Linux Audio

Check our new training course

Loading...
v3.15
 
  1#ifndef _FS_CEPH_SUPER_H
  2#define _FS_CEPH_SUPER_H
  3
  4#include <linux/ceph/ceph_debug.h>
  5
  6#include <asm/unaligned.h>
  7#include <linux/backing-dev.h>
  8#include <linux/completion.h>
  9#include <linux/exportfs.h>
 10#include <linux/fs.h>
 11#include <linux/mempool.h>
 12#include <linux/pagemap.h>
 13#include <linux/wait.h>
 14#include <linux/writeback.h>
 15#include <linux/slab.h>
 16#include <linux/posix_acl.h>
 
 
 17
 18#include <linux/ceph/libceph.h>
 19
 20#ifdef CONFIG_CEPH_FSCACHE
 21#include <linux/fscache.h>
 22#endif
 23
 24/* f_type in struct statfs */
 25#define CEPH_SUPER_MAGIC 0x00c36400
 26
 27/* large granularity for statfs utilization stats to facilitate
 28 * large volume sizes on 32-bit machines. */
 29#define CEPH_BLOCK_SHIFT   22  /* 4 MB */
 30#define CEPH_BLOCK         (1 << CEPH_BLOCK_SHIFT)
 31
 
 32#define CEPH_MOUNT_OPT_DIRSTAT         (1<<4) /* `cat dirname` for stats */
 33#define CEPH_MOUNT_OPT_RBYTES          (1<<5) /* dir st_bytes = rbytes */
 34#define CEPH_MOUNT_OPT_NOASYNCREADDIR  (1<<7) /* no dcache readdir */
 35#define CEPH_MOUNT_OPT_INO32           (1<<8) /* 32 bit inos */
 36#define CEPH_MOUNT_OPT_DCACHE          (1<<9) /* use dcache for readdir etc */
 37#define CEPH_MOUNT_OPT_FSCACHE         (1<<10) /* use fscache */
 38
 39#define CEPH_MOUNT_OPT_DEFAULT    (CEPH_MOUNT_OPT_RBYTES)
 
 
 
 
 
 
 40
 41#define ceph_set_mount_opt(fsc, opt) \
 42	(fsc)->mount_options->flags |= CEPH_MOUNT_OPT_##opt;
 43#define ceph_test_mount_opt(fsc, opt) \
 44	(!!((fsc)->mount_options->flags & CEPH_MOUNT_OPT_##opt))
 45
 46#define CEPH_RSIZE_DEFAULT             0           /* max read size */
 47#define CEPH_RASIZE_DEFAULT            (8192*1024) /* readahead */
 
 
 
 
 48#define CEPH_MAX_READDIR_DEFAULT        1024
 49#define CEPH_MAX_READDIR_BYTES_DEFAULT  (512*1024)
 50#define CEPH_SNAPDIRNAME_DEFAULT        ".snap"
 51
 
 
 
 
 
 
 
 
 
 52struct ceph_mount_options {
 53	int flags;
 54	int sb_flags;
 55
 56	int wsize;            /* max write size */
 57	int rsize;            /* max read size */
 58	int rasize;           /* max readahead */
 59	int congestion_kb;    /* max writeback in flight */
 60	int caps_wanted_delay_min, caps_wanted_delay_max;
 61	int cap_release_safety;
 62	int max_readdir;       /* max readdir result (entires) */
 63	int max_readdir_bytes; /* max readdir result (bytes) */
 64
 65	/*
 66	 * everything above this point can be memcmp'd; everything below
 67	 * is handled in compare_mount_options()
 68	 */
 69
 70	char *snapdir_name;   /* default ".snap" */
 
 
 
 71};
 72
 73struct ceph_fs_client {
 74	struct super_block *sb;
 75
 76	struct ceph_mount_options *mount_options;
 77	struct ceph_client *client;
 78
 79	unsigned long mount_state;
 80	int min_caps;                  /* min caps i added */
 
 
 
 
 
 81
 82	struct ceph_mds_client *mdsc;
 83
 84	/* writeback */
 85	mempool_t *wb_pagevec_pool;
 86	struct workqueue_struct *wb_wq;
 87	struct workqueue_struct *pg_inv_wq;
 88	struct workqueue_struct *trunc_wq;
 89	atomic_long_t writeback_count;
 90
 91	struct backing_dev_info backing_dev_info;
 
 92
 93#ifdef CONFIG_DEBUG_FS
 94	struct dentry *debugfs_dentry_lru, *debugfs_caps;
 95	struct dentry *debugfs_congestion_kb;
 96	struct dentry *debugfs_bdi;
 97	struct dentry *debugfs_mdsc, *debugfs_mdsmap;
 
 98#endif
 99
100#ifdef CONFIG_CEPH_FSCACHE
101	struct fscache_cookie *fscache;
102	struct workqueue_struct *revalidate_wq;
103#endif
104};
105
106
107/*
108 * File i/o capability.  This tracks shared state with the metadata
109 * server that allows us to cache or writeback attributes or to read
110 * and write data.  For any given inode, we should have one or more
111 * capabilities, one issued by each metadata server, and our
112 * cumulative access is the OR of all issued capabilities.
113 *
114 * Each cap is referenced by the inode's i_caps rbtree and by per-mds
115 * session capability lists.
116 */
117struct ceph_cap {
118	struct ceph_inode_info *ci;
119	struct rb_node ci_node;          /* per-ci cap tree */
120	struct ceph_mds_session *session;
121	struct list_head session_caps;   /* per-session caplist */
122	int mds;
123	u64 cap_id;       /* unique cap id (mds provided) */
124	int issued;       /* latest, from the mds */
125	int implemented;  /* implemented superset of issued (for revocation) */
126	int mds_wanted;
 
 
 
 
 
 
 
 
 
 
 
127	u32 seq, issue_seq, mseq;
128	u32 cap_gen;      /* active/stale cycle */
129	unsigned long last_used;
130	struct list_head caps_item;
131};
132
133#define CHECK_CAPS_NODELAY    1  /* do not delay any further */
134#define CHECK_CAPS_AUTHONLY   2  /* only check auth cap */
135#define CHECK_CAPS_FLUSH      4  /* flush any dirty caps */
136
 
 
 
 
 
 
 
 
137/*
138 * Snapped cap state that is pending flush to mds.  When a snapshot occurs,
139 * we first complete any in-process sync writes and writeback any dirty
140 * data before flushing the snapped state (tracked here) back to the MDS.
141 */
142struct ceph_cap_snap {
143	atomic_t nref;
144	struct ceph_inode_info *ci;
145	struct list_head ci_item, flushing_item;
 
146
147	u64 follows, flush_tid;
148	int issued, dirty;
149	struct ceph_snap_context *context;
150
151	umode_t mode;
152	kuid_t uid;
153	kgid_t gid;
154
155	struct ceph_buffer *xattr_blob;
156	u64 xattr_version;
157
158	u64 size;
159	struct timespec mtime, atime, ctime;
 
160	u64 time_warp_seq;
 
 
161	int writing;   /* a sync write is still in progress */
162	int dirty_pages;     /* dirty pages awaiting writeback */
 
 
163};
164
165static inline void ceph_put_cap_snap(struct ceph_cap_snap *capsnap)
166{
167	if (atomic_dec_and_test(&capsnap->nref)) {
168		if (capsnap->xattr_blob)
169			ceph_buffer_put(capsnap->xattr_blob);
170		kfree(capsnap);
171	}
172}
173
174/*
175 * The frag tree describes how a directory is fragmented, potentially across
176 * multiple metadata servers.  It is also used to indicate points where
177 * metadata authority is delegated, and whether/where metadata is replicated.
178 *
179 * A _leaf_ frag will be present in the i_fragtree IFF there is
180 * delegation info.  That is, if mds >= 0 || ndist > 0.
181 */
182#define CEPH_MAX_DIRFRAG_REP 4
183
184struct ceph_inode_frag {
185	struct rb_node node;
186
187	/* fragtree state */
188	u32 frag;
189	int split_by;         /* i.e. 2^(split_by) children */
190
191	/* delegation and replication info */
192	int mds;              /* -1 if same authority as parent */
193	int ndist;            /* >0 if replicated */
194	int dist[CEPH_MAX_DIRFRAG_REP];
195};
196
197/*
198 * We cache inode xattrs as an encoded blob until they are first used,
199 * at which point we parse them into an rbtree.
200 */
201struct ceph_inode_xattr {
202	struct rb_node node;
203
204	const char *name;
205	int name_len;
206	const char *val;
207	int val_len;
208	int dirty;
209
210	int should_free_name;
211	int should_free_val;
212};
213
214/*
215 * Ceph dentry state
216 */
217struct ceph_dentry_info {
 
218	struct ceph_mds_session *lease_session;
219	u32 lease_gen, lease_shared_gen;
 
 
 
220	u32 lease_seq;
221	unsigned long lease_renew_after, lease_renew_from;
222	struct list_head lru;
223	struct dentry *dentry;
224	u64 time;
225	u64 offset;
226};
227
 
 
 
 
228struct ceph_inode_xattrs_info {
229	/*
230	 * (still encoded) xattr blob. we avoid the overhead of parsing
231	 * this until someone actually calls getxattr, etc.
232	 *
233	 * blob->vec.iov_len == 4 implies there are no xattrs; blob ==
234	 * NULL means we don't know.
235	*/
236	struct ceph_buffer *blob, *prealloc_blob;
237
238	struct rb_root index;
239	bool dirty;
240	int count;
241	int names_size;
242	int vals_size;
243	u64 version, index_version;
244};
245
246/*
247 * Ceph inode.
248 */
249struct ceph_inode_info {
250	struct ceph_vino i_vino;   /* ceph ino + snap */
251
252	spinlock_t i_ceph_lock;
253
254	u64 i_version;
 
255	u32 i_time_warp_seq;
256
257	unsigned i_ceph_flags;
258	atomic_t i_release_count;
259	atomic_t i_complete_count;
 
260
261	struct ceph_dir_layout i_dir_layout;
262	struct ceph_file_layout i_layout;
263	char *i_symlink;
264
265	/* for dirs */
266	struct timespec i_rctime;
267	u64 i_rbytes, i_rfiles, i_rsubdirs;
268	u64 i_files, i_subdirs;
269
 
 
 
 
 
270	struct rb_root i_fragtree;
 
271	struct mutex i_fragtree_mutex;
272
273	struct ceph_inode_xattrs_info i_xattrs;
274
275	/* capabilities.  protected _both_ by i_ceph_lock and cap->session's
276	 * s_mutex. */
277	struct rb_root i_caps;           /* cap list */
278	struct ceph_cap *i_auth_cap;     /* authoritative cap, if any */
279	unsigned i_dirty_caps, i_flushing_caps;     /* mask of dirtied fields */
280	struct list_head i_dirty_item, i_flushing_item;
281	u64 i_cap_flush_seq;
282	/* we need to track cap writeback on a per-cap-bit basis, to allow
283	 * overlapping, pipelined cap flushes to the mds.  we can probably
284	 * reduce the tid to 8 bits if we're concerned about inode size. */
285	u16 i_cap_flush_last_tid, i_cap_flush_tid[CEPH_CAP_BITS];
 
