Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.15.
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Linux Socket Filter - Kernel level socket filtering
   4 *
   5 * Based on the design of the Berkeley Packet Filter. The new
   6 * internal format has been designed by PLUMgrid:
   7 *
   8 *	Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
   9 *
  10 * Authors:
  11 *
  12 *	Jay Schulist <jschlst@samba.org>
  13 *	Alexei Starovoitov <ast@plumgrid.com>
  14 *	Daniel Borkmann <dborkman@redhat.com>
  15 *
  16 * Andi Kleen - Fix a few bad bugs and races.
  17 * Kris Katterjohn - Added many additional checks in bpf_check_classic()
  18 */
  19
  20#include <uapi/linux/btf.h>
  21#include <linux/filter.h>
  22#include <linux/skbuff.h>
  23#include <linux/vmalloc.h>
  24#include <linux/random.h>
  25#include <linux/moduleloader.h>
  26#include <linux/bpf.h>
  27#include <linux/btf.h>
  28#include <linux/objtool.h>
  29#include <linux/rbtree_latch.h>
  30#include <linux/kallsyms.h>
  31#include <linux/rcupdate.h>
  32#include <linux/perf_event.h>
  33#include <linux/extable.h>
  34#include <linux/log2.h>
  35#include <linux/bpf_verifier.h>
  36#include <linux/nodemask.h>
  37#include <linux/nospec.h>
  38#include <linux/bpf_mem_alloc.h>
  39#include <linux/memcontrol.h>
  40
  41#include <asm/barrier.h>
  42#include <asm/unaligned.h>
  43
  44/* Registers */
  45#define BPF_R0	regs[BPF_REG_0]
  46#define BPF_R1	regs[BPF_REG_1]
  47#define BPF_R2	regs[BPF_REG_2]
  48#define BPF_R3	regs[BPF_REG_3]
  49#define BPF_R4	regs[BPF_REG_4]
  50#define BPF_R5	regs[BPF_REG_5]
  51#define BPF_R6	regs[BPF_REG_6]
  52#define BPF_R7	regs[BPF_REG_7]
  53#define BPF_R8	regs[BPF_REG_8]
  54#define BPF_R9	regs[BPF_REG_9]
  55#define BPF_R10	regs[BPF_REG_10]
  56
  57/* Named registers */
  58#define DST	regs[insn->dst_reg]
  59#define SRC	regs[insn->src_reg]
  60#define FP	regs[BPF_REG_FP]
  61#define AX	regs[BPF_REG_AX]
  62#define ARG1	regs[BPF_REG_ARG1]
  63#define CTX	regs[BPF_REG_CTX]
  64#define OFF	insn->off
  65#define IMM	insn->imm
  66
  67struct bpf_mem_alloc bpf_global_ma;
  68bool bpf_global_ma_set;
  69
  70/* No hurry in this branch
  71 *
  72 * Exported for the bpf jit load helper.
  73 */
  74void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb, int k, unsigned int size)
  75{
  76	u8 *ptr = NULL;
  77
  78	if (k >= SKF_NET_OFF) {
  79		ptr = skb_network_header(skb) + k - SKF_NET_OFF;
  80	} else if (k >= SKF_LL_OFF) {
  81		if (unlikely(!skb_mac_header_was_set(skb)))
  82			return NULL;
  83		ptr = skb_mac_header(skb) + k - SKF_LL_OFF;
  84	}
  85	if (ptr >= skb->head && ptr + size <= skb_tail_pointer(skb))
  86		return ptr;
  87
  88	return NULL;
  89}
  90
  91/* tell bpf programs that include vmlinux.h kernel's PAGE_SIZE */
  92enum page_size_enum {
  93	__PAGE_SIZE = PAGE_SIZE
  94};
  95
  96struct bpf_prog *bpf_prog_alloc_no_stats(unsigned int size, gfp_t gfp_extra_flags)
  97{
  98	gfp_t gfp_flags = bpf_memcg_flags(GFP_KERNEL | __GFP_ZERO | gfp_extra_flags);
  99	struct bpf_prog_aux *aux;
 100	struct bpf_prog *fp;
 101
 102	size = round_up(size, __PAGE_SIZE);
 103	fp = __vmalloc(size, gfp_flags);
 104	if (fp == NULL)
 105		return NULL;
 106
 107	aux = kzalloc(sizeof(*aux), bpf_memcg_flags(GFP_KERNEL | gfp_extra_flags));
 108	if (aux == NULL) {
 109		vfree(fp);
 110		return NULL;
 111	}
 112	fp->active = alloc_percpu_gfp(int, bpf_memcg_flags(GFP_KERNEL | gfp_extra_flags));
 113	if (!fp->active) {
 114		vfree(fp);
 115		kfree(aux);
 116		return NULL;
 117	}
 118
 119	fp->pages = size / PAGE_SIZE;
 120	fp->aux = aux;
 121	fp->aux->prog = fp;
 122	fp->jit_requested = ebpf_jit_enabled();
 123	fp->blinding_requested = bpf_jit_blinding_enabled(fp);
 124#ifdef CONFIG_CGROUP_BPF
 125	aux->cgroup_atype = CGROUP_BPF_ATTACH_TYPE_INVALID;
 126#endif
 127
 128	INIT_LIST_HEAD_RCU(&fp->aux->ksym.lnode);
 129#ifdef CONFIG_FINEIBT
 130	INIT_LIST_HEAD_RCU(&fp->aux->ksym_prefix.lnode);
 131#endif
 132	mutex_init(&fp->aux->used_maps_mutex);
 133	mutex_init(&fp->aux->dst_mutex);
 134
 135	return fp;
 136}
 137
 138struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags)
 139{
 140	gfp_t gfp_flags = bpf_memcg_flags(GFP_KERNEL | __GFP_ZERO | gfp_extra_flags);
 141	struct bpf_prog *prog;
 142	int cpu;
 143
 144	prog = bpf_prog_alloc_no_stats(size, gfp_extra_flags);
 145	if (!prog)
 146		return NULL;
 147
 148	prog->stats = alloc_percpu_gfp(struct bpf_prog_stats, gfp_flags);
 149	if (!prog->stats) {
 150		free_percpu(prog->active);
 151		kfree(prog->aux);
 152		vfree(prog);
 153		return NULL;
 154	}
 155
 156	for_each_possible_cpu(cpu) {
 157		struct bpf_prog_stats *pstats;
 158
 159		pstats = per_cpu_ptr(prog->stats, cpu);
 160		u64_stats_init(&pstats->syncp);
 161	}
 162	return prog;
 163}
 164EXPORT_SYMBOL_GPL(bpf_prog_alloc);
 165
 166int bpf_prog_alloc_jited_linfo(struct bpf_prog *prog)
 167{
 168	if (!prog->aux->nr_linfo || !prog->jit_requested)
 169		return 0;
 170
 171	prog->aux->jited_linfo = kvcalloc(prog->aux->nr_linfo,
 172					  sizeof(*prog->aux->jited_linfo),
 173					  bpf_memcg_flags(GFP_KERNEL | __GFP_NOWARN));
 174	if (!prog->aux->jited_linfo)
 175		return -ENOMEM;
 176
 177	return 0;
 178}
 179
 180void bpf_prog_jit_attempt_done(struct bpf_prog *prog)
 181{
 182	if (prog->aux->jited_linfo &&
 183	    (!prog->jited || !prog->aux->jited_linfo[0])) {
 184		kvfree(prog->aux->jited_linfo);
 185		prog->aux->jited_linfo = NULL;
 186	}
 187
 188	kfree(prog->aux->kfunc_tab);
 189	prog->aux->kfunc_tab = NULL;
 190}
 191
 192/* The jit engine is responsible to provide an array
 193 * for insn_off to the jited_off mapping (insn_to_jit_off).
 194 *
 195 * The idx to this array is the insn_off.  Hence, the insn_off
 196 * here is relative to the prog itself instead of the main prog.
 197 * This array has one entry for each xlated bpf insn.
 198 *
 199 * jited_off is the byte off to the end of the jited insn.
 200 *
 201 * Hence, with
 202 * insn_start:
 203 *      The first bpf insn off of the prog.  The insn off
 204 *      here is relative to the main prog.
 205 *      e.g. if prog is a subprog, insn_start > 0
 206 * linfo_idx:
 207 *      The prog's idx to prog->aux->linfo and jited_linfo
 208 *
 209 * jited_linfo[linfo_idx] = prog->bpf_func
 210 *
 211 * For i > linfo_idx,
 212 *
 213 * jited_linfo[i] = prog->bpf_func +
 214 *	insn_to_jit_off[linfo[i].insn_off - insn_start - 1]
 215 */
 216void bpf_prog_fill_jited_linfo(struct bpf_prog *prog,
 217			       const u32 *insn_to_jit_off)
 218{
 219	u32 linfo_idx, insn_start, insn_end, nr_linfo, i;
 220	const struct bpf_line_info *linfo;
 221	void **jited_linfo;
 222
 223	if (!prog->aux->jited_linfo || prog->aux->func_idx > prog->aux->func_cnt)
 224		/* Userspace did not provide linfo */
 225		return;
 226
 227	linfo_idx = prog->aux->linfo_idx;
 228	linfo = &prog->aux->linfo[linfo_idx];
 229	insn_start = linfo[0].insn_off;
 230	insn_end = insn_start + prog->len;
 231
 232	jited_linfo = &prog->aux->jited_linfo[linfo_idx];
 233	jited_linfo[0] = prog->bpf_func;
 234
 235	nr_linfo = prog->aux->nr_linfo - linfo_idx;
 236
 237	for (i = 1; i < nr_linfo && linfo[i].insn_off < insn_end; i++)
 238		/* The verifier ensures that linfo[i].insn_off is
 239		 * strictly increasing
 240		 */
 241		jited_linfo[i] = prog->bpf_func +
 242			insn_to_jit_off[linfo[i].insn_off - insn_start - 1];
 243}
 244
 245struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size,
 246				  gfp_t gfp_extra_flags)
 247{
 248	gfp_t gfp_flags = bpf_memcg_flags(GFP_KERNEL | __GFP_ZERO | gfp_extra_flags);
 249	struct bpf_prog *fp;
 250	u32 pages;
 251
 252	size = round_up(size, PAGE_SIZE);
 253	pages = size / PAGE_SIZE;
 254	if (pages <= fp_old->pages)
 255		return fp_old;
 256
 257	fp = __vmalloc(size, gfp_flags);
 258	if (fp) {
 259		memcpy(fp, fp_old, fp_old->pages * PAGE_SIZE);
 260		fp->pages = pages;
 261		fp->aux->prog = fp;
 262
 263		/* We keep fp->aux from fp_old around in the new
 264		 * reallocated structure.
 265		 */
 266		fp_old->aux = NULL;
 267		fp_old->stats = NULL;
 268		fp_old->active = NULL;
 269		__bpf_prog_free(fp_old);
 270	}
 271
 272	return fp;
 273}
 274
 275void __bpf_prog_free(struct bpf_prog *fp)
 276{
 277	if (fp->aux) {
 278		mutex_destroy(&fp->aux->used_maps_mutex);
 279		mutex_destroy(&fp->aux->dst_mutex);
 280		kfree(fp->aux->poke_tab);
 281		kfree(fp->aux);
 282	}
 283	free_percpu(fp->stats);
 284	free_percpu(fp->active);
 285	vfree(fp);
 286}
 287
 288int bpf_prog_calc_tag(struct bpf_prog *fp)
 289{
 290	const u32 bits_offset = SHA1_BLOCK_SIZE - sizeof(__be64);
 291	u32 raw_size = bpf_prog_tag_scratch_size(fp);
 292	u32 digest[SHA1_DIGEST_WORDS];
 293	u32 ws[SHA1_WORKSPACE_WORDS];
 294	u32 i, bsize, psize, blocks;
 295	struct bpf_insn *dst;
 296	bool was_ld_map;
 297	u8 *raw, *todo;
 298	__be32 *result;
 299	__be64 *bits;
 300
 301	raw = vmalloc(raw_size);
 302	if (!raw)
 303		return -ENOMEM;
 304
 305	sha1_init(digest);
 306	memset(ws, 0, sizeof(ws));
 307
 308	/* We need to take out the map fd for the digest calculation
 309	 * since they are unstable from user space side.
 310	 */
 311	dst = (void *)raw;
 312	for (i = 0, was_ld_map = false; i < fp->len; i++) {
 313		dst[i] = fp->insnsi[i];
 314		if (!was_ld_map &&
 315		    dst[i].code == (BPF_LD | BPF_IMM | BPF_DW) &&
 316		    (dst[i].src_reg == BPF_PSEUDO_MAP_FD ||
 317		     dst[i].src_reg == BPF_PSEUDO_MAP_VALUE)) {
 318			was_ld_map = true;
 319			dst[i].imm = 0;
 320		} else if (was_ld_map &&
 321			   dst[i].code == 0 &&
 322			   dst[i].dst_reg == 0 &&
 323			   dst[i].src_reg == 0 &&
 324			   dst[i].off == 0) {
 325			was_ld_map = false;
 326			dst[i].imm = 0;
 327		} else {
 328			was_ld_map = false;
 329		}
 330	}
 331
 332	psize = bpf_prog_insn_size(fp);
 333	memset(&raw[psize], 0, raw_size - psize);
 334	raw[psize++] = 0x80;
 335
 336	bsize  = round_up(psize, SHA1_BLOCK_SIZE);
 337	blocks = bsize / SHA1_BLOCK_SIZE;
 338	todo   = raw;
 339	if (bsize - psize >= sizeof(__be64)) {
 340		bits = (__be64 *)(todo + bsize - sizeof(__be64));
 341	} else {
 342		bits = (__be64 *)(todo + bsize + bits_offset);
 343		blocks++;
 344	}
 345	*bits = cpu_to_be64((psize - 1) << 3);
 346
 347	while (blocks--) {
 348		sha1_transform(digest, todo, ws);
 349		todo += SHA1_BLOCK_SIZE;
 350	}
 351
 352	result = (__force __be32 *)digest;
 353	for (i = 0; i < SHA1_DIGEST_WORDS; i++)
 354		result[i] = cpu_to_be32(digest[i]);
 355	memcpy(fp->tag, result, sizeof(fp->tag));
 356
 357	vfree(raw);
 358	return 0;
 359}
 360
 361static int bpf_adj_delta_to_imm(struct bpf_insn *insn, u32 pos, s32 end_old,
 362				s32 end_new, s32 curr, const bool probe_pass)
 363{
 364	const s64 imm_min = S32_MIN, imm_max = S32_MAX;
 365	s32 delta = end_new - end_old;
 366	s64 imm = insn->imm;
 367
 368	if (curr < pos && curr + imm + 1 >= end_old)
 369		imm += delta;
 370	else if (curr >= end_new && curr + imm + 1 < end_new)
 371		imm -= delta;
 372	if (imm < imm_min || imm > imm_max)
 373		return -ERANGE;
 374	if (!probe_pass)
 375		insn->imm = imm;
 376	return 0;
 377}
 378
 379static int bpf_adj_delta_to_off(struct bpf_insn *insn, u32 pos, s32 end_old,
 380				s32 end_new, s32 curr, const bool probe_pass)
 381{
 382	s64 off_min, off_max, off;
 383	s32 delta = end_new - end_old;
 384
 385	if (insn->code == (BPF_JMP32 | BPF_JA)) {
 386		off = insn->imm;
 387		off_min = S32_MIN;
 388		off_max = S32_MAX;
 389	} else {
 390		off = insn->off;
 391		off_min = S16_MIN;
 392		off_max = S16_MAX;
 393	}
 394
 395	if (curr < pos && curr + off + 1 >= end_old)
 396		off += delta;
 397	else if (curr >= end_new && curr + off + 1 < end_new)
 398		off -= delta;
 399	if (off < off_min || off > off_max)
 400		return -ERANGE;
 401	if (!probe_pass) {
 402		if (insn->code == (BPF_JMP32 | BPF_JA))
 403			insn->imm = off;
 404		else
 405			insn->off = off;
 406	}
 407	return 0;
 408}
 409
 410static int bpf_adj_branches(struct bpf_prog *prog, u32 pos, s32 end_old,
 411			    s32 end_new, const bool probe_pass)
 412{
 413	u32 i, insn_cnt = prog->len + (probe_pass ? end_new - end_old : 0);
 414	struct bpf_insn *insn = prog->insnsi;
 415	int ret = 0;
 416
 417	for (i = 0; i < insn_cnt; i++, insn++) {
 418		u8 code;
 419
 420		/* In the probing pass we still operate on the original,
 421		 * unpatched image in order to check overflows before we
 422		 * do any other adjustments. Therefore skip the patchlet.
