Loading...
1#ifndef _FS_CEPH_SUPER_H
2#define _FS_CEPH_SUPER_H
3
4#include <linux/ceph/ceph_debug.h>
5
6#include <asm/unaligned.h>
7#include <linux/backing-dev.h>
8#include <linux/completion.h>
9#include <linux/exportfs.h>
10#include <linux/fs.h>
11#include <linux/mempool.h>
12#include <linux/pagemap.h>
13#include <linux/wait.h>
14#include <linux/writeback.h>
15#include <linux/slab.h>
16#include <linux/posix_acl.h>
17
18#include <linux/ceph/libceph.h>
19
20#ifdef CONFIG_CEPH_FSCACHE
21#include <linux/fscache.h>
22#endif
23
24/* f_type in struct statfs */
25#define CEPH_SUPER_MAGIC 0x00c36400
26
27/* large granularity for statfs utilization stats to facilitate
28 * large volume sizes on 32-bit machines. */
29#define CEPH_BLOCK_SHIFT 22 /* 4 MB */
30#define CEPH_BLOCK (1 << CEPH_BLOCK_SHIFT)
31
32#define CEPH_MOUNT_OPT_DIRSTAT (1<<4) /* `cat dirname` for stats */
33#define CEPH_MOUNT_OPT_RBYTES (1<<5) /* dir st_bytes = rbytes */
34#define CEPH_MOUNT_OPT_NOASYNCREADDIR (1<<7) /* no dcache readdir */
35#define CEPH_MOUNT_OPT_INO32 (1<<8) /* 32 bit inos */
36#define CEPH_MOUNT_OPT_DCACHE (1<<9) /* use dcache for readdir etc */
37#define CEPH_MOUNT_OPT_FSCACHE (1<<10) /* use fscache */
38
39#define CEPH_MOUNT_OPT_DEFAULT (CEPH_MOUNT_OPT_RBYTES)
40
41#define ceph_set_mount_opt(fsc, opt) \
42 (fsc)->mount_options->flags |= CEPH_MOUNT_OPT_##opt;
43#define ceph_test_mount_opt(fsc, opt) \
44 (!!((fsc)->mount_options->flags & CEPH_MOUNT_OPT_##opt))
45
46#define CEPH_RSIZE_DEFAULT 0 /* max read size */
47#define CEPH_RASIZE_DEFAULT (8192*1024) /* readahead */
48#define CEPH_MAX_READDIR_DEFAULT 1024
49#define CEPH_MAX_READDIR_BYTES_DEFAULT (512*1024)
50#define CEPH_SNAPDIRNAME_DEFAULT ".snap"
51
52struct ceph_mount_options {
53 int flags;
54 int sb_flags;
55
56 int wsize; /* max write size */
57 int rsize; /* max read size */
58 int rasize; /* max readahead */
59 int congestion_kb; /* max writeback in flight */
60 int caps_wanted_delay_min, caps_wanted_delay_max;
61 int cap_release_safety;
62 int max_readdir; /* max readdir result (entires) */
63 int max_readdir_bytes; /* max readdir result (bytes) */
64
65 /*
66 * everything above this point can be memcmp'd; everything below
67 * is handled in compare_mount_options()
68 */
69
70 char *snapdir_name; /* default ".snap" */
71};
72
73struct ceph_fs_client {
74 struct super_block *sb;
75
76 struct ceph_mount_options *mount_options;
77 struct ceph_client *client;
78
79 unsigned long mount_state;
80 int min_caps; /* min caps i added */
81
82 struct ceph_mds_client *mdsc;
83
84 /* writeback */
85 mempool_t *wb_pagevec_pool;
86 struct workqueue_struct *wb_wq;
87 struct workqueue_struct *pg_inv_wq;
88 struct workqueue_struct *trunc_wq;
89 atomic_long_t writeback_count;
90
91 struct backing_dev_info backing_dev_info;
92
93#ifdef CONFIG_DEBUG_FS
94 struct dentry *debugfs_dentry_lru, *debugfs_caps;
95 struct dentry *debugfs_congestion_kb;
96 struct dentry *debugfs_bdi;
97 struct dentry *debugfs_mdsc, *debugfs_mdsmap;
98#endif
99
100#ifdef CONFIG_CEPH_FSCACHE
101 struct fscache_cookie *fscache;
102 struct workqueue_struct *revalidate_wq;
103#endif
104};
105
106
107/*
108 * File i/o capability. This tracks shared state with the metadata
109 * server that allows us to cache or writeback attributes or to read
110 * and write data. For any given inode, we should have one or more
111 * capabilities, one issued by each metadata server, and our
112 * cumulative access is the OR of all issued capabilities.
113 *
114 * Each cap is referenced by the inode's i_caps rbtree and by per-mds
115 * session capability lists.
116 */
117struct ceph_cap {
118 struct ceph_inode_info *ci;
119 struct rb_node ci_node; /* per-ci cap tree */
120 struct ceph_mds_session *session;
121 struct list_head session_caps; /* per-session caplist */
122 int mds;
123 u64 cap_id; /* unique cap id (mds provided) */
124 int issued; /* latest, from the mds */
125 int implemented; /* implemented superset of issued (for revocation) */
126 int mds_wanted;
127 u32 seq, issue_seq, mseq;
128 u32 cap_gen; /* active/stale cycle */
129 unsigned long last_used;
130 struct list_head caps_item;
131};
132
133#define CHECK_CAPS_NODELAY 1 /* do not delay any further */
134#define CHECK_CAPS_AUTHONLY 2 /* only check auth cap */
135#define CHECK_CAPS_FLUSH 4 /* flush any dirty caps */
136
137/*
138 * Snapped cap state that is pending flush to mds. When a snapshot occurs,
139 * we first complete any in-process sync writes and writeback any dirty
140 * data before flushing the snapped state (tracked here) back to the MDS.
141 */
142struct ceph_cap_snap {
143 atomic_t nref;
144 struct ceph_inode_info *ci;
145 struct list_head ci_item, flushing_item;
146
147 u64 follows, flush_tid;
148 int issued, dirty;
149 struct ceph_snap_context *context;
150
151 umode_t mode;
152 kuid_t uid;
153 kgid_t gid;
154
155 struct ceph_buffer *xattr_blob;
156 u64 xattr_version;
157
158 u64 size;
159 struct timespec mtime, atime, ctime;
160 u64 time_warp_seq;
161 int writing; /* a sync write is still in progress */
162 int dirty_pages; /* dirty pages awaiting writeback */
163};
164
165static inline void ceph_put_cap_snap(struct ceph_cap_snap *capsnap)
166{
167 if (atomic_dec_and_test(&capsnap->nref)) {
168 if (capsnap->xattr_blob)
169 ceph_buffer_put(capsnap->xattr_blob);
170 kfree(capsnap);
171 }
172}
173
174/*
175 * The frag tree describes how a directory is fragmented, potentially across
176 * multiple metadata servers. It is also used to indicate points where
177 * metadata authority is delegated, and whether/where metadata is replicated.
178 *
179 * A _leaf_ frag will be present in the i_fragtree IFF there is
180 * delegation info. That is, if mds >= 0 || ndist > 0.
181 */
182#define CEPH_MAX_DIRFRAG_REP 4
183
184struct ceph_inode_frag {
185 struct rb_node node;
186
187 /* fragtree state */
188 u32 frag;
189 int split_by; /* i.e. 2^(split_by) children */
190
191 /* delegation and replication info */
192 int mds; /* -1 if same authority as parent */
193 int ndist; /* >0 if replicated */
194 int dist[CEPH_MAX_DIRFRAG_REP];
195};
196
197/*
198 * We cache inode xattrs as an encoded blob until they are first used,
199 * at which point we parse them into an rbtree.
200 */
201struct ceph_inode_xattr {
202 struct rb_node node;
203
204 const char *name;
205 int name_len;
206 const char *val;
207 int val_len;
208 int dirty;
209
210 int should_free_name;
211 int should_free_val;
212};
213
214/*
215 * Ceph dentry state
216 */
217struct ceph_dentry_info {
218 struct ceph_mds_session *lease_session;
219 u32 lease_gen, lease_shared_gen;
220 u32 lease_seq;
221 unsigned long lease_renew_after, lease_renew_from;
222 struct list_head lru;
223 struct dentry *dentry;
224 u64 time;
225 u64 offset;
226};
227
228struct ceph_inode_xattrs_info {
229 /*
230 * (still encoded) xattr blob. we avoid the overhead of parsing
231 * this until someone actually calls getxattr, etc.
232 *
233 * blob->vec.iov_len == 4 implies there are no xattrs; blob ==
234 * NULL means we don't know.
235 */
236 struct ceph_buffer *blob, *prealloc_blob;
237
238 struct rb_root index;
239 bool dirty;
240 int count;
241 int names_size;
242 int vals_size;
243 u64 version, index_version;
244};
245
246/*
247 * Ceph inode.
