGHT = 0,
105	ALLOC_LEFT
106};
107
108/*
109 * In the victim_sel_policy->alloc_mode, there are two block allocation modes.
110 * LFS writes data sequentially with cleaning operations.
111 * SSR (Slack Space Recycle) reuses obsolete space without cleaning operations.
112 */
113enum {
114	LFS = 0,
115	SSR
116};
117
118/*
119 * In the victim_sel_policy->gc_mode, there are two gc, aka cleaning, modes.
120 * GC_CB is based on cost-benefit algorithm.
121 * GC_GREEDY is based on greedy algorithm.
122 */
123enum {
124	GC_CB = 0,
125	GC_GREEDY
 
 
 
126};
127
128/*
129 * BG_GC means the background cleaning job.
130 * FG_GC means the on-demand cleaning job.
 
131 */
132enum {
133	BG_GC = 0,
134	FG_GC
 
135};
136
137/* for a function parameter to select a victim segment */
138struct victim_sel_policy {
139	int alloc_mode;			/* LFS or SSR */
140	int gc_mode;			/* GC_CB or GC_GREEDY */
141	unsigned long *dirty_segmap;	/* dirty segment bitmap */
142	unsigned int max_search;	/* maximum # of segments to search */
143	unsigned int offset;		/* last scanned bitmap offset */
144	unsigned int ofs_unit;		/* bitmap search unit */
145	unsigned int min_cost;		/* minimum cost */
146	unsigned int min_segno;		/* segment # having min. cost */
147};
148
149struct seg_entry {
150	unsigned short valid_blocks;	/* # of valid blocks */
 
 
 
151	unsigned char *cur_valid_map;	/* validity bitmap of blocks */
 
 
 
152	/*
153	 * # of valid blocks and the validity bitmap stored in the the last
154	 * checkpoint pack. This information is used by the SSR mode.
155	 */
156	unsigned short ckpt_valid_blocks;
157	unsigned char *ckpt_valid_map;
158	unsigned char type;		/* segment type like CURSEG_XXX_TYPE */
159	unsigned long long mtime;	/* modification time of the segment */
160};
161
162struct sec_entry {
163	unsigned int valid_blocks;	/* # of valid blocks in a section */
164};
165
166struct segment_allocation {
167	void (*allocate_segment)(struct f2fs_sb_info *, int, bool);
168};
169
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
170struct sit_info {
171	const struct segment_allocation *s_ops;
172
173	block_t sit_base_addr;		/* start block address of SIT area */
174	block_t sit_blocks;		/* # of blocks used by SIT area */
175	block_t written_valid_blocks;	/* # of valid blocks in main area */
 
176	char *sit_bitmap;		/* SIT bitmap pointer */
 
 
 
 
 
 
177	unsigned int bitmap_size;	/* SIT bitmap size */
178
 
179	unsigned long *dirty_sentries_bitmap;	/* bitmap for dirty sentries */
180	unsigned int dirty_sentries;		/* # of dirty sentries */
181	unsigned int sents_per_block;		/* # of SIT entries per block */
182	struct mutex sentry_lock;		/* to protect SIT cache */
183	struct seg_entry *sentries;		/* SIT segment-level cache */
184	struct sec_entry *sec_entries;		/* SIT section-level cache */
185
186	/* for cost-benefit algorithm in cleaning procedure */
187	unsigned long long elapsed_time;	/* elapsed time after mount */
188	unsigned long long mounted_time;	/* mount time */
189	unsigned long long min_mtime;		/* min. modification time */
190	unsigned long long max_mtime;		/* max. modification time */
 
 
191};
192
193struct free_segmap_info {
194	unsigned int start_segno;	/* start segment number logically */
195	unsigned int free_segments;	/* # of free segments */
196	unsigned int free_sections;	/* # of free sections */
197	rwlock_t segmap_lock;		/* free segmap lock */
198	unsigned long *free_segmap;	/* free segment bitmap */
199	unsigned long *free_secmap;	/* free section bitmap */
200};
201
202/* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */
203enum dirty_type {
204	DIRTY_HOT_DATA,		/* dirty segments assigned as hot data logs */
205	DIRTY_WARM_DATA,	/* dirty segments assigned as warm data logs */
206	DIRTY_COLD_DATA,	/* dirty segments assigned as cold data logs */
207	DIRTY_HOT_NODE,		/* dirty segments assigned as hot node logs */
208	DIRTY_WARM_NODE,	/* dirty segments assigned as warm node logs */
209	DIRTY_COLD_NODE,	/* dirty segments assigned as cold node logs */
210	DIRTY,			/* to count # of dirty segments */
211	PRE,			/* to count # of entirely obsolete segments */
212	NR_DIRTY_TYPE
213};
214
215struct dirty_seglist_info {
216	const struct victim_selection *v_ops;	/* victim selction operation */
217	unsigned long *dirty_segmap[NR_DIRTY_TYPE];
218	struct mutex seglist_lock;		/* lock for segment bitmaps */
219	int nr_dirty[NR_DIRTY_TYPE];		/* # of dirty segments */
220	unsigned long *victim_secmap;		/* background GC victims */
221};
222
223/* victim selection function for cleaning and SSR */
224struct victim_selection {
225	int (*get_victim)(struct f2fs_sb_info *, unsigned int *,
226							int, int, char);
227};
228
229/* for active log information */
230struct curseg_info {
231	struct mutex curseg_mutex;		/* lock for consistency */
232	struct f2fs_summary_block *sum_blk;	/* cached summary block */
 
 
233	unsigned char alloc_type;		/* current allocation type */
234	unsigned int segno;			/* current segment number */
235	unsigned short next_blkoff;		/* next block offset to write */
236	unsigned int zone;			/* current zone number */
237	unsigned int next_segno;		/* preallocated segment */
238};
239
 
 
 
 
 
 
240/*
241 * inline functions
242 */
243static inline struct curseg_info *CURSEG_I(struct f2fs_sb_info *sbi, int type)
244{
245	return (struct curseg_info *)(SM_I(sbi)->curseg_array + type);
246}
247
248static inline struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi,
249						unsigned int segno)
250{
251	struct sit_info *sit_i = SIT_I(sbi);
252	return &sit_i->sentries[segno];
253}
254
255static inline struct sec_entry *get_sec_entry(struct f2fs_sb_info *sbi,
256						unsigned int segno)
257{
258	struct sit_info *sit_i = SIT_I(sbi);
259	return &sit_i->sec_entries[GET_SECNO(sbi, segno)];
260}
261
262static inline unsigned int get_valid_blocks(struct f2fs_sb_info *sbi,
263				unsigned int segno, int section)
264{
265	/*
266	 * In order to get # of valid blocks in a section instantly from many
267	 * segments, f2fs manages two counting structures separately.
268	 */
269	if (section > 1)
270		return get_sec_entry(sbi, segno)->valid_blocks;
271	else
272		return get_seg_entry(sbi, segno)->valid_blocks;
273}
274
 
 
 
 
 
 
275static inline void seg_info_from_raw_sit(struct seg_entry *se,
276					struct f2fs_sit_entry *rs)
277{
278	se->valid_blocks = GET_SIT_VBLOCKS(rs);
279	se->ckpt_valid_blocks = GET_SIT_VBLOCKS(rs);
280	memcpy(se->cur_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
281	memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
 
 
 
