Linux Audio

Check our new training course

Loading...
v3.15
  1/*
  2 * fs/f2fs/segment.h
  3 *
  4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5 *             http://www.samsung.com/
  6 *
  7 * This program is free software; you can redistribute it and/or modify
  8 * it under the terms of the GNU General Public License version 2 as
  9 * published by the Free Software Foundation.
 10 */
 11#include <linux/blkdev.h>
 
 12
 13/* constant macro */
 14#define NULL_SEGNO			((unsigned int)(~0))
 15#define NULL_SECNO			((unsigned int)(~0))
 16
 17#define DEF_RECLAIM_PREFREE_SEGMENTS	5	/* 5% over total segments */
 
 
 
 18
 19/* L: Logical segment # in volume, R: Relative segment # in main area */
 20#define GET_L2R_SEGNO(free_i, segno)	(segno - free_i->start_segno)
 21#define GET_R2L_SEGNO(free_i, segno)	(segno + free_i->start_segno)
 22
 23#define IS_DATASEG(t)	(t <= CURSEG_COLD_DATA)
 24#define IS_NODESEG(t)	(t >= CURSEG_HOT_NODE)
 25
 26#define IS_CURSEG(sbi, seg)						\
 27	((seg == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno) ||	\
 28	 (seg == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno) ||	\
 29	 (seg == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno) ||	\
 30	 (seg == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno) ||	\
 31	 (seg == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno) ||	\
 32	 (seg == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno))
 33
 34#define IS_CURSEC(sbi, secno)						\
 35	((secno == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno /		\
 36	  sbi->segs_per_sec) ||	\
 37	 (secno == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno /		\
 38	  sbi->segs_per_sec) ||	\
 39	 (secno == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno /		\
 40	  sbi->segs_per_sec) ||	\
 41	 (secno == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno /		\
 42	  sbi->segs_per_sec) ||	\
 43	 (secno == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno /		\
 44	  sbi->segs_per_sec) ||	\
 45	 (secno == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno /		\
 46	  sbi->segs_per_sec))	\
 47
 48#define START_BLOCK(sbi, segno)						\
 49	(SM_I(sbi)->seg0_blkaddr +					\
 
 
 
 
 
 
 
 
 
 
 
 
 50	 (GET_R2L_SEGNO(FREE_I(sbi), segno) << sbi->log_blocks_per_seg))
 
 51#define NEXT_FREE_BLKADDR(sbi, curseg)					\
 52	(START_BLOCK(sbi, curseg->segno) + curseg->next_blkoff)
 53
 54#define MAIN_BASE_BLOCK(sbi)	(SM_I(sbi)->main_blkaddr)
 55
 56#define GET_SEGOFF_FROM_SEG0(sbi, blk_addr)				\
 57	((blk_addr) - SM_I(sbi)->seg0_blkaddr)
 58#define GET_SEGNO_FROM_SEG0(sbi, blk_addr)				\
 59	(GET_SEGOFF_FROM_SEG0(sbi, blk_addr) >> sbi->log_blocks_per_seg)
 60#define GET_BLKOFF_FROM_SEG0(sbi, blk_addr)				\
 61	(GET_SEGOFF_FROM_SEG0(sbi, blk_addr) & (sbi->blocks_per_seg - 1))
 62
 63#define GET_SEGNO(sbi, blk_addr)					\
 64	(((blk_addr == NULL_ADDR) || (blk_addr == NEW_ADDR)) ?		\
 65	NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi),			\
 66		GET_SEGNO_FROM_SEG0(sbi, blk_addr)))
 67#define GET_SECNO(sbi, segno)					\
 68	((segno) / sbi->segs_per_sec)
 69#define GET_ZONENO_FROM_SEGNO(sbi, segno)				\
 70	((segno / sbi->segs_per_sec) / sbi->secs_per_zone)
 71
 72#define GET_SUM_BLOCK(sbi, segno)				\
 73	((sbi->sm_info->ssa_blkaddr) + segno)
 74
 75#define GET_SUM_TYPE(footer) ((footer)->entry_type)
 76#define SET_SUM_TYPE(footer, type) ((footer)->entry_type = type)
 77
 78#define SIT_ENTRY_OFFSET(sit_i, segno)					\
 79	(segno % sit_i->sents_per_block)
 80#define SIT_BLOCK_OFFSET(sit_i, segno)					\
 81	(segno / SIT_ENTRY_PER_BLOCK)
 82#define	START_SEGNO(sit_i, segno)		\
 83	(SIT_BLOCK_OFFSET(sit_i, segno) * SIT_ENTRY_PER_BLOCK)
 84#define SIT_BLK_CNT(sbi)			\
 85	((TOTAL_SEGS(sbi) + SIT_ENTRY_PER_BLOCK - 1) / SIT_ENTRY_PER_BLOCK)
 86#define f2fs_bitmap_size(nr)			\
 87	(BITS_TO_LONGS(nr) * sizeof(unsigned long))
 88#define TOTAL_SEGS(sbi)	(SM_I(sbi)->main_segments)
 89#define TOTAL_SECS(sbi)	(sbi->total_sections)
 90
 91#define SECTOR_FROM_BLOCK(sbi, blk_addr)				\
 92	(((sector_t)blk_addr) << (sbi)->log_sectors_per_block)
 93#define SECTOR_TO_BLOCK(sbi, sectors)					\
 94	(sectors >> (sbi)->log_sectors_per_block)
 95#define MAX_BIO_BLOCKS(max_hw_blocks)					\
 96	(min((int)max_hw_blocks, BIO_MAX_PAGES))
 97
 98/*
 99 * indicate a block allocation direction: RIGHT and LEFT.
100 * RIGHT means allocating new sections towards the end of volume.
101 * LEFT means the opposite direction.
102 */
103enum {
104	ALLOC_RIGHT = 0,
105	ALLOC_LEFT
106};
107
108/*
109 * In the victim_sel_policy->alloc_mode, there are two block allocation modes.
110 * LFS writes data sequentially with cleaning operations.
111 * SSR (Slack Space Recycle) reuses obsolete space without cleaning operations.
112 */
113enum {
114	LFS = 0,
115	SSR
116};
117
118/*
119 * In the victim_sel_policy->gc_mode, there are two gc, aka cleaning, modes.
120 * GC_CB is based on cost-benefit algorithm.
121 * GC_GREEDY is based on greedy algorithm.
122 */
123enum {
124	GC_CB = 0,
125	GC_GREEDY
126};
127
128/*
129 * BG_GC means the background cleaning job.
130 * FG_GC means the on-demand cleaning job.
 
