Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.15.
   1/*
   2 * Linux Socket Filter - Kernel level socket filtering
   3 *
   4 * Based on the design of the Berkeley Packet Filter. The new
   5 * internal format has been designed by PLUMgrid:
   6 *
   7 *	Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
   8 *
   9 * Authors:
  10 *
  11 *	Jay Schulist <jschlst@samba.org>
  12 *	Alexei Starovoitov <ast@plumgrid.com>
  13 *	Daniel Borkmann <dborkman@redhat.com>
  14 *
  15 * This program is free software; you can redistribute it and/or
  16 * modify it under the terms of the GNU General Public License
  17 * as published by the Free Software Foundation; either version
  18 * 2 of the License, or (at your option) any later version.
  19 *
  20 * Andi Kleen - Fix a few bad bugs and races.
  21 * Kris Katterjohn - Added many additional checks in bpf_check_classic()
  22 */
  23
  24#include <linux/filter.h>
  25#include <linux/skbuff.h>
  26#include <linux/vmalloc.h>
  27#include <linux/random.h>
  28#include <linux/moduleloader.h>
  29#include <linux/bpf.h>
  30#include <linux/frame.h>
  31
  32#include <asm/unaligned.h>
  33
  34/* Registers */
  35#define BPF_R0	regs[BPF_REG_0]
  36#define BPF_R1	regs[BPF_REG_1]
  37#define BPF_R2	regs[BPF_REG_2]
  38#define BPF_R3	regs[BPF_REG_3]
  39#define BPF_R4	regs[BPF_REG_4]
  40#define BPF_R5	regs[BPF_REG_5]
  41#define BPF_R6	regs[BPF_REG_6]
  42#define BPF_R7	regs[BPF_REG_7]
  43#define BPF_R8	regs[BPF_REG_8]
  44#define BPF_R9	regs[BPF_REG_9]
  45#define BPF_R10	regs[BPF_REG_10]
  46
  47/* Named registers */
  48#define DST	regs[insn->dst_reg]
  49#define SRC	regs[insn->src_reg]
  50#define FP	regs[BPF_REG_FP]
  51#define ARG1	regs[BPF_REG_ARG1]
  52#define CTX	regs[BPF_REG_CTX]
  53#define IMM	insn->imm
  54
  55/* No hurry in this branch
  56 *
  57 * Exported for the bpf jit load helper.
  58 */
  59void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb, int k, unsigned int size)
  60{
  61	u8 *ptr = NULL;
  62
  63	if (k >= SKF_NET_OFF)
  64		ptr = skb_network_header(skb) + k - SKF_NET_OFF;
  65	else if (k >= SKF_LL_OFF)
  66		ptr = skb_mac_header(skb) + k - SKF_LL_OFF;
  67
  68	if (ptr >= skb->head && ptr + size <= skb_tail_pointer(skb))
  69		return ptr;
  70
  71	return NULL;
  72}
  73
  74struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags)
  75{
  76	gfp_t gfp_flags = GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO |
  77			  gfp_extra_flags;
  78	struct bpf_prog_aux *aux;
  79	struct bpf_prog *fp;
  80
  81	size = round_up(size, PAGE_SIZE);
  82	fp = __vmalloc(size, gfp_flags, PAGE_KERNEL);
  83	if (fp == NULL)
  84		return NULL;
  85
  86	kmemcheck_annotate_bitfield(fp, meta);
  87
  88	aux = kzalloc(sizeof(*aux), GFP_KERNEL | gfp_extra_flags);
  89	if (aux == NULL) {
  90		vfree(fp);
  91		return NULL;
  92	}
  93
  94	fp->pages = size / PAGE_SIZE;
  95	fp->aux = aux;
  96	fp->aux->prog = fp;
  97
  98	return fp;
  99}
 100EXPORT_SYMBOL_GPL(bpf_prog_alloc);
 101
 102struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size,
 103				  gfp_t gfp_extra_flags)
 104{
 105	gfp_t gfp_flags = GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO |
 106			  gfp_extra_flags;
 107	struct bpf_prog *fp;
 108	u32 pages, delta;
 109	int ret;
 110
 111	BUG_ON(fp_old == NULL);
 112
 113	size = round_up(size, PAGE_SIZE);
 114	pages = size / PAGE_SIZE;
 115	if (pages <= fp_old->pages)
 116		return fp_old;
 117
 118	delta = pages - fp_old->pages;
 119	ret = __bpf_prog_charge(fp_old->aux->user, delta);
 120	if (ret)
 121		return NULL;
 122
 123	fp = __vmalloc(size, gfp_flags, PAGE_KERNEL);
 124	if (fp == NULL) {
 125		__bpf_prog_uncharge(fp_old->aux->user, delta);
 126	} else {
 127		kmemcheck_annotate_bitfield(fp, meta);
 128
 129		memcpy(fp, fp_old, fp_old->pages * PAGE_SIZE);
 130		fp->pages = pages;
 131		fp->aux->prog = fp;
 132
 133		/* We keep fp->aux from fp_old around in the new
 134		 * reallocated structure.
 135		 */
 136		fp_old->aux = NULL;
 137		__bpf_prog_free(fp_old);
 138	}
 139
 140	return fp;
 141}
 142
 143void __bpf_prog_free(struct bpf_prog *fp)
 144{
 145	kfree(fp->aux);
 146	vfree(fp);
 147}
 148
 149int bpf_prog_calc_tag(struct bpf_prog *fp)
 150{
 151	const u32 bits_offset = SHA_MESSAGE_BYTES - sizeof(__be64);
 152	u32 raw_size = bpf_prog_tag_scratch_size(fp);
 153	u32 digest[SHA_DIGEST_WORDS];
 154	u32 ws[SHA_WORKSPACE_WORDS];
 155	u32 i, bsize, psize, blocks;
 156	struct bpf_insn *dst;
 157	bool was_ld_map;
 158	u8 *raw, *todo;
 159	__be32 *result;
 160	__be64 *bits;
 161
 162	raw = vmalloc(raw_size);
 163	if (!raw)
 164		return -ENOMEM;
 165
 166	sha_init(digest);
 167	memset(ws, 0, sizeof(ws));
 168
 169	/* We need to take out the map fd for the digest calculation
 170	 * since they are unstable from user space side.