282	se->type = GET_SIT_TYPE(rs);
283	se->mtime = le64_to_cpu(rs->mtime);
284}
285
286static inline void seg_info_to_raw_sit(struct seg_entry *se,
287					struct f2fs_sit_entry *rs)
288{
289	unsigned short raw_vblocks = (se->type << SIT_VBLOCKS_SHIFT) |
290					se->valid_blocks;
291	rs->vblocks = cpu_to_le16(raw_vblocks);
292	memcpy(rs->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
293	memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
294	se->ckpt_valid_blocks = se->valid_blocks;
295	rs->mtime = cpu_to_le64(se->mtime);
296}
297
298static inline unsigned int find_next_inuse(struct free_segmap_info *free_i,
299		unsigned int max, unsigned int segno)
300{
301	unsigned int ret;
302	read_lock(&free_i->segmap_lock);
303	ret = find_next_bit(free_i->free_segmap, max, segno);
304	read_unlock(&free_i->segmap_lock);
305	return ret;
306}
307
308static inline void __set_free(struct f2fs_sb_info *sbi, unsigned int segno)
309{
310	struct free_segmap_info *free_i = FREE_I(sbi);
311	unsigned int secno = segno / sbi->segs_per_sec;
312	unsigned int start_segno = secno * sbi->segs_per_sec;
313	unsigned int next;
314
315	write_lock(&free_i->segmap_lock);
316	clear_bit(segno, free_i->free_segmap);
317	free_i->free_segments++;
318
319	next = find_next_bit(free_i->free_segmap, TOTAL_SEGS(sbi), start_segno);
 
320	if (next >= start_segno + sbi->segs_per_sec) {
321		clear_bit(secno, free_i->free_secmap);
322		free_i->free_sections++;
323	}
324	write_unlock(&free_i->segmap_lock);
325}
326
327static inline void __set_inuse(struct f2fs_sb_info *sbi,
328		unsigned int segno)
329{
330	struct free_segmap_info *free_i = FREE_I(sbi);
331	unsigned int secno = segno / sbi->segs_per_sec;
 
332	set_bit(segno, free_i->free_segmap);
333	free_i->free_segments--;
334	if (!test_and_set_bit(secno, free_i->free_secmap))
335		free_i->free_sections--;
336}
337
338static inline void __set_test_and_free(struct f2fs_sb_info *sbi,
339		unsigned int segno)
340{
341	struct free_segmap_info *free_i = FREE_I(sbi);
342	unsigned int secno = segno / sbi->segs_per_sec;
343	unsigned int start_segno = secno * sbi->segs_per_sec;
344	unsigned int next;
345
346	write_lock(&free_i->segmap_lock);
347	if (test_and_clear_bit(segno, free_i->free_segmap)) {
348		free_i->free_segments++;
349
350		next = find_next_bit(free_i->free_segmap, TOTAL_SEGS(sbi),
351								start_segno);
 
 
352		if (next >= start_segno + sbi->segs_per_sec) {
353			if (test_and_clear_bit(secno, free_i->free_secmap))
354				free_i->free_sections++;
355		}
356	}
357	write_unlock(&free_i->segmap_lock);
 
358}
359
360static inline void __set_test_and_inuse(struct f2fs_sb_info *sbi,
361		unsigned int segno)
362{
363	struct free_segmap_info *free_i = FREE_I(sbi);
364	unsigned int secno = segno / sbi->segs_per_sec;
365	write_lock(&free_i->segmap_lock);
 
366	if (!test_and_set_bit(segno, free_i->free_segmap)) {
367		free_i->free_segments--;
368		if (!test_and_set_bit(secno, free_i->free_secmap))
369			free_i->free_sections--;
370	}
371	write_unlock(&free_i->segmap_lock);
372}
373
374static inline void get_sit_bitmap(struct f2fs_sb_info *sbi,
375		void *dst_addr)
376{
377	struct sit_info *sit_i = SIT_I(sbi);
 
 
 
 
 
 
378	memcpy(dst_addr, sit_i->sit_bitmap, sit_i->bitmap_size);
379}
380
381static inline block_t written_block_count(struct f2fs_sb_info *sbi)
382{
383	return SIT_I(sbi)->written_valid_blocks;
384}
385
386static inline unsigned int free_segments(struct f2fs_sb_info *sbi)
387{
388	return FREE_I(sbi)->free_segments;
389}
390
391static inline int reserved_segments(struct f2fs_sb_info *sbi)
392{
393	return SM_I(sbi)->reserved_segments;
394}
395
396static inline unsigned int free_sections(struct f2fs_sb_info *sbi)
397{
398	return FREE_I(sbi)->free_sections;
399}
400
401static inline unsigned int prefree_segments(struct f2fs_sb_info *sbi)
402{
403	return DIRTY_I(sbi)->nr_dirty[PRE];
404}
405
406static inline unsigned int dirty_segments(struct f2fs_sb_info *sbi)
407{
408	return DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_DATA] +
409		DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_DATA] +
410		DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_DATA] +
411		DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_NODE] +
412		DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_NODE] +
413		DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_NODE];
414}
415
416static inline int overprovision_segments(struct f2fs_sb_info *sbi)
417{
418	return SM_I(sbi)->ovp_segments;
419}
420
421static inline int overprovision_sections(struct f2fs_sb_info *sbi)
422{
423	return ((unsigned int) overprovision_segments(sbi)) / sbi->segs_per_sec;
424}
425
426static inline int reserved_sections(struct f2fs_sb_info *sbi)
427{
428	return ((unsigned int) reserved_segments(sbi)) / sbi->segs_per_sec;
429}
430
431static inline bool need_SSR(struct f2fs_sb_info *sbi)
432{
433	return (prefree_segments(sbi) / sbi->segs_per_sec)
434			+ free_sections(sbi) < overprovision_sections(sbi);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
435}
436
437static inline bool has_not_enough_free_secs(struct f2fs_sb_info *sbi, int freed)
 
438{
439	int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
440	int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
 
441
442	if (unlikely(sbi->por_doing))
443		return false;
444
445	return (free_sections(sbi) + freed) <= (node_secs + 2 * dent_secs +
446						reserved_sections(sbi));
 
 
 
 
 
 
 
 
 
 
 
 
 
447}
448
449static inline bool excess_prefree_segs(struct f2fs_sb_info *sbi)
450{
451	return prefree_segments(sbi) > SM_I(sbi)->rec_prefree_segments;
452}
453
454static inline int utilization(struct f2fs_sb_info *sbi)
455{
456	return div_u64((u64)valid_user_blocks(sbi) * 100,
457					sbi->user_block_count);
458}
459
460/*
461 * Sometimes f2fs may be better to drop out-of-place update policy.
462 * And, users can control the policy through sysfs entries.
463 * There are five policies with triggering conditions as follows.
464 * F2FS_IPU_FORCE - all the time,
465 * F2FS_IPU_SSR - if SSR mode is activated,
466 * F2FS_IPU_UTIL - if FS utilization is over threashold,
467 * F2FS_IPU_SSR_UTIL - if SSR mode is activated and FS utilization is over
468 *                     threashold,
 
 
 
469 * F2FS_IPUT_DISABLE - disable IPU. (=default option)
470 */
471#define DEF_MIN_IPU_UTIL	70
 
 
 