131 */
132enum {
133	BG_GC = 0,
134	FG_GC
 
135};
136
137/* for a function parameter to select a victim segment */
138struct victim_sel_policy {
139	int alloc_mode;			/* LFS or SSR */
140	int gc_mode;			/* GC_CB or GC_GREEDY */
141	unsigned long *dirty_segmap;	/* dirty segment bitmap */
142	unsigned int max_search;	/* maximum # of segments to search */
143	unsigned int offset;		/* last scanned bitmap offset */
144	unsigned int ofs_unit;		/* bitmap search unit */
145	unsigned int min_cost;		/* minimum cost */
146	unsigned int min_segno;		/* segment # having min. cost */
147};
148
149struct seg_entry {
150	unsigned short valid_blocks;	/* # of valid blocks */
 
 
 
151	unsigned char *cur_valid_map;	/* validity bitmap of blocks */
152	/*
153	 * # of valid blocks and the validity bitmap stored in the the last
154	 * checkpoint pack. This information is used by the SSR mode.
155	 */
156	unsigned short ckpt_valid_blocks;
157	unsigned char *ckpt_valid_map;
158	unsigned char type;		/* segment type like CURSEG_XXX_TYPE */
159	unsigned long long mtime;	/* modification time of the segment */
160};
161
162struct sec_entry {
163	unsigned int valid_blocks;	/* # of valid blocks in a section */
164};
165
166struct segment_allocation {
167	void (*allocate_segment)(struct f2fs_sb_info *, int, bool);
168};
169
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
170struct sit_info {
171	const struct segment_allocation *s_ops;
172
173	block_t sit_base_addr;		/* start block address of SIT area */
174	block_t sit_blocks;		/* # of blocks used by SIT area */
175	block_t written_valid_blocks;	/* # of valid blocks in main area */
176	char *sit_bitmap;		/* SIT bitmap pointer */
177	unsigned int bitmap_size;	/* SIT bitmap size */
178
 
179	unsigned long *dirty_sentries_bitmap;	/* bitmap for dirty sentries */
180	unsigned int dirty_sentries;		/* # of dirty sentries */
181	unsigned int sents_per_block;		/* # of SIT entries per block */
182	struct mutex sentry_lock;		/* to protect SIT cache */
183	struct seg_entry *sentries;		/* SIT segment-level cache */
184	struct sec_entry *sec_entries;		/* SIT section-level cache */
185
186	/* for cost-benefit algorithm in cleaning procedure */
187	unsigned long long elapsed_time;	/* elapsed time after mount */
188	unsigned long long mounted_time;	/* mount time */
189	unsigned long long min_mtime;		/* min. modification time */
190	unsigned long long max_mtime;		/* max. modification time */
191};
192
193struct free_segmap_info {
194	unsigned int start_segno;	/* start segment number logically */
195	unsigned int free_segments;	/* # of free segments */
196	unsigned int free_sections;	/* # of free sections */
197	rwlock_t segmap_lock;		/* free segmap lock */
198	unsigned long *free_segmap;	/* free segment bitmap */
199	unsigned long *free_secmap;	/* free section bitmap */
200};
201
202/* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */
203enum dirty_type {
204	DIRTY_HOT_DATA,		/* dirty segments assigned as hot data logs */
205	DIRTY_WARM_DATA,	/* dirty segments assigned as warm data logs */
206	DIRTY_COLD_DATA,	/* dirty segments assigned as cold data logs */
207	DIRTY_HOT_NODE,		/* dirty segments assigned as hot node logs */
208	DIRTY_WARM_NODE,	/* dirty segments assigned as warm node logs */
209	DIRTY_COLD_NODE,	/* dirty segments assigned as cold node logs */
210	DIRTY,			/* to count # of dirty segments */
211	PRE,			/* to count # of entirely obsolete segments */
212	NR_DIRTY_TYPE
213};
214
215struct dirty_seglist_info {
216	const struct victim_selection *v_ops;	/* victim selction operation */
217	unsigned long *dirty_segmap[NR_DIRTY_TYPE];
218	struct mutex seglist_lock;		/* lock for segment bitmaps */
219	int nr_dirty[NR_DIRTY_TYPE];		/* # of dirty segments */
220	unsigned long *victim_secmap;		/* background GC victims */
221};
222
223/* victim selection function for cleaning and SSR */
224struct victim_selection {
225	int (*get_victim)(struct f2fs_sb_info *, unsigned int *,
226							int, int, char);
227};
228
229/* for active log information */
230struct curseg_info {
231	struct mutex curseg_mutex;		/* lock for consistency */
232	struct f2fs_summary_block *sum_blk;	/* cached summary block */
 
 
233	unsigned char alloc_type;		/* current allocation type */
234	unsigned int segno;			/* current segment number */
235	unsigned short next_blkoff;		/* next block offset to write */
236	unsigned int zone;			/* current zone number */
237	unsigned int next_segno;		/* preallocated segment */
238};
239
 
 
 
 
 
 
240/*
241 * inline functions
242 */
243static inline struct curseg_info *CURSEG_I(struct f2fs_sb_info *sbi, int type)
244{
245	return (struct curseg_info *)(SM_I(sbi)->curseg_array + type);
246}
247
248static inline struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi,
249						unsigned int segno)
250{
251	struct sit_info *sit_i = SIT_I(sbi);
252	return &sit_i->sentries[segno];
253}
254
255static inline struct sec_entry *get_sec_entry(struct f2fs_sb_info *sbi,
256						unsigned int segno)
257{
258	struct sit_info *sit_i = SIT_I(sbi);
259	return &sit_i->sec_entries[GET_SECNO(sbi, segno)];
260}
261
262static inline unsigned int get_valid_blocks(struct f2fs_sb_info *sbi,
263				unsigned int segno, int section)
264{
265	/*
266	 * In order to get # of valid blocks in a section instantly from many
267	 * segments, f2fs manages two counting structures separately.
268	 */
269	if (section > 1)
270		return get_sec_entry(sbi, segno)->valid_blocks;
271	else
272		return get_seg_entry(sbi, segno)->valid_blocks;
273}
274
275static inline void seg_info_from_raw_sit(struct seg_entry *se,
276					struct f2fs_sit_entry *rs)
277{
278	se->valid_blocks = GET_SIT_VBLOCKS(rs);
279	se->ckpt_valid_blocks = GET_SIT_VBLOCKS(rs);
280	memcpy(se->cur_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
281	memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
282	se->type = GET_SIT_TYPE(rs);
283	se->mtime = le64_to_cpu(rs->mtime);
284}
285
286static inline void seg_info_to_raw_sit(struct seg_entry *se,
287					struct f2fs_sit_entry *rs)
288{
289	unsigned short raw_vblocks = (se->type << SIT_VBLOCKS_SHIFT) |
290					se->valid_blocks;
291	rs->vblocks = cpu_to_le16(raw_vblocks);
292	memcpy(rs->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE);
293	memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
294	se->ckpt_valid_blocks = se->valid_blocks;
295	rs->mtime = cpu_to_le64(se->mtime);
296}
297
298static inline unsigned int find_next_inuse(struct free_segmap_info *free_i,
299		unsigned int max, unsigned int segno)
300{
301	unsigned int ret;
302	read_lock(&free_i->segmap_lock);
303	ret = find_next_bit(free_i->free_segmap, max, segno);
304	read_unlock(&free_i->segmap_lock);
305	return ret;
306}
307
308static inline void __set_free(struct f2fs_sb_info *sbi, unsigned int segno)
309{
310	struct free_segmap_info *free_i = FREE_I(sbi);
311	unsigned int secno = segno / sbi->segs_per_sec;
312	unsigned int start_segno = secno * sbi->segs_per_sec;
313	unsigned int next;
314
315	write_lock(&free_i->segmap_lock);
316	clear_bit(segno, free_i->free_segmap);
317	free_i->free_segments++;
318
319	next = find_next_bit(free_i->free_segmap, TOTAL_SEGS(sbi), start_segno);
 
