Linux Audio

Check our new training course

Loading...
v3.15
   1/*
   2 *  linux/arch/arm/kernel/setup.c
   3 *
   4 *  Copyright (C) 1995-2001 Russell King
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License version 2 as
   8 * published by the Free Software Foundation.
   9 */
 
  10#include <linux/export.h>
  11#include <linux/kernel.h>
  12#include <linux/stddef.h>
  13#include <linux/ioport.h>
  14#include <linux/delay.h>
  15#include <linux/utsname.h>
  16#include <linux/initrd.h>
  17#include <linux/console.h>
  18#include <linux/bootmem.h>
  19#include <linux/seq_file.h>
  20#include <linux/screen_info.h>
  21#include <linux/of_platform.h>
  22#include <linux/init.h>
  23#include <linux/kexec.h>
  24#include <linux/of_fdt.h>
  25#include <linux/cpu.h>
  26#include <linux/interrupt.h>
  27#include <linux/smp.h>
  28#include <linux/proc_fs.h>
  29#include <linux/memblock.h>
  30#include <linux/bug.h>
  31#include <linux/compiler.h>
  32#include <linux/sort.h>
 
  33
  34#include <asm/unified.h>
  35#include <asm/cp15.h>
  36#include <asm/cpu.h>
  37#include <asm/cputype.h>
 
  38#include <asm/elf.h>
 
 
  39#include <asm/procinfo.h>
  40#include <asm/psci.h>
  41#include <asm/sections.h>
  42#include <asm/setup.h>
  43#include <asm/smp_plat.h>
  44#include <asm/mach-types.h>
  45#include <asm/cacheflush.h>
  46#include <asm/cachetype.h>
  47#include <asm/tlbflush.h>
 
  48
  49#include <asm/prom.h>
  50#include <asm/mach/arch.h>
  51#include <asm/mach/irq.h>
  52#include <asm/mach/time.h>
  53#include <asm/system_info.h>
  54#include <asm/system_misc.h>
  55#include <asm/traps.h>
  56#include <asm/unwind.h>
  57#include <asm/memblock.h>
  58#include <asm/virt.h>
  59
  60#include "atags.h"
  61
  62
  63#if defined(CONFIG_FPE_NWFPE) || defined(CONFIG_FPE_FASTFPE)
  64char fpe_type[8];
  65
  66static int __init fpe_setup(char *line)
  67{
  68	memcpy(fpe_type, line, 8);
  69	return 1;
  70}
  71
  72__setup("fpe=", fpe_setup);
  73#endif
  74
 
  75extern void paging_init(const struct machine_desc *desc);
  76extern void early_paging_init(const struct machine_desc *,
  77			      struct proc_info_list *);
  78extern void sanity_check_meminfo(void);
  79extern enum reboot_mode reboot_mode;
  80extern void setup_dma_zone(const struct machine_desc *desc);
  81
  82unsigned int processor_id;
  83EXPORT_SYMBOL(processor_id);
  84unsigned int __machine_arch_type __read_mostly;
  85EXPORT_SYMBOL(__machine_arch_type);
  86unsigned int cacheid __read_mostly;
  87EXPORT_SYMBOL(cacheid);
  88
  89unsigned int __atags_pointer __initdata;
  90
  91unsigned int system_rev;
  92EXPORT_SYMBOL(system_rev);
  93
 
 
 
  94unsigned int system_serial_low;
  95EXPORT_SYMBOL(system_serial_low);
  96
  97unsigned int system_serial_high;
  98EXPORT_SYMBOL(system_serial_high);
  99
 100unsigned int elf_hwcap __read_mostly;
 101EXPORT_SYMBOL(elf_hwcap);
 102
 103unsigned int elf_hwcap2 __read_mostly;
 104EXPORT_SYMBOL(elf_hwcap2);
 105
 106
 107#ifdef MULTI_CPU
 108struct processor processor __read_mostly;
 109#endif
 110#ifdef MULTI_TLB
 111struct cpu_tlb_fns cpu_tlb __read_mostly;
 112#endif
 113#ifdef MULTI_USER
 114struct cpu_user_fns cpu_user __read_mostly;
 115#endif
 116#ifdef MULTI_CACHE
 117struct cpu_cache_fns cpu_cache __read_mostly;
 118#endif
 119#ifdef CONFIG_OUTER_CACHE
 120struct outer_cache_fns outer_cache __read_mostly;
 121EXPORT_SYMBOL(outer_cache);
 122#endif
 123
 124/*
 125 * Cached cpu_architecture() result for use by assembler code.
 126 * C code should use the cpu_architecture() function instead of accessing this
 127 * variable directly.
 128 */
 129int __cpu_architecture __read_mostly = CPU_ARCH_UNKNOWN;
 130
 131struct stack {
 132	u32 irq[3];
 133	u32 abt[3];
 134	u32 und[3];
 