248 */
249struct ceph_inode_info {
250 struct ceph_vino i_vino; /* ceph ino + snap */
251
252 spinlock_t i_ceph_lock;
253
254 u64 i_version;
255 u32 i_time_warp_seq;
256
257 unsigned i_ceph_flags;
258 atomic_t i_release_count;
259 atomic_t i_complete_count;
260
261 struct ceph_dir_layout i_dir_layout;
262 struct ceph_file_layout i_layout;
263 char *i_symlink;
264
265 /* for dirs */
266 struct timespec i_rctime;
267 u64 i_rbytes, i_rfiles, i_rsubdirs;
268 u64 i_files, i_subdirs;
269
270 struct rb_root i_fragtree;
271 struct mutex i_fragtree_mutex;
272
273 struct ceph_inode_xattrs_info i_xattrs;
274
275 /* capabilities. protected _both_ by i_ceph_lock and cap->session's
276 * s_mutex. */
277 struct rb_root i_caps; /* cap list */
278 struct ceph_cap *i_auth_cap; /* authoritative cap, if any */
279 unsigned i_dirty_caps, i_flushing_caps; /* mask of dirtied fields */
280 struct list_head i_dirty_item, i_flushing_item;
281 u64 i_cap_flush_seq;
282 /* we need to track cap writeback on a per-cap-bit basis, to allow
283 * overlapping, pipelined cap flushes to the mds. we can probably
284 * reduce the tid to 8 bits if we're concerned about inode size. */
285 u16 i_cap_flush_last_tid, i_cap_flush_tid[CEPH_CAP_BITS];
286 wait_queue_head_t i_cap_wq; /* threads waiting on a capability */
287 unsigned long i_hold_caps_min; /* jiffies */
288 unsigned long i_hold_caps_max; /* jiffies */
289 struct list_head i_cap_delay_list; /* for delayed cap release to mds */
290 struct ceph_cap_reservation i_cap_migration_resv;
291 struct list_head i_cap_snaps; /* snapped state pending flush to mds */
292 struct ceph_snap_context *i_head_snapc; /* set if wr_buffer_head > 0 or
293 dirty|flushing caps */
294 unsigned i_snap_caps; /* cap bits for snapped files */
295 unsigned i_cap_exporting_issued;
296
297 int i_nr_by_mode[CEPH_FILE_MODE_NUM]; /* open file counts */
298
299 struct mutex i_truncate_mutex;
300 u32 i_truncate_seq; /* last truncate to smaller size */
301 u64 i_truncate_size; /* and the size we last truncated down to */
302 int i_truncate_pending; /* still need to call vmtruncate */
303
304 u64 i_max_size; /* max file size authorized by mds */
305 u64 i_reported_size; /* (max_)size reported to or requested of mds */
306 u64 i_wanted_max_size; /* offset we'd like to write too */
307 u64 i_requested_max_size; /* max_size we've requested */
308
309 /* held references to caps */
310 int i_pin_ref;
311 int i_rd_ref, i_rdcache_ref, i_wr_ref, i_wb_ref;
312 int i_wrbuffer_ref, i_wrbuffer_ref_head;
313 u32 i_shared_gen; /* increment each time we get FILE_SHARED */
314 u32 i_rdcache_gen; /* incremented each time we get FILE_CACHE. */
315 u32 i_rdcache_revoking; /* RDCACHE gen to async invalidate, if any */
316
317 struct list_head i_unsafe_writes; /* uncommitted sync writes */
318 struct list_head i_unsafe_dirops; /* uncommitted mds dir ops */
319 spinlock_t i_unsafe_lock;
320
321 struct ceph_snap_realm *i_snap_realm; /* snap realm (if caps) */
322 int i_snap_realm_counter; /* snap realm (if caps) */
323 struct list_head i_snap_realm_item;
324 struct list_head i_snap_flush_item;
325
326 struct work_struct i_wb_work; /* writeback work */
327 struct work_struct i_pg_inv_work; /* page invalidation work */
328
329 struct work_struct i_vmtruncate_work;
330
331#ifdef CONFIG_CEPH_FSCACHE
332 struct fscache_cookie *fscache;
333 u32 i_fscache_gen; /* sequence, for delayed fscache validate */
334 struct work_struct i_revalidate_work;
335#endif
336 struct inode vfs_inode; /* at end */
337};
338
339static inline struct ceph_inode_info *ceph_inode(struct inode *inode)
340{
341 return container_of(inode, struct ceph_inode_info, vfs_inode);
342}
343
344static inline struct ceph_fs_client *ceph_inode_to_client(struct inode *inode)
345{
346 return (struct ceph_fs_client *)inode->i_sb->s_fs_info;
347}
348
349static inline struct ceph_fs_client *ceph_sb_to_client(struct super_block *sb)
350{
351 return (struct ceph_fs_client *)sb->s_fs_info;
352}
353
354static inline struct ceph_vino ceph_vino(struct inode *inode)
355{
356 return ceph_inode(inode)->i_vino;
357}
358
359/*
360 * ino_t is <64 bits on many architectures, blech.
361 *
362 * i_ino (kernel inode) st_ino (userspace)
363 * i386 32 32
364 * x86_64+ino32 64 32
365 * x86_64 64 64
366 */
367static inline u32 ceph_ino_to_ino32(__u64 vino)
368{
369 u32 ino = vino & 0xffffffff;
370 ino ^= vino >> 32;
371 if (!ino)
372 ino = 2;
373 return ino;
374}
375
376/*
377 * kernel i_ino value
378 */
379static inline ino_t ceph_vino_to_ino(struct ceph_vino vino)
380{
381#if BITS_PER_LONG == 32
382 return ceph_ino_to_ino32(vino.ino);
383#else
384 return (ino_t)vino.ino;
385#endif
386}
387
388/*
389 * user-visible ino (stat, filldir)
390 */
391#if BITS_PER_LONG == 32
392static inline ino_t ceph_translate_ino(struct super_block *sb, ino_t ino)
393{
394 return ino;
395}
396#else
397static inline ino_t ceph_translate_ino(struct super_block *sb, ino_t ino)
398{
399 if (ceph_test_mount_opt(ceph_sb_to_client(sb), INO32))
400 ino = ceph_ino_to_ino32(ino);
401 return ino;
402}
403#endif
404
405
406/* for printf-style formatting */
407#define ceph_vinop(i) ceph_inode(i)->i_vino.ino, ceph_inode(i)->i_vino.snap
408
409static inline u64 ceph_ino(struct inode *inode)
410{
411 return ceph_inode(inode)->i_vino.ino;
412}
413static inline u64 ceph_snap(struct inode *inode)
414{
415 return ceph_inode(inode)->i_vino.snap;
416}
417
418static inline int ceph_ino_compare(struct inode *inode, void *data)
419{
420 struct ceph_vino *pvino = (struct ceph_vino *)data;
421 struct ceph_inode_info *ci = ceph_inode(inode);
422 return ci->i_vino.ino == pvino->ino &&
423 ci->i_vino.snap == pvino->snap;
424}
425
426static inline struct inode *ceph_find_inode(struct super_block *sb,
427 struct ceph_vino vino)
428{
429 ino_t t = ceph_vino_to_ino(vino);
430 return ilookup5(sb, t, ceph_ino_compare, &vino);
431}
432
433
434/*
435 * Ceph inode.
436 */
437#define CEPH_I_NODELAY 4 /* do not delay cap release */
438#define CEPH_I_FLUSH 8 /* do not delay flush of dirty metadata */
439#define CEPH_I_NOFLUSH 16 /* do not flush dirty caps */
440
441static inline void __ceph_dir_set_complete(struct ceph_inode_info *ci,
442 int release_count)
443{
444 atomic_set(&ci->i_complete_count, release_count);
445}
446
447static inline void __ceph_dir_clear_complete(struct ceph_inode_info *ci)
448{
449 atomic_inc(&ci->i_release_count);
450}
451
452static inline bool __ceph_dir_is_complete(struct ceph_inode_info *ci)
453{
454 return atomic_read(&ci->i_complete_count) ==
455 atomic_read(&ci->i_release_count);
456}
457
458static inline void ceph_dir_clear_complete(struct inode *inode)
459{
460 __ceph_dir_clear_complete(ceph_inode(inode));
461}
462
463static inline bool ceph_dir_is_complete(struct inode *inode)
464{
465 return __ceph_dir_is_complete(ceph_inode(inode));
466}
467
468
469/* find a specific frag @f */
470extern struct ceph_inode_frag *__ceph_find_frag(struct ceph_inode_info *ci,
471 u32 f);
472
473/*
474 * choose fragment for value @v. copy frag content to pfrag, if leaf
475 * exists
476 */
477extern u32 ceph_choose_frag(struct ceph_inode_info *ci, u32 v,
478 struct ceph_inode_frag *pfrag,
479 int *found);
480
481static inline struct ceph_dentry_info *ceph_dentry(struct dentry *dentry)
482{
483 return (struct ceph_dentry_info *)dentry->d_fsdata;
484}
485
486static inline loff_t ceph_make_fpos(unsigned frag, unsigned off)
487{
488 return ((loff_t)frag << 32) | (loff_t)off;
489}
490
491/*
492 * caps helpers
493 */
494static inline bool __ceph_is_any_real_caps(struct ceph_inode_info *ci)
495{
496 return !RB_EMPTY_ROOT(&ci->i_caps);
497}
498
499extern int __ceph_caps_issued(struct ceph_inode_info *ci, int *implemented);
500extern int __ceph_caps_issued_mask(struct ceph_inode_info *ci, int mask, int t);
501extern int __ceph_caps_issued_other(struct ceph_inode_info *ci,
502 struct ceph_cap *cap);
503
504static inline int ceph_caps_issued(struct ceph_inode_info *ci)
505{
506 int issued;
507 spin_lock(&ci->i_ceph_lock);
508 issued = __ceph_caps_issued(ci, NULL);
509 spin_unlock(&ci->i_ceph_lock);
510 return issued;
511}
512
513static inline int ceph_caps_issued_mask(struct ceph_inode_info *ci, int mask,
514 int touch)
515{
516 int r;
517 spin_lock(&ci->i_ceph_lock);
518 r = __ceph_caps_issued_mask(ci, mask, touch);
519 spin_unlock(&ci->i_ceph_lock);
520 return r;
521}
522
523static inline int __ceph_caps_dirty(struct ceph_inode_info *ci)
524{
525 return ci->i_dirty_caps | ci->i_flushing_caps;
526}
527extern int __ceph_mark_dirty_caps(struct ceph_inode_info *ci, int mask);
528
529extern int __ceph_caps_revoking_other(struct ceph_inode_info *ci,
530 struct ceph_cap *ocap, int mask);
531extern int ceph_caps_revoking(struct ceph_inode_info *ci, int mask);
532extern int __ceph_caps_used(struct ceph_inode_info *ci);
533
534extern int __ceph_caps_file_wanted(struct ceph_inode_info *ci);
535
536/*
537 * wanted, by virtue of open file modes AND cap refs (buffered/cached data)
538 */
539static inline int __ceph_caps_wanted(struct ceph_inode_info *ci)
540{
541 int w = __ceph_caps_file_wanted(ci) | __ceph_caps_used(ci);
542 if (w & CEPH_CAP_FILE_BUFFER)
543 w |= CEPH_CAP_FILE_EXCL; /* we want EXCL if dirty data */
544 return w;
545}
546
547/* what the mds thinks we want */
548extern int __ceph_caps_mds_wanted(struct ceph_inode_info *ci);
549
550extern void ceph_caps_init(struct ceph_mds_client *mdsc);
551extern void ceph_caps_finalize(struct ceph_mds_client *mdsc);
552extern void ceph_adjust_min_caps(struct ceph_mds_client *mdsc, int delta);
553extern void ceph_reserve_caps(struct ceph_mds_client *mdsc,
554 struct ceph_cap_reservation *ctx, int need);
555extern int ceph_unreserve_caps(struct ceph_mds_client *mdsc,
556 struct ceph_cap_reservation *ctx);
557extern void ceph_reservation_status(struct ceph_fs_client *client,
558 int *total, int *avail, int *used,
559 int *reserved, int *min);
560
561
562
563/*
564 * we keep buffered readdir results attached to file->private_data
565 */
566#define CEPH_F_SYNC 1
567#define CEPH_F_ATEND 2
568
569struct ceph_file_info {
570 short fmode; /* initialized on open */
571 short flags; /* CEPH_F_* */
572
573 /* readdir: position within the dir */
574 u32 frag;
575 struct ceph_mds_request *last_readdir;
576
577 /* readdir: position within a frag */
578 unsigned offset; /* offset of last chunk, adjusted for . and .. */
579 unsigned next_offset; /* offset of next chunk (last_name's + 1) */
580 char *last_name; /* last entry in previous chunk */
581 struct dentry *dentry; /* next dentry (for dcache readdir) */
582 int dir_release_count;
583
584 /* used for -o dirstat read() on directory thing */
585 char *dir_info;
586 int dir_info_len;
587};
588
589
590
591/*
592 * A "snap realm" describes a subset of the file hierarchy sharing
593 * the same set of snapshots that apply to it. The realms themselves
594 * are organized into a hierarchy, such that children inherit (some of)
595 * the snapshots of their parents.