 423		 */
 424		if (probe_pass && i == pos) {
 425			i = end_new;
 426			insn = prog->insnsi + end_old;
 427		}
 428		if (bpf_pseudo_func(insn)) {
 429			ret = bpf_adj_delta_to_imm(insn, pos, end_old,
 430						   end_new, i, probe_pass);
 431			if (ret)
 432				return ret;
 433			continue;
 434		}
 435		code = insn->code;
 436		if ((BPF_CLASS(code) != BPF_JMP &&
 437		     BPF_CLASS(code) != BPF_JMP32) ||
 438		    BPF_OP(code) == BPF_EXIT)
 439			continue;
 440		/* Adjust offset of jmps if we cross patch boundaries. */
 441		if (BPF_OP(code) == BPF_CALL) {
 442			if (insn->src_reg != BPF_PSEUDO_CALL)
 443				continue;
 444			ret = bpf_adj_delta_to_imm(insn, pos, end_old,
 445						   end_new, i, probe_pass);
 446		} else {
 447			ret = bpf_adj_delta_to_off(insn, pos, end_old,
 448						   end_new, i, probe_pass);
 449		}
 450		if (ret)
 451			break;
 452	}
 453
 454	return ret;
 455}
 456
 457static void bpf_adj_linfo(struct bpf_prog *prog, u32 off, u32 delta)
 458{
 459	struct bpf_line_info *linfo;
 460	u32 i, nr_linfo;
 461
 462	nr_linfo = prog->aux->nr_linfo;
 463	if (!nr_linfo || !delta)
 464		return;
 465
 466	linfo = prog->aux->linfo;
 467
 468	for (i = 0; i < nr_linfo; i++)
 469		if (off < linfo[i].insn_off)
 470			break;
 471
 472	/* Push all off < linfo[i].insn_off by delta */
 473	for (; i < nr_linfo; i++)
 474		linfo[i].insn_off += delta;
 475}
 476
 477struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off,
 478				       const struct bpf_insn *patch, u32 len)
 479{
 480	u32 insn_adj_cnt, insn_rest, insn_delta = len - 1;
 481	const u32 cnt_max = S16_MAX;
 482	struct bpf_prog *prog_adj;
 483	int err;
 484
 485	/* Since our patchlet doesn't expand the image, we're done. */
 486	if (insn_delta == 0) {
 487		memcpy(prog->insnsi + off, patch, sizeof(*patch));
 488		return prog;
 489	}
 490
 491	insn_adj_cnt = prog->len + insn_delta;
 492
 493	/* Reject anything that would potentially let the insn->off
 494	 * target overflow when we have excessive program expansions.
 495	 * We need to probe here before we do any reallocation where
 496	 * we afterwards may not fail anymore.
 497	 */
 498	if (insn_adj_cnt > cnt_max &&
 499	    (err = bpf_adj_branches(prog, off, off + 1, off + len, true)))
 500		return ERR_PTR(err);
 501
 502	/* Several new instructions need to be inserted. Make room
 503	 * for them. Likely, there's no need for a new allocation as
 504	 * last page could have large enough tailroom.
 505	 */
 506	prog_adj = bpf_prog_realloc(prog, bpf_prog_size(insn_adj_cnt),
 507				    GFP_USER);
 508	if (!prog_adj)
 509		return ERR_PTR(-ENOMEM);
 510
 511	prog_adj->len = insn_adj_cnt;
 512
 513	/* Patching happens in 3 steps:
 514	 *
 515	 * 1) Move over tail of insnsi from next instruction onwards,
 516	 *    so we can patch the single target insn with one or more
 517	 *    new ones (patching is always from 1 to n insns, n > 0).
 518	 * 2) Inject new instructions at the target location.
 519	 * 3) Adjust branch offsets if necessary.
 520	 */
 521	insn_rest = insn_adj_cnt - off - len;
 522
 523	memmove(prog_adj->insnsi + off + len, prog_adj->insnsi + off + 1,
 524		sizeof(*patch) * insn_rest);
 525	memcpy(prog_adj->insnsi + off, patch, sizeof(*patch) * len);
 526
 527	/* We are guaranteed to not fail at this point, otherwise
 528	 * the ship has sailed to reverse to the original state. An
 529	 * overflow cannot happen at this point.
 530	 */
 531	BUG_ON(bpf_adj_branches(prog_adj, off, off + 1, off + len, false));
 532
 533	bpf_adj_linfo(prog_adj, off, insn_delta);
 534
 535	return prog_adj;
 536}
 537
 538int bpf_remove_insns(struct bpf_prog *prog, u32 off, u32 cnt)
 539{
 540	/* Branch offsets can't overflow when program is shrinking, no need
 541	 * to call bpf_adj_branches(..., true) here
 542	 */
 543	memmove(prog->insnsi + off, prog->insnsi + off + cnt,
 544		sizeof(struct bpf_insn) * (prog->len - off - cnt));
 545	prog->len -= cnt;
 546
 547	return WARN_ON_ONCE(bpf_adj_branches(prog, off, off + cnt, off, false));
 548}
 549
 550static void bpf_prog_kallsyms_del_subprogs(struct bpf_prog *fp)
 551{
 552	int i;
 553
 554	for (i = 0; i < fp->aux->real_func_cnt; i++)
 555		bpf_prog_kallsyms_del(fp->aux->func[i]);
 556}
 557
 558void bpf_prog_kallsyms_del_all(struct bpf_prog *fp)
 559{
 560	bpf_prog_kallsyms_del_subprogs(fp);
 561	bpf_prog_kallsyms_del(fp);
 562}
 563
 564#ifdef CONFIG_BPF_JIT
 565/* All BPF JIT sysctl knobs here. */
 566int bpf_jit_enable   __read_mostly = IS_BUILTIN(CONFIG_BPF_JIT_DEFAULT_ON);
 567int bpf_jit_kallsyms __read_mostly = IS_BUILTIN(CONFIG_BPF_JIT_DEFAULT_ON);
 568int bpf_jit_harden   __read_mostly;
 569long bpf_jit_limit   __read_mostly;
 570long bpf_jit_limit_max __read_mostly;
 571
 572static void
 573bpf_prog_ksym_set_addr(struct bpf_prog *prog)
 574{
 575	WARN_ON_ONCE(!bpf_prog_ebpf_jited(prog));
 576
 577	prog->aux->ksym.start = (unsigned long) prog->bpf_func;
 578	prog->aux->ksym.end   = prog->aux->ksym.start + prog->jited_len;
 579}
 580
 581static void
 582bpf_prog_ksym_set_name(struct bpf_prog *prog)
 583{
 584	char *sym = prog->aux->ksym.name;
 585	const char *end = sym + KSYM_NAME_LEN;
 586	const struct btf_type *type;
 587	const char *func_name;
 588
 589	BUILD_BUG_ON(sizeof("bpf_prog_") +
 590		     sizeof(prog->tag) * 2 +
 591		     /* name has been null terminated.
 592		      * We should need +1 for the '_' preceding
 593		      * the name.  However, the null character
 594		      * is double counted between the name and the
 595		      * sizeof("bpf_prog_") above, so we omit
 596		      * the +1 here.
 597		      */
 598		     sizeof(prog->aux->name) > KSYM_NAME_LEN);
 599
 600	sym += snprintf(sym, KSYM_NAME_LEN, "bpf_prog_");
 601	sym  = bin2hex(sym, prog->tag, sizeof(prog->tag));
 602
 603	/* prog->aux->name will be ignored if full btf name is available */
 604	if (prog->aux->func_info_cnt && prog->aux->func_idx < prog->aux->func_info_cnt) {
 605		type = btf_type_by_id(prog->aux->btf,
 606				      prog->aux->func_info[prog->aux->func_idx].type_id);
 607		func_name = btf_name_by_offset(prog->aux->btf, type->name_off);
 608		snprintf(sym, (size_t)(end - sym), "_%s", func_name);
 609		return;
 610	}
 611
 612	if (prog->aux->name[0])
 613		snprintf(sym, (size_t)(end - sym), "_%s", prog->aux->name);
 614	else
 615		*sym = 0;
 616}
 617
 618static unsigned long bpf_get_ksym_start(struct latch_tree_node *n)
 619{
 620	return container_of(n, struct bpf_ksym, tnode)->start;
 621}
 622
 623static __always_inline bool bpf_tree_less(struct latch_tree_node *a,
 624					  struct latch_tree_node *b)
 625{
 626	return bpf_get_ksym_start(a) < bpf_get_ksym_start(b);
 627}
 628
 629static __always_inline int bpf_tree_comp(void *key, struct latch_tree_node *n)
 630{
 631	unsigned long val = (unsigned long)key;
 632	const struct bpf_ksym *ksym;
 633
 634	ksym = container_of(n, struct bpf_ksym, tnode);
 635
 636	if (val < ksym->start)
 637		return -1;
 638	/* Ensure that we detect return addresses as part of the program, when
 639	 * the final instruction is a call for a program part of the stack
 640	 * trace. Therefore, do val > ksym->end instead of val >= ksym->end.
 641	 */
 642	if (val > ksym->end)
 643		return  1;
 644
 645	return 0;
 646}
 647
 648static const struct latch_tree_ops bpf_tree_ops = {
 649	.less	= bpf_tree_less,
 650	.comp	= bpf_tree_comp,
 651};
 652
 653static DEFINE_SPINLOCK(bpf_lock);
 654static LIST_HEAD(bpf_kallsyms);
 655static struct latch_tree_root bpf_tree __cacheline_aligned;
 656
 657void bpf_ksym_add(struct bpf_ksym *ksym)
 658{
 659	spin_lock_bh(&bpf_lock);
 660	WARN_ON_ONCE(!list_empty(&ksym->lnode));
 661	list_add_tail_rcu(&ksym->lnode, &bpf_kallsyms);
 662	latch_tree_insert(&ksym->tnode, &bpf_tree, &bpf_tree_ops);
 663	spin_unlock_bh(&bpf_lock);
 664}
 665
 666static void __bpf_ksym_del(struct bpf_ksym *ksym)
 667{
 668	if (list_empty(&ksym->lnode))
 669		return;
 670
 671	latch_tree_erase(&ksym->tnode, &bpf_tree, &bpf_tree_ops);
 672	list_del_rcu(&ksym->lnode);
 673}
 674
 675void bpf_ksym_del(struct bpf_ksym *ksym)
 676{
 677	spin_lock_bh(&bpf_lock);
 678	__bpf_ksym_del(ksym);
 679	spin_unlock_bh(&bpf_lock);
 680}
 681
 682static bool bpf_prog_kallsyms_candidate(const struct bpf_prog *fp)
 683{
 684	return fp->jited && !bpf_prog_was_classic(fp);
 685}
 686
 687void bpf_prog_kallsyms_add(struct bpf_prog *fp)
 688{
 689	if (!bpf_prog_kallsyms_candidate(fp) ||
 690	    !bpf_token_capable(fp->aux->token, CAP_BPF))
 691		return;
 692
 693	bpf_prog_ksym_set_addr(fp);
 694	bpf_prog_ksym_set_name(fp);
 695	fp->aux->ksym.prog = true;
 696
 697	bpf_ksym_add(&fp->aux->ksym);
 698
 699#ifdef CONFIG_FINEIBT
 700	/*
 701	 * When FineIBT, code in the __cfi_foo() symbols can get executed
 702	 * and hence unwinder needs help.
 703	 */
 704	if (cfi_mode != CFI_FINEIBT)
 705		return;
 706
 707	snprintf(fp->aux->ksym_prefix.name, KSYM_NAME_LEN,
 708		 "__cfi_%s", fp->aux->ksym.name);
 709
 710	fp->aux->ksym_prefix.start = (unsigned long) fp->bpf_func - 16;
 711	fp->aux->ksym_prefix.end   = (unsigned long) fp->bpf_func;
 712
 713	bpf_ksym_add(&fp->aux->ksym_prefix);
 714#endif
 715}
 716
 717void bpf_prog_kallsyms_del(struct bpf_prog *fp)
 718{
 719	if (!bpf_prog_kallsyms_candidate(fp))
 720		return;
 721
 722	bpf_ksym_del(&fp->aux->ksym);
 723#ifdef CONFIG_FINEIBT
 724	if (cfi_mode != CFI_FINEIBT)
 725		return;
 726	bpf_ksym_del(&fp->aux->ksym_prefix);
 727#endif
 728}
 729
 730static struct bpf_ksym *bpf_ksym_find(unsigned long addr)
 731{
 732	struct latch_tree_node *n;
 733
 734	n = latch_tree_find((void *)addr, &bpf_tree, &bpf_tree_ops);
 735	return n ? container_of(n, struct bpf_ksym, tnode) : NULL;
 736}
 737
 738const char *__bpf_address_lookup(unsigned long addr, unsigned long *size,
 739				 unsigned long *off, char *sym)
 740{
 741	struct bpf_ksym *ksym;
 742	char *ret = NULL;
 743
 744	rcu_read_lock();
 745	ksym = bpf_ksym_find(addr);
 746	if (ksym) {
 747		unsigned long symbol_start = ksym->start;
 748		unsigned long symbol_end = ksym->end;
 749
 750		strncpy(sym, ksym->name, KSYM_NAME_LEN);
 751
 752		ret = sym;
 753		if (size)
 754			*size = symbol_end - symbol_start;
 755		if (off)
 756			*off  = addr - symbol_start;
 757	}
 758	rcu_read_unlock();
 759
 760	return ret;
 761}
 762
 763bool is_bpf_text_address(unsigned long addr)
 764{
 765	bool ret;
 766
 767	rcu_read_lock();
 768	ret = bpf_ksym_find(addr) != NULL;
 769	rcu_read_unlock();
 770
 771	return ret;
 772}
 773
 774struct bpf_prog *bpf_prog_ksym_find(unsigned long addr)
 775{
 776	struct bpf_ksym *ksym = bpf_ksym_find(addr);
 777
 778	return ksym && ksym->prog ?