320	if (next >= start_segno + sbi->segs_per_sec) {
321		clear_bit(secno, free_i->free_secmap);
322		free_i->free_sections++;
323	}
324	write_unlock(&free_i->segmap_lock);
325}
326
327static inline void __set_inuse(struct f2fs_sb_info *sbi,
328		unsigned int segno)
329{
330	struct free_segmap_info *free_i = FREE_I(sbi);
331	unsigned int secno = segno / sbi->segs_per_sec;
332	set_bit(segno, free_i->free_segmap);
333	free_i->free_segments--;
334	if (!test_and_set_bit(secno, free_i->free_secmap))
335		free_i->free_sections--;
336}
337
338static inline void __set_test_and_free(struct f2fs_sb_info *sbi,
339		unsigned int segno)
340{
341	struct free_segmap_info *free_i = FREE_I(sbi);
342	unsigned int secno = segno / sbi->segs_per_sec;
343	unsigned int start_segno = secno * sbi->segs_per_sec;
344	unsigned int next;
345
346	write_lock(&free_i->segmap_lock);
347	if (test_and_clear_bit(segno, free_i->free_segmap)) {
348		free_i->free_segments++;
349
350		next = find_next_bit(free_i->free_segmap, TOTAL_SEGS(sbi),
351								start_segno);
352		if (next >= start_segno + sbi->segs_per_sec) {
353			if (test_and_clear_bit(secno, free_i->free_secmap))
354				free_i->free_sections++;
355		}
356	}
357	write_unlock(&free_i->segmap_lock);
358}
359
360static inline void __set_test_and_inuse(struct f2fs_sb_info *sbi,
361		unsigned int segno)
362{
363	struct free_segmap_info *free_i = FREE_I(sbi);
364	unsigned int secno = segno / sbi->segs_per_sec;
365	write_lock(&free_i->segmap_lock);
366	if (!test_and_set_bit(segno, free_i->free_segmap)) {
367		free_i->free_segments--;
368		if (!test_and_set_bit(secno, free_i->free_secmap))
369			free_i->free_sections--;
370	}
371	write_unlock(&free_i->segmap_lock);
372}
373
374static inline void get_sit_bitmap(struct f2fs_sb_info *sbi,
375		void *dst_addr)
376{
377	struct sit_info *sit_i = SIT_I(sbi);
378	memcpy(dst_addr, sit_i->sit_bitmap, sit_i->bitmap_size);
379}
380
381static inline block_t written_block_count(struct f2fs_sb_info *sbi)
382{
383	return SIT_I(sbi)->written_valid_blocks;
384}
385
386static inline unsigned int free_segments(struct f2fs_sb_info *sbi)
387{
388	return FREE_I(sbi)->free_segments;
389}
390
391static inline int reserved_segments(struct f2fs_sb_info *sbi)
392{
393	return SM_I(sbi)->reserved_segments;
394}
395
396static inline unsigned int free_sections(struct f2fs_sb_info *sbi)
397{
398	return FREE_I(sbi)->free_sections;
399}
400
401static inline unsigned int prefree_segments(struct f2fs_sb_info *sbi)
402{
403	return DIRTY_I(sbi)->nr_dirty[PRE];
404}
405
406static inline unsigned int dirty_segments(struct f2fs_sb_info *sbi)
407{
408	return DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_DATA] +
409		DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_DATA] +
410		DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_DATA] +
411		DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_NODE] +
412		DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_NODE] +
413		DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_NODE];
414}
415
416static inline int overprovision_segments(struct f2fs_sb_info *sbi)
417{
418	return SM_I(sbi)->ovp_segments;
419}
420
421static inline int overprovision_sections(struct f2fs_sb_info *sbi)
422{
423	return ((unsigned int) overprovision_segments(sbi)) / sbi->segs_per_sec;
424}
425
426static inline int reserved_sections(struct f2fs_sb_info *sbi)
427{
428	return ((unsigned int) reserved_segments(sbi)) / sbi->segs_per_sec;
429}
430
431static inline bool need_SSR(struct f2fs_sb_info *sbi)
432{
433	return (prefree_segments(sbi) / sbi->segs_per_sec)
434			+ free_sections(sbi) < overprovision_sections(sbi);
 
 
 
 
 
 
 
435}
436
437static inline bool has_not_enough_free_secs(struct f2fs_sb_info *sbi, int freed)
 
438{
439	int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
440	int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
 
441
442	if (unlikely(sbi->por_doing))
443		return false;
444
445	return (free_sections(sbi) + freed) <= (node_secs + 2 * dent_secs +
446						reserved_sections(sbi));
 
447}
448
449static inline bool excess_prefree_segs(struct f2fs_sb_info *sbi)
450{
451	return prefree_segments(sbi) > SM_I(sbi)->rec_prefree_segments;
452}
453
454static inline int utilization(struct f2fs_sb_info *sbi)
455{
456	return div_u64((u64)valid_user_blocks(sbi) * 100,
457					sbi->user_block_count);
458}
459
460/*
461 * Sometimes f2fs may be better to drop out-of-place update policy.
462 * And, users can control the policy through sysfs entries.
463 * There are five policies with triggering conditions as follows.
464 * F2FS_IPU_FORCE - all the time,
465 * F2FS_IPU_SSR - if SSR mode is activated,
466 * F2FS_IPU_UTIL - if FS utilization is over threashold,
467 * F2FS_IPU_SSR_UTIL - if SSR mode is activated and FS utilization is over
468 *                     threashold,
 
 
 
469 * F2FS_IPUT_DISABLE - disable IPU. (=default option)
470 */
471#define DEF_MIN_IPU_UTIL	70
 
472
473enum {
474	F2FS_IPU_FORCE,
475	F2FS_IPU_SSR,
476	F2FS_IPU_UTIL,
477	F2FS_IPU_SSR_UTIL,
478	F2FS_IPU_DISABLE,
479};
480
481static inline bool need_inplace_update(struct inode *inode)
482{
483	struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
 
484
485	/* IPU can be done only for the user data */
486	if (S_ISDIR(inode->i_mode))
 
 
 