596 *
597 * All inodes within the realm that have capabilities are linked into a
598 * per-realm list.
599 */
600struct ceph_snap_realm {
601 u64 ino;
602 atomic_t nref;
603 struct rb_node node;
604
605 u64 created, seq;
606 u64 parent_ino;
607 u64 parent_since; /* snapid when our current parent became so */
608
609 u64 *prior_parent_snaps; /* snaps inherited from any parents we */
610 u32 num_prior_parent_snaps; /* had prior to parent_since */
611 u64 *snaps; /* snaps specific to this realm */
612 u32 num_snaps;
613
614 struct ceph_snap_realm *parent;
615 struct list_head children; /* list of child realms */
616 struct list_head child_item;
617
618 struct list_head empty_item; /* if i have ref==0 */
619
620 struct list_head dirty_item; /* if realm needs new context */
621
622 /* the current set of snaps for this realm */
623 struct ceph_snap_context *cached_context;
624
625 struct list_head inodes_with_caps;
626 spinlock_t inodes_with_caps_lock;
627};
628
629static inline int default_congestion_kb(void)
630{
631 int congestion_kb;
632
633 /*
634 * Copied from NFS
635 *
636 * congestion size, scale with available memory.
637 *
638 * 64MB: 8192k
639 * 128MB: 11585k
640 * 256MB: 16384k
641 * 512MB: 23170k
642 * 1GB: 32768k
643 * 2GB: 46340k
644 * 4GB: 65536k
645 * 8GB: 92681k
646 * 16GB: 131072k
647 *
648 * This allows larger machines to have larger/more transfers.
649 * Limit the default to 256M
650 */
651 congestion_kb = (16*int_sqrt(totalram_pages)) << (PAGE_SHIFT-10);
652 if (congestion_kb > 256*1024)
653 congestion_kb = 256*1024;
654
655 return congestion_kb;
656}
657
658
659
660/* snap.c */
661struct ceph_snap_realm *ceph_lookup_snap_realm(struct ceph_mds_client *mdsc,
662 u64 ino);
663extern void ceph_get_snap_realm(struct ceph_mds_client *mdsc,
664 struct ceph_snap_realm *realm);
665extern void ceph_put_snap_realm(struct ceph_mds_client *mdsc,
666 struct ceph_snap_realm *realm);
667extern int ceph_update_snap_trace(struct ceph_mds_client *m,
668 void *p, void *e, bool deletion);
669extern void ceph_handle_snap(struct ceph_mds_client *mdsc,
670 struct ceph_mds_session *session,
671 struct ceph_msg *msg);
672extern void ceph_queue_cap_snap(struct ceph_inode_info *ci);
673extern int __ceph_finish_cap_snap(struct ceph_inode_info *ci,
674 struct ceph_cap_snap *capsnap);
675extern void ceph_cleanup_empty_realms(struct ceph_mds_client *mdsc);
676
677/*
678 * a cap_snap is "pending" if it is still awaiting an in-progress
679 * sync write (that may/may not still update size, mtime, etc.).
680 */
681static inline bool __ceph_have_pending_cap_snap(struct ceph_inode_info *ci)
682{
683 return !list_empty(&ci->i_cap_snaps) &&
684 list_entry(ci->i_cap_snaps.prev, struct ceph_cap_snap,
685 ci_item)->writing;
686}
687
688/* inode.c */
689extern const struct inode_operations ceph_file_iops;
690
691extern struct inode *ceph_alloc_inode(struct super_block *sb);
692extern void ceph_destroy_inode(struct inode *inode);
693extern int ceph_drop_inode(struct inode *inode);
694
695extern struct inode *ceph_get_inode(struct super_block *sb,
696 struct ceph_vino vino);
697extern struct inode *ceph_get_snapdir(struct inode *parent);
698extern int ceph_fill_file_size(struct inode *inode, int issued,
699 u32 truncate_seq, u64 truncate_size, u64 size);
700extern void ceph_fill_file_time(struct inode *inode, int issued,
701 u64 time_warp_seq, struct timespec *ctime,
702 struct timespec *mtime, struct timespec *atime);
703extern int ceph_fill_trace(struct super_block *sb,
704 struct ceph_mds_request *req,
705 struct ceph_mds_session *session);
706extern int ceph_readdir_prepopulate(struct ceph_mds_request *req,
707 struct ceph_mds_session *session);
708
709extern int ceph_inode_holds_cap(struct inode *inode, int mask);
710
711extern int ceph_inode_set_size(struct inode *inode, loff_t size);
712extern void __ceph_do_pending_vmtruncate(struct inode *inode);
713extern void ceph_queue_vmtruncate(struct inode *inode);
714
715extern void ceph_queue_invalidate(struct inode *inode);
716extern void ceph_queue_writeback(struct inode *inode);
717
718extern int ceph_do_getattr(struct inode *inode, int mask);
719extern int ceph_permission(struct inode *inode, int mask);
720extern int ceph_setattr(struct dentry *dentry, struct iattr *attr);
721extern int ceph_getattr(struct vfsmount *mnt, struct dentry *dentry,
722 struct kstat *stat);
723
724/* xattr.c */
725extern int ceph_setxattr(struct dentry *, const char *, const void *,
726 size_t, int);
727int __ceph_setxattr(struct dentry *, const char *, const void *, size_t, int);
728ssize_t __ceph_getxattr(struct inode *, const char *, void *, size_t);
729int __ceph_removexattr(struct dentry *, const char *);
730extern ssize_t ceph_getxattr(struct dentry *, const char *, void *, size_t);
731extern ssize_t ceph_listxattr(struct dentry *, char *, size_t);
732extern int ceph_removexattr(struct dentry *, const char *);
733extern void __ceph_build_xattrs_blob(struct ceph_inode_info *ci);
734extern void __ceph_destroy_xattrs(struct ceph_inode_info *ci);
735extern void __init ceph_xattr_init(void);
736extern void ceph_xattr_exit(void);
737
738/* acl.c */
739extern const struct xattr_handler *ceph_xattr_handlers[];
740
741#ifdef CONFIG_CEPH_FS_POSIX_ACL
742
743struct posix_acl *ceph_get_acl(struct inode *, int);
744int ceph_set_acl(struct inode *inode, struct posix_acl *acl, int type);
745int ceph_init_acl(struct dentry *, struct inode *, struct inode *);
746
747static inline void ceph_forget_all_cached_acls(struct inode *inode)
748{
749 forget_all_cached_acls(inode);
750}
751
752#else
753
754#define ceph_get_acl NULL
755#define ceph_set_acl NULL
756
757static inline int ceph_init_acl(struct dentry *dentry, struct inode *inode,
758 struct inode *dir)
759{
760 return 0;
761}
762
763static inline int ceph_acl_chmod(struct dentry *dentry, struct inode *inode)
764{
765 return 0;
766}
767
768static inline void ceph_forget_all_cached_acls(struct inode *inode)
769{
770}
771
772#endif
773
774/* caps.c */
775extern const char *ceph_cap_string(int c);
776extern void ceph_handle_caps(struct ceph_mds_session *session,
777 struct ceph_msg *msg);
778extern int ceph_add_cap(struct inode *inode,
779 struct ceph_mds_session *session, u64 cap_id,
780 int fmode, unsigned issued, unsigned wanted,
781 unsigned cap, unsigned seq, u64 realmino, int flags,
782 struct ceph_cap_reservation *caps_reservation);
783extern void __ceph_remove_cap(struct ceph_cap *cap, bool queue_release);
784extern void ceph_put_cap(struct ceph_mds_client *mdsc,
785 struct ceph_cap *cap);
786extern int ceph_is_any_caps(struct inode *inode);
787
788extern void __queue_cap_release(struct ceph_mds_session *session, u64 ino,
789 u64 cap_id, u32 migrate_seq, u32 issue_seq);
790extern void ceph_queue_caps_release(struct inode *inode);
791extern int ceph_write_inode(struct inode *inode, struct writeback_control *wbc);
792extern int ceph_fsync(struct file *file, loff_t start, loff_t end,
793 int datasync);
794extern void ceph_kick_flushing_caps(struct ceph_mds_client *mdsc,
795 struct ceph_mds_session *session);
796extern struct ceph_cap *ceph_get_cap_for_mds(struct ceph_inode_info *ci,
797 int mds);
798extern int ceph_get_cap_mds(struct inode *inode);
799extern void ceph_get_cap_refs(struct ceph_inode_info *ci, int caps);
800extern void ceph_put_cap_refs(struct ceph_inode_info *ci, int had);
801extern void ceph_put_wrbuffer_cap_refs(struct ceph_inode_info *ci, int nr,
802 struct ceph_snap_context *snapc);
803extern void __ceph_flush_snaps(struct ceph_inode_info *ci,
804 struct ceph_mds_session **psession,
805 int again);
806extern void ceph_check_caps(struct ceph_inode_info *ci, int flags,
807 struct ceph_mds_session *session);
808extern void ceph_check_delayed_caps(struct ceph_mds_client *mdsc);
809extern void ceph_flush_dirty_caps(struct ceph_mds_client *mdsc);