 135} ____cacheline_aligned;
 136
 137#ifndef CONFIG_CPU_V7M
 138static struct stack stacks[NR_CPUS];
 139#endif
 140
 141char elf_platform[ELF_PLATFORM_SIZE];
 142EXPORT_SYMBOL(elf_platform);
 143
 144static const char *cpu_name;
 145static const char *machine_name;
 146static char __initdata cmd_line[COMMAND_LINE_SIZE];
 147const struct machine_desc *machine_desc __initdata;
 148
 149static union { char c[4]; unsigned long l; } endian_test __initdata = { { 'l', '?', '?', 'b' } };
 150#define ENDIANNESS ((char)endian_test.l)
 151
 152DEFINE_PER_CPU(struct cpuinfo_arm, cpu_data);
 153
 154/*
 155 * Standard memory resources
 156 */
 157static struct resource mem_res[] = {
 158	{
 159		.name = "Video RAM",
 160		.start = 0,
 161		.end = 0,
 162		.flags = IORESOURCE_MEM
 163	},
 164	{
 165		.name = "Kernel code",
 166		.start = 0,
 167		.end = 0,
 168		.flags = IORESOURCE_MEM
 169	},
 170	{
 171		.name = "Kernel data",
 172		.start = 0,
 173		.end = 0,
 174		.flags = IORESOURCE_MEM
 175	}
 176};
 177
 178#define video_ram   mem_res[0]
 179#define kernel_code mem_res[1]
 180#define kernel_data mem_res[2]
 181
 182static struct resource io_res[] = {
 183	{
 184		.name = "reserved",
 185		.start = 0x3bc,
 186		.end = 0x3be,
 187		.flags = IORESOURCE_IO | IORESOURCE_BUSY
 188	},
 189	{
 190		.name = "reserved",
 191		.start = 0x378,
 192		.end = 0x37f,
 193		.flags = IORESOURCE_IO | IORESOURCE_BUSY
 194	},
 195	{
 196		.name = "reserved",
 197		.start = 0x278,
 198		.end = 0x27f,
 199		.flags = IORESOURCE_IO | IORESOURCE_BUSY
 200	}
 201};
 202
 203#define lp0 io_res[0]
 204#define lp1 io_res[1]
 205#define lp2 io_res[2]
 206
 207static const char *proc_arch[] = {
 208	"undefined/unknown",
 209	"3",
 210	"4",
 211	"4T",
 212	"5",
 213	"5T",
 214	"5TE",
 215	"5TEJ",
 216	"6TEJ",
 217	"7",
 218	"7M",
 219	"?(12)",
 220	"?(13)",
 221	"?(14)",
 222	"?(15)",
 223	"?(16)",
 224	"?(17)",
 225};
 226
 227#ifdef CONFIG_CPU_V7M
 228static int __get_cpu_architecture(void)
 229{
 230	return CPU_ARCH_ARMv7M;
 231}
 232#else
 233static int __get_cpu_architecture(void)
 234{
 235	int cpu_arch;
 236
 237	if ((read_cpuid_id() & 0x0008f000) == 0) {
 238		cpu_arch = CPU_ARCH_UNKNOWN;
 239	} else if ((read_cpuid_id() & 0x0008f000) == 0x00007000) {
