Linux Audio

Check our new training course

Loading...
v3.15
  1/*
  2 * fs/f2fs/segment.h
  3 *
  4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5 *             http://www.samsung.com/
  6 *
  7 * This program is free software; you can redistribute it and/or modify
  8 * it under the terms of the GNU General Public License version 2 as
  9 * published by the Free Software Foundation.
 10 */
 11#include <linux/blkdev.h>
 
 12
 13/* constant macro */
 14#define NULL_SEGNO			((unsigned int)(~0))
 15#define NULL_SECNO			((unsigned int)(~0))
 16
 17#define DEF_RECLAIM_PREFREE_SEGMENTS	5	/* 5% over total segments */
 
 
 
 18
 19/* L: Logical segment # in volume, R: Relative segment # in main area */
 20#define GET_L2R_SEGNO(free_i, segno)	(segno - free_i->start_segno)
 21#define GET_R2L_SEGNO(free_i, segno)	(segno + free_i->start_segno)
 
 
 
 22
 23#define IS_DATASEG(t)	(t <= CURSEG_COLD_DATA)
 24#define IS_NODESEG(t)	(t >= CURSEG_HOT_NODE)
 
 25
 26#define IS_CURSEG(sbi, seg)						\
 27	((seg == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno) ||	\
 28	 (seg == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno) ||	\
 29	 (seg == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno) ||	\
 30	 (seg == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno) ||	\
 31	 (seg == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno) ||	\
 32	 (seg == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno))
 33
 34#define IS_CURSEC(sbi, secno)						\
 35	((secno == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno /		\
 36	  sbi->segs_per_sec) ||	\
 37	 (secno == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno /		\
 38	  sbi->segs_per_sec) ||	\
 39	 (secno == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno /		\
 40	  sbi->segs_per_sec) ||	\
 41	 (secno == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno /		\
 42	  sbi->segs_per_sec) ||	\
 43	 (secno == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno /		\
 44	  sbi->segs_per_sec) ||	\
 45	 (secno == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno /		\
 46	  sbi->segs_per_sec))	\
 47
 48#define START_BLOCK(sbi, segno)						\
 49	(SM_I(sbi)->seg0_blkaddr +					\
 50	 (GET_R2L_SEGNO(FREE_I(sbi), segno) << sbi->log_blocks_per_seg))
 51#define NEXT_FREE_BLKADDR(sbi, curseg)					\
 52	(START_BLOCK(sbi, curseg->segno) + curseg->next_blkoff)
 
 
 
 
 
 
 
 
 
 
 
 
 
 53
 54#define MAIN_BASE_BLOCK(sbi)	(SM_I(sbi)->main_blkaddr)
 
 55
 56#define GET_SEGOFF_FROM_SEG0(sbi, blk_addr)				\
 57	((blk_addr) - SM_I(sbi)->seg0_blkaddr)
 
 
 58#define GET_SEGNO_FROM_SEG0(sbi, blk_addr)				\
 59	(GET_SEGOFF_FROM_SEG0(sbi, blk_addr) >> sbi->log_blocks_per_seg)
 60#define GET_BLKOFF_FROM_SEG0(sbi, blk_addr)				\
 61	(GET_SEGOFF_FROM_SEG0(sbi, blk_addr) & (sbi->blocks_per_seg - 1))
 62
 63#define GET_SEGNO(sbi, blk_addr)					\
 64	(((blk_addr == NULL_ADDR) || (blk_addr == NEW_ADDR)) ?		\
 65	NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi),			\
 66		GET_SEGNO_FROM_SEG0(sbi, blk_addr)))
 67#define GET_SECNO(sbi, segno)					\
 68	((segno) / sbi->segs_per_sec)
 69#define GET_ZONENO_FROM_SEGNO(sbi, segno)				\
 70	((segno / sbi->segs_per_sec) / sbi->secs_per_zone)
 
 
 
 
 
 
 71
 72#define GET_SUM_BLOCK(sbi, segno)				\
 73	((sbi->sm_info->ssa_blkaddr) + segno)
 74
 75#define GET_SUM_TYPE(footer) ((footer)->entry_type)
 76#define SET_SUM_TYPE(footer, type) ((footer)->entry_type = type)
 77
 78#define SIT_ENTRY_OFFSET(sit_i, segno)					\
 79	(segno % sit_i->sents_per_block)
 80#define SIT_BLOCK_OFFSET(sit_i, segno)					\
 81	(segno / SIT_ENTRY_PER_BLOCK)
 82#define	START_SEGNO(sit_i, segno)		\
 83	(SIT_BLOCK_OFFSET(sit_i, segno) * SIT_ENTRY_PER_BLOCK)
 84#define SIT_BLK_CNT(sbi)			\
 85	((TOTAL_SEGS(sbi) + SIT_ENTRY_PER_BLOCK - 1) / SIT_ENTRY_PER_BLOCK)
 86#define f2fs_bitmap_size(nr)			\
 87	(BITS_TO_LONGS(nr) * sizeof(unsigned long))
 88#define TOTAL_SEGS(sbi)	(SM_I(sbi)->main_segments)
 89#define TOTAL_SECS(sbi)	(sbi->total_sections)
 90
 91#define SECTOR_FROM_BLOCK(sbi, blk_addr)				\
 92	(((sector_t)blk_addr) << (sbi)->log_sectors_per_block)
 93#define SECTOR_TO_BLOCK(sbi, sectors)					\
 94	(sectors >> (sbi)->log_sectors_per_block)
 95#define MAX_BIO_BLOCKS(max_hw_blocks)					\
 96	(min((int)max_hw_blocks, BIO_MAX_PAGES))
 97
 98/*
 99 * indicate a block allocation direction: RIGHT and LEFT.
100 * RIGHT means allocating new sections towards the end of volume.
101 * LEFT means the opposite direction.
102 */
103enum {
104	ALLOC_RIGHT = 0,
105	ALLOC_LEFT
106};
107
108/*
109 * In the victim_sel_policy->alloc_mode, there are two block allocation modes.
110 * LFS writes data sequentially with cleaning operations.
111 * SSR (Slack Space Recycle) reuses obsolete space without cleaning operations.
112 */
113enum {
114	LFS = 0,
115	SSR
116};
117
118/*
119 * In the victim_sel_policy->gc_mode, there are two gc, aka cleaning, modes.
120 * GC_CB is based on cost-benefit algorithm.
121 * GC_GREEDY is based on greedy algorithm.
122 */
123enum {
124	GC_CB = 0,
125	GC_GREEDY
 
 
 
126};
127
128/*
129 * BG_GC means the background cleaning job.
130 * FG_GC means the on-demand cleaning job.
 
131 */
132enum {
133	BG_GC = 0,
134	FG_GC
 
135};
136
137/* for a function parameter to select a victim segment */
138struct victim_sel_policy {
139	int alloc_mode;			/* LFS or SSR */
140	int gc_mode;			/* GC_CB or GC_GREEDY */
141	unsigned long *dirty_segmap;	/* dirty segment bitmap */
142	unsigned int max_search;	/* maximum # of segments to search */
143	unsigned int offset;		/* last scanned bitmap offset */
144	unsigned int ofs_unit;		/* bitmap search unit */
145	unsigned int min_cost;		/* minimum cost */
146	unsigned int min_segno;		/* segment # having min. cost */
147};
148
149struct seg_entry {
150	unsigned short valid_blocks;	/* # of valid blocks */
 
 
 
151	unsigned char *cur_valid_map;	/* validity bitmap of blocks */
 
 
 
152	/*
153	 * # of valid blocks and the validity bitmap stored in the the last
154	 * checkpoint pack. This information is used by the SSR mode.
155	 */
156	unsigned short ckpt_valid_blocks;
157	unsigned char *ckpt_valid_map;
158	unsigned char type;		/* segment type like CURSEG_XXX_TYPE */
159	unsigned long long mtime;	/* modification time of the segment */
160};
161
162struct sec_entry {
163	unsigned int valid_blocks;	/* # of valid blocks in a section */
164};
165
166struct segment_allocation {
167	void (*allocate_segment)(struct f2fs_sb_info *, int, bool);
168};
169
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
170struct sit_info {
171	const struct segment_allocation *s_ops;
172
173	block_t sit_base_addr;		/* start block address of SIT area */
174	block_t sit_blocks;		/* # of blocks used by SIT area */
175	block_t written_valid_blocks;	/* # of valid blocks in main area */
176	char *sit_bitmap;		/* SIT bitmap pointer */
 