 
472
473enum {
474	F2FS_IPU_FORCE,
475	F2FS_IPU_SSR,
476	F2FS_IPU_UTIL,
477	F2FS_IPU_SSR_UTIL,
478	F2FS_IPU_DISABLE,
 
479};
480
481static inline bool need_inplace_update(struct inode *inode)
482{
483	struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
484
485	/* IPU can be done only for the user data */
486	if (S_ISDIR(inode->i_mode))
487		return false;
488
489	switch (SM_I(sbi)->ipu_policy) {
490	case F2FS_IPU_FORCE:
491		return true;
492	case F2FS_IPU_SSR:
493		if (need_SSR(sbi))
494			return true;
495		break;
496	case F2FS_IPU_UTIL:
497		if (utilization(sbi) > SM_I(sbi)->min_ipu_util)
498			return true;
499		break;
500	case F2FS_IPU_SSR_UTIL:
501		if (need_SSR(sbi) && utilization(sbi) > SM_I(sbi)->min_ipu_util)
502			return true;
503		break;
504	case F2FS_IPU_DISABLE:
505		break;
506	}
507	return false;
508}
509
510static inline unsigned int curseg_segno(struct f2fs_sb_info *sbi,
511		int type)
512{
513	struct curseg_info *curseg = CURSEG_I(sbi, type);
514	return curseg->segno;
515}
516
517static inline unsigned char curseg_alloc_type(struct f2fs_sb_info *sbi,
518		int type)
519{
520	struct curseg_info *curseg = CURSEG_I(sbi, type);
521	return curseg->alloc_type;
522}
523
524static inline unsigned short curseg_blkoff(struct f2fs_sb_info *sbi, int type)
525{
526	struct curseg_info *curseg = CURSEG_I(sbi, type);
527	return curseg->next_blkoff;
528}
529
530#ifdef CONFIG_F2FS_CHECK_FS
531static inline void check_seg_range(struct f2fs_sb_info *sbi, unsigned int segno)
532{
533	unsigned int end_segno = SM_I(sbi)->segment_count - 1;
534	BUG_ON(segno > end_segno);
535}
536
537static inline void verify_block_addr(struct f2fs_sb_info *sbi, block_t blk_addr)
538{
539	struct f2fs_sm_info *sm_info = SM_I(sbi);
540	block_t total_blks = sm_info->segment_count << sbi->log_blocks_per_seg;
541	block_t start_addr = sm_info->seg0_blkaddr;
542	block_t end_addr = start_addr + total_blks - 1;
543	BUG_ON(blk_addr < start_addr);
544	BUG_ON(blk_addr > end_addr);
 
545}
546
547/*
548 * Summary block is always treated as invalid block
549 */
550static inline void check_block_count(struct f2fs_sb_info *sbi,
551		int segno, struct f2fs_sit_entry *raw_sit)
552{
553	struct f2fs_sm_info *sm_info = SM_I(sbi);
554	unsigned int end_segno = sm_info->segment_count - 1;
555	bool is_valid  = test_bit_le(0, raw_sit->valid_map) ? true : false;
556	int valid_blocks = 0;
557	int cur_pos = 0, next_pos;
558
559	/* check segment usage */
560	BUG_ON(GET_SIT_VBLOCKS(raw_sit) > sbi->blocks_per_seg);
561
562	/* check boundary of a given segment number */
563	BUG_ON(segno > end_segno);
564
565	/* check bitmap with valid block count */
566	do {
567		if (is_valid) {
568			next_pos = find_next_zero_bit_le(&raw_sit->valid_map,
569					sbi->blocks_per_seg,
570					cur_pos);
571			valid_blocks += next_pos - cur_pos;
572		} else
573			next_pos = find_next_bit_le(&raw_sit->valid_map,
574					sbi->blocks_per_seg,
575					cur_pos);
576		cur_pos = next_pos;
577		is_valid = !is_valid;
578	} while (cur_pos < sbi->blocks_per_seg);
579	BUG_ON(GET_SIT_VBLOCKS(raw_sit) != valid_blocks);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
580}
581#else
582#define check_seg_range(sbi, segno)
583#define verify_block_addr(sbi, blk_addr)
584#define check_block_count(sbi, segno, raw_sit)
585#endif
586
587static inline pgoff_t current_sit_addr(struct f2fs_sb_info *sbi,
588						unsigned int start)
589{
590	struct sit_info *sit_i = SIT_I(sbi);
591	unsigned int offset = SIT_BLOCK_OFFSET(sit_i, start);
592	block_t blk_addr = sit_i->sit_base_addr + offset;
593
594	check_seg_range(sbi, start);
595
 
 
 
 
 
 
596	/* calculate sit block address */
597	if (f2fs_test_bit(offset, sit_i->sit_bitmap))
598		blk_addr += sit_i->sit_blocks;
599
600	return blk_addr;
601}
602
603static inline pgoff_t next_sit_addr(struct f2fs_sb_info *sbi,
604						pgoff_t block_addr)
605{
606	struct sit_info *sit_i = SIT_I(sbi);
607	block_addr -= sit_i->sit_base_addr;
608	if (block_addr < sit_i->sit_blocks)
609		block_addr += sit_i->sit_blocks;
610	else
611		block_addr -= sit_i->sit_blocks;
612
613	return block_addr + sit_i->sit_base_addr;
614}
615
616static inline void set_to_next_sit(struct sit_info *sit_i, unsigned int start)
617{
618	unsigned int block_off = SIT_BLOCK_OFFSET(sit_i, start);
619
620	if (f2fs_test_bit(block_off, sit_i->sit_bitmap))
621		f2fs_clear_bit(block_off, sit_i->sit_bitmap);
622	else
623		f2fs_set_bit(block_off, sit_i->sit_bitmap);
624}
625
626static inline unsigned long long get_mtime(struct f2fs_sb_info *sbi)
 
627{
628	struct sit_info *sit_i = SIT_I(sbi);
629	return sit_i->elapsed_time + CURRENT_TIME_SEC.tv_sec -
630						sit_i->mounted_time;
 
 
 
 
 
 
 
 
 
 
 
631}
632
633static inline void set_summary(struct f2fs_summary *sum, nid_t nid,
634			unsigned int ofs_in_node, unsigned char version)
635{
636	sum->nid = cpu_to_le32(nid);
637	sum->ofs_in_node = cpu_to_le16(ofs_in_node);
638	sum->version = version;
639}
640
641static inline block_t start_sum_block(struct f2fs_sb_info *sbi)
642{
643	return __start_cp_addr(sbi) +
644		le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
645}
646
647static inline block_t sum_blk_addr(struct f2fs_sb_info *sbi, int base, int type)
648{
649	return __start_cp_addr(sbi) +
650		le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_total_block_count)
651				- (base + 1) + type;
652}
653
654static inline bool sec_usage_check(struct f2fs_sb_info *sbi, unsigned int secno)
655{
656	if (IS_CURSEC(sbi, secno) || (sbi->cur_victim_sec == secno))
657		return true;
658	return false;
659}
660
661static inline unsigned int max_hw_blocks(struct f2fs_sb_info *sbi)
662{
663	struct block_device *bdev = sbi->sb->s_bdev;
664	struct request_queue *q = bdev_get_queue(bdev);
665	return SECTOR_TO_BLOCK(sbi, queue_max_sectors(q));
666}
667
668/*
669 * It is very important to gather dirty pages and write at once, so that we can
670 * submit a big bio without interfering other data writes.
671 * By default, 512 pages for directory data,
672 * 512 pages (2MB) * 3 for three types of nodes, and
673 * max_bio_blocks for meta are set.
674 */
675static inline int nr_pages_to_skip(struct f2fs_sb_info *sbi, int type)
676{
 
 
 
