Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.15.
  1/*
  2 * Linux Socket Filter - Kernel level socket filtering
  3 *
  4 * Based on the design of the Berkeley Packet Filter. The new
  5 * internal format has been designed by PLUMgrid:
  6 *
  7 *	Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
  8 *
  9 * Authors:
 10 *
 11 *	Jay Schulist <jschlst@samba.org>
 12 *	Alexei Starovoitov <ast@plumgrid.com>
 13 *	Daniel Borkmann <dborkman@redhat.com>
 14 *
 15 * This program is free software; you can redistribute it and/or
 16 * modify it under the terms of the GNU General Public License
 17 * as published by the Free Software Foundation; either version
 18 * 2 of the License, or (at your option) any later version.
 19 *
 20 * Andi Kleen - Fix a few bad bugs and races.
 21 * Kris Katterjohn - Added many additional checks in bpf_check_classic()
 22 */
 23
 24#include <linux/filter.h>
 25#include <linux/skbuff.h>
 26#include <linux/vmalloc.h>
 27#include <linux/random.h>
 28#include <linux/moduleloader.h>
 29#include <linux/bpf.h>
 30#include <linux/frame.h>
 31
 32#include <asm/unaligned.h>
 33
 34/* Registers */
 35#define BPF_R0	regs[BPF_REG_0]
 36#define BPF_R1	regs[BPF_REG_1]
 37#define BPF_R2	regs[BPF_REG_2]
 38#define BPF_R3	regs[BPF_REG_3]
 39#define BPF_R4	regs[BPF_REG_4]
 40#define BPF_R5	regs[BPF_REG_5]
 41#define BPF_R6	regs[BPF_REG_6]
 42#define BPF_R7	regs[BPF_REG_7]
 43#define BPF_R8	regs[BPF_REG_8]
 44#define BPF_R9	regs[BPF_REG_9]
 45#define BPF_R10	regs[BPF_REG_10]
 46
 47/* Named registers */
 48#define DST	regs[insn->dst_reg]
 49#define SRC	regs[insn->src_reg]
 50#define FP	regs[BPF_REG_FP]
 51#define ARG1	regs[BPF_REG_ARG1]
 52#define CTX	regs[BPF_REG_CTX]
 53#define IMM	insn->imm
 54
 55/* No hurry in this branch
 56 *
 57 * Exported for the bpf jit load helper.
 58 */
 59void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb, int k, unsigned int size)
 60{
 61	u8 *ptr = NULL;
 62
 63	if (k >= SKF_NET_OFF)
 64		ptr = skb_network_header(skb) + k - SKF_NET_OFF;
 65	else if (k >= SKF_LL_OFF)
 66		ptr = skb_mac_header(skb) + k - SKF_LL_OFF;
 67
 68	if (ptr >= skb->head && ptr + size <= skb_tail_pointer(skb))
 69		return ptr;
 70
 71	return NULL;
 72}
 73
 74struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags)
 75{
 76	gfp_t gfp_flags = GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO |
 77			  gfp_extra_flags;
 78	struct bpf_prog_aux *aux;
 79	struct bpf_prog *fp;
 80
 81	size = round_up(size, PAGE_SIZE);
 82	fp = __vmalloc(size, gfp_flags, PAGE_KERNEL);
 83	if (fp == NULL)
 84		return NULL;
 85
 86	kmemcheck_annotate_bitfield(fp, meta);
 87
 88	aux = kzalloc(sizeof(*aux), GFP_KERNEL | gfp_extra_flags);
 89	if (aux == NULL) {
 90		vfree(fp);
 91		return NULL;
 92	}
 93
 94	fp->pages = size / PAGE_SIZE;
 95	fp->aux = aux;
 96	fp->aux->prog = fp;
 97
 98	return fp;
 99}
100EXPORT_SYMBOL_GPL(bpf_prog_alloc);
101
102struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size,
103				  gfp_t gfp_extra_flags)
104{
105	gfp_t gfp_flags = GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO |
106			  gfp_extra_flags;
107	struct bpf_prog *fp;
108
109	BUG_ON(fp_old == NULL);
110
111	size = round_up(size, PAGE_SIZE);
112	if (size <= fp_old->pages * PAGE_SIZE)
113		return fp_old;
114
115	fp = __vmalloc(size, gfp_flags, PAGE_KERNEL);
116	if (fp != NULL) {
117		kmemcheck_annotate_bitfield(fp, meta);
118
119		memcpy(fp, fp_old, fp_old->pages * PAGE_SIZE);
120		fp->pages = size / PAGE_SIZE;
121		fp->aux->prog = fp;
122
123		/* We keep fp->aux from fp_old around in the new
124		 * reallocated structure.