 
 
177	unsigned int bitmap_size;	/* SIT bitmap size */
178
 
179	unsigned long *dirty_sentries_bitmap;	/* bitmap for dirty sentries */
180	unsigned int dirty_sentries;		/* # of dirty sentries */
181	unsigned int sents_per_block;		/* # of SIT entries per block */
182	struct mutex sentry_lock;		/* to protect SIT cache */
183	struct seg_entry *sentries;		/* SIT segment-level cache */
184	struct sec_entry *sec_entries;		/* SIT section-level cache */
185
186	/* for cost-benefit algorithm in cleaning procedure */
187	unsigned long long elapsed_time;	/* elapsed time after mount */
188	unsigned long long mounted_time;	/* mount time */
189	unsigned long long min_mtime;		/* min. modification time */
190	unsigned long long max_mtime;		/* max. modification time */
 
 
191};
192
193struct free_segmap_info {
194	unsigned int start_segno;	/* start segment number logically */
195	unsigned int free_segments;	/* # of free segments */
196	unsigned int free_sections;	/* # of free sections */
197	rwlock_t segmap_lock;		/* free segmap lock */
198	unsigned long *free_segmap;	/* free segment bitmap */
199	unsigned long *free_secmap;	/* free section bitmap */
200};
201
202/* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */
203enum dirty_type {
204	DIRTY_HOT_DATA,		/* dirty segments assigned as hot data logs */
205	DIRTY_WARM_DATA,	/* dirty segments assigned as warm data logs */
206	DIRTY_COLD_DATA,	/* dirty segments assigned as cold data logs */
207	DIRTY_HOT_NODE,		/* dirty segments assigned as hot node logs */
208	DIRTY_WARM_NODE,	/* dirty segments assigned as warm node logs */
209	DIRTY_COLD_NODE,	/* dirty segments assigned as cold node logs */
210	DIRTY,			/* to count # of dirty segments */
211	PRE,			/* to count # of entirely obsolete segments */
212	NR_DIRTY_TYPE
213};
214
215struct dirty_seglist_info {
216	const struct victim_selection *v_ops;	/* victim selction operation */
217	unsigned long *dirty_segmap[NR_DIRTY_TYPE];
218	struct mutex seglist_lock;		/* lock for segment bitmaps */
219	int nr_dirty[NR_DIRTY_TYPE];		/* # of dirty segments */
220	unsigned long *victim_secmap;		/* background GC victims */
221};
222
223/* victim selection function for cleaning and SSR */
224struct victim_selection {
225	int (*get_victim)(struct f2fs_sb_info *, unsigned int *,
226							int, int, char);
227};
228
229/* for active log information */
230struct curseg_info {
231	struct mutex curseg_mutex;		/* lock for consistency */
232	struct f2fs_summary_block *sum_blk;	/* cached summary block */
 
 
233	unsigned char alloc_type;		/* current allocation type */
234	unsigned int segno;			/* current segment number */
235	unsigned short next_blkoff;		/* next block offset to write */
236	unsigned int zone;			/* current zone number */
237	unsigned int next_segno;		/* preallocated segment */
238};
239
 
 
 
 
 
 
240/*
241 * inline functions
242 */
243static inline struct curseg_info *CURSEG_I(struct f2fs_sb_info *sbi, int type)
244{
245	return (struct curseg_info *)(SM_I(sbi)->curseg_array + type);
246}
247
248static inline struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi,
249						unsigned int segno)
250{
251	struct sit_info *sit_i = SIT_I(sbi);
252	return &sit_i->sentries[segno];
253}
254
255static inline struct sec_entry *get_sec_entry(struct f2fs_sb_info *sbi,
256						unsigned int segno)
257{
258	struct sit_info *sit_i = SIT_I(sbi);
259	return &sit_i->sec_entries[GET_SECNO(sbi, segno)];
260}
261
262static inline unsigned int get_valid_blocks(struct f2fs_sb_info *sbi,
263				unsigned int segno, int section)
264{
265	/*
266	 * In order to get # of valid blocks in a section instantly from many
267	 * segments, f2fs manages two counting structures separately.
268	 */
269	if (section > 1)
270		return get_sec_entry(sbi, segno)->valid_blocks;
271	else
272		return get_seg_entry(sbi, segno)->valid_blocks;
273}
274
275static inline void seg_info_from_raw_sit(struct seg_entry *se,
276					struct f2fs_sit_entry *rs)
277{
278	se->valid_blocks = GET_SIT_VBLOCKS(rs);
279	se->ckpt_valid_blocks = GET_SIT_VBLOCKS(rs);
280	memcpy(se->cur_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
281	memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
 
 
 
282	se->type = GET_SIT_TYPE(rs);
283	se->mtime = le64_to_cpu(rs->mtime);
284}
285
286static inline void seg_info_to_raw_sit(struct seg_entry *se,
287					struct f2fs_sit_entry *rs)
288{
289	unsigned short raw_vblocks = (se->type << SIT_VBLOCKS_SHIFT) |
290					se->valid_blocks;
291	rs->vblocks = cpu_to_le16(raw_vblocks);
292	memcpy(rs->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
293	memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
294	se->ckpt_valid_blocks = se->valid_blocks;
295	rs->mtime = cpu_to_le64(se->mtime);
296}
297
298static inline unsigned int find_next_inuse(struct free_segmap_info *free_i,
299		unsigned int max, unsigned int segno)
300{
301	unsigned int ret;
302	read_lock(&free_i->segmap_lock);
303	ret = find_next_bit(free_i->free_segmap, max, segno);
304	read_unlock(&free_i->segmap_lock);
305	return ret;
306}
307
308static inline void __set_free(struct f2fs_sb_info *sbi, unsigned int segno)
309{
310	struct free_segmap_info *free_i = FREE_I(sbi);
311	unsigned int secno = segno / sbi->segs_per_sec;
312	unsigned int start_segno = secno * sbi->segs_per_sec;
313	unsigned int next;
314
315	write_lock(&free_i->segmap_lock);
316	clear_bit(segno, free_i->free_segmap);
317	free_i->free_segments++;
318
319	next = find_next_bit(free_i->free_segmap, TOTAL_SEGS(sbi), start_segno);
 
320	if (next >= start_segno + sbi->segs_per_sec) {
321		clear_bit(secno, free_i->free_secmap);
322		free_i->free_sections++;
323	}
324	write_unlock(&free_i->segmap_lock);
325}
326
327static inline void __set_inuse(struct f2fs_sb_info *sbi,
328		unsigned int segno)
329{
330	struct free_segmap_info *free_i = FREE_I(sbi);
331	unsigned int secno = segno / sbi->segs_per_sec;
 
332	set_bit(segno, free_i->free_segmap);
333	free_i->free_segments--;
334	if (!test_and_set_bit(secno, free_i->free_secmap))
335		free_i->free_sections--;
336}
337
338static inline void __set_test_and_free(struct f2fs_sb_info *sbi,
339		unsigned int segno)
340{
341	struct free_segmap_info *free_i = FREE_I(sbi);
342	unsigned int secno = segno / sbi->segs_per_sec;
343	unsigned int start_segno = secno * sbi->segs_per_sec;
344	unsigned int next;
345
346	write_lock(&free_i->segmap_lock);
347	if (test_and_clear_bit(segno, free_i->free_segmap)) {
348		free_i->free_segments++;
349
350		next = find_next_bit(free_i->free_segmap, TOTAL_SEGS(sbi),
351								start_segno);
352		if (next >= start_segno + sbi->segs_per_sec) {
353			if (test_and_clear_bit(secno, free_i->free_secmap))
354				free_i->free_sections++;
355		}
356	}
357	write_unlock(&free_i->segmap_lock);
358}
359
360static inline void __set_test_and_inuse(struct f2fs_sb_info *sbi,
361		unsigned int segno)
362{
363	struct free_segmap_info *free_i = FREE_I(sbi);
364	unsigned int secno = segno / sbi->segs_per_sec;
365	write_lock(&free_i->segmap_lock);
 