 779	       container_of(ksym, struct bpf_prog_aux, ksym)->prog :
 780	       NULL;
 781}
 782
 783const struct exception_table_entry *search_bpf_extables(unsigned long addr)
 784{
 785	const struct exception_table_entry *e = NULL;
 786	struct bpf_prog *prog;
 787
 788	rcu_read_lock();
 789	prog = bpf_prog_ksym_find(addr);
 790	if (!prog)
 791		goto out;
 792	if (!prog->aux->num_exentries)
 793		goto out;
 794
 795	e = search_extable(prog->aux->extable, prog->aux->num_exentries, addr);
 796out:
 797	rcu_read_unlock();
 798	return e;
 799}
 800
 801int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
 802		    char *sym)
 803{
 804	struct bpf_ksym *ksym;
 805	unsigned int it = 0;
 806	int ret = -ERANGE;
 807
 808	if (!bpf_jit_kallsyms_enabled())
 809		return ret;
 810
 811	rcu_read_lock();
 812	list_for_each_entry_rcu(ksym, &bpf_kallsyms, lnode) {
 813		if (it++ != symnum)
 814			continue;
 815
 816		strncpy(sym, ksym->name, KSYM_NAME_LEN);
 817
 818		*value = ksym->start;
 819		*type  = BPF_SYM_ELF_TYPE;
 820
 821		ret = 0;
 822		break;
 823	}
 824	rcu_read_unlock();
 825
 826	return ret;
 827}
 828
 829int bpf_jit_add_poke_descriptor(struct bpf_prog *prog,
 830				struct bpf_jit_poke_descriptor *poke)
 831{
 832	struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
 833	static const u32 poke_tab_max = 1024;
 834	u32 slot = prog->aux->size_poke_tab;
 835	u32 size = slot + 1;
 836
 837	if (size > poke_tab_max)
 838		return -ENOSPC;
 839	if (poke->tailcall_target || poke->tailcall_target_stable ||
 840	    poke->tailcall_bypass || poke->adj_off || poke->bypass_addr)
 841		return -EINVAL;
 842
 843	switch (poke->reason) {
 844	case BPF_POKE_REASON_TAIL_CALL:
 845		if (!poke->tail_call.map)
 846			return -EINVAL;
 847		break;
 848	default:
 849		return -EINVAL;
 850	}
 851
 852	tab = krealloc(tab, size * sizeof(*poke), GFP_KERNEL);
 853	if (!tab)
 854		return -ENOMEM;
 855
 856	memcpy(&tab[slot], poke, sizeof(*poke));
 857	prog->aux->size_poke_tab = size;
 858	prog->aux->poke_tab = tab;
 859
 860	return slot;
 861}
 862
 863/*
 864 * BPF program pack allocator.
 865 *
 866 * Most BPF programs are pretty small. Allocating a hole page for each
 867 * program is sometime a waste. Many small bpf program also adds pressure
 868 * to instruction TLB. To solve this issue, we introduce a BPF program pack
 869 * allocator. The prog_pack allocator uses HPAGE_PMD_SIZE page (2MB on x86)
 870 * to host BPF programs.
 871 */
 872#define BPF_PROG_CHUNK_SHIFT	6
 873#define BPF_PROG_CHUNK_SIZE	(1 << BPF_PROG_CHUNK_SHIFT)
 874#define BPF_PROG_CHUNK_MASK	(~(BPF_PROG_CHUNK_SIZE - 1))
 875
 876struct bpf_prog_pack {
 877	struct list_head list;
 878	void *ptr;
 879	unsigned long bitmap[];
 880};
 881
 882void bpf_jit_fill_hole_with_zero(void *area, unsigned int size)
 883{
 884	memset(area, 0, size);
 885}
 886
 887#define BPF_PROG_SIZE_TO_NBITS(size)	(round_up(size, BPF_PROG_CHUNK_SIZE) / BPF_PROG_CHUNK_SIZE)
 888
 889static DEFINE_MUTEX(pack_mutex);
 890static LIST_HEAD(pack_list);
 891
 892/* PMD_SIZE is not available in some special config, e.g. ARCH=arm with
 893 * CONFIG_MMU=n. Use PAGE_SIZE in these cases.
 894 */
 895#ifdef PMD_SIZE
 896/* PMD_SIZE is really big for some archs. It doesn't make sense to
 897 * reserve too much memory in one allocation. Hardcode BPF_PROG_PACK_SIZE to
 898 * 2MiB * num_possible_nodes(). On most architectures PMD_SIZE will be
 899 * greater than or equal to 2MB.
 900 */
 901#define BPF_PROG_PACK_SIZE (SZ_2M * num_possible_nodes())
 902#else
 903#define BPF_PROG_PACK_SIZE PAGE_SIZE
 904#endif
 905
 906#define BPF_PROG_CHUNK_COUNT (BPF_PROG_PACK_SIZE / BPF_PROG_CHUNK_SIZE)
 907
 908static struct bpf_prog_pack *alloc_new_pack(bpf_jit_fill_hole_t bpf_fill_ill_insns)
 909{
 910	struct bpf_prog_pack *pack;
 911
 912	pack = kzalloc(struct_size(pack, bitmap, BITS_TO_LONGS(BPF_PROG_CHUNK_COUNT)),
 913		       GFP_KERNEL);
 914	if (!pack)
 915		return NULL;
 916	pack->ptr = bpf_jit_alloc_exec(BPF_PROG_PACK_SIZE);
 917	if (!pack->ptr) {
 918		kfree(pack);
 919		return NULL;
 920	}
 921	bpf_fill_ill_insns(pack->ptr, BPF_PROG_PACK_SIZE);
 922	bitmap_zero(pack->bitmap, BPF_PROG_PACK_SIZE / BPF_PROG_CHUNK_SIZE);
 923	list_add_tail(&pack->list, &pack_list);
 924
 925	set_vm_flush_reset_perms(pack->ptr);
 926	set_memory_rox((unsigned long)pack->ptr, BPF_PROG_PACK_SIZE / PAGE_SIZE);
 927	return pack;
 928}
 929
 930void *bpf_prog_pack_alloc(u32 size, bpf_jit_fill_hole_t bpf_fill_ill_insns)
 931{
 932	unsigned int nbits = BPF_PROG_SIZE_TO_NBITS(size);
 933	struct bpf_prog_pack *pack;
 934	unsigned long pos;
 935	void *ptr = NULL;
 936
 937	mutex_lock(&pack_mutex);
 938	if (size > BPF_PROG_PACK_SIZE) {
 939		size = round_up(size, PAGE_SIZE);
 940		ptr = bpf_jit_alloc_exec(size);
 941		if (ptr) {
 942			bpf_fill_ill_insns(ptr, size);
 943			set_vm_flush_reset_perms(ptr);
 944			set_memory_rox((unsigned long)ptr, size / PAGE_SIZE);
 945		}
 946		goto out;
 947	}
 948	list_for_each_entry(pack, &pack_list, list) {
 949		pos = bitmap_find_next_zero_area(pack->bitmap, BPF_PROG_CHUNK_COUNT, 0,
 950						 nbits, 0);
 951		if (pos < BPF_PROG_CHUNK_COUNT)
 952			goto found_free_area;
 953	}
 954
 955	pack = alloc_new_pack(bpf_fill_ill_insns);
 956	if (!pack)
 957		goto out;
 958
 959	pos = 0;
 960
 961found_free_area:
 962	bitmap_set(pack->bitmap, pos, nbits);
 963	ptr = (void *)(pack->ptr) + (pos << BPF_PROG_CHUNK_SHIFT);
 964
 965out:
 966	mutex_unlock(&pack_mutex);
 967	return ptr;
 968}
 969
 970void bpf_prog_pack_free(void *ptr, u32 size)
 971{
 972	struct bpf_prog_pack *pack = NULL, *tmp;
 973	unsigned int nbits;
 974	unsigned long pos;
 975
 976	mutex_lock(&pack_mutex);
 977	if (size > BPF_PROG_PACK_SIZE) {
 978		bpf_jit_free_exec(ptr);
 979		goto out;
 980	}
 981
 982	list_for_each_entry(tmp, &pack_list, list) {
 983		if (ptr >= tmp->ptr && (tmp->ptr + BPF_PROG_PACK_SIZE) > ptr) {
 984			pack = tmp;
 985			break;
 986		}
 987	}
 988
 989	if (WARN_ONCE(!pack, "bpf_prog_pack bug\n"))
 990		goto out;
 991
 992	nbits = BPF_PROG_SIZE_TO_NBITS(size);
 993	pos = ((unsigned long)ptr - (unsigned long)pack->ptr) >> BPF_PROG_CHUNK_SHIFT;
 994
 995	WARN_ONCE(bpf_arch_text_invalidate(ptr, size),
 996		  "bpf_prog_pack bug: missing bpf_arch_text_invalidate?\n");
 997
 998	bitmap_clear(pack->bitmap, pos, nbits);
 999	if (bitmap_find_next_zero_area(pack->bitmap, BPF_PROG_CHUNK_COUNT, 0,
1000				       BPF_PROG_CHUNK_COUNT, 0) == 0) {
1001		list_del(&pack->list);
1002		bpf_jit_free_exec(pack->ptr);
1003		kfree(pack);
1004	}
1005out:
1006	mutex_unlock(&pack_mutex);
1007}
1008
1009static atomic_long_t bpf_jit_current;
1010
1011/* Can be overridden by an arch's JIT compiler if it has a custom,
1012 * dedicated BPF backend memory area, or if neither of the two
1013 * below apply.
1014 */
1015u64 __weak bpf_jit_alloc_exec_limit(void)
1016{
1017#if defined(MODULES_VADDR)
1018	return MODULES_END - MODULES_VADDR;
1019#else
1020	return VMALLOC_END - VMALLOC_START;
1021#endif
1022}
1023
1024static int __init bpf_jit_charge_init(void)
1025{
1026	/* Only used as heuristic here to derive limit. */
1027	bpf_jit_limit_max = bpf_jit_alloc_exec_limit();
1028	bpf_jit_limit = min_t(u64, round_up(bpf_jit_limit_max >> 1,
1029					    PAGE_SIZE), LONG_MAX);
1030	return 0;
1031}
1032pure_initcall(bpf_jit_charge_init);
1033
1034int bpf_jit_charge_modmem(u32 size)
1035{
1036	if (atomic_long_add_return(size, &bpf_jit_current) > READ_ONCE(bpf_jit_limit)) {
1037		if (!bpf_capable()) {
1038			atomic_long_sub(size, &bpf_jit_current);
1039			return -EPERM;
1040		}
1041	}
1042
1043	return 0;
1044}
1045
1046void bpf_jit_uncharge_modmem(u32 size)
1047{
1048	atomic_long_sub(size, &bpf_jit_current);
1049}
1050
1051void *__weak bpf_jit_alloc_exec(unsigned long size)
1052{
1053	return module_alloc(size);
1054}
1055
1056void __weak bpf_jit_free_exec(void *addr)
1057{
1058	module_memfree(addr);
1059}
1060
1061struct bpf_binary_header *
1062bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,
1063		     unsigned int alignment,
1064		     bpf_jit_fill_hole_t bpf_fill_ill_insns)
1065{
1066	struct bpf_binary_header *hdr;
1067	u32 size, hole, start;
1068
1069	WARN_ON_ONCE(!is_power_of_2(alignment) ||
1070		     alignment > BPF_IMAGE_ALIGNMENT);
1071
1072	/* Most of BPF filters are really small, but if some of them
1073	 * fill a page, allow at least 128 extra bytes to insert a
1074	 * random section of illegal instructions.
1075	 */
1076	size = round_up(proglen + sizeof(*hdr) + 128, PAGE_SIZE);
1077
1078	if (bpf_jit_charge_modmem(size))
1079		return NULL;
1080	hdr = bpf_jit_alloc_exec(size);
1081	if (!hdr) {
1082		bpf_jit_uncharge_modmem(size);
1083		return NULL;
1084	}
1085
1086	/* Fill space with illegal/arch-dep instructions. */
1087	bpf_fill_ill_insns(hdr, size);
1088
1089	hdr->size = size;
1090	hole = min_t(unsigned int, size - (proglen + sizeof(*hdr)),
1091		     PAGE_SIZE - sizeof(*hdr));
1092	start = get_random_u32_below(hole) & ~(alignment - 1);
1093
1094	/* Leave a random number of instructions before BPF code. */
1095	*image_ptr = &hdr->image[start];
1096
1097	return hdr;
1098}
1099
1100void bpf_jit_binary_free(struct bpf_binary_header *hdr)
1101{
1102	u32 size = hdr->size;
1103
1104	bpf_jit_free_exec(hdr);
1105	bpf_jit_uncharge_modmem(size);
1106}
1107
1108/* Allocate jit binary from bpf_prog_pack allocator.
1109 * Since the allocated memory is RO+X, the JIT engine cannot write directly
1110 * to the memory. To solve this problem, a RW buffer is also allocated at
1111 * as the same time. The JIT engine should calculate offsets based on the
1112 * RO memory address, but write JITed program to the RW buffer. Once the
1113 * JIT engine finishes, it calls bpf_jit_binary_pack_finalize, which copies
1114 * the JITed program to the RO memory.
1115 */
1116struct bpf_binary_header *
1117bpf_jit_binary_pack_alloc(unsigned int proglen, u8 **image_ptr,
1118			  unsigned int alignment,
1119			  struct bpf_binary_header **rw_header,
1120			  u8 **rw_image,
1121			  bpf_jit_fill_hole_t bpf_fill_ill_insns)
1122{
1123	struct bpf_binary_header *ro_header;
1124	u32 size, hole, start;
1125
1126	WARN_ON_ONCE(!is_power_of_2(alignment) ||
1127		     alignment > BPF_IMAGE_ALIGNMENT);
1128
1129	/* add 16 bytes for a random section of illegal instructions */
1130	size = round_up(proglen + sizeof(*ro_header) + 16, BPF_PROG_CHUNK_SIZE);
1131
1132	if (bpf_jit_charge_modmem(size))
1133		return NULL;
1134	ro_header = bpf_prog_pack_alloc(size, bpf_fill_ill_insns);
1135	if (!ro_header) {
1136		bpf_jit_uncharge_modmem(size);
1137		return NULL;
1138	}
1139
1140	*rw_header = kvmalloc(size, GFP_KERNEL);
1141	if (!*rw_header) {
1142		bpf_prog_pack_free(ro_header, size);
1143		bpf_jit_uncharge_modmem(size);
1144		return NULL;
1145	}
1146
1147	/* Fill space with illegal/arch-dep instructions. */
1148	bpf_fill_ill_insns(*rw_header, size);
1149	(*rw_header)->size = size;
1150
1151	hole = min_t(unsigned int, size - (proglen + sizeof(*ro_header)),
1152		     BPF_PROG_CHUNK_SIZE - sizeof(*ro_header));
1153	start = get_random_u32_below(hole) & ~(alignment - 1);
1154
1155	*image_ptr = &ro_header->image[start];
1156	*rw_image = &(*rw_header)->image[start];
1157
1158	return ro_header;
1159}
1160
1161/* Copy JITed text from rw_header to its final location, the ro_header. */
1162int bpf_jit_binary_pack_finalize(struct bpf_prog *prog,
1163				 struct bpf_binary_header *ro_header,
1164				 struct bpf_binary_header *rw_header)
1165{
1166	void *ptr;
1167
1168	ptr = bpf_arch_text_copy(ro_header, rw_header, rw_header->size);
1169
1170	kvfree(rw_header);
1171
1172	if (IS_ERR(ptr)) {
1173		bpf_prog_pack_free(ro_header, ro_header->size);
1174		return PTR_ERR(ptr);
1175	}
1176	return 0;
1177}
1178
1179/* bpf_jit_binary_pack_free is called in two different scenarios:
1180 *   1) when the program is freed after;
1181 *   2) when the JIT engine fails (before bpf_jit_binary_pack_finalize).