125		 */
126		fp_old->aux = NULL;
127		__bpf_prog_free(fp_old);
128	}
129
130	return fp;
131}
132EXPORT_SYMBOL_GPL(bpf_prog_realloc);
133
134void __bpf_prog_free(struct bpf_prog *fp)
135{
136	kfree(fp->aux);
137	vfree(fp);
138}
139EXPORT_SYMBOL_GPL(__bpf_prog_free);
140
141#ifdef CONFIG_BPF_JIT
142struct bpf_binary_header *
143bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,
144		     unsigned int alignment,
145		     bpf_jit_fill_hole_t bpf_fill_ill_insns)
146{
147	struct bpf_binary_header *hdr;
148	unsigned int size, hole, start;
149
150	/* Most of BPF filters are really small, but if some of them
151	 * fill a page, allow at least 128 extra bytes to insert a
152	 * random section of illegal instructions.
153	 */
154	size = round_up(proglen + sizeof(*hdr) + 128, PAGE_SIZE);
155	hdr = module_alloc(size);
156	if (hdr == NULL)
157		return NULL;
158
159	/* Fill space with illegal/arch-dep instructions. */
160	bpf_fill_ill_insns(hdr, size);
161
162	hdr->pages = size / PAGE_SIZE;
163	hole = min_t(unsigned int, size - (proglen + sizeof(*hdr)),
164		     PAGE_SIZE - sizeof(*hdr));
165	start = (prandom_u32() % hole) & ~(alignment - 1);
166
167	/* Leave a random number of instructions before BPF code. */
168	*image_ptr = &hdr->image[start];
169
170	return hdr;
171}
172
173void bpf_jit_binary_free(struct bpf_binary_header *hdr)
174{
175	module_memfree(hdr);
176}
177#endif /* CONFIG_BPF_JIT */
178
179/* Base function for offset calculation. Needs to go into .text section,
180 * therefore keeping it non-static as well; will also be used by JITs
181 * anyway later on, so do not let the compiler omit it.
182 */
183noinline u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
184{
185	return 0;
186}
187EXPORT_SYMBOL_GPL(__bpf_call_base);
188
189/**
190 *	__bpf_prog_run - run eBPF program on a given context
191 *	@ctx: is the data we are operating on
192 *	@insn: is the array of eBPF instructions
193 *
194 * Decode and execute eBPF instructions.
195 */
196static unsigned int __bpf_prog_run(void *ctx, const struct bpf_insn *insn)
197{
198	u64 stack[MAX_BPF_STACK / sizeof(u64)];
199	u64 regs[MAX_BPF_REG], tmp;
200	static const void *jumptable[256] = {
201		[0 ... 255] = &&default_label,
202		/* Now overwrite non-defaults ... */
203		/* 32 bit ALU operations */
204		[BPF_ALU | BPF_ADD | BPF_X] = &&ALU_ADD_X,
205		[BPF_ALU | BPF_ADD | BPF_K] = &&ALU_ADD_K,