 171	 */
 172	dst = (void *)raw;
 173	for (i = 0, was_ld_map = false; i < fp->len; i++) {
 174		dst[i] = fp->insnsi[i];
 175		if (!was_ld_map &&
 176		    dst[i].code == (BPF_LD | BPF_IMM | BPF_DW) &&
 177		    dst[i].src_reg == BPF_PSEUDO_MAP_FD) {
 178			was_ld_map = true;
 179			dst[i].imm = 0;
 180		} else if (was_ld_map &&
 181			   dst[i].code == 0 &&
 182			   dst[i].dst_reg == 0 &&
 183			   dst[i].src_reg == 0 &&
 184			   dst[i].off == 0) {
 185			was_ld_map = false;
 186			dst[i].imm = 0;
 187		} else {
 188			was_ld_map = false;
 189		}
 190	}
 191
 192	psize = bpf_prog_insn_size(fp);
 193	memset(&raw[psize], 0, raw_size - psize);
 194	raw[psize++] = 0x80;
 195
 196	bsize  = round_up(psize, SHA_MESSAGE_BYTES);
 197	blocks = bsize / SHA_MESSAGE_BYTES;
 198	todo   = raw;
 199	if (bsize - psize >= sizeof(__be64)) {
 200		bits = (__be64 *)(todo + bsize - sizeof(__be64));
 201	} else {
 202		bits = (__be64 *)(todo + bsize + bits_offset);
 203		blocks++;
 204	}
 205	*bits = cpu_to_be64((psize - 1) << 3);
 206
 207	while (blocks--) {
 208		sha_transform(digest, todo, ws);
 209		todo += SHA_MESSAGE_BYTES;
 210	}
 211
 212	result = (__force __be32 *)digest;
 213	for (i = 0; i < SHA_DIGEST_WORDS; i++)
 214		result[i] = cpu_to_be32(digest[i]);
 215	memcpy(fp->tag, result, sizeof(fp->tag));
 216
 217	vfree(raw);
 218	return 0;
 219}
 220
 221static bool bpf_is_jmp_and_has_target(const struct bpf_insn *insn)
 222{
 223	return BPF_CLASS(insn->code) == BPF_JMP  &&
 224	       /* Call and Exit are both special jumps with no
 225		* target inside the BPF instruction image.
 226		*/
 227	       BPF_OP(insn->code) != BPF_CALL &&
 228	       BPF_OP(insn->code) != BPF_EXIT;
 229}
 230
 231static void bpf_adj_branches(struct bpf_prog *prog, u32 pos, u32 delta)
 232{
 233	struct bpf_insn *insn = prog->insnsi;
 234	u32 i, insn_cnt = prog->len;
 235
 236	for (i = 0; i < insn_cnt; i++, insn++) {
 237		if (!bpf_is_jmp_and_has_target(insn))
 238			continue;
 239
 240		/* Adjust offset of jmps if we cross boundaries. */
 241		if (i < pos && i + insn->off + 1 > pos)
 242			insn->off += delta;
 243		else if (i > pos + delta && i + insn->off + 1 <= pos + delta)
 244			insn->off -= delta;
 245	}
 246}
 247
 248struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off,
 249				       const struct bpf_insn *patch, u32 len)
 250{
 251	u32 insn_adj_cnt, insn_rest, insn_delta = len - 1;
 252	struct bpf_prog *prog_adj;
 253
 254	/* Since our patchlet doesn't expand the image, we're done. */
 255	if (insn_delta == 0) {
 256		memcpy(prog->insnsi + off, patch, sizeof(*patch));
 257		return prog;
 258	}
 259
 260	insn_adj_cnt = prog->len + insn_delta;
 261
 262	/* Several new instructions need to be inserted. Make room
 263	 * for them. Likely, there's no need for a new allocation as
 264	 * last page could have large enough tailroom.
 265	 */
 266	prog_adj = bpf_prog_realloc(prog, bpf_prog_size(insn_adj_cnt),
 267				    GFP_USER);
 268	if (!prog_adj)
 269		return NULL;
 270
 271	prog_adj->len = insn_adj_cnt;
 272
 273	/* Patching happens in 3 steps:
 274	 *
 275	 * 1) Move over tail of insnsi from next instruction onwards,
 276	 *    so we can patch the single target insn with one or more
 277	 *    new ones (patching is always from 1 to n insns, n > 0).
 278	 * 2) Inject new instructions at the target location.
 279	 * 3) Adjust branch offsets if necessary.
 280	 */
 281	insn_rest = insn_adj_cnt - off - len;
 282
 283	memmove(prog_adj->insnsi + off + len, prog_adj->insnsi + off + 1,
 284		sizeof(*patch) * insn_rest);
 285	memcpy(prog_adj->insnsi + off, patch, sizeof(*patch) * len);
 286
 287	bpf_adj_branches(prog_adj, off, insn_delta);
 288
 289	return prog_adj;
 290}
 291
 292#ifdef CONFIG_BPF_JIT
 293struct bpf_binary_header *
 294bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,
 295		     unsigned int alignment,
 296		     bpf_jit_fill_hole_t bpf_fill_ill_insns)
 297{
 298	struct bpf_binary_header *hdr;
 299	unsigned int size, hole, start;
 300
 301	/* Most of BPF filters are really small, but if some of them
 302	 * fill a page, allow at least 128 extra bytes to insert a
 303	 * random section of illegal instructions.