366	if (!test_and_set_bit(segno, free_i->free_segmap)) {
367		free_i->free_segments--;
368		if (!test_and_set_bit(secno, free_i->free_secmap))
369			free_i->free_sections--;
370	}
371	write_unlock(&free_i->segmap_lock);
372}
373
374static inline void get_sit_bitmap(struct f2fs_sb_info *sbi,
375		void *dst_addr)
376{
377	struct sit_info *sit_i = SIT_I(sbi);
 
 
 
 
 
 
378	memcpy(dst_addr, sit_i->sit_bitmap, sit_i->bitmap_size);
379}
380
381static inline block_t written_block_count(struct f2fs_sb_info *sbi)
382{
383	return SIT_I(sbi)->written_valid_blocks;
384}
385
386static inline unsigned int free_segments(struct f2fs_sb_info *sbi)
387{
388	return FREE_I(sbi)->free_segments;
389}
390
391static inline int reserved_segments(struct f2fs_sb_info *sbi)
392{
393	return SM_I(sbi)->reserved_segments;
394}
395
396static inline unsigned int free_sections(struct f2fs_sb_info *sbi)
397{
398	return FREE_I(sbi)->free_sections;
399}
400
401static inline unsigned int prefree_segments(struct f2fs_sb_info *sbi)
402{
403	return DIRTY_I(sbi)->nr_dirty[PRE];
404}
405
406static inline unsigned int dirty_segments(struct f2fs_sb_info *sbi)
407{
408	return DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_DATA] +
409		DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_DATA] +
410		DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_DATA] +
411		DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_NODE] +
412		DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_NODE] +
413		DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_NODE];
414}
415
416static inline int overprovision_segments(struct f2fs_sb_info *sbi)
417{
418	return SM_I(sbi)->ovp_segments;
419}
420
421static inline int overprovision_sections(struct f2fs_sb_info *sbi)
422{
423	return ((unsigned int) overprovision_segments(sbi)) / sbi->segs_per_sec;
424}
425
426static inline int reserved_sections(struct f2fs_sb_info *sbi)
427{
428	return ((unsigned int) reserved_segments(sbi)) / sbi->segs_per_sec;
429}
430
431static inline bool need_SSR(struct f2fs_sb_info *sbi)
432{
433	return (prefree_segments(sbi) / sbi->segs_per_sec)
434			+ free_sections(sbi) < overprovision_sections(sbi);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
435}
436
437static inline bool has_not_enough_free_secs(struct f2fs_sb_info *sbi, int freed)
 
438{
439	int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
440	int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
 
441
442	if (unlikely(sbi->por_doing))
443		return false;
444
445	return (free_sections(sbi) + freed) <= (node_secs + 2 * dent_secs +
446						reserved_sections(sbi));
 
 
 
 
447}
448
449static inline bool excess_prefree_segs(struct f2fs_sb_info *sbi)
450{
451	return prefree_segments(sbi) > SM_I(sbi)->rec_prefree_segments;
452}
453
454static inline int utilization(struct f2fs_sb_info *sbi)
455{
456	return div_u64((u64)valid_user_blocks(sbi) * 100,
457					sbi->user_block_count);
458}
459
460/*
461 * Sometimes f2fs may be better to drop out-of-place update policy.
462 * And, users can control the policy through sysfs entries.
463 * There are five policies with triggering conditions as follows.
464 * F2FS_IPU_FORCE - all the time,
465 * F2FS_IPU_SSR - if SSR mode is activated,
466 * F2FS_IPU_UTIL - if FS utilization is over threashold,
467 * F2FS_IPU_SSR_UTIL - if SSR mode is activated and FS utilization is over
468 *                     threashold,
 
 
 
469 * F2FS_IPUT_DISABLE - disable IPU. (=default option)
470 */
471#define DEF_MIN_IPU_UTIL	70
 
 
 
 
472
473enum {
474	F2FS_IPU_FORCE,
475	F2FS_IPU_SSR,
476	F2FS_IPU_UTIL,
477	F2FS_IPU_SSR_UTIL,
478	F2FS_IPU_DISABLE,
 
479};
480
481static inline bool need_inplace_update(struct inode *inode)
482{
483	struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
484
485	/* IPU can be done only for the user data */
486	if (S_ISDIR(inode->i_mode))
487		return false;
488
489	switch (SM_I(sbi)->ipu_policy) {
490	case F2FS_IPU_FORCE:
491		return true;
492	case F2FS_IPU_SSR:
493		if (need_SSR(sbi))
494			return true;
495		break;
496	case F2FS_IPU_UTIL:
497		if (utilization(sbi) > SM_I(sbi)->min_ipu_util)
498			return true;
499		break;
500	case F2FS_IPU_SSR_UTIL:
501		if (need_SSR(sbi) && utilization(sbi) > SM_I(sbi)->min_ipu_util)
502			return true;
503		break;
504	case F2FS_IPU_DISABLE:
505		break;
506	}
507	return false;
508}
509
510static inline unsigned int curseg_segno(struct f2fs_sb_info *sbi,
511		int type)
512{
513	struct curseg_info *curseg = CURSEG_I(sbi, type);
514	return curseg->segno;
515}
516
517static inline unsigned char curseg_alloc_type(struct f2fs_sb_info *sbi,
518		int type)
519{
520	struct curseg_info *curseg = CURSEG_I(sbi, type);
521	return curseg->alloc_type;
522}
523
524static inline unsigned short curseg_blkoff(struct f2fs_sb_info *sbi, int type)
525{
526	struct curseg_info *curseg = CURSEG_I(sbi, type);
527	return curseg->next_blkoff;
528}
529
530#ifdef CONFIG_F2FS_CHECK_FS
531static inline void check_seg_range(struct f2fs_sb_info *sbi, unsigned int segno)
532{
533	unsigned int end_segno = SM_I(sbi)->segment_count - 1;
534	BUG_ON(segno > end_segno);
535}
536
537static inline void verify_block_addr(struct f2fs_sb_info *sbi, block_t blk_addr)
538{
539	struct f2fs_sm_info *sm_info = SM_I(sbi);
540	block_t total_blks = sm_info->segment_count << sbi->log_blocks_per_seg;
541	block_t start_addr = sm_info->seg0_blkaddr;
542	block_t end_addr = start_addr + total_blks - 1;
543	BUG_ON(blk_addr < start_addr);
544	BUG_ON(blk_addr > end_addr);
 
 
 
545}
546
547/*
548 * Summary block is always treated as invalid block
549 */
550static inline void check_block_count(struct f2fs_sb_info *sbi,
551		int segno, struct f2fs_sit_entry *raw_sit)
552{
553	struct f2fs_sm_info *sm_info = SM_I(sbi);
554	unsigned int end_segno = sm_info->segment_count - 1;
555	bool is_valid  = test_bit_le(0, raw_sit->valid_map) ? true : false;
556	int valid_blocks = 0;
557	int cur_pos = 0, next_pos;
558
559	/* check segment usage */
560	BUG_ON(GET_SIT_VBLOCKS(raw_sit) > sbi->blocks_per_seg);
561
562	/* check boundary of a given segment number */
563	BUG_ON(segno > end_segno);
564
565	/* check bitmap with valid block count */
566	do {
567		if (is_valid) {
568			next_pos = find_next_zero_bit_le(&raw_sit->valid_map,
569					sbi->blocks_per_seg,
570					cur_pos);
571			valid_blocks += next_pos - cur_pos;
572		} else
573			next_pos = find_next_bit_le(&raw_sit->valid_map,
574					sbi->blocks_per_seg,
575					cur_pos);
576		cur_pos = next_pos;
577		is_valid = !is_valid;
578	} while (cur_pos < sbi->blocks_per_seg);
579	BUG_ON(GET_SIT_VBLOCKS(raw_sit) != valid_blocks);
580}
581#else
582#define check_seg_range(sbi, segno)
583#define verify_block_addr(sbi, blk_addr)
584#define check_block_count(sbi, segno, raw_sit)
 
