Linux Audio

Check our new training course

Loading...
v3.15
  1/*
  2 * kernel/stop_machine.c
  3 *
  4 * Copyright (C) 2008, 2005	IBM Corporation.
  5 * Copyright (C) 2008, 2005	Rusty Russell rusty@rustcorp.com.au
  6 * Copyright (C) 2010		SUSE Linux Products GmbH
  7 * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
  8 *
  9 * This file is released under the GPLv2 and any later version.
 10 */
 11#include <linux/completion.h>
 12#include <linux/cpu.h>
 13#include <linux/init.h>
 14#include <linux/kthread.h>
 15#include <linux/export.h>
 16#include <linux/percpu.h>
 17#include <linux/sched.h>
 18#include <linux/stop_machine.h>
 19#include <linux/interrupt.h>
 20#include <linux/kallsyms.h>
 21#include <linux/smpboot.h>
 22#include <linux/atomic.h>
 23#include <linux/lglock.h>
 
 24
 25/*
 26 * Structure to determine completion condition and record errors.  May
 27 * be shared by works on different cpus.
 28 */
 29struct cpu_stop_done {
 30	atomic_t		nr_todo;	/* nr left to execute */
 31	bool			executed;	/* actually executed? */
 32	int			ret;		/* collected return value */
 33	struct completion	completion;	/* fired if nr_todo reaches 0 */
 34};
 35
 36/* the actual stopper, one per every possible cpu, enabled on online cpus */
 37struct cpu_stopper {
 
 
 38	spinlock_t		lock;
 39	bool			enabled;	/* is this stopper enabled? */
 40	struct list_head	works;		/* list of pending works */
 
 
 41};
 42
 43static DEFINE_PER_CPU(struct cpu_stopper, cpu_stopper);
 44static DEFINE_PER_CPU(struct task_struct *, cpu_stopper_task);
 45static bool stop_machine_initialized = false;
 46
 47/*
 48 * Avoids a race between stop_two_cpus and global stop_cpus, where
 49 * the stoppers could get queued up in reverse order, leading to
 50 * system deadlock. Using an lglock means stop_two_cpus remains
 51 * relatively cheap.
 52 */
 53DEFINE_STATIC_LGLOCK(stop_cpus_lock);
 54
 55static void cpu_stop_init_done(struct cpu_stop_done *done, unsigned int nr_todo)
 56{
 57	memset(done, 0, sizeof(*done));
 58	atomic_set(&done->nr_todo, nr_todo);
 59	init_completion(&done->completion);
 60}
 61
 62/* signal completion unless @done is NULL */
 63static void cpu_stop_signal_done(struct cpu_stop_done *done, bool executed)
 64{
 65	if (done) {
 66		if (executed)
 67			done->executed = true;
 68		if (atomic_dec_and_test(&done->nr_todo))
 69			complete(&done->completion);
 70	}
 
 
 
 
 71}
 72
 73/* queue @work to @stopper.  if offline, @work is completed immediately */
 74static void cpu_stop_queue_work(unsigned int cpu, struct cpu_stop_work *work)
 75{
 76	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
 77	struct task_struct *p = per_cpu(cpu_stopper_task, cpu);
 78
 79	unsigned long flags;
 
 80
 81	spin_lock_irqsave(&stopper->lock, flags);
 
 
 
 
 
 
 82
 83	if (stopper->enabled) {
 84		list_add_tail(&work->list, &stopper->works);
 85		wake_up_process(p);
 86	} else
 87		cpu_stop_signal_done(work->done, false);
 88
 89	spin_unlock_irqrestore(&stopper->lock, flags);
 90}
 91
 92/**
 93 * stop_one_cpu - stop a cpu
 94 * @cpu: cpu to stop
 95 * @fn: function to execute
 96 * @arg: argument to @fn
 97 *
 98 * Execute @fn(@arg) on @cpu.  @fn is run in a process context with
 99 * the highest priority preempting any task on the cpu and
100 * monopolizing it.  This function returns after the execution is
101 * complete.
102 *
103 * This function doesn't guarantee @cpu stays online till @fn
104 * completes.  If @cpu goes down in the middle, execution may happen
105 * partially or fully on different cpus.  @fn should either be ready
106 * for that or the caller should ensure that @cpu stays online until
107 * this function completes.
108 *
109 * CONTEXT:
110 * Might sleep.
111 *
112 * RETURNS:
113 * -ENOENT if @fn(@arg) was not executed because @cpu was offline;
114 * otherwise, the return value of @fn.
115 */
116int stop_one_cpu(unsigned int cpu, cpu_stop_fn_t fn, void *arg)
117{
118	struct cpu_stop_done done;
119	struct cpu_stop_work work = { .fn = fn, .arg = arg, .done = &done };
120
121	cpu_stop_init_done(&done, 1);
122	cpu_stop_queue_work(cpu, &work);
 
 
 
 
 