677	if (type == DATA)
678		return sbi->blocks_per_seg;
679	else if (type == NODE)
680		return 3 * sbi->blocks_per_seg;
681	else if (type == META)
682		return MAX_BIO_BLOCKS(max_hw_blocks(sbi));
683	else
684		return 0;
685}
686
687/*
688 * When writing pages, it'd better align nr_to_write for segment size.
689 */
690static inline long nr_pages_to_write(struct f2fs_sb_info *sbi, int type,
691					struct writeback_control *wbc)
692{
693	long nr_to_write, desired;
694
695	if (wbc->sync_mode != WB_SYNC_NONE)
696		return 0;
697
698	nr_to_write = wbc->nr_to_write;
699
700	if (type == DATA)
701		desired = 4096;
702	else if (type == NODE)
703		desired = 3 * max_hw_blocks(sbi);
704	else
705		desired = MAX_BIO_BLOCKS(max_hw_blocks(sbi));
706
707	wbc->nr_to_write = desired;
708	return desired - nr_to_write;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
709}
v5.4
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * fs/f2fs/segment.h
  4 *
  5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  6 *             http://www.samsung.com/
 
 
 
 
  7 */
  8#include <linux/blkdev.h>
  9#include <linux/backing-dev.h>
 10
 11/* constant macro */
 12#define NULL_SEGNO			((unsigned int)(~0))
 13#define NULL_SECNO			((unsigned int)(~0))
 14
 15#define DEF_RECLAIM_PREFREE_SEGMENTS	5	/* 5% over total segments */
 16#define DEF_MAX_RECLAIM_PREFREE_SEGMENTS	4096	/* 8GB in maximum */
 17
 18#define F2FS_MIN_SEGMENTS	9 /* SB + 2 (CP + SIT + NAT) + SSA + MAIN */
 19
 20/* L: Logical segment # in volume, R: Relative segment # in main area */
 21#define GET_L2R_SEGNO(free_i, segno)	((segno) - (free_i)->start_segno)
 22#define GET_R2L_SEGNO(free_i, segno)	((segno) + (free_i)->start_segno)
 23
 24#define IS_DATASEG(t)	((t) <= CURSEG_COLD_DATA)
 25#define IS_NODESEG(t)	((t) >= CURSEG_HOT_NODE)
 26
 27#define IS_HOT(t)	((t) == CURSEG_HOT_NODE || (t) == CURSEG_HOT_DATA)
 28#define IS_WARM(t)	((t) == CURSEG_WARM_NODE || (t) == CURSEG_WARM_DATA)
 29#define IS_COLD(t)	((t) == CURSEG_COLD_NODE || (t) == CURSEG_COLD_DATA)
 30
 31#define IS_CURSEG(sbi, seg)						\
 32	(((seg) == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno) ||	\
 33	 ((seg) == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno) ||	\
 34	 ((seg) == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno) ||	\
 35	 ((seg) == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno) ||	\
 36	 ((seg) == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno) ||	\
 37	 ((seg) == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno))
 38
 39#define IS_CURSEC(sbi, secno)						\
 40	(((secno) == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno /		\
 41	  (sbi)->segs_per_sec) ||	\
 42	 ((secno) == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno /		\
 43	  (sbi)->segs_per_sec) ||	\
 44	 ((secno) == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno /		\
 45	  (sbi)->segs_per_sec) ||	\
 46	 ((secno) == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno /		\
 47	  (sbi)->segs_per_sec) ||	\
 48	 ((secno) == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno /		\
 49	  (sbi)->segs_per_sec) ||	\
 50	 ((secno) == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno /		\
 51	  (sbi)->segs_per_sec))	\
 52
 53#define MAIN_BLKADDR(sbi)						\
 54	(SM_I(sbi) ? SM_I(sbi)->main_blkaddr : 				\
 55		le32_to_cpu(F2FS_RAW_SUPER(sbi)->main_blkaddr))
 56#define SEG0_BLKADDR(sbi)						\
 57	(SM_I(sbi) ? SM_I(sbi)->seg0_blkaddr : 				\
 58		le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment0_blkaddr))
 59
 60#define MAIN_SEGS(sbi)	(SM_I(sbi)->main_segments)
 61#define MAIN_SECS(sbi)	((sbi)->total_sections)
 62
 63#define TOTAL_SEGS(sbi)							\
 64	(SM_I(sbi) ? SM_I(sbi)->segment_count : 				\
 65		le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment_count))
 66#define TOTAL_BLKS(sbi)	(TOTAL_SEGS(sbi) << (sbi)->log_blocks_per_seg)
 67
 68#define MAX_BLKADDR(sbi)	(SEG0_BLKADDR(sbi) + TOTAL_BLKS(sbi))
 69#define SEGMENT_SIZE(sbi)	(1ULL << ((sbi)->log_blocksize +	\
 70					(sbi)->log_blocks_per_seg))
 71
 72#define START_BLOCK(sbi, segno)	(SEG0_BLKADDR(sbi) +			\
 73	 (GET_R2L_SEGNO(FREE_I(sbi), segno) << (sbi)->log_blocks_per_seg))
 74
 75#define NEXT_FREE_BLKADDR(sbi, curseg)					\
 76	(START_BLOCK(sbi, (curseg)->segno) + (curseg)->next_blkoff)
 77
 78#define GET_SEGOFF_FROM_SEG0(sbi, blk_addr)	((blk_addr) - SEG0_BLKADDR(sbi))
 79#define GET_SEGNO_FROM_SEG0(sbi, blk_addr)				\
 80	(GET_SEGOFF_FROM_SEG0(sbi, blk_addr) >> (sbi)->log_blocks_per_seg)
 81#define GET_BLKOFF_FROM_SEG0(sbi, blk_addr)				\
 82	(GET_SEGOFF_FROM_SEG0(sbi, blk_addr) & ((sbi)->blocks_per_seg - 1))
 83
 84#define GET_SEGNO(sbi, blk_addr)					\
 85	((!__is_valid_data_blkaddr(blk_addr)) ?			\
 86	NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi),			\
 87		GET_SEGNO_FROM_SEG0(sbi, blk_addr)))
 88#define BLKS_PER_SEC(sbi)					\
 89	((sbi)->segs_per_sec * (sbi)->blocks_per_seg)
 90#define GET_SEC_FROM_SEG(sbi, segno)				\
 91	((segno) / (sbi)->segs_per_sec)
 92#define GET_SEG_FROM_SEC(sbi, secno)				\
 93	((secno) * (sbi)->segs_per_sec)
 94#define GET_ZONE_FROM_SEC(sbi, secno)				\
 95	((secno) / (sbi)->secs_per_zone)
 96#define GET_ZONE_FROM_SEG(sbi, segno)				\
 97	GET_ZONE_FROM_SEC(sbi, GET_SEC_FROM_SEG(sbi, segno))
 98
 99#define GET_SUM_BLOCK(sbi, segno)				\
100	((sbi)->sm_info->ssa_blkaddr + (segno))
101
102#define GET_SUM_TYPE(footer) ((footer)->entry_type)
103#define SET_SUM_TYPE(footer, type) ((footer)->entry_type = (type))
104
105#define SIT_ENTRY_OFFSET(sit_i, segno)					\
106	((segno) % (sit_i)->sents_per_block)
107#define SIT_BLOCK_OFFSET(segno)					\
108	((segno) / SIT_ENTRY_PER_BLOCK)
109#define	START_SEGNO(segno)		\
110	(SIT_BLOCK_OFFSET(segno) * SIT_ENTRY_PER_BLOCK)
111#define SIT_BLK_CNT(sbi)			\
112	DIV_ROUND_UP(MAIN_SEGS(sbi), SIT_ENTRY_PER_BLOCK)
113#define f2fs_bitmap_size(nr)			\
114	(BITS_TO_LONGS(nr) * sizeof(unsigned long))
 