 
585#endif
 
 
 
 
 
 
 
 
 
 
 
586
587static inline pgoff_t current_sit_addr(struct f2fs_sb_info *sbi,
588						unsigned int start)
589{
590	struct sit_info *sit_i = SIT_I(sbi);
591	unsigned int offset = SIT_BLOCK_OFFSET(sit_i, start);
592	block_t blk_addr = sit_i->sit_base_addr + offset;
593
594	check_seg_range(sbi, start);
595
 
 
 
 
 
 
596	/* calculate sit block address */
597	if (f2fs_test_bit(offset, sit_i->sit_bitmap))
598		blk_addr += sit_i->sit_blocks;
599
600	return blk_addr;
601}
602
603static inline pgoff_t next_sit_addr(struct f2fs_sb_info *sbi,
604						pgoff_t block_addr)
605{
606	struct sit_info *sit_i = SIT_I(sbi);
607	block_addr -= sit_i->sit_base_addr;
608	if (block_addr < sit_i->sit_blocks)
609		block_addr += sit_i->sit_blocks;
610	else
611		block_addr -= sit_i->sit_blocks;
612
613	return block_addr + sit_i->sit_base_addr;
614}
615
616static inline void set_to_next_sit(struct sit_info *sit_i, unsigned int start)
617{
618	unsigned int block_off = SIT_BLOCK_OFFSET(sit_i, start);
619
620	if (f2fs_test_bit(block_off, sit_i->sit_bitmap))
621		f2fs_clear_bit(block_off, sit_i->sit_bitmap);
622	else
623		f2fs_set_bit(block_off, sit_i->sit_bitmap);
624}
625
626static inline unsigned long long get_mtime(struct f2fs_sb_info *sbi)
627{
628	struct sit_info *sit_i = SIT_I(sbi);
629	return sit_i->elapsed_time + CURRENT_TIME_SEC.tv_sec -
630						sit_i->mounted_time;
 
631}
632
633static inline void set_summary(struct f2fs_summary *sum, nid_t nid,
634			unsigned int ofs_in_node, unsigned char version)
635{
636	sum->nid = cpu_to_le32(nid);
637	sum->ofs_in_node = cpu_to_le16(ofs_in_node);
638	sum->version = version;
639}
640
641static inline block_t start_sum_block(struct f2fs_sb_info *sbi)
642{
643	return __start_cp_addr(sbi) +
644		le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
645}
646
647static inline block_t sum_blk_addr(struct f2fs_sb_info *sbi, int base, int type)
648{
649	return __start_cp_addr(sbi) +
650		le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_total_block_count)
651				- (base + 1) + type;
652}
653
654static inline bool sec_usage_check(struct f2fs_sb_info *sbi, unsigned int secno)
 
655{
656	if (IS_CURSEC(sbi, secno) || (sbi->cur_victim_sec == secno))
 
657		return true;
658	return false;
659}
660
661static inline unsigned int max_hw_blocks(struct f2fs_sb_info *sbi)
662{
663	struct block_device *bdev = sbi->sb->s_bdev;
664	struct request_queue *q = bdev_get_queue(bdev);
665	return SECTOR_TO_BLOCK(sbi, queue_max_sectors(q));
666}
667
668/*
669 * It is very important to gather dirty pages and write at once, so that we can
670 * submit a big bio without interfering other data writes.
671 * By default, 512 pages for directory data,
672 * 512 pages (2MB) * 3 for three types of nodes, and
673 * max_bio_blocks for meta are set.
674 */
675static inline int nr_pages_to_skip(struct f2fs_sb_info *sbi, int type)
676{
 
 
 
677	if (type == DATA)
678		return sbi->blocks_per_seg;
679	else if (type == NODE)
680		return 3 * sbi->blocks_per_seg;
681	else if (type == META)
682		return MAX_BIO_BLOCKS(max_hw_blocks(sbi));
683	else
684		return 0;
685}
686
687/*
688 * When writing pages, it'd better align nr_to_write for segment size.
689 */
690static inline long nr_pages_to_write(struct f2fs_sb_info *sbi, int type,
691					struct writeback_control *wbc)
692{
693	long nr_to_write, desired;
694
695	if (wbc->sync_mode != WB_SYNC_NONE)
696		return 0;
697
698	nr_to_write = wbc->nr_to_write;
699
700	if (type == DATA)
701		desired = 4096;
702	else if (type == NODE)
703		desired = 3 * max_hw_blocks(sbi);
704	else
705		desired = MAX_BIO_BLOCKS(max_hw_blocks(sbi));
706
707	wbc->nr_to_write = desired;
708	return desired - nr_to_write;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
709}
v4.17
  1/*
  2 * fs/f2fs/segment.h
  3 *
  4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5 *             http://www.samsung.com/
  6 *
  7 * This program is free software; you can redistribute it and/or modify
  8 * it under the terms of the GNU General Public License version 2 as
  9 * published by the Free Software Foundation.
 10 */
 11#include <linux/blkdev.h>
 12#include <linux/backing-dev.h>
 13
 14/* constant macro */
 15#define NULL_SEGNO			((unsigned int)(~0))
 16#define NULL_SECNO			((unsigned int)(~0))
 17
 18#define DEF_RECLAIM_PREFREE_SEGMENTS	5	/* 5% over total segments */
 19#define DEF_MAX_RECLAIM_PREFREE_SEGMENTS	4096	/* 8GB in maximum */
 20
 21#define F2FS_MIN_SEGMENTS	9 /* SB + 2 (CP + SIT + NAT) + SSA + MAIN */
 22
 23/* L: Logical segment # in volume, R: Relative segment # in main area */
 24#define GET_L2R_SEGNO(free_i, segno)	((segno) - (free_i)->start_segno)
 25#define GET_R2L_SEGNO(free_i, segno)	((segno) + (free_i)->start_segno)
 26
 27#define IS_DATASEG(t)	((t) <= CURSEG_COLD_DATA)
 28#define IS_NODESEG(t)	((t) >= CURSEG_HOT_NODE)
 29
 30#define IS_HOT(t)	((t) == CURSEG_HOT_NODE || (t) == CURSEG_HOT_DATA)
 31#define IS_WARM(t)	((t) == CURSEG_WARM_NODE || (t) == CURSEG_WARM_DATA)
 32#define IS_COLD(t)	((t) == CURSEG_COLD_NODE || (t) == CURSEG_COLD_DATA)
 33
 34#define IS_CURSEG(sbi, seg)						\
 35	(((seg) == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno) ||	\
 36	 ((seg) == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno) ||	\
 37	 ((seg) == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno) ||	\
 38	 ((seg) == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno) ||	\
 39	 ((seg) == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno) ||	\
 40	 ((seg) == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno))
 41
 42#define IS_CURSEC(sbi, secno)						\
 43	(((secno) == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno /		\
 44	  (sbi)->segs_per_sec) ||	\
 45	 ((secno) == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno /		\
 46	  (sbi)->segs_per_sec) ||	\
 47	 ((secno) == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno /		\
 48	  (sbi)->segs_per_sec) ||	\
 49	 ((secno) == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno /		\
 50	  (sbi)->segs_per_sec) ||	\
 51	 ((secno) == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno /		\
 52	  (sbi)->segs_per_sec) ||	\
 53	 ((secno) == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno /		\
 54	  (sbi)->segs_per_sec))	\
 55
 56#define MAIN_BLKADDR(sbi)						\
 57	(SM_I(sbi) ? SM_I(sbi)->main_blkaddr : 				\
 58		le32_to_cpu(F2FS_RAW_SUPER(sbi)->main_blkaddr))
 59#define SEG0_BLKADDR(sbi)						\
 60	(SM_I(sbi) ? SM_I(sbi)->seg0_blkaddr : 				\
 61		le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment0_blkaddr))
 62
 63#define MAIN_SEGS(sbi)	(SM_I(sbi)->main_segments)
 64#define MAIN_SECS(sbi)	((sbi)->total_sections)
 65
 66#define TOTAL_SEGS(sbi)							\
 67	(SM_I(sbi) ? SM_I(sbi)->segment_count : 				\
 68		le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment_count))
 69#define TOTAL_BLKS(sbi)	(TOTAL_SEGS(sbi) << (sbi)->log_blocks_per_seg)
 70
 71#define MAX_BLKADDR(sbi)	(SEG0_BLKADDR(sbi) + TOTAL_BLKS(sbi))
 72#define SEGMENT_SIZE(sbi)	(1ULL << ((sbi)->log_blocksize +	\
 73					(sbi)->log_blocks_per_seg))
 74
 75#define START_BLOCK(sbi, segno)	(SEG0_BLKADDR(sbi) +			\
 76	 (GET_R2L_SEGNO(FREE_I(sbi), segno) << (sbi)->log_blocks_per_seg))
 77
 78#define NEXT_FREE_BLKADDR(sbi, curseg)					\
 79	(START_BLOCK(sbi, (curseg)->segno) + (curseg)->next_blkoff)
 80
 81#define GET_SEGOFF_FROM_SEG0(sbi, blk_addr)	((blk_addr) - SEG0_BLKADDR(sbi))
 82#define GET_SEGNO_FROM_SEG0(sbi, blk_addr)				\
 83	(GET_SEGOFF_FROM_SEG0(sbi, blk_addr) >> (sbi)->log_blocks_per_seg)
 84#define GET_BLKOFF_FROM_SEG0(sbi, blk_addr)				\
 85	(GET_SEGOFF_FROM_SEG0(sbi, blk_addr) & ((sbi)->blocks_per_seg - 1))
 86
 87#define GET_SEGNO(sbi, blk_addr)					\
 88	((((blk_addr) == NULL_ADDR) || ((blk_addr) == NEW_ADDR)) ?	\
 89	NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi),			\
 90		GET_SEGNO_FROM_SEG0(sbi, blk_addr)))
 91#define BLKS_PER_SEC(sbi)					\
 92	((sbi)->segs_per_sec * (sbi)->blocks_per_seg)
 93#define GET_SEC_FROM_SEG(sbi, segno)				\
 94	((segno) / (sbi)->segs_per_sec)
 95#define GET_SEG_FROM_SEC(sbi, secno)				\
 96	((secno) * (sbi)->segs_per_sec)
 97#define GET_ZONE_FROM_SEC(sbi, secno)				\
 98	((secno) / (sbi)->secs_per_zone)
 99#define GET_ZONE_FROM_SEG(sbi, segno)				\
100	GET_ZONE_FROM_SEC(sbi, GET_SEC_FROM_SEG(sbi, segno))
101
102#define GET_SUM_BLOCK(sbi, segno)				\
103	((sbi)->sm_info->ssa_blkaddr + (segno))
104
105#define GET_SUM_TYPE(footer) ((footer)->entry_type)
106#define SET_SUM_TYPE(footer, type) ((footer)->entry_type = (type))
107
108#define SIT_ENTRY_OFFSET(sit_i, segno)					\
109	((segno) % (sit_i)->sents_per_block)
110#define SIT_BLOCK_OFFSET(segno)					\
111	((segno) / SIT_ENTRY_PER_BLOCK)
112#define	START_SEGNO(segno)		\
113	(SIT_BLOCK_OFFSET(segno) * SIT_ENTRY_PER_BLOCK)
114#define SIT_BLK_CNT(sbi)			\
115	((MAIN_SEGS(sbi) + SIT_ENTRY_PER_BLOCK - 1) / SIT_ENTRY_PER_BLOCK)
116#define f2fs_bitmap_size(nr)			\
117	(BITS_TO_LONGS(nr) * sizeof(unsigned long))
 