1182 * For case 2), we need to free both the RO memory and the RW buffer.
1183 *
1184 * bpf_jit_binary_pack_free requires proper ro_header->size. However,
1185 * bpf_jit_binary_pack_alloc does not set it. Therefore, ro_header->size
1186 * must be set with either bpf_jit_binary_pack_finalize (normal path) or
1187 * bpf_arch_text_copy (when jit fails).
1188 */
1189void bpf_jit_binary_pack_free(struct bpf_binary_header *ro_header,
1190			      struct bpf_binary_header *rw_header)
1191{
1192	u32 size = ro_header->size;
1193
1194	bpf_prog_pack_free(ro_header, size);
1195	kvfree(rw_header);
1196	bpf_jit_uncharge_modmem(size);
1197}
1198
1199struct bpf_binary_header *
1200bpf_jit_binary_pack_hdr(const struct bpf_prog *fp)
1201{
1202	unsigned long real_start = (unsigned long)fp->bpf_func;
1203	unsigned long addr;
1204
1205	addr = real_start & BPF_PROG_CHUNK_MASK;
1206	return (void *)addr;
1207}
1208
1209static inline struct bpf_binary_header *
1210bpf_jit_binary_hdr(const struct bpf_prog *fp)
1211{
1212	unsigned long real_start = (unsigned long)fp->bpf_func;
1213	unsigned long addr;
1214
1215	addr = real_start & PAGE_MASK;
1216	return (void *)addr;
1217}
1218
1219/* This symbol is only overridden by archs that have different
1220 * requirements than the usual eBPF JITs, f.e. when they only
1221 * implement cBPF JIT, do not set images read-only, etc.
1222 */
1223void __weak bpf_jit_free(struct bpf_prog *fp)
1224{
1225	if (fp->jited) {
1226		struct bpf_binary_header *hdr = bpf_jit_binary_hdr(fp);
1227
1228		bpf_jit_binary_free(hdr);
1229		WARN_ON_ONCE(!bpf_prog_kallsyms_verify_off(fp));
1230	}
1231
1232	bpf_prog_unlock_free(fp);
1233}
1234
1235int bpf_jit_get_func_addr(const struct bpf_prog *prog,
1236			  const struct bpf_insn *insn, bool extra_pass,
1237			  u64 *func_addr, bool *func_addr_fixed)
1238{
1239	s16 off = insn->off;
1240	s32 imm = insn->imm;
1241	u8 *addr;
1242	int err;
1243
1244	*func_addr_fixed = insn->src_reg != BPF_PSEUDO_CALL;
1245	if (!*func_addr_fixed) {
1246		/* Place-holder address till the last pass has collected
1247		 * all addresses for JITed subprograms in which case we
1248		 * can pick them up from prog->aux.
1249		 */
1250		if (!extra_pass)
1251			addr = NULL;
1252		else if (prog->aux->func &&
1253			 off >= 0 && off < prog->aux->real_func_cnt)
1254			addr = (u8 *)prog->aux->func[off]->bpf_func;
1255		else
1256			return -EINVAL;
1257	} else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL &&
1258		   bpf_jit_supports_far_kfunc_call()) {
1259		err = bpf_get_kfunc_addr(prog, insn->imm, insn->off, &addr);
1260		if (err)
1261			return err;
1262	} else {
1263		/* Address of a BPF helper call. Since part of the core
1264		 * kernel, it's always at a fixed location. __bpf_call_base
1265		 * and the helper with imm relative to it are both in core
1266		 * kernel.
1267		 */
1268		addr = (u8 *)__bpf_call_base + imm;
1269	}
1270
1271	*func_addr = (unsigned long)addr;
1272	return 0;
1273}
1274
1275static int bpf_jit_blind_insn(const struct bpf_insn *from,
1276			      const struct bpf_insn *aux,
1277			      struct bpf_insn *to_buff,
1278			      bool emit_zext)
1279{
1280	struct bpf_insn *to = to_buff;
1281	u32 imm_rnd = get_random_u32();
1282	s16 off;
1283
1284	BUILD_BUG_ON(BPF_REG_AX  + 1 != MAX_BPF_JIT_REG);
1285	BUILD_BUG_ON(MAX_BPF_REG + 1 != MAX_BPF_JIT_REG);
1286
1287	/* Constraints on AX register:
1288	 *
1289	 * AX register is inaccessible from user space. It is mapped in
1290	 * all JITs, and used here for constant blinding rewrites. It is
1291	 * typically "stateless" meaning its contents are only valid within
1292	 * the executed instruction, but not across several instructions.
1293	 * There are a few exceptions however which are further detailed
1294	 * below.
1295	 *
1296	 * Constant blinding is only used by JITs, not in the interpreter.
1297	 * The interpreter uses AX in some occasions as a local temporary
1298	 * register e.g. in DIV or MOD instructions.
1299	 *
1300	 * In restricted circumstances, the verifier can also use the AX
1301	 * register for rewrites as long as they do not interfere with
1302	 * the above cases!
1303	 */
1304	if (from->dst_reg == BPF_REG_AX || from->src_reg == BPF_REG_AX)
1305		goto out;
1306
1307	if (from->imm == 0 &&
1308	    (from->code == (BPF_ALU   | BPF_MOV | BPF_K) ||
1309	     from->code == (BPF_ALU64 | BPF_MOV | BPF_K))) {
1310		*to++ = BPF_ALU64_REG(BPF_XOR, from->dst_reg, from->dst_reg);
1311		goto out;
1312	}
1313
1314	switch (from->code) {
1315	case BPF_ALU | BPF_ADD | BPF_K:
1316	case BPF_ALU | BPF_SUB | BPF_K:
1317	case BPF_ALU | BPF_AND | BPF_K:
1318	case BPF_ALU | BPF_OR  | BPF_K:
1319	case BPF_ALU | BPF_XOR | BPF_K:
1320	case BPF_ALU | BPF_MUL | BPF_K:
1321	case BPF_ALU | BPF_MOV | BPF_K:
1322	case BPF_ALU | BPF_DIV | BPF_K:
1323	case BPF_ALU | BPF_MOD | BPF_K:
1324		*to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1325		*to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1326		*to++ = BPF_ALU32_REG_OFF(from->code, from->dst_reg, BPF_REG_AX, from->off);
1327		break;
1328
1329	case BPF_ALU64 | BPF_ADD | BPF_K:
1330	case BPF_ALU64 | BPF_SUB | BPF_K:
1331	case BPF_ALU64 | BPF_AND | BPF_K:
1332	case BPF_ALU64 | BPF_OR  | BPF_K:
1333	case BPF_ALU64 | BPF_XOR | BPF_K:
1334	case BPF_ALU64 | BPF_MUL | BPF_K:
1335	case BPF_ALU64 | BPF_MOV | BPF_K:
1336	case BPF_ALU64 | BPF_DIV | BPF_K:
1337	case BPF_ALU64 | BPF_MOD | BPF_K:
1338		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1339		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1340		*to++ = BPF_ALU64_REG_OFF(from->code, from->dst_reg, BPF_REG_AX, from->off);
1341		break;
1342
1343	case BPF_JMP | BPF_JEQ  | BPF_K:
1344	case BPF_JMP | BPF_JNE  | BPF_K:
1345	case BPF_JMP | BPF_JGT  | BPF_K:
1346	case BPF_JMP | BPF_JLT  | BPF_K:
1347	case BPF_JMP | BPF_JGE  | BPF_K:
1348	case BPF_JMP | BPF_JLE  | BPF_K:
1349	case BPF_JMP | BPF_JSGT | BPF_K:
1350	case BPF_JMP | BPF_JSLT | BPF_K:
1351	case BPF_JMP | BPF_JSGE | BPF_K:
1352	case BPF_JMP | BPF_JSLE | BPF_K:
1353	case BPF_JMP | BPF_JSET | BPF_K:
1354		/* Accommodate for extra offset in case of a backjump. */
1355		off = from->off;
1356		if (off < 0)
1357			off -= 2;
1358		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1359		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1360		*to++ = BPF_JMP_REG(from->code, from->dst_reg, BPF_REG_AX, off);
1361		break;
1362
1363	case BPF_JMP32 | BPF_JEQ  | BPF_K:
1364	case BPF_JMP32 | BPF_JNE  | BPF_K:
1365	case BPF_JMP32 | BPF_JGT  | BPF_K:
1366	case BPF_JMP32 | BPF_JLT  | BPF_K:
1367	case BPF_JMP32 | BPF_JGE  | BPF_K:
1368	case BPF_JMP32 | BPF_JLE  | BPF_K:
1369	case BPF_JMP32 | BPF_JSGT | BPF_K:
1370	case BPF_JMP32 | BPF_JSLT | BPF_K:
1371	case BPF_JMP32 | BPF_JSGE | BPF_K:
1372	case BPF_JMP32 | BPF_JSLE | BPF_K:
1373	case BPF_JMP32 | BPF_JSET | BPF_K:
1374		/* Accommodate for extra offset in case of a backjump. */
1375		off = from->off;
1376		if (off < 0)
1377			off -= 2;
1378		*to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1379		*to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1380		*to++ = BPF_JMP32_REG(from->code, from->dst_reg, BPF_REG_AX,
1381				      off);
1382		break;
1383
1384	case BPF_LD | BPF_IMM | BPF_DW:
1385		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[1].imm);
1386		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1387		*to++ = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
1388		*to++ = BPF_ALU64_REG(BPF_MOV, aux[0].dst_reg, BPF_REG_AX);
1389		break;
1390	case 0: /* Part 2 of BPF_LD | BPF_IMM | BPF_DW. */
1391		*to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[0].imm);
1392		*to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1393		if (emit_zext)
1394			*to++ = BPF_ZEXT_REG(BPF_REG_AX);
1395		*to++ = BPF_ALU64_REG(BPF_OR,  aux[0].dst_reg, BPF_REG_AX);
1396		break;
1397
1398	case BPF_ST | BPF_MEM | BPF_DW:
1399	case BPF_ST | BPF_MEM | BPF_W:
1400	case BPF_ST | BPF_MEM | BPF_H:
1401	case BPF_ST | BPF_MEM | BPF_B:
1402		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1403		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1404		*to++ = BPF_STX_MEM(from->code, from->dst_reg, BPF_REG_AX, from->off);
1405		break;
1406	}
1407out:
1408	return to - to_buff;
1409}
1410
1411static struct bpf_prog *bpf_prog_clone_create(struct bpf_prog *fp_other,
1412					      gfp_t gfp_extra_flags)
1413{
1414	gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
1415	struct bpf_prog *fp;
1416
1417	fp = __vmalloc(fp_other->pages * PAGE_SIZE, gfp_flags);
1418	if (fp != NULL) {
1419		/* aux->prog still points to the fp_other one, so
1420		 * when promoting the clone to the real program,
1421		 * this still needs to be adapted.
1422		 */
1423		memcpy(fp, fp_other, fp_other->pages * PAGE_SIZE);
1424	}
1425
1426	return fp;
1427}
1428
1429static void bpf_prog_clone_free(struct bpf_prog *fp)
1430{
1431	/* aux was stolen by the other clone, so we cannot free
1432	 * it from this path! It will be freed eventually by the
1433	 * other program on release.
1434	 *
1435	 * At this point, we don't need a deferred release since
1436	 * clone is guaranteed to not be locked.
1437	 */
1438	fp->aux = NULL;
1439	fp->stats = NULL;
1440	fp->active = NULL;
1441	__bpf_prog_free(fp);
1442}
1443
1444void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other)
1445{
1446	/* We have to repoint aux->prog to self, as we don't
1447	 * know whether fp here is the clone or the original.
1448	 */
1449	fp->aux->prog = fp;
1450	bpf_prog_clone_free(fp_other);
1451}
1452
1453struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *prog)
1454{
1455	struct bpf_insn insn_buff[16], aux[2];
1456	struct bpf_prog *clone, *tmp;
1457	int insn_delta, insn_cnt;
1458	struct bpf_insn *insn;
1459	int i, rewritten;
1460
1461	if (!prog->blinding_requested || prog->blinded)
1462		return prog;
1463
1464	clone = bpf_prog_clone_create(prog, GFP_USER);
1465	if (!clone)
1466		return ERR_PTR(-ENOMEM);
1467
1468	insn_cnt = clone->len;
1469	insn = clone->insnsi;
1470
1471	for (i = 0; i < insn_cnt; i++, insn++) {
1472		if (bpf_pseudo_func(insn)) {
1473			/* ld_imm64 with an address of bpf subprog is not
1474			 * a user controlled constant. Don't randomize it,
1475			 * since it will conflict with jit_subprogs() logic.
1476			 */
1477			insn++;
1478			i++;
1479			continue;
1480		}
1481
1482		/* We temporarily need to hold the original ld64 insn
1483		 * so that we can still access the first part in the
1484		 * second blinding run.
1485		 */
1486		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW) &&
1487		    insn[1].code == 0)
1488			memcpy(aux, insn, sizeof(aux));
1489
1490		rewritten = bpf_jit_blind_insn(insn, aux, insn_buff,
1491						clone->aux->verifier_zext);
1492		if (!rewritten)
1493			continue;
1494
1495		tmp = bpf_patch_insn_single(clone, i, insn_buff, rewritten);
1496		if (IS_ERR(tmp)) {
1497			/* Patching may have repointed aux->prog during
1498			 * realloc from the original one, so we need to
1499			 * fix it up here on error.
1500			 */
1501			bpf_jit_prog_release_other(prog, clone);
1502			return tmp;
1503		}
1504
1505		clone = tmp;
1506		insn_delta = rewritten - 1;
1507
1508		/* Walk new program and skip insns we just inserted. */
1509		insn = clone->insnsi + i + insn_delta;
1510		insn_cnt += insn_delta;
1511		i        += insn_delta;
1512	}
1513
1514	clone->blinded = 1;
1515	return clone;
1516}
1517#endif /* CONFIG_BPF_JIT */
1518
1519/* Base function for offset calculation. Needs to go into .text section,
1520 * therefore keeping it non-static as well; will also be used by JITs
1521 * anyway later on, so do not let the compiler omit it. This also needs
1522 * to go into kallsyms for correlation from e.g. bpftool, so naming
1523 * must not change.