487		return false;
488
489	switch (SM_I(sbi)->ipu_policy) {
490	case F2FS_IPU_FORCE:
491		return true;
492	case F2FS_IPU_SSR:
493		if (need_SSR(sbi))
494			return true;
495		break;
496	case F2FS_IPU_UTIL:
497		if (utilization(sbi) > SM_I(sbi)->min_ipu_util)
498			return true;
499		break;
500	case F2FS_IPU_SSR_UTIL:
501		if (need_SSR(sbi) && utilization(sbi) > SM_I(sbi)->min_ipu_util)
502			return true;
503		break;
504	case F2FS_IPU_DISABLE:
505		break;
506	}
507	return false;
508}
509
510static inline unsigned int curseg_segno(struct f2fs_sb_info *sbi,
511		int type)
512{
513	struct curseg_info *curseg = CURSEG_I(sbi, type);
514	return curseg->segno;
515}
516
517static inline unsigned char curseg_alloc_type(struct f2fs_sb_info *sbi,
518		int type)
519{
520	struct curseg_info *curseg = CURSEG_I(sbi, type);
521	return curseg->alloc_type;
522}
523
524static inline unsigned short curseg_blkoff(struct f2fs_sb_info *sbi, int type)
525{
526	struct curseg_info *curseg = CURSEG_I(sbi, type);
527	return curseg->next_blkoff;
528}
529
530#ifdef CONFIG_F2FS_CHECK_FS
531static inline void check_seg_range(struct f2fs_sb_info *sbi, unsigned int segno)
532{
533	unsigned int end_segno = SM_I(sbi)->segment_count - 1;
534	BUG_ON(segno > end_segno);
535}
536
537static inline void verify_block_addr(struct f2fs_sb_info *sbi, block_t blk_addr)
538{
539	struct f2fs_sm_info *sm_info = SM_I(sbi);
540	block_t total_blks = sm_info->segment_count << sbi->log_blocks_per_seg;
541	block_t start_addr = sm_info->seg0_blkaddr;
542	block_t end_addr = start_addr + total_blks - 1;
543	BUG_ON(blk_addr < start_addr);
544	BUG_ON(blk_addr > end_addr);
545}
546
547/*
548 * Summary block is always treated as invalid block
549 */
550static inline void check_block_count(struct f2fs_sb_info *sbi,
551		int segno, struct f2fs_sit_entry *raw_sit)
552{
553	struct f2fs_sm_info *sm_info = SM_I(sbi);
554	unsigned int end_segno = sm_info->segment_count - 1;
555	bool is_valid  = test_bit_le(0, raw_sit->valid_map) ? true : false;
556	int valid_blocks = 0;
557	int cur_pos = 0, next_pos;
558
559	/* check segment usage */
560	BUG_ON(GET_SIT_VBLOCKS(raw_sit) > sbi->blocks_per_seg);
561
562	/* check boundary of a given segment number */
563	BUG_ON(segno > end_segno);
564
565	/* check bitmap with valid block count */
566	do {
567		if (is_valid) {
568			next_pos = find_next_zero_bit_le(&raw_sit->valid_map,
569					sbi->blocks_per_seg,
570					cur_pos);
571			valid_blocks += next_pos - cur_pos;
572		} else
573			next_pos = find_next_bit_le(&raw_sit->valid_map,
574					sbi->blocks_per_seg,
575					cur_pos);
576		cur_pos = next_pos;
577		is_valid = !is_valid;
578	} while (cur_pos < sbi->blocks_per_seg);
579	BUG_ON(GET_SIT_VBLOCKS(raw_sit) != valid_blocks);
580}
581#else
582#define check_seg_range(sbi, segno)
583#define verify_block_addr(sbi, blk_addr)
584#define check_block_count(sbi, segno, raw_sit)
585#endif
 
 
 
 
586
587static inline pgoff_t current_sit_addr(struct f2fs_sb_info *sbi,
588						unsigned int start)
589{
590	struct sit_info *sit_i = SIT_I(sbi);
591	unsigned int offset = SIT_BLOCK_OFFSET(sit_i, start);
592	block_t blk_addr = sit_i->sit_base_addr + offset;
593
594	check_seg_range(sbi, start);
595
596	/* calculate sit block address */
597	if (f2fs_test_bit(offset, sit_i->sit_bitmap))
598		blk_addr += sit_i->sit_blocks;
599
600	return blk_addr;
601}
602
603static inline pgoff_t next_sit_addr(struct f2fs_sb_info *sbi,
604						pgoff_t block_addr)
605{
606	struct sit_info *sit_i = SIT_I(sbi);
607	block_addr -= sit_i->sit_base_addr;
608	if (block_addr < sit_i->sit_blocks)
609		block_addr += sit_i->sit_blocks;
610	else
611		block_addr -= sit_i->sit_blocks;
612
613	return block_addr + sit_i->sit_base_addr;
614}
615
616static inline void set_to_next_sit(struct sit_info *sit_i, unsigned int start)
617{
618	unsigned int block_off = SIT_BLOCK_OFFSET(sit_i, start);
619
620	if (f2fs_test_bit(block_off, sit_i->sit_bitmap))
621		f2fs_clear_bit(block_off, sit_i->sit_bitmap);
622	else
623		f2fs_set_bit(block_off, sit_i->sit_bitmap);
624}
625
626static inline unsigned long long get_mtime(struct f2fs_sb_info *sbi)
627{
628	struct sit_info *sit_i = SIT_I(sbi);
629	return sit_i->elapsed_time + CURRENT_TIME_SEC.tv_sec -
630						sit_i->mounted_time;
631}
632
633static inline void set_summary(struct f2fs_summary *sum, nid_t nid,
634			unsigned int ofs_in_node, unsigned char version)
635{
636	sum->nid = cpu_to_le32(nid);
637	sum->ofs_in_node = cpu_to_le16(ofs_in_node);
638	sum->version = version;
639}
640
641static inline block_t start_sum_block(struct f2fs_sb_info *sbi)
642{
643	return __start_cp_addr(sbi) +
644		le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
645}
646
647static inline block_t sum_blk_addr(struct f2fs_sb_info *sbi, int base, int type)
648{
649	return __start_cp_addr(sbi) +
650		le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_total_block_count)
651				- (base + 1) + type;
652}
653
654static inline bool sec_usage_check(struct f2fs_sb_info *sbi, unsigned int secno)
 
655{
656	if (IS_CURSEC(sbi, secno) || (sbi->cur_victim_sec == secno))
 
657		return true;
658	return false;
659}
660
661static inline unsigned int max_hw_blocks(struct f2fs_sb_info *sbi)
662{
663	struct block_device *bdev = sbi->sb->s_bdev;
664	struct request_queue *q = bdev_get_queue(bdev);
665	return SECTOR_TO_BLOCK(sbi, queue_max_sectors(q));
666}
667
668/*
669 * It is very important to gather dirty pages and write at once, so that we can
670 * submit a big bio without interfering other data writes.
671 * By default, 512 pages for directory data,
672 * 512 pages (2MB) * 3 for three types of nodes, and
673 * max_bio_blocks for meta are set.
674 */
675static inline int nr_pages_to_skip(struct f2fs_sb_info *sbi, int type)
676{
 
 
 