 
118
119#define SECTOR_FROM_BLOCK(blk_addr)					\
120	(((sector_t)blk_addr) << F2FS_LOG_SECTORS_PER_BLOCK)
121#define SECTOR_TO_BLOCK(sectors)					\
122	((sectors) >> F2FS_LOG_SECTORS_PER_BLOCK)
 
 
123
124/*
125 * indicate a block allocation direction: RIGHT and LEFT.
126 * RIGHT means allocating new sections towards the end of volume.
127 * LEFT means the opposite direction.
128 */
129enum {
130	ALLOC_RIGHT = 0,
131	ALLOC_LEFT
132};
133
134/*
135 * In the victim_sel_policy->alloc_mode, there are two block allocation modes.
136 * LFS writes data sequentially with cleaning operations.
137 * SSR (Slack Space Recycle) reuses obsolete space without cleaning operations.
138 */
139enum {
140	LFS = 0,
141	SSR
142};
143
144/*
145 * In the victim_sel_policy->gc_mode, there are two gc, aka cleaning, modes.
146 * GC_CB is based on cost-benefit algorithm.
147 * GC_GREEDY is based on greedy algorithm.
148 */
149enum {
150	GC_CB = 0,
151	GC_GREEDY,
152	ALLOC_NEXT,
153	FLUSH_DEVICE,
154	MAX_GC_POLICY,
155};
156
157/*
158 * BG_GC means the background cleaning job.
159 * FG_GC means the on-demand cleaning job.
160 * FORCE_FG_GC means on-demand cleaning job in background.
161 */
162enum {
163	BG_GC = 0,
164	FG_GC,
165	FORCE_FG_GC,
166};
167
168/* for a function parameter to select a victim segment */
169struct victim_sel_policy {
170	int alloc_mode;			/* LFS or SSR */
171	int gc_mode;			/* GC_CB or GC_GREEDY */
172	unsigned long *dirty_segmap;	/* dirty segment bitmap */
173	unsigned int max_search;	/* maximum # of segments to search */
174	unsigned int offset;		/* last scanned bitmap offset */
175	unsigned int ofs_unit;		/* bitmap search unit */
176	unsigned int min_cost;		/* minimum cost */
177	unsigned int min_segno;		/* segment # having min. cost */
178};
179
180struct seg_entry {
181	unsigned int type:6;		/* segment type like CURSEG_XXX_TYPE */
182	unsigned int valid_blocks:10;	/* # of valid blocks */
183	unsigned int ckpt_valid_blocks:10;	/* # of valid blocks last cp */
184	unsigned int padding:6;		/* padding */
185	unsigned char *cur_valid_map;	/* validity bitmap of blocks */
186#ifdef CONFIG_F2FS_CHECK_FS
187	unsigned char *cur_valid_map_mir;	/* mirror of current valid bitmap */
188#endif
189	/*
190	 * # of valid blocks and the validity bitmap stored in the the last
191	 * checkpoint pack. This information is used by the SSR mode.
192	 */
193	unsigned char *ckpt_valid_map;	/* validity bitmap of blocks last cp */
194	unsigned char *discard_map;
 