810
811extern int ceph_encode_inode_release(void **p, struct inode *inode,
812 int mds, int drop, int unless, int force);
813extern int ceph_encode_dentry_release(void **p, struct dentry *dn,
814 int mds, int drop, int unless);
815
816extern int ceph_get_caps(struct ceph_inode_info *ci, int need, int want,
817 int *got, loff_t endoff);
818
819/* for counting open files by mode */
820static inline void __ceph_get_fmode(struct ceph_inode_info *ci, int mode)
821{
822 ci->i_nr_by_mode[mode]++;
823}
824extern void ceph_put_fmode(struct ceph_inode_info *ci, int mode);
825
826/* addr.c */
827extern const struct address_space_operations ceph_aops;
828extern int ceph_mmap(struct file *file, struct vm_area_struct *vma);
829
830/* file.c */
831extern const struct file_operations ceph_file_fops;
832extern const struct address_space_operations ceph_aops;
833
834extern int ceph_open(struct inode *inode, struct file *file);
835extern int ceph_atomic_open(struct inode *dir, struct dentry *dentry,
836 struct file *file, unsigned flags, umode_t mode,
837 int *opened);
838extern int ceph_release(struct inode *inode, struct file *filp);
839
840/* dir.c */
841extern const struct file_operations ceph_dir_fops;
842extern const struct inode_operations ceph_dir_iops;
843extern const struct dentry_operations ceph_dentry_ops, ceph_snap_dentry_ops,
844 ceph_snapdir_dentry_ops;
845
846extern int ceph_handle_notrace_create(struct inode *dir, struct dentry *dentry);
847extern int ceph_handle_snapdir(struct ceph_mds_request *req,
848 struct dentry *dentry, int err);
849extern struct dentry *ceph_finish_lookup(struct ceph_mds_request *req,
850 struct dentry *dentry, int err);
851
852extern void ceph_dentry_lru_add(struct dentry *dn);
853extern void ceph_dentry_lru_touch(struct dentry *dn);
854extern void ceph_dentry_lru_del(struct dentry *dn);
855extern void ceph_invalidate_dentry_lease(struct dentry *dentry);
856extern unsigned ceph_dentry_hash(struct inode *dir, struct dentry *dn);
857extern struct inode *ceph_get_dentry_parent_inode(struct dentry *dentry);
858
859/*
860 * our d_ops vary depending on whether the inode is live,
861 * snapshotted (read-only), or a virtual ".snap" directory.
862 */
863int ceph_init_dentry(struct dentry *dentry);
864
865
866/* ioctl.c */
867extern long ceph_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
868
869/* export.c */
870extern const struct export_operations ceph_export_ops;
871
872/* locks.c */
873extern __init void ceph_flock_init(void);
874extern int ceph_lock(struct file *file, int cmd, struct file_lock *fl);
875extern int ceph_flock(struct file *file, int cmd, struct file_lock *fl);
876extern void ceph_count_locks(struct inode *inode, int *p_num, int *f_num);
877extern int ceph_encode_locks_to_buffer(struct inode *inode,
878 struct ceph_filelock *flocks,
879 int num_fcntl_locks,
880 int num_flock_locks);
881extern int ceph_locks_to_pagelist(struct ceph_filelock *flocks,
882 struct ceph_pagelist *pagelist,
883 int num_fcntl_locks, int num_flock_locks);
884extern int lock_to_ceph_filelock(struct file_lock *fl, struct ceph_filelock *c);
885
886/* debugfs.c */
887extern int ceph_fs_debugfs_init(struct ceph_fs_client *client);
888extern void ceph_fs_debugfs_cleanup(struct ceph_fs_client *client);
889
890#endif /* _FS_CEPH_SUPER_H */
1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _FS_CEPH_SUPER_H
3#define _FS_CEPH_SUPER_H
4
5#include <linux/ceph/ceph_debug.h>
6
7#include <asm/unaligned.h>
8#include <linux/backing-dev.h>
9#include <linux/completion.h>
10#include <linux/exportfs.h>
11#include <linux/fs.h>
12#include <linux/mempool.h>
13#include <linux/pagemap.h>
14#include <linux/wait.h>
15#include <linux/writeback.h>
16#include <linux/slab.h>
17#include <linux/posix_acl.h>
18#include <linux/refcount.h>
19
20#include <linux/ceph/libceph.h>
21
22#ifdef CONFIG_CEPH_FSCACHE
23#include <linux/fscache.h>
24#endif
25
26/* f_type in struct statfs */
27#define CEPH_SUPER_MAGIC 0x00c36400
28
29/* large granularity for statfs utilization stats to facilitate
30 * large volume sizes on 32-bit machines. */
31#define CEPH_BLOCK_SHIFT 22 /* 4 MB */
32#define CEPH_BLOCK (1 << CEPH_BLOCK_SHIFT)
33
34#define CEPH_MOUNT_OPT_DIRSTAT (1<<4) /* `cat dirname` for stats */
35#define CEPH_MOUNT_OPT_RBYTES (1<<5) /* dir st_bytes = rbytes */
36#define CEPH_MOUNT_OPT_NOASYNCREADDIR (1<<7) /* no dcache readdir */
37#define CEPH_MOUNT_OPT_INO32 (1<<8) /* 32 bit inos */
38#define CEPH_MOUNT_OPT_DCACHE (1<<9) /* use dcache for readdir etc */
39#define CEPH_MOUNT_OPT_FSCACHE (1<<10) /* use fscache */
40#define CEPH_MOUNT_OPT_NOPOOLPERM (1<<11) /* no pool permission check */
41#define CEPH_MOUNT_OPT_MOUNTWAIT (1<<12) /* mount waits if no mds is up */
42#define CEPH_MOUNT_OPT_NOQUOTADF (1<<13) /* no root dir quota in statfs */
43
44#define CEPH_MOUNT_OPT_DEFAULT CEPH_MOUNT_OPT_DCACHE
45
46#define ceph_set_mount_opt(fsc, opt) \
47 (fsc)->mount_options->flags |= CEPH_MOUNT_OPT_##opt;
48#define ceph_test_mount_opt(fsc, opt) \
49 (!!((fsc)->mount_options->flags & CEPH_MOUNT_OPT_##opt))
50
51/* max size of osd read request, limited by libceph */
52#define CEPH_MAX_READ_SIZE CEPH_MSG_MAX_DATA_LEN
53/* osd has a configurable limitaion of max write size.
54 * CEPH_MSG_MAX_DATA_LEN should be small enough. */
55#define CEPH_MAX_WRITE_SIZE CEPH_MSG_MAX_DATA_LEN
56#define CEPH_RASIZE_DEFAULT (8192*1024) /* max readahead */
57#define CEPH_MAX_READDIR_DEFAULT 1024
58#define CEPH_MAX_READDIR_BYTES_DEFAULT (512*1024)
59#define CEPH_SNAPDIRNAME_DEFAULT ".snap"
60
61/*
62 * Delay telling the MDS we no longer want caps, in case we reopen
63 * the file. Delay a minimum amount of time, even if we send a cap
64 * message for some other reason. Otherwise, take the oppotunity to
65 * update the mds to avoid sending another message later.
66 */
67#define CEPH_CAPS_WANTED_DELAY_MIN_DEFAULT 5 /* cap release delay */
68#define CEPH_CAPS_WANTED_DELAY_MAX_DEFAULT 60 /* cap release delay */
69
70struct ceph_mount_options {
71 int flags;
72 int sb_flags;
73
74 int wsize; /* max write size */
75 int rsize; /* max read size */
76 int rasize; /* max readahead */
77 int congestion_kb; /* max writeback in flight */
78 int caps_wanted_delay_min, caps_wanted_delay_max;
79 int max_readdir; /* max readdir result (entires) */
80 int max_readdir_bytes; /* max readdir result (bytes) */
81
82 /*
83 * everything above this point can be memcmp'd; everything below
84 * is handled in compare_mount_options()
85 */
86
87 char *snapdir_name; /* default ".snap" */
88 char *mds_namespace; /* default NULL */
89 char *server_path; /* default "/" */
90 char *fscache_uniq; /* default NULL */
91};
92
93struct ceph_fs_client {
94 struct super_block *sb;
95
96 struct ceph_mount_options *mount_options;
97 struct ceph_client *client;
98
99 unsigned long mount_state;
100 int min_caps; /* min caps i added */
101
102 struct ceph_mds_client *mdsc;
103
104 /* writeback */
105 mempool_t *wb_pagevec_pool;
106 struct workqueue_struct *wb_wq;
107 struct workqueue_struct *pg_inv_wq;
108 struct workqueue_struct *trunc_wq;
109 atomic_long_t writeback_count;
110
111#ifdef CONFIG_DEBUG_FS
112 struct dentry *debugfs_dentry_lru, *debugfs_caps;
113 struct dentry *debugfs_congestion_kb;
114 struct dentry *debugfs_bdi;
115 struct dentry *debugfs_mdsc, *debugfs_mdsmap;
116 struct dentry *debugfs_mds_sessions;
117#endif
118
119#ifdef CONFIG_CEPH_FSCACHE
120 struct fscache_cookie *fscache;
121#endif
122};
123
124
125/*
126 * File i/o capability. This tracks shared state with the metadata
127 * server that allows us to cache or writeback attributes or to read
128 * and write data. For any given inode, we should have one or more
129 * capabilities, one issued by each metadata server, and our
130 * cumulative access is the OR of all issued capabilities.