 
123	wait_for_completion(&done.completion);
124	return done.executed ? done.ret : -ENOENT;
125}
126
127/* This controls the threads on each CPU. */
128enum multi_stop_state {
129	/* Dummy starting state for thread. */
130	MULTI_STOP_NONE,
131	/* Awaiting everyone to be scheduled. */
132	MULTI_STOP_PREPARE,
133	/* Disable interrupts. */
134	MULTI_STOP_DISABLE_IRQ,
135	/* Run the function */
136	MULTI_STOP_RUN,
137	/* Exit */
138	MULTI_STOP_EXIT,
139};
140
141struct multi_stop_data {
142	int			(*fn)(void *);
143	void			*data;
144	/* Like num_online_cpus(), but hotplug cpu uses us, so we need this. */
145	unsigned int		num_threads;
146	const struct cpumask	*active_cpus;
147
148	enum multi_stop_state	state;
149	atomic_t		thread_ack;
150};
151
152static void set_state(struct multi_stop_data *msdata,
153		      enum multi_stop_state newstate)
154{
155	/* Reset ack counter. */
156	atomic_set(&msdata->thread_ack, msdata->num_threads);
157	smp_wmb();
158	msdata->state = newstate;
159}
160
161/* Last one to ack a state moves to the next state. */
162static void ack_state(struct multi_stop_data *msdata)
163{
164	if (atomic_dec_and_test(&msdata->thread_ack))
165		set_state(msdata, msdata->state + 1);
166}
167
168/* This is the cpu_stop function which stops the CPU. */
169static int multi_cpu_stop(void *data)
170{
171	struct multi_stop_data *msdata = data;
172	enum multi_stop_state curstate = MULTI_STOP_NONE;
173	int cpu = smp_processor_id(), err = 0;
174	unsigned long flags;
175	bool is_active;
176
177	/*
178	 * When called from stop_machine_from_inactive_cpu(), irq might
179	 * already be disabled.  Save the state and restore it on exit.
180	 */
181	local_save_flags(flags);
182
183	if (!msdata->active_cpus)
184		is_active = cpu == cpumask_first(cpu_online_mask);
185	else
186		is_active = cpumask_test_cpu(cpu, msdata->active_cpus);
187
188	/* Simple state machine */
189	do {
190		/* Chill out and ensure we re-read multi_stop_state. */
191		cpu_relax();
192		if (msdata->state != curstate) {
193			curstate = msdata->state;
194			switch (curstate) {
195			case MULTI_STOP_DISABLE_IRQ:
196				local_irq_disable();
197				hard_irq_disable();
198				break;
199			case MULTI_STOP_RUN:
200				if (is_active)
201					err = msdata->fn(msdata->data);
202				break;
203			default:
204				break;
205			}
206			ack_state(msdata);
 
 
 
 
 
 
 
207		}
208	} while (curstate != MULTI_STOP_EXIT);
209
210	local_irq_restore(flags);
211	return err;
212}
213
214struct irq_cpu_stop_queue_work_info {
215	int cpu1;
216	int cpu2;
217	struct cpu_stop_work *work1;
218	struct cpu_stop_work *work2;
219};
220
221/*
222 * This function is always run with irqs and preemption disabled.
223 * This guarantees that both work1 and work2 get queued, before
224 * our local migrate thread gets the chance to preempt us.
225 */
226static void irq_cpu_stop_queue_work(void *arg)
227{
228	struct irq_cpu_stop_queue_work_info *info = arg;
229	cpu_stop_queue_work(info->cpu1, info->work1);
230	cpu_stop_queue_work(info->cpu2, info->work2);
231}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
232
 
 
 
 
233/**
234 * stop_two_cpus - stops two cpus
235 * @cpu1: the cpu to stop
236 * @cpu2: the other cpu to stop
237 * @fn: function to execute
238 * @arg: argument to @fn
239 *
240 * Stops both the current and specified CPU and runs @fn on one of them.
241 *
242 * returns when both are completed.
243 */
244int stop_two_cpus(unsigned int cpu1, unsigned int cpu2, cpu_stop_fn_t fn, void *arg)
245{
246	struct cpu_stop_done done;
247	struct cpu_stop_work work1, work2;
248	struct irq_cpu_stop_queue_work_info call_args;
249	struct multi_stop_data msdata;
250
251	preempt_disable();
252	msdata = (struct multi_stop_data){
253		.fn = fn,
254		.data = arg,
255		.num_threads = 2,
256		.active_cpus = cpumask_of(cpu1),
257	};
258
259	work1 = work2 = (struct cpu_stop_work){
260		.fn = multi_cpu_stop,
261		.arg = &msdata,
262		.done = &done
263	};
264
265	call_args = (struct irq_cpu_stop_queue_work_info){
266		.cpu1 = cpu1,
267		.cpu2 = cpu2,
268		.work1 = &work1,
269		.work2 = &work2,
270	};
271
272	cpu_stop_init_done(&done, 2);
273	set_state(&msdata, MULTI_STOP_PREPARE);
274
275	/*
276	 * If we observe both CPUs active we know _cpu_down() cannot yet have
277	 * queued its stop_machine works and therefore ours will get executed
278	 * first. Or its not either one of our CPUs that's getting unplugged,
279	 * in which case we don't care.
280	 *
281	 * This relies on the stopper workqueues to be FIFO.
282	 */
283	if (!cpu_active(cpu1) || !cpu_active(cpu2)) {
284		preempt_enable();
285		return -ENOENT;
286	}
287
288	lg_local_lock(&stop_cpus_lock);
289	/*
290	 * Queuing needs to be done by the lowest numbered CPU, to ensure
291	 * that works are always queued in the same order on every CPU.
292	 * This prevents deadlocks.
293	 */
294	smp_call_function_single(min(cpu1, cpu2),
295				 &irq_cpu_stop_queue_work,
296				 &call_args, 1);
297	lg_local_unlock(&stop_cpus_lock);
298	preempt_enable();
299
300	wait_for_completion(&done.completion);
301
302	return done.executed ? done.ret : -ENOENT;
303}
304
305/**
306 * stop_one_cpu_nowait - stop a cpu but don't wait for completion
307 * @cpu: cpu to stop
308 * @fn: function to execute
309 * @arg: argument to @fn
 
310 *
311 * Similar to stop_one_cpu() but doesn't wait for completion.  The
312 * caller is responsible for ensuring @work_buf is currently unused
313 * and will remain untouched until stopper starts executing @fn.
314 *
315 * CONTEXT:
316 * Don't care.
 
