Loading...
1#ifndef _FS_CEPH_SUPER_H
2#define _FS_CEPH_SUPER_H
3
4#include <linux/ceph/ceph_debug.h>
5
6#include <asm/unaligned.h>
7#include <linux/backing-dev.h>
8#include <linux/completion.h>
9#include <linux/exportfs.h>
10#include <linux/fs.h>
11#include <linux/mempool.h>
12#include <linux/pagemap.h>
13#include <linux/wait.h>
14#include <linux/writeback.h>
15#include <linux/slab.h>
16#include <linux/posix_acl.h>
17
18#include <linux/ceph/libceph.h>
19
20#ifdef CONFIG_CEPH_FSCACHE
21#include <linux/fscache.h>
22#endif
23
24/* f_type in struct statfs */
25#define CEPH_SUPER_MAGIC 0x00c36400
26
27/* large granularity for statfs utilization stats to facilitate
28 * large volume sizes on 32-bit machines. */
29#define CEPH_BLOCK_SHIFT 22 /* 4 MB */
30#define CEPH_BLOCK (1 << CEPH_BLOCK_SHIFT)
31
32#define CEPH_MOUNT_OPT_DIRSTAT (1<<4) /* `cat dirname` for stats */
33#define CEPH_MOUNT_OPT_RBYTES (1<<5) /* dir st_bytes = rbytes */
34#define CEPH_MOUNT_OPT_NOASYNCREADDIR (1<<7) /* no dcache readdir */
35#define CEPH_MOUNT_OPT_INO32 (1<<8) /* 32 bit inos */
36#define CEPH_MOUNT_OPT_DCACHE (1<<9) /* use dcache for readdir etc */
37#define CEPH_MOUNT_OPT_FSCACHE (1<<10) /* use fscache */
38
39#define CEPH_MOUNT_OPT_DEFAULT (CEPH_MOUNT_OPT_RBYTES)
40
41#define ceph_set_mount_opt(fsc, opt) \
42 (fsc)->mount_options->flags |= CEPH_MOUNT_OPT_##opt;
43#define ceph_test_mount_opt(fsc, opt) \
44 (!!((fsc)->mount_options->flags & CEPH_MOUNT_OPT_##opt))
45
46#define CEPH_RSIZE_DEFAULT 0 /* max read size */
47#define CEPH_RASIZE_DEFAULT (8192*1024) /* readahead */
48#define CEPH_MAX_READDIR_DEFAULT 1024
49#define CEPH_MAX_READDIR_BYTES_DEFAULT (512*1024)
50#define CEPH_SNAPDIRNAME_DEFAULT ".snap"
51
52struct ceph_mount_options {
53 int flags;
54 int sb_flags;
55
56 int wsize; /* max write size */
57 int rsize; /* max read size */
58 int rasize; /* max readahead */
59 int congestion_kb; /* max writeback in flight */
60 int caps_wanted_delay_min, caps_wanted_delay_max;
61 int cap_release_safety;
62 int max_readdir; /* max readdir result (entires) */
63 int max_readdir_bytes; /* max readdir result (bytes) */
64
65 /*
66 * everything above this point can be memcmp'd; everything below
67 * is handled in compare_mount_options()
68 */
69
70 char *snapdir_name; /* default ".snap" */
71};
72
73struct ceph_fs_client {
74 struct super_block *sb;
75
76 struct ceph_mount_options *mount_options;
77 struct ceph_client *client;
78
79 unsigned long mount_state;
80 int min_caps; /* min caps i added */
81
82 struct ceph_mds_client *mdsc;
83
84 /* writeback */
85 mempool_t *wb_pagevec_pool;
86 struct workqueue_struct *wb_wq;
87 struct workqueue_struct *pg_inv_wq;
88 struct workqueue_struct *trunc_wq;
89 atomic_long_t writeback_count;
90
91 struct backing_dev_info backing_dev_info;
92
93#ifdef CONFIG_DEBUG_FS
94 struct dentry *debugfs_dentry_lru, *debugfs_caps;
95 struct dentry *debugfs_congestion_kb;
96 struct dentry *debugfs_bdi;
97 struct dentry *debugfs_mdsc, *debugfs_mdsmap;
98#endif
99
100#ifdef CONFIG_CEPH_FSCACHE
101 struct fscache_cookie *fscache;
102 struct workqueue_struct *revalidate_wq;
103#endif
104};
105
106
107/*
108 * File i/o capability. This tracks shared state with the metadata
109 * server that allows us to cache or writeback attributes or to read
110 * and write data. For any given inode, we should have one or more
111 * capabilities, one issued by each metadata server, and our
112 * cumulative access is the OR of all issued capabilities.
113 *
114 * Each cap is referenced by the inode's i_caps rbtree and by per-mds
115 * session capability lists.
116 */
117struct ceph_cap {
118 struct ceph_inode_info *ci;
119 struct rb_node ci_node; /* per-ci cap tree */
120 struct ceph_mds_session *session;
121 struct list_head session_caps; /* per-session caplist */
122 int mds;
123 u64 cap_id; /* unique cap id (mds provided) */
124 int issued; /* latest, from the mds */
125 int implemented; /* implemented superset of issued (for revocation) */
126 int mds_wanted;
127 u32 seq, issue_seq, mseq;
128 u32 cap_gen; /* active/stale cycle */
129 unsigned long last_used;
130 struct list_head caps_item;
131};
132
133#define CHECK_CAPS_NODELAY 1 /* do not delay any further */
134#define CHECK_CAPS_AUTHONLY 2 /* only check auth cap */
135#define CHECK_CAPS_FLUSH 4 /* flush any dirty caps */
136
137/*
138 * Snapped cap state that is pending flush to mds. When a snapshot occurs,
139 * we first complete any in-process sync writes and writeback any dirty
140 * data before flushing the snapped state (tracked here) back to the MDS.
141 */
142struct ceph_cap_snap {
143 atomic_t nref;
144 struct ceph_inode_info *ci;
145 struct list_head ci_item, flushing_item;
146
147 u64 follows, flush_tid;
148 int issued, dirty;
149 struct ceph_snap_context *context;
150
151 umode_t mode;
152 kuid_t uid;
153 kgid_t gid;
154
155 struct ceph_buffer *xattr_blob;
156 u64 xattr_version;
157
158 u64 size;
159 struct timespec mtime, atime, ctime;
160 u64 time_warp_seq;
161 int writing; /* a sync write is still in progress */
162 int dirty_pages; /* dirty pages awaiting writeback */
163};
164
165static inline void ceph_put_cap_snap(struct ceph_cap_snap *capsnap)
166{
167 if (atomic_dec_and_test(&capsnap->nref)) {
168 if (capsnap->xattr_blob)
169 ceph_buffer_put(capsnap->xattr_blob);
170 kfree(capsnap);
171 }
172}
173
174/*
175 * The frag tree describes how a directory is fragmented, potentially across
176 * multiple metadata servers. It is also used to indicate points where
177 * metadata authority is delegated, and whether/where metadata is replicated.
178 *
179 * A _leaf_ frag will be present in the i_fragtree IFF there is
180 * delegation info. That is, if mds >= 0 || ndist > 0.
181 */
182#define CEPH_MAX_DIRFRAG_REP 4
183
184struct ceph_inode_frag {
185 struct rb_node node;
186
187 /* fragtree state */
188 u32 frag;
189 int split_by; /* i.e. 2^(split_by) children */
190
191 /* delegation and replication info */
192 int mds; /* -1 if same authority as parent */
193 int ndist; /* >0 if replicated */
194 int dist[CEPH_MAX_DIRFRAG_REP];
195};
196
197/*
198 * We cache inode xattrs as an encoded blob until they are first used,
199 * at which point we parse them into an rbtree.
200 */
201struct ceph_inode_xattr {
202 struct rb_node node;
203
204 const char *name;
205 int name_len;
206 const char *val;
207 int val_len;
208 int dirty;
209
210 int should_free_name;
211 int should_free_val;
212};
213
214/*
215 * Ceph dentry state
216 */
217struct ceph_dentry_info {
218 struct ceph_mds_session *lease_session;
219 u32 lease_gen, lease_shared_gen;
220 u32 lease_seq;
221 unsigned long lease_renew_after, lease_renew_from;
222 struct list_head lru;
223 struct dentry *dentry;
224 u64 time;
225 u64 offset;
226};
227
228struct ceph_inode_xattrs_info {
229 /*
230 * (still encoded) xattr blob. we avoid the overhead of parsing
231 * this until someone actually calls getxattr, etc.
232 *
233 * blob->vec.iov_len == 4 implies there are no xattrs; blob ==
234 * NULL means we don't know.
235 */
236 struct ceph_buffer *blob, *prealloc_blob;
237
238 struct rb_root index;
239 bool dirty;
240 int count;
241 int names_size;
242 int vals_size;
243 u64 version, index_version;
244};
245
246/*
247 * Ceph inode.