131 *
132 * Each cap is referenced by the inode's i_caps rbtree and by per-mds
133 * session capability lists.
134 */
135struct ceph_cap {
136 struct ceph_inode_info *ci;
137 struct rb_node ci_node; /* per-ci cap tree */
138 struct ceph_mds_session *session;
139 struct list_head session_caps; /* per-session caplist */
140 u64 cap_id; /* unique cap id (mds provided) */
141 union {
142 /* in-use caps */
143 struct {
144 int issued; /* latest, from the mds */
145 int implemented; /* implemented superset of
146 issued (for revocation) */
147 int mds, mds_wanted;
148 };
149 /* caps to release */
150 struct {
151 u64 cap_ino;
152 int queue_release;
153 };
154 };
155 u32 seq, issue_seq, mseq;
156 u32 cap_gen; /* active/stale cycle */
157 unsigned long last_used;
158 struct list_head caps_item;
159};
160
161#define CHECK_CAPS_NODELAY 1 /* do not delay any further */
162#define CHECK_CAPS_AUTHONLY 2 /* only check auth cap */
163#define CHECK_CAPS_FLUSH 4 /* flush any dirty caps */
164
165struct ceph_cap_flush {
166 u64 tid;
167 int caps; /* 0 means capsnap */
168 bool wake; /* wake up flush waiters when finish ? */
169 struct list_head g_list; // global
170 struct list_head i_list; // per inode
171};
172
173/*
174 * Snapped cap state that is pending flush to mds. When a snapshot occurs,
175 * we first complete any in-process sync writes and writeback any dirty
176 * data before flushing the snapped state (tracked here) back to the MDS.
177 */
178struct ceph_cap_snap {
179 refcount_t nref;
180 struct list_head ci_item;
181
182 struct ceph_cap_flush cap_flush;
183
184 u64 follows;
185 int issued, dirty;
186 struct ceph_snap_context *context;
187
188 umode_t mode;
189 kuid_t uid;
190 kgid_t gid;
191
192 struct ceph_buffer *xattr_blob;
193 u64 xattr_version;
194
195 u64 size;
196 struct timespec mtime, atime, ctime;
197 u64 time_warp_seq;
198 u64 truncate_size;
199 u32 truncate_seq;
200 int writing; /* a sync write is still in progress */
201 int dirty_pages; /* dirty pages awaiting writeback */
202 bool inline_data;
203 bool need_flush;
204};
205
206static inline void ceph_put_cap_snap(struct ceph_cap_snap *capsnap)
207{
208 if (refcount_dec_and_test(&capsnap->nref)) {
209 if (capsnap->xattr_blob)
210 ceph_buffer_put(capsnap->xattr_blob);
211 kfree(capsnap);
212 }
213}
214
215/*
216 * The frag tree describes how a directory is fragmented, potentially across
217 * multiple metadata servers. It is also used to indicate points where
218 * metadata authority is delegated, and whether/where metadata is replicated.
219 *
220 * A _leaf_ frag will be present in the i_fragtree IFF there is
221 * delegation info. That is, if mds >= 0 || ndist > 0.
222 */
223#define CEPH_MAX_DIRFRAG_REP 4
224
225struct ceph_inode_frag {
226 struct rb_node node;
227
228 /* fragtree state */
229 u32 frag;
230 int split_by; /* i.e. 2^(split_by) children */
231
232 /* delegation and replication info */
233 int mds; /* -1 if same authority as parent */
234 int ndist; /* >0 if replicated */
235 int dist[CEPH_MAX_DIRFRAG_REP];
236};
237
238/*
239 * We cache inode xattrs as an encoded blob until they are first used,
240 * at which point we parse them into an rbtree.
241 */
242struct ceph_inode_xattr {
243 struct rb_node node;
244
245 const char *name;
246 int name_len;
247 const char *val;
248 int val_len;
249 int dirty;
250
251 int should_free_name;
252 int should_free_val;
253};
254
255/*
256 * Ceph dentry state
257 */
258struct ceph_dentry_info {
259 struct ceph_mds_session *lease_session;
260 int lease_shared_gen;
261 u32 lease_gen;
262 u32 lease_seq;
263 unsigned long lease_renew_after, lease_renew_from;
264 struct list_head lru;
265 struct dentry *dentry;
266 unsigned long time;
267 u64 offset;
268};
269
270struct ceph_inode_xattrs_info {
271 /*
272 * (still encoded) xattr blob. we avoid the overhead of parsing
273 * this until someone actually calls getxattr, etc.
274 *
275 * blob->vec.iov_len == 4 implies there are no xattrs; blob ==
276 * NULL means we don't know.
277 */
278 struct ceph_buffer *blob, *prealloc_blob;
279
280 struct rb_root index;
281 bool dirty;
282 int count;
283 int names_size;
284 int vals_size;
285 u64 version, index_version;
286};
287
288/*
289 * Ceph inode.
290 */
291struct ceph_inode_info {
292 struct ceph_vino i_vino; /* ceph ino + snap */
293
294 spinlock_t i_ceph_lock;
295
296 u64 i_version;
297 u64 i_inline_version;
298 u32 i_time_warp_seq;
299
300 unsigned i_ceph_flags;
301 atomic64_t i_release_count;
302 atomic64_t i_ordered_count;
303 atomic64_t i_complete_seq[2];
304
305 struct ceph_dir_layout i_dir_layout;
306 struct ceph_file_layout i_layout;
307 char *i_symlink;
308
309 /* for dirs */
310 struct timespec i_rctime;
311 u64 i_rbytes, i_rfiles, i_rsubdirs;
312 u64 i_files, i_subdirs;
313
314 /* quotas */
315 u64 i_max_bytes, i_max_files;
316
317 struct rb_root i_fragtree;
318 int i_fragtree_nsplits;
319 struct mutex i_fragtree_mutex;
320
321 struct ceph_inode_xattrs_info i_xattrs;
322
323 /* capabilities. protected _both_ by i_ceph_lock and cap->session's
324 * s_mutex. */
325 struct rb_root i_caps; /* cap list */
326 struct ceph_cap *i_auth_cap; /* authoritative cap, if any */
327 unsigned i_dirty_caps, i_flushing_caps; /* mask of dirtied fields */
328 struct list_head i_dirty_item, i_flushing_item;
329 /* we need to track cap writeback on a per-cap-bit basis, to allow
330 * overlapping, pipelined cap flushes to the mds. we can probably
331 * reduce the tid to 8 bits if we're concerned about inode size. */
332 struct ceph_cap_flush *i_prealloc_cap_flush;
333 struct list_head i_cap_flush_list;
334 wait_queue_head_t i_cap_wq; /* threads waiting on a capability */
335 unsigned long i_hold_caps_min; /* jiffies */
336 unsigned long i_hold_caps_max; /* jiffies */
337 struct list_head i_cap_delay_list; /* for delayed cap release to mds */
338 struct ceph_cap_reservation i_cap_migration_resv;
339 struct list_head i_cap_snaps; /* snapped state pending flush to mds */
340 struct ceph_snap_context *i_head_snapc; /* set if wr_buffer_head > 0 or
341 dirty|flushing caps */
342 unsigned i_snap_caps; /* cap bits for snapped files */
343
344 int i_nr_by_mode[CEPH_FILE_MODE_BITS]; /* open file counts */
345
346 struct mutex i_truncate_mutex;
347 u32 i_truncate_seq; /* last truncate to smaller size */
348 u64 i_truncate_size; /* and the size we last truncated down to */
349 int i_truncate_pending; /* still need to call vmtruncate */
350
351 u64 i_max_size; /* max file size authorized by mds */
352 u64 i_reported_size; /* (max_)size reported to or requested of mds */
353 u64 i_wanted_max_size; /* offset we'd like to write too */
354 u64 i_requested_max_size; /* max_size we've requested */
355
356 /* held references to caps */
357 int i_pin_ref;
358 int i_rd_ref, i_rdcache_ref, i_wr_ref, i_wb_ref;
359 int i_wrbuffer_ref, i_wrbuffer_ref_head;
360 atomic_t i_filelock_ref;
361 atomic_t i_shared_gen; /* increment each time we get FILE_SHARED */
362 u32 i_rdcache_gen; /* incremented each time we get FILE_CACHE. */
363 u32 i_rdcache_revoking; /* RDCACHE gen to async invalidate, if any */
364
365 struct list_head i_unsafe_dirops; /* uncommitted mds dir ops */
366 struct list_head i_unsafe_iops; /* uncommitted mds inode ops */
367 spinlock_t i_unsafe_lock;
368
369 struct ceph_snap_realm *i_snap_realm; /* snap realm (if caps) */
370 int i_snap_realm_counter; /* snap realm (if caps) */
371 struct list_head i_snap_realm_item;
372 struct list_head i_snap_flush_item;
373
374 struct work_struct i_wb_work; /* writeback work */
375 struct work_struct i_pg_inv_work; /* page invalidation work */
376
377 struct work_struct i_vmtruncate_work;
378
379#ifdef CONFIG_CEPH_FSCACHE
380 struct fscache_cookie *fscache;
381 u32 i_fscache_gen;
382#endif
383 struct inode vfs_inode; /* at end */
384};
385
386static inline struct ceph_inode_info *ceph_inode(struct inode *inode)
387{
388 return container_of(inode, struct ceph_inode_info, vfs_inode);
389}
390
391static inline struct ceph_fs_client *ceph_inode_to_client(struct inode *inode)
392{
393 return (struct ceph_fs_client *)inode->i_sb->s_fs_info;
394}
395
396static inline struct ceph_fs_client *ceph_sb_to_client(struct super_block *sb)
397{
398 return (struct ceph_fs_client *)sb->s_fs_info;
399}
400
401static inline struct ceph_vino ceph_vino(struct inode *inode)
402{
403 return ceph_inode(inode)->i_vino;
404}
405
406/*
407 * ino_t is <64 bits on many architectures, blech.