677	if (type == DATA)
678		return sbi->blocks_per_seg;
679	else if (type == NODE)
680		return 3 * sbi->blocks_per_seg;
681	else if (type == META)
682		return MAX_BIO_BLOCKS(max_hw_blocks(sbi));
683	else
684		return 0;
685}
686
687/*
688 * When writing pages, it'd better align nr_to_write for segment size.
689 */
690static inline long nr_pages_to_write(struct f2fs_sb_info *sbi, int type,
691					struct writeback_control *wbc)
692{
693	long nr_to_write, desired;
694
695	if (wbc->sync_mode != WB_SYNC_NONE)
696		return 0;
697
698	nr_to_write = wbc->nr_to_write;
699
700	if (type == DATA)
701		desired = 4096;
702	else if (type == NODE)
703		desired = 3 * max_hw_blocks(sbi);
704	else
705		desired = MAX_BIO_BLOCKS(max_hw_blocks(sbi));
706
707	wbc->nr_to_write = desired;
708	return desired - nr_to_write;
709}
v4.10.11
  1/*
  2 * fs/f2fs/segment.h
  3 *
  4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5 *             http://www.samsung.com/
  6 *
  7 * This program is free software; you can redistribute it and/or modify
  8 * it under the terms of the GNU General Public License version 2 as
  9 * published by the Free Software Foundation.
 10 */
 11#include <linux/blkdev.h>
 12#include <linux/backing-dev.h>
 13
 14/* constant macro */
 15#define NULL_SEGNO			((unsigned int)(~0))
 16#define NULL_SECNO			((unsigned int)(~0))
 17
 18#define DEF_RECLAIM_PREFREE_SEGMENTS	5	/* 5% over total segments */
 19#define DEF_MAX_RECLAIM_PREFREE_SEGMENTS	4096	/* 8GB in maximum */
 20
 21#define F2FS_MIN_SEGMENTS	9 /* SB + 2 (CP + SIT + NAT) + SSA + MAIN */
 22
 23/* L: Logical segment # in volume, R: Relative segment # in main area */
 24#define GET_L2R_SEGNO(free_i, segno)	(segno - free_i->start_segno)
 25#define GET_R2L_SEGNO(free_i, segno)	(segno + free_i->start_segno)
 26
 27#define IS_DATASEG(t)	(t <= CURSEG_COLD_DATA)
 28#define IS_NODESEG(t)	(t >= CURSEG_HOT_NODE)
 29
 30#define IS_CURSEG(sbi, seg)						\
 31	((seg == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno) ||	\
 32	 (seg == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno) ||	\
 33	 (seg == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno) ||	\
 34	 (seg == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno) ||	\
 35	 (seg == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno) ||	\
 36	 (seg == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno))
 37
 38#define IS_CURSEC(sbi, secno)						\
 39	((secno == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno /		\
 40	  sbi->segs_per_sec) ||	\
 41	 (secno == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno /		\
 42	  sbi->segs_per_sec) ||	\
 43	 (secno == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno /		\
 44	  sbi->segs_per_sec) ||	\
 45	 (secno == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno /		\
 46	  sbi->segs_per_sec) ||	\
 47	 (secno == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno /		\
 48	  sbi->segs_per_sec) ||	\
 49	 (secno == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno /		\
 50	  sbi->segs_per_sec))	\
 51
 52#define MAIN_BLKADDR(sbi)	(SM_I(sbi)->main_blkaddr)
 53#define SEG0_BLKADDR(sbi)	(SM_I(sbi)->seg0_blkaddr)
 54
 55#define MAIN_SEGS(sbi)	(SM_I(sbi)->main_segments)
 56#define MAIN_SECS(sbi)	(sbi->total_sections)
 57
 58#define TOTAL_SEGS(sbi)	(SM_I(sbi)->segment_count)
 59#define TOTAL_BLKS(sbi)	(TOTAL_SEGS(sbi) << sbi->log_blocks_per_seg)
 60
 61#define MAX_BLKADDR(sbi)	(SEG0_BLKADDR(sbi) + TOTAL_BLKS(sbi))
 62#define SEGMENT_SIZE(sbi)	(1ULL << (sbi->log_blocksize +		\
 63					sbi->log_blocks_per_seg))
 64
 65#define START_BLOCK(sbi, segno)	(SEG0_BLKADDR(sbi) +			\
 66	 (GET_R2L_SEGNO(FREE_I(sbi), segno) << sbi->log_blocks_per_seg))
 67
 68#define NEXT_FREE_BLKADDR(sbi, curseg)					\
 69	(START_BLOCK(sbi, curseg->segno) + curseg->next_blkoff)
 70
 71#define GET_SEGOFF_FROM_SEG0(sbi, blk_addr)	((blk_addr) - SEG0_BLKADDR(sbi))
 
 
 
 72#define GET_SEGNO_FROM_SEG0(sbi, blk_addr)				\
 73	(GET_SEGOFF_FROM_SEG0(sbi, blk_addr) >> sbi->log_blocks_per_seg)
 74#define GET_BLKOFF_FROM_SEG0(sbi, blk_addr)				\
 75	(GET_SEGOFF_FROM_SEG0(sbi, blk_addr) & (sbi->blocks_per_seg - 1))
 76
 77#define GET_SEGNO(sbi, blk_addr)					\
 78	(((blk_addr == NULL_ADDR) || (blk_addr == NEW_ADDR)) ?		\
 79	NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi),			\
 80		GET_SEGNO_FROM_SEG0(sbi, blk_addr)))
 81#define GET_SECNO(sbi, segno)					\
 82	((segno) / sbi->segs_per_sec)
 83#define GET_ZONENO_FROM_SEGNO(sbi, segno)				\
 84	((segno / sbi->segs_per_sec) / sbi->secs_per_zone)
 85
 86#define GET_SUM_BLOCK(sbi, segno)				\
 87	((sbi->sm_info->ssa_blkaddr) + segno)
 88
 89#define GET_SUM_TYPE(footer) ((footer)->entry_type)
 90#define SET_SUM_TYPE(footer, type) ((footer)->entry_type = type)
 91
 92#define SIT_ENTRY_OFFSET(sit_i, segno)					\
 93	(segno % sit_i->sents_per_block)
 94#define SIT_BLOCK_OFFSET(segno)					\
 95	(segno / SIT_ENTRY_PER_BLOCK)
 96#define	START_SEGNO(segno)		\
 97	(SIT_BLOCK_OFFSET(segno) * SIT_ENTRY_PER_BLOCK)
 98#define SIT_BLK_CNT(sbi)			\
 99	((MAIN_SEGS(sbi) + SIT_ENTRY_PER_BLOCK - 1) / SIT_ENTRY_PER_BLOCK)
100#define f2fs_bitmap_size(nr)			\
101	(BITS_TO_LONGS(nr) * sizeof(unsigned long))
 
 
102
103#define SECTOR_FROM_BLOCK(blk_addr)					\
104	(((sector_t)blk_addr) << F2FS_LOG_SECTORS_PER_BLOCK)
105#define SECTOR_TO_BLOCK(sectors)					\
106	(sectors >> F2FS_LOG_SECTORS_PER_BLOCK)
 
 
107
108/*
109 * indicate a block allocation direction: RIGHT and LEFT.
110 * RIGHT means allocating new sections towards the end of volume.
111 * LEFT means the opposite direction.
112 */
113enum {
114	ALLOC_RIGHT = 0,
115	ALLOC_LEFT
116};
117
118/*
119 * In the victim_sel_policy->alloc_mode, there are two block allocation modes.
120 * LFS writes data sequentially with cleaning operations.
121 * SSR (Slack Space Recycle) reuses obsolete space without cleaning operations.
122 */
123enum {
124	LFS = 0,
125	SSR
126};
127
128/*
129 * In the victim_sel_policy->gc_mode, there are two gc, aka cleaning, modes.
130 * GC_CB is based on cost-benefit algorithm.
131 * GC_GREEDY is based on greedy algorithm.
132 */
133enum {
134	GC_CB = 0,
135	GC_GREEDY
136};
137
138/*
139 * BG_GC means the background cleaning job.
140 * FG_GC means the on-demand cleaning job.
141 * FORCE_FG_GC means on-demand cleaning job in background.
142 */
143enum {
144	BG_GC = 0,
145	FG_GC,
146	FORCE_FG_GC,
147};
148
149/* for a function parameter to select a victim segment */
150struct victim_sel_policy {
151	int alloc_mode;			/* LFS or SSR */
152	int gc_mode;			/* GC_CB or GC_GREEDY */
153	unsigned long *dirty_segmap;	/* dirty segment bitmap */
154	unsigned int max_search;	/* maximum # of segments to search */
155	unsigned int offset;		/* last scanned bitmap offset */
156	unsigned int ofs_unit;		/* bitmap search unit */
157	unsigned int min_cost;		/* minimum cost */
158	unsigned int min_segno;		/* segment # having min. cost */
159};
160
161struct seg_entry {
162	unsigned int type:6;		/* segment type like CURSEG_XXX_TYPE */
163	unsigned int valid_blocks:10;	/* # of valid blocks */
164	unsigned int ckpt_valid_blocks:10;	/* # of valid blocks last cp */
165	unsigned int padding:6;		/* padding */
166	unsigned char *cur_valid_map;	/* validity bitmap of blocks */
167	/*
168	 * # of valid blocks and the validity bitmap stored in the the last
169	 * checkpoint pack. This information is used by the SSR mode.
170	 */
171	unsigned char *ckpt_valid_map;	/* validity bitmap of blocks last cp */
172	unsigned char *discard_map;
 