 
115
116#define SECTOR_FROM_BLOCK(blk_addr)					\
117	(((sector_t)blk_addr) << F2FS_LOG_SECTORS_PER_BLOCK)
118#define SECTOR_TO_BLOCK(sectors)					\
119	((sectors) >> F2FS_LOG_SECTORS_PER_BLOCK)
 
 
120
121/*
122 * indicate a block allocation direction: RIGHT and LEFT.
123 * RIGHT means allocating new sections towards the end of volume.
124 * LEFT means the opposite direction.
125 */
126enum {
127	ALLOC_RIGHT = 0,
128	ALLOC_LEFT
129};
130
131/*
132 * In the victim_sel_policy->alloc_mode, there are two block allocation modes.
133 * LFS writes data sequentially with cleaning operations.
134 * SSR (Slack Space Recycle) reuses obsolete space without cleaning operations.
135 */
136enum {
137	LFS = 0,
138	SSR
139};
140
141/*
142 * In the victim_sel_policy->gc_mode, there are two gc, aka cleaning, modes.
143 * GC_CB is based on cost-benefit algorithm.
144 * GC_GREEDY is based on greedy algorithm.
145 */
146enum {
147	GC_CB = 0,
148	GC_GREEDY,
149	ALLOC_NEXT,
150	FLUSH_DEVICE,
151	MAX_GC_POLICY,
152};
153
154/*
155 * BG_GC means the background cleaning job.
156 * FG_GC means the on-demand cleaning job.
157 * FORCE_FG_GC means on-demand cleaning job in background.
158 */
159enum {
160	BG_GC = 0,
161	FG_GC,
162	FORCE_FG_GC,
163};
164
165/* for a function parameter to select a victim segment */
166struct victim_sel_policy {
167	int alloc_mode;			/* LFS or SSR */
168	int gc_mode;			/* GC_CB or GC_GREEDY */
169	unsigned long *dirty_segmap;	/* dirty segment bitmap */
170	unsigned int max_search;	/* maximum # of segments to search */
171	unsigned int offset;		/* last scanned bitmap offset */
172	unsigned int ofs_unit;		/* bitmap search unit */
173	unsigned int min_cost;		/* minimum cost */
174	unsigned int min_segno;		/* segment # having min. cost */
175};
176
177struct seg_entry {
178	unsigned int type:6;		/* segment type like CURSEG_XXX_TYPE */
179	unsigned int valid_blocks:10;	/* # of valid blocks */
180	unsigned int ckpt_valid_blocks:10;	/* # of valid blocks last cp */
181	unsigned int padding:6;		/* padding */
182	unsigned char *cur_valid_map;	/* validity bitmap of blocks */
183#ifdef CONFIG_F2FS_CHECK_FS
184	unsigned char *cur_valid_map_mir;	/* mirror of current valid bitmap */
185#endif
186	/*
187	 * # of valid blocks and the validity bitmap stored in the the last
188	 * checkpoint pack. This information is used by the SSR mode.
189	 */
190	unsigned char *ckpt_valid_map;	/* validity bitmap of blocks last cp */
191	unsigned char *discard_map;
 