195	unsigned long long mtime;	/* modification time of the segment */
196};
197
198struct sec_entry {
199	unsigned int valid_blocks;	/* # of valid blocks in a section */
200};
201
202struct segment_allocation {
203	void (*allocate_segment)(struct f2fs_sb_info *, int, bool);
204};
205
206/*
207 * this value is set in page as a private data which indicate that
208 * the page is atomically written, and it is in inmem_pages list.
209 */
210#define ATOMIC_WRITTEN_PAGE		((unsigned long)-1)
211#define DUMMY_WRITTEN_PAGE		((unsigned long)-2)
212
213#define IS_ATOMIC_WRITTEN_PAGE(page)			\
214		(page_private(page) == (unsigned long)ATOMIC_WRITTEN_PAGE)
215#define IS_DUMMY_WRITTEN_PAGE(page)			\
216		(page_private(page) == (unsigned long)DUMMY_WRITTEN_PAGE)
217
218struct inmem_pages {
219	struct list_head list;
220	struct page *page;
221	block_t old_addr;		/* for revoking when fail to commit */
222};
223
224struct sit_info {
225	const struct segment_allocation *s_ops;
226
227	block_t sit_base_addr;		/* start block address of SIT area */
228	block_t sit_blocks;		/* # of blocks used by SIT area */
229	block_t written_valid_blocks;	/* # of valid blocks in main area */
230	char *sit_bitmap;		/* SIT bitmap pointer */
231#ifdef CONFIG_F2FS_CHECK_FS
232	char *sit_bitmap_mir;		/* SIT bitmap mirror */
233#endif
234	unsigned int bitmap_size;	/* SIT bitmap size */
235
236	unsigned long *tmp_map;			/* bitmap for temporal use */
237	unsigned long *dirty_sentries_bitmap;	/* bitmap for dirty sentries */
238	unsigned int dirty_sentries;		/* # of dirty sentries */
239	unsigned int sents_per_block;		/* # of SIT entries per block */
240	struct rw_semaphore sentry_lock;	/* to protect SIT cache */
241	struct seg_entry *sentries;		/* SIT segment-level cache */
242	struct sec_entry *sec_entries;		/* SIT section-level cache */
243
244	/* for cost-benefit algorithm in cleaning procedure */
245	unsigned long long elapsed_time;	/* elapsed time after mount */
246	unsigned long long mounted_time;	/* mount time */
247	unsigned long long min_mtime;		/* min. modification time */
248	unsigned long long max_mtime;		/* max. modification time */
249
250	unsigned int last_victim[MAX_GC_POLICY]; /* last victim segment # */
251};
252
253struct free_segmap_info {
254	unsigned int start_segno;	/* start segment number logically */
255	unsigned int free_segments;	/* # of free segments */
256	unsigned int free_sections;	/* # of free sections */
257	spinlock_t segmap_lock;		/* free segmap lock */
258	unsigned long *free_segmap;	/* free segment bitmap */
259	unsigned long *free_secmap;	/* free section bitmap */
260};
261
262/* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */
263enum dirty_type {
264	DIRTY_HOT_DATA,		/* dirty segments assigned as hot data logs */
265	DIRTY_WARM_DATA,	/* dirty segments assigned as warm data logs */
266	DIRTY_COLD_DATA,	/* dirty segments assigned as cold data logs */
267	DIRTY_HOT_NODE,		/* dirty segments assigned as hot node logs */
268	DIRTY_WARM_NODE,	/* dirty segments assigned as warm node logs */
269	DIRTY_COLD_NODE,	/* dirty segments assigned as cold node logs */
270	DIRTY,			/* to count # of dirty segments */
271	PRE,			/* to count # of entirely obsolete segments */
272	NR_DIRTY_TYPE
273};
274
275struct dirty_seglist_info {
276	const struct victim_selection *v_ops;	/* victim selction operation */
277	unsigned long *dirty_segmap[NR_DIRTY_TYPE];
278	struct mutex seglist_lock;		/* lock for segment bitmaps */
279	int nr_dirty[NR_DIRTY_TYPE];		/* # of dirty segments */
280	unsigned long *victim_secmap;		/* background GC victims */
281};
282
283/* victim selection function for cleaning and SSR */
284struct victim_selection {
285	int (*get_victim)(struct f2fs_sb_info *, unsigned int *,
286							int, int, char);
287};
288
289/* for active log information */
290struct curseg_info {
291	struct mutex curseg_mutex;		/* lock for consistency */
292	struct f2fs_summary_block *sum_blk;	/* cached summary block */
293	struct rw_semaphore journal_rwsem;	/* protect journal area */
294	struct f2fs_journal *journal;		/* cached journal info */
295	unsigned char alloc_type;		/* current allocation type */
296	unsigned int segno;			/* current segment number */
297	unsigned short next_blkoff;		/* next block offset to write */
298	unsigned int zone;			/* current zone number */
299	unsigned int next_segno;		/* preallocated segment */
300};
301
302struct sit_entry_set {
303	struct list_head set_list;	/* link with all sit sets */
304	unsigned int start_segno;	/* start segno of sits in set */
305	unsigned int entry_cnt;		/* the # of sit entries in set */
306};
307
308/*
309 * inline functions
310 */
311static inline struct curseg_info *CURSEG_I(struct f2fs_sb_info *sbi, int type)
312{
313	return (struct curseg_info *)(SM_I(sbi)->curseg_array + type);
314}
315
316static inline struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi,
317						unsigned int segno)
318{
319	struct sit_info *sit_i = SIT_I(sbi);
320	return &sit_i->sentries[segno];
321}
322
323static inline struct sec_entry *get_sec_entry(struct f2fs_sb_info *sbi,
324						unsigned int segno)
325{
326	struct sit_info *sit_i = SIT_I(sbi);
327	return &sit_i->sec_entries[GET_SEC_FROM_SEG(sbi, segno)];
328}
329
330static inline unsigned int get_valid_blocks(struct f2fs_sb_info *sbi,
331				unsigned int segno, bool use_section)
332{
333	/*
334	 * In order to get # of valid blocks in a section instantly from many
335	 * segments, f2fs manages two counting structures separately.
336	 */
337	if (use_section && sbi->segs_per_sec > 1)
338		return get_sec_entry(sbi, segno)->valid_blocks;
339	else
340		return get_seg_entry(sbi, segno)->valid_blocks;
341}
342
343static inline void seg_info_from_raw_sit(struct seg_entry *se,
344					struct f2fs_sit_entry *rs)
345{
346	se->valid_blocks = GET_SIT_VBLOCKS(rs);
347	se->ckpt_valid_blocks = GET_SIT_VBLOCKS(rs);
348	memcpy(se->cur_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
349	memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
350#ifdef CONFIG_F2FS_CHECK_FS
351	memcpy(se->cur_valid_map_mir, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
352#endif
353	se->type = GET_SIT_TYPE(rs);
354	se->mtime = le64_to_cpu(rs->mtime);
355}
356
357static inline void __seg_info_to_raw_sit(struct seg_entry *se,
358					struct f2fs_sit_entry *rs)
359{
360	unsigned short raw_vblocks = (se->type << SIT_VBLOCKS_SHIFT) |
361					se->valid_blocks;
362	rs->vblocks = cpu_to_le16(raw_vblocks);
363	memcpy(rs->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE);
364	rs->mtime = cpu_to_le64(se->mtime);
365}
366
367static inline void seg_info_to_sit_page(struct f2fs_sb_info *sbi,
368				struct page *page, unsigned int start)
369{
370	struct f2fs_sit_block *raw_sit;
371	struct seg_entry *se;
372	struct f2fs_sit_entry *rs;
373	unsigned int end = min(start + SIT_ENTRY_PER_BLOCK,
374					(unsigned long)MAIN_SEGS(sbi));
375	int i;
376
377	raw_sit = (struct f2fs_sit_block *)page_address(page);
378	for (i = 0; i < end - start; i++) {
379		rs = &raw_sit->entries[i];
380		se = get_seg_entry(sbi, start + i);
381		__seg_info_to_raw_sit(se, rs);
382	}
383}
384
385static inline void seg_info_to_raw_sit(struct seg_entry *se,
386					struct f2fs_sit_entry *rs)
387{
388	__seg_info_to_raw_sit(se, rs);
389
390	memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
391	se->ckpt_valid_blocks = se->valid_blocks;
 