173	unsigned long long mtime;	/* modification time of the segment */
174};
175
176struct sec_entry {
177	unsigned int valid_blocks;	/* # of valid blocks in a section */
178};
179
180struct segment_allocation {
181	void (*allocate_segment)(struct f2fs_sb_info *, int, bool);
182};
183
184/*
185 * this value is set in page as a private data which indicate that
186 * the page is atomically written, and it is in inmem_pages list.
187 */
188#define ATOMIC_WRITTEN_PAGE		((unsigned long)-1)
189
190#define IS_ATOMIC_WRITTEN_PAGE(page)			\
191		(page_private(page) == (unsigned long)ATOMIC_WRITTEN_PAGE)
192
193struct inmem_pages {
194	struct list_head list;
195	struct page *page;
196	block_t old_addr;		/* for revoking when fail to commit */
197};
198
199struct sit_info {
200	const struct segment_allocation *s_ops;
201
202	block_t sit_base_addr;		/* start block address of SIT area */
203	block_t sit_blocks;		/* # of blocks used by SIT area */
204	block_t written_valid_blocks;	/* # of valid blocks in main area */
205	char *sit_bitmap;		/* SIT bitmap pointer */
206	unsigned int bitmap_size;	/* SIT bitmap size */
207
208	unsigned long *tmp_map;			/* bitmap for temporal use */
209	unsigned long *dirty_sentries_bitmap;	/* bitmap for dirty sentries */
210	unsigned int dirty_sentries;		/* # of dirty sentries */
211	unsigned int sents_per_block;		/* # of SIT entries per block */
212	struct mutex sentry_lock;		/* to protect SIT cache */
213	struct seg_entry *sentries;		/* SIT segment-level cache */
214	struct sec_entry *sec_entries;		/* SIT section-level cache */
215
216	/* for cost-benefit algorithm in cleaning procedure */
217	unsigned long long elapsed_time;	/* elapsed time after mount */
218	unsigned long long mounted_time;	/* mount time */
219	unsigned long long min_mtime;		/* min. modification time */
220	unsigned long long max_mtime;		/* max. modification time */
221};
222
223struct free_segmap_info {
224	unsigned int start_segno;	/* start segment number logically */
225	unsigned int free_segments;	/* # of free segments */
226	unsigned int free_sections;	/* # of free sections */
227	spinlock_t segmap_lock;		/* free segmap lock */
228	unsigned long *free_segmap;	/* free segment bitmap */
229	unsigned long *free_secmap;	/* free section bitmap */
230};
231
232/* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */
233enum dirty_type {
234	DIRTY_HOT_DATA,		/* dirty segments assigned as hot data logs */
235	DIRTY_WARM_DATA,	/* dirty segments assigned as warm data logs */
236	DIRTY_COLD_DATA,	/* dirty segments assigned as cold data logs */
237	DIRTY_HOT_NODE,		/* dirty segments assigned as hot node logs */
238	DIRTY_WARM_NODE,	/* dirty segments assigned as warm node logs */
239	DIRTY_COLD_NODE,	/* dirty segments assigned as cold node logs */
240	DIRTY,			/* to count # of dirty segments */
241	PRE,			/* to count # of entirely obsolete segments */
242	NR_DIRTY_TYPE
243};
244
245struct dirty_seglist_info {
246	const struct victim_selection *v_ops;	/* victim selction operation */
247	unsigned long *dirty_segmap[NR_DIRTY_TYPE];
248	struct mutex seglist_lock;		/* lock for segment bitmaps */
249	int nr_dirty[NR_DIRTY_TYPE];		/* # of dirty segments */
250	unsigned long *victim_secmap;		/* background GC victims */
251};
252
253/* victim selection function for cleaning and SSR */
254struct victim_selection {
255	int (*get_victim)(struct f2fs_sb_info *, unsigned int *,
256							int, int, char);
257};
258
259/* for active log information */
260struct curseg_info {
261	struct mutex curseg_mutex;		/* lock for consistency */
262	struct f2fs_summary_block *sum_blk;	/* cached summary block */
263	struct rw_semaphore journal_rwsem;	/* protect journal area */
264	struct f2fs_journal *journal;		/* cached journal info */
265	unsigned char alloc_type;		/* current allocation type */
266	unsigned int segno;			/* current segment number */
267	unsigned short next_blkoff;		/* next block offset to write */
268	unsigned int zone;			/* current zone number */
269	unsigned int next_segno;		/* preallocated segment */
270};
271
272struct sit_entry_set {
273	struct list_head set_list;	/* link with all sit sets */
274	unsigned int start_segno;	/* start segno of sits in set */
275	unsigned int entry_cnt;		/* the # of sit entries in set */
276};
277
278/*
279 * inline functions
280 */
281static inline struct curseg_info *CURSEG_I(struct f2fs_sb_info *sbi, int type)
282{
283	return (struct curseg_info *)(SM_I(sbi)->curseg_array + type);
284}
285
286static inline struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi,
287						unsigned int segno)
288{
289	struct sit_info *sit_i = SIT_I(sbi);
290	return &sit_i->sentries[segno];
291}
292
293static inline struct sec_entry *get_sec_entry(struct f2fs_sb_info *sbi,
294						unsigned int segno)
295{
296	struct sit_info *sit_i = SIT_I(sbi);
297	return &sit_i->sec_entries[GET_SECNO(sbi, segno)];
298}
299
300static inline unsigned int get_valid_blocks(struct f2fs_sb_info *sbi,
301				unsigned int segno, int section)
302{
303	/*
304	 * In order to get # of valid blocks in a section instantly from many
305	 * segments, f2fs manages two counting structures separately.
306	 */
307	if (section > 1)
308		return get_sec_entry(sbi, segno)->valid_blocks;
309	else
310		return get_seg_entry(sbi, segno)->valid_blocks;
311}
312
313static inline void seg_info_from_raw_sit(struct seg_entry *se,
314					struct f2fs_sit_entry *rs)
315{
316	se->valid_blocks = GET_SIT_VBLOCKS(rs);
317	se->ckpt_valid_blocks = GET_SIT_VBLOCKS(rs);
318	memcpy(se->cur_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
319	memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
320	se->type = GET_SIT_TYPE(rs);
321	se->mtime = le64_to_cpu(rs->mtime);
322}
323
324static inline void seg_info_to_raw_sit(struct seg_entry *se,
325					struct f2fs_sit_entry *rs)
326{
327	unsigned short raw_vblocks = (se->type << SIT_VBLOCKS_SHIFT) |
328					se->valid_blocks;
329	rs->vblocks = cpu_to_le16(raw_vblocks);
330	memcpy(rs->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE);
331	memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
332	se->ckpt_valid_blocks = se->valid_blocks;
333	rs->mtime = cpu_to_le64(se->mtime);
334}
335
336static inline unsigned int find_next_inuse(struct free_segmap_info *free_i,
337		unsigned int max, unsigned int segno)
338{
339	unsigned int ret;
340	spin_lock(&free_i->segmap_lock);
341	ret = find_next_bit(free_i->free_segmap, max, segno);
342	spin_unlock(&free_i->segmap_lock);
343	return ret;
344}
345