286	wait_queue_head_t i_cap_wq;      /* threads waiting on a capability */
287	unsigned long i_hold_caps_min; /* jiffies */
288	unsigned long i_hold_caps_max; /* jiffies */
289	struct list_head i_cap_delay_list;  /* for delayed cap release to mds */
290	struct ceph_cap_reservation i_cap_migration_resv;
291	struct list_head i_cap_snaps;   /* snapped state pending flush to mds */
292	struct ceph_snap_context *i_head_snapc;  /* set if wr_buffer_head > 0 or
293						    dirty|flushing caps */
294	unsigned i_snap_caps;           /* cap bits for snapped files */
295	unsigned i_cap_exporting_issued;
296
297	int i_nr_by_mode[CEPH_FILE_MODE_NUM];  /* open file counts */
298
299	struct mutex i_truncate_mutex;
300	u32 i_truncate_seq;        /* last truncate to smaller size */
301	u64 i_truncate_size;       /*  and the size we last truncated down to */
302	int i_truncate_pending;    /*  still need to call vmtruncate */
303
304	u64 i_max_size;            /* max file size authorized by mds */
305	u64 i_reported_size; /* (max_)size reported to or requested of mds */
306	u64 i_wanted_max_size;     /* offset we'd like to write too */
307	u64 i_requested_max_size;  /* max_size we've requested */
308
309	/* held references to caps */
310	int i_pin_ref;
311	int i_rd_ref, i_rdcache_ref, i_wr_ref, i_wb_ref;
312	int i_wrbuffer_ref, i_wrbuffer_ref_head;
313	u32 i_shared_gen;       /* increment each time we get FILE_SHARED */
 
314	u32 i_rdcache_gen;      /* incremented each time we get FILE_CACHE. */
315	u32 i_rdcache_revoking; /* RDCACHE gen to async invalidate, if any */
316
317	struct list_head i_unsafe_writes; /* uncommitted sync writes */
318	struct list_head i_unsafe_dirops; /* uncommitted mds dir ops */
 
319	spinlock_t i_unsafe_lock;
320
321	struct ceph_snap_realm *i_snap_realm; /* snap realm (if caps) */
 
 
 
322	int i_snap_realm_counter; /* snap realm (if caps) */
323	struct list_head i_snap_realm_item;
324	struct list_head i_snap_flush_item;
 
 
325
326	struct work_struct i_wb_work;  /* writeback work */
327	struct work_struct i_pg_inv_work;  /* page invalidation work */
328
329	struct work_struct i_vmtruncate_work;
330
331#ifdef CONFIG_CEPH_FSCACHE
332	struct fscache_cookie *fscache;
333	u32 i_fscache_gen; /* sequence, for delayed fscache validate */
334	struct work_struct i_revalidate_work;
335#endif
 
 
336	struct inode vfs_inode; /* at end */
337};
338
339static inline struct ceph_inode_info *ceph_inode(struct inode *inode)
340{
341	return container_of(inode, struct ceph_inode_info, vfs_inode);
342}
343
344static inline struct ceph_fs_client *ceph_inode_to_client(struct inode *inode)
345{
346	return (struct ceph_fs_client *)inode->i_sb->s_fs_info;
347}
348
349static inline struct ceph_fs_client *ceph_sb_to_client(struct super_block *sb)
350{
351	return (struct ceph_fs_client *)sb->s_fs_info;
352}
353
354static inline struct ceph_vino ceph_vino(struct inode *inode)
355{
356	return ceph_inode(inode)->i_vino;
357}
358
359/*
360 * ino_t is <64 bits on many architectures, blech.
361 *
362 *               i_ino (kernel inode)   st_ino (userspace)
363 * i386          32                     32
364 * x86_64+ino32  64                     32
365 * x86_64        64                     64
366 */
367static inline u32 ceph_ino_to_ino32(__u64 vino)
368{
369	u32 ino = vino & 0xffffffff;
370	ino ^= vino >> 32;
371	if (!ino)
372		ino = 2;
373	return ino;
374}
375
376/*
377 * kernel i_ino value
378 */
379static inline ino_t ceph_vino_to_ino(struct ceph_vino vino)
380{
381#if BITS_PER_LONG == 32
382	return ceph_ino_to_ino32(vino.ino);
383#else
384	return (ino_t)vino.ino;
385#endif
386}
387
388/*
389 * user-visible ino (stat, filldir)
390 */
391#if BITS_PER_LONG == 32
392static inline ino_t ceph_translate_ino(struct super_block *sb, ino_t ino)
393{
394	return ino;
395}
396#else
397static inline ino_t ceph_translate_ino(struct super_block *sb, ino_t ino)
398{
399	if (ceph_test_mount_opt(ceph_sb_to_client(sb), INO32))
400		ino = ceph_ino_to_ino32(ino);
401	return ino;
402}
403#endif
404
405
406/* for printf-style formatting */
407#define ceph_vinop(i) ceph_inode(i)->i_vino.ino, ceph_inode(i)->i_vino.snap
408
409static inline u64 ceph_ino(struct inode *inode)
410{
411	return ceph_inode(inode)->i_vino.ino;
412}
413static inline u64 ceph_snap(struct inode *inode)
414{
415	return ceph_inode(inode)->i_vino.snap;
416}
417
418static inline int ceph_ino_compare(struct inode *inode, void *data)
419{
420	struct ceph_vino *pvino = (struct ceph_vino *)data;
421	struct ceph_inode_info *ci = ceph_inode(inode);
422	return ci->i_vino.ino == pvino->ino &&
423		ci->i_vino.snap == pvino->snap;
424}
425
426static inline struct inode *ceph_find_inode(struct super_block *sb,
427					    struct ceph_vino vino)
428{
429	ino_t t = ceph_vino_to_ino(vino);
430	return ilookup5(sb, t, ceph_ino_compare, &vino);
431}
432
433
434/*
435 * Ceph inode.
436 */
437#define CEPH_I_NODELAY   4  /* do not delay cap release */
438#define CEPH_I_FLUSH     8  /* do not delay flush of dirty metadata */
439#define CEPH_I_NOFLUSH  16  /* do not flush dirty caps */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
440
441static inline void __ceph_dir_set_complete(struct ceph_inode_info *ci,
442					   int release_count)
 
443{
444	atomic_set(&ci->i_complete_count, release_count);
 
 
 
 
 
 
 
445}
446
447static inline void __ceph_dir_clear_complete(struct ceph_inode_info *ci)
448{
449	atomic_inc(&ci->i_release_count);
 
 
 
 
 
450}
451
452static inline bool __ceph_dir_is_complete(struct ceph_inode_info *ci)
453{
454	return atomic_read(&ci->i_complete_count) ==
455		atomic_read(&ci->i_release_count);
 
 
 
 
 
 
 
 
456}
457
458static inline void ceph_dir_clear_complete(struct inode *inode)
459{
460	__ceph_dir_clear_complete(ceph_inode(inode));
461}
462
463static inline bool ceph_dir_is_complete(struct inode *inode)
464{
465	return __ceph_dir_is_complete(ceph_inode(inode));
466}
467
 
 
 
 
 
 
468
469/* find a specific frag @f */
470extern struct ceph_inode_frag *__ceph_find_frag(struct ceph_inode_info *ci,
471						u32 f);
472
473/*
474 * choose fragment for value @v.  copy frag content to pfrag, if leaf
475 * exists
476 */
477extern u32 ceph_choose_frag(struct ceph_inode_info *ci, u32 v,
478			    struct ceph_inode_frag *pfrag,
479			    int *found);
480
481static inline struct ceph_dentry_info *ceph_dentry(struct dentry *dentry)
482{
483	return (struct ceph_dentry_info *)dentry->d_fsdata;
484}
485
486static inline loff_t ceph_make_fpos(unsigned frag, unsigned off)
487{
488	return ((loff_t)frag << 32) | (loff_t)off;
489}
490
491/*
492 * caps helpers
493 */
494static inline bool __ceph_is_any_real_caps(struct ceph_inode_info *ci)
495{
496	return !RB_EMPTY_ROOT(&ci->i_caps);
497}
498
499extern int __ceph_caps_issued(struct ceph_inode_info *ci, int *implemented);
500extern int __ceph_caps_issued_mask(struct ceph_inode_info *ci, int mask, int t);
501extern int __ceph_caps_issued_other(struct ceph_inode_info *ci,
502				    struct ceph_cap *cap);
503
504static inline int ceph_caps_issued(struct ceph_inode_info *ci)
505{
506	int issued;
507	spin_lock(&ci->i_ceph_lock);
508	issued = __ceph_caps_issued(ci, NULL);
509	spin_unlock(&ci->i_ceph_lock);
510	return issued;
511}
512
513static inline int ceph_caps_issued_mask(struct ceph_inode_info *ci, int mask,
514					int touch)
515{
516	int r;
517	spin_lock(&ci->i_ceph_lock);
518	r = __ceph_caps_issued_mask(ci, mask, touch);
519	spin_unlock(&ci->i_ceph_lock);
520	return r;
521}
522
523static inline int __ceph_caps_dirty(struct ceph_inode_info *ci)
524{
525	return ci->i_dirty_caps | ci->i_flushing_caps;
526}
527extern int __ceph_mark_dirty_caps(struct ceph_inode_info *ci, int mask);
 
 
 
528
529extern int __ceph_caps_revoking_other(struct ceph_inode_info *ci,
530				      struct ceph_cap *ocap, int mask);
531extern int ceph_caps_revoking(struct ceph_inode_info *ci, int mask);
532extern int __ceph_caps_used(struct ceph_inode_info *ci);
533
534extern int __ceph_caps_file_wanted(struct ceph_inode_info *ci);
535
536/*
537 * wanted, by virtue of open file modes AND cap refs (buffered/cached data)
538 */
539static inline int __ceph_caps_wanted(struct ceph_inode_info *ci)
540{
541	int w = __ceph_caps_file_wanted(ci) | __ceph_caps_used(ci);
542	if (w & CEPH_CAP_FILE_BUFFER)
543		w |= CEPH_CAP_FILE_EXCL;  /* we want EXCL if dirty data */
544	return w;
545}
546
547/* what the mds thinks we want */
548extern int __ceph_caps_mds_wanted(struct ceph_inode_info *ci);
549
550extern void ceph_caps_init(struct ceph_mds_client *mdsc);
551extern void ceph_caps_finalize(struct ceph_mds_client *mdsc);
552extern void ceph_adjust_min_caps(struct ceph_mds_client *mdsc, int delta);
553extern void ceph_reserve_caps(struct ceph_mds_client *mdsc,
 