 304	 */
 305	size = round_up(proglen + sizeof(*hdr) + 128, PAGE_SIZE);
 306	hdr = module_alloc(size);
 307	if (hdr == NULL)
 308		return NULL;
 309
 310	/* Fill space with illegal/arch-dep instructions. */
 311	bpf_fill_ill_insns(hdr, size);
 312
 313	hdr->pages = size / PAGE_SIZE;
 314	hole = min_t(unsigned int, size - (proglen + sizeof(*hdr)),
 315		     PAGE_SIZE - sizeof(*hdr));
 316	start = (get_random_int() % hole) & ~(alignment - 1);
 317
 318	/* Leave a random number of instructions before BPF code. */
 319	*image_ptr = &hdr->image[start];
 320
 321	return hdr;
 322}
 323
 324void bpf_jit_binary_free(struct bpf_binary_header *hdr)
 325{
 326	module_memfree(hdr);
 327}
 328
 329int bpf_jit_harden __read_mostly;
 330
 331static int bpf_jit_blind_insn(const struct bpf_insn *from,
 332			      const struct bpf_insn *aux,
 333			      struct bpf_insn *to_buff)
 334{
 335	struct bpf_insn *to = to_buff;
 336	u32 imm_rnd = get_random_int();
 337	s16 off;
 338
 339	BUILD_BUG_ON(BPF_REG_AX  + 1 != MAX_BPF_JIT_REG);
 340	BUILD_BUG_ON(MAX_BPF_REG + 1 != MAX_BPF_JIT_REG);
 341
 342	if (from->imm == 0 &&
 343	    (from->code == (BPF_ALU   | BPF_MOV | BPF_K) ||
 344	     from->code == (BPF_ALU64 | BPF_MOV | BPF_K))) {
 345		*to++ = BPF_ALU64_REG(BPF_XOR, from->dst_reg, from->dst_reg);
 346		goto out;
 347	}
 348
 349	switch (from->code) {
 350	case BPF_ALU | BPF_ADD | BPF_K:
 351	case BPF_ALU | BPF_SUB | BPF_K:
 352	case BPF_ALU | BPF_AND | BPF_K:
 353	case BPF_ALU | BPF_OR  | BPF_K:
 354	case BPF_ALU | BPF_XOR | BPF_K:
 355	case BPF_ALU | BPF_MUL | BPF_K:
 356	case BPF_ALU | BPF_MOV | BPF_K:
 357	case BPF_ALU | BPF_DIV | BPF_K:
 358	case BPF_ALU | BPF_MOD | BPF_K:
 359		*to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
 360		*to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
 361		*to++ = BPF_ALU32_REG(from->code, from->dst_reg, BPF_REG_AX);
 362		break;
 363
 364	case BPF_ALU64 | BPF_ADD | BPF_K:
 365	case BPF_ALU64 | BPF_SUB | BPF_K:
 366	case BPF_ALU64 | BPF_AND | BPF_K:
 367	case BPF_ALU64 | BPF_OR  | BPF_K:
 368	case BPF_ALU64 | BPF_XOR | BPF_K:
 369	case BPF_ALU64 | BPF_MUL | BPF_K:
 370	case BPF_ALU64 | BPF_MOV | BPF_K:
 371	case BPF_ALU64 | BPF_DIV | BPF_K:
 372	case BPF_ALU64 | BPF_MOD | BPF_K:
 373		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
 374		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
 375		*to++ = BPF_ALU64_REG(from->code, from->dst_reg, BPF_REG_AX);
 376		break;
 377
 378	case BPF_JMP | BPF_JEQ  | BPF_K:
 379	case BPF_JMP | BPF_JNE  | BPF_K:
 380	case BPF_JMP | BPF_JGT  | BPF_K:
 381	case BPF_JMP | BPF_JGE  | BPF_K:
 382	case BPF_JMP | BPF_JSGT | BPF_K:
 383	case BPF_JMP | BPF_JSGE | BPF_K:
 384	case BPF_JMP | BPF_JSET | BPF_K:
 385		/* Accommodate for extra offset in case of a backjump. */
 386		off = from->off;
 387		if (off < 0)
 388			off -= 2;
 389		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
 390		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
 391		*to++ = BPF_JMP_REG(from->code, from->dst_reg, BPF_REG_AX, off);
 392		break;
 393
 394	case BPF_LD | BPF_ABS | BPF_W:
 395	case BPF_LD | BPF_ABS | BPF_H:
 396	case BPF_LD | BPF_ABS | BPF_B:
 397		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
 398		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
 399		*to++ = BPF_LD_IND(from->code, BPF_REG_AX, 0);
 400		break;
 401
 402	case BPF_LD | BPF_IND | BPF_W:
 403	case BPF_LD | BPF_IND | BPF_H:
 404	case BPF_LD | BPF_IND | BPF_B:
 405		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
 406		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
 407		*to++ = BPF_ALU32_REG(BPF_ADD, BPF_REG_AX, from->src_reg);
 408		*to++ = BPF_LD_IND(from->code, BPF_REG_AX, 0);
 409		break;
 410
 411	case BPF_LD | BPF_IMM | BPF_DW:
 412		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[1].imm);
 413		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
 414		*to++ = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
 415		*to++ = BPF_ALU64_REG(BPF_MOV, aux[0].dst_reg, BPF_REG_AX);
 416		break;
 417	case 0: /* Part 2 of BPF_LD | BPF_IMM | BPF_DW. */
 418		*to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[0].imm);
 419		*to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
 420		*to++ = BPF_ALU64_REG(BPF_OR,  aux[0].dst_reg, BPF_REG_AX);
 421		break;
 422
 423	case BPF_ST | BPF_MEM | BPF_DW:
 424	case BPF_ST | BPF_MEM | BPF_W:
 425	case BPF_ST | BPF_MEM | BPF_H:
 426	case BPF_ST | BPF_MEM | BPF_B:
 427		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
 428		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
 429		*to++ = BPF_STX_MEM(from->code, from->dst_reg, BPF_REG_AX, from->off);
 430		break;
 431	}
 432out:
 433	return to - to_buff;
 434}
 435
 436static struct bpf_prog *bpf_prog_clone_create(struct bpf_prog *fp_other,
 437					      gfp_t gfp_extra_flags)
 438{
 439	gfp_t gfp_flags = GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO |
 440			  gfp_extra_flags;
 441	struct bpf_prog *fp;
 442
 443	fp = __vmalloc(fp_other->pages * PAGE_SIZE, gfp_flags, PAGE_KERNEL);
 444	if (fp != NULL) {
 445		kmemcheck_annotate_bitfield(fp, meta);
 446
 447		/* aux->prog still points to the fp_other one, so
 448		 * when promoting the clone to the real program,
 449		 * this still needs to be adapted.
 450		 */
 451		memcpy(fp, fp_other, fp_other->pages * PAGE_SIZE);
 452	}
 453
 454	return fp;
 455}
 456
 457static void bpf_prog_clone_free(struct bpf_prog *fp)
 458{
 459	/* aux was stolen by the other clone, so we cannot free
 460	 * it from this path! It will be freed eventually by the
 461	 * other program on release.
 462	 *
 463	 * At this point, we don't need a deferred release since
 464	 * clone is guaranteed to not be locked.