346static inline void __set_free(struct f2fs_sb_info *sbi, unsigned int segno)
347{
348	struct free_segmap_info *free_i = FREE_I(sbi);
349	unsigned int secno = segno / sbi->segs_per_sec;
350	unsigned int start_segno = secno * sbi->segs_per_sec;
351	unsigned int next;
352
353	spin_lock(&free_i->segmap_lock);
354	clear_bit(segno, free_i->free_segmap);
355	free_i->free_segments++;
356
357	next = find_next_bit(free_i->free_segmap,
358			start_segno + sbi->segs_per_sec, start_segno);
359	if (next >= start_segno + sbi->segs_per_sec) {
360		clear_bit(secno, free_i->free_secmap);
361		free_i->free_sections++;
362	}
363	spin_unlock(&free_i->segmap_lock);
364}
365
366static inline void __set_inuse(struct f2fs_sb_info *sbi,
367		unsigned int segno)
368{
369	struct free_segmap_info *free_i = FREE_I(sbi);
370	unsigned int secno = segno / sbi->segs_per_sec;
371	set_bit(segno, free_i->free_segmap);
372	free_i->free_segments--;
373	if (!test_and_set_bit(secno, free_i->free_secmap))
374		free_i->free_sections--;
375}
376
377static inline void __set_test_and_free(struct f2fs_sb_info *sbi,
378		unsigned int segno)
379{
380	struct free_segmap_info *free_i = FREE_I(sbi);
381	unsigned int secno = segno / sbi->segs_per_sec;
382	unsigned int start_segno = secno * sbi->segs_per_sec;
383	unsigned int next;
384
385	spin_lock(&free_i->segmap_lock);
386	if (test_and_clear_bit(segno, free_i->free_segmap)) {
387		free_i->free_segments++;
388
389		next = find_next_bit(free_i->free_segmap,
390				start_segno + sbi->segs_per_sec, start_segno);
391		if (next >= start_segno + sbi->segs_per_sec) {
392			if (test_and_clear_bit(secno, free_i->free_secmap))
393				free_i->free_sections++;
394		}
395	}
396	spin_unlock(&free_i->segmap_lock);
397}
398
399static inline void __set_test_and_inuse(struct f2fs_sb_info *sbi,
400		unsigned int segno)
401{
402	struct free_segmap_info *free_i = FREE_I(sbi);
403	unsigned int secno = segno / sbi->segs_per_sec;
404	spin_lock(&free_i->segmap_lock);
405	if (!test_and_set_bit(segno, free_i->free_segmap)) {
406		free_i->free_segments--;
407		if (!test_and_set_bit(secno, free_i->free_secmap))
408			free_i->free_sections--;
409	}
410	spin_unlock(&free_i->segmap_lock);
411}
412
413static inline void get_sit_bitmap(struct f2fs_sb_info *sbi,
414		void *dst_addr)
415{
416	struct sit_info *sit_i = SIT_I(sbi);
417	memcpy(dst_addr, sit_i->sit_bitmap, sit_i->bitmap_size);
418}
419
420static inline block_t written_block_count(struct f2fs_sb_info *sbi)
421{
422	return SIT_I(sbi)->written_valid_blocks;
423}
424
425static inline unsigned int free_segments(struct f2fs_sb_info *sbi)
426{
427	return FREE_I(sbi)->free_segments;
428}
429
430static inline int reserved_segments(struct f2fs_sb_info *sbi)
431{
432	return SM_I(sbi)->reserved_segments;
433}
434
435static inline unsigned int free_sections(struct f2fs_sb_info *sbi)
436{
437	return FREE_I(sbi)->free_sections;
438}
439
440static inline unsigned int prefree_segments(struct f2fs_sb_info *sbi)
441{
442	return DIRTY_I(sbi)->nr_dirty[PRE];
443}
444
445static inline unsigned int dirty_segments(struct f2fs_sb_info *sbi)
446{
447	return DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_DATA] +
448		DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_DATA] +
449		DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_DATA] +
450		DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_NODE] +
451		DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_NODE] +
452		DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_NODE];
453}
454
455static inline int overprovision_segments(struct f2fs_sb_info *sbi)
456{
457	return SM_I(sbi)->ovp_segments;
458}
459
460static inline int overprovision_sections(struct f2fs_sb_info *sbi)
461{
462	return ((unsigned int) overprovision_segments(sbi)) / sbi->segs_per_sec;
463}
464
465static inline int reserved_sections(struct f2fs_sb_info *sbi)
466{
467	return ((unsigned int) reserved_segments(sbi)) / sbi->segs_per_sec;
468}
469
470static inline bool need_SSR(struct f2fs_sb_info *sbi)
471{
472	int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
473	int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
474	int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
475
476	if (test_opt(sbi, LFS))
477		return false;
478
479	return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs +
480						reserved_sections(sbi) + 1);
481}
482
483static inline bool has_not_enough_free_secs(struct f2fs_sb_info *sbi,
484					int freed, int needed)
485{
486	int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
487	int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
488	int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
489
490	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
491		return false;
492
493	return (free_sections(sbi) + freed) <=
494		(node_secs + 2 * dent_secs + imeta_secs +
495		reserved_sections(sbi) + needed);
496}
497
498static inline bool excess_prefree_segs(struct f2fs_sb_info *sbi)
499{
500	return prefree_segments(sbi) > SM_I(sbi)->rec_prefree_segments;
501}
502
503static inline int utilization(struct f2fs_sb_info *sbi)
504{
505	return div_u64((u64)valid_user_blocks(sbi) * 100,
506					sbi->user_block_count);
507}
508
509/*
510 * Sometimes f2fs may be better to drop out-of-place update policy.
511 * And, users can control the policy through sysfs entries.
512 * There are five policies with triggering conditions as follows.
513 * F2FS_IPU_FORCE - all the time,
514 * F2FS_IPU_SSR - if SSR mode is activated,
515 * F2FS_IPU_UTIL - if FS utilization is over threashold,
516 * F2FS_IPU_SSR_UTIL - if SSR mode is activated and FS utilization is over
517 *                     threashold,
518 * F2FS_IPU_FSYNC - activated in fsync path only for high performance flash
519 *                     storages. IPU will be triggered only if the # of dirty
520 *                     pages over min_fsync_blocks.
521 * F2FS_IPUT_DISABLE - disable IPU. (=default option)
522 */
523#define DEF_MIN_IPU_UTIL	70
524#define DEF_MIN_FSYNC_BLOCKS	8
525
526enum {
527	F2FS_IPU_FORCE,
528	F2FS_IPU_SSR,
529	F2FS_IPU_UTIL,
530	F2FS_IPU_SSR_UTIL,
531	F2FS_IPU_FSYNC,
532};
533
534static inline bool need_inplace_update(struct inode *inode)
535{
536	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
537	unsigned int policy = SM_I(sbi)->ipu_policy;
538
539	/* IPU can be done only for the user data */
540	if (S_ISDIR(inode->i_mode) || f2fs_is_atomic_file(inode))
541		return false;
542
543	if (test_opt(sbi, LFS))
544		return false;
545
546	if (policy & (0x1 << F2FS_IPU_FORCE))
 