 
 
 
317 */
318void stop_one_cpu_nowait(unsigned int cpu, cpu_stop_fn_t fn, void *arg,
319			struct cpu_stop_work *work_buf)
320{
321	*work_buf = (struct cpu_stop_work){ .fn = fn, .arg = arg, };
322	cpu_stop_queue_work(cpu, work_buf);
323}
324
325/* static data for stop_cpus */
326static DEFINE_MUTEX(stop_cpus_mutex);
327static DEFINE_PER_CPU(struct cpu_stop_work, stop_cpus_work);
328
329static void queue_stop_cpus_work(const struct cpumask *cpumask,
330				 cpu_stop_fn_t fn, void *arg,
331				 struct cpu_stop_done *done)
332{
333	struct cpu_stop_work *work;
334	unsigned int cpu;
 
335
336	/* initialize works and done */
 
 
 
 
 
 
337	for_each_cpu(cpu, cpumask) {
338		work = &per_cpu(stop_cpus_work, cpu);
339		work->fn = fn;
340		work->arg = arg;
341		work->done = done;
 
 
342	}
 
 
343
344	/*
345	 * Disable preemption while queueing to avoid getting
346	 * preempted by a stopper which might wait for other stoppers
347	 * to enter @fn which can lead to deadlock.
348	 */
349	lg_global_lock(&stop_cpus_lock);
350	for_each_cpu(cpu, cpumask)
351		cpu_stop_queue_work(cpu, &per_cpu(stop_cpus_work, cpu));
352	lg_global_unlock(&stop_cpus_lock);
353}
354
355static int __stop_cpus(const struct cpumask *cpumask,
356		       cpu_stop_fn_t fn, void *arg)
357{
358	struct cpu_stop_done done;
359
360	cpu_stop_init_done(&done, cpumask_weight(cpumask));
361	queue_stop_cpus_work(cpumask, fn, arg, &done);
 
362	wait_for_completion(&done.completion);
363	return done.executed ? done.ret : -ENOENT;
364}
365
366/**
367 * stop_cpus - stop multiple cpus
368 * @cpumask: cpus to stop
369 * @fn: function to execute
370 * @arg: argument to @fn
371 *
372 * Execute @fn(@arg) on online cpus in @cpumask.  On each target cpu,
373 * @fn is run in a process context with the highest priority
374 * preempting any task on the cpu and monopolizing it.  This function
375 * returns after all executions are complete.
376 *
377 * This function doesn't guarantee the cpus in @cpumask stay online
378 * till @fn completes.  If some cpus go down in the middle, execution
379 * on the cpu may happen partially or fully on different cpus.  @fn
380 * should either be ready for that or the caller should ensure that
381 * the cpus stay online until this function completes.
382 *
383 * All stop_cpus() calls are serialized making it safe for @fn to wait
384 * for all cpus to start executing it.
385 *
386 * CONTEXT:
387 * Might sleep.
388 *
389 * RETURNS:
390 * -ENOENT if @fn(@arg) was not executed at all because all cpus in
391 * @cpumask were offline; otherwise, 0 if all executions of @fn
392 * returned 0, any non zero return value if any returned non zero.
393 */
394int stop_cpus(const struct cpumask *cpumask, cpu_stop_fn_t fn, void *arg)
395{
396	int ret;
397
398	/* static works are used, process one request at a time */
399	mutex_lock(&stop_cpus_mutex);
400	ret = __stop_cpus(cpumask, fn, arg);
401	mutex_unlock(&stop_cpus_mutex);
402	return ret;
403}
404
405/**
406 * try_stop_cpus - try to stop multiple cpus
407 * @cpumask: cpus to stop
408 * @fn: function to execute
409 * @arg: argument to @fn
410 *
411 * Identical to stop_cpus() except that it fails with -EAGAIN if
412 * someone else is already using the facility.
413 *
414 * CONTEXT:
415 * Might sleep.
416 *
417 * RETURNS:
418 * -EAGAIN if someone else is already stopping cpus, -ENOENT if
419 * @fn(@arg) was not executed at all because all cpus in @cpumask were
420 * offline; otherwise, 0 if all executions of @fn returned 0, any non
421 * zero return value if any returned non zero.
422 */
423int try_stop_cpus(const struct cpumask *cpumask, cpu_stop_fn_t fn, void *arg)
424{
425	int ret;
426
427	/* static works are used, process one request at a time */
428	if (!mutex_trylock(&stop_cpus_mutex))
429		return -EAGAIN;
430	ret = __stop_cpus(cpumask, fn, arg);
431	mutex_unlock(&stop_cpus_mutex);
432	return ret;
433}
434
435static int cpu_stop_should_run(unsigned int cpu)
436{
437	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
438	unsigned long flags;
439	int run;
440
441	spin_lock_irqsave(&stopper->lock, flags);
442	run = !list_empty(&stopper->works);
443	spin_unlock_irqrestore(&stopper->lock, flags);
444	return run;
445}
446
447static void cpu_stopper_thread(unsigned int cpu)
448{
449	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
450	struct cpu_stop_work *work;
451	int ret;
452
453repeat:
454	work = NULL;
455	spin_lock_irq(&stopper->lock);
456	if (!list_empty(&stopper->works)) {
457		work = list_first_entry(&stopper->works,
458					struct cpu_stop_work, list);
459		list_del_init(&work->list);
460	}
461	spin_unlock_irq(&stopper->lock);
462
463	if (work) {
464		cpu_stop_fn_t fn = work->fn;
465		void *arg = work->arg;
466		struct cpu_stop_done *done = work->done;
467		char ksym_buf[KSYM_NAME_LEN] __maybe_unused;
468
469		/* cpu stop callbacks are not allowed to sleep */
470		preempt_disable();
471
 
 
472		ret = fn(arg);
473		if (ret)
474			done->ret = ret;
475
476		/* restore preemption and check it's still balanced */
477		preempt_enable();
 
478		WARN_ONCE(preempt_count(),
479			  "cpu_stop: %s(%p) leaked preempt count\n",
480			  kallsyms_lookup((unsigned long)fn, NULL, NULL, NULL,
481					  ksym_buf), arg);
482
483		cpu_stop_signal_done(done, true);
484		goto repeat;
485	}
486}
487
 