248 */
249struct ceph_inode_info {
250 struct ceph_vino i_vino; /* ceph ino + snap */
251
252 spinlock_t i_ceph_lock;
253
254 u64 i_version;
255 u32 i_time_warp_seq;
256
257 unsigned i_ceph_flags;
258 atomic_t i_release_count;
259 atomic_t i_complete_count;
260
261 struct ceph_dir_layout i_dir_layout;
262 struct ceph_file_layout i_layout;
263 char *i_symlink;
264
265 /* for dirs */
266 struct timespec i_rctime;
267 u64 i_rbytes, i_rfiles, i_rsubdirs;
268 u64 i_files, i_subdirs;
269
270 struct rb_root i_fragtree;
271 struct mutex i_fragtree_mutex;
272
273 struct ceph_inode_xattrs_info i_xattrs;
274
275 /* capabilities. protected _both_ by i_ceph_lock and cap->session's
276 * s_mutex. */
277 struct rb_root i_caps; /* cap list */
278 struct ceph_cap *i_auth_cap; /* authoritative cap, if any */
279 unsigned i_dirty_caps, i_flushing_caps; /* mask of dirtied fields */
280 struct list_head i_dirty_item, i_flushing_item;
281 u64 i_cap_flush_seq;
282 /* we need to track cap writeback on a per-cap-bit basis, to allow
283 * overlapping, pipelined cap flushes to the mds. we can probably
284 * reduce the tid to 8 bits if we're concerned about inode size. */
285 u16 i_cap_flush_last_tid, i_cap_flush_tid[CEPH_CAP_BITS];
286 wait_queue_head_t i_cap_wq; /* threads waiting on a capability */
287 unsigned long i_hold_caps_min; /* jiffies */
288 unsigned long i_hold_caps_max; /* jiffies */
289 struct list_head i_cap_delay_list; /* for delayed cap release to mds */
290 struct ceph_cap_reservation i_cap_migration_resv;
291 struct list_head i_cap_snaps; /* snapped state pending flush to mds */
292 struct ceph_snap_context *i_head_snapc; /* set if wr_buffer_head > 0 or
293 dirty|flushing caps */
294 unsigned i_snap_caps; /* cap bits for snapped files */
295 unsigned i_cap_exporting_issued;
296
297 int i_nr_by_mode[CEPH_FILE_MODE_NUM]; /* open file counts */
298
299 struct mutex i_truncate_mutex;
300 u32 i_truncate_seq; /* last truncate to smaller size */
301 u64 i_truncate_size; /* and the size we last truncated down to */
302 int i_truncate_pending; /* still need to call vmtruncate */
303
304 u64 i_max_size; /* max file size authorized by mds */
305 u64 i_reported_size; /* (max_)size reported to or requested of mds */
306 u64 i_wanted_max_size; /* offset we'd like to write too */
307 u64 i_requested_max_size; /* max_size we've requested */
308
309 /* held references to caps */
310 int i_pin_ref;
311 int i_rd_ref, i_rdcache_ref, i_wr_ref, i_wb_ref;
312 int i_wrbuffer_ref, i_wrbuffer_ref_head;
313 u32 i_shared_gen; /* increment each time we get FILE_SHARED */
314 u32 i_rdcache_gen; /* incremented each time we get FILE_CACHE. */
315 u32 i_rdcache_revoking; /* RDCACHE gen to async invalidate, if any */
316
317 struct list_head i_unsafe_writes; /* uncommitted sync writes */
318 struct list_head i_unsafe_dirops; /* uncommitted mds dir ops */
319 spinlock_t i_unsafe_lock;
320
321 struct ceph_snap_realm *i_snap_realm; /* snap realm (if caps) */
322 int i_snap_realm_counter; /* snap realm (if caps) */
323 struct list_head i_snap_realm_item;
324 struct list_head i_snap_flush_item;
325
326 struct work_struct i_wb_work; /* writeback work */
327 struct work_struct i_pg_inv_work; /* page invalidation work */
328
329 struct work_struct i_vmtruncate_work;
330
331#ifdef CONFIG_CEPH_FSCACHE
332 struct fscache_cookie *fscache;
333 u32 i_fscache_gen; /* sequence, for delayed fscache validate */
334 struct work_struct i_revalidate_work;
335#endif
336 struct inode vfs_inode; /* at end */
337};
338
339static inline struct ceph_inode_info *ceph_inode(struct inode *inode)
340{
341 return container_of(inode, struct ceph_inode_info, vfs_inode);
342}
343
344static inline struct ceph_fs_client *ceph_inode_to_client(struct inode *inode)
345{
346 return (struct ceph_fs_client *)inode->i_sb->s_fs_info;
347}
348
349static inline struct ceph_fs_client *ceph_sb_to_client(struct super_block *sb)
350{
351 return (struct ceph_fs_client *)sb->s_fs_info;
352}
353
354static inline struct ceph_vino ceph_vino(struct inode *inode)
355{
356 return ceph_inode(inode)->i_vino;
357}
358
359/*
360 * ino_t is <64 bits on many architectures, blech.
361 *
362 * i_ino (kernel inode) st_ino (userspace)
363 * i386 32 32
364 * x86_64+ino32 64 32
365 * x86_64 64 64
366 */
367static inline u32 ceph_ino_to_ino32(__u64 vino)
368{
369 u32 ino = vino & 0xffffffff;
370 ino ^= vino >> 32;
371 if (!ino)
372 ino = 2;
373 return ino;
374}
375
376/*
377 * kernel i_ino value
378 */
379static inline ino_t ceph_vino_to_ino(struct ceph_vino vino)
380{
381#if BITS_PER_LONG == 32
382 return ceph_ino_to_ino32(vino.ino);
383#else
384 return (ino_t)vino.ino;
385#endif
386}
387
388/*
389 * user-visible ino (stat, filldir)
390 */
391#if BITS_PER_LONG == 32
392static inline ino_t ceph_translate_ino(struct super_block *sb, ino_t ino)
393{
394 return ino;
395}
396#else
397static inline ino_t ceph_translate_ino(struct super_block *sb, ino_t ino)
398{
399 if (ceph_test_mount_opt(ceph_sb_to_client(sb), INO32))
400 ino = ceph_ino_to_ino32(ino);
401 return ino;
402}
403#endif
404
405
406/* for printf-style formatting */
407#define ceph_vinop(i) ceph_inode(i)->i_vino.ino, ceph_inode(i)->i_vino.snap
408
409static inline u64 ceph_ino(struct inode *inode)
410{
411 return ceph_inode(inode)->i_vino.ino;
412}
413static inline u64 ceph_snap(struct inode *inode)
414{
415 return ceph_inode(inode)->i_vino.snap;
416}
417
418static inline int ceph_ino_compare(struct inode *inode, void *data)
419{
420 struct ceph_vino *pvino = (struct ceph_vino *)data;
421 struct ceph_inode_info *ci = ceph_inode(inode);
422 return ci->i_vino.ino == pvino->ino &&
423 ci->i_vino.snap == pvino->snap;
424}
425
426static inline struct inode *ceph_find_inode(struct super_block *sb,
427 struct ceph_vino vino)
428{
429 ino_t t = ceph_vino_to_ino(vino);
430 return ilookup5(sb, t, ceph_ino_compare, &vino);
431}
432
433
434/*
435 * Ceph inode.
436 */
437#define CEPH_I_NODELAY 4 /* do not delay cap release */
438#define CEPH_I_FLUSH 8 /* do not delay flush of dirty metadata */
439#define CEPH_I_NOFLUSH 16 /* do not flush dirty caps */
440
441static inline void __ceph_dir_set_complete(struct ceph_inode_info *ci,
442 int release_count)
443{
444 atomic_set(&ci->i_complete_count, release_count);
445}
446
447static inline void __ceph_dir_clear_complete(struct ceph_inode_info *ci)
448{
449 atomic_inc(&ci->i_release_count);
450}
451
452static inline bool __ceph_dir_is_complete(struct ceph_inode_info *ci)
453{
454 return atomic_read(&ci->i_complete_count) ==
455 atomic_read(&ci->i_release_count);
456}
457
458static inline void ceph_dir_clear_complete(struct inode *inode)
459{
460 __ceph_dir_clear_complete(ceph_inode(inode));
461}
462
463static inline bool ceph_dir_is_complete(struct inode *inode)
464{
465 return __ceph_dir_is_complete(ceph_inode(inode));
466}
467
468
469/* find a specific frag @f */
470extern struct ceph_inode_frag *__ceph_find_frag(struct ceph_inode_info *ci,
471 u32 f);
472
473/*
474 * choose fragment for value @v. copy frag content to pfrag, if leaf
475 * exists
476 */
477extern u32 ceph_choose_frag(struct ceph_inode_info *ci, u32 v,
478 struct ceph_inode_frag *pfrag,
479 int *found);
480
481static inline struct ceph_dentry_info *ceph_dentry(struct dentry *dentry)
482{
483 return (struct ceph_dentry_info *)dentry->d_fsdata;
484}
485
486static inline loff_t ceph_make_fpos(unsigned frag, unsigned off)
487{
488 return ((loff_t)frag << 32) | (loff_t)off;
489}
490
491/*
492 * caps helpers
493 */
494static inline bool __ceph_is_any_real_caps(struct ceph_inode_info *ci)
495{
496 return !RB_EMPTY_ROOT(&ci->i_caps);
497}
498
499extern int __ceph_caps_issued(struct ceph_inode_info *ci, int *implemented);
500extern int __ceph_caps_issued_mask(struct ceph_inode_info *ci, int mask, int t);
501extern int __ceph_caps_issued_other(struct ceph_inode_info *ci,
502 struct ceph_cap *cap);
503
504static inline int ceph_caps_issued(struct ceph_inode_info *ci)
505{
506 int issued;
507 spin_lock(&ci->i_ceph_lock);
508 issued = __ceph_caps_issued(ci, NULL);
509 spin_unlock(&ci->i_ceph_lock);
510 return issued;
511}
512
513static inline int ceph_caps_issued_mask(struct ceph_inode_info *ci, int mask,
514 int touch)
515{
516 int r;
517 spin_lock(&ci->i_ceph_lock);
518 r = __ceph_caps_issued_mask(ci, mask, touch);
519 spin_unlock(&ci->i_ceph_lock);
520 return r;
521}
522
523static inline int __ceph_caps_dirty(struct ceph_inode_info *ci)
524{
525 return ci->i_dirty_caps | ci->i_flushing_caps;
526}
527extern int __ceph_mark_dirty_caps(struct ceph_inode_info *ci, int mask);
528
529extern int __ceph_caps_revoking_other(struct ceph_inode_info *ci,
530 struct ceph_cap *ocap, int mask);
531extern int ceph_caps_revoking(struct ceph_inode_info *ci, int mask);
532extern int __ceph_caps_used(struct ceph_inode_info *ci);
533
534extern int __ceph_caps_file_wanted(struct ceph_inode_info *ci);
535
536/*
537 * wanted, by virtue of open file modes AND cap refs (buffered/cached data)
538 */
539static inline int __ceph_caps_wanted(struct ceph_inode_info *ci)
540{
541 int w = __ceph_caps_file_wanted(ci) | __ceph_caps_used(ci);
542 if (w & CEPH_CAP_FILE_BUFFER)
543 w |= CEPH_CAP_FILE_EXCL; /* we want EXCL if dirty data */
544 return w;
545}
546
547/* what the mds thinks we want */
548extern int __ceph_caps_mds_wanted(struct ceph_inode_info *ci);
549
550extern void ceph_caps_init(struct ceph_mds_client *mdsc);
551extern void ceph_caps_finalize(struct ceph_mds_client *mdsc);
552extern void ceph_adjust_min_caps(struct ceph_mds_client *mdsc, int delta);
553extern void ceph_reserve_caps(struct ceph_mds_client *mdsc,
554 struct ceph_cap_reservation *ctx, int need);
555extern int ceph_unreserve_caps(struct ceph_mds_client *mdsc,
556 struct ceph_cap_reservation *ctx);
557extern void ceph_reservation_status(struct ceph_fs_client *client,
558 int *total, int *avail, int *used,
559 int *reserved, int *min);
560
561
562
563/*
564 * we keep buffered readdir results attached to file->private_data
565 */
566#define CEPH_F_SYNC 1
567#define CEPH_F_ATEND 2
568
569struct ceph_file_info {
570 short fmode; /* initialized on open */
571 short flags; /* CEPH_F_* */
572
573 /* readdir: position within the dir */
574 u32 frag;
575 struct ceph_mds_request *last_readdir;
576
577 /* readdir: position within a frag */
578 unsigned offset; /* offset of last chunk, adjusted for . and .. */
579 unsigned next_offset; /* offset of next chunk (last_name's + 1) */
580 char *last_name; /* last entry in previous chunk */
581 struct dentry *dentry; /* next dentry (for dcache readdir) */
582 int dir_release_count;
583
584 /* used for -o dirstat read() on directory thing */
585 char *dir_info;
586 int dir_info_len;
587};
588
589
590
591/*
592 * A "snap realm" describes a subset of the file hierarchy sharing
593 * the same set of snapshots that apply to it. The realms themselves
594 * are organized into a hierarchy, such that children inherit (some of)
595 * the snapshots of their parents.