 465	 */
 466	fp->aux = NULL;
 467	__bpf_prog_free(fp);
 468}
 469
 470void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other)
 471{
 472	/* We have to repoint aux->prog to self, as we don't
 473	 * know whether fp here is the clone or the original.
 474	 */
 475	fp->aux->prog = fp;
 476	bpf_prog_clone_free(fp_other);
 477}
 478
 479struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *prog)
 480{
 481	struct bpf_insn insn_buff[16], aux[2];
 482	struct bpf_prog *clone, *tmp;
 483	int insn_delta, insn_cnt;
 484	struct bpf_insn *insn;
 485	int i, rewritten;
 486
 487	if (!bpf_jit_blinding_enabled())
 488		return prog;
 489
 490	clone = bpf_prog_clone_create(prog, GFP_USER);
 491	if (!clone)
 492		return ERR_PTR(-ENOMEM);
 493
 494	insn_cnt = clone->len;
 495	insn = clone->insnsi;
 496
 497	for (i = 0; i < insn_cnt; i++, insn++) {
 498		/* We temporarily need to hold the original ld64 insn
 499		 * so that we can still access the first part in the
 500		 * second blinding run.
 501		 */
 502		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW) &&
 503		    insn[1].code == 0)
 504			memcpy(aux, insn, sizeof(aux));
 505
 506		rewritten = bpf_jit_blind_insn(insn, aux, insn_buff);
 507		if (!rewritten)
 508			continue;
 509
 510		tmp = bpf_patch_insn_single(clone, i, insn_buff, rewritten);
 511		if (!tmp) {
 512			/* Patching may have repointed aux->prog during
 513			 * realloc from the original one, so we need to
 514			 * fix it up here on error.
 515			 */
 516			bpf_jit_prog_release_other(prog, clone);
 517			return ERR_PTR(-ENOMEM);
 518		}
 519
 520		clone = tmp;
 521		insn_delta = rewritten - 1;
 522
 523		/* Walk new program and skip insns we just inserted. */
 524		insn = clone->insnsi + i + insn_delta;
 525		insn_cnt += insn_delta;
 526		i        += insn_delta;
 527	}
 528
 529	return clone;
 530}
 531#endif /* CONFIG_BPF_JIT */
 532
 533/* Base function for offset calculation. Needs to go into .text section,
 534 * therefore keeping it non-static as well; will also be used by JITs
 535 * anyway later on, so do not let the compiler omit it.
 536 */
 537noinline u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
 538{
 539	return 0;
 540}
 541EXPORT_SYMBOL_GPL(__bpf_call_base);
 542
 543/**
 544 *	__bpf_prog_run - run eBPF program on a given context
 545 *	@ctx: is the data we are operating on
 546 *	@insn: is the array of eBPF instructions
 547 *
 548 * Decode and execute eBPF instructions.
 549 */
 550static unsigned int __bpf_prog_run(void *ctx, const struct bpf_insn *insn)
 551{
 552	u64 stack[MAX_BPF_STACK / sizeof(u64)];
 553	u64 regs[MAX_BPF_REG], tmp;
 554	static const void *jumptable[256] = {
 555		[0 ... 255] = &&default_label,
 556		/* Now overwrite non-defaults ... */
 557		/* 32 bit ALU operations */
 558		[BPF_ALU | BPF_ADD | BPF_X] = &&ALU_ADD_X,
 559		[BPF_ALU | BPF_ADD | BPF_K] = &&ALU_ADD_K,
 560		[BPF_ALU | BPF_SUB | BPF_X] = &&ALU_SUB_X,
 561		[BPF_ALU | BPF_SUB | BPF_K] = &&ALU_SUB_K,
 562		[BPF_ALU | BPF_AND | BPF_X] = &&ALU_AND_X,
 563		[BPF_ALU | BPF_AND | BPF_K] = &&ALU_AND_K,
 564		[BPF_ALU | BPF_OR | BPF_X]  = &&ALU_OR_X,
 565		[BPF_ALU | BPF_OR | BPF_K]  = &&ALU_OR_K,
 566		[BPF_ALU | BPF_LSH | BPF_X] = &&ALU_LSH_X,
 567		[BPF_ALU | BPF_LSH | BPF_K] = &&ALU_LSH_K,
 568		[BPF_ALU | BPF_RSH | BPF_X] = &&ALU_RSH_X,
 569		[BPF_ALU | BPF_RSH | BPF_K] = &&ALU_RSH_K,
 570		[BPF_ALU | BPF_XOR | BPF_X] = &&ALU_XOR_X,
 571		[BPF_ALU | BPF_XOR | BPF_K] = &&ALU_XOR_K,
 572		[BPF_ALU | BPF_MUL | BPF_X] = &&ALU_MUL_X,
 573		[BPF_ALU | BPF_MUL | BPF_K] = &&ALU_MUL_K,
 574		[BPF_ALU | BPF_MOV | BPF_X] = &&ALU_MOV_X,
 575		[BPF_ALU | BPF_MOV | BPF_K] = &&ALU_MOV_K,
 576		[BPF_ALU | BPF_DIV | BPF_X] = &&ALU_DIV_X,
 577		[BPF_ALU | BPF_DIV | BPF_K] = &&ALU_DIV_K,