 
 
 
 
 
 
 
 
 
 
 
488extern void sched_set_stop_task(int cpu, struct task_struct *stop);
489
490static void cpu_stop_create(unsigned int cpu)
491{
492	sched_set_stop_task(cpu, per_cpu(cpu_stopper_task, cpu));
493}
494
495static void cpu_stop_park(unsigned int cpu)
496{
497	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
498	struct cpu_stop_work *work;
499	unsigned long flags;
500
501	/* drain remaining works */
502	spin_lock_irqsave(&stopper->lock, flags);
503	list_for_each_entry(work, &stopper->works, list)
504		cpu_stop_signal_done(work->done, false);
505	stopper->enabled = false;
506	spin_unlock_irqrestore(&stopper->lock, flags);
507}
508
509static void cpu_stop_unpark(unsigned int cpu)
510{
511	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
512
513	spin_lock_irq(&stopper->lock);
514	stopper->enabled = true;
515	spin_unlock_irq(&stopper->lock);
516}
517
518static struct smp_hotplug_thread cpu_stop_threads = {
519	.store			= &cpu_stopper_task,
520	.thread_should_run	= cpu_stop_should_run,
521	.thread_fn		= cpu_stopper_thread,
522	.thread_comm		= "migration/%u",
523	.create			= cpu_stop_create,
524	.setup			= cpu_stop_unpark,
525	.park			= cpu_stop_park,
526	.pre_unpark		= cpu_stop_unpark,
527	.selfparking		= true,
528};
529
530static int __init cpu_stop_init(void)
531{
532	unsigned int cpu;
533
534	for_each_possible_cpu(cpu) {
535		struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
536
537		spin_lock_init(&stopper->lock);
538		INIT_LIST_HEAD(&stopper->works);
539	}
540
541	BUG_ON(smpboot_register_percpu_thread(&cpu_stop_threads));
 
542	stop_machine_initialized = true;
543	return 0;
544}
545early_initcall(cpu_stop_init);
546
547#ifdef CONFIG_STOP_MACHINE
548
549int __stop_machine(int (*fn)(void *), void *data, const struct cpumask *cpus)
550{
551	struct multi_stop_data msdata = {
552		.fn = fn,
553		.data = data,
554		.num_threads = num_online_cpus(),
555		.active_cpus = cpus,
556	};
557
 
 
558	if (!stop_machine_initialized) {
559		/*
560		 * Handle the case where stop_machine() is called
561		 * early in boot before stop_machine() has been
562		 * initialized.
563		 */
564		unsigned long flags;
565		int ret;
566
567		WARN_ON_ONCE(msdata.num_threads != 1);
568
569		local_irq_save(flags);
570		hard_irq_disable();
571		ret = (*fn)(data);
572		local_irq_restore(flags);
573
574		return ret;
575	}
576
577	/* Set the initial state and stop all online cpus. */
578	set_state(&msdata, MULTI_STOP_PREPARE);
579	return stop_cpus(cpu_online_mask, multi_cpu_stop, &msdata);
580}
581
582int stop_machine(int (*fn)(void *), void *data, const struct cpumask *cpus)
583{
584	int ret;
585
586	/* No CPUs can come up or down during this. */
587	get_online_cpus();
588	ret = __stop_machine(fn, data, cpus);
589	put_online_cpus();
590	return ret;
591}
592EXPORT_SYMBOL_GPL(stop_machine);
593
594/**
595 * stop_machine_from_inactive_cpu - stop_machine() from inactive CPU
596 * @fn: the function to run
597 * @data: the data ptr for the @fn()
598 * @cpus: the cpus to run the @fn() on (NULL = any online cpu)
599 *
600 * This is identical to stop_machine() but can be called from a CPU which
601 * is not active.  The local CPU is in the process of hotplug (so no other
602 * CPU hotplug can start) and not marked active and doesn't have enough
603 * context to sleep.
604 *
605 * This function provides stop_machine() functionality for such state by
606 * using busy-wait for synchronization and executing @fn directly for local
607 * CPU.
608 *
609 * CONTEXT:
610 * Local CPU is inactive.  Temporarily stops all active CPUs.
611 *
612 * RETURNS:
613 * 0 if all executions of @fn returned 0, any non zero return value if any
614 * returned non zero.
615 */
616int stop_machine_from_inactive_cpu(int (*fn)(void *), void *data,
617				  const struct cpumask *cpus)
618{
619	struct multi_stop_data msdata = { .fn = fn, .data = data,
620					    .active_cpus = cpus };
621	struct cpu_stop_done done;
622	int ret;
623
624	/* Local CPU must be inactive and CPU hotplug in progress. */
625	BUG_ON(cpu_active(raw_smp_processor_id()));
626	msdata.num_threads = num_active_cpus() + 1;	/* +1 for local */
627
628	/* No proper task established and can't sleep - busy wait for lock. */
629	while (!mutex_trylock(&stop_cpus_mutex))
630		cpu_relax();
631
632	/* Schedule work on other CPUs and execute directly for local CPU */
633	set_state(&msdata, MULTI_STOP_PREPARE);
634	cpu_stop_init_done(&done, num_active_cpus());
635	queue_stop_cpus_work(cpu_active_mask, multi_cpu_stop, &msdata,
636			     &done);
637	ret = multi_cpu_stop(&msdata);
638
639	/* Busy wait for completion. */
640	while (!completion_done(&done.completion))
641		cpu_relax();
642
643	mutex_unlock(&stop_cpus_mutex);
644	return ret ?: done.ret;
645}
646
647#endif	/* CONFIG_STOP_MACHINE */
v4.17
  1/*
  2 * kernel/stop_machine.c
  3 *
  4 * Copyright (C) 2008, 2005	IBM Corporation.
  5 * Copyright (C) 2008, 2005	Rusty Russell rusty@rustcorp.com.au
  6 * Copyright (C) 2010		SUSE Linux Products GmbH
  7 * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
  8 *
  9 * This file is released under the GPLv2 and any later version.
 10 */
 11#include <linux/completion.h>
 12#include <linux/cpu.h>
 13#include <linux/init.h>
 14#include <linux/kthread.h>
 15#include <linux/export.h>
 16#include <linux/percpu.h>
 17#include <linux/sched.h>
 18#include <linux/stop_machine.h>
 19#include <linux/interrupt.h>
 20#include <linux/kallsyms.h>
 21#include <linux/smpboot.h>
 22#include <linux/atomic.h>
 23#include <linux/nmi.h>
 24#include <linux/sched/wake_q.h>
 25
 26/*
 27 * Structure to determine completion condition and record errors.  May
 28 * be shared by works on different cpus.
 29 */
 30struct cpu_stop_done {
 31	atomic_t		nr_todo;	/* nr left to execute */
 