596 *
597 * All inodes within the realm that have capabilities are linked into a
598 * per-realm list.
599 */
600struct ceph_snap_realm {
601 u64 ino;
602 atomic_t nref;
603 struct rb_node node;
604
605 u64 created, seq;
606 u64 parent_ino;
607 u64 parent_since; /* snapid when our current parent became so */
608
609 u64 *prior_parent_snaps; /* snaps inherited from any parents we */
610 u32 num_prior_parent_snaps; /* had prior to parent_since */
611 u64 *snaps; /* snaps specific to this realm */
612 u32 num_snaps;
613
614 struct ceph_snap_realm *parent;
615 struct list_head children; /* list of child realms */
616 struct list_head child_item;
617
618 struct list_head empty_item; /* if i have ref==0 */
619
620 struct list_head dirty_item; /* if realm needs new context */
621
622 /* the current set of snaps for this realm */
623 struct ceph_snap_context *cached_context;
624
625 struct list_head inodes_with_caps;
626 spinlock_t inodes_with_caps_lock;
627};
628
629static inline int default_congestion_kb(void)
630{
631 int congestion_kb;
632
633 /*
634 * Copied from NFS
635 *
636 * congestion size, scale with available memory.
637 *
638 * 64MB: 8192k
639 * 128MB: 11585k
640 * 256MB: 16384k
641 * 512MB: 23170k
642 * 1GB: 32768k
643 * 2GB: 46340k
644 * 4GB: 65536k
645 * 8GB: 92681k
646 * 16GB: 131072k
647 *
648 * This allows larger machines to have larger/more transfers.
649 * Limit the default to 256M
650 */
651 congestion_kb = (16*int_sqrt(totalram_pages)) << (PAGE_SHIFT-10);
652 if (congestion_kb > 256*1024)
653 congestion_kb = 256*1024;
654
655 return congestion_kb;
656}
657
658
659
660/* snap.c */
661struct ceph_snap_realm *ceph_lookup_snap_realm(struct ceph_mds_client *mdsc,
662 u64 ino);
663extern void ceph_get_snap_realm(struct ceph_mds_client *mdsc,
664 struct ceph_snap_realm *realm);
665extern void ceph_put_snap_realm(struct ceph_mds_client *mdsc,
666 struct ceph_snap_realm *realm);
667extern int ceph_update_snap_trace(struct ceph_mds_client *m,
668 void *p, void *e, bool deletion);
669extern void ceph_handle_snap(struct ceph_mds_client *mdsc,
670 struct ceph_mds_session *session,
671 struct ceph_msg *msg);
672extern void ceph_queue_cap_snap(struct ceph_inode_info *ci);
673extern int __ceph_finish_cap_snap(struct ceph_inode_info *ci,
674 struct ceph_cap_snap *capsnap);
675extern void ceph_cleanup_empty_realms(struct ceph_mds_client *mdsc);
676
677/*
678 * a cap_snap is "pending" if it is still awaiting an in-progress
679 * sync write (that may/may not still update size, mtime, etc.).
680 */
681static inline bool __ceph_have_pending_cap_snap(struct ceph_inode_info *ci)
682{
683 return !list_empty(&ci->i_cap_snaps) &&
684 list_entry(ci->i_cap_snaps.prev, struct ceph_cap_snap,
685 ci_item)->writing;
686}
687
688/* inode.c */
689extern const struct inode_operations ceph_file_iops;
690
691extern struct inode *ceph_alloc_inode(struct super_block *sb);
692extern void ceph_destroy_inode(struct inode *inode);
693extern int ceph_drop_inode(struct inode *inode);
694
695extern struct inode *ceph_get_inode(struct super_block *sb,
696 struct ceph_vino vino);
697extern struct inode *ceph_get_snapdir(struct inode *parent);
698extern int ceph_fill_file_size(struct inode *inode, int issued,
699 u32 truncate_seq, u64 truncate_size, u64 size);
700extern void ceph_fill_file_time(struct inode *inode, int issued,
701 u64 time_warp_seq, struct timespec *ctime,
702 struct timespec *mtime, struct timespec *atime);
703extern int ceph_fill_trace(struct super_block *sb,
704 struct ceph_mds_request *req,
705 struct ceph_mds_session *session);
706extern int ceph_readdir_prepopulate(struct ceph_mds_request *req,
707 struct ceph_mds_session *session);
708
709extern int ceph_inode_holds_cap(struct inode *inode, int mask);
710
711extern int ceph_inode_set_size(struct inode *inode, loff_t size);
712extern void __ceph_do_pending_vmtruncate(struct inode *inode);
713extern void ceph_queue_vmtruncate(struct inode *inode);
714
715extern void ceph_queue_invalidate(struct inode *inode);
716extern void ceph_queue_writeback(struct inode *inode);
717
718extern int ceph_do_getattr(struct inode *inode, int mask);
719extern int ceph_permission(struct inode *inode, int mask);
720extern int ceph_setattr(struct dentry *dentry, struct iattr *attr);
721extern int ceph_getattr(struct vfsmount *mnt, struct dentry *dentry,
722 struct kstat *stat);
723
724/* xattr.c */
725extern int ceph_setxattr(struct dentry *, const char *, const void *,
726 size_t, int);
727int __ceph_setxattr(struct dentry *, const char *, const void *, size_t, int);
728ssize_t __ceph_getxattr(struct inode *, const char *, void *, size_t);
729int __ceph_removexattr(struct dentry *, const char *);
730extern ssize_t ceph_getxattr(struct dentry *, const char *, void *, size_t);
731extern ssize_t ceph_listxattr(struct dentry *, char *, size_t);
732extern int ceph_removexattr(struct dentry *, const char *);
733extern void __ceph_build_xattrs_blob(struct ceph_inode_info *ci);
734extern void __ceph_destroy_xattrs(struct ceph_inode_info *ci);
735extern void __init ceph_xattr_init(void);
736extern void ceph_xattr_exit(void);
737
738/* acl.c */
739extern const struct xattr_handler *ceph_xattr_handlers[];
740
741#ifdef CONFIG_CEPH_FS_POSIX_ACL
742
743struct posix_acl *ceph_get_acl(struct inode *, int);
744int ceph_set_acl(struct inode *inode, struct posix_acl *acl, int type);
745int ceph_init_acl(struct dentry *, struct inode *, struct inode *);
746
747static inline void ceph_forget_all_cached_acls(struct inode *inode)
748{
749 forget_all_cached_acls(inode);
750}
751
752#else
753
754#define ceph_get_acl NULL
755#define ceph_set_acl NULL
756
757static inline int ceph_init_acl(struct dentry *dentry, struct inode *inode,
758 struct inode *dir)
759{
760 return 0;
761}
762
763static inline int ceph_acl_chmod(struct dentry *dentry, struct inode *inode)
764{
765 return 0;
766}
767
768static inline void ceph_forget_all_cached_acls(struct inode *inode)
769{
770}
771
772#endif
773
774/* caps.c */
775extern const char *ceph_cap_string(int c);
776extern void ceph_handle_caps(struct ceph_mds_session *session,
777 struct ceph_msg *msg);
778extern int ceph_add_cap(struct inode *inode,
779 struct ceph_mds_session *session, u64 cap_id,
780 int fmode, unsigned issued, unsigned wanted,
781 unsigned cap, unsigned seq, u64 realmino, int flags,
782 struct ceph_cap_reservation *caps_reservation);
783extern void __ceph_remove_cap(struct ceph_cap *cap, bool queue_release);
784extern void ceph_put_cap(struct ceph_mds_client *mdsc,
785 struct ceph_cap *cap);
786extern int ceph_is_any_caps(struct inode *inode);
787
788extern void __queue_cap_release(struct ceph_mds_session *session, u64 ino,
789 u64 cap_id, u32 migrate_seq, u32 issue_seq);
790extern void ceph_queue_caps_release(struct inode *inode);
791extern int ceph_write_inode(struct inode *inode, struct writeback_control *wbc);
792extern int ceph_fsync(struct file *file, loff_t start, loff_t end,
793 int datasync);
794extern void ceph_kick_flushing_caps(struct ceph_mds_client *mdsc,
795 struct ceph_mds_session *session);
796extern struct ceph_cap *ceph_get_cap_for_mds(struct ceph_inode_info *ci,
797 int mds);
798extern int ceph_get_cap_mds(struct inode *inode);
799extern void ceph_get_cap_refs(struct ceph_inode_info *ci, int caps);
800extern void ceph_put_cap_refs(struct ceph_inode_info *ci, int had);
801extern void ceph_put_wrbuffer_cap_refs(struct ceph_inode_info *ci, int nr,
802 struct ceph_snap_context *snapc);
803extern void __ceph_flush_snaps(struct ceph_inode_info *ci,
804 struct ceph_mds_session **psession,
805 int again);
806extern void ceph_check_caps(struct ceph_inode_info *ci, int flags,
807 struct ceph_mds_session *session);
808extern void ceph_check_delayed_caps(struct ceph_mds_client *mdsc);
809extern void ceph_flush_dirty_caps(struct ceph_mds_client *mdsc);
810
811extern int ceph_encode_inode_release(void **p, struct inode *inode,
812 int mds, int drop, int unless, int force);
813extern int ceph_encode_dentry_release(void **p, struct dentry *dn,
814 int mds, int drop, int unless);
815
816extern int ceph_get_caps(struct ceph_inode_info *ci, int need, int want,
817 int *got, loff_t endoff);
818
819/* for counting open files by mode */
820static inline void __ceph_get_fmode(struct ceph_inode_info *ci, int mode)
821{
822 ci->i_nr_by_mode[mode]++;
823}
824extern void ceph_put_fmode(struct ceph_inode_info *ci, int mode);
825
826/* addr.c */
827extern const struct address_space_operations ceph_aops;
828extern int ceph_mmap(struct file *file, struct vm_area_struct *vma);
829
830/* file.c */
831extern const struct file_operations ceph_file_fops;
832extern const struct address_space_operations ceph_aops;
833
834extern int ceph_open(struct inode *inode, struct file *file);
835extern int ceph_atomic_open(struct inode *dir, struct dentry *dentry,
836 struct file *file, unsigned flags, umode_t mode,
837 int *opened);
838extern int ceph_release(struct inode *inode, struct file *filp);
839
840/* dir.c */
841extern const struct file_operations ceph_dir_fops;
842extern const struct inode_operations ceph_dir_iops;
843extern const struct dentry_operations ceph_dentry_ops, ceph_snap_dentry_ops,
844 ceph_snapdir_dentry_ops;
845
846extern int ceph_handle_notrace_create(struct inode *dir, struct dentry *dentry);
847extern int ceph_handle_snapdir(struct ceph_mds_request *req,
848 struct dentry *dentry, int err);
849extern struct dentry *ceph_finish_lookup(struct ceph_mds_request *req,
850 struct dentry *dentry, int err);
851
852extern void ceph_dentry_lru_add(struct dentry *dn);
853extern void ceph_dentry_lru_touch(struct dentry *dn);
854extern void ceph_dentry_lru_del(struct dentry *dn);
855extern void ceph_invalidate_dentry_lease(struct dentry *dentry);
856extern unsigned ceph_dentry_hash(struct inode *dir, struct dentry *dn);
857extern struct inode *ceph_get_dentry_parent_inode(struct dentry *dentry);
858
859/*
860 * our d_ops vary depending on whether the inode is live,
861 * snapshotted (read-only), or a virtual ".snap" directory.