206		[BPF_ALU | BPF_SUB | BPF_X] = &&ALU_SUB_X,
207		[BPF_ALU | BPF_SUB | BPF_K] = &&ALU_SUB_K,
208		[BPF_ALU | BPF_AND | BPF_X] = &&ALU_AND_X,
209		[BPF_ALU | BPF_AND | BPF_K] = &&ALU_AND_K,
210		[BPF_ALU | BPF_OR | BPF_X]  = &&ALU_OR_X,
211		[BPF_ALU | BPF_OR | BPF_K]  = &&ALU_OR_K,
212		[BPF_ALU | BPF_LSH | BPF_X] = &&ALU_LSH_X,
213		[BPF_ALU | BPF_LSH | BPF_K] = &&ALU_LSH_K,
214		[BPF_ALU | BPF_RSH | BPF_X] = &&ALU_RSH_X,
215		[BPF_ALU | BPF_RSH | BPF_K] = &&ALU_RSH_K,
216		[BPF_ALU | BPF_XOR | BPF_X] = &&ALU_XOR_X,
217		[BPF_ALU | BPF_XOR | BPF_K] = &&ALU_XOR_K,
218		[BPF_ALU | BPF_MUL | BPF_X] = &&ALU_MUL_X,
219		[BPF_ALU | BPF_MUL | BPF_K] = &&ALU_MUL_K,
220		[BPF_ALU | BPF_MOV | BPF_X] = &&ALU_MOV_X,
221		[BPF_ALU | BPF_MOV | BPF_K] = &&ALU_MOV_K,
222		[BPF_ALU | BPF_DIV | BPF_X] = &&ALU_DIV_X,
223		[BPF_ALU | BPF_DIV | BPF_K] = &&ALU_DIV_K,
224		[BPF_ALU | BPF_MOD | BPF_X] = &&ALU_MOD_X,
225		[BPF_ALU | BPF_MOD | BPF_K] = &&ALU_MOD_K,
226		[BPF_ALU | BPF_NEG] = &&ALU_NEG,
227		[BPF_ALU | BPF_END | BPF_TO_BE] = &&ALU_END_TO_BE,
228		[BPF_ALU | BPF_END | BPF_TO_LE] = &&ALU_END_TO_LE,
229		/* 64 bit ALU operations */
230		[BPF_ALU64 | BPF_ADD | BPF_X] = &&ALU64_ADD_X,
231		[BPF_ALU64 | BPF_ADD | BPF_K] = &&ALU64_ADD_K,
232		[BPF_ALU64 | BPF_SUB | BPF_X] = &&ALU64_SUB_X,
233		[BPF_ALU64 | BPF_SUB | BPF_K] = &&ALU64_SUB_K,
234		[BPF_ALU64 | BPF_AND | BPF_X] = &&ALU64_AND_X,
235		[BPF_ALU64 | BPF_AND | BPF_K] = &&ALU64_AND_K,
236		[BPF_ALU64 | BPF_OR | BPF_X] = &&ALU64_OR_X,
237		[BPF_ALU64 | BPF_OR | BPF_K] = &&ALU64_OR_K,
238		[BPF_ALU64 | BPF_LSH | BPF_X] = &&ALU64_LSH_X,
239		[BPF_ALU64 | BPF_LSH | BPF_K] = &&ALU64_LSH_K,
240		[BPF_ALU64 | BPF_RSH | BPF_X] = &&ALU64_RSH_X,
241		[BPF_ALU64 | BPF_RSH | BPF_K] = &&ALU64_RSH_K,
242		[BPF_ALU64 | BPF_XOR | BPF_X] = &&ALU64_XOR_X,
243		[BPF_ALU64 | BPF_XOR | BPF_K] = &&ALU64_XOR_K,
244		[BPF_ALU64 | BPF_MUL | BPF_X] = &&ALU64_MUL_X,
245		[BPF_ALU64 | BPF_MUL | BPF_K] = &&ALU64_MUL_K,
246		[BPF_ALU64 | BPF_MOV | BPF_X] = &&ALU64_MOV_X,
247		[BPF_ALU64 | BPF_MOV | BPF_K] = &&ALU64_MOV_K,
248		[BPF_ALU64 | BPF_ARSH | BPF_X] = &&ALU64_ARSH_X,
249		[BPF_ALU64 | BPF_ARSH | BPF_K] = &&ALU64_ARSH_K,
250		[BPF_ALU64 | BPF_DIV | BPF_X] = &&ALU64_DIV_X,
251		[BPF_ALU64 | BPF_DIV | BPF_K] = &&ALU64_DIV_K,
252		[BPF_ALU64 | BPF_MOD | BPF_X] = &&ALU64_MOD_X,
253		[BPF_ALU64 | BPF_MOD | BPF_K] = &&ALU64_MOD_K,
254		[BPF_ALU64 | BPF_NEG] = &&ALU64_NEG,