392}
393
394static inline unsigned int find_next_inuse(struct free_segmap_info *free_i,
395		unsigned int max, unsigned int segno)
396{
397	unsigned int ret;
398	spin_lock(&free_i->segmap_lock);
399	ret = find_next_bit(free_i->free_segmap, max, segno);
400	spin_unlock(&free_i->segmap_lock);
401	return ret;
402}
403
404static inline void __set_free(struct f2fs_sb_info *sbi, unsigned int segno)
405{
406	struct free_segmap_info *free_i = FREE_I(sbi);
407	unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
408	unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno);
409	unsigned int next;
410
411	spin_lock(&free_i->segmap_lock);
412	clear_bit(segno, free_i->free_segmap);
413	free_i->free_segments++;
414
415	next = find_next_bit(free_i->free_segmap,
416			start_segno + sbi->segs_per_sec, start_segno);
417	if (next >= start_segno + sbi->segs_per_sec) {
418		clear_bit(secno, free_i->free_secmap);
419		free_i->free_sections++;
420	}
421	spin_unlock(&free_i->segmap_lock);
422}
423
424static inline void __set_inuse(struct f2fs_sb_info *sbi,
425		unsigned int segno)
426{
427	struct free_segmap_info *free_i = FREE_I(sbi);
428	unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
429
430	set_bit(segno, free_i->free_segmap);
431	free_i->free_segments--;
432	if (!test_and_set_bit(secno, free_i->free_secmap))
433		free_i->free_sections--;
434}
435
436static inline void __set_test_and_free(struct f2fs_sb_info *sbi,
437		unsigned int segno)
438{
439	struct free_segmap_info *free_i = FREE_I(sbi);
440	unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
441	unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno);
442	unsigned int next;
443
444	spin_lock(&free_i->segmap_lock);
445	if (test_and_clear_bit(segno, free_i->free_segmap)) {
446		free_i->free_segments++;
447
448		next = find_next_bit(free_i->free_segmap,
449				start_segno + sbi->segs_per_sec, start_segno);
450		if (next >= start_segno + sbi->segs_per_sec) {
451			if (test_and_clear_bit(secno, free_i->free_secmap))
452				free_i->free_sections++;
453		}
454	}
455	spin_unlock(&free_i->segmap_lock);
456}
457
458static inline void __set_test_and_inuse(struct f2fs_sb_info *sbi,
459		unsigned int segno)
460{
461	struct free_segmap_info *free_i = FREE_I(sbi);
462	unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
463
464	spin_lock(&free_i->segmap_lock);
465	if (!test_and_set_bit(segno, free_i->free_segmap)) {
466		free_i->free_segments--;
467		if (!test_and_set_bit(secno, free_i->free_secmap))
468			free_i->free_sections--;
469	}
470	spin_unlock(&free_i->segmap_lock);
471}
472
473static inline void get_sit_bitmap(struct f2fs_sb_info *sbi,
474		void *dst_addr)
475{
476	struct sit_info *sit_i = SIT_I(sbi);
477
478#ifdef CONFIG_F2FS_CHECK_FS
479	if (memcmp(sit_i->sit_bitmap, sit_i->sit_bitmap_mir,
480						sit_i->bitmap_size))
481		f2fs_bug_on(sbi, 1);
482#endif
483	memcpy(dst_addr, sit_i->sit_bitmap, sit_i->bitmap_size);
484}
485
486static inline block_t written_block_count(struct f2fs_sb_info *sbi)
487{
488	return SIT_I(sbi)->written_valid_blocks;
489}
490
491static inline unsigned int free_segments(struct f2fs_sb_info *sbi)
492{
493	return FREE_I(sbi)->free_segments;
494}
495
496static inline int reserved_segments(struct f2fs_sb_info *sbi)
497{
498	return SM_I(sbi)->reserved_segments;
499}
500
501static inline unsigned int free_sections(struct f2fs_sb_info *sbi)
502{
503	return FREE_I(sbi)->free_sections;
504}
505
506static inline unsigned int prefree_segments(struct f2fs_sb_info *sbi)
507{
508	return DIRTY_I(sbi)->nr_dirty[PRE];
509}
510
511static inline unsigned int dirty_segments(struct f2fs_sb_info *sbi)
512{
513	return DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_DATA] +
514		DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_DATA] +
515		DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_DATA] +
516		DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_NODE] +
517		DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_NODE] +
518		DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_NODE];
519}
520
521static inline int overprovision_segments(struct f2fs_sb_info *sbi)
522{
523	return SM_I(sbi)->ovp_segments;
524}
525
 
 
 
 
 
526static inline int reserved_sections(struct f2fs_sb_info *sbi)
527{
528	return GET_SEC_FROM_SEG(sbi, (unsigned int)reserved_segments(sbi));
529}
530
531static inline bool has_curseg_enough_space(struct f2fs_sb_info *sbi)
532{
533	unsigned int node_blocks = get_pages(sbi, F2FS_DIRTY_NODES) +
534					get_pages(sbi, F2FS_DIRTY_DENTS);
535	unsigned int dent_blocks = get_pages(sbi, F2FS_DIRTY_DENTS);
536	unsigned int segno, left_blocks;
537	int i;
538
539	/* check current node segment */
540	for (i = CURSEG_HOT_NODE; i <= CURSEG_COLD_NODE; i++) {
541		segno = CURSEG_I(sbi, i)->segno;
542		left_blocks = sbi->blocks_per_seg -
543			get_seg_entry(sbi, segno)->ckpt_valid_blocks;
544
545		if (node_blocks > left_blocks)
546			return false;
547	}
548
549	/* check current data segment */
550	segno = CURSEG_I(sbi, CURSEG_HOT_DATA)->segno;
551	left_blocks = sbi->blocks_per_seg -
552			get_seg_entry(sbi, segno)->ckpt_valid_blocks;
553	if (dent_blocks > left_blocks)
554		return false;
555	return true;
556}
557
558static inline bool has_not_enough_free_secs(struct f2fs_sb_info *sbi,
559					int freed, int needed)
560{
561	int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
562	int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
563	int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
564
565	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
566		return false;
567
568	if (free_sections(sbi) + freed == reserved_sections(sbi) + needed &&
569			has_curseg_enough_space(sbi))
570		return false;
571	return (free_sections(sbi) + freed) <=
572		(node_secs + 2 * dent_secs + imeta_secs +
573		reserved_sections(sbi) + needed);
574}
575
576static inline bool excess_prefree_segs(struct f2fs_sb_info *sbi)
577{
578	return prefree_segments(sbi) > SM_I(sbi)->rec_prefree_segments;
579}
580
581static inline int utilization(struct f2fs_sb_info *sbi)
582{
583	return div_u64((u64)valid_user_blocks(sbi) * 100,
584					sbi->user_block_count);
585}
586
587/*
588 * Sometimes f2fs may be better to drop out-of-place update policy.
589 * And, users can control the policy through sysfs entries.
590 * There are five policies with triggering conditions as follows.
591 * F2FS_IPU_FORCE - all the time,
592 * F2FS_IPU_SSR - if SSR mode is activated,
593 * F2FS_IPU_UTIL - if FS utilization is over threashold,
594 * F2FS_IPU_SSR_UTIL - if SSR mode is activated and FS utilization is over
595 *                     threashold,
596 * F2FS_IPU_FSYNC - activated in fsync path only for high performance flash
597 *                     storages. IPU will be triggered only if the # of dirty
598 *                     pages over min_fsync_blocks.
599 * F2FS_IPUT_DISABLE - disable IPU. (=default option)
600 */
601#define DEF_MIN_IPU_UTIL	70
602#define DEF_MIN_FSYNC_BLOCKS	8
603#define DEF_MIN_HOT_BLOCKS	16
604
605#define SMALL_VOLUME_SEGMENTS	(16 * 512)	/* 16GB */
606
607enum {
608	F2FS_IPU_FORCE,
609	F2FS_IPU_SSR,
610	F2FS_IPU_UTIL,
611	F2FS_IPU_SSR_UTIL,
612	F2FS_IPU_FSYNC,
613	F2FS_IPU_ASYNC,
614};
615
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
616static inline unsigned int curseg_segno(struct f2fs_sb_info *sbi,
617		int type)
618{
619	struct curseg_info *curseg = CURSEG_I(sbi, type);
620	return curseg->segno;
621}
622
623static inline unsigned char curseg_alloc_type(struct f2fs_sb_info *sbi,
624		int type)
625{
626	struct curseg_info *curseg = CURSEG_I(sbi, type);
627	return curseg->alloc_type;
628}
629
630static inline unsigned short curseg_blkoff(struct f2fs_sb_info *sbi, int type)
631{
632	struct curseg_info *curseg = CURSEG_I(sbi, type);
633	return curseg->next_blkoff;
634}
635
 
636static inline void check_seg_range(struct f2fs_sb_info *sbi, unsigned int segno)
637{
638	f2fs_bug_on(sbi, segno > TOTAL_SEGS(sbi) - 1);
 