554			     struct ceph_cap_reservation *ctx, int need);
555extern int ceph_unreserve_caps(struct ceph_mds_client *mdsc,
556			       struct ceph_cap_reservation *ctx);
557extern void ceph_reservation_status(struct ceph_fs_client *client,
558				    int *total, int *avail, int *used,
559				    int *reserved, int *min);
560
561
562
563/*
564 * we keep buffered readdir results attached to file->private_data
565 */
566#define CEPH_F_SYNC     1
567#define CEPH_F_ATEND    2
568
569struct ceph_file_info {
570	short fmode;     /* initialized on open */
571	short flags;     /* CEPH_F_* */
572
 
 
 
 
 
 
 
 
 
 
 
573	/* readdir: position within the dir */
574	u32 frag;
575	struct ceph_mds_request *last_readdir;
576
577	/* readdir: position within a frag */
578	unsigned offset;       /* offset of last chunk, adjusted for . and .. */
579	unsigned next_offset;  /* offset of next chunk (last_name's + 1) */
580	char *last_name;       /* last entry in previous chunk */
581	struct dentry *dentry; /* next dentry (for dcache readdir) */
582	int dir_release_count;
 
583
584	/* used for -o dirstat read() on directory thing */
585	char *dir_info;
586	int dir_info_len;
587};
588
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
589
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
590
591/*
592 * A "snap realm" describes a subset of the file hierarchy sharing
593 * the same set of snapshots that apply to it.  The realms themselves
594 * are organized into a hierarchy, such that children inherit (some of)
595 * the snapshots of their parents.
596 *
597 * All inodes within the realm that have capabilities are linked into a
598 * per-realm list.
599 */
600struct ceph_snap_realm {
601	u64 ino;
 
602	atomic_t nref;
603	struct rb_node node;
604
605	u64 created, seq;
606	u64 parent_ino;
607	u64 parent_since;   /* snapid when our current parent became so */
608
609	u64 *prior_parent_snaps;      /* snaps inherited from any parents we */
610	u32 num_prior_parent_snaps;   /*  had prior to parent_since */
611	u64 *snaps;                   /* snaps specific to this realm */
612	u32 num_snaps;
613
614	struct ceph_snap_realm *parent;
615	struct list_head children;       /* list of child realms */
616	struct list_head child_item;
617
618	struct list_head empty_item;     /* if i have ref==0 */
619
620	struct list_head dirty_item;     /* if realm needs new context */
621
622	/* the current set of snaps for this realm */
623	struct ceph_snap_context *cached_context;
624
625	struct list_head inodes_with_caps;
626	spinlock_t inodes_with_caps_lock;
627};
628
629static inline int default_congestion_kb(void)
630{
631	int congestion_kb;
632
633	/*
634	 * Copied from NFS
635	 *
636	 * congestion size, scale with available memory.
637	 *
638	 *  64MB:    8192k
639	 * 128MB:   11585k
640	 * 256MB:   16384k
641	 * 512MB:   23170k
642	 *   1GB:   32768k
643	 *   2GB:   46340k
644	 *   4GB:   65536k
645	 *   8GB:   92681k
646	 *  16GB:  131072k
647	 *
648	 * This allows larger machines to have larger/more transfers.
649	 * Limit the default to 256M
650	 */
651	congestion_kb = (16*int_sqrt(totalram_pages)) << (PAGE_SHIFT-10);
652	if (congestion_kb > 256*1024)
653		congestion_kb = 256*1024;
654
655	return congestion_kb;
656}
657
658
659
 
660/* snap.c */
661struct ceph_snap_realm *ceph_lookup_snap_realm(struct ceph_mds_client *mdsc,
662					       u64 ino);
663extern void ceph_get_snap_realm(struct ceph_mds_client *mdsc,
664				struct ceph_snap_realm *realm);
665extern void ceph_put_snap_realm(struct ceph_mds_client *mdsc,
666				struct ceph_snap_realm *realm);
667extern int ceph_update_snap_trace(struct ceph_mds_client *m,
668				  void *p, void *e, bool deletion);
 
669extern void ceph_handle_snap(struct ceph_mds_client *mdsc,
670			     struct ceph_mds_session *session,
671			     struct ceph_msg *msg);
672extern void ceph_queue_cap_snap(struct ceph_inode_info *ci);
673extern int __ceph_finish_cap_snap(struct ceph_inode_info *ci,
674				  struct ceph_cap_snap *capsnap);
675extern void ceph_cleanup_empty_realms(struct ceph_mds_client *mdsc);
676
 
 
 
 
 
 
 
 
677/*
678 * a cap_snap is "pending" if it is still awaiting an in-progress
679 * sync write (that may/may not still update size, mtime, etc.).
680 */
681static inline bool __ceph_have_pending_cap_snap(struct ceph_inode_info *ci)
682{
683	return !list_empty(&ci->i_cap_snaps) &&
684		list_entry(ci->i_cap_snaps.prev, struct ceph_cap_snap,
685			   ci_item)->writing;
686}
687
688/* inode.c */
689extern const struct inode_operations ceph_file_iops;
690
691extern struct inode *ceph_alloc_inode(struct super_block *sb);
692extern void ceph_destroy_inode(struct inode *inode);
693extern int ceph_drop_inode(struct inode *inode);
694
695extern struct inode *ceph_get_inode(struct super_block *sb,
696				    struct ceph_vino vino);
697extern struct inode *ceph_get_snapdir(struct inode *parent);
698extern int ceph_fill_file_size(struct inode *inode, int issued,
699			       u32 truncate_seq, u64 truncate_size, u64 size);
700extern void ceph_fill_file_time(struct inode *inode, int issued,
701				u64 time_warp_seq, struct timespec *ctime,
702				struct timespec *mtime, struct timespec *atime);
 
703extern int ceph_fill_trace(struct super_block *sb,
704			   struct ceph_mds_request *req,
705			   struct ceph_mds_session *session);
706extern int ceph_readdir_prepopulate(struct ceph_mds_request *req,
707				    struct ceph_mds_session *session);
708
709extern int ceph_inode_holds_cap(struct inode *inode, int mask);
710
711extern int ceph_inode_set_size(struct inode *inode, loff_t size);
712extern void __ceph_do_pending_vmtruncate(struct inode *inode);
713extern void ceph_queue_vmtruncate(struct inode *inode);
714
715extern void ceph_queue_invalidate(struct inode *inode);
716extern void ceph_queue_writeback(struct inode *inode);
 
717
718extern int ceph_do_getattr(struct inode *inode, int mask);
 
 
 
 
 
719extern int ceph_permission(struct inode *inode, int mask);
 
720extern int ceph_setattr(struct dentry *dentry, struct iattr *attr);
721extern int ceph_getattr(struct vfsmount *mnt, struct dentry *dentry,
722			struct kstat *stat);
723
724/* xattr.c */
725extern int ceph_setxattr(struct dentry *, const char *, const void *,
726			 size_t, int);
727int __ceph_setxattr(struct dentry *, const char *, const void *, size_t, int);
728ssize_t __ceph_getxattr(struct inode *, const char *, void *, size_t);
729int __ceph_removexattr(struct dentry *, const char *);
730extern ssize_t ceph_getxattr(struct dentry *, const char *, void *, size_t);
731extern ssize_t ceph_listxattr(struct dentry *, char *, size_t);
732extern int ceph_removexattr(struct dentry *, const char *);
733extern void __ceph_build_xattrs_blob(struct ceph_inode_info *ci);
734extern void __ceph_destroy_xattrs(struct ceph_inode_info *ci);
735extern void __init ceph_xattr_init(void);
736extern void ceph_xattr_exit(void);
737
738/* acl.c */
739extern const struct xattr_handler *ceph_xattr_handlers[];
740
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
741#ifdef CONFIG_CEPH_FS_POSIX_ACL
742
743struct posix_acl *ceph_get_acl(struct inode *, int);
744int ceph_set_acl(struct inode *inode, struct posix_acl *acl, int type);
745int ceph_init_acl(struct dentry *, struct inode *, struct inode *);
 
 
 
746
747static inline void ceph_forget_all_cached_acls(struct inode *inode)
748{
749       forget_all_cached_acls(inode);
750}
751
752#else
753
754#define ceph_get_acl NULL
755#define ceph_set_acl NULL
756
757static inline int ceph_init_acl(struct dentry *dentry, struct inode *inode,
758				struct inode *dir)
759{
760	return 0;
761}
762
 
 
 
763static inline int ceph_acl_chmod(struct dentry *dentry, struct inode *inode)
764{
765	return 0;
766}
767
768static inline void ceph_forget_all_cached_acls(struct inode *inode)
769{
770}
771
772#endif
773
774/* caps.c */
775extern const char *ceph_cap_string(int c);
776extern void ceph_handle_caps(struct ceph_mds_session *session,
777			     struct ceph_msg *msg);
778extern int ceph_add_cap(struct inode *inode,
779			struct ceph_mds_session *session, u64 cap_id,
780			int fmode, unsigned issued, unsigned wanted,
781			unsigned cap, unsigned seq, u64 realmino, int flags,
782			struct ceph_cap_reservation *caps_reservation);
 
 
783extern void __ceph_remove_cap(struct ceph_cap *cap, bool queue_release);
 
784extern void ceph_put_cap(struct ceph_mds_client *mdsc,
785			 struct ceph_cap *cap);
786extern int ceph_is_any_caps(struct inode *inode);
787
788extern void __queue_cap_release(struct ceph_mds_session *session, u64 ino,
789				u64 cap_id, u32 migrate_seq, u32 issue_seq);
790extern void ceph_queue_caps_release(struct inode *inode);
791extern int ceph_write_inode(struct inode *inode, struct writeback_control *wbc);
792extern int ceph_fsync(struct file *file, loff_t start, loff_t end,
793		      int datasync);
 
 
794extern void ceph_kick_flushing_caps(struct ceph_mds_client *mdsc,
795				    struct ceph_mds_session *session);
796extern struct ceph_cap *ceph_get_cap_for_mds(struct ceph_inode_info *ci,
797					     int mds);
798extern int ceph_get_cap_mds(struct inode *inode);
799extern void ceph_get_cap_refs(struct ceph_inode_info *ci, int caps);
800extern void ceph_put_cap_refs(struct ceph_inode_info *ci, int had);
801extern void ceph_put_wrbuffer_cap_refs(struct ceph_inode_info *ci, int nr,
802				       struct ceph_snap_context *snapc);
803extern void __ceph_flush_snaps(struct ceph_inode_info *ci,
804			       struct ceph_mds_session **psession,
805			       int again);
806extern void ceph_check_caps(struct ceph_inode_info *ci, int flags,
807			    struct ceph_mds_session *session);
808extern void ceph_check_delayed_caps(struct ceph_mds_client *mdsc);
809extern void ceph_flush_dirty_caps(struct ceph_mds_client *mdsc);
810
811extern int ceph_encode_inode_release(void **p, struct inode *inode,
812				     int mds, int drop, int unless, int force);
813extern int ceph_encode_dentry_release(void **p, struct dentry *dn,
 