255		/* Call instruction */
256		[BPF_JMP | BPF_CALL] = &&JMP_CALL,
257		[BPF_JMP | BPF_CALL | BPF_X] = &&JMP_TAIL_CALL,
258		/* Jumps */
259		[BPF_JMP | BPF_JA] = &&JMP_JA,
260		[BPF_JMP | BPF_JEQ | BPF_X] = &&JMP_JEQ_X,
261		[BPF_JMP | BPF_JEQ | BPF_K] = &&JMP_JEQ_K,
262		[BPF_JMP | BPF_JNE | BPF_X] = &&JMP_JNE_X,
263		[BPF_JMP | BPF_JNE | BPF_K] = &&JMP_JNE_K,
264		[BPF_JMP | BPF_JGT | BPF_X] = &&JMP_JGT_X,
265		[BPF_JMP | BPF_JGT | BPF_K] = &&JMP_JGT_K,
266		[BPF_JMP | BPF_JGE | BPF_X] = &&JMP_JGE_X,
267		[BPF_JMP | BPF_JGE | BPF_K] = &&JMP_JGE_K,
268		[BPF_JMP | BPF_JSGT | BPF_X] = &&JMP_JSGT_X,
269		[BPF_JMP | BPF_JSGT | BPF_K] = &&JMP_JSGT_K,
270		[BPF_JMP | BPF_JSGE | BPF_X] = &&JMP_JSGE_X,
271		[BPF_JMP | BPF_JSGE | BPF_K] = &&JMP_JSGE_K,
272		[BPF_JMP | BPF_JSET | BPF_X] = &&JMP_JSET_X,
273		[BPF_JMP | BPF_JSET | BPF_K] = &&JMP_JSET_K,
274		/* Program return */
275		[BPF_JMP | BPF_EXIT] = &&JMP_EXIT,
276		/* Store instructions */
277		[BPF_STX | BPF_MEM | BPF_B] = &&STX_MEM_B,
278		[BPF_STX | BPF_MEM | BPF_H] = &&STX_MEM_H,
279		[BPF_STX | BPF_MEM | BPF_W] = &&STX_MEM_W,
280		[BPF_STX | BPF_MEM | BPF_DW] = &&STX_MEM_DW,
281		[BPF_STX | BPF_XADD | BPF_W] = &&STX_XADD_W,
282		[BPF_STX | BPF_XADD | BPF_DW] = &&STX_XADD_DW,
283		[BPF_ST | BPF_MEM | BPF_B] = &&ST_MEM_B,
284		[BPF_ST | BPF_MEM | BPF_H] = &&ST_MEM_H,
285		[BPF_ST | BPF_MEM | BPF_W] = &&ST_MEM_W,
286		[BPF_ST | BPF_MEM | BPF_DW] = &&ST_MEM_DW,
287		/* Load instructions */
288		[BPF_LDX | BPF_MEM | BPF_B] = &&LDX_MEM_B,
289		[BPF_LDX | BPF_MEM | BPF_H] = &&LDX_MEM_H,
290		[BPF_LDX | BPF_MEM | BPF_W] = &&LDX_MEM_W,
291		[BPF_LDX | BPF_MEM | BPF_DW] = &&LDX_MEM_DW,
292		[BPF_LD | BPF_ABS | BPF_W] = &&LD_ABS_W,
293		[BPF_LD | BPF_ABS | BPF_H] = &&LD_ABS_H,
294		[BPF_LD | BPF_ABS | BPF_B] = &&LD_ABS_B,
295		[BPF_LD | BPF_IND | BPF_W] = &&LD_IND_W,
296		[BPF_LD | BPF_IND | BPF_H] = &&LD_IND_H,
297		[BPF_LD | BPF_IND | BPF_B] = &&LD_IND_B,
298		[BPF_LD | BPF_IMM | BPF_DW] = &&LD_IMM_DW,
299	};
300	u32 tail_call_cnt = 0;
301	void *ptr;
302	int off;
303
304#define CONT	 ({ insn++; goto select_insn; })
305#define CONT_JMP ({ insn++; goto select_insn; })
306
307	FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)];
308	ARG1 = (u64) (unsigned long) ctx;
309
310select_insn:
311	goto *jumptable[insn->code];
312
313	/* ALU */
314#define ALU(OPCODE, OP)			\
315	ALU64_##OPCODE##_X:		\
316		DST = DST OP SRC;	\
317		CONT;			\