639}
640
641static inline void verify_block_addr(struct f2fs_io_info *fio, block_t blk_addr)
642{
643	struct f2fs_sb_info *sbi = fio->sbi;
644
645	if (PAGE_TYPE_OF_BIO(fio->type) == META &&
646				(!is_read_io(fio->op) || fio->is_meta))
647		BUG_ON(blk_addr < SEG0_BLKADDR(sbi) ||
648				blk_addr >= MAIN_BLKADDR(sbi));
649	else
650		BUG_ON(blk_addr < MAIN_BLKADDR(sbi) ||
651				blk_addr >= MAX_BLKADDR(sbi));
652}
653
654/*
655 * Summary block is always treated as an invalid block
656 */
657static inline int check_block_count(struct f2fs_sb_info *sbi,
658		int segno, struct f2fs_sit_entry *raw_sit)
659{
660#ifdef CONFIG_F2FS_CHECK_FS
 
661	bool is_valid  = test_bit_le(0, raw_sit->valid_map) ? true : false;
662	int valid_blocks = 0;
663	int cur_pos = 0, next_pos;
664
 
 
 
 
 
 
665	/* check bitmap with valid block count */
666	do {
667		if (is_valid) {
668			next_pos = find_next_zero_bit_le(&raw_sit->valid_map,
669					sbi->blocks_per_seg,
670					cur_pos);
671			valid_blocks += next_pos - cur_pos;
672		} else
673			next_pos = find_next_bit_le(&raw_sit->valid_map,
674					sbi->blocks_per_seg,
675					cur_pos);
676		cur_pos = next_pos;
677		is_valid = !is_valid;
678	} while (cur_pos < sbi->blocks_per_seg);
679
680	if (unlikely(GET_SIT_VBLOCKS(raw_sit) != valid_blocks)) {
681		f2fs_msg(sbi->sb, KERN_ERR,
682				"Mismatch valid blocks %d vs. %d",
683					GET_SIT_VBLOCKS(raw_sit), valid_blocks);
684		set_sbi_flag(sbi, SBI_NEED_FSCK);
685		return -EINVAL;
686	}
687#endif
688	/* check segment usage, and check boundary of a given segment number */
689	if (unlikely(GET_SIT_VBLOCKS(raw_sit) > sbi->blocks_per_seg
690					|| segno > TOTAL_SEGS(sbi) - 1)) {
691		f2fs_msg(sbi->sb, KERN_ERR,
692				"Wrong valid blocks %d or segno %u",
693					GET_SIT_VBLOCKS(raw_sit), segno);
694		set_sbi_flag(sbi, SBI_NEED_FSCK);
695		return -EINVAL;
696	}
697	return 0;
698}
699
700static inline pgoff_t current_sit_addr(struct f2fs_sb_info *sbi,
701						unsigned int start)
702{
703	struct sit_info *sit_i = SIT_I(sbi);
704	unsigned int offset = SIT_BLOCK_OFFSET(start);
705	block_t blk_addr = sit_i->sit_base_addr + offset;
706
707	check_seg_range(sbi, start);
708
709#ifdef CONFIG_F2FS_CHECK_FS
710	if (f2fs_test_bit(offset, sit_i->sit_bitmap) !=
711			f2fs_test_bit(offset, sit_i->sit_bitmap_mir))
712		f2fs_bug_on(sbi, 1);
713#endif
714
715	/* calculate sit block address */
716	if (f2fs_test_bit(offset, sit_i->sit_bitmap))
717		blk_addr += sit_i->sit_blocks;
718
719	return blk_addr;
720}
721
722static inline pgoff_t next_sit_addr(struct f2fs_sb_info *sbi,
723						pgoff_t block_addr)
724{
725	struct sit_info *sit_i = SIT_I(sbi);
726	block_addr -= sit_i->sit_base_addr;
727	if (block_addr < sit_i->sit_blocks)
728		block_addr += sit_i->sit_blocks;
729	else
730		block_addr -= sit_i->sit_blocks;
731
732	return block_addr + sit_i->sit_base_addr;
733}
734
735static inline void set_to_next_sit(struct sit_info *sit_i, unsigned int start)
736{
737	unsigned int block_off = SIT_BLOCK_OFFSET(start);
738
739	f2fs_change_bit(block_off, sit_i->sit_bitmap);
740#ifdef CONFIG_F2FS_CHECK_FS
741	f2fs_change_bit(block_off, sit_i->sit_bitmap_mir);
742#endif
743}
744
745static inline unsigned long long get_mtime(struct f2fs_sb_info *sbi)
746{
747	struct sit_info *sit_i = SIT_I(sbi);
748	time64_t now = ktime_get_real_seconds();
749
750	return sit_i->elapsed_time + now - sit_i->mounted_time;
751}
752
753static inline void set_summary(struct f2fs_summary *sum, nid_t nid,
754			unsigned int ofs_in_node, unsigned char version)
755{
756	sum->nid = cpu_to_le32(nid);
757	sum->ofs_in_node = cpu_to_le16(ofs_in_node);
758	sum->version = version;
759}
760
761static inline block_t start_sum_block(struct f2fs_sb_info *sbi)
762{
763	return __start_cp_addr(sbi) +
764		le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
765}
766
767static inline block_t sum_blk_addr(struct f2fs_sb_info *sbi, int base, int type)
768{
769	return __start_cp_addr(sbi) +
770		le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_total_block_count)
771				- (base + 1) + type;
772}
773
774static inline bool no_fggc_candidate(struct f2fs_sb_info *sbi,
775						unsigned int secno)
776{
777	if (get_valid_blocks(sbi, GET_SEG_FROM_SEC(sbi, secno), true) >
778						sbi->fggc_threshold)
779		return true;
780	return false;
781}
782
783static inline bool sec_usage_check(struct f2fs_sb_info *sbi, unsigned int secno)
784{
785	if (IS_CURSEC(sbi, secno) || (sbi->cur_victim_sec == secno))
786		return true;
787	return false;
788}
789
790/*
791 * It is very important to gather dirty pages and write at once, so that we can
792 * submit a big bio without interfering other data writes.
793 * By default, 512 pages for directory data,
794 * 512 pages (2MB) * 8 for nodes, and
795 * 256 pages * 8 for meta are set.
796 */
797static inline int nr_pages_to_skip(struct f2fs_sb_info *sbi, int type)
798{
799	if (sbi->sb->s_bdi->wb.dirty_exceeded)
800		return 0;
801
802	if (type == DATA)
803		return sbi->blocks_per_seg;
804	else if (type == NODE)
805		return 8 * sbi->blocks_per_seg;
806	else if (type == META)
807		return 8 * BIO_MAX_PAGES;
808	else
809		return 0;
810}
811
812/*
813 * When writing pages, it'd better align nr_to_write for segment size.
814 */
815static inline long nr_pages_to_write(struct f2fs_sb_info *sbi, int type,
816					struct writeback_control *wbc)
817{
818	long nr_to_write, desired;
819
820	if (wbc->sync_mode != WB_SYNC_NONE)
821		return 0;
822
823	nr_to_write = wbc->nr_to_write;
824	desired = BIO_MAX_PAGES;
825	if (type == NODE)
826		desired <<= 1;
 
 
 
 
827
828	wbc->nr_to_write = desired;
829	return desired - nr_to_write;
830}
831
832static inline void wake_up_discard_thread(struct f2fs_sb_info *sbi, bool force)
833{
834	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
835	bool wakeup = false;
836	int i;
837
838	if (force)
839		goto wake_up;
840
841	mutex_lock(&dcc->cmd_lock);
842	for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
843		if (i + 1 < dcc->discard_granularity)
844			break;
845		if (!list_empty(&dcc->pend_list[i])) {
846			wakeup = true;
847			break;
848		}
849	}
850	mutex_unlock(&dcc->cmd_lock);
851	if (!wakeup)
852		return;
853wake_up:
854	dcc->discard_wake = 1;
855	wake_up_interruptible_all(&dcc->discard_wait_queue);
856}