192	unsigned long long mtime;	/* modification time of the segment */
193};
194
195struct sec_entry {
196	unsigned int valid_blocks;	/* # of valid blocks in a section */
197};
198
199struct segment_allocation {
200	void (*allocate_segment)(struct f2fs_sb_info *, int, bool);
201};
202
203/*
204 * this value is set in page as a private data which indicate that
205 * the page is atomically written, and it is in inmem_pages list.
206 */
207#define ATOMIC_WRITTEN_PAGE		((unsigned long)-1)
208#define DUMMY_WRITTEN_PAGE		((unsigned long)-2)
209
210#define IS_ATOMIC_WRITTEN_PAGE(page)			\
211		(page_private(page) == (unsigned long)ATOMIC_WRITTEN_PAGE)
212#define IS_DUMMY_WRITTEN_PAGE(page)			\
213		(page_private(page) == (unsigned long)DUMMY_WRITTEN_PAGE)
214
215#define MAX_SKIP_GC_COUNT			16
216
217struct inmem_pages {
218	struct list_head list;
219	struct page *page;
220	block_t old_addr;		/* for revoking when fail to commit */
221};
222
223struct sit_info {
224	const struct segment_allocation *s_ops;
225
226	block_t sit_base_addr;		/* start block address of SIT area */
227	block_t sit_blocks;		/* # of blocks used by SIT area */
228	block_t written_valid_blocks;	/* # of valid blocks in main area */
229	char *bitmap;			/* all bitmaps pointer */
230	char *sit_bitmap;		/* SIT bitmap pointer */
231#ifdef CONFIG_F2FS_CHECK_FS
232	char *sit_bitmap_mir;		/* SIT bitmap mirror */
233
234	/* bitmap of segments to be ignored by GC in case of errors */
235	unsigned long *invalid_segmap;
236#endif
237	unsigned int bitmap_size;	/* SIT bitmap size */
238
239	unsigned long *tmp_map;			/* bitmap for temporal use */
240	unsigned long *dirty_sentries_bitmap;	/* bitmap for dirty sentries */
241	unsigned int dirty_sentries;		/* # of dirty sentries */
242	unsigned int sents_per_block;		/* # of SIT entries per block */
243	struct rw_semaphore sentry_lock;	/* to protect SIT cache */
244	struct seg_entry *sentries;		/* SIT segment-level cache */
245	struct sec_entry *sec_entries;		/* SIT section-level cache */
246
247	/* for cost-benefit algorithm in cleaning procedure */
248	unsigned long long elapsed_time;	/* elapsed time after mount */
249	unsigned long long mounted_time;	/* mount time */
250	unsigned long long min_mtime;		/* min. modification time */
251	unsigned long long max_mtime;		/* max. modification time */
252
253	unsigned int last_victim[MAX_GC_POLICY]; /* last victim segment # */
254};
255
256struct free_segmap_info {
257	unsigned int start_segno;	/* start segment number logically */
258	unsigned int free_segments;	/* # of free segments */
259	unsigned int free_sections;	/* # of free sections */
260	spinlock_t segmap_lock;		/* free segmap lock */
261	unsigned long *free_segmap;	/* free segment bitmap */
262	unsigned long *free_secmap;	/* free section bitmap */
263};
264
265/* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */
266enum dirty_type {
267	DIRTY_HOT_DATA,		/* dirty segments assigned as hot data logs */
268	DIRTY_WARM_DATA,	/* dirty segments assigned as warm data logs */
269	DIRTY_COLD_DATA,	/* dirty segments assigned as cold data logs */
270	DIRTY_HOT_NODE,		/* dirty segments assigned as hot node logs */
271	DIRTY_WARM_NODE,	/* dirty segments assigned as warm node logs */
272	DIRTY_COLD_NODE,	/* dirty segments assigned as cold node logs */
273	DIRTY,			/* to count # of dirty segments */
274	PRE,			/* to count # of entirely obsolete segments */
275	NR_DIRTY_TYPE
276};
277
278struct dirty_seglist_info {
279	const struct victim_selection *v_ops;	/* victim selction operation */
280	unsigned long *dirty_segmap[NR_DIRTY_TYPE];
281	struct mutex seglist_lock;		/* lock for segment bitmaps */
282	int nr_dirty[NR_DIRTY_TYPE];		/* # of dirty segments */
283	unsigned long *victim_secmap;		/* background GC victims */
284};
285
286/* victim selection function for cleaning and SSR */
287struct victim_selection {
288	int (*get_victim)(struct f2fs_sb_info *, unsigned int *,
289							int, int, char);
290};
291
292/* for active log information */
293struct curseg_info {
294	struct mutex curseg_mutex;		/* lock for consistency */
295	struct f2fs_summary_block *sum_blk;	/* cached summary block */
296	struct rw_semaphore journal_rwsem;	/* protect journal area */
297	struct f2fs_journal *journal;		/* cached journal info */
298	unsigned char alloc_type;		/* current allocation type */
299	unsigned int segno;			/* current segment number */
300	unsigned short next_blkoff;		/* next block offset to write */
301	unsigned int zone;			/* current zone number */
302	unsigned int next_segno;		/* preallocated segment */
303};
304
305struct sit_entry_set {
306	struct list_head set_list;	/* link with all sit sets */
307	unsigned int start_segno;	/* start segno of sits in set */
308	unsigned int entry_cnt;		/* the # of sit entries in set */
309};
310
311/*
312 * inline functions
313 */
314static inline struct curseg_info *CURSEG_I(struct f2fs_sb_info *sbi, int type)
315{
316	return (struct curseg_info *)(SM_I(sbi)->curseg_array + type);
317}
318
319static inline struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi,
320						unsigned int segno)
321{
322	struct sit_info *sit_i = SIT_I(sbi);
323	return &sit_i->sentries[segno];
324}
325
326static inline struct sec_entry *get_sec_entry(struct f2fs_sb_info *sbi,
327						unsigned int segno)
328{
329	struct sit_info *sit_i = SIT_I(sbi);
330	return &sit_i->sec_entries[GET_SEC_FROM_SEG(sbi, segno)];
331}
332
333static inline unsigned int get_valid_blocks(struct f2fs_sb_info *sbi,
334				unsigned int segno, bool use_section)
335{
336	/*
337	 * In order to get # of valid blocks in a section instantly from many
338	 * segments, f2fs manages two counting structures separately.
339	 */
340	if (use_section && __is_large_section(sbi))
341		return get_sec_entry(sbi, segno)->valid_blocks;
342	else
343		return get_seg_entry(sbi, segno)->valid_blocks;
344}
345
346static inline unsigned int get_ckpt_valid_blocks(struct f2fs_sb_info *sbi,
347				unsigned int segno)
348{
349	return get_seg_entry(sbi, segno)->ckpt_valid_blocks;
350}
351
352static inline void seg_info_from_raw_sit(struct seg_entry *se,
353					struct f2fs_sit_entry *rs)
354{
355	se->valid_blocks = GET_SIT_VBLOCKS(rs);
356	se->ckpt_valid_blocks = GET_SIT_VBLOCKS(rs);
357	memcpy(se->cur_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
358	memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
359#ifdef CONFIG_F2FS_CHECK_FS
360	memcpy(se->cur_valid_map_mir, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
361#endif
362	se->type = GET_SIT_TYPE(rs);
363	se->mtime = le64_to_cpu(rs->mtime);
364}
365
366static inline void __seg_info_to_raw_sit(struct seg_entry *se,
367					struct f2fs_sit_entry *rs)
368{
369	unsigned short raw_vblocks = (se->type << SIT_VBLOCKS_SHIFT) |
370					se->valid_blocks;
371	rs->vblocks = cpu_to_le16(raw_vblocks);
372	memcpy(rs->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE);
373	rs->mtime = cpu_to_le64(se->mtime);
374}
375
376static inline void seg_info_to_sit_page(struct f2fs_sb_info *sbi,
377				struct page *page, unsigned int start)
378{
379	struct f2fs_sit_block *raw_sit;
380	struct seg_entry *se;
381	struct f2fs_sit_entry *rs;
382	unsigned int end = min(start + SIT_ENTRY_PER_BLOCK,
383					(unsigned long)MAIN_SEGS(sbi));
384	int i;
385
386	raw_sit = (struct f2fs_sit_block *)page_address(page);
387	memset(raw_sit, 0, PAGE_SIZE);
388	for (i = 0; i < end - start; i++) {
389		rs = &raw_sit->entries[i];
390		se = get_seg_entry(sbi, start + i);
391		__seg_info_to_raw_sit(se, rs);
392	}
393}
394
395static inline void seg_info_to_raw_sit(struct seg_entry *se,
396					struct f2fs_sit_entry *rs)
397{
398	__seg_info_to_raw_sit(se, rs);
399
400	memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
401	se->ckpt_valid_blocks = se->valid_blocks;
 
402}
403
404static inline unsigned int find_next_inuse(struct free_segmap_info *free_i,
405		unsigned int max, unsigned int segno)
406{
407	unsigned int ret;
408	spin_lock(&free_i->segmap_lock);
409	ret = find_next_bit(free_i->free_segmap, max, segno);
410	spin_unlock(&free_i->segmap_lock);
411	return ret;
412}
413
414static inline void __set_free(struct f2fs_sb_info *sbi, unsigned int segno)
415{
416	struct free_segmap_info *free_i = FREE_I(sbi);
417	unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
418	unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno);
419	unsigned int next;
420
421	spin_lock(&free_i->segmap_lock);
422	clear_bit(segno, free_i->free_segmap);
423	free_i->free_segments++;
424
425	next = find_next_bit(free_i->free_segmap,
426			start_segno + sbi->segs_per_sec, start_segno);
427	if (next >= start_segno + sbi->segs_per_sec) {
428		clear_bit(secno, free_i->free_secmap);
429		free_i->free_sections++;
430	}
431	spin_unlock(&free_i->segmap_lock);
432}
433
434static inline void __set_inuse(struct f2fs_sb_info *sbi,
435		unsigned int segno)
436{
437	struct free_segmap_info *free_i = FREE_I(sbi);
438	unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
439
440	set_bit(segno, free_i->free_segmap);
441	free_i->free_segments--;
442	if (!test_and_set_bit(secno, free_i->free_secmap))
443		free_i->free_sections--;
444}
445
446static inline void __set_test_and_free(struct f2fs_sb_info *sbi,
447		unsigned int segno)
448{
449	struct free_segmap_info *free_i = FREE_I(sbi);
450	unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
451	unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno);
452	unsigned int next;
453
454	spin_lock(&free_i->segmap_lock);
455	if (test_and_clear_bit(segno, free_i->free_segmap)) {
456		free_i->free_segments++;
457
458		if (IS_CURSEC(sbi, secno))
459			goto skip_free;
460		next = find_next_bit(free_i->free_segmap,
461				start_segno + sbi->segs_per_sec, start_segno);
462		if (next >= start_segno + sbi->segs_per_sec) {
463			if (test_and_clear_bit(secno, free_i->free_secmap))
464				free_i->free_sections++;
465		}
466	}
467skip_free:
468	spin_unlock(&free_i->segmap_lock);
469}
470
471static inline void __set_test_and_inuse(struct f2fs_sb_info *sbi,
472		unsigned int segno)
473{
474	struct free_segmap_info *free_i = FREE_I(sbi);
475	unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
476
477	spin_lock(&free_i->segmap_lock);
478	if (!test_and_set_bit(segno, free_i->free_segmap)) {
479		free_i->free_segments--;
480		if (!test_and_set_bit(secno, free_i->free_secmap))
481			free_i->free_sections--;
482	}
483	spin_unlock(&free_i->segmap_lock);
484}
485
486static inline void get_sit_bitmap(struct f2fs_sb_info *sbi,
487		void *dst_addr)
488{
489	struct sit_info *sit_i = SIT_I(sbi);
490
491#ifdef CONFIG_F2FS_CHECK_FS
492	if (memcmp(sit_i->sit_bitmap, sit_i->sit_bitmap_mir,
493						sit_i->bitmap_size))
494		f2fs_bug_on(sbi, 1);
495#endif
496	memcpy(dst_addr, sit_i->sit_bitmap, sit_i->bitmap_size);
497}
498
499static inline block_t written_block_count(struct f2fs_sb_info *sbi)
500{
501	return SIT_I(sbi)->written_valid_blocks;
502}
503
504static inline unsigned int free_segments(struct f2fs_sb_info *sbi)
505{
506	return FREE_I(sbi)->free_segments;
507}
508
509static inline int reserved_segments(struct f2fs_sb_info *sbi)
510{
511	return SM_I(sbi)->reserved_segments;
512}
513
514static inline unsigned int free_sections(struct f2fs_sb_info *sbi)
515{
516	return FREE_I(sbi)->free_sections;
517}
518
519static inline unsigned int prefree_segments(struct f2fs_sb_info *sbi)
520{
521	return DIRTY_I(sbi)->nr_dirty[PRE];
522}
523
524static inline unsigned int dirty_segments(struct f2fs_sb_info *sbi)
525{
526	return DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_DATA] +
527		DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_DATA] +
528		DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_DATA] +
529		DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_NODE] +
530		DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_NODE] +
531		DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_NODE];
532}
533
534static inline int overprovision_segments(struct f2fs_sb_info *sbi)
535{
536	return SM_I(sbi)->ovp_segments;
537}
538
 