1524 */
1525noinline u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
1526{
1527	return 0;
1528}
1529EXPORT_SYMBOL_GPL(__bpf_call_base);
1530
1531/* All UAPI available opcodes. */
1532#define BPF_INSN_MAP(INSN_2, INSN_3)		\
1533	/* 32 bit ALU operations. */		\
1534	/*   Register based. */			\
1535	INSN_3(ALU, ADD,  X),			\
1536	INSN_3(ALU, SUB,  X),			\
1537	INSN_3(ALU, AND,  X),			\
1538	INSN_3(ALU, OR,   X),			\
1539	INSN_3(ALU, LSH,  X),			\
1540	INSN_3(ALU, RSH,  X),			\
1541	INSN_3(ALU, XOR,  X),			\
1542	INSN_3(ALU, MUL,  X),			\
1543	INSN_3(ALU, MOV,  X),			\
1544	INSN_3(ALU, ARSH, X),			\
1545	INSN_3(ALU, DIV,  X),			\
1546	INSN_3(ALU, MOD,  X),			\
1547	INSN_2(ALU, NEG),			\
1548	INSN_3(ALU, END, TO_BE),		\
1549	INSN_3(ALU, END, TO_LE),		\
1550	/*   Immediate based. */		\
1551	INSN_3(ALU, ADD,  K),			\
1552	INSN_3(ALU, SUB,  K),			\
1553	INSN_3(ALU, AND,  K),			\
1554	INSN_3(ALU, OR,   K),			\
1555	INSN_3(ALU, LSH,  K),			\
1556	INSN_3(ALU, RSH,  K),			\
1557	INSN_3(ALU, XOR,  K),			\
1558	INSN_3(ALU, MUL,  K),			\
1559	INSN_3(ALU, MOV,  K),			\
1560	INSN_3(ALU, ARSH, K),			\
1561	INSN_3(ALU, DIV,  K),			\
1562	INSN_3(ALU, MOD,  K),			\
1563	/* 64 bit ALU operations. */		\
1564	/*   Register based. */			\
1565	INSN_3(ALU64, ADD,  X),			\
1566	INSN_3(ALU64, SUB,  X),			\
1567	INSN_3(ALU64, AND,  X),			\
1568	INSN_3(ALU64, OR,   X),			\
1569	INSN_3(ALU64, LSH,  X),			\
1570	INSN_3(ALU64, RSH,  X),			\
1571	INSN_3(ALU64, XOR,  X),			\
1572	INSN_3(ALU64, MUL,  X),			\
1573	INSN_3(ALU64, MOV,  X),			\
1574	INSN_3(ALU64, ARSH, X),			\
1575	INSN_3(ALU64, DIV,  X),			\
1576	INSN_3(ALU64, MOD,  X),			\
1577	INSN_2(ALU64, NEG),			\
1578	INSN_3(ALU64, END, TO_LE),		\
1579	/*   Immediate based. */		\
1580	INSN_3(ALU64, ADD,  K),			\
1581	INSN_3(ALU64, SUB,  K),			\
1582	INSN_3(ALU64, AND,  K),			\
1583	INSN_3(ALU64, OR,   K),			\
1584	INSN_3(ALU64, LSH,  K),			\
1585	INSN_3(ALU64, RSH,  K),			\
1586	INSN_3(ALU64, XOR,  K),			\
1587	INSN_3(ALU64, MUL,  K),			\
1588	INSN_3(ALU64, MOV,  K),			\
1589	INSN_3(ALU64, ARSH, K),			\
1590	INSN_3(ALU64, DIV,  K),			\
1591	INSN_3(ALU64, MOD,  K),			\
1592	/* Call instruction. */			\
1593	INSN_2(JMP, CALL),			\
1594	/* Exit instruction. */			\
1595	INSN_2(JMP, EXIT),			\
1596	/* 32-bit Jump instructions. */		\
1597	/*   Register based. */			\
1598	INSN_3(JMP32, JEQ,  X),			\
1599	INSN_3(JMP32, JNE,  X),			\
1600	INSN_3(JMP32, JGT,  X),			\
1601	INSN_3(JMP32, JLT,  X),			\
1602	INSN_3(JMP32, JGE,  X),			\
1603	INSN_3(JMP32, JLE,  X),			\
1604	INSN_3(JMP32, JSGT, X),			\
1605	INSN_3(JMP32, JSLT, X),			\
1606	INSN_3(JMP32, JSGE, X),			\
1607	INSN_3(JMP32, JSLE, X),			\
1608	INSN_3(JMP32, JSET, X),			\
1609	/*   Immediate based. */		\
1610	INSN_3(JMP32, JEQ,  K),			\
1611	INSN_3(JMP32, JNE,  K),			\
1612	INSN_3(JMP32, JGT,  K),			\
1613	INSN_3(JMP32, JLT,  K),			\
1614	INSN_3(JMP32, JGE,  K),			\
1615	INSN_3(JMP32, JLE,  K),			\
1616	INSN_3(JMP32, JSGT, K),			\
1617	INSN_3(JMP32, JSLT, K),			\
1618	INSN_3(JMP32, JSGE, K),			\
1619	INSN_3(JMP32, JSLE, K),			\
1620	INSN_3(JMP32, JSET, K),			\
1621	/* Jump instructions. */		\
1622	/*   Register based. */			\
1623	INSN_3(JMP, JEQ,  X),			\
1624	INSN_3(JMP, JNE,  X),			\
1625	INSN_3(JMP, JGT,  X),			\
1626	INSN_3(JMP, JLT,  X),			\
1627	INSN_3(JMP, JGE,  X),			\
1628	INSN_3(JMP, JLE,  X),			\
1629	INSN_3(JMP, JSGT, X),			\
1630	INSN_3(JMP, JSLT, X),			\
1631	INSN_3(JMP, JSGE, X),			\
1632	INSN_3(JMP, JSLE, X),			\
1633	INSN_3(JMP, JSET, X),			\
1634	/*   Immediate based. */		\
1635	INSN_3(JMP, JEQ,  K),			\
1636	INSN_3(JMP, JNE,  K),			\
1637	INSN_3(JMP, JGT,  K),			\
1638	INSN_3(JMP, JLT,  K),			\
1639	INSN_3(JMP, JGE,  K),			\
1640	INSN_3(JMP, JLE,  K),			\
1641	INSN_3(JMP, JSGT, K),			\
1642	INSN_3(JMP, JSLT, K),			\
1643	INSN_3(JMP, JSGE, K),			\
1644	INSN_3(JMP, JSLE, K),			\
1645	INSN_3(JMP, JSET, K),			\
1646	INSN_2(JMP, JA),			\
1647	INSN_2(JMP32, JA),			\
1648	/* Store instructions. */		\
1649	/*   Register based. */			\
1650	INSN_3(STX, MEM,  B),			\
1651	INSN_3(STX, MEM,  H),			\
1652	INSN_3(STX, MEM,  W),			\
1653	INSN_3(STX, MEM,  DW),			\
1654	INSN_3(STX, ATOMIC, W),			\
1655	INSN_3(STX, ATOMIC, DW),		\
1656	/*   Immediate based. */		\
1657	INSN_3(ST, MEM, B),			\
1658	INSN_3(ST, MEM, H),			\
1659	INSN_3(ST, MEM, W),			\
1660	INSN_3(ST, MEM, DW),			\
1661	/* Load instructions. */		\
1662	/*   Register based. */			\
1663	INSN_3(LDX, MEM, B),			\
1664	INSN_3(LDX, MEM, H),			\
1665	INSN_3(LDX, MEM, W),			\
1666	INSN_3(LDX, MEM, DW),			\
1667	INSN_3(LDX, MEMSX, B),			\
1668	INSN_3(LDX, MEMSX, H),			\
1669	INSN_3(LDX, MEMSX, W),			\
1670	/*   Immediate based. */		\
1671	INSN_3(LD, IMM, DW)
1672
1673bool bpf_opcode_in_insntable(u8 code)
1674{
1675#define BPF_INSN_2_TBL(x, y)    [BPF_##x | BPF_##y] = true
1676#define BPF_INSN_3_TBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = true
1677	static const bool public_insntable[256] = {
1678		[0 ... 255] = false,
1679		/* Now overwrite non-defaults ... */
1680		BPF_INSN_MAP(BPF_INSN_2_TBL, BPF_INSN_3_TBL),
1681		/* UAPI exposed, but rewritten opcodes. cBPF carry-over. */
1682		[BPF_LD | BPF_ABS | BPF_B] = true,
1683		[BPF_LD | BPF_ABS | BPF_H] = true,
1684		[BPF_LD | BPF_ABS | BPF_W] = true,
1685		[BPF_LD | BPF_IND | BPF_B] = true,
1686		[BPF_LD | BPF_IND | BPF_H] = true,
1687		[BPF_LD | BPF_IND | BPF_W] = true,
1688		[BPF_JMP | BPF_JCOND] = true,
1689	};
1690#undef BPF_INSN_3_TBL
1691#undef BPF_INSN_2_TBL
1692	return public_insntable[code];
1693}
1694
1695#ifndef CONFIG_BPF_JIT_ALWAYS_ON
1696/**
1697 *	___bpf_prog_run - run eBPF program on a given context
1698 *	@regs: is the array of MAX_BPF_EXT_REG eBPF pseudo-registers
1699 *	@insn: is the array of eBPF instructions
1700 *
1701 * Decode and execute eBPF instructions.
1702 *
1703 * Return: whatever value is in %BPF_R0 at program exit
1704 */
1705static u64 ___bpf_prog_run(u64 *regs, const struct bpf_insn *insn)
1706{
1707#define BPF_INSN_2_LBL(x, y)    [BPF_##x | BPF_##y] = &&x##_##y
1708#define BPF_INSN_3_LBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = &&x##_##y##_##z
1709	static const void * const jumptable[256] __annotate_jump_table = {
1710		[0 ... 255] = &&default_label,
1711		/* Now overwrite non-defaults ... */
1712		BPF_INSN_MAP(BPF_INSN_2_LBL, BPF_INSN_3_LBL),
1713		/* Non-UAPI available opcodes. */
1714		[BPF_JMP | BPF_CALL_ARGS] = &&JMP_CALL_ARGS,
1715		[BPF_JMP | BPF_TAIL_CALL] = &&JMP_TAIL_CALL,
1716		[BPF_ST  | BPF_NOSPEC] = &&ST_NOSPEC,
1717		[BPF_LDX | BPF_PROBE_MEM | BPF_B] = &&LDX_PROBE_MEM_B,
1718		[BPF_LDX | BPF_PROBE_MEM | BPF_H] = &&LDX_PROBE_MEM_H,
1719		[BPF_LDX | BPF_PROBE_MEM | BPF_W] = &&LDX_PROBE_MEM_W,
1720		[BPF_LDX | BPF_PROBE_MEM | BPF_DW] = &&LDX_PROBE_MEM_DW,
1721		[BPF_LDX | BPF_PROBE_MEMSX | BPF_B] = &&LDX_PROBE_MEMSX_B,
1722		[BPF_LDX | BPF_PROBE_MEMSX | BPF_H] = &&LDX_PROBE_MEMSX_H,
1723		[BPF_LDX | BPF_PROBE_MEMSX | BPF_W] = &&LDX_PROBE_MEMSX_W,
1724	};
1725#undef BPF_INSN_3_LBL
1726#undef BPF_INSN_2_LBL
1727	u32 tail_call_cnt = 0;
1728
1729#define CONT	 ({ insn++; goto select_insn; })
1730#define CONT_JMP ({ insn++; goto select_insn; })
1731
1732select_insn:
1733	goto *jumptable[insn->code];
1734
1735	/* Explicitly mask the register-based shift amounts with 63 or 31
1736	 * to avoid undefined behavior. Normally this won't affect the
1737	 * generated code, for example, in case of native 64 bit archs such
1738	 * as x86-64 or arm64, the compiler is optimizing the AND away for
1739	 * the interpreter. In case of JITs, each of the JIT backends compiles
1740	 * the BPF shift operations to machine instructions which produce
1741	 * implementation-defined results in such a case; the resulting
1742	 * contents of the register may be arbitrary, but program behaviour
1743	 * as a whole remains defined. In other words, in case of JIT backends,
1744	 * the AND must /not/ be added to the emitted LSH/RSH/ARSH translation.