814				      int mds, int drop, int unless);
815
816extern int ceph_get_caps(struct ceph_inode_info *ci, int need, int want,
817			 int *got, loff_t endoff);
 
 
818
819/* for counting open files by mode */
820static inline void __ceph_get_fmode(struct ceph_inode_info *ci, int mode)
821{
822	ci->i_nr_by_mode[mode]++;
823}
824extern void ceph_put_fmode(struct ceph_inode_info *ci, int mode);
825
826/* addr.c */
827extern const struct address_space_operations ceph_aops;
828extern int ceph_mmap(struct file *file, struct vm_area_struct *vma);
 
 
 
829
830/* file.c */
831extern const struct file_operations ceph_file_fops;
832extern const struct address_space_operations ceph_aops;
833
 
834extern int ceph_open(struct inode *inode, struct file *file);
835extern int ceph_atomic_open(struct inode *dir, struct dentry *dentry,
836			    struct file *file, unsigned flags, umode_t mode,
837			    int *opened);
838extern int ceph_release(struct inode *inode, struct file *filp);
 
 
839
840/* dir.c */
841extern const struct file_operations ceph_dir_fops;
 
842extern const struct inode_operations ceph_dir_iops;
843extern const struct dentry_operations ceph_dentry_ops, ceph_snap_dentry_ops,
844	ceph_snapdir_dentry_ops;
845
 
846extern int ceph_handle_notrace_create(struct inode *dir, struct dentry *dentry);
847extern int ceph_handle_snapdir(struct ceph_mds_request *req,
848			       struct dentry *dentry, int err);
849extern struct dentry *ceph_finish_lookup(struct ceph_mds_request *req,
850					 struct dentry *dentry, int err);
851
852extern void ceph_dentry_lru_add(struct dentry *dn);
853extern void ceph_dentry_lru_touch(struct dentry *dn);
854extern void ceph_dentry_lru_del(struct dentry *dn);
855extern void ceph_invalidate_dentry_lease(struct dentry *dentry);
 
856extern unsigned ceph_dentry_hash(struct inode *dir, struct dentry *dn);
857extern struct inode *ceph_get_dentry_parent_inode(struct dentry *dentry);
858
859/*
860 * our d_ops vary depending on whether the inode is live,
861 * snapshotted (read-only), or a virtual ".snap" directory.
862 */
863int ceph_init_dentry(struct dentry *dentry);
864
865
866/* ioctl.c */
867extern long ceph_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
868
869/* export.c */
870extern const struct export_operations ceph_export_ops;
 
871
872/* locks.c */
873extern __init void ceph_flock_init(void);
874extern int ceph_lock(struct file *file, int cmd, struct file_lock *fl);
875extern int ceph_flock(struct file *file, int cmd, struct file_lock *fl);
876extern void ceph_count_locks(struct inode *inode, int *p_num, int *f_num);
877extern int ceph_encode_locks_to_buffer(struct inode *inode,
878				       struct ceph_filelock *flocks,
879				       int num_fcntl_locks,
880				       int num_flock_locks);
881extern int ceph_locks_to_pagelist(struct ceph_filelock *flocks,
882				  struct ceph_pagelist *pagelist,
883				  int num_fcntl_locks, int num_flock_locks);
884extern int lock_to_ceph_filelock(struct file_lock *fl, struct ceph_filelock *c);
885
886/* debugfs.c */
887extern int ceph_fs_debugfs_init(struct ceph_fs_client *client);
888extern void ceph_fs_debugfs_cleanup(struct ceph_fs_client *client);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
889
890#endif /* _FS_CEPH_SUPER_H */
v5.4
   1/* SPDX-License-Identifier: GPL-2.0 */
   2#ifndef _FS_CEPH_SUPER_H
   3#define _FS_CEPH_SUPER_H
   4
   5#include <linux/ceph/ceph_debug.h>
   6
   7#include <asm/unaligned.h>
   8#include <linux/backing-dev.h>
   9#include <linux/completion.h>
  10#include <linux/exportfs.h>
  11#include <linux/fs.h>
  12#include <linux/mempool.h>
  13#include <linux/pagemap.h>
  14#include <linux/wait.h>
  15#include <linux/writeback.h>
  16#include <linux/slab.h>
  17#include <linux/posix_acl.h>
  18#include <linux/refcount.h>
  19#include <linux/security.h>
  20
  21#include <linux/ceph/libceph.h>
  22
  23#ifdef CONFIG_CEPH_FSCACHE
  24#include <linux/fscache.h>
  25#endif
  26
  27/* f_type in struct statfs */
  28#define CEPH_SUPER_MAGIC 0x00c36400
  29
  30/* large granularity for statfs utilization stats to facilitate
  31 * large volume sizes on 32-bit machines. */
  32#define CEPH_BLOCK_SHIFT   22  /* 4 MB */
  33#define CEPH_BLOCK         (1 << CEPH_BLOCK_SHIFT)
  34
  35#define CEPH_MOUNT_OPT_CLEANRECOVER    (1<<1) /* auto reonnect (clean mode) after blacklisted */
  36#define CEPH_MOUNT_OPT_DIRSTAT         (1<<4) /* `cat dirname` for stats */
  37#define CEPH_MOUNT_OPT_RBYTES          (1<<5) /* dir st_bytes = rbytes */
  38#define CEPH_MOUNT_OPT_NOASYNCREADDIR  (1<<7) /* no dcache readdir */
  39#define CEPH_MOUNT_OPT_INO32           (1<<8) /* 32 bit inos */
  40#define CEPH_MOUNT_OPT_DCACHE          (1<<9) /* use dcache for readdir etc */
  41#define CEPH_MOUNT_OPT_FSCACHE         (1<<10) /* use fscache */
  42#define CEPH_MOUNT_OPT_NOPOOLPERM      (1<<11) /* no pool permission check */
  43#define CEPH_MOUNT_OPT_MOUNTWAIT       (1<<12) /* mount waits if no mds is up */
  44#define CEPH_MOUNT_OPT_NOQUOTADF       (1<<13) /* no root dir quota in statfs */
  45#define CEPH_MOUNT_OPT_NOCOPYFROM      (1<<14) /* don't use RADOS 'copy-from' op */
  46
  47#define CEPH_MOUNT_OPT_DEFAULT			\
  48	(CEPH_MOUNT_OPT_DCACHE |		\
  49	 CEPH_MOUNT_OPT_NOCOPYFROM)
  50
  51#define ceph_set_mount_opt(fsc, opt) \
  52	(fsc)->mount_options->flags |= CEPH_MOUNT_OPT_##opt;
  53#define ceph_test_mount_opt(fsc, opt) \
  54	(!!((fsc)->mount_options->flags & CEPH_MOUNT_OPT_##opt))
  55
  56/* max size of osd read request, limited by libceph */
  57#define CEPH_MAX_READ_SIZE              CEPH_MSG_MAX_DATA_LEN
  58/* osd has a configurable limitaion of max write size.
  59 * CEPH_MSG_MAX_DATA_LEN should be small enough. */
  60#define CEPH_MAX_WRITE_SIZE		CEPH_MSG_MAX_DATA_LEN
  61#define CEPH_RASIZE_DEFAULT             (8192*1024)    /* max readahead */
  62#define CEPH_MAX_READDIR_DEFAULT        1024
  63#define CEPH_MAX_READDIR_BYTES_DEFAULT  (512*1024)
  64#define CEPH_SNAPDIRNAME_DEFAULT        ".snap"
  65
  66/*
  67 * Delay telling the MDS we no longer want caps, in case we reopen
  68 * the file.  Delay a minimum amount of time, even if we send a cap
  69 * message for some other reason.  Otherwise, take the oppotunity to
  70 * update the mds to avoid sending another message later.
  71 */
  72#define CEPH_CAPS_WANTED_DELAY_MIN_DEFAULT      5  /* cap release delay */
  73#define CEPH_CAPS_WANTED_DELAY_MAX_DEFAULT     60  /* cap release delay */
  74
  75struct ceph_mount_options {
  76	int flags;
  77	int sb_flags;
  78
  79	int wsize;            /* max write size */
  80	int rsize;            /* max read size */
  81	int rasize;           /* max readahead */
  82	int congestion_kb;    /* max writeback in flight */
  83	int caps_wanted_delay_min, caps_wanted_delay_max;
  84	int caps_max;
  85	int max_readdir;       /* max readdir result (entires) */
  86	int max_readdir_bytes; /* max readdir result (bytes) */
  87
  88	/*
  89	 * everything above this point can be memcmp'd; everything below
  90	 * is handled in compare_mount_options()
  91	 */
  92
  93	char *snapdir_name;   /* default ".snap" */
  94	char *mds_namespace;  /* default NULL */
  95	char *server_path;    /* default  "/" */
  96	char *fscache_uniq;   /* default NULL */
  97};
  98
  99struct ceph_fs_client {
 100	struct super_block *sb;
 101
 102	struct ceph_mount_options *mount_options;
 103	struct ceph_client *client;
 104
 105	unsigned long mount_state;
 106
 107	unsigned long last_auto_reconnect;
 108	bool blacklisted;
 109
 110	u32 filp_gen;
 111	loff_t max_file_size;
 112
 113	struct ceph_mds_client *mdsc;
 114
 115	/* writeback */
 116	mempool_t *wb_pagevec_pool;
 
 
 
 117	atomic_long_t writeback_count;
 118
 119	struct workqueue_struct *inode_wq;
 120	struct workqueue_struct *cap_wq;
 121
 122#ifdef CONFIG_DEBUG_FS
 123	struct dentry *debugfs_dentry_lru, *debugfs_caps;
 124	struct dentry *debugfs_congestion_kb;
 125	struct dentry *debugfs_bdi;
 126	struct dentry *debugfs_mdsc, *debugfs_mdsmap;
 127	struct dentry *debugfs_mds_sessions;
 128#endif
 129
 130#ifdef CONFIG_CEPH_FSCACHE
 131	struct fscache_cookie *fscache;
 
 132#endif
 133};
 134
 135
 136/*
 137 * File i/o capability.  This tracks shared state with the metadata
 138 * server that allows us to cache or writeback attributes or to read
 139 * and write data.  For any given inode, we should have one or more
 140 * capabilities, one issued by each metadata server, and our
 141 * cumulative access is the OR of all issued capabilities.
 142 *
 143 * Each cap is referenced by the inode's i_caps rbtree and by per-mds
 144 * session capability lists.
 145 */
 146struct ceph_cap {
 147	struct ceph_inode_info *ci;
 148	struct rb_node ci_node;          /* per-ci cap tree */
 149	struct ceph_mds_session *session;
 150	struct list_head session_caps;   /* per-session caplist */
 