408 *
409 * i_ino (kernel inode) st_ino (userspace)
410 * i386 32 32
411 * x86_64+ino32 64 32
412 * x86_64 64 64
413 */
414static inline u32 ceph_ino_to_ino32(__u64 vino)
415{
416 u32 ino = vino & 0xffffffff;
417 ino ^= vino >> 32;
418 if (!ino)
419 ino = 2;
420 return ino;
421}
422
423/*
424 * kernel i_ino value
425 */
426static inline ino_t ceph_vino_to_ino(struct ceph_vino vino)
427{
428#if BITS_PER_LONG == 32
429 return ceph_ino_to_ino32(vino.ino);
430#else
431 return (ino_t)vino.ino;
432#endif
433}
434
435/*
436 * user-visible ino (stat, filldir)
437 */
438#if BITS_PER_LONG == 32
439static inline ino_t ceph_translate_ino(struct super_block *sb, ino_t ino)
440{
441 return ino;
442}
443#else
444static inline ino_t ceph_translate_ino(struct super_block *sb, ino_t ino)
445{
446 if (ceph_test_mount_opt(ceph_sb_to_client(sb), INO32))
447 ino = ceph_ino_to_ino32(ino);
448 return ino;
449}
450#endif
451
452
453/* for printf-style formatting */
454#define ceph_vinop(i) ceph_inode(i)->i_vino.ino, ceph_inode(i)->i_vino.snap
455
456static inline u64 ceph_ino(struct inode *inode)
457{
458 return ceph_inode(inode)->i_vino.ino;
459}
460static inline u64 ceph_snap(struct inode *inode)
461{
462 return ceph_inode(inode)->i_vino.snap;
463}
464
465static inline int ceph_ino_compare(struct inode *inode, void *data)
466{
467 struct ceph_vino *pvino = (struct ceph_vino *)data;
468 struct ceph_inode_info *ci = ceph_inode(inode);
469 return ci->i_vino.ino == pvino->ino &&
470 ci->i_vino.snap == pvino->snap;
471}
472
473static inline struct inode *ceph_find_inode(struct super_block *sb,
474 struct ceph_vino vino)
475{
476 ino_t t = ceph_vino_to_ino(vino);
477 return ilookup5(sb, t, ceph_ino_compare, &vino);
478}
479
480
481/*
482 * Ceph inode.
483 */
484#define CEPH_I_DIR_ORDERED (1 << 0) /* dentries in dir are ordered */
485#define CEPH_I_NODELAY (1 << 1) /* do not delay cap release */
486#define CEPH_I_FLUSH (1 << 2) /* do not delay flush of dirty metadata */
487#define CEPH_I_NOFLUSH (1 << 3) /* do not flush dirty caps */
488#define CEPH_I_POOL_PERM (1 << 4) /* pool rd/wr bits are valid */
489#define CEPH_I_POOL_RD (1 << 5) /* can read from pool */
490#define CEPH_I_POOL_WR (1 << 6) /* can write to pool */
491#define CEPH_I_SEC_INITED (1 << 7) /* security initialized */
492#define CEPH_I_CAP_DROPPED (1 << 8) /* caps were forcibly dropped */
493#define CEPH_I_KICK_FLUSH (1 << 9) /* kick flushing caps */
494#define CEPH_I_FLUSH_SNAPS (1 << 10) /* need flush snapss */
495#define CEPH_I_ERROR_WRITE (1 << 11) /* have seen write errors */
496#define CEPH_I_ERROR_FILELOCK (1 << 12) /* have seen file lock errors */
497
498
499/*
500 * We set the ERROR_WRITE bit when we start seeing write errors on an inode
501 * and then clear it when they start succeeding. Note that we do a lockless
502 * check first, and only take the lock if it looks like it needs to be changed.
503 * The write submission code just takes this as a hint, so we're not too
504 * worried if a few slip through in either direction.
505 */
506static inline void ceph_set_error_write(struct ceph_inode_info *ci)
507{
508 if (!(READ_ONCE(ci->i_ceph_flags) & CEPH_I_ERROR_WRITE)) {
509 spin_lock(&ci->i_ceph_lock);
510 ci->i_ceph_flags |= CEPH_I_ERROR_WRITE;
511 spin_unlock(&ci->i_ceph_lock);
512 }
513}
514
515static inline void ceph_clear_error_write(struct ceph_inode_info *ci)
516{
517 if (READ_ONCE(ci->i_ceph_flags) & CEPH_I_ERROR_WRITE) {
518 spin_lock(&ci->i_ceph_lock);
519 ci->i_ceph_flags &= ~CEPH_I_ERROR_WRITE;
520 spin_unlock(&ci->i_ceph_lock);
521 }
522}
523
524static inline void __ceph_dir_set_complete(struct ceph_inode_info *ci,
525 long long release_count,
526 long long ordered_count)
527{
528 smp_mb__before_atomic();
529 atomic64_set(&ci->i_complete_seq[0], release_count);
530 atomic64_set(&ci->i_complete_seq[1], ordered_count);
531}
532
533static inline void __ceph_dir_clear_complete(struct ceph_inode_info *ci)
534{
535 atomic64_inc(&ci->i_release_count);
536}
537
538static inline void __ceph_dir_clear_ordered(struct ceph_inode_info *ci)
539{
540 atomic64_inc(&ci->i_ordered_count);
541}
542
543static inline bool __ceph_dir_is_complete(struct ceph_inode_info *ci)
544{
545 return atomic64_read(&ci->i_complete_seq[0]) ==
546 atomic64_read(&ci->i_release_count);
547}
548
549static inline bool __ceph_dir_is_complete_ordered(struct ceph_inode_info *ci)
550{
551 return atomic64_read(&ci->i_complete_seq[0]) ==
552 atomic64_read(&ci->i_release_count) &&
553 atomic64_read(&ci->i_complete_seq[1]) ==
554 atomic64_read(&ci->i_ordered_count);
555}
556
557static inline void ceph_dir_clear_complete(struct inode *inode)
558{
559 __ceph_dir_clear_complete(ceph_inode(inode));
560}
561
562static inline void ceph_dir_clear_ordered(struct inode *inode)
563{
564 __ceph_dir_clear_ordered(ceph_inode(inode));
565}
566
567static inline bool ceph_dir_is_complete_ordered(struct inode *inode)
568{
569 bool ret = __ceph_dir_is_complete_ordered(ceph_inode(inode));
570 smp_rmb();
571 return ret;
572}
573
574/* find a specific frag @f */
575extern struct ceph_inode_frag *__ceph_find_frag(struct ceph_inode_info *ci,
576 u32 f);
577
578/*
579 * choose fragment for value @v. copy frag content to pfrag, if leaf
580 * exists
581 */
582extern u32 ceph_choose_frag(struct ceph_inode_info *ci, u32 v,
583 struct ceph_inode_frag *pfrag,
584 int *found);
585
586static inline struct ceph_dentry_info *ceph_dentry(struct dentry *dentry)
587{
588 return (struct ceph_dentry_info *)dentry->d_fsdata;
589}
590
591/*
592 * caps helpers
593 */
594static inline bool __ceph_is_any_real_caps(struct ceph_inode_info *ci)
595{
596 return !RB_EMPTY_ROOT(&ci->i_caps);
597}
598
599extern int __ceph_caps_issued(struct ceph_inode_info *ci, int *implemented);
600extern int __ceph_caps_issued_mask(struct ceph_inode_info *ci, int mask, int t);
601extern int __ceph_caps_issued_other(struct ceph_inode_info *ci,
602 struct ceph_cap *cap);
603
604static inline int ceph_caps_issued(struct ceph_inode_info *ci)
605{
606 int issued;
607 spin_lock(&ci->i_ceph_lock);
608 issued = __ceph_caps_issued(ci, NULL);
609 spin_unlock(&ci->i_ceph_lock);
610 return issued;
611}
612
613static inline int ceph_caps_issued_mask(struct ceph_inode_info *ci, int mask,
614 int touch)
615{
616 int r;
617 spin_lock(&ci->i_ceph_lock);
618 r = __ceph_caps_issued_mask(ci, mask, touch);
619 spin_unlock(&ci->i_ceph_lock);
620 return r;
621}
622
623static inline int __ceph_caps_dirty(struct ceph_inode_info *ci)
624{
625 return ci->i_dirty_caps | ci->i_flushing_caps;