1745	 */
1746	/* ALU (shifts) */
1747#define SHT(OPCODE, OP)					\
1748	ALU64_##OPCODE##_X:				\
1749		DST = DST OP (SRC & 63);		\
1750		CONT;					\
1751	ALU_##OPCODE##_X:				\
1752		DST = (u32) DST OP ((u32) SRC & 31);	\
1753		CONT;					\
1754	ALU64_##OPCODE##_K:				\
1755		DST = DST OP IMM;			\
1756		CONT;					\
1757	ALU_##OPCODE##_K:				\
1758		DST = (u32) DST OP (u32) IMM;		\
1759		CONT;
1760	/* ALU (rest) */
1761#define ALU(OPCODE, OP)					\
1762	ALU64_##OPCODE##_X:				\
1763		DST = DST OP SRC;			\
1764		CONT;					\
1765	ALU_##OPCODE##_X:				\
1766		DST = (u32) DST OP (u32) SRC;		\
1767		CONT;					\
1768	ALU64_##OPCODE##_K:				\
1769		DST = DST OP IMM;			\
1770		CONT;					\
1771	ALU_##OPCODE##_K:				\
1772		DST = (u32) DST OP (u32) IMM;		\
1773		CONT;
1774	ALU(ADD,  +)
1775	ALU(SUB,  -)
1776	ALU(AND,  &)
1777	ALU(OR,   |)
1778	ALU(XOR,  ^)
1779	ALU(MUL,  *)
1780	SHT(LSH, <<)
1781	SHT(RSH, >>)
1782#undef SHT
1783#undef ALU
1784	ALU_NEG:
1785		DST = (u32) -DST;
1786		CONT;
1787	ALU64_NEG:
1788		DST = -DST;
1789		CONT;
1790	ALU_MOV_X:
1791		switch (OFF) {
1792		case 0:
1793			DST = (u32) SRC;
1794			break;
1795		case 8:
1796			DST = (u32)(s8) SRC;
1797			break;
1798		case 16:
1799			DST = (u32)(s16) SRC;
1800			break;
1801		}
1802		CONT;
1803	ALU_MOV_K:
1804		DST = (u32) IMM;
1805		CONT;
1806	ALU64_MOV_X:
1807		switch (OFF) {
1808		case 0:
1809			DST = SRC;
1810			break;
1811		case 8:
1812			DST = (s8) SRC;
1813			break;
1814		case 16:
1815			DST = (s16) SRC;
1816			break;
1817		case 32:
1818			DST = (s32) SRC;
1819			break;
1820		}
1821		CONT;
1822	ALU64_MOV_K:
1823		DST = IMM;
1824		CONT;
1825	LD_IMM_DW:
1826		DST = (u64) (u32) insn[0].imm | ((u64) (u32) insn[1].imm) << 32;
1827		insn++;
1828		CONT;
1829	ALU_ARSH_X:
1830		DST = (u64) (u32) (((s32) DST) >> (SRC & 31));
1831		CONT;
1832	ALU_ARSH_K:
1833		DST = (u64) (u32) (((s32) DST) >> IMM);
1834		CONT;
1835	ALU64_ARSH_X:
1836		(*(s64 *) &DST) >>= (SRC & 63);
1837		CONT;
1838	ALU64_ARSH_K:
1839		(*(s64 *) &DST) >>= IMM;
1840		CONT;
1841	ALU64_MOD_X:
1842		switch (OFF) {
1843		case 0:
1844			div64_u64_rem(DST, SRC, &AX);
1845			DST = AX;
1846			break;
1847		case 1:
1848			AX = div64_s64(DST, SRC);
1849			DST = DST - AX * SRC;
1850			break;
1851		}
1852		CONT;
1853	ALU_MOD_X:
1854		switch (OFF) {
1855		case 0:
1856			AX = (u32) DST;
1857			DST = do_div(AX, (u32) SRC);
1858			break;
1859		case 1:
1860			AX = abs((s32)DST);
1861			AX = do_div(AX, abs((s32)SRC));
1862			if ((s32)DST < 0)
1863				DST = (u32)-AX;
1864			else
1865				DST = (u32)AX;
1866			break;
1867		}
1868		CONT;
1869	ALU64_MOD_K:
1870		switch (OFF) {
1871		case 0:
1872			div64_u64_rem(DST, IMM, &AX);
1873			DST = AX;
1874			break;
1875		case 1:
1876			AX = div64_s64(DST, IMM);
1877			DST = DST - AX * IMM;
1878			break;
1879		}
1880		CONT;
1881	ALU_MOD_K:
1882		switch (OFF) {
1883		case 0:
1884			AX = (u32) DST;
1885			DST = do_div(AX, (u32) IMM);
1886			break;
1887		case 1:
1888			AX = abs((s32)DST);
1889			AX = do_div(AX, abs((s32)IMM));
1890			if ((s32)DST < 0)
1891				DST = (u32)-AX;
1892			else
1893				DST = (u32)AX;
1894			break;
1895		}
1896		CONT;
1897	ALU64_DIV_X:
1898		switch (OFF) {
1899		case 0:
1900			DST = div64_u64(DST, SRC);
1901			break;
1902		case 1:
1903			DST = div64_s64(DST, SRC);
1904			break;
1905		}
1906		CONT;
1907	ALU_DIV_X:
1908		switch (OFF) {
1909		case 0:
1910			AX = (u32) DST;
1911			do_div(AX, (u32) SRC);
1912			DST = (u32) AX;
1913			break;
1914		case 1:
1915			AX = abs((s32)DST);
1916			do_div(AX, abs((s32)SRC));
1917			if (((s32)DST < 0) == ((s32)SRC < 0))
1918				DST = (u32)AX;
1919			else
1920				DST = (u32)-AX;
1921			break;
1922		}
1923		CONT;
1924	ALU64_DIV_K:
1925		switch (OFF) {
1926		case 0:
1927			DST = div64_u64(DST, IMM);
1928			break;
1929		case 1:
1930			DST = div64_s64(DST, IMM);
1931			break;
1932		}
1933		CONT;
1934	ALU_DIV_K:
1935		switch (OFF) {
1936		case 0:
1937			AX = (u32) DST;
1938			do_div(AX, (u32) IMM);
1939			DST = (u32) AX;
1940			break;
1941		case 1:
1942			AX = abs((s32)DST);
1943			do_div(AX, abs((s32)IMM));
1944			if (((s32)DST < 0) == ((s32)IMM < 0))
1945				DST = (u32)AX;
1946			else
1947				DST = (u32)-AX;
1948			break;
1949		}
1950		CONT;
1951	ALU_END_TO_BE:
1952		switch (IMM) {
1953		case 16:
1954			DST = (__force u16) cpu_to_be16(DST);
1955			break;
1956		case 32:
1957			DST = (__force u32) cpu_to_be32(DST);
1958			break;
1959		case 64:
1960			DST = (__force u64) cpu_to_be64(DST);
1961			break;
1962		}
1963		CONT;
1964	ALU_END_TO_LE:
1965		switch (IMM) {
1966		case 16:
1967			DST = (__force u16) cpu_to_le16(DST);
1968			break;
1969		case 32:
1970			DST = (__force u32) cpu_to_le32(DST);
1971			break;
1972		case 64:
1973			DST = (__force u64) cpu_to_le64(DST);
1974			break;
1975		}
1976		CONT;
1977	ALU64_END_TO_LE:
1978		switch (IMM) {
1979		case 16:
1980			DST = (__force u16) __swab16(DST);
1981			break;
1982		case 32:
1983			DST = (__force u32) __swab32(DST);
1984			break;
1985		case 64:
1986			DST = (__force u64) __swab64(DST);
1987			break;
1988		}
1989		CONT;
1990
1991	/* CALL */
1992	JMP_CALL:
1993		/* Function call scratches BPF_R1-BPF_R5 registers,
1994		 * preserves BPF_R6-BPF_R9, and stores return value
1995		 * into BPF_R0.
1996		 */
1997		BPF_R0 = (__bpf_call_base + insn->imm)(BPF_R1, BPF_R2, BPF_R3,
1998						       BPF_R4, BPF_R5);
1999		CONT;
2000
2001	JMP_CALL_ARGS:
2002		BPF_R0 = (__bpf_call_base_args + insn->imm)(BPF_R1, BPF_R2,
2003							    BPF_R3, BPF_R4,
2004							    BPF_R5,
2005							    insn + insn->off + 1);
2006		CONT;
2007
2008	JMP_TAIL_CALL: {
2009		struct bpf_map *map = (struct bpf_map *) (unsigned long) BPF_R2;
2010		struct bpf_array *array = container_of(map, struct bpf_array, map);
2011		struct bpf_prog *prog;
2012		u32 index = BPF_R3;
2013
2014		if (unlikely(index >= array->map.max_entries))
2015			goto out;
2016
2017		if (unlikely(tail_call_cnt >= MAX_TAIL_CALL_CNT))
2018			goto out;
2019
2020		tail_call_cnt++;
2021
2022		prog = READ_ONCE(array->ptrs[index]);
2023		if (!prog)
2024			goto out;
2025
2026		/* ARG1 at this point is guaranteed to point to CTX from
2027		 * the verifier side due to the fact that the tail call is
2028		 * handled like a helper, that is, bpf_tail_call_proto,
2029		 * where arg1_type is ARG_PTR_TO_CTX.
2030		 */
2031		insn = prog->insnsi;
2032		goto select_insn;
2033out:
2034		CONT;
2035	}
2036	JMP_JA:
2037		insn += insn->off;
2038		CONT;
2039	JMP32_JA:
2040		insn += insn->imm;
2041		CONT;
2042	JMP_EXIT:
2043		return BPF_R0;
2044	/* JMP */
2045#define COND_JMP(SIGN, OPCODE, CMP_OP)				\
2046	JMP_##OPCODE##_X:					\
2047		if ((SIGN##64) DST CMP_OP (SIGN##64) SRC) {	\
2048			insn += insn->off;			\
2049			CONT_JMP;				\
2050		}						\
2051		CONT;						\
2052	JMP32_##OPCODE##_X:					\
2053		if ((SIGN##32) DST CMP_OP (SIGN##32) SRC) {	\
2054			insn += insn->off;			\
2055			CONT_JMP;				\
2056		}						\
2057		CONT;						\
2058	JMP_##OPCODE##_K:					\
2059		if ((SIGN##64) DST CMP_OP (SIGN##64) IMM) {	\
2060			insn += insn->off;			\
2061			CONT_JMP;				\
2062		}						\
2063		CONT;						\
2064	JMP32_##OPCODE##_K:					\
2065		if ((SIGN##32) DST CMP_OP (SIGN##32) IMM) {	\
2066			insn += insn->off;			\
2067			CONT_JMP;				\
2068		}						\
2069		CONT;
2070	COND_JMP(u, JEQ, ==)
2071	COND_JMP(u, JNE, !=)
2072	COND_JMP(u, JGT, >)
2073	COND_JMP(u, JLT, <)
2074	COND_JMP(u, JGE, >=)
2075	COND_JMP(u, JLE, <=)
2076	COND_JMP(u, JSET, &)
2077	COND_JMP(s, JSGT, >)
2078	COND_JMP(s, JSLT, <)
2079	COND_JMP(s, JSGE, >=)
2080	COND_JMP(s, JSLE, <=)
2081#undef COND_JMP
2082	/* ST, STX and LDX*/
2083	ST_NOSPEC:
2084		/* Speculation barrier for mitigating Speculative Store Bypass.
2085		 * In case of arm64, we rely on the firmware mitigation as
2086		 * controlled via the ssbd kernel parameter. Whenever the
2087		 * mitigation is enabled, it works for all of the kernel code
2088		 * with no need to provide any additional instructions here.
2089		 * In case of x86, we use 'lfence' insn for mitigation. We
2090		 * reuse preexisting logic from Spectre v1 mitigation that
2091		 * happens to produce the required code on x86 for v4 as well.
2092		 */
2093		barrier_nospec();
2094		CONT;
2095#define LDST(SIZEOP, SIZE)						\
2096	STX_MEM_##SIZEOP:						\
2097		*(SIZE *)(unsigned long) (DST + insn->off) = SRC;	\
2098		CONT;							\
2099	ST_MEM_##SIZEOP:						\
2100		*(SIZE *)(unsigned long) (DST + insn->off) = IMM;	\
2101		CONT;							\
2102	LDX_MEM_##SIZEOP:						\
2103		DST = *(SIZE *)(unsigned long) (SRC + insn->off);	\
2104		CONT;							\
2105	LDX_PROBE_MEM_##SIZEOP:						\
2106		bpf_probe_read_kernel_common(&DST, sizeof(SIZE),	\
2107			      (const void *)(long) (SRC + insn->off));	\
2108		DST = *((SIZE *)&DST);					\
2109		CONT;
2110
2111	LDST(B,   u8)
2112	LDST(H,  u16)
2113	LDST(W,  u32)
2114	LDST(DW, u64)
2115#undef LDST
2116
2117#define LDSX(SIZEOP, SIZE)						\
2118	LDX_MEMSX_##SIZEOP:						\
2119		DST = *(SIZE *)(unsigned long) (SRC + insn->off);	\
2120		CONT;							\
2121	LDX_PROBE_MEMSX_##SIZEOP:					\
2122		bpf_probe_read_kernel_common(&DST, sizeof(SIZE),		\
2123				      (const void *)(long) (SRC + insn->off));	\
2124		DST = *((SIZE *)&DST);					\
2125		CONT;
2126
2127	LDSX(B,   s8)
2128	LDSX(H,  s16)
2129	LDSX(W,  s32)
2130#undef LDSX
2131
2132#define ATOMIC_ALU_OP(BOP, KOP)						\
2133		case BOP:						\
2134			if (BPF_SIZE(insn->code) == BPF_W)		\
2135				atomic_##KOP((u32) SRC, (atomic_t *)(unsigned long) \
2136					     (DST + insn->off));	\
2137			else						\
2138				atomic64_##KOP((u64) SRC, (atomic64_t *)(unsigned long) \
2139					       (DST + insn->off));	\
2140			break;						\
2141		case BOP | BPF_FETCH:					\
2142			if (BPF_SIZE(insn->code) == BPF_W)		\
2143				SRC = (u32) atomic_fetch_##KOP(		\
2144					(u32) SRC,			\
2145					(atomic_t *)(unsigned long) (DST + insn->off)); \
2146			else						\
2147				SRC = (u64) atomic64_fetch_##KOP(	\
2148					(u64) SRC,			\
2149					(atomic64_t *)(unsigned long) (DST + insn->off)); \
2150			break;
2151
2152	STX_ATOMIC_DW:
2153	STX_ATOMIC_W:
2154		switch (IMM) {
2155		ATOMIC_ALU_OP(BPF_ADD, add)
2156		ATOMIC_ALU_OP(BPF_AND, and)
2157		ATOMIC_ALU_OP(BPF_OR, or)
2158		ATOMIC_ALU_OP(BPF_XOR, xor)
2159#undef ATOMIC_ALU_OP
2160
2161		case BPF_XCHG:
2162			if (BPF_SIZE(insn->code) == BPF_W)
2163				SRC = (u32) atomic_xchg(
2164					(atomic_t *)(unsigned long) (DST + insn->off),
2165					(u32) SRC);
2166			else
2167				SRC = (u64) atomic64_xchg(
2168					(atomic64_t *)(unsigned long) (DST + insn->off),
2169					(u64) SRC);
2170			break;
2171		case BPF_CMPXCHG:
2172			if (BPF_SIZE(insn->code) == BPF_W)
2173				BPF_R0 = (u32) atomic_cmpxchg(
2174					(atomic_t *)(unsigned long) (DST + insn->off),
2175					(u32) BPF_R0, (u32) SRC);
2176			else
2177				BPF_R0 = (u64) atomic64_cmpxchg(
2178					(atomic64_t *)(unsigned long) (DST + insn->off),
2179					(u64) BPF_R0, (u64) SRC);
2180			break;
2181
2182		default:
2183			goto default_label;
2184		}
2185		CONT;
2186
2187	default_label:
2188		/* If we ever reach this, we have a bug somewhere. Die hard here
2189		 * instead of just returning 0; we could be somewhere in a subprog,
2190		 * so execution could continue otherwise which we do /not/ want.
2191		 *
2192		 * Note, verifier whitelists all opcodes in bpf_opcode_in_insntable().