 240		cpu_arch = (read_cpuid_id() & (1 << 23)) ? CPU_ARCH_ARMv4T : CPU_ARCH_ARMv3;
 241	} else if ((read_cpuid_id() & 0x00080000) == 0x00000000) {
 242		cpu_arch = (read_cpuid_id() >> 16) & 7;
 243		if (cpu_arch)
 244			cpu_arch += CPU_ARCH_ARMv3;
 245	} else if ((read_cpuid_id() & 0x000f0000) == 0x000f0000) {
 246		unsigned int mmfr0;
 247
 248		/* Revised CPUID format. Read the Memory Model Feature
 249		 * Register 0 and check for VMSAv7 or PMSAv7 */
 250		asm("mrc	p15, 0, %0, c0, c1, 4"
 251		    : "=r" (mmfr0));
 252		if ((mmfr0 & 0x0000000f) >= 0x00000003 ||
 253		    (mmfr0 & 0x000000f0) >= 0x00000030)
 254			cpu_arch = CPU_ARCH_ARMv7;
 255		else if ((mmfr0 & 0x0000000f) == 0x00000002 ||
 256			 (mmfr0 & 0x000000f0) == 0x00000020)
 257			cpu_arch = CPU_ARCH_ARMv6;
 258		else
 259			cpu_arch = CPU_ARCH_UNKNOWN;
 260	} else
 261		cpu_arch = CPU_ARCH_UNKNOWN;
 262
 263	return cpu_arch;
 264}
 265#endif
 266
 267int __pure cpu_architecture(void)
 268{
 269	BUG_ON(__cpu_architecture == CPU_ARCH_UNKNOWN);
 270
 271	return __cpu_architecture;
 272}
 273
 274static int cpu_has_aliasing_icache(unsigned int arch)
 275{
 276	int aliasing_icache;
 277	unsigned int id_reg, num_sets, line_size;
 278
 279	/* PIPT caches never alias. */
 280	if (icache_is_pipt())
 281		return 0;
 282
 283	/* arch specifies the register format */
 284	switch (arch) {
 285	case CPU_ARCH_ARMv7:
 286		asm("mcr	p15, 2, %0, c0, c0, 0 @ set CSSELR"
 287		    : /* No output operands */
 288		    : "r" (1));
 289		isb();
 290		asm("mrc	p15, 1, %0, c0, c0, 0 @ read CCSIDR"
 291		    : "=r" (id_reg));
 292		line_size = 4 << ((id_reg & 0x7) + 2);
 293		num_sets = ((id_reg >> 13) & 0x7fff) + 1;
 294		aliasing_icache = (line_size * num_sets) > PAGE_SIZE;
 295		break;
 296	case CPU_ARCH_ARMv6:
 297		aliasing_icache = read_cpuid_cachetype() & (1 << 11);
 298		break;
 299	default:
 300		/* I-cache aliases will be handled by D-cache aliasing code */
 301		aliasing_icache = 0;
 302	}
 303
 304	return aliasing_icache;
 305}
 306
 307static void __init cacheid_init(void)
 308{
 309	unsigned int arch = cpu_architecture();
 310
 311	if (arch == CPU_ARCH_ARMv7M) {
 312		cacheid = 0;
 313	} else if (arch >= CPU_ARCH_ARMv6) {
 314		unsigned int cachetype = read_cpuid_cachetype();
 315		if ((cachetype & (7 << 29)) == 4 << 29) {
 