862 */
863int ceph_init_dentry(struct dentry *dentry);
864
865
866/* ioctl.c */
867extern long ceph_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
868
869/* export.c */
870extern const struct export_operations ceph_export_ops;
871
872/* locks.c */
873extern __init void ceph_flock_init(void);
874extern int ceph_lock(struct file *file, int cmd, struct file_lock *fl);
875extern int ceph_flock(struct file *file, int cmd, struct file_lock *fl);
876extern void ceph_count_locks(struct inode *inode, int *p_num, int *f_num);
877extern int ceph_encode_locks_to_buffer(struct inode *inode,
878 struct ceph_filelock *flocks,
879 int num_fcntl_locks,
880 int num_flock_locks);
881extern int ceph_locks_to_pagelist(struct ceph_filelock *flocks,
882 struct ceph_pagelist *pagelist,
883 int num_fcntl_locks, int num_flock_locks);
884extern int lock_to_ceph_filelock(struct file_lock *fl, struct ceph_filelock *c);
885
886/* debugfs.c */
887extern int ceph_fs_debugfs_init(struct ceph_fs_client *client);
888extern void ceph_fs_debugfs_cleanup(struct ceph_fs_client *client);
889
890#endif /* _FS_CEPH_SUPER_H */
1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _FS_CEPH_SUPER_H
3#define _FS_CEPH_SUPER_H
4
5#include <linux/ceph/ceph_debug.h>
6
7#include <asm/unaligned.h>
8#include <linux/backing-dev.h>
9#include <linux/completion.h>
10#include <linux/exportfs.h>
11#include <linux/fs.h>
12#include <linux/mempool.h>
13#include <linux/pagemap.h>
14#include <linux/wait.h>
15#include <linux/writeback.h>
16#include <linux/slab.h>
17#include <linux/posix_acl.h>
18#include <linux/refcount.h>
19#include <linux/security.h>
20
21#include <linux/ceph/libceph.h>
22
23#ifdef CONFIG_CEPH_FSCACHE
24#define FSCACHE_USE_NEW_IO_API
25#include <linux/fscache.h>
26#endif
27
28/* f_type in struct statfs */
29#define CEPH_SUPER_MAGIC 0x00c36400
30
31/* large granularity for statfs utilization stats to facilitate
32 * large volume sizes on 32-bit machines. */
33#define CEPH_BLOCK_SHIFT 22 /* 4 MB */
34#define CEPH_BLOCK (1 << CEPH_BLOCK_SHIFT)
35
36#define CEPH_MOUNT_OPT_CLEANRECOVER (1<<1) /* auto reonnect (clean mode) after blocklisted */
37#define CEPH_MOUNT_OPT_DIRSTAT (1<<4) /* `cat dirname` for stats */
38#define CEPH_MOUNT_OPT_RBYTES (1<<5) /* dir st_bytes = rbytes */
39#define CEPH_MOUNT_OPT_NOASYNCREADDIR (1<<7) /* no dcache readdir */
40#define CEPH_MOUNT_OPT_INO32 (1<<8) /* 32 bit inos */
41#define CEPH_MOUNT_OPT_DCACHE (1<<9) /* use dcache for readdir etc */
42#define CEPH_MOUNT_OPT_FSCACHE (1<<10) /* use fscache */
43#define CEPH_MOUNT_OPT_NOPOOLPERM (1<<11) /* no pool permission check */
44#define CEPH_MOUNT_OPT_MOUNTWAIT (1<<12) /* mount waits if no mds is up */
45#define CEPH_MOUNT_OPT_NOQUOTADF (1<<13) /* no root dir quota in statfs */
46#define CEPH_MOUNT_OPT_NOCOPYFROM (1<<14) /* don't use RADOS 'copy-from' op */
47#define CEPH_MOUNT_OPT_ASYNC_DIROPS (1<<15) /* allow async directory ops */
48
49#define CEPH_MOUNT_OPT_DEFAULT \
50 (CEPH_MOUNT_OPT_DCACHE | \
51 CEPH_MOUNT_OPT_NOCOPYFROM)
52
53#define ceph_set_mount_opt(fsc, opt) \
54 (fsc)->mount_options->flags |= CEPH_MOUNT_OPT_##opt
55#define ceph_clear_mount_opt(fsc, opt) \
56 (fsc)->mount_options->flags &= ~CEPH_MOUNT_OPT_##opt
57#define ceph_test_mount_opt(fsc, opt) \
58 (!!((fsc)->mount_options->flags & CEPH_MOUNT_OPT_##opt))
59
60/* max size of osd read request, limited by libceph */
61#define CEPH_MAX_READ_SIZE CEPH_MSG_MAX_DATA_LEN
62/* osd has a configurable limitaion of max write size.
63 * CEPH_MSG_MAX_DATA_LEN should be small enough. */
64#define CEPH_MAX_WRITE_SIZE CEPH_MSG_MAX_DATA_LEN
65#define CEPH_RASIZE_DEFAULT (8192*1024) /* max readahead */
66#define CEPH_MAX_READDIR_DEFAULT 1024
67#define CEPH_MAX_READDIR_BYTES_DEFAULT (512*1024)
68#define CEPH_SNAPDIRNAME_DEFAULT ".snap"
69
70/*
71 * Delay telling the MDS we no longer want caps, in case we reopen
72 * the file. Delay a minimum amount of time, even if we send a cap
73 * message for some other reason. Otherwise, take the oppotunity to
74 * update the mds to avoid sending another message later.
75 */
76#define CEPH_CAPS_WANTED_DELAY_MIN_DEFAULT 5 /* cap release delay */
77#define CEPH_CAPS_WANTED_DELAY_MAX_DEFAULT 60 /* cap release delay */
78
79struct ceph_mount_options {
80 unsigned int flags;
81
82 unsigned int wsize; /* max write size */
83 unsigned int rsize; /* max read size */
84 unsigned int rasize; /* max readahead */
85 unsigned int congestion_kb; /* max writeback in flight */
86 unsigned int caps_wanted_delay_min, caps_wanted_delay_max;
87 int caps_max;
88 unsigned int max_readdir; /* max readdir result (entries) */
89 unsigned int max_readdir_bytes; /* max readdir result (bytes) */
90
91 /*
92 * everything above this point can be memcmp'd; everything below
93 * is handled in compare_mount_options()
94 */
95
96 char *snapdir_name; /* default ".snap" */
97 char *mds_namespace; /* default NULL */
98 char *server_path; /* default NULL (means "/") */
99 char *fscache_uniq; /* default NULL */
100};
101
102struct ceph_fs_client {
103 struct super_block *sb;
104
105 struct list_head metric_wakeup;
106
107 struct ceph_mount_options *mount_options;
108 struct ceph_client *client;
109
110 int mount_state;
111
112 bool blocklisted;
113
114 bool have_copy_from2;
115
116 u32 filp_gen;
117 loff_t max_file_size;
118
119 struct ceph_mds_client *mdsc;
120
121 atomic_long_t writeback_count;
122
123 struct workqueue_struct *inode_wq;
124 struct workqueue_struct *cap_wq;
125
126#ifdef CONFIG_DEBUG_FS
127 struct dentry *debugfs_dentry_lru, *debugfs_caps;
128 struct dentry *debugfs_congestion_kb;
129 struct dentry *debugfs_bdi;
130 struct dentry *debugfs_mdsc, *debugfs_mdsmap;
131 struct dentry *debugfs_metric;
132 struct dentry *debugfs_status;
133 struct dentry *debugfs_mds_sessions;
134#endif
135
136#ifdef CONFIG_CEPH_FSCACHE
137 struct fscache_cookie *fscache;
138#endif
139};
140
141
142/*
143 * File i/o capability. This tracks shared state with the metadata
144 * server that allows us to cache or writeback attributes or to read
145 * and write data. For any given inode, we should have one or more
146 * capabilities, one issued by each metadata server, and our
147 * cumulative access is the OR of all issued capabilities.
148 *
149 * Each cap is referenced by the inode's i_caps rbtree and by per-mds
150 * session capability lists.
151 */
152struct ceph_cap {
153 struct ceph_inode_info *ci;
154 struct rb_node ci_node; /* per-ci cap tree */
155 struct ceph_mds_session *session;
156 struct list_head session_caps; /* per-session caplist */
157 u64 cap_id; /* unique cap id (mds provided) */
158 union {
159 /* in-use caps */
160 struct {
161 int issued; /* latest, from the mds */
162 int implemented; /* implemented superset of
163 issued (for revocation) */
164 int mds; /* mds index for this cap */
165 int mds_wanted; /* caps wanted from this mds */
166 };
167 /* caps to release */
168 struct {
169 u64 cap_ino;
170 int queue_release;
171 };
172 };
173 u32 seq, issue_seq, mseq;
174 u32 cap_gen; /* active/stale cycle */
175 unsigned long last_used;
176 struct list_head caps_item;
177};
178
179#define CHECK_CAPS_AUTHONLY 1 /* only check auth cap */
180#define CHECK_CAPS_FLUSH 2 /* flush any dirty caps */
181#define CHECK_CAPS_NOINVAL 4 /* don't invalidate pagecache */
182
183struct ceph_cap_flush {
184 u64 tid;
185 int caps;
186 bool wake; /* wake up flush waiters when finish ? */
187 bool is_capsnap; /* true means capsnap */
188 struct list_head g_list; // global
189 struct list_head i_list; // per inode
190};
191
192/*
193 * Snapped cap state that is pending flush to mds. When a snapshot occurs,
194 * we first complete any in-process sync writes and writeback any dirty
195 * data before flushing the snapped state (tracked here) back to the MDS.
196 */
197struct ceph_cap_snap {
198 refcount_t nref;
199 struct list_head ci_item;
200
201 struct ceph_cap_flush cap_flush;
202
203 u64 follows;
204 int issued, dirty;
205 struct ceph_snap_context *context;
206
207 umode_t mode;
208 kuid_t uid;
209 kgid_t gid;
210
211 struct ceph_buffer *xattr_blob;
212 u64 xattr_version;
213
214 u64 size;
215 u64 change_attr;
216 struct timespec64 mtime, atime, ctime, btime;
217 u64 time_warp_seq;
218 u64 truncate_size;
219 u32 truncate_seq;
220 int writing; /* a sync write is still in progress */
221 int dirty_pages; /* dirty pages awaiting writeback */
222 bool inline_data;
223 bool need_flush;
224};
225
226static inline void ceph_put_cap_snap(struct ceph_cap_snap *capsnap)
227{
228 if (refcount_dec_and_test(&capsnap->nref)) {
229 if (capsnap->xattr_blob)
230 ceph_buffer_put(capsnap->xattr_blob);
231 kfree(capsnap);
232 }
233}
234
235/*
236 * The frag tree describes how a directory is fragmented, potentially across
237 * multiple metadata servers. It is also used to indicate points where
238 * metadata authority is delegated, and whether/where metadata is replicated.