 151	u64 cap_id;       /* unique cap id (mds provided) */
 152	union {
 153		/* in-use caps */
 154		struct {
 155			int issued;       /* latest, from the mds */
 156			int implemented;  /* implemented superset of
 157					     issued (for revocation) */
 158			int mds, mds_wanted;
 159		};
 160		/* caps to release */
 161		struct {
 162			u64 cap_ino;
 163			int queue_release;
 164		};
 165	};
 166	u32 seq, issue_seq, mseq;
 167	u32 cap_gen;      /* active/stale cycle */
 168	unsigned long last_used;
 169	struct list_head caps_item;
 170};
 171
 172#define CHECK_CAPS_NODELAY    1  /* do not delay any further */
 173#define CHECK_CAPS_AUTHONLY   2  /* only check auth cap */
 174#define CHECK_CAPS_FLUSH      4  /* flush any dirty caps */
 175
 176struct ceph_cap_flush {
 177	u64 tid;
 178	int caps; /* 0 means capsnap */
 179	bool wake; /* wake up flush waiters when finish ? */
 180	struct list_head g_list; // global
 181	struct list_head i_list; // per inode
 182};
 183
 184/*
 185 * Snapped cap state that is pending flush to mds.  When a snapshot occurs,
 186 * we first complete any in-process sync writes and writeback any dirty
 187 * data before flushing the snapped state (tracked here) back to the MDS.
 188 */
 189struct ceph_cap_snap {
 190	refcount_t nref;
 191	struct list_head ci_item;
 192
 193	struct ceph_cap_flush cap_flush;
 194
 195	u64 follows;
 196	int issued, dirty;
 197	struct ceph_snap_context *context;
 198
 199	umode_t mode;
 200	kuid_t uid;
 201	kgid_t gid;
 202
 203	struct ceph_buffer *xattr_blob;
 204	u64 xattr_version;
 205
 206	u64 size;
 207	u64 change_attr;
 208	struct timespec64 mtime, atime, ctime, btime;
 209	u64 time_warp_seq;
 210	u64 truncate_size;
 211	u32 truncate_seq;
 212	int writing;   /* a sync write is still in progress */
 213	int dirty_pages;     /* dirty pages awaiting writeback */
 214	bool inline_data;
 215	bool need_flush;
 216};
 217
 218static inline void ceph_put_cap_snap(struct ceph_cap_snap *capsnap)
 219{
 220	if (refcount_dec_and_test(&capsnap->nref)) {
 221		if (capsnap->xattr_blob)
 222			ceph_buffer_put(capsnap->xattr_blob);
 223		kfree(capsnap);
 224	}
 225}
 226
 227/*
 228 * The frag tree describes how a directory is fragmented, potentially across
 229 * multiple metadata servers.  It is also used to indicate points where
 230 * metadata authority is delegated, and whether/where metadata is replicated.
 231 *
 232 * A _leaf_ frag will be present in the i_fragtree IFF there is
 233 * delegation info.  That is, if mds >= 0 || ndist > 0.
 234 */
 235#define CEPH_MAX_DIRFRAG_REP 4
 236
 237struct ceph_inode_frag {
 238	struct rb_node node;
 239
 240	/* fragtree state */
 241	u32 frag;
 242	int split_by;         /* i.e. 2^(split_by) children */
 243
 244	/* delegation and replication info */
 245	int mds;              /* -1 if same authority as parent */
 246	int ndist;            /* >0 if replicated */
 247	int dist[CEPH_MAX_DIRFRAG_REP];
 248};
 249
 250/*
 251 * We cache inode xattrs as an encoded blob until they are first used,
 252 * at which point we parse them into an rbtree.
 253 */
 254struct ceph_inode_xattr {
 255	struct rb_node node;
 256
 257	const char *name;
 258	int name_len;
 259	const char *val;
 260	int val_len;
 261	int dirty;
 262
 263	int should_free_name;
 264	int should_free_val;
 265};
 266
 267/*
 268 * Ceph dentry state
 269 */
 270struct ceph_dentry_info {
 271	struct dentry *dentry;
 272	struct ceph_mds_session *lease_session;
 273	struct list_head lease_list;
 274	unsigned flags;
 275	int lease_shared_gen;
 276	u32 lease_gen;
 277	u32 lease_seq;
 278	unsigned long lease_renew_after, lease_renew_from;
 279	unsigned long time;
 
 
 280	u64 offset;
 281};
 282
 283#define CEPH_DENTRY_REFERENCED		1
 284#define CEPH_DENTRY_LEASE_LIST		2
 285#define CEPH_DENTRY_SHRINK_LIST		4
 286
 287struct ceph_inode_xattrs_info {
 288	/*
 289	 * (still encoded) xattr blob. we avoid the overhead of parsing
 290	 * this until someone actually calls getxattr, etc.
 291	 *
 292	 * blob->vec.iov_len == 4 implies there are no xattrs; blob ==
 293	 * NULL means we don't know.
 294	*/
 295	struct ceph_buffer *blob, *prealloc_blob;
 296
 297	struct rb_root index;
 298	bool dirty;
 299	int count;
 300	int names_size;
 301	int vals_size;
 302	u64 version, index_version;
 303};
 304
 305/*
 306 * Ceph inode.
 307 */
 308struct ceph_inode_info {
 309	struct ceph_vino i_vino;   /* ceph ino + snap */
 310
 311	spinlock_t i_ceph_lock;
 312
 313	u64 i_version;
 314	u64 i_inline_version;
 315	u32 i_time_warp_seq;
 316
 317	unsigned i_ceph_flags;
 318	atomic64_t i_release_count;
 319	atomic64_t i_ordered_count;
 320	atomic64_t i_complete_seq[2];
 321
 322	struct ceph_dir_layout i_dir_layout;
 323	struct ceph_file_layout i_layout;
 324	char *i_symlink;
 325
 326	/* for dirs */
 327	struct timespec64 i_rctime;
 328	u64 i_rbytes, i_rfiles, i_rsubdirs;
 329	u64 i_files, i_subdirs;
 330
 331	/* quotas */
 332	u64 i_max_bytes, i_max_files;
 333
 334	s32 i_dir_pin;
 335
 336	struct rb_root i_fragtree;
 337	int i_fragtree_nsplits;
 338	struct mutex i_fragtree_mutex;
 339
 340	struct ceph_inode_xattrs_info i_xattrs;
 341
 342	/* capabilities.  protected _both_ by i_ceph_lock and cap->session's
 343	 * s_mutex. */
 344	struct rb_root i_caps;           /* cap list */
 345	struct ceph_cap *i_auth_cap;     /* authoritative cap, if any */
 346	unsigned i_dirty_caps, i_flushing_caps;     /* mask of dirtied fields */
 347	struct list_head i_dirty_item, i_flushing_item;
 
 348	/* we need to track cap writeback on a per-cap-bit basis, to allow
 349	 * overlapping, pipelined cap flushes to the mds.  we can probably
 350	 * reduce the tid to 8 bits if we're concerned about inode size. */
 351	struct ceph_cap_flush *i_prealloc_cap_flush;
 352	struct list_head i_cap_flush_list;
 353	wait_queue_head_t i_cap_wq;      /* threads waiting on a capability */
 354	unsigned long i_hold_caps_min; /* jiffies */
 355	unsigned long i_hold_caps_max; /* jiffies */
 356	struct list_head i_cap_delay_list;  /* for delayed cap release to mds */
 357	struct ceph_cap_reservation i_cap_migration_resv;
 358	struct list_head i_cap_snaps;   /* snapped state pending flush to mds */
 359	struct ceph_snap_context *i_head_snapc;  /* set if wr_buffer_head > 0 or
 360						    dirty|flushing caps */
 361	unsigned i_snap_caps;           /* cap bits for snapped files */
 
 362
 363	int i_nr_by_mode[CEPH_FILE_MODE_BITS];  /* open file counts */
 364
 365	struct mutex i_truncate_mutex;
 366	u32 i_truncate_seq;        /* last truncate to smaller size */
 367	u64 i_truncate_size;       /*  and the size we last truncated down to */
 368	int i_truncate_pending;    /*  still need to call vmtruncate */
 369
 370	u64 i_max_size;            /* max file size authorized by mds */
 371	u64 i_reported_size; /* (max_)size reported to or requested of mds */
 372	u64 i_wanted_max_size;     /* offset we'd like to write too */
 373	u64 i_requested_max_size;  /* max_size we've requested */
 374
 375	/* held references to caps */
 376	int i_pin_ref;
 377	int i_rd_ref, i_rdcache_ref, i_wr_ref, i_wb_ref;
 378	int i_wrbuffer_ref, i_wrbuffer_ref_head;
 379	atomic_t i_filelock_ref;
 380	atomic_t i_shared_gen;       /* increment each time we get FILE_SHARED */
 381	u32 i_rdcache_gen;      /* incremented each time we get FILE_CACHE. */
 382	u32 i_rdcache_revoking; /* RDCACHE gen to async invalidate, if any */
 383
 
 384	struct list_head i_unsafe_dirops; /* uncommitted mds dir ops */
 385	struct list_head i_unsafe_iops;   /* uncommitted mds inode ops */
 386	spinlock_t i_unsafe_lock;
 387
 388	union {
 389		struct ceph_snap_realm *i_snap_realm; /* snap realm (if caps) */
 390		struct ceph_snapid_map *i_snapid_map; /* snapid -> dev_t */
 391	};
 392	int i_snap_realm_counter; /* snap realm (if caps) */
 393	struct list_head i_snap_realm_item;
 394	struct list_head i_snap_flush_item;
 395	struct timespec64 i_btime;
 396	struct timespec64 i_snap_btime;
 397
 398	struct work_struct i_work;
 399	unsigned long  i_work_mask;
 
 
 400
 401#ifdef CONFIG_CEPH_FSCACHE
 402	struct fscache_cookie *fscache;
 403	u32 i_fscache_gen;
 