318	ALU_##OPCODE##_X:		\
319		DST = (u32) DST OP (u32) SRC;	\
320		CONT;			\
321	ALU64_##OPCODE##_K:		\
322		DST = DST OP IMM;		\
323		CONT;			\
324	ALU_##OPCODE##_K:		\
325		DST = (u32) DST OP (u32) IMM;	\
326		CONT;
327
328	ALU(ADD,  +)
329	ALU(SUB,  -)
330	ALU(AND,  &)
331	ALU(OR,   |)
332	ALU(LSH, <<)
333	ALU(RSH, >>)
334	ALU(XOR,  ^)
335	ALU(MUL,  *)
336#undef ALU
337	ALU_NEG:
338		DST = (u32) -DST;
339		CONT;
340	ALU64_NEG:
341		DST = -DST;
342		CONT;
343	ALU_MOV_X:
344		DST = (u32) SRC;
345		CONT;
346	ALU_MOV_K:
347		DST = (u32) IMM;
348		CONT;
349	ALU64_MOV_X:
350		DST = SRC;
351		CONT;
352	ALU64_MOV_K:
353		DST = IMM;
354		CONT;
355	LD_IMM_DW:
356		DST = (u64) (u32) insn[0].imm | ((u64) (u32) insn[1].imm) << 32;
357		insn++;
358		CONT;
359	ALU64_ARSH_X:
360		(*(s64 *) &DST) >>= SRC;
361		CONT;
362	ALU64_ARSH_K:
363		(*(s64 *) &DST) >>= IMM;
364		CONT;
365	ALU64_MOD_X:
366		if (unlikely(SRC == 0))
367			return 0;
368		div64_u64_rem(DST, SRC, &tmp);
369		DST = tmp;
370		CONT;
371	ALU_MOD_X:
372		if (unlikely(SRC == 0))
373			return 0;
374		tmp = (u32) DST;
375		DST = do_div(tmp, (u32) SRC);
376		CONT;
377	ALU64_MOD_K:
378		div64_u64_rem(DST, IMM, &tmp);
379		DST = tmp;
380		CONT;
381	ALU_MOD_K:
382		tmp = (u32) DST;
383		DST = do_div(tmp, (u32) IMM);
384		CONT;
385	ALU64_DIV_X:
386		if (unlikely(SRC == 0))
387			return 0;
388		DST = div64_u64(DST, SRC);
389		CONT;
390	ALU_DIV_X:
391		if (unlikely(SRC == 0))
392			return 0;
393		tmp = (u32) DST;
394		do_div(tmp, (u32) SRC);
395		DST = (u32) tmp;
396		CONT;
397	ALU64_DIV_K:
398		DST = div64_u64(DST, IMM);
399		CONT;
400	ALU_DIV_K:
401		tmp = (u32) DST;
402		do_div(tmp, (u32) IMM);
403		DST = (u32) tmp;
404		CONT;
405	ALU_END_TO_BE:
406		switch (IMM) {
407		case 16:
408			DST = (__force u16) cpu_to_be16(DST);
409			break;
410		case 32:
411			DST = (__force u32) cpu_to_be32(DST);
412			break;
413		case 64:
414			DST = (__force u64) cpu_to_be64(DST);
415			break;
416		}
417		CONT;
418	ALU_END_TO_LE:
419		switch (IMM) {
420		case 16:
421			DST = (__force u16) cpu_to_le16(DST);
422			break;
423		case 32:
424			DST = (__force u32) cpu_to_le32(DST);
425			break;
426		case 64:
427			DST = (__force u64) cpu_to_le64(DST);
428			break;
429		}
430		CONT;
431
432	/* CALL */
433	JMP_CALL:
434		/* Function call scratches BPF_R1-BPF_R5 registers,
435		 * preserves BPF_R6-BPF_R9, and stores return value
436		 * into BPF_R0.