2193		 */
2194		pr_warn("BPF interpreter: unknown opcode %02x (imm: 0x%x)\n",
2195			insn->code, insn->imm);
2196		BUG_ON(1);
2197		return 0;
2198}
2199
2200#define PROG_NAME(stack_size) __bpf_prog_run##stack_size
2201#define DEFINE_BPF_PROG_RUN(stack_size) \
2202static unsigned int PROG_NAME(stack_size)(const void *ctx, const struct bpf_insn *insn) \
2203{ \
2204	u64 stack[stack_size / sizeof(u64)]; \
2205	u64 regs[MAX_BPF_EXT_REG] = {}; \
2206\
2207	FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \
2208	ARG1 = (u64) (unsigned long) ctx; \
2209	return ___bpf_prog_run(regs, insn); \
2210}
2211
2212#define PROG_NAME_ARGS(stack_size) __bpf_prog_run_args##stack_size
2213#define DEFINE_BPF_PROG_RUN_ARGS(stack_size) \
2214static u64 PROG_NAME_ARGS(stack_size)(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5, \
2215				      const struct bpf_insn *insn) \
2216{ \
2217	u64 stack[stack_size / sizeof(u64)]; \
2218	u64 regs[MAX_BPF_EXT_REG]; \
2219\
2220	FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \
2221	BPF_R1 = r1; \
2222	BPF_R2 = r2; \
2223	BPF_R3 = r3; \
2224	BPF_R4 = r4; \
2225	BPF_R5 = r5; \
2226	return ___bpf_prog_run(regs, insn); \
2227}
2228
2229#define EVAL1(FN, X) FN(X)
2230#define EVAL2(FN, X, Y...) FN(X) EVAL1(FN, Y)
2231#define EVAL3(FN, X, Y...) FN(X) EVAL2(FN, Y)
2232#define EVAL4(FN, X, Y...) FN(X) EVAL3(FN, Y)
2233#define EVAL5(FN, X, Y...) FN(X) EVAL4(FN, Y)
2234#define EVAL6(FN, X, Y...) FN(X) EVAL5(FN, Y)
2235
2236EVAL6(DEFINE_BPF_PROG_RUN, 32, 64, 96, 128, 160, 192);
2237EVAL6(DEFINE_BPF_PROG_RUN, 224, 256, 288, 320, 352, 384);
2238EVAL4(DEFINE_BPF_PROG_RUN, 416, 448, 480, 512);
2239
2240EVAL6(DEFINE_BPF_PROG_RUN_ARGS, 32, 64, 96, 128, 160, 192);
2241EVAL6(DEFINE_BPF_PROG_RUN_ARGS, 224, 256, 288, 320, 352, 384);
2242EVAL4(DEFINE_BPF_PROG_RUN_ARGS, 416, 448, 480, 512);
2243
2244#define PROG_NAME_LIST(stack_size) PROG_NAME(stack_size),
2245
2246static unsigned int (*interpreters[])(const void *ctx,
2247				      const struct bpf_insn *insn) = {
2248EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192)
2249EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384)
2250EVAL4(PROG_NAME_LIST, 416, 448, 480, 512)
2251};
2252#undef PROG_NAME_LIST
2253#define PROG_NAME_LIST(stack_size) PROG_NAME_ARGS(stack_size),
2254static __maybe_unused
2255u64 (*interpreters_args[])(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5,
2256			   const struct bpf_insn *insn) = {
2257EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192)
2258EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384)
2259EVAL4(PROG_NAME_LIST, 416, 448, 480, 512)
2260};
2261#undef PROG_NAME_LIST
2262
2263#ifdef CONFIG_BPF_SYSCALL
2264void bpf_patch_call_args(struct bpf_insn *insn, u32 stack_depth)
2265{
2266	stack_depth = max_t(u32, stack_depth, 1);
2267	insn->off = (s16) insn->imm;
2268	insn->imm = interpreters_args[(round_up(stack_depth, 32) / 32) - 1] -
2269		__bpf_call_base_args;
2270	insn->code = BPF_JMP | BPF_CALL_ARGS;
2271}
2272#endif
2273#else
2274static unsigned int __bpf_prog_ret0_warn(const void *ctx,
2275					 const struct bpf_insn *insn)
2276{
2277	/* If this handler ever gets executed, then BPF_JIT_ALWAYS_ON
2278	 * is not working properly, so warn about it!
2279	 */
2280	WARN_ON_ONCE(1);
2281	return 0;
2282}
2283#endif
2284
2285bool bpf_prog_map_compatible(struct bpf_map *map,
2286			     const struct bpf_prog *fp)
2287{
2288	enum bpf_prog_type prog_type = resolve_prog_type(fp);
2289	bool ret;
2290
2291	if (fp->kprobe_override)
2292		return false;
2293
2294	/* XDP programs inserted into maps are not guaranteed to run on
2295	 * a particular netdev (and can run outside driver context entirely
2296	 * in the case of devmap and cpumap). Until device checks
2297	 * are implemented, prohibit adding dev-bound programs to program maps.
2298	 */
2299	if (bpf_prog_is_dev_bound(fp->aux))
2300		return false;
2301
2302	spin_lock(&map->owner.lock);
2303	if (!map->owner.type) {
2304		/* There's no owner yet where we could check for
2305		 * compatibility.
2306		 */
2307		map->owner.type  = prog_type;
2308		map->owner.jited = fp->jited;
2309		map->owner.xdp_has_frags = fp->aux->xdp_has_frags;
2310		ret = true;
2311	} else {
2312		ret = map->owner.type  == prog_type &&
2313		      map->owner.jited == fp->jited &&
2314		      map->owner.xdp_has_frags == fp->aux->xdp_has_frags;
2315	}
2316	spin_unlock(&map->owner.lock);
2317
2318	return ret;
2319}
2320
2321static int bpf_check_tail_call(const struct bpf_prog *fp)
2322{
2323	struct bpf_prog_aux *aux = fp->aux;
2324	int i, ret = 0;
2325
2326	mutex_lock(&aux->used_maps_mutex);
2327	for (i = 0; i < aux->used_map_cnt; i++) {
2328		struct bpf_map *map = aux->used_maps[i];
2329
2330		if (!map_type_contains_progs(map))
2331			continue;
2332
2333		if (!bpf_prog_map_compatible(map, fp)) {
2334			ret = -EINVAL;
2335			goto out;
2336		}
2337	}
2338
2339out:
2340	mutex_unlock(&aux->used_maps_mutex);
2341	return ret;
2342}
2343
2344static void bpf_prog_select_func(struct bpf_prog *fp)
2345{
2346#ifndef CONFIG_BPF_JIT_ALWAYS_ON
2347	u32 stack_depth = max_t(u32, fp->aux->stack_depth, 1);
2348
2349	fp->bpf_func = interpreters[(round_up(stack_depth, 32) / 32) - 1];
2350#else
2351	fp->bpf_func = __bpf_prog_ret0_warn;
2352#endif
2353}
2354
2355/**
2356 *	bpf_prog_select_runtime - select exec runtime for BPF program
2357 *	@fp: bpf_prog populated with BPF program
2358 *	@err: pointer to error variable
2359 *
2360 * Try to JIT eBPF program, if JIT is not available, use interpreter.
2361 * The BPF program will be executed via bpf_prog_run() function.
2362 *
2363 * Return: the &fp argument along with &err set to 0 for success or
2364 * a negative errno code on failure
2365 */
2366struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err)
2367{
2368	/* In case of BPF to BPF calls, verifier did all the prep
2369	 * work with regards to JITing, etc.
2370	 */
2371	bool jit_needed = false;
2372
2373	if (fp->bpf_func)
2374		goto finalize;
2375
2376	if (IS_ENABLED(CONFIG_BPF_JIT_ALWAYS_ON) ||
2377	    bpf_prog_has_kfunc_call(fp))
2378		jit_needed = true;
2379
2380	bpf_prog_select_func(fp);
2381
2382	/* eBPF JITs can rewrite the program in case constant
2383	 * blinding is active. However, in case of error during
2384	 * blinding, bpf_int_jit_compile() must always return a
2385	 * valid program, which in this case would simply not
2386	 * be JITed, but falls back to the interpreter.
2387	 */
2388	if (!bpf_prog_is_offloaded(fp->aux)) {
2389		*err = bpf_prog_alloc_jited_linfo(fp);
2390		if (*err)
2391			return fp;
2392
2393		fp = bpf_int_jit_compile(fp);
2394		bpf_prog_jit_attempt_done(fp);
2395		if (!fp->jited && jit_needed) {
2396			*err = -ENOTSUPP;
2397			return fp;
2398		}
2399	} else {
2400		*err = bpf_prog_offload_compile(fp);
2401		if (*err)
2402			return fp;
2403	}
2404
2405finalize:
2406	bpf_prog_lock_ro(fp);
2407
2408	/* The tail call compatibility check can only be done at
2409	 * this late stage as we need to determine, if we deal
2410	 * with JITed or non JITed program concatenations and not
2411	 * all eBPF JITs might immediately support all features.
2412	 */
2413	*err = bpf_check_tail_call(fp);
2414
2415	return fp;
2416}
2417EXPORT_SYMBOL_GPL(bpf_prog_select_runtime);
2418
2419static unsigned int __bpf_prog_ret1(const void *ctx,
2420				    const struct bpf_insn *insn)
2421{
2422	return 1;
2423}
2424
2425static struct bpf_prog_dummy {
2426	struct bpf_prog prog;
2427} dummy_bpf_prog = {
2428	.prog = {
2429		.bpf_func = __bpf_prog_ret1,
2430	},
2431};
2432
2433struct bpf_empty_prog_array bpf_empty_prog_array = {
2434	.null_prog = NULL,
2435};
2436EXPORT_SYMBOL(bpf_empty_prog_array);
2437
2438struct bpf_prog_array *bpf_prog_array_alloc(u32 prog_cnt, gfp_t flags)
2439{
2440	if (prog_cnt)
2441		return kzalloc(sizeof(struct bpf_prog_array) +
2442			       sizeof(struct bpf_prog_array_item) *
2443			       (prog_cnt + 1),
2444			       flags);
2445
2446	return &bpf_empty_prog_array.hdr;
2447}
2448
2449void bpf_prog_array_free(struct bpf_prog_array *progs)
2450{
2451	if (!progs || progs == &bpf_empty_prog_array.hdr)
2452		return;
2453	kfree_rcu(progs, rcu);
2454}
2455
2456static void __bpf_prog_array_free_sleepable_cb(struct rcu_head *rcu)
2457{
2458	struct bpf_prog_array *progs;
2459
2460	/* If RCU Tasks Trace grace period implies RCU grace period, there is
2461	 * no need to call kfree_rcu(), just call kfree() directly.
2462	 */
2463	progs = container_of(rcu, struct bpf_prog_array, rcu);
2464	if (rcu_trace_implies_rcu_gp())
2465		kfree(progs);
2466	else
2467		kfree_rcu(progs, rcu);
2468}
2469
2470void bpf_prog_array_free_sleepable(struct bpf_prog_array *progs)
2471{
2472	if (!progs || progs == &bpf_empty_prog_array.hdr)
2473		return;
2474	call_rcu_tasks_trace(&progs->rcu, __bpf_prog_array_free_sleepable_cb);
2475}
2476
2477int bpf_prog_array_length(struct bpf_prog_array *array)
2478{
2479	struct bpf_prog_array_item *item;
2480	u32 cnt = 0;
2481
2482	for (item = array->items; item->prog; item++)
2483		if (item->prog != &dummy_bpf_prog.prog)
2484			cnt++;
2485	return cnt;
2486}
2487
2488bool bpf_prog_array_is_empty(struct bpf_prog_array *array)
2489{
2490	struct bpf_prog_array_item *item;
2491
2492	for (item = array->items; item->prog; item++)
2493		if (item->prog != &dummy_bpf_prog.prog)
2494			return false;
2495	return true;
2496}
2497
2498static bool bpf_prog_array_copy_core(struct bpf_prog_array *array,
2499				     u32 *prog_ids,
2500				     u32 request_cnt)
2501{
2502	struct bpf_prog_array_item *item;
2503	int i = 0;
2504
2505	for (item = array->items; item->prog; item++) {
2506		if (item->prog == &dummy_bpf_prog.prog)
2507			continue;
2508		prog_ids[i] = item->prog->aux->id;
2509		if (++i == request_cnt) {
2510			item++;
2511			break;
2512		}
2513	}
2514
2515	return !!(item->prog);
2516}
2517
2518int bpf_prog_array_copy_to_user(struct bpf_prog_array *array,
2519				__u32 __user *prog_ids, u32 cnt)
2520{
2521	unsigned long err = 0;
2522	bool nospc;
2523	u32 *ids;
2524
2525	/* users of this function are doing:
2526	 * cnt = bpf_prog_array_length();
2527	 * if (cnt > 0)
2528	 *     bpf_prog_array_copy_to_user(..., cnt);
2529	 * so below kcalloc doesn't need extra cnt > 0 check.
2530	 */
2531	ids = kcalloc(cnt, sizeof(u32), GFP_USER | __GFP_NOWARN);
2532	if (!ids)
2533		return -ENOMEM;
2534	nospc = bpf_prog_array_copy_core(array, ids, cnt);
2535	err = copy_to_user(prog_ids, ids, cnt * sizeof(u32));
2536	kfree(ids);
2537	if (err)
2538		return -EFAULT;
2539	if (nospc)
2540		return -ENOSPC;
2541	return 0;
2542}
2543
2544void bpf_prog_array_delete_safe(struct bpf_prog_array *array,
2545				struct bpf_prog *old_prog)
2546{
2547	struct bpf_prog_array_item *item;
2548
2549	for (item = array->items; item->prog; item++)
2550		if (item->prog == old_prog) {
2551			WRITE_ONCE(item->prog, &dummy_bpf_prog.prog);
2552			break;
2553		}
2554}
2555
2556/**
2557 * bpf_prog_array_delete_safe_at() - Replaces the program at the given
2558 *                                   index into the program array with
2559 *                                   a dummy no-op program.
2560 * @array: a bpf_prog_array
2561 * @index: the index of the program to replace
2562 *
2563 * Skips over dummy programs, by not counting them, when calculating
2564 * the position of the program to replace.
2565 *
2566 * Return:
2567 * * 0		- Success
2568 * * -EINVAL	- Invalid index value. Must be a non-negative integer.
2569 * * -ENOENT	- Index out of range
2570 */
2571int bpf_prog_array_delete_safe_at(struct bpf_prog_array *array, int index)
2572{
2573	return bpf_prog_array_update_at(array, index, &dummy_bpf_prog.prog);
2574}
2575
2576/**
2577 * bpf_prog_array_update_at() - Updates the program at the given index
2578 *                              into the program array.
2579 * @array: a bpf_prog_array
2580 * @index: the index of the program to update
2581 * @prog: the program to insert into the array
2582 *
2583 * Skips over dummy programs, by not counting them, when calculating
2584 * the position of the program to update.
2585 *
2586 * Return:
2587 * * 0		- Success
2588 * * -EINVAL	- Invalid index value. Must be a non-negative integer.
2589 * * -ENOENT	- Index out of range
2590 */
2591int bpf_prog_array_update_at(struct bpf_prog_array *array, int index,
2592			     struct bpf_prog *prog)
2593{
2594	struct bpf_prog_array_item *item;
2595
2596	if (unlikely(index < 0))
2597		return -EINVAL;
2598
2599	for (item = array->items; item->prog; item++) {
2600		if (item->prog == &dummy_bpf_prog.prog)
2601			continue;
2602		if (!index) {
2603			WRITE_ONCE(item->prog, prog);
2604			return 0;
2605		}
2606		index--;
2607	}
2608	return -ENOENT;
2609}
2610
2611int bpf_prog_array_copy(struct bpf_prog_array *old_array,
2612			struct bpf_prog *exclude_prog,
2613			struct bpf_prog *include_prog,
2614			u64 bpf_cookie,
2615			struct bpf_prog_array **new_array)
2616{
2617	int new_prog_cnt, carry_prog_cnt = 0;
2618	struct bpf_prog_array_item *existing, *new;
2619	struct bpf_prog_array *array;
2620	bool found_exclude = false;
2621
2622	/* Figure out how many existing progs we need to carry over to
2623	 * the new array.