 32	int			ret;		/* collected return value */
 33	struct completion	completion;	/* fired if nr_todo reaches 0 */
 34};
 35
 36/* the actual stopper, one per every possible cpu, enabled on online cpus */
 37struct cpu_stopper {
 38	struct task_struct	*thread;
 39
 40	spinlock_t		lock;
 41	bool			enabled;	/* is this stopper enabled? */
 42	struct list_head	works;		/* list of pending works */
 43
 44	struct cpu_stop_work	stop_work;	/* for stop_cpus */
 45};
 46
 47static DEFINE_PER_CPU(struct cpu_stopper, cpu_stopper);
 
 48static bool stop_machine_initialized = false;
 49
 50/* static data for stop_cpus */
 51static DEFINE_MUTEX(stop_cpus_mutex);
 52static bool stop_cpus_in_progress;
 
 
 
 
 53
 54static void cpu_stop_init_done(struct cpu_stop_done *done, unsigned int nr_todo)
 55{
 56	memset(done, 0, sizeof(*done));
 57	atomic_set(&done->nr_todo, nr_todo);
 58	init_completion(&done->completion);
 59}
 60
 61/* signal completion unless @done is NULL */
 62static void cpu_stop_signal_done(struct cpu_stop_done *done)
 63{
 64	if (atomic_dec_and_test(&done->nr_todo))
 65		complete(&done->completion);
 66}
 67
 68static void __cpu_stop_queue_work(struct cpu_stopper *stopper,
 69					struct cpu_stop_work *work,
 70					struct wake_q_head *wakeq)
 71{
 72	list_add_tail(&work->list, &stopper->works);
 73	wake_q_add(wakeq, stopper->thread);
 74}
 75
 76/* queue @work to @stopper.  if offline, @work is completed immediately */
 77static bool cpu_stop_queue_work(unsigned int cpu, struct cpu_stop_work *work)
 78{
 79	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
 80	DEFINE_WAKE_Q(wakeq);
 
 81	unsigned long flags;
 82	bool enabled;
 83
 84	spin_lock_irqsave(&stopper->lock, flags);
 85	enabled = stopper->enabled;
 86	if (enabled)
 87		__cpu_stop_queue_work(stopper, work, &wakeq);
 88	else if (work->done)
 89		cpu_stop_signal_done(work->done);
 90	spin_unlock_irqrestore(&stopper->lock, flags);
 91
 92	wake_up_q(&wakeq);
 
 
 
 
 93
 94	return enabled;
 95}
 96
 97/**
 98 * stop_one_cpu - stop a cpu
 99 * @cpu: cpu to stop
100 * @fn: function to execute
101 * @arg: argument to @fn
102 *
103 * Execute @fn(@arg) on @cpu.  @fn is run in a process context with
104 * the highest priority preempting any task on the cpu and
105 * monopolizing it.  This function returns after the execution is
106 * complete.
107 *
108 * This function doesn't guarantee @cpu stays online till @fn
109 * completes.  If @cpu goes down in the middle, execution may happen
110 * partially or fully on different cpus.  @fn should either be ready
111 * for that or the caller should ensure that @cpu stays online until
112 * this function completes.
113 *
114 * CONTEXT:
115 * Might sleep.
116 *
117 * RETURNS:
118 * -ENOENT if @fn(@arg) was not executed because @cpu was offline;
119 * otherwise, the return value of @fn.
120 */
121int stop_one_cpu(unsigned int cpu, cpu_stop_fn_t fn, void *arg)
122{
123	struct cpu_stop_done done;
124	struct cpu_stop_work work = { .fn = fn, .arg = arg, .done = &done };
125
126	cpu_stop_init_done(&done, 1);
127	if (!cpu_stop_queue_work(cpu, &work))
128		return -ENOENT;
129	/*
130	 * In case @cpu == smp_proccessor_id() we can avoid a sleep+wakeup
131	 * cycle by doing a preemption:
132	 */
133	cond_resched();
134	wait_for_completion(&done.completion);
135	return done.ret;
136}
137
138/* This controls the threads on each CPU. */
139enum multi_stop_state {
140	/* Dummy starting state for thread. */
141	MULTI_STOP_NONE,
142	/* Awaiting everyone to be scheduled. */
143	MULTI_STOP_PREPARE,
144	/* Disable interrupts. */
145	MULTI_STOP_DISABLE_IRQ,
146	/* Run the function */
147	MULTI_STOP_RUN,
148	/* Exit */
149	MULTI_STOP_EXIT,
150};
151
152struct multi_stop_data {
153	cpu_stop_fn_t		fn;
154	void			*data;
155	/* Like num_online_cpus(), but hotplug cpu uses us, so we need this. */
156	unsigned int		num_threads;
157	const struct cpumask	*active_cpus;
158
159	enum multi_stop_state	state;
160	atomic_t		thread_ack;
161};
162
163static void set_state(struct multi_stop_data *msdata,
164		      enum multi_stop_state newstate)
165{
166	/* Reset ack counter. */
167	atomic_set(&msdata->thread_ack, msdata->num_threads);
168	smp_wmb();
169	msdata->state = newstate;
170}
171
172/* Last one to ack a state moves to the next state. */
173static void ack_state(struct multi_stop_data *msdata)
174{
175	if (atomic_dec_and_test(&msdata->thread_ack))
176		set_state(msdata, msdata->state + 1);
177}
178
179/* This is the cpu_stop function which stops the CPU. */
180static int multi_cpu_stop(void *data)
181{
182	struct multi_stop_data *msdata = data;
183	enum multi_stop_state curstate = MULTI_STOP_NONE;
184	int cpu = smp_processor_id(), err = 0;
185	unsigned long flags;
186	bool is_active;
187
188	/*
189	 * When called from stop_machine_from_inactive_cpu(), irq might
190	 * already be disabled.  Save the state and restore it on exit.
191	 */
192	local_save_flags(flags);
193
194	if (!msdata->active_cpus)
195		is_active = cpu == cpumask_first(cpu_online_mask);
196	else
197		is_active = cpumask_test_cpu(cpu, msdata->active_cpus);
198
199	/* Simple state machine */
200	do {
201		/* Chill out and ensure we re-read multi_stop_state. */
202		cpu_relax_yield();
203		if (msdata->state != curstate) {
204			curstate = msdata->state;
205			switch (curstate) {
206			case MULTI_STOP_DISABLE_IRQ:
207				local_irq_disable();
208				hard_irq_disable();
209				break;
210			case MULTI_STOP_RUN:
211				if (is_active)
212					err = msdata->fn(msdata->data);
213				break;
214			default:
215				break;
216			}
217			ack_state(msdata);
218		} else if (curstate > MULTI_STOP_PREPARE) {
219			/*
220			 * At this stage all other CPUs we depend on must spin
221			 * in the same loop. Any reason for hard-lockup should
222			 * be detected and reported on their side.
223			 */
224			touch_nmi_watchdog();
225		}
226	} while (curstate != MULTI_STOP_EXIT);
227
228	local_irq_restore(flags);
229	return err;
230}
231
232static int cpu_stop_queue_two_works(int cpu1, struct cpu_stop_work *work1,
233				    int cpu2, struct cpu_stop_work *work2)
 