437		 */
438		BPF_R0 = (__bpf_call_base + insn->imm)(BPF_R1, BPF_R2, BPF_R3,
439						       BPF_R4, BPF_R5);
440		CONT;
441
442	JMP_TAIL_CALL: {
443		struct bpf_map *map = (struct bpf_map *) (unsigned long) BPF_R2;
444		struct bpf_array *array = container_of(map, struct bpf_array, map);
445		struct bpf_prog *prog;
446		u64 index = BPF_R3;
447
448		if (unlikely(index >= array->map.max_entries))
449			goto out;
450
451		if (unlikely(tail_call_cnt > MAX_TAIL_CALL_CNT))
452			goto out;
453
454		tail_call_cnt++;
455
456		prog = READ_ONCE(array->ptrs[index]);
457		if (unlikely(!prog))
458			goto out;
459
460		/* ARG1 at this point is guaranteed to point to CTX from
461		 * the verifier side due to the fact that the tail call is
462		 * handeled like a helper, that is, bpf_tail_call_proto,
463		 * where arg1_type is ARG_PTR_TO_CTX.
464		 */
465		insn = prog->insnsi;
466		goto select_insn;
467out:
468		CONT;
469	}
470	/* JMP */
471	JMP_JA:
472		insn += insn->off;
473		CONT;
474	JMP_JEQ_X:
475		if (DST == SRC) {
476			insn += insn->off;
477			CONT_JMP;
478		}
479		CONT;
480	JMP_JEQ_K:
481		if (DST == IMM) {
482			insn += insn->off;
483			CONT_JMP;
484		}
485		CONT;
486	JMP_JNE_X:
487		if (DST != SRC) {
488			insn += insn->off;
489			CONT_JMP;
490		}
491		CONT;
492	JMP_JNE_K:
493		if (DST != IMM) {
494			insn += insn->off;
495			CONT_JMP;
496		}
497		CONT;
498	JMP_JGT_X:
499		if (DST > SRC) {
500			insn += insn->off;
501			CONT_JMP;
502		}
503		CONT;
504	JMP_JGT_K:
505		if (DST > IMM) {
506			insn += insn->off;
507			CONT_JMP;
508		}
509		CONT;
510	JMP_JGE_X:
511		if (DST >= SRC) {
512			insn += insn->off;
513			CONT_JMP;
514		}
515		CONT;
516	JMP_JGE_K:
517		if (DST >= IMM) {
518			insn += insn->off;
519			CONT_JMP;
520		}
521		CONT;
522	JMP_JSGT_X:
523		if (((s64) DST) > ((s64) SRC)) {
524			insn += insn->off;
525			CONT_JMP;
526		}
527		CONT;
528	JMP_JSGT_K:
529		if (((s64) DST) > ((s64) IMM)) {
530			insn += insn->off;
531			CONT_JMP;
532		}
533		CONT;
534	JMP_JSGE_X:
535		if (((s64) DST) >= ((s64) SRC)) {
536			insn += insn->off;
537			CONT_JMP;
538		}
539		CONT;
540	JMP_JSGE_K:
541		if (((s64) DST) >= ((s64) IMM)) {
542			insn += insn->off;
543			CONT_JMP;
544		}
545		CONT;
546	JMP_JSET_X:
547		if (DST & SRC) {
548			insn += insn->off;
549			CONT_JMP;
550		}
551		CONT;
552	JMP_JSET_K:
553		if (DST & IMM) {
554			insn += insn->off;
555			CONT_JMP;
556		}
557		CONT;
558	JMP_EXIT:
559		return BPF_R0;
560
561	/* STX and ST and LDX*/
562#define LDST(SIZEOP, SIZE)						\
563	STX_MEM_##SIZEOP:						\
564		*(SIZE *)(unsigned long) (DST + insn->off) = SRC;	\
565		CONT;							\
566	ST_MEM_##SIZEOP:						\
567		*(SIZE *)(unsigned long) (DST + insn->off) = IMM;	\
568		CONT;							\
569	LDX_MEM_##SIZEOP:						\
570		DST = *(SIZE *)(unsigned long) (SRC + insn->off);	\
571		CONT;
572
573	LDST(B,   u8)
574	LDST(H,  u16)
575	LDST(W,  u32)
576	LDST(DW, u64)
577#undef LDST
578	STX_XADD_W: /* lock xadd *(u32 *)(dst_reg + off16) += src_reg */
579		atomic_add((u32) SRC, (atomic_t *)(unsigned long)
580			   (DST + insn->off));
581		CONT;
582	STX_XADD_DW: /* lock xadd *(u64 *)(dst_reg + off16) += src_reg */
583		atomic64_add((u64) SRC, (atomic64_t *)(unsigned long)
584			     (DST + insn->off));
585		CONT;
586	LD_ABS_W: /* BPF_R0 = ntohl(*(u32 *) (skb->data + imm32)) */
587		off = IMM;
588load_word:
589		/* BPF_LD + BPD_ABS and BPF_LD + BPF_IND insns are
590		 * only appearing in the programs where ctx ==
591		 * skb. All programs keep 'ctx' in regs[BPF_REG_CTX]
592		 * == BPF_R6, bpf_convert_filter() saves it in BPF_R6,
593		 * internal BPF verifier will check that BPF_R6 ==
594		 * ctx.