 
 
 
 
539static inline int reserved_sections(struct f2fs_sb_info *sbi)
540{
541	return GET_SEC_FROM_SEG(sbi, (unsigned int)reserved_segments(sbi));
542}
543
544static inline bool has_curseg_enough_space(struct f2fs_sb_info *sbi)
545{
546	unsigned int node_blocks = get_pages(sbi, F2FS_DIRTY_NODES) +
547					get_pages(sbi, F2FS_DIRTY_DENTS);
548	unsigned int dent_blocks = get_pages(sbi, F2FS_DIRTY_DENTS);
549	unsigned int segno, left_blocks;
550	int i;
551
552	/* check current node segment */
553	for (i = CURSEG_HOT_NODE; i <= CURSEG_COLD_NODE; i++) {
554		segno = CURSEG_I(sbi, i)->segno;
555		left_blocks = sbi->blocks_per_seg -
556			get_seg_entry(sbi, segno)->ckpt_valid_blocks;
557
558		if (node_blocks > left_blocks)
559			return false;
560	}
561
562	/* check current data segment */
563	segno = CURSEG_I(sbi, CURSEG_HOT_DATA)->segno;
564	left_blocks = sbi->blocks_per_seg -
565			get_seg_entry(sbi, segno)->ckpt_valid_blocks;
566	if (dent_blocks > left_blocks)
567		return false;
568	return true;
569}
570
571static inline bool has_not_enough_free_secs(struct f2fs_sb_info *sbi,
572					int freed, int needed)
573{
574	int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
575	int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
576	int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
577
578	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
579		return false;
580
581	if (free_sections(sbi) + freed == reserved_sections(sbi) + needed &&
582			has_curseg_enough_space(sbi))
583		return false;
584	return (free_sections(sbi) + freed) <=
585		(node_secs + 2 * dent_secs + imeta_secs +
586		reserved_sections(sbi) + needed);
587}
588
589static inline bool f2fs_is_checkpoint_ready(struct f2fs_sb_info *sbi)
590{
591	if (likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
592		return true;
593	if (likely(!has_not_enough_free_secs(sbi, 0, 0)))
594		return true;
595	return false;
596}
597
598static inline bool excess_prefree_segs(struct f2fs_sb_info *sbi)
599{
600	return prefree_segments(sbi) > SM_I(sbi)->rec_prefree_segments;
601}
602
603static inline int utilization(struct f2fs_sb_info *sbi)
604{
605	return div_u64((u64)valid_user_blocks(sbi) * 100,
606					sbi->user_block_count);
607}
608
609/*
610 * Sometimes f2fs may be better to drop out-of-place update policy.
611 * And, users can control the policy through sysfs entries.
612 * There are five policies with triggering conditions as follows.
613 * F2FS_IPU_FORCE - all the time,
614 * F2FS_IPU_SSR - if SSR mode is activated,
615 * F2FS_IPU_UTIL - if FS utilization is over threashold,
616 * F2FS_IPU_SSR_UTIL - if SSR mode is activated and FS utilization is over
617 *                     threashold,
618 * F2FS_IPU_FSYNC - activated in fsync path only for high performance flash
619 *                     storages. IPU will be triggered only if the # of dirty
620 *                     pages over min_fsync_blocks.
621 * F2FS_IPUT_DISABLE - disable IPU. (=default option)
622 */
623#define DEF_MIN_IPU_UTIL	70
624#define DEF_MIN_FSYNC_BLOCKS	8
625#define DEF_MIN_HOT_BLOCKS	16
626
627#define SMALL_VOLUME_SEGMENTS	(16 * 512)	/* 16GB */
628
629enum {
630	F2FS_IPU_FORCE,
631	F2FS_IPU_SSR,
632	F2FS_IPU_UTIL,
633	F2FS_IPU_SSR_UTIL,
634	F2FS_IPU_FSYNC,
635	F2FS_IPU_ASYNC,
636};
637
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
638static inline unsigned int curseg_segno(struct f2fs_sb_info *sbi,
639		int type)
640{
641	struct curseg_info *curseg = CURSEG_I(sbi, type);
642	return curseg->segno;
643}
644
645static inline unsigned char curseg_alloc_type(struct f2fs_sb_info *sbi,
646		int type)
647{
648	struct curseg_info *curseg = CURSEG_I(sbi, type);
649	return curseg->alloc_type;
650}
651
652static inline unsigned short curseg_blkoff(struct f2fs_sb_info *sbi, int type)
653{
654	struct curseg_info *curseg = CURSEG_I(sbi, type);
655	return curseg->next_blkoff;
656}
657
 
658static inline void check_seg_range(struct f2fs_sb_info *sbi, unsigned int segno)
659{
660	f2fs_bug_on(sbi, segno > TOTAL_SEGS(sbi) - 1);
 
661}
662
663static inline void verify_fio_blkaddr(struct f2fs_io_info *fio)
664{
665	struct f2fs_sb_info *sbi = fio->sbi;
666
667	if (__is_valid_data_blkaddr(fio->old_blkaddr))
668		verify_blkaddr(sbi, fio->old_blkaddr, __is_meta_io(fio) ?
669					META_GENERIC : DATA_GENERIC);
670	verify_blkaddr(sbi, fio->new_blkaddr, __is_meta_io(fio) ?
671					META_GENERIC : DATA_GENERIC_ENHANCE);
672}
673
674/*
675 * Summary block is always treated as an invalid block
676 */
677static inline int check_block_count(struct f2fs_sb_info *sbi,
678		int segno, struct f2fs_sit_entry *raw_sit)
679{
 