 578		[BPF_ALU | BPF_MOD | BPF_X] = &&ALU_MOD_X,
 579		[BPF_ALU | BPF_MOD | BPF_K] = &&ALU_MOD_K,
 580		[BPF_ALU | BPF_NEG] = &&ALU_NEG,
 581		[BPF_ALU | BPF_END | BPF_TO_BE] = &&ALU_END_TO_BE,
 582		[BPF_ALU | BPF_END | BPF_TO_LE] = &&ALU_END_TO_LE,
 583		/* 64 bit ALU operations */
 584		[BPF_ALU64 | BPF_ADD | BPF_X] = &&ALU64_ADD_X,
 585		[BPF_ALU64 | BPF_ADD | BPF_K] = &&ALU64_ADD_K,
 586		[BPF_ALU64 | BPF_SUB | BPF_X] = &&ALU64_SUB_X,
 587		[BPF_ALU64 | BPF_SUB | BPF_K] = &&ALU64_SUB_K,
 588		[BPF_ALU64 | BPF_AND | BPF_X] = &&ALU64_AND_X,
 589		[BPF_ALU64 | BPF_AND | BPF_K] = &&ALU64_AND_K,
 590		[BPF_ALU64 | BPF_OR | BPF_X] = &&ALU64_OR_X,
 591		[BPF_ALU64 | BPF_OR | BPF_K] = &&ALU64_OR_K,
 592		[BPF_ALU64 | BPF_LSH | BPF_X] = &&ALU64_LSH_X,
 593		[BPF_ALU64 | BPF_LSH | BPF_K] = &&ALU64_LSH_K,
 594		[BPF_ALU64 | BPF_RSH | BPF_X] = &&ALU64_RSH_X,
 595		[BPF_ALU64 | BPF_RSH | BPF_K] = &&ALU64_RSH_K,
 596		[BPF_ALU64 | BPF_XOR | BPF_X] = &&ALU64_XOR_X,
 597		[BPF_ALU64 | BPF_XOR | BPF_K] = &&ALU64_XOR_K,
 598		[BPF_ALU64 | BPF_MUL | BPF_X] = &&ALU64_MUL_X,
 599		[BPF_ALU64 | BPF_MUL | BPF_K] = &&ALU64_MUL_K,
 600		[BPF_ALU64 | BPF_MOV | BPF_X] = &&ALU64_MOV_X,
 601		[BPF_ALU64 | BPF_MOV | BPF_K] = &&ALU64_MOV_K,
 602		[BPF_ALU64 | BPF_ARSH | BPF_X] = &&ALU64_ARSH_X,
 603		[BPF_ALU64 | BPF_ARSH | BPF_K] = &&ALU64_ARSH_K,
 604		[BPF_ALU64 | BPF_DIV | BPF_X] = &&ALU64_DIV_X,
 605		[BPF_ALU64 | BPF_DIV | BPF_K] = &&ALU64_DIV_K,
 606		[BPF_ALU64 | BPF_MOD | BPF_X] = &&ALU64_MOD_X,
 607		[BPF_ALU64 | BPF_MOD | BPF_K] = &&ALU64_MOD_K,
 608		[BPF_ALU64 | BPF_NEG] = &&ALU64_NEG,
 609		/* Call instruction */
 610		[BPF_JMP | BPF_CALL] = &&JMP_CALL,
 611		[BPF_JMP | BPF_CALL | BPF_X] = &&JMP_TAIL_CALL,
 612		/* Jumps */
 613		[BPF_JMP | BPF_JA] = &&JMP_JA,
 614		[BPF_JMP | BPF_JEQ | BPF_X] = &&JMP_JEQ_X,
 615		[BPF_JMP | BPF_JEQ | BPF_K] = &&JMP_JEQ_K,
 616		[BPF_JMP | BPF_JNE | BPF_X] = &&JMP_JNE_X,
 617		[BPF_JMP | BPF_JNE | BPF_K] = &&JMP_JNE_K,
 618		[BPF_JMP | BPF_JGT | BPF_X] = &&JMP_JGT_X,
 619		[BPF_JMP | BPF_JGT | BPF_K] = &&JMP_JGT_K,
 620		[BPF_JMP | BPF_JGE | BPF_X] = &&JMP_JGE_X,
 621		[BPF_JMP | BPF_JGE | BPF_K] = &&JMP_JGE_K,
 622		[BPF_JMP | BPF_JSGT | BPF_X] = &&JMP_JSGT_X,
 623		[BPF_JMP | BPF_JSGT | BPF_K] = &&JMP_JSGT_K,
 624		[BPF_JMP | BPF_JSGE | BPF_X] = &&JMP_JSGE_X,
 625		[BPF_JMP | BPF_JSGE | BPF_K] = &&JMP_JSGE_K,
 626		[BPF_JMP | BPF_JSET | BPF_X] = &&JMP_JSET_X,
 627		[BPF_JMP | BPF_JSET | BPF_K] = &&JMP_JSET_K,
 628		/* Program return */
 629		[BPF_JMP | BPF_EXIT] = &&JMP_EXIT,
 630		/* Store instructions */
 631		[BPF_STX | BPF_MEM | BPF_B] = &&STX_MEM_B,
 632		[BPF_STX | BPF_MEM | BPF_H] = &&STX_MEM_H,
 633		[BPF_STX | BPF_MEM | BPF_W] = &&STX_MEM_W,
 634		[BPF_STX | BPF_MEM | BPF_DW] = &&STX_MEM_DW,
 635		[BPF_STX | BPF_XADD | BPF_W] = &&STX_XADD_W,
 636		[BPF_STX | BPF_XADD | BPF_DW] = &&STX_XADD_DW,
 637		[BPF_ST | BPF_MEM | BPF_B] = &&ST_MEM_B,
 638		[BPF_ST | BPF_MEM | BPF_H] = &&ST_MEM_H,
 639		[BPF_ST | BPF_MEM | BPF_W] = &&ST_MEM_W,
 640		[BPF_ST | BPF_MEM | BPF_DW] = &&ST_MEM_DW,
 641		/* Load instructions */
 642		[BPF_LDX | BPF_MEM | BPF_B] = &&LDX_MEM_B,
 643		[BPF_LDX | BPF_MEM | BPF_H] = &&LDX_MEM_H,
 644		[BPF_LDX | BPF_MEM | BPF_W] = &&LDX_MEM_W,
 645		[BPF_LDX | BPF_MEM | BPF_DW] = &&LDX_MEM_DW,
 646		[BPF_LD | BPF_ABS | BPF_W] = &&LD_ABS_W,
 647		[BPF_LD | BPF_ABS | BPF_H] = &&LD_ABS_H,
 648		[BPF_LD | BPF_ABS | BPF_B] = &&LD_ABS_B,
 649		[BPF_LD | BPF_IND | BPF_W] = &&LD_IND_W,
 650		[BPF_LD | BPF_IND | BPF_H] = &&LD_IND_H,
 651		[BPF_LD | BPF_IND | BPF_B] = &&LD_IND_B,
 652		[BPF_LD | BPF_IMM | BPF_DW] = &&LD_IMM_DW,
 653	};
 654	u32 tail_call_cnt = 0;
 655	void *ptr;
 656	int off;
 657