 404#endif
 405	errseq_t i_meta_err;
 406
 407	struct inode vfs_inode; /* at end */
 408};
 409
 410static inline struct ceph_inode_info *ceph_inode(struct inode *inode)
 411{
 412	return container_of(inode, struct ceph_inode_info, vfs_inode);
 413}
 414
 415static inline struct ceph_fs_client *ceph_inode_to_client(struct inode *inode)
 416{
 417	return (struct ceph_fs_client *)inode->i_sb->s_fs_info;
 418}
 419
 420static inline struct ceph_fs_client *ceph_sb_to_client(struct super_block *sb)
 421{
 422	return (struct ceph_fs_client *)sb->s_fs_info;
 423}
 424
 425static inline struct ceph_vino ceph_vino(struct inode *inode)
 426{
 427	return ceph_inode(inode)->i_vino;
 428}
 429
 430/*
 431 * ino_t is <64 bits on many architectures, blech.
 432 *
 433 *               i_ino (kernel inode)   st_ino (userspace)
 434 * i386          32                     32
 435 * x86_64+ino32  64                     32
 436 * x86_64        64                     64
 437 */
 438static inline u32 ceph_ino_to_ino32(__u64 vino)
 439{
 440	u32 ino = vino & 0xffffffff;
 441	ino ^= vino >> 32;
 442	if (!ino)
 443		ino = 2;
 444	return ino;
 445}
 446
 447/*
 448 * kernel i_ino value
 449 */
 450static inline ino_t ceph_vino_to_ino(struct ceph_vino vino)
 451{
 452#if BITS_PER_LONG == 32
 453	return ceph_ino_to_ino32(vino.ino);
 454#else
 455	return (ino_t)vino.ino;
 456#endif
 457}
 458
 459/*
 460 * user-visible ino (stat, filldir)
 461 */
 462#if BITS_PER_LONG == 32
 463static inline ino_t ceph_translate_ino(struct super_block *sb, ino_t ino)
 464{
 465	return ino;
 466}
 467#else
 468static inline ino_t ceph_translate_ino(struct super_block *sb, ino_t ino)
 469{
 470	if (ceph_test_mount_opt(ceph_sb_to_client(sb), INO32))
 471		ino = ceph_ino_to_ino32(ino);
 472	return ino;
 473}
 474#endif
 475
 476
 477/* for printf-style formatting */
 478#define ceph_vinop(i) ceph_inode(i)->i_vino.ino, ceph_inode(i)->i_vino.snap
 479
 480static inline u64 ceph_ino(struct inode *inode)
 481{
 482	return ceph_inode(inode)->i_vino.ino;
 483}
 484static inline u64 ceph_snap(struct inode *inode)
 485{
 486	return ceph_inode(inode)->i_vino.snap;
 487}
 488
 489static inline int ceph_ino_compare(struct inode *inode, void *data)
 490{
 491	struct ceph_vino *pvino = (struct ceph_vino *)data;
 492	struct ceph_inode_info *ci = ceph_inode(inode);
 493	return ci->i_vino.ino == pvino->ino &&
 494		ci->i_vino.snap == pvino->snap;
 495}
 496
 497static inline struct inode *ceph_find_inode(struct super_block *sb,
 498					    struct ceph_vino vino)
 499{
 500	ino_t t = ceph_vino_to_ino(vino);
 501	return ilookup5(sb, t, ceph_ino_compare, &vino);
 502}
 503
 504
 505/*
 506 * Ceph inode.
 507 */
 508#define CEPH_I_DIR_ORDERED	(1 << 0)  /* dentries in dir are ordered */
 509#define CEPH_I_NODELAY		(1 << 1)  /* do not delay cap release */
 510#define CEPH_I_FLUSH		(1 << 2)  /* do not delay flush of dirty metadata */
 511#define CEPH_I_POOL_PERM	(1 << 3)  /* pool rd/wr bits are valid */
 512#define CEPH_I_POOL_RD		(1 << 4)  /* can read from pool */
 513#define CEPH_I_POOL_WR		(1 << 5)  /* can write to pool */
 514#define CEPH_I_SEC_INITED	(1 << 6)  /* security initialized */
 515#define CEPH_I_CAP_DROPPED	(1 << 7)  /* caps were forcibly dropped */
 516#define CEPH_I_KICK_FLUSH	(1 << 8)  /* kick flushing caps */
 517#define CEPH_I_FLUSH_SNAPS	(1 << 9)  /* need flush snapss */
 518#define CEPH_I_ERROR_WRITE	(1 << 10) /* have seen write errors */
 519#define CEPH_I_ERROR_FILELOCK	(1 << 11) /* have seen file lock errors */
 520#define CEPH_I_ODIRECT		(1 << 12) /* inode in direct I/O mode */
 521
 522/*
 523 * Masks of ceph inode work.
 524 */
 525#define CEPH_I_WORK_WRITEBACK		0 /* writeback */
 526#define CEPH_I_WORK_INVALIDATE_PAGES	1 /* invalidate pages */
 527#define CEPH_I_WORK_VMTRUNCATE		2 /* vmtruncate */
 528
 529/*
 530 * We set the ERROR_WRITE bit when we start seeing write errors on an inode
 531 * and then clear it when they start succeeding. Note that we do a lockless
 532 * check first, and only take the lock if it looks like it needs to be changed.
 533 * The write submission code just takes this as a hint, so we're not too
 534 * worried if a few slip through in either direction.
 535 */
 536static inline void ceph_set_error_write(struct ceph_inode_info *ci)
 537{
 538	if (!(READ_ONCE(ci->i_ceph_flags) & CEPH_I_ERROR_WRITE)) {
 539		spin_lock(&ci->i_ceph_lock);
 540		ci->i_ceph_flags |= CEPH_I_ERROR_WRITE;
 541		spin_unlock(&ci->i_ceph_lock);
 542	}
 543}
 544
 545static inline void ceph_clear_error_write(struct ceph_inode_info *ci)
 546{
 547	if (READ_ONCE(ci->i_ceph_flags) & CEPH_I_ERROR_WRITE) {
 548		spin_lock(&ci->i_ceph_lock);
 549		ci->i_ceph_flags &= ~CEPH_I_ERROR_WRITE;
 550		spin_unlock(&ci->i_ceph_lock);
 551	}
 552}
 553
 554static inline void __ceph_dir_set_complete(struct ceph_inode_info *ci,
 555					   long long release_count,
 556					   long long ordered_count)
 557{
 558	/*
 559	 * Makes sure operations that setup readdir cache (update page
 560	 * cache and i_size) are strongly ordered w.r.t. the following
 561	 * atomic64_set() operations.
 562	 */
 563	smp_mb();
 564	atomic64_set(&ci->i_complete_seq[0], release_count);
 565	atomic64_set(&ci->i_complete_seq[1], ordered_count);
 566}
 567
 568static inline void __ceph_dir_clear_complete(struct ceph_inode_info *ci)
 569{
 570	atomic64_inc(&ci->i_release_count);
 571}
 572
 573static inline void __ceph_dir_clear_ordered(struct ceph_inode_info *ci)
 574{
 575	atomic64_inc(&ci->i_ordered_count);
 576}
 577
 578static inline bool __ceph_dir_is_complete(struct ceph_inode_info *ci)
 579{
 580	return atomic64_read(&ci->i_complete_seq[0]) ==
 581		atomic64_read(&ci->i_release_count);
 582}
 583
 584static inline bool __ceph_dir_is_complete_ordered(struct ceph_inode_info *ci)
 585{
 586	return  atomic64_read(&ci->i_complete_seq[0]) ==
 587		atomic64_read(&ci->i_release_count) &&
 588		atomic64_read(&ci->i_complete_seq[1]) ==
 589		atomic64_read(&ci->i_ordered_count);
 590}
 591
 592static inline void ceph_dir_clear_complete(struct inode *inode)
 593{
 594	__ceph_dir_clear_complete(ceph_inode(inode));
 595}
 596
 597static inline void ceph_dir_clear_ordered(struct inode *inode)
 598{
 599	__ceph_dir_clear_ordered(ceph_inode(inode));
 600}
 601
 602static inline bool ceph_dir_is_complete_ordered(struct inode *inode)
 603{
 604	bool ret = __ceph_dir_is_complete_ordered(ceph_inode(inode));
 605	smp_rmb();
 606	return ret;
 607}
 608
 609/* find a specific frag @f */
 610extern struct ceph_inode_frag *__ceph_find_frag(struct ceph_inode_info *ci,
 611						u32 f);
 612
 613/*
 614 * choose fragment for value @v.  copy frag content to pfrag, if leaf
 615 * exists
 616 */
 617extern u32 ceph_choose_frag(struct ceph_inode_info *ci, u32 v,
 618			    struct ceph_inode_frag *pfrag,
 619			    int *found);
 620
 621static inline struct ceph_dentry_info *ceph_dentry(const struct dentry *dentry)
 622{
 623	return (struct ceph_dentry_info *)dentry->d_fsdata;
 624}
 625
 
 
 
 
 
 626/*
 627 * caps helpers
 628 */
 629static inline bool __ceph_is_any_real_caps(struct ceph_inode_info *ci)
 630{
 631	return !RB_EMPTY_ROOT(&ci->i_caps);
 632}
 633
 634extern int __ceph_caps_issued(struct ceph_inode_info *ci, int *implemented);
 635extern int __ceph_caps_issued_mask(struct ceph_inode_info *ci, int mask, int t);
 636extern int __ceph_caps_issued_other(struct ceph_inode_info *ci,
 637				    struct ceph_cap *cap);
 638
 639static inline int ceph_caps_issued(struct ceph_inode_info *ci)
 640{
 641	int issued;
 642	spin_lock(&ci->i_ceph_lock);
 643	issued = __ceph_caps_issued(ci, NULL);
 644	spin_unlock(&ci->i_ceph_lock);
 645	return issued;
 646}
 647
 648static inline int ceph_caps_issued_mask(struct ceph_inode_info *ci, int mask,
 649					int touch)
 650{
 651	int r;
 652	spin_lock(&ci->i_ceph_lock);
 653	r = __ceph_caps_issued_mask(ci, mask, touch);
 654	spin_unlock(&ci->i_ceph_lock);
 655	return r;
 656}
 657
 658static inline int __ceph_caps_dirty(struct ceph_inode_info *ci)
 659{
 660	return ci->i_dirty_caps | ci->i_flushing_caps;
 661}
 662extern struct ceph_cap_flush *ceph_alloc_cap_flush(void);
 663extern void ceph_free_cap_flush(struct ceph_cap_flush *cf);
 664extern int __ceph_mark_dirty_caps(struct ceph_inode_info *ci, int mask,
 665				  struct ceph_cap_flush **pcf);
 666
 667extern int __ceph_caps_revoking_other(struct ceph_inode_info *ci,
 668				      struct ceph_cap *ocap, int mask);
 669extern int ceph_caps_revoking(struct ceph_inode_info *ci, int mask);
 670extern int __ceph_caps_used(struct ceph_inode_info *ci);
 671
 672extern int __ceph_caps_file_wanted(struct ceph_inode_info *ci);
 673
 674/*
 675 * wanted, by virtue of open file modes AND cap refs (buffered/cached data)
 676 */
 677static inline int __ceph_caps_wanted(struct ceph_inode_info *ci)
 678{
 679	int w = __ceph_caps_file_wanted(ci) | __ceph_caps_used(ci);
 680	if (w & CEPH_CAP_FILE_BUFFER)
 681		w |= CEPH_CAP_FILE_EXCL;  /* we want EXCL if dirty data */
 682	return w;
 683}
 684
 685/* what the mds thinks we want */
 686extern int __ceph_caps_mds_wanted(struct ceph_inode_info *ci, bool check);
 687
 688extern void ceph_caps_init(struct ceph_mds_client *mdsc);
 689extern void ceph_caps_finalize(struct ceph_mds_client *mdsc);
 690extern void ceph_adjust_caps_max_min(struct ceph_mds_client *mdsc,
 691				     struct ceph_mount_options *fsopt);
 692extern int ceph_reserve_caps(struct ceph_mds_client *mdsc,
 693			     struct ceph_cap_reservation *ctx, int need);
 694extern void ceph_unreserve_caps(struct ceph_mds_client *mdsc,
 695			       struct ceph_cap_reservation *ctx);
 696extern void ceph_reservation_status(struct ceph_fs_client *client,
 697				    int *total, int *avail, int *used,
 698				    int *reserved, int *min);
 699
 700
 701
 702/*
 703 * we keep buffered readdir results attached to file->private_data
 704 */
 705#define CEPH_F_SYNC     1
 706#define CEPH_F_ATEND    2
 707
 708struct ceph_file_info {
 709	short fmode;     /* initialized on open */
 710	short flags;     /* CEPH_F_* */
 711
 712	spinlock_t rw_contexts_lock;
 713	struct list_head rw_contexts;
 714
 715	errseq_t meta_err;
 716	u32 filp_gen;
 717	atomic_t num_locks;
 718};
 719
 720struct ceph_dir_file_info {
 721	struct ceph_file_info file_info;
 722
 723	/* readdir: position within the dir */
 724	u32 frag;
 725	struct ceph_mds_request *last_readdir;
 726
 727	/* readdir: position within a frag */
 