626}
627extern struct ceph_cap_flush *ceph_alloc_cap_flush(void);
628extern void ceph_free_cap_flush(struct ceph_cap_flush *cf);
629extern int __ceph_mark_dirty_caps(struct ceph_inode_info *ci, int mask,
630 struct ceph_cap_flush **pcf);
631
632extern int __ceph_caps_revoking_other(struct ceph_inode_info *ci,
633 struct ceph_cap *ocap, int mask);
634extern int ceph_caps_revoking(struct ceph_inode_info *ci, int mask);
635extern int __ceph_caps_used(struct ceph_inode_info *ci);
636
637extern int __ceph_caps_file_wanted(struct ceph_inode_info *ci);
638
639/*
640 * wanted, by virtue of open file modes AND cap refs (buffered/cached data)
641 */
642static inline int __ceph_caps_wanted(struct ceph_inode_info *ci)
643{
644 int w = __ceph_caps_file_wanted(ci) | __ceph_caps_used(ci);
645 if (w & CEPH_CAP_FILE_BUFFER)
646 w |= CEPH_CAP_FILE_EXCL; /* we want EXCL if dirty data */
647 return w;
648}
649
650/* what the mds thinks we want */
651extern int __ceph_caps_mds_wanted(struct ceph_inode_info *ci, bool check);
652
653extern void ceph_caps_init(struct ceph_mds_client *mdsc);
654extern void ceph_caps_finalize(struct ceph_mds_client *mdsc);
655extern void ceph_adjust_min_caps(struct ceph_mds_client *mdsc, int delta);
656extern int ceph_reserve_caps(struct ceph_mds_client *mdsc,
657 struct ceph_cap_reservation *ctx, int need);
658extern int ceph_unreserve_caps(struct ceph_mds_client *mdsc,
659 struct ceph_cap_reservation *ctx);
660extern void ceph_reservation_status(struct ceph_fs_client *client,
661 int *total, int *avail, int *used,
662 int *reserved, int *min);
663
664
665
666/*
667 * we keep buffered readdir results attached to file->private_data
668 */
669#define CEPH_F_SYNC 1
670#define CEPH_F_ATEND 2
671
672struct ceph_file_info {
673 short fmode; /* initialized on open */
674 short flags; /* CEPH_F_* */
675
676 spinlock_t rw_contexts_lock;
677 struct list_head rw_contexts;
678};
679
680struct ceph_dir_file_info {
681 struct ceph_file_info file_info;
682
683 /* readdir: position within the dir */
684 u32 frag;
685 struct ceph_mds_request *last_readdir;
686
687 /* readdir: position within a frag */
688 unsigned next_offset; /* offset of next chunk (last_name's + 1) */
689 char *last_name; /* last entry in previous chunk */
690 long long dir_release_count;
691 long long dir_ordered_count;
692 int readdir_cache_idx;
693
694 /* used for -o dirstat read() on directory thing */
695 char *dir_info;
696 int dir_info_len;
697};
698
699struct ceph_rw_context {
700 struct list_head list;
701 struct task_struct *thread;
702 int caps;
703};
704
705#define CEPH_DEFINE_RW_CONTEXT(_name, _caps) \
706 struct ceph_rw_context _name = { \
707 .thread = current, \
708 .caps = _caps, \
709 }
710
711static inline void ceph_add_rw_context(struct ceph_file_info *cf,
712 struct ceph_rw_context *ctx)
713{
714 spin_lock(&cf->rw_contexts_lock);
715 list_add(&ctx->list, &cf->rw_contexts);
716 spin_unlock(&cf->rw_contexts_lock);
717}
718
719static inline void ceph_del_rw_context(struct ceph_file_info *cf,
720 struct ceph_rw_context *ctx)
721{
722 spin_lock(&cf->rw_contexts_lock);
723 list_del(&ctx->list);
724 spin_unlock(&cf->rw_contexts_lock);
725}
726
727static inline struct ceph_rw_context*
728ceph_find_rw_context(struct ceph_file_info *cf)
729{
730 struct ceph_rw_context *ctx, *found = NULL;
731 spin_lock(&cf->rw_contexts_lock);
732 list_for_each_entry(ctx, &cf->rw_contexts, list) {
733 if (ctx->thread == current) {
734 found = ctx;
735 break;
736 }
737 }
738 spin_unlock(&cf->rw_contexts_lock);
739 return found;
740}
741
742struct ceph_readdir_cache_control {
743 struct page *page;
744 struct dentry **dentries;
745 int index;
746};
747
748/*
749 * A "snap realm" describes a subset of the file hierarchy sharing
750 * the same set of snapshots that apply to it. The realms themselves
751 * are organized into a hierarchy, such that children inherit (some of)
752 * the snapshots of their parents.
753 *
754 * All inodes within the realm that have capabilities are linked into a
755 * per-realm list.
756 */
757struct ceph_snap_realm {
758 u64 ino;
759 struct inode *inode;
760 atomic_t nref;
761 struct rb_node node;
762
763 u64 created, seq;
764 u64 parent_ino;
765 u64 parent_since; /* snapid when our current parent became so */
766
767 u64 *prior_parent_snaps; /* snaps inherited from any parents we */
768 u32 num_prior_parent_snaps; /* had prior to parent_since */
769 u64 *snaps; /* snaps specific to this realm */
770 u32 num_snaps;
771
772 struct ceph_snap_realm *parent;
773 struct list_head children; /* list of child realms */
774 struct list_head child_item;
775
776 struct list_head empty_item; /* if i have ref==0 */
777
778 struct list_head dirty_item; /* if realm needs new context */
779
780 /* the current set of snaps for this realm */
781 struct ceph_snap_context *cached_context;
782
783 struct list_head inodes_with_caps;
784 spinlock_t inodes_with_caps_lock;
785};
786
787static inline int default_congestion_kb(void)
788{
789 int congestion_kb;
790
791 /*
792 * Copied from NFS
793 *
794 * congestion size, scale with available memory.
795 *
796 * 64MB: 8192k
797 * 128MB: 11585k
798 * 256MB: 16384k
799 * 512MB: 23170k
800 * 1GB: 32768k
801 * 2GB: 46340k
802 * 4GB: 65536k
803 * 8GB: 92681k
804 * 16GB: 131072k
805 *
806 * This allows larger machines to have larger/more transfers.
807 * Limit the default to 256M
808 */
809 congestion_kb = (16*int_sqrt(totalram_pages)) << (PAGE_SHIFT-10);
810 if (congestion_kb > 256*1024)
811 congestion_kb = 256*1024;
812
813 return congestion_kb;
814}
815
816
817
818/* snap.c */
819struct ceph_snap_realm *ceph_lookup_snap_realm(struct ceph_mds_client *mdsc,
820 u64 ino);
821extern void ceph_get_snap_realm(struct ceph_mds_client *mdsc,
822 struct ceph_snap_realm *realm);
823extern void ceph_put_snap_realm(struct ceph_mds_client *mdsc,
824 struct ceph_snap_realm *realm);
825extern int ceph_update_snap_trace(struct ceph_mds_client *m,
826 void *p, void *e, bool deletion,
827 struct ceph_snap_realm **realm_ret);
828extern void ceph_handle_snap(struct ceph_mds_client *mdsc,
829 struct ceph_mds_session *session,
830 struct ceph_msg *msg);
831extern void ceph_queue_cap_snap(struct ceph_inode_info *ci);
832extern int __ceph_finish_cap_snap(struct ceph_inode_info *ci,
833 struct ceph_cap_snap *capsnap);
834extern void ceph_cleanup_empty_realms(struct ceph_mds_client *mdsc);
835
836/*
837 * a cap_snap is "pending" if it is still awaiting an in-progress
838 * sync write (that may/may not still update size, mtime, etc.).