 
 
 
 
 
 
 
 
 
 
234{
235	struct cpu_stopper *stopper1 = per_cpu_ptr(&cpu_stopper, cpu1);
236	struct cpu_stopper *stopper2 = per_cpu_ptr(&cpu_stopper, cpu2);
237	DEFINE_WAKE_Q(wakeq);
238	int err;
239retry:
240	spin_lock_irq(&stopper1->lock);
241	spin_lock_nested(&stopper2->lock, SINGLE_DEPTH_NESTING);
242
243	err = -ENOENT;
244	if (!stopper1->enabled || !stopper2->enabled)
245		goto unlock;
246	/*
247	 * Ensure that if we race with __stop_cpus() the stoppers won't get
248	 * queued up in reverse order leading to system deadlock.
249	 *
250	 * We can't miss stop_cpus_in_progress if queue_stop_cpus_work() has
251	 * queued a work on cpu1 but not on cpu2, we hold both locks.
252	 *
253	 * It can be falsely true but it is safe to spin until it is cleared,
254	 * queue_stop_cpus_work() does everything under preempt_disable().
255	 */
256	err = -EDEADLK;
257	if (unlikely(stop_cpus_in_progress))
258			goto unlock;
259
260	err = 0;
261	__cpu_stop_queue_work(stopper1, work1, &wakeq);
262	__cpu_stop_queue_work(stopper2, work2, &wakeq);
263unlock:
264	spin_unlock(&stopper2->lock);
265	spin_unlock_irq(&stopper1->lock);
266
267	if (unlikely(err == -EDEADLK)) {
268		while (stop_cpus_in_progress)
269			cpu_relax();
270		goto retry;
271	}
272
273	wake_up_q(&wakeq);
274
275	return err;
276}
277/**
278 * stop_two_cpus - stops two cpus
279 * @cpu1: the cpu to stop
280 * @cpu2: the other cpu to stop
281 * @fn: function to execute
282 * @arg: argument to @fn
283 *
284 * Stops both the current and specified CPU and runs @fn on one of them.
285 *
286 * returns when both are completed.
287 */
288int stop_two_cpus(unsigned int cpu1, unsigned int cpu2, cpu_stop_fn_t fn, void *arg)
289{
290	struct cpu_stop_done done;
291	struct cpu_stop_work work1, work2;
 
292	struct multi_stop_data msdata;
293
 
294	msdata = (struct multi_stop_data){
295		.fn = fn,
296		.data = arg,
297		.num_threads = 2,
298		.active_cpus = cpumask_of(cpu1),
299	};
300
301	work1 = work2 = (struct cpu_stop_work){
302		.fn = multi_cpu_stop,
303		.arg = &msdata,
304		.done = &done
305	};
306
 
 
 
 
 
 
 
307	cpu_stop_init_done(&done, 2);
308	set_state(&msdata, MULTI_STOP_PREPARE);
309
310	if (cpu1 > cpu2)
311		swap(cpu1, cpu2);
312	if (cpu_stop_queue_two_works(cpu1, &work1, cpu2, &work2))
 
 
 
 
 
 
 
313		return -ENOENT;
 
 
 
 
 
 
 
 
 
 
 
 
 
314
315	wait_for_completion(&done.completion);
316	return done.ret;
 