239 *
240 * A _leaf_ frag will be present in the i_fragtree IFF there is
241 * delegation info. That is, if mds >= 0 || ndist > 0.
242 */
243#define CEPH_MAX_DIRFRAG_REP 4
244
245struct ceph_inode_frag {
246 struct rb_node node;
247
248 /* fragtree state */
249 u32 frag;
250 int split_by; /* i.e. 2^(split_by) children */
251
252 /* delegation and replication info */
253 int mds; /* -1 if same authority as parent */
254 int ndist; /* >0 if replicated */
255 int dist[CEPH_MAX_DIRFRAG_REP];
256};
257
258/*
259 * We cache inode xattrs as an encoded blob until they are first used,
260 * at which point we parse them into an rbtree.
261 */
262struct ceph_inode_xattr {
263 struct rb_node node;
264
265 const char *name;
266 int name_len;
267 const char *val;
268 int val_len;
269 int dirty;
270
271 int should_free_name;
272 int should_free_val;
273};
274
275/*
276 * Ceph dentry state
277 */
278struct ceph_dentry_info {
279 struct dentry *dentry;
280 struct ceph_mds_session *lease_session;
281 struct list_head lease_list;
282 unsigned flags;
283 int lease_shared_gen;
284 u32 lease_gen;
285 u32 lease_seq;
286 unsigned long lease_renew_after, lease_renew_from;
287 unsigned long time;
288 u64 offset;
289};
290
291#define CEPH_DENTRY_REFERENCED 1
292#define CEPH_DENTRY_LEASE_LIST 2
293#define CEPH_DENTRY_SHRINK_LIST 4
294#define CEPH_DENTRY_PRIMARY_LINK 8
295
296struct ceph_inode_xattrs_info {
297 /*
298 * (still encoded) xattr blob. we avoid the overhead of parsing
299 * this until someone actually calls getxattr, etc.
300 *
301 * blob->vec.iov_len == 4 implies there are no xattrs; blob ==
302 * NULL means we don't know.
303 */
304 struct ceph_buffer *blob, *prealloc_blob;
305
306 struct rb_root index;
307 bool dirty;
308 int count;
309 int names_size;
310 int vals_size;
311 u64 version, index_version;
312};
313
314/*
315 * Ceph inode.
316 */
317struct ceph_inode_info {
318 struct ceph_vino i_vino; /* ceph ino + snap */
319
320 spinlock_t i_ceph_lock;
321
322 u64 i_version;
323 u64 i_inline_version;
324 u32 i_time_warp_seq;
325
326 unsigned long i_ceph_flags;
327 atomic64_t i_release_count;
328 atomic64_t i_ordered_count;
329 atomic64_t i_complete_seq[2];
330
331 struct ceph_dir_layout i_dir_layout;
332 struct ceph_file_layout i_layout;
333 struct ceph_file_layout i_cached_layout; // for async creates
334 char *i_symlink;
335
336 /* for dirs */
337 struct timespec64 i_rctime;
338 u64 i_rbytes, i_rfiles, i_rsubdirs, i_rsnaps;
339 u64 i_files, i_subdirs;
340
341 /* quotas */
342 u64 i_max_bytes, i_max_files;
343
344 s32 i_dir_pin;
345
346 struct rb_root i_fragtree;
347 int i_fragtree_nsplits;
348 struct mutex i_fragtree_mutex;
349
350 struct ceph_inode_xattrs_info i_xattrs;
351
352 /* capabilities. protected _both_ by i_ceph_lock and cap->session's
353 * s_mutex. */
354 struct rb_root i_caps; /* cap list */
355 struct ceph_cap *i_auth_cap; /* authoritative cap, if any */
356 unsigned i_dirty_caps, i_flushing_caps; /* mask of dirtied fields */
357
358 /*
359 * Link to the auth cap's session's s_cap_dirty list. s_cap_dirty
360 * is protected by the mdsc->cap_dirty_lock, but each individual item
361 * is also protected by the inode's i_ceph_lock. Walking s_cap_dirty
362 * requires the mdsc->cap_dirty_lock. List presence for an item can
363 * be tested under the i_ceph_lock. Changing anything requires both.
364 */
365 struct list_head i_dirty_item;
366
367 /*
368 * Link to session's s_cap_flushing list. Protected in a similar
369 * fashion to i_dirty_item, but also by the s_mutex for changes. The
370 * s_cap_flushing list can be walked while holding either the s_mutex
371 * or msdc->cap_dirty_lock. List presence can also be checked while
372 * holding the i_ceph_lock for this inode.
373 */
374 struct list_head i_flushing_item;
375
376 /* we need to track cap writeback on a per-cap-bit basis, to allow
377 * overlapping, pipelined cap flushes to the mds. we can probably
378 * reduce the tid to 8 bits if we're concerned about inode size. */
379 struct ceph_cap_flush *i_prealloc_cap_flush;
380 struct list_head i_cap_flush_list;
381 wait_queue_head_t i_cap_wq; /* threads waiting on a capability */
382 unsigned long i_hold_caps_max; /* jiffies */
383 struct list_head i_cap_delay_list; /* for delayed cap release to mds */
384 struct ceph_cap_reservation i_cap_migration_resv;
385 struct list_head i_cap_snaps; /* snapped state pending flush to mds */
386 struct ceph_snap_context *i_head_snapc; /* set if wr_buffer_head > 0 or
387 dirty|flushing caps */
388 unsigned i_snap_caps; /* cap bits for snapped files */
389
390 unsigned long i_last_rd;
391 unsigned long i_last_wr;
392 int i_nr_by_mode[CEPH_FILE_MODE_BITS]; /* open file counts */
393
394 struct mutex i_truncate_mutex;
395 u32 i_truncate_seq; /* last truncate to smaller size */
396 u64 i_truncate_size; /* and the size we last truncated down to */
397 int i_truncate_pending; /* still need to call vmtruncate */
398
399 u64 i_max_size; /* max file size authorized by mds */
400 u64 i_reported_size; /* (max_)size reported to or requested of mds */
401 u64 i_wanted_max_size; /* offset we'd like to write too */
402 u64 i_requested_max_size; /* max_size we've requested */
403
404 /* held references to caps */
405 int i_pin_ref;
406 int i_rd_ref, i_rdcache_ref, i_wr_ref, i_wb_ref, i_fx_ref;
407 int i_wrbuffer_ref, i_wrbuffer_ref_head;
408 atomic_t i_filelock_ref;
409 atomic_t i_shared_gen; /* increment each time we get FILE_SHARED */
410 u32 i_rdcache_gen; /* incremented each time we get FILE_CACHE. */
411 u32 i_rdcache_revoking; /* RDCACHE gen to async invalidate, if any */
412
413 struct list_head i_unsafe_dirops; /* uncommitted mds dir ops */
414 struct list_head i_unsafe_iops; /* uncommitted mds inode ops */
415 spinlock_t i_unsafe_lock;
416
417 union {
418 struct ceph_snap_realm *i_snap_realm; /* snap realm (if caps) */
419 struct ceph_snapid_map *i_snapid_map; /* snapid -> dev_t */
420 };
421 int i_snap_realm_counter; /* snap realm (if caps) */
422 struct list_head i_snap_realm_item;
423 struct list_head i_snap_flush_item;
424 struct timespec64 i_btime;
425 struct timespec64 i_snap_btime;
426
427 struct work_struct i_work;
428 unsigned long i_work_mask;
429
430#ifdef CONFIG_CEPH_FSCACHE
431 struct fscache_cookie *fscache;
432#endif
433 struct inode vfs_inode; /* at end */
434};
435
436static inline struct ceph_inode_info *
437ceph_inode(const struct inode *inode)
438{
439 return container_of(inode, struct ceph_inode_info, vfs_inode);
440}
441
442static inline struct ceph_fs_client *
443ceph_inode_to_client(const struct inode *inode)
444{
445 return (struct ceph_fs_client *)inode->i_sb->s_fs_info;
446}
447
448static inline struct ceph_fs_client *
449ceph_sb_to_client(const struct super_block *sb)
450{
451 return (struct ceph_fs_client *)sb->s_fs_info;
452}
453
454static inline struct ceph_mds_client *
455ceph_sb_to_mdsc(const struct super_block *sb)
456{
457 return (struct ceph_mds_client *)ceph_sb_to_client(sb)->mdsc;
458}
459
460static inline struct ceph_vino
461ceph_vino(const struct inode *inode)
462{
463 return ceph_inode(inode)->i_vino;
464}
465
466static inline u32 ceph_ino_to_ino32(u64 vino)
467{
468 u32 ino = vino & 0xffffffff;
469 ino ^= vino >> 32;
470 if (!ino)
471 ino = 2;
472 return ino;
473}
474
475/*
476 * Inode numbers in cephfs are 64 bits, but inode->i_ino is 32-bits on
477 * some arches. We generally do not use this value inside the ceph driver, but
478 * we do want to set it to something, so that generic vfs code has an
479 * appropriate value for tracepoints and the like.
480 */
481static inline ino_t ceph_vino_to_ino_t(struct ceph_vino vino)
482{
483 if (sizeof(ino_t) == sizeof(u32))
484 return ceph_ino_to_ino32(vino.ino);
485 return (ino_t)vino.ino;
486}
487
488/* for printf-style formatting */
489#define ceph_vinop(i) ceph_inode(i)->i_vino.ino, ceph_inode(i)->i_vino.snap
490
491static inline u64 ceph_ino(struct inode *inode)
492{
493 return ceph_inode(inode)->i_vino.ino;
494}
495
496static inline u64 ceph_snap(struct inode *inode)
497{
498 return ceph_inode(inode)->i_vino.snap;
499}
500
501/**
502 * ceph_present_ino - format an inode number for presentation to userland
503 * @sb: superblock where the inode lives
504 * @ino: inode number to (possibly) convert
505 *
506 * If the user mounted with the ino32 option, then the 64-bit value needs
507 * to be converted to something that can fit inside 32 bits. Note that
508 * internal kernel code never uses this value, so this is entirely for
509 * userland consumption.
510 */
511static inline u64 ceph_present_ino(struct super_block *sb, u64 ino)
512{
513 if (unlikely(ceph_test_mount_opt(ceph_sb_to_client(sb), INO32)))
514 return ceph_ino_to_ino32(ino);
515 return ino;
516}
517
518static inline u64 ceph_present_inode(struct inode *inode)
519{
520 return ceph_present_ino(inode->i_sb, ceph_ino(inode));
521}
522
523static inline int ceph_ino_compare(struct inode *inode, void *data)
524{
525 struct ceph_vino *pvino = (struct ceph_vino *)data;
526 struct ceph_inode_info *ci = ceph_inode(inode);
527 return ci->i_vino.ino == pvino->ino &&
528 ci->i_vino.snap == pvino->snap;
529}
530
531/*
532 * The MDS reserves a set of inodes for its own usage. These should never
533 * be accessible by clients, and so the MDS has no reason to ever hand these
534 * out. The range is CEPH_MDS_INO_MDSDIR_OFFSET..CEPH_INO_SYSTEM_BASE.