839 */
840static inline bool __ceph_have_pending_cap_snap(struct ceph_inode_info *ci)
841{
842 return !list_empty(&ci->i_cap_snaps) &&
843 list_last_entry(&ci->i_cap_snaps, struct ceph_cap_snap,
844 ci_item)->writing;
845}
846
847/* inode.c */
848extern const struct inode_operations ceph_file_iops;
849
850extern struct inode *ceph_alloc_inode(struct super_block *sb);
851extern void ceph_destroy_inode(struct inode *inode);
852extern int ceph_drop_inode(struct inode *inode);
853
854extern struct inode *ceph_get_inode(struct super_block *sb,
855 struct ceph_vino vino);
856extern struct inode *ceph_get_snapdir(struct inode *parent);
857extern int ceph_fill_file_size(struct inode *inode, int issued,
858 u32 truncate_seq, u64 truncate_size, u64 size);
859extern void ceph_fill_file_time(struct inode *inode, int issued,
860 u64 time_warp_seq, struct timespec *ctime,
861 struct timespec *mtime, struct timespec *atime);
862extern int ceph_fill_trace(struct super_block *sb,
863 struct ceph_mds_request *req);
864extern int ceph_readdir_prepopulate(struct ceph_mds_request *req,
865 struct ceph_mds_session *session);
866
867extern int ceph_inode_holds_cap(struct inode *inode, int mask);
868
869extern bool ceph_inode_set_size(struct inode *inode, loff_t size);
870extern void __ceph_do_pending_vmtruncate(struct inode *inode);
871extern void ceph_queue_vmtruncate(struct inode *inode);
872
873extern void ceph_queue_invalidate(struct inode *inode);
874extern void ceph_queue_writeback(struct inode *inode);
875
876extern int __ceph_do_getattr(struct inode *inode, struct page *locked_page,
877 int mask, bool force);
878static inline int ceph_do_getattr(struct inode *inode, int mask, bool force)
879{
880 return __ceph_do_getattr(inode, NULL, mask, force);
881}
882extern int ceph_permission(struct inode *inode, int mask);
883extern int __ceph_setattr(struct inode *inode, struct iattr *attr);
884extern int ceph_setattr(struct dentry *dentry, struct iattr *attr);
885extern int ceph_getattr(const struct path *path, struct kstat *stat,
886 u32 request_mask, unsigned int flags);
887
888/* xattr.c */
889int __ceph_setxattr(struct inode *, const char *, const void *, size_t, int);
890ssize_t __ceph_getxattr(struct inode *, const char *, void *, size_t);
891extern ssize_t ceph_listxattr(struct dentry *, char *, size_t);
892extern void __ceph_build_xattrs_blob(struct ceph_inode_info *ci);
893extern void __ceph_destroy_xattrs(struct ceph_inode_info *ci);
894extern void __init ceph_xattr_init(void);
895extern void ceph_xattr_exit(void);
896extern const struct xattr_handler *ceph_xattr_handlers[];
897
898#ifdef CONFIG_SECURITY
899extern bool ceph_security_xattr_deadlock(struct inode *in);
900extern bool ceph_security_xattr_wanted(struct inode *in);
901#else
902static inline bool ceph_security_xattr_deadlock(struct inode *in)
903{
904 return false;
905}
906static inline bool ceph_security_xattr_wanted(struct inode *in)
907{
908 return false;
909}
910#endif
911
912/* acl.c */
913struct ceph_acls_info {
914 void *default_acl;
915 void *acl;
916 struct ceph_pagelist *pagelist;
917};
918
919#ifdef CONFIG_CEPH_FS_POSIX_ACL
920
921struct posix_acl *ceph_get_acl(struct inode *, int);
922int ceph_set_acl(struct inode *inode, struct posix_acl *acl, int type);
923int ceph_pre_init_acls(struct inode *dir, umode_t *mode,
924 struct ceph_acls_info *info);
925void ceph_init_inode_acls(struct inode *inode, struct ceph_acls_info *info);
926void ceph_release_acls_info(struct ceph_acls_info *info);
927
928static inline void ceph_forget_all_cached_acls(struct inode *inode)
929{
930 forget_all_cached_acls(inode);
931}
932
933#else
934
935#define ceph_get_acl NULL
936#define ceph_set_acl NULL
937
938static inline int ceph_pre_init_acls(struct inode *dir, umode_t *mode,
939 struct ceph_acls_info *info)
940{
941 return 0;
942}
943static inline void ceph_init_inode_acls(struct inode *inode,
944 struct ceph_acls_info *info)
945{
946}
947static inline void ceph_release_acls_info(struct ceph_acls_info *info)
948{
949}
950static inline int ceph_acl_chmod(struct dentry *dentry, struct inode *inode)
951{
952 return 0;
953}
954
955static inline void ceph_forget_all_cached_acls(struct inode *inode)
956{
957}
958
959#endif
960
961/* caps.c */
962extern const char *ceph_cap_string(int c);
963extern void ceph_handle_caps(struct ceph_mds_session *session,
964 struct ceph_msg *msg);
965extern struct ceph_cap *ceph_get_cap(struct ceph_mds_client *mdsc,
966 struct ceph_cap_reservation *ctx);
967extern void ceph_add_cap(struct inode *inode,
968 struct ceph_mds_session *session, u64 cap_id,
969 int fmode, unsigned issued, unsigned wanted,
970 unsigned cap, unsigned seq, u64 realmino, int flags,
971 struct ceph_cap **new_cap);
972extern void __ceph_remove_cap(struct ceph_cap *cap, bool queue_release);
973extern void ceph_put_cap(struct ceph_mds_client *mdsc,
974 struct ceph_cap *cap);
975extern int ceph_is_any_caps(struct inode *inode);
976
977extern void ceph_queue_caps_release(struct inode *inode);
978extern int ceph_write_inode(struct inode *inode, struct writeback_control *wbc);
979extern int ceph_fsync(struct file *file, loff_t start, loff_t end,
980 int datasync);
981extern void ceph_early_kick_flushing_caps(struct ceph_mds_client *mdsc,
982 struct ceph_mds_session *session);
983extern void ceph_kick_flushing_caps(struct ceph_mds_client *mdsc,
984 struct ceph_mds_session *session);
985extern struct ceph_cap *ceph_get_cap_for_mds(struct ceph_inode_info *ci,
986 int mds);
987extern int ceph_get_cap_mds(struct inode *inode);
988extern void ceph_get_cap_refs(struct ceph_inode_info *ci, int caps);
989extern void ceph_put_cap_refs(struct ceph_inode_info *ci, int had);
990extern void ceph_put_wrbuffer_cap_refs(struct ceph_inode_info *ci, int nr,
991 struct ceph_snap_context *snapc);
992extern void ceph_flush_snaps(struct ceph_inode_info *ci,
993 struct ceph_mds_session **psession);
994extern bool __ceph_should_report_size(struct ceph_inode_info *ci);
995extern void ceph_check_caps(struct ceph_inode_info *ci, int flags,
996 struct ceph_mds_session *session);
997extern void ceph_check_delayed_caps(struct ceph_mds_client *mdsc);
998extern void ceph_flush_dirty_caps(struct ceph_mds_client *mdsc);
999extern int ceph_drop_caps_for_unlink(struct inode *inode);
1000extern int ceph_encode_inode_release(void **p, struct inode *inode,
1001 int mds, int drop, int unless, int force);
1002extern int ceph_encode_dentry_release(void **p, struct dentry *dn,
1003 struct inode *dir,
1004 int mds, int drop, int unless);
1005
1006extern int ceph_get_caps(struct ceph_inode_info *ci, int need, int want,
1007 loff_t endoff, int *got, struct page **pinned_page);
1008extern int ceph_try_get_caps(struct ceph_inode_info *ci,
1009 int need, int want, int *got);
1010
1011/* for counting open files by mode */
1012extern void __ceph_get_fmode(struct ceph_inode_info *ci, int mode);
1013extern void ceph_put_fmode(struct ceph_inode_info *ci, int mode);
1014
1015/* addr.c */
1016extern const struct address_space_operations ceph_aops;
1017extern int ceph_mmap(struct file *file, struct vm_area_struct *vma);
1018extern int ceph_uninline_data(struct file *filp, struct page *locked_page);
1019extern int ceph_pool_perm_check(struct ceph_inode_info *ci, int need);
1020extern void ceph_pool_perm_destroy(struct ceph_mds_client* mdsc);
1021
1022/* file.c */
1023extern const struct file_operations ceph_file_fops;
1024
1025extern int ceph_renew_caps(struct inode *inode);
1026extern int ceph_open(struct inode *inode, struct file *file);
1027extern int ceph_atomic_open(struct inode *dir, struct dentry *dentry,
1028 struct file *file, unsigned flags, umode_t mode,
1029 int *opened);
1030extern int ceph_release(struct inode *inode, struct file *filp);
1031extern void ceph_fill_inline_data(struct inode *inode, struct page *locked_page,
1032 char *data, size_t len);
1033
1034/* dir.c */
1035extern const struct file_operations ceph_dir_fops;
1036extern const struct file_operations ceph_snapdir_fops;
1037extern const struct inode_operations ceph_dir_iops;
1038extern const struct inode_operations ceph_snapdir_iops;
1039extern const struct dentry_operations ceph_dentry_ops;
1040
1041extern loff_t ceph_make_fpos(unsigned high, unsigned off, bool hash_order);
1042extern int ceph_handle_notrace_create(struct inode *dir, struct dentry *dentry);
1043extern int ceph_handle_snapdir(struct ceph_mds_request *req,
1044 struct dentry *dentry, int err);
1045extern struct dentry *ceph_finish_lookup(struct ceph_mds_request *req,
1046 struct dentry *dentry, int err);
1047
1048extern void ceph_dentry_lru_add(struct dentry *dn);
1049extern void ceph_dentry_lru_touch(struct dentry *dn);
1050extern void ceph_dentry_lru_del(struct dentry *dn);
1051extern void ceph_invalidate_dentry_lease(struct dentry *dentry);
1052extern unsigned ceph_dentry_hash(struct inode *dir, struct dentry *dn);
1053extern void ceph_readdir_cache_release(struct ceph_readdir_cache_control *ctl);
1054
1055/* ioctl.c */
1056extern long ceph_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
1057
1058/* export.c */
1059extern const struct export_operations ceph_export_ops;
1060
1061/* locks.c */
1062extern __init void ceph_flock_init(void);
1063extern int ceph_lock(struct file *file, int cmd, struct file_lock *fl);
1064extern int ceph_flock(struct file *file, int cmd, struct file_lock *fl);
1065extern void ceph_count_locks(struct inode *inode, int *p_num, int *f_num);
1066extern int ceph_encode_locks_to_buffer(struct inode *inode,
1067 struct ceph_filelock *flocks,
1068 int num_fcntl_locks,
1069 int num_flock_locks);
1070extern int ceph_locks_to_pagelist(struct ceph_filelock *flocks,
1071 struct ceph_pagelist *pagelist,
1072 int num_fcntl_locks, int num_flock_locks);
1073
1074/* debugfs.c */
1075extern int ceph_fs_debugfs_init(struct ceph_fs_client *client);
1076extern void ceph_fs_debugfs_cleanup(struct ceph_fs_client *client);
1077
1078/* quota.c */
1079static inline bool __ceph_has_any_quota(struct ceph_inode_info *ci)
1080{
1081 return ci->i_max_files || ci->i_max_bytes;
1082}
1083
1084extern void ceph_adjust_quota_realms_count(struct inode *inode, bool inc);
1085
1086static inline void __ceph_update_quota(struct ceph_inode_info *ci,
1087 u64 max_bytes, u64 max_files)
1088{
1089 bool had_quota, has_quota;
1090 had_quota = __ceph_has_any_quota(ci);
1091 ci->i_max_bytes = max_bytes;
1092 ci->i_max_files = max_files;
1093 has_quota = __ceph_has_any_quota(ci);
1094
1095 if (had_quota != has_quota)
1096 ceph_adjust_quota_realms_count(&ci->vfs_inode, has_quota);
1097}
1098
1099extern void ceph_handle_quota(struct ceph_mds_client *mdsc,
1100 struct ceph_mds_session *session,
1101 struct ceph_msg *msg);
1102extern bool ceph_quota_is_max_files_exceeded(struct inode *inode);
1103extern bool ceph_quota_is_same_realm(struct inode *old, struct inode *new);
1104extern bool ceph_quota_is_max_bytes_exceeded(struct inode *inode,
1105 loff_t newlen);
1106extern bool ceph_quota_is_max_bytes_approaching(struct inode *inode,
1107 loff_t newlen);
1108extern bool ceph_quota_update_statfs(struct ceph_fs_client *fsc,
1109 struct kstatfs *buf);
1110
1111#endif /* _FS_CEPH_SUPER_H */