 658#define CONT	 ({ insn++; goto select_insn; })
 659#define CONT_JMP ({ insn++; goto select_insn; })
 660
 661	FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)];
 662	ARG1 = (u64) (unsigned long) ctx;
 663
 664select_insn:
 665	goto *jumptable[insn->code];
 666
 667	/* ALU */
 668#define ALU(OPCODE, OP)			\
 669	ALU64_##OPCODE##_X:		\
 670		DST = DST OP SRC;	\
 671		CONT;			\
 672	ALU_##OPCODE##_X:		\
 673		DST = (u32) DST OP (u32) SRC;	\
 674		CONT;			\
 675	ALU64_##OPCODE##_K:		\
 676		DST = DST OP IMM;		\
 677		CONT;			\
 678	ALU_##OPCODE##_K:		\
 679		DST = (u32) DST OP (u32) IMM;	\
 680		CONT;
 681
 682	ALU(ADD,  +)
 683	ALU(SUB,  -)
 684	ALU(AND,  &)
 685	ALU(OR,   |)
 686	ALU(LSH, <<)
 687	ALU(RSH, >>)
 688	ALU(XOR,  ^)
 689	ALU(MUL,  *)
 690#undef ALU
 691	ALU_NEG:
 692		DST = (u32) -DST;
 693		CONT;
 694	ALU64_NEG:
 695		DST = -DST;
 696		CONT;
 697	ALU_MOV_X:
 698		DST = (u32) SRC;
 699		CONT;
 700	ALU_MOV_K:
 701		DST = (u32) IMM;
 702		CONT;
 703	ALU64_MOV_X:
 704		DST = SRC;
 705		CONT;
 706	ALU64_MOV_K:
 707		DST = IMM;
 708		CONT;
 709	LD_IMM_DW:
 710		DST = (u64) (u32) insn[0].imm | ((u64) (u32) insn[1].imm) << 32;
 711		insn++;
 712		CONT;
 713	ALU64_ARSH_X:
 714		(*(s64 *) &DST) >>= SRC;
 715		CONT;
 716	ALU64_ARSH_K:
 717		(*(s64 *) &DST) >>= IMM;
 718		CONT;
 719	ALU64_MOD_X:
 720		if (unlikely(SRC == 0))
 721			return 0;
 722		div64_u64_rem(DST, SRC, &tmp);
 723		DST = tmp;
 724		CONT;
 725	ALU_MOD_X:
 726		if (unlikely(SRC == 0))
 727			return 0;
 728		tmp = (u32) DST;
 729		DST = do_div(tmp, (u32) SRC);
 730		CONT;
 731	ALU64_MOD_K:
 732		div64_u64_rem(DST, IMM, &tmp);
 733		DST = tmp;
 734		CONT;
 735	ALU_MOD_K:
 736		tmp = (u32) DST;
 737		DST = do_div(tmp, (u32) IMM);
 738		CONT;
 739	ALU64_DIV_X:
 740		if (unlikely(SRC == 0))
 741			return 0;
 742		DST = div64_u64(DST, SRC);
 743		CONT;
 744	ALU_DIV_X:
 745		if (unlikely(SRC == 0))
 746			return 0;
 747		tmp = (u32) DST;
 748		do_div(tmp, (u32) SRC);
 749		DST = (u32) tmp;
 750		CONT;
 751	ALU64_DIV_K:
 752		DST = div64_u64(DST, IMM);
 753		CONT;
 754	ALU_DIV_K:
 755		tmp = (u32) DST;
 756		do_div(tmp, (u32) IMM);
 757		DST = (u32) tmp;
 758		CONT;
 759	ALU_END_TO_BE:
 760		switch (IMM) {
 761		case 16:
 762			DST = (__force u16) cpu_to_be16(DST);
 763			break;
 764		case 32:
 765			DST = (__force u32) cpu_to_be32(DST);
 766			break;
 767		case 64:
 768			DST = (__force u64) cpu_to_be64(DST);
 769			break;
 770		}
 771		CONT;
 772	ALU_END_TO_LE:
 773		switch (IMM) {
 774		case 16:
 775			DST = (__force u16) cpu_to_le16(DST);
 776			break;
 777		case 32:
 778			DST = (__force u32) cpu_to_le32(DST);
 779			break;
 780		case 64:
 781			DST = (__force u64) cpu_to_le64(DST);
 782			break;
 783		}
 784		CONT;
 785
 786	/* CALL */
 787	JMP_CALL:
 788		/* Function call scratches BPF_R1-BPF_R5 registers,
 789		 * preserves BPF_R6-BPF_R9, and stores return value
 790		 * into BPF_R0.
 791		 */
 792		BPF_R0 = (__bpf_call_base + insn->imm)(BPF_R1, BPF_R2, BPF_R3,
 793						       BPF_R4, BPF_R5);
 794		CONT;
 795
 796	JMP_TAIL_CALL: {
 797		struct bpf_map *map = (struct bpf_map *) (unsigned long) BPF_R2;
 798		struct bpf_array *array = container_of(map, struct bpf_array, map);
 799		struct bpf_prog *prog;
 800		u64 index = BPF_R3;
 801
 802		if (unlikely(index >= array->map.max_entries))
 803			goto out;
 804		if (unlikely(tail_call_cnt > MAX_TAIL_CALL_CNT))
 805			goto out;
 806
 807		tail_call_cnt++;
 808
 809		prog = READ_ONCE(array->ptrs[index]);
 810		if (!prog)
 811			goto out;
 812
 813		/* ARG1 at this point is guaranteed to point to CTX from
 814		 * the verifier side due to the fact that the tail call is
 815		 * handeled like a helper, that is, bpf_tail_call_proto,
 816		 * where arg1_type is ARG_PTR_TO_CTX.