595		 *
596		 * BPF_ABS and BPF_IND are wrappers of function calls,
597		 * so they scratch BPF_R1-BPF_R5 registers, preserve
598		 * BPF_R6-BPF_R9, and store return value into BPF_R0.
599		 *
600		 * Implicit input:
601		 *   ctx == skb == BPF_R6 == CTX
602		 *
603		 * Explicit input:
604		 *   SRC == any register
605		 *   IMM == 32-bit immediate
606		 *
607		 * Output:
608		 *   BPF_R0 - 8/16/32-bit skb data converted to cpu endianness
609		 */
610
611		ptr = bpf_load_pointer((struct sk_buff *) (unsigned long) CTX, off, 4, &tmp);
612		if (likely(ptr != NULL)) {
613			BPF_R0 = get_unaligned_be32(ptr);
614			CONT;
615		}
616
617		return 0;
618	LD_ABS_H: /* BPF_R0 = ntohs(*(u16 *) (skb->data + imm32)) */
619		off = IMM;
620load_half:
621		ptr = bpf_load_pointer((struct sk_buff *) (unsigned long) CTX, off, 2, &tmp);
622		if (likely(ptr != NULL)) {
623			BPF_R0 = get_unaligned_be16(ptr);
624			CONT;
625		}
626
627		return 0;
628	LD_ABS_B: /* BPF_R0 = *(u8 *) (skb->data + imm32) */
629		off = IMM;
630load_byte:
631		ptr = bpf_load_pointer((struct sk_buff *) (unsigned long) CTX, off, 1, &tmp);
632		if (likely(ptr != NULL)) {
633			BPF_R0 = *(u8 *)ptr;
634			CONT;
635		}
636
637		return 0;
638	LD_IND_W: /* BPF_R0 = ntohl(*(u32 *) (skb->data + src_reg + imm32)) */
639		off = IMM + SRC;
640		goto load_word;
641	LD_IND_H: /* BPF_R0 = ntohs(*(u16 *) (skb->data + src_reg + imm32)) */
642		off = IMM + SRC;
643		goto load_half;
644	LD_IND_B: /* BPF_R0 = *(u8 *) (skb->data + src_reg + imm32) */
645		off = IMM + SRC;
646		goto load_byte;
647
648	default_label:
649		/* If we ever reach this, we have a bug somewhere. */
650		WARN_RATELIMIT(1, "unknown opcode %02x\n", insn->code);
651		return 0;
652}
653STACK_FRAME_NON_STANDARD(__bpf_prog_run); /* jump table */
654
655bool bpf_prog_array_compatible(struct bpf_array *array,
656			       const struct bpf_prog *fp)
657{
658	if (!array->owner_prog_type) {
659		/* There's no owner yet where we could check for
660		 * compatibility.
661		 */
662		array->owner_prog_type = fp->type;
663		array->owner_jited = fp->jited;
664
665		return true;
666	}
667
668	return array->owner_prog_type == fp->type &&
669	       array->owner_jited == fp->jited;
670}
671
672static int bpf_check_tail_call(const struct bpf_prog *fp)
673{
674	struct bpf_prog_aux *aux = fp->aux;
675	int i;
676
677	for (i = 0; i < aux->used_map_cnt; i++) {
678		struct bpf_map *map = aux->used_maps[i];
679		struct bpf_array *array;
680
681		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
682			continue;
683
684		array = container_of(map, struct bpf_array, map);
685		if (!bpf_prog_array_compatible(array, fp))
686			return -EINVAL;
687	}
688
689	return 0;
690}
691
692/**
693 *	bpf_prog_select_runtime - select exec runtime for BPF program
694 *	@fp: bpf_prog populated with internal BPF program
695 *
696 * Try to JIT eBPF program, if JIT is not available, use interpreter.