317}
318
319/**
320 * stop_one_cpu_nowait - stop a cpu but don't wait for completion
321 * @cpu: cpu to stop
322 * @fn: function to execute
323 * @arg: argument to @fn
324 * @work_buf: pointer to cpu_stop_work structure
325 *
326 * Similar to stop_one_cpu() but doesn't wait for completion.  The
327 * caller is responsible for ensuring @work_buf is currently unused
328 * and will remain untouched until stopper starts executing @fn.
329 *
330 * CONTEXT:
331 * Don't care.
332 *
333 * RETURNS:
334 * true if cpu_stop_work was queued successfully and @fn will be called,
335 * false otherwise.
336 */
337bool stop_one_cpu_nowait(unsigned int cpu, cpu_stop_fn_t fn, void *arg,
338			struct cpu_stop_work *work_buf)
339{
340	*work_buf = (struct cpu_stop_work){ .fn = fn, .arg = arg, };
341	return cpu_stop_queue_work(cpu, work_buf);
342}
343
344static bool queue_stop_cpus_work(const struct cpumask *cpumask,
 
 
 
 
345				 cpu_stop_fn_t fn, void *arg,
346				 struct cpu_stop_done *done)
347{
348	struct cpu_stop_work *work;
349	unsigned int cpu;
350	bool queued = false;
351
352	/*
353	 * Disable preemption while queueing to avoid getting
354	 * preempted by a stopper which might wait for other stoppers
355	 * to enter @fn which can lead to deadlock.
356	 */
357	preempt_disable();
358	stop_cpus_in_progress = true;
359	for_each_cpu(cpu, cpumask) {
360		work = &per_cpu(cpu_stopper.stop_work, cpu);
361		work->fn = fn;
362		work->arg = arg;
363		work->done = done;
364		if (cpu_stop_queue_work(cpu, work))
365			queued = true;
366	}
367	stop_cpus_in_progress = false;
368	preempt_enable();
369
370	return queued;
 
 
 
 
 
 
 
 
371}
372
373static int __stop_cpus(const struct cpumask *cpumask,
374		       cpu_stop_fn_t fn, void *arg)
375{
376	struct cpu_stop_done done;
377
378	cpu_stop_init_done(&done, cpumask_weight(cpumask));
379	if (!queue_stop_cpus_work(cpumask, fn, arg, &done))
380		return -ENOENT;
381	wait_for_completion(&done.completion);
382	return done.ret;
383}
384
385/**
386 * stop_cpus - stop multiple cpus
387 * @cpumask: cpus to stop
388 * @fn: function to execute
389 * @arg: argument to @fn
390 *
391 * Execute @fn(@arg) on online cpus in @cpumask.  On each target cpu,
392 * @fn is run in a process context with the highest priority
393 * preempting any task on the cpu and monopolizing it.  This function
394 * returns after all executions are complete.
395 *
396 * This function doesn't guarantee the cpus in @cpumask stay online
397 * till @fn completes.  If some cpus go down in the middle, execution
398 * on the cpu may happen partially or fully on different cpus.  @fn
399 * should either be ready for that or the caller should ensure that
400 * the cpus stay online until this function completes.
401 *
402 * All stop_cpus() calls are serialized making it safe for @fn to wait
403 * for all cpus to start executing it.
404 *
405 * CONTEXT:
406 * Might sleep.
407 *
408 * RETURNS:
409 * -ENOENT if @fn(@arg) was not executed at all because all cpus in
410 * @cpumask were offline; otherwise, 0 if all executions of @fn
411 * returned 0, any non zero return value if any returned non zero.
412 */
413int stop_cpus(const struct cpumask *cpumask, cpu_stop_fn_t fn, void *arg)
414{
415	int ret;
416
417	/* static works are used, process one request at a time */
418	mutex_lock(&stop_cpus_mutex);
419	ret = __stop_cpus(cpumask, fn, arg);
420	mutex_unlock(&stop_cpus_mutex);
421	return ret;
422}
423
424/**
425 * try_stop_cpus - try to stop multiple cpus
426 * @cpumask: cpus to stop
427 * @fn: function to execute
428 * @arg: argument to @fn
429 *
430 * Identical to stop_cpus() except that it fails with -EAGAIN if
431 * someone else is already using the facility.
432 *
433 * CONTEXT:
434 * Might sleep.
435 *
436 * RETURNS:
437 * -EAGAIN if someone else is already stopping cpus, -ENOENT if
438 * @fn(@arg) was not executed at all because all cpus in @cpumask were
439 * offline; otherwise, 0 if all executions of @fn returned 0, any non
440 * zero return value if any returned non zero.
441 */
442int try_stop_cpus(const struct cpumask *cpumask, cpu_stop_fn_t fn, void *arg)
443{
444	int ret;
445
446	/* static works are used, process one request at a time */
447	if (!mutex_trylock(&stop_cpus_mutex))
448		return -EAGAIN;
449	ret = __stop_cpus(cpumask, fn, arg);
450	mutex_unlock(&stop_cpus_mutex);
451	return ret;
452}
453
454static int cpu_stop_should_run(unsigned int cpu)
455{
456	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
457	unsigned long flags;
458	int run;
459
460	spin_lock_irqsave(&stopper->lock, flags);
461	run = !list_empty(&stopper->works);
462	spin_unlock_irqrestore(&stopper->lock, flags);
463	return run;
464}
465
466static void cpu_stopper_thread(unsigned int cpu)
467{
468	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
469	struct cpu_stop_work *work;
 
470
471repeat:
472	work = NULL;
473	spin_lock_irq(&stopper->lock);
474	if (!list_empty(&stopper->works)) {
475		work = list_first_entry(&stopper->works,
476					struct cpu_stop_work, list);
477		list_del_init(&work->list);
478	}
479	spin_unlock_irq(&stopper->lock);
480
481	if (work) {
482		cpu_stop_fn_t fn = work->fn;
483		void *arg = work->arg;
484		struct cpu_stop_done *done = work->done;
485		int ret;
 
 
 