 728	unsigned next_offset;  /* offset of next chunk (last_name's + 1) */
 729	char *last_name;       /* last entry in previous chunk */
 730	long long dir_release_count;
 731	long long dir_ordered_count;
 732	int readdir_cache_idx;
 733
 734	/* used for -o dirstat read() on directory thing */
 735	char *dir_info;
 736	int dir_info_len;
 737};
 738
 739struct ceph_rw_context {
 740	struct list_head list;
 741	struct task_struct *thread;
 742	int caps;
 743};
 744
 745#define CEPH_DEFINE_RW_CONTEXT(_name, _caps)	\
 746	struct ceph_rw_context _name = {	\
 747		.thread = current,		\
 748		.caps = _caps,			\
 749	}
 750
 751static inline void ceph_add_rw_context(struct ceph_file_info *cf,
 752				       struct ceph_rw_context *ctx)
 753{
 754	spin_lock(&cf->rw_contexts_lock);
 755	list_add(&ctx->list, &cf->rw_contexts);
 756	spin_unlock(&cf->rw_contexts_lock);
 757}
 758
 759static inline void ceph_del_rw_context(struct ceph_file_info *cf,
 760				       struct ceph_rw_context *ctx)
 761{
 762	spin_lock(&cf->rw_contexts_lock);
 763	list_del(&ctx->list);
 764	spin_unlock(&cf->rw_contexts_lock);
 765}
 766
 767static inline struct ceph_rw_context*
 768ceph_find_rw_context(struct ceph_file_info *cf)
 769{
 770	struct ceph_rw_context *ctx, *found = NULL;
 771	spin_lock(&cf->rw_contexts_lock);
 772	list_for_each_entry(ctx, &cf->rw_contexts, list) {
 773		if (ctx->thread == current) {
 774			found = ctx;
 775			break;
 776		}
 777	}
 778	spin_unlock(&cf->rw_contexts_lock);
 779	return found;
 780}
 781
 782struct ceph_readdir_cache_control {
 783	struct page  *page;
 784	struct dentry **dentries;
 785	int index;
 786};
 787
 788/*
 789 * A "snap realm" describes a subset of the file hierarchy sharing
 790 * the same set of snapshots that apply to it.  The realms themselves
 791 * are organized into a hierarchy, such that children inherit (some of)
 792 * the snapshots of their parents.
 793 *
 794 * All inodes within the realm that have capabilities are linked into a
 795 * per-realm list.
 796 */
 797struct ceph_snap_realm {
 798	u64 ino;
 799	struct inode *inode;
 800	atomic_t nref;
 801	struct rb_node node;
 802
 803	u64 created, seq;
 804	u64 parent_ino;
 805	u64 parent_since;   /* snapid when our current parent became so */
 806
 807	u64 *prior_parent_snaps;      /* snaps inherited from any parents we */
 808	u32 num_prior_parent_snaps;   /*  had prior to parent_since */
 809	u64 *snaps;                   /* snaps specific to this realm */
 810	u32 num_snaps;
 811
 812	struct ceph_snap_realm *parent;
 813	struct list_head children;       /* list of child realms */
 814	struct list_head child_item;
 815
 816	struct list_head empty_item;     /* if i have ref==0 */
 817
 818	struct list_head dirty_item;     /* if realm needs new context */
 819
 820	/* the current set of snaps for this realm */
 821	struct ceph_snap_context *cached_context;
 822
 823	struct list_head inodes_with_caps;
 824	spinlock_t inodes_with_caps_lock;
 825};
 826
 827static inline int default_congestion_kb(void)
 828{
 829	int congestion_kb;
 830
 831	/*
 832	 * Copied from NFS
 833	 *
 834	 * congestion size, scale with available memory.
 835	 *
 836	 *  64MB:    8192k
 837	 * 128MB:   11585k
 838	 * 256MB:   16384k
 839	 * 512MB:   23170k
 840	 *   1GB:   32768k
 841	 *   2GB:   46340k
 842	 *   4GB:   65536k
 843	 *   8GB:   92681k
 844	 *  16GB:  131072k
 845	 *
 846	 * This allows larger machines to have larger/more transfers.
 847	 * Limit the default to 256M
 848	 */
 849	congestion_kb = (16*int_sqrt(totalram_pages())) << (PAGE_SHIFT-10);
 850	if (congestion_kb > 256*1024)
 851		congestion_kb = 256*1024;
 852
 853	return congestion_kb;
 854}
 855
 856
 857/* super.c */
 858extern int ceph_force_reconnect(struct super_block *sb);
 859/* snap.c */
 860struct ceph_snap_realm *ceph_lookup_snap_realm(struct ceph_mds_client *mdsc,
 861					       u64 ino);
 862extern void ceph_get_snap_realm(struct ceph_mds_client *mdsc,
 863				struct ceph_snap_realm *realm);
 864extern void ceph_put_snap_realm(struct ceph_mds_client *mdsc,
 865				struct ceph_snap_realm *realm);
 866extern int ceph_update_snap_trace(struct ceph_mds_client *m,
 867				  void *p, void *e, bool deletion,
 868				  struct ceph_snap_realm **realm_ret);
 869extern void ceph_handle_snap(struct ceph_mds_client *mdsc,
 870			     struct ceph_mds_session *session,
 871			     struct ceph_msg *msg);
 872extern void ceph_queue_cap_snap(struct ceph_inode_info *ci);
 873extern int __ceph_finish_cap_snap(struct ceph_inode_info *ci,
 874				  struct ceph_cap_snap *capsnap);
 875extern void ceph_cleanup_empty_realms(struct ceph_mds_client *mdsc);
 876
 877extern struct ceph_snapid_map *ceph_get_snapid_map(struct ceph_mds_client *mdsc,
 878						   u64 snap);
 879extern void ceph_put_snapid_map(struct ceph_mds_client* mdsc,
 880				struct ceph_snapid_map *sm);
 881extern void ceph_trim_snapid_map(struct ceph_mds_client *mdsc);
 882extern void ceph_cleanup_snapid_map(struct ceph_mds_client *mdsc);
 883
 884
 885/*
 886 * a cap_snap is "pending" if it is still awaiting an in-progress
 887 * sync write (that may/may not still update size, mtime, etc.).
 888 */
 889static inline bool __ceph_have_pending_cap_snap(struct ceph_inode_info *ci)
 890{
 891	return !list_empty(&ci->i_cap_snaps) &&
 892	       list_last_entry(&ci->i_cap_snaps, struct ceph_cap_snap,
 893			       ci_item)->writing;
 894}
 895
 896/* inode.c */
 897extern const struct inode_operations ceph_file_iops;
 898
 899extern struct inode *ceph_alloc_inode(struct super_block *sb);
 900extern void ceph_evict_inode(struct inode *inode);
 901extern void ceph_free_inode(struct inode *inode);
 902
 903extern struct inode *ceph_get_inode(struct super_block *sb,
 904				    struct ceph_vino vino);
 905extern struct inode *ceph_get_snapdir(struct inode *parent);
 906extern int ceph_fill_file_size(struct inode *inode, int issued,
 907			       u32 truncate_seq, u64 truncate_size, u64 size);
 908extern void ceph_fill_file_time(struct inode *inode, int issued,
 909				u64 time_warp_seq, struct timespec64 *ctime,
 910				struct timespec64 *mtime,
 911				struct timespec64 *atime);
 912extern int ceph_fill_trace(struct super_block *sb,
 913			   struct ceph_mds_request *req);
 
 914extern int ceph_readdir_prepopulate(struct ceph_mds_request *req,
 915				    struct ceph_mds_session *session);
 916
 917extern int ceph_inode_holds_cap(struct inode *inode, int mask);
 918
 919extern bool ceph_inode_set_size(struct inode *inode, loff_t size);
 920extern void __ceph_do_pending_vmtruncate(struct inode *inode);
 921extern void ceph_queue_vmtruncate(struct inode *inode);
 
 922extern void ceph_queue_invalidate(struct inode *inode);
 923extern void ceph_queue_writeback(struct inode *inode);
 924extern void ceph_async_iput(struct inode *inode);
 925
 926extern int __ceph_do_getattr(struct inode *inode, struct page *locked_page,
 927			     int mask, bool force);
 928static inline int ceph_do_getattr(struct inode *inode, int mask, bool force)
 929{
 930	return __ceph_do_getattr(inode, NULL, mask, force);
 931}
 932extern int ceph_permission(struct inode *inode, int mask);
 933extern int __ceph_setattr(struct inode *inode, struct iattr *attr);
 934extern int ceph_setattr(struct dentry *dentry, struct iattr *attr);
 935extern int ceph_getattr(const struct path *path, struct kstat *stat,
 936			u32 request_mask, unsigned int flags);
 937
 938/* xattr.c */
 939int __ceph_setxattr(struct inode *, const char *, const void *, size_t, int);
 
 
 940ssize_t __ceph_getxattr(struct inode *, const char *, void *, size_t);
 
 
 941extern ssize_t ceph_listxattr(struct dentry *, char *, size_t);
 942extern struct ceph_buffer *__ceph_build_xattrs_blob(struct ceph_inode_info *ci);
 
 943extern void __ceph_destroy_xattrs(struct ceph_inode_info *ci);
 
 
 