 817		 */
 818		insn = prog->insnsi;
 819		goto select_insn;
 820out:
 821		CONT;
 822	}
 823	/* JMP */
 824	JMP_JA:
 825		insn += insn->off;
 826		CONT;
 827	JMP_JEQ_X:
 828		if (DST == SRC) {
 829			insn += insn->off;
 830			CONT_JMP;
 831		}
 832		CONT;
 833	JMP_JEQ_K:
 834		if (DST == IMM) {
 835			insn += insn->off;
 836			CONT_JMP;
 837		}
 838		CONT;
 839	JMP_JNE_X:
 840		if (DST != SRC) {
 841			insn += insn->off;
 842			CONT_JMP;
 843		}
 844		CONT;
 845	JMP_JNE_K:
 846		if (DST != IMM) {
 847			insn += insn->off;
 848			CONT_JMP;
 849		}
 850		CONT;
 851	JMP_JGT_X:
 852		if (DST > SRC) {
 853			insn += insn->off;
 854			CONT_JMP;
 855		}
 856		CONT;
 857	JMP_JGT_K:
 858		if (DST > IMM) {
 859			insn += insn->off;
 860			CONT_JMP;
 861		}
 862		CONT;
 863	JMP_JGE_X:
 864		if (DST >= SRC) {
 865			insn += insn->off;
 866			CONT_JMP;
 867		}
 868		CONT;
 869	JMP_JGE_K:
 870		if (DST >= IMM) {
 871			insn += insn->off;
 872			CONT_JMP;
 873		}
 874		CONT;
 875	JMP_JSGT_X:
 876		if (((s64) DST) > ((s64) SRC)) {
 877			insn += insn->off;
 878			CONT_JMP;
 879		}
 880		CONT;
 881	JMP_JSGT_K:
 882		if (((s64) DST) > ((s64) IMM)) {
 883			insn += insn->off;
 884			CONT_JMP;
 885		}
 886		CONT;
 887	JMP_JSGE_X:
 888		if (((s64) DST) >= ((s64) SRC)) {
 889			insn += insn->off;
 890			CONT_JMP;
 891		}
 892		CONT;
 893	JMP_JSGE_K:
 894		if (((s64) DST) >= ((s64) IMM)) {
 895			insn += insn->off;
 896			CONT_JMP;
 897		}
 898		CONT;
 899	JMP_JSET_X:
 900		if (DST & SRC) {
 901			insn += insn->off;
 902			CONT_JMP;
 903		}
 904		CONT;
 905	JMP_JSET_K:
 906		if (DST & IMM) {
 907			insn += insn->off;
 908			CONT_JMP;
 909		}
 910		CONT;
 911	JMP_EXIT:
 912		return BPF_R0;
 913
 914	/* STX and ST and LDX*/
 915#define LDST(SIZEOP, SIZE)						\
 916	STX_MEM_##SIZEOP:						\
 917		*(SIZE *)(unsigned long) (DST + insn->off) = SRC;	\
 918		CONT;							\
 919	ST_MEM_##SIZEOP:						\
 920		*(SIZE *)(unsigned long) (DST + insn->off) = IMM;	\
 921		CONT;							\
 922	LDX_MEM_##SIZEOP:						\
 923		DST = *(SIZE *)(unsigned long) (SRC + insn->off);	\
 924		CONT;
 925
 926	LDST(B,   u8)
 927	LDST(H,  u16)
 928	LDST(W,  u32)
 929	LDST(DW, u64)
 930#undef LDST
 931	STX_XADD_W: /* lock xadd *(u32 *)(dst_reg + off16) += src_reg */
 932		atomic_add((u32) SRC, (atomic_t *)(unsigned long)
 933			   (DST + insn->off));
 934		CONT;
 935	STX_XADD_DW: /* lock xadd *(u64 *)(dst_reg + off16) += src_reg */
 936		atomic64_add((u64) SRC, (atomic64_t *)(unsigned long)
 937			     (DST + insn->off));
 938		CONT;
 939	LD_ABS_W: /* BPF_R0 = ntohl(*(u32 *) (skb->data + imm32)) */
 940		off = IMM;
 941load_word:
 942		/* BPF_LD + BPD_ABS and BPF_LD + BPF_IND insns are
 943		 * only appearing in the programs where ctx ==
 944		 * skb. All programs keep 'ctx' in regs[BPF_REG_CTX]
 945		 * == BPF_R6, bpf_convert_filter() saves it in BPF_R6,
 946		 * internal BPF verifier will check that BPF_R6 ==
 947		 * ctx.
 948		 *
 949		 * BPF_ABS and BPF_IND are wrappers of function calls,
 950		 * so they scratch BPF_R1-BPF_R5 registers, preserve
 951		 * BPF_R6-BPF_R9, and store return value into BPF_R0.
 952		 *
 953		 * Implicit input:
 954		 *   ctx == skb == BPF_R6 == CTX
 955		 *
 956		 * Explicit input:
 957		 *   SRC == any register
 958		 *   IMM == 32-bit immediate
 959		 *
 960		 * Output:
 961		 *   BPF_R0 - 8/16/32-bit skb data converted to cpu endianness
 962		 */
 963
 964		ptr = bpf_load_pointer((struct sk_buff *) (unsigned long) CTX, off, 4, &tmp);
 965		if (likely(ptr != NULL)) {
 966			BPF_R0 = get_unaligned_be32(ptr);
 967			CONT;
 968		}
 969
 970		return 0;
 971	LD_ABS_H: /* BPF_R0 = ntohs(*(u16 *) (skb->data + imm32)) */
 972		off = IMM;
 973load_half:
 974		ptr = bpf_load_pointer((struct sk_buff *) (unsigned long) CTX, off, 2, &tmp);
 975		if (likely(ptr != NULL)) {
 976			BPF_R0 = get_unaligned_be16(ptr);
 977			CONT;
 978		}
 979
 980		return 0;
 981	LD_ABS_B: /* BPF_R0 = *(u8 *) (skb->data + imm32) */
 982		off = IMM;
 983load_byte:
 984		ptr = bpf_load_pointer((struct sk_buff *) (unsigned long) CTX, off, 1, &tmp);
 985		if (likely(ptr != NULL)) {
 986			BPF_R0 = *(u8 *)ptr;
 987			CONT;
 988		}
 989
 990		return 0;
 991	LD_IND_W: /* BPF_R0 = ntohl(*(u32 *) (skb->data + src_reg + imm32)) */
 992		off = IMM + SRC;
 993		goto load_word;
 994	LD_IND_H: /* BPF_R0 = ntohs(*(u16 *) (skb->data + src_reg + imm32)) */
 995		off = IMM + SRC;
 996		goto load_half;
 997	LD_IND_B: /* BPF_R0 = *(u8 *) (skb->data + src_reg + imm32) */
 998		off = IMM + SRC;
 999		goto load_byte;
1000
1001	default_label:
1002		/* If we ever reach this, we have a bug somewhere. */
1003		WARN_RATELIMIT(1, "unknown opcode %02x\n", insn->code);
1004		return 0;
1005}
1006STACK_FRAME_NON_STANDARD(__bpf_prog_run); /* jump table */
1007
1008bool bpf_prog_array_compatible(struct bpf_array *array,
1009			       const struct bpf_prog *fp)
1010{
1011	if (!array->owner_prog_type) {
1012		/* There's no owner yet where we could check for
1013		 * compatibility.