2624	 */
2625	if (old_array) {
2626		existing = old_array->items;
2627		for (; existing->prog; existing++) {
2628			if (existing->prog == exclude_prog) {
2629				found_exclude = true;
2630				continue;
2631			}
2632			if (existing->prog != &dummy_bpf_prog.prog)
2633				carry_prog_cnt++;
2634			if (existing->prog == include_prog)
2635				return -EEXIST;
2636		}
2637	}
2638
2639	if (exclude_prog && !found_exclude)
2640		return -ENOENT;
2641
2642	/* How many progs (not NULL) will be in the new array? */
2643	new_prog_cnt = carry_prog_cnt;
2644	if (include_prog)
2645		new_prog_cnt += 1;
2646
2647	/* Do we have any prog (not NULL) in the new array? */
2648	if (!new_prog_cnt) {
2649		*new_array = NULL;
2650		return 0;
2651	}
2652
2653	/* +1 as the end of prog_array is marked with NULL */
2654	array = bpf_prog_array_alloc(new_prog_cnt + 1, GFP_KERNEL);
2655	if (!array)
2656		return -ENOMEM;
2657	new = array->items;
2658
2659	/* Fill in the new prog array */
2660	if (carry_prog_cnt) {
2661		existing = old_array->items;
2662		for (; existing->prog; existing++) {
2663			if (existing->prog == exclude_prog ||
2664			    existing->prog == &dummy_bpf_prog.prog)
2665				continue;
2666
2667			new->prog = existing->prog;
2668			new->bpf_cookie = existing->bpf_cookie;
2669			new++;
2670		}
2671	}
2672	if (include_prog) {
2673		new->prog = include_prog;
2674		new->bpf_cookie = bpf_cookie;
2675		new++;
2676	}
2677	new->prog = NULL;
2678	*new_array = array;
2679	return 0;
2680}
2681
2682int bpf_prog_array_copy_info(struct bpf_prog_array *array,
2683			     u32 *prog_ids, u32 request_cnt,
2684			     u32 *prog_cnt)
2685{
2686	u32 cnt = 0;
2687
2688	if (array)
2689		cnt = bpf_prog_array_length(array);
2690
2691	*prog_cnt = cnt;
2692
2693	/* return early if user requested only program count or nothing to copy */
2694	if (!request_cnt || !cnt)
2695		return 0;
2696
2697	/* this function is called under trace/bpf_trace.c: bpf_event_mutex */
2698	return bpf_prog_array_copy_core(array, prog_ids, request_cnt) ? -ENOSPC
2699								     : 0;
2700}
2701
2702void __bpf_free_used_maps(struct bpf_prog_aux *aux,
2703			  struct bpf_map **used_maps, u32 len)
2704{
2705	struct bpf_map *map;
2706	bool sleepable;
2707	u32 i;
2708
2709	sleepable = aux->prog->sleepable;
2710	for (i = 0; i < len; i++) {
2711		map = used_maps[i];
2712		if (map->ops->map_poke_untrack)
2713			map->ops->map_poke_untrack(map, aux);
2714		if (sleepable)
2715			atomic64_dec(&map->sleepable_refcnt);
2716		bpf_map_put(map);
2717	}
2718}
2719
2720static void bpf_free_used_maps(struct bpf_prog_aux *aux)
2721{
2722	__bpf_free_used_maps(aux, aux->used_maps, aux->used_map_cnt);
2723	kfree(aux->used_maps);
2724}
2725
2726void __bpf_free_used_btfs(struct bpf_prog_aux *aux,
2727			  struct btf_mod_pair *used_btfs, u32 len)
2728{
2729#ifdef CONFIG_BPF_SYSCALL
2730	struct btf_mod_pair *btf_mod;
2731	u32 i;
2732
2733	for (i = 0; i < len; i++) {
2734		btf_mod = &used_btfs[i];
2735		if (btf_mod->module)
2736			module_put(btf_mod->module);
2737		btf_put(btf_mod->btf);
2738	}
2739#endif
2740}
2741
2742static void bpf_free_used_btfs(struct bpf_prog_aux *aux)
2743{
2744	__bpf_free_used_btfs(aux, aux->used_btfs, aux->used_btf_cnt);
2745	kfree(aux->used_btfs);
2746}
2747
2748static void bpf_prog_free_deferred(struct work_struct *work)
2749{
2750	struct bpf_prog_aux *aux;
2751	int i;
2752
2753	aux = container_of(work, struct bpf_prog_aux, work);
2754#ifdef CONFIG_BPF_SYSCALL
2755	bpf_free_kfunc_btf_tab(aux->kfunc_btf_tab);
2756#endif
2757#ifdef CONFIG_CGROUP_BPF
2758	if (aux->cgroup_atype != CGROUP_BPF_ATTACH_TYPE_INVALID)
2759		bpf_cgroup_atype_put(aux->cgroup_atype);
2760#endif
2761	bpf_free_used_maps(aux);
2762	bpf_free_used_btfs(aux);
2763	if (bpf_prog_is_dev_bound(aux))
2764		bpf_prog_dev_bound_destroy(aux->prog);
2765#ifdef CONFIG_PERF_EVENTS
2766	if (aux->prog->has_callchain_buf)
2767		put_callchain_buffers();
2768#endif
2769	if (aux->dst_trampoline)
2770		bpf_trampoline_put(aux->dst_trampoline);
2771	for (i = 0; i < aux->real_func_cnt; i++) {
2772		/* We can just unlink the subprog poke descriptor table as
2773		 * it was originally linked to the main program and is also
2774		 * released along with it.
2775		 */
2776		aux->func[i]->aux->poke_tab = NULL;
2777		bpf_jit_free(aux->func[i]);
2778	}
2779	if (aux->real_func_cnt) {
2780		kfree(aux->func);
2781		bpf_prog_unlock_free(aux->prog);
2782	} else {
2783		bpf_jit_free(aux->prog);
2784	}
2785}
2786
2787void bpf_prog_free(struct bpf_prog *fp)
2788{
2789	struct bpf_prog_aux *aux = fp->aux;
2790
2791	if (aux->dst_prog)
2792		bpf_prog_put(aux->dst_prog);
2793	bpf_token_put(aux->token);
2794	INIT_WORK(&aux->work, bpf_prog_free_deferred);
2795	schedule_work(&aux->work);
2796}
2797EXPORT_SYMBOL_GPL(bpf_prog_free);
2798
2799/* RNG for unpriviledged user space with separated state from prandom_u32(). */
2800static DEFINE_PER_CPU(struct rnd_state, bpf_user_rnd_state);
2801
2802void bpf_user_rnd_init_once(void)
2803{
2804	prandom_init_once(&bpf_user_rnd_state);
2805}
2806
2807BPF_CALL_0(bpf_user_rnd_u32)
2808{
2809	/* Should someone ever have the rather unwise idea to use some
2810	 * of the registers passed into this function, then note that
2811	 * this function is called from native eBPF and classic-to-eBPF
2812	 * transformations. Register assignments from both sides are
2813	 * different, f.e. classic always sets fn(ctx, A, X) here.
2814	 */
2815	struct rnd_state *state;
2816	u32 res;
2817
2818	state = &get_cpu_var(bpf_user_rnd_state);
2819	res = prandom_u32_state(state);
2820	put_cpu_var(bpf_user_rnd_state);
2821
2822	return res;
2823}
2824
2825BPF_CALL_0(bpf_get_raw_cpu_id)
2826{
2827	return raw_smp_processor_id();
2828}
2829
2830/* Weak definitions of helper functions in case we don't have bpf syscall. */
2831const struct bpf_func_proto bpf_map_lookup_elem_proto __weak;
2832const struct bpf_func_proto bpf_map_update_elem_proto __weak;
2833const struct bpf_func_proto bpf_map_delete_elem_proto __weak;
2834const struct bpf_func_proto bpf_map_push_elem_proto __weak;
2835const struct bpf_func_proto bpf_map_pop_elem_proto __weak;
2836const struct bpf_func_proto bpf_map_peek_elem_proto __weak;
2837const struct bpf_func_proto bpf_map_lookup_percpu_elem_proto __weak;
2838const struct bpf_func_proto bpf_spin_lock_proto __weak;
2839const struct bpf_func_proto bpf_spin_unlock_proto __weak;
2840const struct bpf_func_proto bpf_jiffies64_proto __weak;
2841
2842const struct bpf_func_proto bpf_get_prandom_u32_proto __weak;
2843const struct bpf_func_proto bpf_get_smp_processor_id_proto __weak;
2844const struct bpf_func_proto bpf_get_numa_node_id_proto __weak;
2845const struct bpf_func_proto bpf_ktime_get_ns_proto __weak;
2846const struct bpf_func_proto bpf_ktime_get_boot_ns_proto __weak;
2847const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto __weak;
2848const struct bpf_func_proto bpf_ktime_get_tai_ns_proto __weak;
2849
2850const struct bpf_func_proto bpf_get_current_pid_tgid_proto __weak;
2851const struct bpf_func_proto bpf_get_current_uid_gid_proto __weak;
2852const struct bpf_func_proto bpf_get_current_comm_proto __weak;
2853const struct bpf_func_proto bpf_get_current_cgroup_id_proto __weak;
2854const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto __weak;
2855const struct bpf_func_proto bpf_get_local_storage_proto __weak;
2856const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto __weak;
2857const struct bpf_func_proto bpf_snprintf_btf_proto __weak;
2858const struct bpf_func_proto bpf_seq_printf_btf_proto __weak;
2859const struct bpf_func_proto bpf_set_retval_proto __weak;
2860const struct bpf_func_proto bpf_get_retval_proto __weak;
2861
2862const struct bpf_func_proto * __weak bpf_get_trace_printk_proto(void)
2863{
2864	return NULL;
2865}
2866
2867const struct bpf_func_proto * __weak bpf_get_trace_vprintk_proto(void)
2868{
2869	return NULL;
2870}
2871
2872u64 __weak
2873bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
2874		 void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy)
2875{
2876	return -ENOTSUPP;
2877}
2878EXPORT_SYMBOL_GPL(bpf_event_output);
2879
2880/* Always built-in helper functions. */
2881const struct bpf_func_proto bpf_tail_call_proto = {
2882	.func		= NULL,
2883	.gpl_only	= false,
2884	.ret_type	= RET_VOID,
2885	.arg1_type	= ARG_PTR_TO_CTX,
2886	.arg2_type	= ARG_CONST_MAP_PTR,
2887	.arg3_type	= ARG_ANYTHING,
2888};
2889
2890/* Stub for JITs that only support cBPF. eBPF programs are interpreted.
2891 * It is encouraged to implement bpf_int_jit_compile() instead, so that
2892 * eBPF and implicitly also cBPF can get JITed!
2893 */
2894struct bpf_prog * __weak bpf_int_jit_compile(struct bpf_prog *prog)
2895{
2896	return prog;
2897}
2898
2899/* Stub for JITs that support eBPF. All cBPF code gets transformed into
2900 * eBPF by the kernel and is later compiled by bpf_int_jit_compile().
2901 */
2902void __weak bpf_jit_compile(struct bpf_prog *prog)
2903{
2904}
2905
2906bool __weak bpf_helper_changes_pkt_data(void *func)
2907{
2908	return false;
2909}
2910
2911/* Return TRUE if the JIT backend wants verifier to enable sub-register usage
2912 * analysis code and wants explicit zero extension inserted by verifier.
2913 * Otherwise, return FALSE.
2914 *
2915 * The verifier inserts an explicit zero extension after BPF_CMPXCHGs even if
2916 * you don't override this. JITs that don't want these extra insns can detect
2917 * them using insn_is_zext.
2918 */
2919bool __weak bpf_jit_needs_zext(void)
2920{
2921	return false;
2922}
2923
2924/* Return TRUE if the JIT backend supports mixing bpf2bpf and tailcalls. */
2925bool __weak bpf_jit_supports_subprog_tailcalls(void)
2926{
2927	return false;
2928}
2929
2930bool __weak bpf_jit_supports_kfunc_call(void)
2931{
2932	return false;
2933}
2934
2935bool __weak bpf_jit_supports_far_kfunc_call(void)
2936{
2937	return false;
2938}
2939
2940bool __weak bpf_jit_supports_arena(void)
2941{
2942	return false;
2943}
2944
2945u64 __weak bpf_arch_uaddress_limit(void)
2946{
2947#if defined(CONFIG_64BIT) && defined(CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE)
2948	return TASK_SIZE;
2949#else
2950	return 0;
2951#endif
2952}
2953
2954/* Return TRUE if the JIT backend satisfies the following two conditions:
2955 * 1) JIT backend supports atomic_xchg() on pointer-sized words.
2956 * 2) Under the specific arch, the implementation of xchg() is the same
2957 *    as atomic_xchg() on pointer-sized words.
2958 */
2959bool __weak bpf_jit_supports_ptr_xchg(void)
2960{
2961	return false;
2962}
2963
2964/* To execute LD_ABS/LD_IND instructions __bpf_prog_run() may call
2965 * skb_copy_bits(), so provide a weak definition of it for NET-less config.
2966 */
2967int __weak skb_copy_bits(const struct sk_buff *skb, int offset, void *to,
2968			 int len)
2969{
2970	return -EFAULT;
2971}
2972
2973int __weak bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
2974			      void *addr1, void *addr2)
2975{
2976	return -ENOTSUPP;
2977}
2978
2979void * __weak bpf_arch_text_copy(void *dst, void *src, size_t len)
2980{
2981	return ERR_PTR(-ENOTSUPP);
2982}
2983
2984int __weak bpf_arch_text_invalidate(void *dst, size_t len)
2985{
2986	return -ENOTSUPP;
2987}
2988
2989bool __weak bpf_jit_supports_exceptions(void)
2990{
2991	return false;
2992}
2993
2994void __weak arch_bpf_stack_walk(bool (*consume_fn)(void *cookie, u64 ip, u64 sp, u64 bp), void *cookie)
2995{
2996}
2997
2998/* for configs without MMU or 32-bit */
2999__weak const struct bpf_map_ops arena_map_ops;
3000__weak u64 bpf_arena_get_user_vm_start(struct bpf_arena *arena)
3001{
3002	return 0;
3003}
3004__weak u64 bpf_arena_get_kern_vm_start(struct bpf_arena *arena)
3005{
3006	return 0;
3007}
3008
3009#ifdef CONFIG_BPF_SYSCALL
3010static int __init bpf_global_ma_init(void)
3011{
3012	int ret;
3013
3014	ret = bpf_mem_alloc_init(&bpf_global_ma, 0, false);
3015	bpf_global_ma_set = !ret;
3016	return ret;
3017}
3018late_initcall(bpf_global_ma_init);
3019#endif
3020
3021DEFINE_STATIC_KEY_FALSE(bpf_stats_enabled_key);
3022EXPORT_SYMBOL(bpf_stats_enabled_key);
3023
3024/* All definitions of tracepoints related to BPF. */
3025#define CREATE_TRACE_POINTS
3026#include <linux/bpf_trace.h>
3027
3028EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_exception);
3029EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_bulk_tx);