 
 944extern const struct xattr_handler *ceph_xattr_handlers[];
 945
 946struct ceph_acl_sec_ctx {
 947#ifdef CONFIG_CEPH_FS_POSIX_ACL
 948	void *default_acl;
 949	void *acl;
 950#endif
 951#ifdef CONFIG_CEPH_FS_SECURITY_LABEL
 952	void *sec_ctx;
 953	u32 sec_ctxlen;
 954#endif
 955	struct ceph_pagelist *pagelist;
 956};
 957
 958#ifdef CONFIG_SECURITY
 959extern bool ceph_security_xattr_deadlock(struct inode *in);
 960extern bool ceph_security_xattr_wanted(struct inode *in);
 961#else
 962static inline bool ceph_security_xattr_deadlock(struct inode *in)
 963{
 964	return false;
 965}
 966static inline bool ceph_security_xattr_wanted(struct inode *in)
 967{
 968	return false;
 969}
 970#endif
 971
 972#ifdef CONFIG_CEPH_FS_SECURITY_LABEL
 973extern int ceph_security_init_secctx(struct dentry *dentry, umode_t mode,
 974				     struct ceph_acl_sec_ctx *ctx);
 975static inline void ceph_security_invalidate_secctx(struct inode *inode)
 976{
 977	security_inode_invalidate_secctx(inode);
 978}
 979#else
 980static inline int ceph_security_init_secctx(struct dentry *dentry, umode_t mode,
 981					    struct ceph_acl_sec_ctx *ctx)
 982{
 983	return 0;
 984}
 985static inline void ceph_security_invalidate_secctx(struct inode *inode)
 986{
 987}
 988#endif
 989
 990void ceph_release_acl_sec_ctx(struct ceph_acl_sec_ctx *as_ctx);
 991
 992/* acl.c */
 993#ifdef CONFIG_CEPH_FS_POSIX_ACL
 994
 995struct posix_acl *ceph_get_acl(struct inode *, int);
 996int ceph_set_acl(struct inode *inode, struct posix_acl *acl, int type);
 997int ceph_pre_init_acls(struct inode *dir, umode_t *mode,
 998		       struct ceph_acl_sec_ctx *as_ctx);
 999void ceph_init_inode_acls(struct inode *inode,
1000			  struct ceph_acl_sec_ctx *as_ctx);
1001
1002static inline void ceph_forget_all_cached_acls(struct inode *inode)
1003{
1004       forget_all_cached_acls(inode);
1005}
1006
1007#else
1008
1009#define ceph_get_acl NULL
1010#define ceph_set_acl NULL
1011
1012static inline int ceph_pre_init_acls(struct inode *dir, umode_t *mode,
1013				     struct ceph_acl_sec_ctx *as_ctx)
1014{
1015	return 0;
1016}
1017static inline void ceph_init_inode_acls(struct inode *inode,
1018					struct ceph_acl_sec_ctx *as_ctx)
1019{
1020}
1021static inline int ceph_acl_chmod(struct dentry *dentry, struct inode *inode)
1022{
1023	return 0;
1024}
1025
1026static inline void ceph_forget_all_cached_acls(struct inode *inode)
1027{
1028}
1029
1030#endif
1031
1032/* caps.c */
1033extern const char *ceph_cap_string(int c);
1034extern void ceph_handle_caps(struct ceph_mds_session *session,
1035			     struct ceph_msg *msg);
1036extern struct ceph_cap *ceph_get_cap(struct ceph_mds_client *mdsc,
1037				     struct ceph_cap_reservation *ctx);
1038extern void ceph_add_cap(struct inode *inode,
1039			 struct ceph_mds_session *session, u64 cap_id,
1040			 int fmode, unsigned issued, unsigned wanted,
1041			 unsigned cap, unsigned seq, u64 realmino, int flags,
1042			 struct ceph_cap **new_cap);
1043extern void __ceph_remove_cap(struct ceph_cap *cap, bool queue_release);
1044extern void __ceph_remove_caps(struct ceph_inode_info *ci);
1045extern void ceph_put_cap(struct ceph_mds_client *mdsc,
1046			 struct ceph_cap *cap);
1047extern int ceph_is_any_caps(struct inode *inode);
1048
 
 
 
1049extern int ceph_write_inode(struct inode *inode, struct writeback_control *wbc);
1050extern int ceph_fsync(struct file *file, loff_t start, loff_t end,
1051		      int datasync);
1052extern void ceph_early_kick_flushing_caps(struct ceph_mds_client *mdsc,
1053					  struct ceph_mds_session *session);
1054extern void ceph_kick_flushing_caps(struct ceph_mds_client *mdsc,
1055				    struct ceph_mds_session *session);
1056extern struct ceph_cap *ceph_get_cap_for_mds(struct ceph_inode_info *ci,
1057					     int mds);
 
1058extern void ceph_get_cap_refs(struct ceph_inode_info *ci, int caps);
1059extern void ceph_put_cap_refs(struct ceph_inode_info *ci, int had);
1060extern void ceph_put_wrbuffer_cap_refs(struct ceph_inode_info *ci, int nr,
1061				       struct ceph_snap_context *snapc);
1062extern void ceph_flush_snaps(struct ceph_inode_info *ci,
1063			     struct ceph_mds_session **psession);
1064extern bool __ceph_should_report_size(struct ceph_inode_info *ci);
1065extern void ceph_check_caps(struct ceph_inode_info *ci, int flags,
1066			    struct ceph_mds_session *session);
1067extern void ceph_check_delayed_caps(struct ceph_mds_client *mdsc);
1068extern void ceph_flush_dirty_caps(struct ceph_mds_client *mdsc);
1069extern int  ceph_drop_caps_for_unlink(struct inode *inode);
1070extern int ceph_encode_inode_release(void **p, struct inode *inode,
1071				     int mds, int drop, int unless, int force);
1072extern int ceph_encode_dentry_release(void **p, struct dentry *dn,
1073				      struct inode *dir,
1074				      int mds, int drop, int unless);
1075
1076extern int ceph_get_caps(struct file *filp, int need, int want,
1077			 loff_t endoff, int *got, struct page **pinned_page);
1078extern int ceph_try_get_caps(struct inode *inode,
1079			     int need, int want, bool nonblock, int *got);
1080
1081/* for counting open files by mode */
1082extern void __ceph_get_fmode(struct ceph_inode_info *ci, int mode);
 
 
 
1083extern void ceph_put_fmode(struct ceph_inode_info *ci, int mode);
1084
1085/* addr.c */
1086extern const struct address_space_operations ceph_aops;
1087extern int ceph_mmap(struct file *file, struct vm_area_struct *vma);
1088extern int ceph_uninline_data(struct file *filp, struct page *locked_page);
1089extern int ceph_pool_perm_check(struct inode *inode, int need);
1090extern void ceph_pool_perm_destroy(struct ceph_mds_client* mdsc);
1091
1092/* file.c */
1093extern const struct file_operations ceph_file_fops;
 
1094
1095extern int ceph_renew_caps(struct inode *inode);
1096extern int ceph_open(struct inode *inode, struct file *file);
1097extern int ceph_atomic_open(struct inode *dir, struct dentry *dentry,
1098			    struct file *file, unsigned flags, umode_t mode);
 
1099extern int ceph_release(struct inode *inode, struct file *filp);
1100extern void ceph_fill_inline_data(struct inode *inode, struct page *locked_page,
1101				  char *data, size_t len);
1102
1103/* dir.c */
1104extern const struct file_operations ceph_dir_fops;
1105extern const struct file_operations ceph_snapdir_fops;
1106extern const struct inode_operations ceph_dir_iops;
1107extern const struct inode_operations ceph_snapdir_iops;
1108extern const struct dentry_operations ceph_dentry_ops;
1109
1110extern loff_t ceph_make_fpos(unsigned high, unsigned off, bool hash_order);
1111extern int ceph_handle_notrace_create(struct inode *dir, struct dentry *dentry);
1112extern int ceph_handle_snapdir(struct ceph_mds_request *req,
1113			       struct dentry *dentry, int err);
1114extern struct dentry *ceph_finish_lookup(struct ceph_mds_request *req,
1115					 struct dentry *dentry, int err);
1116
1117extern void __ceph_dentry_lease_touch(struct ceph_dentry_info *di);
1118extern void __ceph_dentry_dir_lease_touch(struct ceph_dentry_info *di);
 
1119extern void ceph_invalidate_dentry_lease(struct dentry *dentry);
1120extern int ceph_trim_dentries(struct ceph_mds_client *mdsc);
1121extern unsigned ceph_dentry_hash(struct inode *dir, struct dentry *dn);
1122extern void ceph_readdir_cache_release(struct ceph_readdir_cache_control *ctl);
 
 
 
 
 
 
 
1123
1124/* ioctl.c */
1125extern long ceph_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
1126
1127/* export.c */
1128extern const struct export_operations ceph_export_ops;
1129struct inode *ceph_lookup_inode(struct super_block *sb, u64 ino);
1130
1131/* locks.c */
1132extern __init void ceph_flock_init(void);
1133extern int ceph_lock(struct file *file, int cmd, struct file_lock *fl);
1134extern int ceph_flock(struct file *file, int cmd, struct file_lock *fl);
1135extern void ceph_count_locks(struct inode *inode, int *p_num, int *f_num);
1136extern int ceph_encode_locks_to_buffer(struct inode *inode,
1137				       struct ceph_filelock *flocks,
1138				       int num_fcntl_locks,
1139				       int num_flock_locks);
1140extern int ceph_locks_to_pagelist(struct ceph_filelock *flocks,
1141				  struct ceph_pagelist *pagelist,
1142				  int num_fcntl_locks, int num_flock_locks);
 
1143
1144/* debugfs.c */
1145extern void ceph_fs_debugfs_init(struct ceph_fs_client *client);
1146extern void ceph_fs_debugfs_cleanup(struct ceph_fs_client *client);
1147
1148/* quota.c */
1149static inline bool __ceph_has_any_quota(struct ceph_inode_info *ci)
1150{
1151	return ci->i_max_files || ci->i_max_bytes;
1152}
1153
1154extern void ceph_adjust_quota_realms_count(struct inode *inode, bool inc);
1155
1156static inline void __ceph_update_quota(struct ceph_inode_info *ci,
1157				       u64 max_bytes, u64 max_files)
1158{
1159	bool had_quota, has_quota;
1160	had_quota = __ceph_has_any_quota(ci);
1161	ci->i_max_bytes = max_bytes;
1162	ci->i_max_files = max_files;
1163	has_quota = __ceph_has_any_quota(ci);
1164
1165	if (had_quota != has_quota)
1166		ceph_adjust_quota_realms_count(&ci->vfs_inode, has_quota);
1167}
1168
1169extern void ceph_handle_quota(struct ceph_mds_client *mdsc,
1170			      struct ceph_mds_session *session,
1171			      struct ceph_msg *msg);
1172extern bool ceph_quota_is_max_files_exceeded(struct inode *inode);
1173extern bool ceph_quota_is_same_realm(struct inode *old, struct inode *new);
1174extern bool ceph_quota_is_max_bytes_exceeded(struct inode *inode,
1175					     loff_t newlen);
1176extern bool ceph_quota_is_max_bytes_approaching(struct inode *inode,
1177						loff_t newlen);
1178extern bool ceph_quota_update_statfs(struct ceph_fs_client *fsc,
1179				     struct kstatfs *buf);
1180extern void ceph_cleanup_quotarealms_inodes(struct ceph_mds_client *mdsc);
1181
1182#endif /* _FS_CEPH_SUPER_H */