535 *
536 * These come from src/mds/mdstypes.h in the ceph sources.
537 */
538#define CEPH_MAX_MDS 0x100
539#define CEPH_NUM_STRAY 10
540#define CEPH_MDS_INO_MDSDIR_OFFSET (1 * CEPH_MAX_MDS)
541#define CEPH_INO_SYSTEM_BASE ((6*CEPH_MAX_MDS) + (CEPH_MAX_MDS * CEPH_NUM_STRAY))
542
543static inline bool ceph_vino_is_reserved(const struct ceph_vino vino)
544{
545 if (vino.ino < CEPH_INO_SYSTEM_BASE &&
546 vino.ino >= CEPH_MDS_INO_MDSDIR_OFFSET) {
547 WARN_RATELIMIT(1, "Attempt to access reserved inode number 0x%llx", vino.ino);
548 return true;
549 }
550 return false;
551}
552
553static inline struct inode *ceph_find_inode(struct super_block *sb,
554 struct ceph_vino vino)
555{
556 if (ceph_vino_is_reserved(vino))
557 return NULL;
558
559 /*
560 * NB: The hashval will be run through the fs/inode.c hash function
561 * anyway, so there is no need to squash the inode number down to
562 * 32-bits first. Just use low-order bits on arches with 32-bit long.
563 */
564 return ilookup5(sb, (unsigned long)vino.ino, ceph_ino_compare, &vino);
565}
566
567
568/*
569 * Ceph inode.
570 */
571#define CEPH_I_DIR_ORDERED (1 << 0) /* dentries in dir are ordered */
572#define CEPH_I_FLUSH (1 << 2) /* do not delay flush of dirty metadata */
573#define CEPH_I_POOL_PERM (1 << 3) /* pool rd/wr bits are valid */
574#define CEPH_I_POOL_RD (1 << 4) /* can read from pool */
575#define CEPH_I_POOL_WR (1 << 5) /* can write to pool */
576#define CEPH_I_SEC_INITED (1 << 6) /* security initialized */
577#define CEPH_I_KICK_FLUSH (1 << 7) /* kick flushing caps */
578#define CEPH_I_FLUSH_SNAPS (1 << 8) /* need flush snapss */
579#define CEPH_I_ERROR_WRITE (1 << 9) /* have seen write errors */
580#define CEPH_I_ERROR_FILELOCK (1 << 10) /* have seen file lock errors */
581#define CEPH_I_ODIRECT (1 << 11) /* inode in direct I/O mode */
582#define CEPH_ASYNC_CREATE_BIT (12) /* async create in flight for this */
583#define CEPH_I_ASYNC_CREATE (1 << CEPH_ASYNC_CREATE_BIT)
584
585/*
586 * Masks of ceph inode work.
587 */
588#define CEPH_I_WORK_WRITEBACK 0
589#define CEPH_I_WORK_INVALIDATE_PAGES 1
590#define CEPH_I_WORK_VMTRUNCATE 2
591#define CEPH_I_WORK_CHECK_CAPS 3
592#define CEPH_I_WORK_FLUSH_SNAPS 4
593
594/*
595 * We set the ERROR_WRITE bit when we start seeing write errors on an inode
596 * and then clear it when they start succeeding. Note that we do a lockless
597 * check first, and only take the lock if it looks like it needs to be changed.
598 * The write submission code just takes this as a hint, so we're not too
599 * worried if a few slip through in either direction.
600 */
601static inline void ceph_set_error_write(struct ceph_inode_info *ci)
602{
603 if (!(READ_ONCE(ci->i_ceph_flags) & CEPH_I_ERROR_WRITE)) {
604 spin_lock(&ci->i_ceph_lock);
605 ci->i_ceph_flags |= CEPH_I_ERROR_WRITE;
606 spin_unlock(&ci->i_ceph_lock);
607 }
608}
609
610static inline void ceph_clear_error_write(struct ceph_inode_info *ci)
611{
612 if (READ_ONCE(ci->i_ceph_flags) & CEPH_I_ERROR_WRITE) {
613 spin_lock(&ci->i_ceph_lock);
614 ci->i_ceph_flags &= ~CEPH_I_ERROR_WRITE;
615 spin_unlock(&ci->i_ceph_lock);
616 }
617}
618
619static inline void __ceph_dir_set_complete(struct ceph_inode_info *ci,
620 long long release_count,
621 long long ordered_count)
622{
623 /*
624 * Makes sure operations that setup readdir cache (update page
625 * cache and i_size) are strongly ordered w.r.t. the following
626 * atomic64_set() operations.
627 */
628 smp_mb();
629 atomic64_set(&ci->i_complete_seq[0], release_count);
630 atomic64_set(&ci->i_complete_seq[1], ordered_count);
631}
632
633static inline void __ceph_dir_clear_complete(struct ceph_inode_info *ci)
634{
635 atomic64_inc(&ci->i_release_count);
636}
637
638static inline void __ceph_dir_clear_ordered(struct ceph_inode_info *ci)
639{
640 atomic64_inc(&ci->i_ordered_count);
641}
642
643static inline bool __ceph_dir_is_complete(struct ceph_inode_info *ci)
644{
645 return atomic64_read(&ci->i_complete_seq[0]) ==
646 atomic64_read(&ci->i_release_count);
647}
648
649static inline bool __ceph_dir_is_complete_ordered(struct ceph_inode_info *ci)
650{
651 return atomic64_read(&ci->i_complete_seq[0]) ==
652 atomic64_read(&ci->i_release_count) &&
653 atomic64_read(&ci->i_complete_seq[1]) ==
654 atomic64_read(&ci->i_ordered_count);
655}
656
657static inline void ceph_dir_clear_complete(struct inode *inode)
658{
659 __ceph_dir_clear_complete(ceph_inode(inode));
660}
661
662static inline void ceph_dir_clear_ordered(struct inode *inode)
663{
664 __ceph_dir_clear_ordered(ceph_inode(inode));
665}
666
667static inline bool ceph_dir_is_complete_ordered(struct inode *inode)
668{
669 bool ret = __ceph_dir_is_complete_ordered(ceph_inode(inode));
670 smp_rmb();
671 return ret;
672}
673
674/* find a specific frag @f */
675extern struct ceph_inode_frag *__ceph_find_frag(struct ceph_inode_info *ci,
676 u32 f);
677
678/*
679 * choose fragment for value @v. copy frag content to pfrag, if leaf
680 * exists
681 */
682extern u32 ceph_choose_frag(struct ceph_inode_info *ci, u32 v,
683 struct ceph_inode_frag *pfrag,
684 int *found);
685
686static inline struct ceph_dentry_info *ceph_dentry(const struct dentry *dentry)
687{
688 return (struct ceph_dentry_info *)dentry->d_fsdata;
689}
690
691/*
692 * caps helpers
693 */
694static inline bool __ceph_is_any_real_caps(struct ceph_inode_info *ci)
695{
696 return !RB_EMPTY_ROOT(&ci->i_caps);
697}
698
699extern int __ceph_caps_issued(struct ceph_inode_info *ci, int *implemented);
700extern int __ceph_caps_issued_mask(struct ceph_inode_info *ci, int mask, int t);
701extern int __ceph_caps_issued_mask_metric(struct ceph_inode_info *ci, int mask,
702 int t);
703extern int __ceph_caps_issued_other(struct ceph_inode_info *ci,
704 struct ceph_cap *cap);
705
706static inline int ceph_caps_issued(struct ceph_inode_info *ci)
707{
708 int issued;
709 spin_lock(&ci->i_ceph_lock);
710 issued = __ceph_caps_issued(ci, NULL);
711 spin_unlock(&ci->i_ceph_lock);
712 return issued;
713}
714
715static inline int ceph_caps_issued_mask_metric(struct ceph_inode_info *ci,
716 int mask, int touch)
717{
718 int r;
719 spin_lock(&ci->i_ceph_lock);
720 r = __ceph_caps_issued_mask_metric(ci, mask, touch);
721 spin_unlock(&ci->i_ceph_lock);
722 return r;
723}
724
725static inline int __ceph_caps_dirty(struct ceph_inode_info *ci)
726{
727 return ci->i_dirty_caps | ci->i_flushing_caps;
728}
729extern struct ceph_cap_flush *ceph_alloc_cap_flush(void);
730extern void ceph_free_cap_flush(struct ceph_cap_flush *cf);
731extern int __ceph_mark_dirty_caps(struct ceph_inode_info *ci, int mask,
732 struct ceph_cap_flush **pcf);
733
734extern int __ceph_caps_revoking_other(struct ceph_inode_info *ci,
735 struct ceph_cap *ocap, int mask);
736extern int ceph_caps_revoking(struct ceph_inode_info *ci, int mask);
737extern int __ceph_caps_used(struct ceph_inode_info *ci);
738
739static inline bool __ceph_is_file_opened(struct ceph_inode_info *ci)
740{
741 return ci->i_nr_by_mode[0];
742}
743extern int __ceph_caps_file_wanted(struct ceph_inode_info *ci);
744extern int __ceph_caps_wanted(struct ceph_inode_info *ci);
745
746/* what the mds thinks we want */
747extern int __ceph_caps_mds_wanted(struct ceph_inode_info *ci, bool check);
748
749extern void ceph_caps_init(struct ceph_mds_client *mdsc);
750extern void ceph_caps_finalize(struct ceph_mds_client *mdsc);
751extern void ceph_adjust_caps_max_min(struct ceph_mds_client *mdsc,
752 struct ceph_mount_options *fsopt);
753extern int ceph_reserve_caps(struct ceph_mds_client *mdsc,
754 struct ceph_cap_reservation *ctx, int need);
755extern void ceph_unreserve_caps(struct ceph_mds_client *mdsc,
756 struct ceph_cap_reservation *ctx);
757extern void ceph_reservation_status(struct ceph_fs_client *client,
758 int *total, int *avail, int *used,
759 int *reserved, int *min);
760
761
762
763/*
764 * we keep buffered readdir results attached to file->private_data
765 */
766#define CEPH_F_SYNC 1
767#define CEPH_F_ATEND 2
768
769struct ceph_file_info {
770 short fmode; /* initialized on open */
771 short flags; /* CEPH_F_* */
772
773 spinlock_t rw_contexts_lock;
774 struct list_head rw_contexts;
775
776 u32 filp_gen;
777 atomic_t num_locks;
778};
779
780struct ceph_dir_file_info {
781 struct ceph_file_info file_info;
782
783 /* readdir: position within the dir */
784 u32 frag;
785 struct ceph_mds_request *last_readdir;
786
787 /* readdir: position within a frag */
788 unsigned next_offset; /* offset of next chunk (last_name's + 1) */
789 char *last_name; /* last entry in previous chunk */
790 long long dir_release_count;
791 long long dir_ordered_count;
792 int readdir_cache_idx;
793
794 /* used for -o dirstat read() on directory thing */
795 char *dir_info;
796 int dir_info_len;
797};
798
799struct ceph_rw_context {
800 struct list_head list;
801 struct task_struct *thread;
802 int caps;
803};
804
805#define CEPH_DEFINE_RW_CONTEXT(_name, _caps) \
806 struct ceph_rw_context _name = { \
807 .thread = current, \
808 .caps = _caps, \
809 }
810
811static inline void ceph_add_rw_context(struct ceph_file_info *cf,
812 struct ceph_rw_context *ctx)
813{
814 spin_lock(&cf->rw_contexts_lock);
815 list_add(&ctx->list, &cf->rw_contexts);
816 spin_unlock(&cf->rw_contexts_lock);
817}
818
819static inline void ceph_del_rw_context(struct ceph_file_info *cf,
820 struct ceph_rw_context *ctx)
821{
822 spin_lock(&cf->rw_contexts_lock);
823 list_del(&ctx->list);
824 spin_unlock(&cf->rw_contexts_lock);
825}
826
827static inline struct ceph_rw_context*
828ceph_find_rw_context(struct ceph_file_info *cf)
829{
830 struct ceph_rw_context *ctx, *found = NULL;
831 spin_lock(&cf->rw_contexts_lock);
832 list_for_each_entry(ctx, &cf->rw_contexts, list) {
833 if (ctx->thread == current) {
834 found = ctx;
835 break;
836 }
837 }
838 spin_unlock(&cf->rw_contexts_lock);
839 return found;
840}
841
842struct ceph_readdir_cache_control {
843 struct page *page;
844 struct dentry **dentries;
845 int index;
846};
847
848/*
849 * A "snap realm" describes a subset of the file hierarchy sharing
850 * the same set of snapshots that apply to it. The realms themselves
851 * are organized into a hierarchy, such that children inherit (some of)
852 * the snapshots of their parents.