 
680	bool is_valid  = test_bit_le(0, raw_sit->valid_map) ? true : false;
681	int valid_blocks = 0;
682	int cur_pos = 0, next_pos;
683
 
 
 
 
 
 
684	/* check bitmap with valid block count */
685	do {
686		if (is_valid) {
687			next_pos = find_next_zero_bit_le(&raw_sit->valid_map,
688					sbi->blocks_per_seg,
689					cur_pos);
690			valid_blocks += next_pos - cur_pos;
691		} else
692			next_pos = find_next_bit_le(&raw_sit->valid_map,
693					sbi->blocks_per_seg,
694					cur_pos);
695		cur_pos = next_pos;
696		is_valid = !is_valid;
697	} while (cur_pos < sbi->blocks_per_seg);
698
699	if (unlikely(GET_SIT_VBLOCKS(raw_sit) != valid_blocks)) {
700		f2fs_err(sbi, "Mismatch valid blocks %d vs. %d",
701			 GET_SIT_VBLOCKS(raw_sit), valid_blocks);
702		set_sbi_flag(sbi, SBI_NEED_FSCK);
703		return -EFSCORRUPTED;
704	}
705
706	/* check segment usage, and check boundary of a given segment number */
707	if (unlikely(GET_SIT_VBLOCKS(raw_sit) > sbi->blocks_per_seg
708					|| segno > TOTAL_SEGS(sbi) - 1)) {
709		f2fs_err(sbi, "Wrong valid blocks %d or segno %u",
710			 GET_SIT_VBLOCKS(raw_sit), segno);
711		set_sbi_flag(sbi, SBI_NEED_FSCK);
712		return -EFSCORRUPTED;
713	}
714	return 0;
715}
 
 
 
 
 
716
717static inline pgoff_t current_sit_addr(struct f2fs_sb_info *sbi,
718						unsigned int start)
719{
720	struct sit_info *sit_i = SIT_I(sbi);
721	unsigned int offset = SIT_BLOCK_OFFSET(start);
722	block_t blk_addr = sit_i->sit_base_addr + offset;
723
724	check_seg_range(sbi, start);
725
726#ifdef CONFIG_F2FS_CHECK_FS
727	if (f2fs_test_bit(offset, sit_i->sit_bitmap) !=
728			f2fs_test_bit(offset, sit_i->sit_bitmap_mir))
729		f2fs_bug_on(sbi, 1);
730#endif
731
732	/* calculate sit block address */
733	if (f2fs_test_bit(offset, sit_i->sit_bitmap))
734		blk_addr += sit_i->sit_blocks;
735
736	return blk_addr;
737}
738
739static inline pgoff_t next_sit_addr(struct f2fs_sb_info *sbi,
740						pgoff_t block_addr)
741{
742	struct sit_info *sit_i = SIT_I(sbi);
743	block_addr -= sit_i->sit_base_addr;
744	if (block_addr < sit_i->sit_blocks)
745		block_addr += sit_i->sit_blocks;
746	else
747		block_addr -= sit_i->sit_blocks;
748
749	return block_addr + sit_i->sit_base_addr;
750}
751
752static inline void set_to_next_sit(struct sit_info *sit_i, unsigned int start)
753{
754	unsigned int block_off = SIT_BLOCK_OFFSET(start);
755
756	f2fs_change_bit(block_off, sit_i->sit_bitmap);
757#ifdef CONFIG_F2FS_CHECK_FS
758	f2fs_change_bit(block_off, sit_i->sit_bitmap_mir);
759#endif
760}
761
762static inline unsigned long long get_mtime(struct f2fs_sb_info *sbi,
763						bool base_time)
764{
765	struct sit_info *sit_i = SIT_I(sbi);
766	time64_t diff, now = ktime_get_real_seconds();
767
768	if (now >= sit_i->mounted_time)
769		return sit_i->elapsed_time + now - sit_i->mounted_time;
770
771	/* system time is set to the past */
772	if (!base_time) {
773		diff = sit_i->mounted_time - now;
774		if (sit_i->elapsed_time >= diff)
775			return sit_i->elapsed_time - diff;
776		return 0;
777	}
778	return sit_i->elapsed_time;
779}
780
781static inline void set_summary(struct f2fs_summary *sum, nid_t nid,
782			unsigned int ofs_in_node, unsigned char version)
783{
784	sum->nid = cpu_to_le32(nid);
785	sum->ofs_in_node = cpu_to_le16(ofs_in_node);
786	sum->version = version;
787}
788
789static inline block_t start_sum_block(struct f2fs_sb_info *sbi)
790{
791	return __start_cp_addr(sbi) +
792		le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
793}
794
795static inline block_t sum_blk_addr(struct f2fs_sb_info *sbi, int base, int type)
796{
797	return __start_cp_addr(sbi) +
798		le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_total_block_count)
799				- (base + 1) + type;
800}
801
802static inline bool sec_usage_check(struct f2fs_sb_info *sbi, unsigned int secno)
803{
804	if (IS_CURSEC(sbi, secno) || (sbi->cur_victim_sec == secno))
805		return true;
806	return false;
807}
808
 
 
 
 
 
 
 
809/*
810 * It is very important to gather dirty pages and write at once, so that we can
811 * submit a big bio without interfering other data writes.
812 * By default, 512 pages for directory data,
813 * 512 pages (2MB) * 8 for nodes, and
814 * 256 pages * 8 for meta are set.
815 */
816static inline int nr_pages_to_skip(struct f2fs_sb_info *sbi, int type)
817{
818	if (sbi->sb->s_bdi->wb.dirty_exceeded)
819		return 0;
820
821	if (type == DATA)
822		return sbi->blocks_per_seg;
823	else if (type == NODE)
824		return 8 * sbi->blocks_per_seg;
825	else if (type == META)
826		return 8 * BIO_MAX_PAGES;
827	else
828		return 0;
829}
830
831/*
832 * When writing pages, it'd better align nr_to_write for segment size.
833 */
834static inline long nr_pages_to_write(struct f2fs_sb_info *sbi, int type,
835					struct writeback_control *wbc)
836{
837	long nr_to_write, desired;
838
839	if (wbc->sync_mode != WB_SYNC_NONE)
840		return 0;
841
842	nr_to_write = wbc->nr_to_write;
843	desired = BIO_MAX_PAGES;
844	if (type == NODE)
845		desired <<= 1;
 
 
 
 
846
847	wbc->nr_to_write = desired;
848	return desired - nr_to_write;
849}
850
851static inline void wake_up_discard_thread(struct f2fs_sb_info *sbi, bool force)
852{
853	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
854	bool wakeup = false;
855	int i;
856
857	if (force)
858		goto wake_up;
859
860	mutex_lock(&dcc->cmd_lock);
861	for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
862		if (i + 1 < dcc->discard_granularity)
863			break;
864		if (!list_empty(&dcc->pend_list[i])) {
865			wakeup = true;
866			break;
867		}
868	}
869	mutex_unlock(&dcc->cmd_lock);
870	if (!wakeup || !is_idle(sbi, DISCARD_TIME))
871		return;
872wake_up:
873	dcc->discard_wake = 1;
874	wake_up_interruptible_all(&dcc->discard_wait_queue);
875}