547		return true;
548	if (policy & (0x1 << F2FS_IPU_SSR) && need_SSR(sbi))
549		return true;
550	if (policy & (0x1 << F2FS_IPU_UTIL) &&
551			utilization(sbi) > SM_I(sbi)->min_ipu_util)
552		return true;
553	if (policy & (0x1 << F2FS_IPU_SSR_UTIL) && need_SSR(sbi) &&
554			utilization(sbi) > SM_I(sbi)->min_ipu_util)
555		return true;
556
557	/* this is only set during fdatasync */
558	if (policy & (0x1 << F2FS_IPU_FSYNC) &&
559			is_inode_flag_set(inode, FI_NEED_IPU))
560		return true;
561
 
562	return false;
563}
564
565static inline unsigned int curseg_segno(struct f2fs_sb_info *sbi,
566		int type)
567{
568	struct curseg_info *curseg = CURSEG_I(sbi, type);
569	return curseg->segno;
570}
571
572static inline unsigned char curseg_alloc_type(struct f2fs_sb_info *sbi,
573		int type)
574{
575	struct curseg_info *curseg = CURSEG_I(sbi, type);
576	return curseg->alloc_type;
577}
578
579static inline unsigned short curseg_blkoff(struct f2fs_sb_info *sbi, int type)
580{
581	struct curseg_info *curseg = CURSEG_I(sbi, type);
582	return curseg->next_blkoff;
583}
584
 
585static inline void check_seg_range(struct f2fs_sb_info *sbi, unsigned int segno)
586{
587	f2fs_bug_on(sbi, segno > TOTAL_SEGS(sbi) - 1);
 
588}
589
590static inline void verify_block_addr(struct f2fs_sb_info *sbi, block_t blk_addr)
591{
592	BUG_ON(blk_addr < SEG0_BLKADDR(sbi)
593			|| blk_addr >= MAX_BLKADDR(sbi));
 
 
 
 
594}
595
596/*
597 * Summary block is always treated as an invalid block
598 */
599static inline void check_block_count(struct f2fs_sb_info *sbi,
600		int segno, struct f2fs_sit_entry *raw_sit)
601{
602#ifdef CONFIG_F2FS_CHECK_FS
 
603	bool is_valid  = test_bit_le(0, raw_sit->valid_map) ? true : false;
604	int valid_blocks = 0;
605	int cur_pos = 0, next_pos;
606
 
 
 
 
 
 
607	/* check bitmap with valid block count */
608	do {
609		if (is_valid) {
610			next_pos = find_next_zero_bit_le(&raw_sit->valid_map,
611					sbi->blocks_per_seg,
612					cur_pos);
613			valid_blocks += next_pos - cur_pos;
614		} else
615			next_pos = find_next_bit_le(&raw_sit->valid_map,
616					sbi->blocks_per_seg,
617					cur_pos);
618		cur_pos = next_pos;
619		is_valid = !is_valid;
620	} while (cur_pos < sbi->blocks_per_seg);
621	BUG_ON(GET_SIT_VBLOCKS(raw_sit) != valid_blocks);
 
 
 
 
 
622#endif
623	/* check segment usage, and check boundary of a given segment number */
624	f2fs_bug_on(sbi, GET_SIT_VBLOCKS(raw_sit) > sbi->blocks_per_seg
625					|| segno > TOTAL_SEGS(sbi) - 1);
626}
627
628static inline pgoff_t current_sit_addr(struct f2fs_sb_info *sbi,
629						unsigned int start)
630{
631	struct sit_info *sit_i = SIT_I(sbi);
632	unsigned int offset = SIT_BLOCK_OFFSET(start);
633	block_t blk_addr = sit_i->sit_base_addr + offset;
634
635	check_seg_range(sbi, start);
636
637	/* calculate sit block address */
638	if (f2fs_test_bit(offset, sit_i->sit_bitmap))
639		blk_addr += sit_i->sit_blocks;
640
641	return blk_addr;
642}
643
644static inline pgoff_t next_sit_addr(struct f2fs_sb_info *sbi,
645						pgoff_t block_addr)
646{
647	struct sit_info *sit_i = SIT_I(sbi);
648	block_addr -= sit_i->sit_base_addr;
649	if (block_addr < sit_i->sit_blocks)
650		block_addr += sit_i->sit_blocks;
651	else
652		block_addr -= sit_i->sit_blocks;
653
654	return block_addr + sit_i->sit_base_addr;
655}
656
657static inline void set_to_next_sit(struct sit_info *sit_i, unsigned int start)
658{
659	unsigned int block_off = SIT_BLOCK_OFFSET(start);
660
661	f2fs_change_bit(block_off, sit_i->sit_bitmap);
 
 
 
662}
663
664static inline unsigned long long get_mtime(struct f2fs_sb_info *sbi)
665{
666	struct sit_info *sit_i = SIT_I(sbi);
667	return sit_i->elapsed_time + CURRENT_TIME_SEC.tv_sec -
668						sit_i->mounted_time;
669}
670
671static inline void set_summary(struct f2fs_summary *sum, nid_t nid,
672			unsigned int ofs_in_node, unsigned char version)
673{
674	sum->nid = cpu_to_le32(nid);
675	sum->ofs_in_node = cpu_to_le16(ofs_in_node);
676	sum->version = version;
677}
678
679static inline block_t start_sum_block(struct f2fs_sb_info *sbi)
680{
681	return __start_cp_addr(sbi) +
682		le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
683}
684
685static inline block_t sum_blk_addr(struct f2fs_sb_info *sbi, int base, int type)
686{
687	return __start_cp_addr(sbi) +
688		le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_total_block_count)
689				- (base + 1) + type;
690}
691
692static inline bool no_fggc_candidate(struct f2fs_sb_info *sbi,
693						unsigned int secno)
694{
695	if (get_valid_blocks(sbi, secno, sbi->segs_per_sec) >=
696						sbi->fggc_threshold)
697		return true;
698	return false;
699}
700
701static inline bool sec_usage_check(struct f2fs_sb_info *sbi, unsigned int secno)
702{
703	if (IS_CURSEC(sbi, secno) || (sbi->cur_victim_sec == secno))
704		return true;
705	return false;
706}
707
708/*
709 * It is very important to gather dirty pages and write at once, so that we can
710 * submit a big bio without interfering other data writes.
711 * By default, 512 pages for directory data,
712 * 512 pages (2MB) * 3 for three types of nodes, and
713 * max_bio_blocks for meta are set.
714 */
715static inline int nr_pages_to_skip(struct f2fs_sb_info *sbi, int type)
716{
717	if (sbi->sb->s_bdi->wb.dirty_exceeded)
718		return 0;
719
720	if (type == DATA)
721		return sbi->blocks_per_seg;
722	else if (type == NODE)
723		return 8 * sbi->blocks_per_seg;
724	else if (type == META)
725		return 8 * BIO_MAX_PAGES;
726	else
727		return 0;
728}
729
730/*
731 * When writing pages, it'd better align nr_to_write for segment size.
732 */
733static inline long nr_pages_to_write(struct f2fs_sb_info *sbi, int type,
734					struct writeback_control *wbc)
735{
736	long nr_to_write, desired;
737
738	if (wbc->sync_mode != WB_SYNC_NONE)
739		return 0;
740
741	nr_to_write = wbc->nr_to_write;
742	desired = BIO_MAX_PAGES;
743	if (type == NODE)
744		desired <<= 1;
 
 
 
 
745
746	wbc->nr_to_write = desired;
747	return desired - nr_to_write;
748}