486
487		/* cpu stop callbacks must not sleep, make in_atomic() == T */
488		preempt_count_inc();
489		ret = fn(arg);
490		if (done) {
491			if (ret)
492				done->ret = ret;
493			cpu_stop_signal_done(done);
494		}
495		preempt_count_dec();
496		WARN_ONCE(preempt_count(),
497			  "cpu_stop: %pf(%p) leaked preempt count\n", fn, arg);
 
 
 
 
498		goto repeat;
499	}
500}
501
502void stop_machine_park(int cpu)
503{
504	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
505	/*
506	 * Lockless. cpu_stopper_thread() will take stopper->lock and flush
507	 * the pending works before it parks, until then it is fine to queue
508	 * the new works.
509	 */
510	stopper->enabled = false;
511	kthread_park(stopper->thread);
512}
513
514extern void sched_set_stop_task(int cpu, struct task_struct *stop);
515
516static void cpu_stop_create(unsigned int cpu)
517{
518	sched_set_stop_task(cpu, per_cpu(cpu_stopper.thread, cpu));
519}
520
521static void cpu_stop_park(unsigned int cpu)
522{
523	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
 
 
524
525	WARN_ON(!list_empty(&stopper->works));
 
 
 
 
 
526}
527
528void stop_machine_unpark(int cpu)
529{
530	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
531
 
532	stopper->enabled = true;
533	kthread_unpark(stopper->thread);
534}
535
536static struct smp_hotplug_thread cpu_stop_threads = {
537	.store			= &cpu_stopper.thread,
538	.thread_should_run	= cpu_stop_should_run,
539	.thread_fn		= cpu_stopper_thread,
540	.thread_comm		= "migration/%u",
541	.create			= cpu_stop_create,
 
542	.park			= cpu_stop_park,
 
543	.selfparking		= true,
544};
545
546static int __init cpu_stop_init(void)
547{
548	unsigned int cpu;
549
550	for_each_possible_cpu(cpu) {
551		struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
552
553		spin_lock_init(&stopper->lock);
554		INIT_LIST_HEAD(&stopper->works);
555	}
556
557	BUG_ON(smpboot_register_percpu_thread(&cpu_stop_threads));
558	stop_machine_unpark(raw_smp_processor_id());
559	stop_machine_initialized = true;
560	return 0;
561}
562early_initcall(cpu_stop_init);
563
564int stop_machine_cpuslocked(cpu_stop_fn_t fn, void *data,
565			    const struct cpumask *cpus)
 
566{
567	struct multi_stop_data msdata = {
568		.fn = fn,
569		.data = data,
570		.num_threads = num_online_cpus(),
571		.active_cpus = cpus,
572	};
573
574	lockdep_assert_cpus_held();
575
576	if (!stop_machine_initialized) {
577		/*
578		 * Handle the case where stop_machine() is called
579		 * early in boot before stop_machine() has been
580		 * initialized.
581		 */
582		unsigned long flags;
583		int ret;
584
585		WARN_ON_ONCE(msdata.num_threads != 1);
586
587		local_irq_save(flags);
588		hard_irq_disable();
589		ret = (*fn)(data);
590		local_irq_restore(flags);
591
592		return ret;
593	}
594
595	/* Set the initial state and stop all online cpus. */
596	set_state(&msdata, MULTI_STOP_PREPARE);
597	return stop_cpus(cpu_online_mask, multi_cpu_stop, &msdata);
598}
599
600int stop_machine(cpu_stop_fn_t fn, void *data, const struct cpumask *cpus)
601{
602	int ret;
603
604	/* No CPUs can come up or down during this. */
605	cpus_read_lock();
606	ret = stop_machine_cpuslocked(fn, data, cpus);
607	cpus_read_unlock();
608	return ret;
609}
610EXPORT_SYMBOL_GPL(stop_machine);
611
612/**
613 * stop_machine_from_inactive_cpu - stop_machine() from inactive CPU
614 * @fn: the function to run
615 * @data: the data ptr for the @fn()
616 * @cpus: the cpus to run the @fn() on (NULL = any online cpu)
617 *
618 * This is identical to stop_machine() but can be called from a CPU which
619 * is not active.  The local CPU is in the process of hotplug (so no other
620 * CPU hotplug can start) and not marked active and doesn't have enough
621 * context to sleep.
622 *
623 * This function provides stop_machine() functionality for such state by
624 * using busy-wait for synchronization and executing @fn directly for local
625 * CPU.
626 *
627 * CONTEXT:
628 * Local CPU is inactive.  Temporarily stops all active CPUs.
629 *
630 * RETURNS:
631 * 0 if all executions of @fn returned 0, any non zero return value if any
632 * returned non zero.
633 */
634int stop_machine_from_inactive_cpu(cpu_stop_fn_t fn, void *data,
635				  const struct cpumask *cpus)
636{
637	struct multi_stop_data msdata = { .fn = fn, .data = data,
638					    .active_cpus = cpus };
639	struct cpu_stop_done done;
640	int ret;
641
642	/* Local CPU must be inactive and CPU hotplug in progress. */
643	BUG_ON(cpu_active(raw_smp_processor_id()));
644	msdata.num_threads = num_active_cpus() + 1;	/* +1 for local */
645
646	/* No proper task established and can't sleep - busy wait for lock. */
647	while (!mutex_trylock(&stop_cpus_mutex))
648		cpu_relax();
649
650	/* Schedule work on other CPUs and execute directly for local CPU */
651	set_state(&msdata, MULTI_STOP_PREPARE);
652	cpu_stop_init_done(&done, num_active_cpus());
653	queue_stop_cpus_work(cpu_active_mask, multi_cpu_stop, &msdata,
654			     &done);
655	ret = multi_cpu_stop(&msdata);
656
657	/* Busy wait for completion. */
658	while (!completion_done(&done.completion))
659		cpu_relax();
660
661	mutex_unlock(&stop_cpus_mutex);
662	return ret ?: done.ret;
663}