1014		 */
1015		array->owner_prog_type = fp->type;
1016		array->owner_jited = fp->jited;
1017
1018		return true;
1019	}
1020
1021	return array->owner_prog_type == fp->type &&
1022	       array->owner_jited == fp->jited;
1023}
1024
1025static int bpf_check_tail_call(const struct bpf_prog *fp)
1026{
1027	struct bpf_prog_aux *aux = fp->aux;
1028	int i;
1029
1030	for (i = 0; i < aux->used_map_cnt; i++) {
1031		struct bpf_map *map = aux->used_maps[i];
1032		struct bpf_array *array;
1033
1034		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
1035			continue;
1036
1037		array = container_of(map, struct bpf_array, map);
1038		if (!bpf_prog_array_compatible(array, fp))
1039			return -EINVAL;
1040	}
1041
1042	return 0;
1043}
1044
1045/**
1046 *	bpf_prog_select_runtime - select exec runtime for BPF program
1047 *	@fp: bpf_prog populated with internal BPF program
1048 *	@err: pointer to error variable
1049 *
1050 * Try to JIT eBPF program, if JIT is not available, use interpreter.
1051 * The BPF program will be executed via BPF_PROG_RUN() macro.
1052 */
1053struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err)
1054{
1055	fp->bpf_func = (void *) __bpf_prog_run;
1056
1057	/* eBPF JITs can rewrite the program in case constant
1058	 * blinding is active. However, in case of error during
1059	 * blinding, bpf_int_jit_compile() must always return a
1060	 * valid program, which in this case would simply not
1061	 * be JITed, but falls back to the interpreter.
1062	 */
1063	fp = bpf_int_jit_compile(fp);
1064	bpf_prog_lock_ro(fp);
1065
1066	/* The tail call compatibility check can only be done at
1067	 * this late stage as we need to determine, if we deal
1068	 * with JITed or non JITed program concatenations and not
1069	 * all eBPF JITs might immediately support all features.
1070	 */
1071	*err = bpf_check_tail_call(fp);
1072
1073	return fp;
1074}
1075EXPORT_SYMBOL_GPL(bpf_prog_select_runtime);
1076
1077static void bpf_prog_free_deferred(struct work_struct *work)
1078{
1079	struct bpf_prog_aux *aux;
1080
1081	aux = container_of(work, struct bpf_prog_aux, work);
1082	bpf_jit_free(aux->prog);
1083}
1084
1085/* Free internal BPF program */
1086void bpf_prog_free(struct bpf_prog *fp)
1087{
1088	struct bpf_prog_aux *aux = fp->aux;
1089
1090	INIT_WORK(&aux->work, bpf_prog_free_deferred);
1091	schedule_work(&aux->work);
1092}
1093EXPORT_SYMBOL_GPL(bpf_prog_free);
1094
1095/* RNG for unpriviledged user space with separated state from prandom_u32(). */
1096static DEFINE_PER_CPU(struct rnd_state, bpf_user_rnd_state);
1097
1098void bpf_user_rnd_init_once(void)
1099{
1100	prandom_init_once(&bpf_user_rnd_state);
1101}
1102
1103BPF_CALL_0(bpf_user_rnd_u32)
1104{
1105	/* Should someone ever have the rather unwise idea to use some
1106	 * of the registers passed into this function, then note that
1107	 * this function is called from native eBPF and classic-to-eBPF
1108	 * transformations. Register assignments from both sides are
1109	 * different, f.e. classic always sets fn(ctx, A, X) here.
1110	 */
1111	struct rnd_state *state;
1112	u32 res;
1113
1114	state = &get_cpu_var(bpf_user_rnd_state);
1115	res = prandom_u32_state(state);
1116	put_cpu_var(bpf_user_rnd_state);
1117
1118	return res;
1119}
1120
1121/* Weak definitions of helper functions in case we don't have bpf syscall. */
1122const struct bpf_func_proto bpf_map_lookup_elem_proto __weak;
1123const struct bpf_func_proto bpf_map_update_elem_proto __weak;
1124const struct bpf_func_proto bpf_map_delete_elem_proto __weak;
1125
1126const struct bpf_func_proto bpf_get_prandom_u32_proto __weak;
1127const struct bpf_func_proto bpf_get_smp_processor_id_proto __weak;
1128const struct bpf_func_proto bpf_get_numa_node_id_proto __weak;
1129const struct bpf_func_proto bpf_ktime_get_ns_proto __weak;
1130
1131const struct bpf_func_proto bpf_get_current_pid_tgid_proto __weak;
1132const struct bpf_func_proto bpf_get_current_uid_gid_proto __weak;
1133const struct bpf_func_proto bpf_get_current_comm_proto __weak;
1134
1135const struct bpf_func_proto * __weak bpf_get_trace_printk_proto(void)
1136{
1137	return NULL;
1138}
1139
1140u64 __weak
1141bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
1142		 void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy)
1143{
1144	return -ENOTSUPP;
1145}
1146
1147/* Always built-in helper functions. */
1148const struct bpf_func_proto bpf_tail_call_proto = {
1149	.func		= NULL,
1150	.gpl_only	= false,
1151	.ret_type	= RET_VOID,
1152	.arg1_type	= ARG_PTR_TO_CTX,
1153	.arg2_type	= ARG_CONST_MAP_PTR,
1154	.arg3_type	= ARG_ANYTHING,
1155};
1156
1157/* For classic BPF JITs that don't implement bpf_int_jit_compile(). */
1158struct bpf_prog * __weak bpf_int_jit_compile(struct bpf_prog *prog)
1159{
1160	return prog;
1161}
1162
1163bool __weak bpf_helper_changes_pkt_data(void *func)
1164{
1165	return false;
1166}
1167
1168/* To execute LD_ABS/LD_IND instructions __bpf_prog_run() may call
1169 * skb_copy_bits(), so provide a weak definition of it for NET-less config.
1170 */
1171int __weak skb_copy_bits(const struct sk_buff *skb, int offset, void *to,
1172			 int len)
1173{
1174	return -EFAULT;
1175}