853 *
854 * All inodes within the realm that have capabilities are linked into a
855 * per-realm list.
856 */
857struct ceph_snap_realm {
858 u64 ino;
859 struct inode *inode;
860 atomic_t nref;
861 struct rb_node node;
862
863 u64 created, seq;
864 u64 parent_ino;
865 u64 parent_since; /* snapid when our current parent became so */
866
867 u64 *prior_parent_snaps; /* snaps inherited from any parents we */
868 u32 num_prior_parent_snaps; /* had prior to parent_since */
869 u64 *snaps; /* snaps specific to this realm */
870 u32 num_snaps;
871
872 struct ceph_snap_realm *parent;
873 struct list_head children; /* list of child realms */
874 struct list_head child_item;
875
876 struct list_head empty_item; /* if i have ref==0 */
877
878 struct list_head dirty_item; /* if realm needs new context */
879
880 /* the current set of snaps for this realm */
881 struct ceph_snap_context *cached_context;
882
883 struct list_head inodes_with_caps;
884 spinlock_t inodes_with_caps_lock;
885};
886
887static inline int default_congestion_kb(void)
888{
889 int congestion_kb;
890
891 /*
892 * Copied from NFS
893 *
894 * congestion size, scale with available memory.
895 *
896 * 64MB: 8192k
897 * 128MB: 11585k
898 * 256MB: 16384k
899 * 512MB: 23170k
900 * 1GB: 32768k
901 * 2GB: 46340k
902 * 4GB: 65536k
903 * 8GB: 92681k
904 * 16GB: 131072k
905 *
906 * This allows larger machines to have larger/more transfers.
907 * Limit the default to 256M
908 */
909 congestion_kb = (16*int_sqrt(totalram_pages())) << (PAGE_SHIFT-10);
910 if (congestion_kb > 256*1024)
911 congestion_kb = 256*1024;
912
913 return congestion_kb;
914}
915
916
917/* super.c */
918extern int ceph_force_reconnect(struct super_block *sb);
919/* snap.c */
920struct ceph_snap_realm *ceph_lookup_snap_realm(struct ceph_mds_client *mdsc,
921 u64 ino);
922extern void ceph_get_snap_realm(struct ceph_mds_client *mdsc,
923 struct ceph_snap_realm *realm);
924extern void ceph_put_snap_realm(struct ceph_mds_client *mdsc,
925 struct ceph_snap_realm *realm);
926extern int ceph_update_snap_trace(struct ceph_mds_client *m,
927 void *p, void *e, bool deletion,
928 struct ceph_snap_realm **realm_ret);
929extern void ceph_handle_snap(struct ceph_mds_client *mdsc,
930 struct ceph_mds_session *session,
931 struct ceph_msg *msg);
932extern int __ceph_finish_cap_snap(struct ceph_inode_info *ci,
933 struct ceph_cap_snap *capsnap);
934extern void ceph_cleanup_empty_realms(struct ceph_mds_client *mdsc);
935
936extern struct ceph_snapid_map *ceph_get_snapid_map(struct ceph_mds_client *mdsc,
937 u64 snap);
938extern void ceph_put_snapid_map(struct ceph_mds_client* mdsc,
939 struct ceph_snapid_map *sm);
940extern void ceph_trim_snapid_map(struct ceph_mds_client *mdsc);
941extern void ceph_cleanup_snapid_map(struct ceph_mds_client *mdsc);
942
943
944/*
945 * a cap_snap is "pending" if it is still awaiting an in-progress
946 * sync write (that may/may not still update size, mtime, etc.).
947 */
948static inline bool __ceph_have_pending_cap_snap(struct ceph_inode_info *ci)
949{
950 return !list_empty(&ci->i_cap_snaps) &&
951 list_last_entry(&ci->i_cap_snaps, struct ceph_cap_snap,
952 ci_item)->writing;
953}
954
955/* inode.c */
956struct ceph_mds_reply_info_in;
957struct ceph_mds_reply_dirfrag;
958
959extern const struct inode_operations ceph_file_iops;
960
961extern struct inode *ceph_alloc_inode(struct super_block *sb);
962extern void ceph_evict_inode(struct inode *inode);
963extern void ceph_free_inode(struct inode *inode);
964
965extern struct inode *ceph_get_inode(struct super_block *sb,
966 struct ceph_vino vino);
967extern struct inode *ceph_get_snapdir(struct inode *parent);
968extern int ceph_fill_file_size(struct inode *inode, int issued,
969 u32 truncate_seq, u64 truncate_size, u64 size);
970extern void ceph_fill_file_time(struct inode *inode, int issued,
971 u64 time_warp_seq, struct timespec64 *ctime,
972 struct timespec64 *mtime,
973 struct timespec64 *atime);
974extern int ceph_fill_inode(struct inode *inode, struct page *locked_page,
975 struct ceph_mds_reply_info_in *iinfo,
976 struct ceph_mds_reply_dirfrag *dirinfo,
977 struct ceph_mds_session *session, int cap_fmode,
978 struct ceph_cap_reservation *caps_reservation);
979extern int ceph_fill_trace(struct super_block *sb,
980 struct ceph_mds_request *req);
981extern int ceph_readdir_prepopulate(struct ceph_mds_request *req,
982 struct ceph_mds_session *session);
983
984extern int ceph_inode_holds_cap(struct inode *inode, int mask);
985
986extern bool ceph_inode_set_size(struct inode *inode, loff_t size);
987extern void __ceph_do_pending_vmtruncate(struct inode *inode);
988
989void ceph_queue_inode_work(struct inode *inode, int work_bit);
990
991static inline void ceph_queue_vmtruncate(struct inode *inode)
992{
993 ceph_queue_inode_work(inode, CEPH_I_WORK_VMTRUNCATE);
994}
995
996static inline void ceph_queue_invalidate(struct inode *inode)
997{
998 ceph_queue_inode_work(inode, CEPH_I_WORK_INVALIDATE_PAGES);
999}
1000
1001static inline void ceph_queue_writeback(struct inode *inode)
1002{
1003 ceph_queue_inode_work(inode, CEPH_I_WORK_WRITEBACK);
1004}
1005
1006static inline void ceph_queue_check_caps(struct inode *inode)
1007{
1008 ceph_queue_inode_work(inode, CEPH_I_WORK_CHECK_CAPS);
1009}
1010
1011static inline void ceph_queue_flush_snaps(struct inode *inode)
1012{
1013 ceph_queue_inode_work(inode, CEPH_I_WORK_FLUSH_SNAPS);
1014}
1015
1016extern int __ceph_do_getattr(struct inode *inode, struct page *locked_page,
1017 int mask, bool force);
1018static inline int ceph_do_getattr(struct inode *inode, int mask, bool force)
1019{
1020 return __ceph_do_getattr(inode, NULL, mask, force);
1021}
1022extern int ceph_permission(struct user_namespace *mnt_userns,
1023 struct inode *inode, int mask);
1024extern int __ceph_setattr(struct inode *inode, struct iattr *attr);
1025extern int ceph_setattr(struct user_namespace *mnt_userns,
1026 struct dentry *dentry, struct iattr *attr);
1027extern int ceph_getattr(struct user_namespace *mnt_userns,
1028 const struct path *path, struct kstat *stat,
1029 u32 request_mask, unsigned int flags);
1030
1031/* xattr.c */
1032int __ceph_setxattr(struct inode *, const char *, const void *, size_t, int);
1033ssize_t __ceph_getxattr(struct inode *, const char *, void *, size_t);
1034extern ssize_t ceph_listxattr(struct dentry *, char *, size_t);
1035extern struct ceph_buffer *__ceph_build_xattrs_blob(struct ceph_inode_info *ci);
1036extern void __ceph_destroy_xattrs(struct ceph_inode_info *ci);
1037extern const struct xattr_handler *ceph_xattr_handlers[];
1038
1039struct ceph_acl_sec_ctx {
1040#ifdef CONFIG_CEPH_FS_POSIX_ACL
1041 void *default_acl;
1042 void *acl;
1043#endif
1044#ifdef CONFIG_CEPH_FS_SECURITY_LABEL
1045 void *sec_ctx;
1046 u32 sec_ctxlen;
1047#endif
1048 struct ceph_pagelist *pagelist;
1049};
1050
1051#ifdef CONFIG_SECURITY
1052extern bool ceph_security_xattr_deadlock(struct inode *in);
1053extern bool ceph_security_xattr_wanted(struct inode *in);
1054#else
1055static inline bool ceph_security_xattr_deadlock(struct inode *in)
1056{
1057 return false;
1058}
1059static inline bool ceph_security_xattr_wanted(struct inode *in)
1060{
1061 return false;
1062}
1063#endif
1064
1065#ifdef CONFIG_CEPH_FS_SECURITY_LABEL
1066extern int ceph_security_init_secctx(struct dentry *dentry, umode_t mode,
1067 struct ceph_acl_sec_ctx *ctx);
1068static inline void ceph_security_invalidate_secctx(struct inode *inode)
1069{
1070 security_inode_invalidate_secctx(inode);
1071}
1072#else
1073static inline int ceph_security_init_secctx(struct dentry *dentry, umode_t mode,
1074 struct ceph_acl_sec_ctx *ctx)
1075{
1076 return 0;
1077}
1078static inline void ceph_security_invalidate_secctx(struct inode *inode)
1079{
1080}
1081#endif
1082
1083void ceph_release_acl_sec_ctx(struct ceph_acl_sec_ctx *as_ctx);
1084
1085/* acl.c */
1086#ifdef CONFIG_CEPH_FS_POSIX_ACL
1087
1088struct posix_acl *ceph_get_acl(struct inode *, int);
1089int ceph_set_acl(struct user_namespace *mnt_userns,
1090 struct inode *inode, struct posix_acl *acl, int type);
1091int ceph_pre_init_acls(struct inode *dir, umode_t *mode,
1092 struct ceph_acl_sec_ctx *as_ctx);
1093void ceph_init_inode_acls(struct inode *inode,
1094 struct ceph_acl_sec_ctx *as_ctx);
1095
1096static inline void ceph_forget_all_cached_acls(struct inode *inode)
1097{
1098 forget_all_cached_acls(inode);
1099}
1100
1101#else
1102