697 * The BPF program will be executed via BPF_PROG_RUN() macro.
698 */
699int bpf_prog_select_runtime(struct bpf_prog *fp)
700{
701	fp->bpf_func = (void *) __bpf_prog_run;
702
703	bpf_int_jit_compile(fp);
704	bpf_prog_lock_ro(fp);
705
706	/* The tail call compatibility check can only be done at
707	 * this late stage as we need to determine, if we deal
708	 * with JITed or non JITed program concatenations and not
709	 * all eBPF JITs might immediately support all features.
710	 */
711	return bpf_check_tail_call(fp);
712}
713EXPORT_SYMBOL_GPL(bpf_prog_select_runtime);
714
715static void bpf_prog_free_deferred(struct work_struct *work)
716{
717	struct bpf_prog_aux *aux;
718
719	aux = container_of(work, struct bpf_prog_aux, work);
720	bpf_jit_free(aux->prog);
721}
722
723/* Free internal BPF program */
724void bpf_prog_free(struct bpf_prog *fp)
725{
726	struct bpf_prog_aux *aux = fp->aux;
727
728	INIT_WORK(&aux->work, bpf_prog_free_deferred);
729	schedule_work(&aux->work);
730}
731EXPORT_SYMBOL_GPL(bpf_prog_free);
732
733/* RNG for unpriviledged user space with separated state from prandom_u32(). */
734static DEFINE_PER_CPU(struct rnd_state, bpf_user_rnd_state);
735
736void bpf_user_rnd_init_once(void)
737{
738	prandom_init_once(&bpf_user_rnd_state);
739}
740
741u64 bpf_user_rnd_u32(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
742{
743	/* Should someone ever have the rather unwise idea to use some
744	 * of the registers passed into this function, then note that
745	 * this function is called from native eBPF and classic-to-eBPF
746	 * transformations. Register assignments from both sides are
747	 * different, f.e. classic always sets fn(ctx, A, X) here.
748	 */
749	struct rnd_state *state;
750	u32 res;
751
752	state = &get_cpu_var(bpf_user_rnd_state);
753	res = prandom_u32_state(state);
754	put_cpu_var(state);
755
756	return res;
757}
758
759/* Weak definitions of helper functions in case we don't have bpf syscall. */
760const struct bpf_func_proto bpf_map_lookup_elem_proto __weak;
761const struct bpf_func_proto bpf_map_update_elem_proto __weak;
762const struct bpf_func_proto bpf_map_delete_elem_proto __weak;
763
764const struct bpf_func_proto bpf_get_prandom_u32_proto __weak;
765const struct bpf_func_proto bpf_get_smp_processor_id_proto __weak;
766const struct bpf_func_proto bpf_ktime_get_ns_proto __weak;
767const struct bpf_func_proto bpf_get_current_pid_tgid_proto __weak;
768const struct bpf_func_proto bpf_get_current_uid_gid_proto __weak;
769const struct bpf_func_proto bpf_get_current_comm_proto __weak;
770const struct bpf_func_proto * __weak bpf_get_trace_printk_proto(void)
771{
772	return NULL;
773}
774
775/* Always built-in helper functions. */
776const struct bpf_func_proto bpf_tail_call_proto = {
777	.func		= NULL,
778	.gpl_only	= false,
779	.ret_type	= RET_VOID,
780	.arg1_type	= ARG_PTR_TO_CTX,
781	.arg2_type	= ARG_CONST_MAP_PTR,
782	.arg3_type	= ARG_ANYTHING,
783};
784
785/* For classic BPF JITs that don't implement bpf_int_jit_compile(). */
786void __weak bpf_int_jit_compile(struct bpf_prog *prog)
787{
788}
789
790/* To execute LD_ABS/LD_IND instructions __bpf_prog_run() may call
791 * skb_copy_bits(), so provide a weak definition of it for NET-less config.
792 */
793int __weak skb_copy_bits(const struct sk_buff *skb, int offset, void *to,
794			 int len)
795{
796	return -EFAULT;
797}