1103#define ceph_get_acl NULL
1104#define ceph_set_acl NULL
1105
1106static inline int ceph_pre_init_acls(struct inode *dir, umode_t *mode,
1107 struct ceph_acl_sec_ctx *as_ctx)
1108{
1109 return 0;
1110}
1111static inline void ceph_init_inode_acls(struct inode *inode,
1112 struct ceph_acl_sec_ctx *as_ctx)
1113{
1114}
1115static inline int ceph_acl_chmod(struct dentry *dentry, struct inode *inode)
1116{
1117 return 0;
1118}
1119
1120static inline void ceph_forget_all_cached_acls(struct inode *inode)
1121{
1122}
1123
1124#endif
1125
1126/* caps.c */
1127extern const char *ceph_cap_string(int c);
1128extern void ceph_handle_caps(struct ceph_mds_session *session,
1129 struct ceph_msg *msg);
1130extern struct ceph_cap *ceph_get_cap(struct ceph_mds_client *mdsc,
1131 struct ceph_cap_reservation *ctx);
1132extern void ceph_add_cap(struct inode *inode,
1133 struct ceph_mds_session *session, u64 cap_id,
1134 unsigned issued, unsigned wanted,
1135 unsigned cap, unsigned seq, u64 realmino, int flags,
1136 struct ceph_cap **new_cap);
1137extern void __ceph_remove_cap(struct ceph_cap *cap, bool queue_release);
1138extern void __ceph_remove_caps(struct ceph_inode_info *ci);
1139extern void ceph_put_cap(struct ceph_mds_client *mdsc,
1140 struct ceph_cap *cap);
1141extern int ceph_is_any_caps(struct inode *inode);
1142
1143extern int ceph_write_inode(struct inode *inode, struct writeback_control *wbc);
1144extern int ceph_fsync(struct file *file, loff_t start, loff_t end,
1145 int datasync);
1146extern void ceph_early_kick_flushing_caps(struct ceph_mds_client *mdsc,
1147 struct ceph_mds_session *session);
1148extern void ceph_kick_flushing_caps(struct ceph_mds_client *mdsc,
1149 struct ceph_mds_session *session);
1150void ceph_kick_flushing_inode_caps(struct ceph_mds_session *session,
1151 struct ceph_inode_info *ci);
1152extern struct ceph_cap *ceph_get_cap_for_mds(struct ceph_inode_info *ci,
1153 int mds);
1154extern void ceph_take_cap_refs(struct ceph_inode_info *ci, int caps,
1155 bool snap_rwsem_locked);
1156extern void ceph_get_cap_refs(struct ceph_inode_info *ci, int caps);
1157extern void ceph_put_cap_refs(struct ceph_inode_info *ci, int had);
1158extern void ceph_put_cap_refs_async(struct ceph_inode_info *ci, int had);
1159extern void ceph_put_cap_refs_no_check_caps(struct ceph_inode_info *ci,
1160 int had);
1161extern void ceph_put_wrbuffer_cap_refs(struct ceph_inode_info *ci, int nr,
1162 struct ceph_snap_context *snapc);
1163extern void __ceph_remove_capsnap(struct inode *inode,
1164 struct ceph_cap_snap *capsnap,
1165 bool *wake_ci, bool *wake_mdsc);
1166extern void ceph_remove_capsnap(struct inode *inode,
1167 struct ceph_cap_snap *capsnap,
1168 bool *wake_ci, bool *wake_mdsc);
1169extern void ceph_flush_snaps(struct ceph_inode_info *ci,
1170 struct ceph_mds_session **psession);
1171extern bool __ceph_should_report_size(struct ceph_inode_info *ci);
1172extern void ceph_check_caps(struct ceph_inode_info *ci, int flags,
1173 struct ceph_mds_session *session);
1174extern unsigned long ceph_check_delayed_caps(struct ceph_mds_client *mdsc);
1175extern void ceph_flush_dirty_caps(struct ceph_mds_client *mdsc);
1176extern int ceph_drop_caps_for_unlink(struct inode *inode);
1177extern int ceph_encode_inode_release(void **p, struct inode *inode,
1178 int mds, int drop, int unless, int force);
1179extern int ceph_encode_dentry_release(void **p, struct dentry *dn,
1180 struct inode *dir,
1181 int mds, int drop, int unless);
1182
1183extern int ceph_get_caps(struct file *filp, int need, int want,
1184 loff_t endoff, int *got);
1185extern int ceph_try_get_caps(struct inode *inode,
1186 int need, int want, bool nonblock, int *got);
1187
1188/* for counting open files by mode */
1189extern void ceph_get_fmode(struct ceph_inode_info *ci, int mode, int count);
1190extern void ceph_put_fmode(struct ceph_inode_info *ci, int mode, int count);
1191extern void __ceph_touch_fmode(struct ceph_inode_info *ci,
1192 struct ceph_mds_client *mdsc, int fmode);
1193
1194/* addr.c */
1195extern const struct address_space_operations ceph_aops;
1196extern int ceph_mmap(struct file *file, struct vm_area_struct *vma);
1197extern int ceph_uninline_data(struct file *filp, struct page *locked_page);
1198extern int ceph_pool_perm_check(struct inode *inode, int need);
1199extern void ceph_pool_perm_destroy(struct ceph_mds_client* mdsc);
1200
1201/* file.c */
1202extern const struct file_operations ceph_file_fops;
1203
1204extern int ceph_renew_caps(struct inode *inode, int fmode);
1205extern int ceph_open(struct inode *inode, struct file *file);
1206extern int ceph_atomic_open(struct inode *dir, struct dentry *dentry,
1207 struct file *file, unsigned flags, umode_t mode);
1208extern int ceph_release(struct inode *inode, struct file *filp);
1209extern void ceph_fill_inline_data(struct inode *inode, struct page *locked_page,
1210 char *data, size_t len);
1211
1212/* dir.c */
1213extern const struct file_operations ceph_dir_fops;
1214extern const struct file_operations ceph_snapdir_fops;
1215extern const struct inode_operations ceph_dir_iops;
1216extern const struct inode_operations ceph_snapdir_iops;
1217extern const struct dentry_operations ceph_dentry_ops;
1218
1219extern loff_t ceph_make_fpos(unsigned high, unsigned off, bool hash_order);
1220extern int ceph_handle_notrace_create(struct inode *dir, struct dentry *dentry);
1221extern struct dentry *ceph_handle_snapdir(struct ceph_mds_request *req,
1222 struct dentry *dentry);
1223extern struct dentry *ceph_finish_lookup(struct ceph_mds_request *req,
1224 struct dentry *dentry, int err);
1225
1226extern void __ceph_dentry_lease_touch(struct ceph_dentry_info *di);
1227extern void __ceph_dentry_dir_lease_touch(struct ceph_dentry_info *di);
1228extern void ceph_invalidate_dentry_lease(struct dentry *dentry);
1229extern int ceph_trim_dentries(struct ceph_mds_client *mdsc);
1230extern unsigned ceph_dentry_hash(struct inode *dir, struct dentry *dn);
1231extern void ceph_readdir_cache_release(struct ceph_readdir_cache_control *ctl);
1232
1233/* ioctl.c */
1234extern long ceph_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
1235
1236/* export.c */
1237extern const struct export_operations ceph_export_ops;
1238struct inode *ceph_lookup_inode(struct super_block *sb, u64 ino);
1239
1240/* locks.c */
1241extern __init void ceph_flock_init(void);
1242extern int ceph_lock(struct file *file, int cmd, struct file_lock *fl);
1243extern int ceph_flock(struct file *file, int cmd, struct file_lock *fl);
1244extern void ceph_count_locks(struct inode *inode, int *p_num, int *f_num);
1245extern int ceph_encode_locks_to_buffer(struct inode *inode,
1246 struct ceph_filelock *flocks,
1247 int num_fcntl_locks,
1248 int num_flock_locks);
1249extern int ceph_locks_to_pagelist(struct ceph_filelock *flocks,
1250 struct ceph_pagelist *pagelist,
1251 int num_fcntl_locks, int num_flock_locks);
1252
1253/* debugfs.c */
1254extern void ceph_fs_debugfs_init(struct ceph_fs_client *client);
1255extern void ceph_fs_debugfs_cleanup(struct ceph_fs_client *client);
1256
1257/* quota.c */
1258static inline bool __ceph_has_any_quota(struct ceph_inode_info *ci)
1259{
1260 return ci->i_max_files || ci->i_max_bytes;
1261}
1262
1263extern void ceph_adjust_quota_realms_count(struct inode *inode, bool inc);
1264
1265static inline void __ceph_update_quota(struct ceph_inode_info *ci,
1266 u64 max_bytes, u64 max_files)
1267{
1268 bool had_quota, has_quota;
1269 had_quota = __ceph_has_any_quota(ci);
1270 ci->i_max_bytes = max_bytes;
1271 ci->i_max_files = max_files;
1272 has_quota = __ceph_has_any_quota(ci);
1273
1274 if (had_quota != has_quota)
1275 ceph_adjust_quota_realms_count(&ci->vfs_inode, has_quota);
1276}
1277
1278extern void ceph_handle_quota(struct ceph_mds_client *mdsc,
1279 struct ceph_mds_session *session,
1280 struct ceph_msg *msg);
1281extern bool ceph_quota_is_max_files_exceeded(struct inode *inode);
1282extern bool ceph_quota_is_same_realm(struct inode *old, struct inode *new);
1283extern bool ceph_quota_is_max_bytes_exceeded(struct inode *inode,
1284 loff_t newlen);
1285extern bool ceph_quota_is_max_bytes_approaching(struct inode *inode,
1286 loff_t newlen);
1287extern bool ceph_quota_update_statfs(struct ceph_fs_client *fsc,
1288 struct kstatfs *buf);
1289extern void ceph_cleanup_quotarealms_inodes(struct ceph_mds_client *mdsc);
1290
1291#endif /* _FS_CEPH_SUPER_H */