 
 
 316			/* ARMv7 register format */
 317			arch = CPU_ARCH_ARMv7;
 318			cacheid = CACHEID_VIPT_NONALIASING;
 319			switch (cachetype & (3 << 14)) {
 320			case (1 << 14):
 321				cacheid |= CACHEID_ASID_TAGGED;
 322				break;
 323			case (3 << 14):
 324				cacheid |= CACHEID_PIPT;
 325				break;
 326			}
 327		} else {
 328			arch = CPU_ARCH_ARMv6;
 329			if (cachetype & (1 << 23))
 330				cacheid = CACHEID_VIPT_ALIASING;
 331			else
 332				cacheid = CACHEID_VIPT_NONALIASING;
 333		}
 334		if (cpu_has_aliasing_icache(arch))
 335			cacheid |= CACHEID_VIPT_I_ALIASING;
 336	} else {
 337		cacheid = CACHEID_VIVT;
 338	}
 339
 340	pr_info("CPU: %s data cache, %s instruction cache\n",
 341		cache_is_vivt() ? "VIVT" :
 342		cache_is_vipt_aliasing() ? "VIPT aliasing" :
 343		cache_is_vipt_nonaliasing() ? "PIPT / VIPT nonaliasing" : "unknown",
 344		cache_is_vivt() ? "VIVT" :
 345		icache_is_vivt_asid_tagged() ? "VIVT ASID tagged" :
 346		icache_is_vipt_aliasing() ? "VIPT aliasing" :
 347		icache_is_pipt() ? "PIPT" :
 348		cache_is_vipt_nonaliasing() ? "VIPT nonaliasing" : "unknown");
 349}
 350
 351/*
 352 * These functions re-use the assembly code in head.S, which
 353 * already provide the required functionality.
 354 */
 355extern struct proc_info_list *lookup_processor_type(unsigned int);
 356
 357void __init early_print(const char *str, ...)
 358{
 359	extern void printascii(const char *);
 360	char buf[256];
 361	va_list ap;
 362
 363	va_start(ap, str);
 364	vsnprintf(buf, sizeof(buf), str, ap);
 365	va_end(ap);
 366
 367#ifdef CONFIG_DEBUG_LL
 368	printascii(buf);
 369#endif
 370	printk("%s", buf);
 371}
 372
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 373static void __init cpuid_init_hwcaps(void)
 374{
 375	unsigned int divide_instrs, vmsa;
 
 376
 377	if (cpu_architecture() < CPU_ARCH_ARMv7)
 378		return;
 379
 380	divide_instrs = (read_cpuid_ext(CPUID_EXT_ISAR0) & 0x0f000000) >> 24;
 381
 382	switch (divide_instrs) {
 383	case 2:
 384		elf_hwcap |= HWCAP_IDIVA;
 385	case 1:
 386		elf_hwcap |= HWCAP_IDIVT;
 387	}
 388
 389	/* LPAE implies atomic ldrd/strd instructions */
 390	vmsa = (read_cpuid_ext(CPUID_EXT_MMFR0) & 0xf) >> 0;
 391	if (vmsa >= 5)
 392		elf_hwcap |= HWCAP_LPAE;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 393}
 394
 395static void __init feat_v6_fixup(void)
 396{
 397	int id = read_cpuid_id();
 398
 399	if ((id & 0xff0f0000) != 0x41070000)
 400		return;
 401
 402	/*
 403	 * HWCAP_TLS is available only on 1136 r1p0 and later,
 404	 * see also kuser_get_tls_init.
 405	 */
 406	if ((((id >> 4) & 0xfff) == 0xb36) && (((id >> 20) & 3) == 0))
 
 407		elf_hwcap &= ~HWCAP_TLS;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 408}
 409
 410/*
 411 * cpu_init - initialise one CPU.
 412 *
 413 * cpu_init sets up the per-CPU stacks.
 414 */
 415void notrace cpu_init(void)
 416{
 417#ifndef CONFIG_CPU_V7M
 418	unsigned int cpu = smp_processor_id();
 419	struct stack *stk = &stacks[cpu];
 420
 421	if (cpu >= NR_CPUS) {
 422		pr_crit("CPU%u: bad primary CPU number\n", cpu);
 423		BUG();
 424	}
 425
 426	/*
 427	 * This only works on resume and secondary cores. For booting on the
 428	 * boot cpu, smp_prepare_boot_cpu is called after percpu area setup.
 429	 */
 430	set_my_cpu_offset(per_cpu_offset(cpu));
 431
 432	cpu_proc_init();
 433
 434	/*
 435	 * Define the placement constraint for the inline asm directive below.
 436	 * In Thumb-2, msr with an immediate value is not allowed.
 437	 */
 438#ifdef CONFIG_THUMB2_KERNEL
 439#define PLC	"r"
 440#else
 441#define PLC	"I"
 442#endif
 443
 444	/*
 445	 * setup stacks for re-entrant exception handlers
 446	 */
 447	__asm__ (
 448	"msr	cpsr_c, %1\n\t"
 449	"add	r14, %0, %2\n\t"
 450	"mov	sp, r14\n\t"
 451	"msr	cpsr_c, %3\n\t"
 452	"add	r14, %0, %4\n\t"
 453	"mov	sp, r14\n\t"
 454	"msr	cpsr_c, %5\n\t"
 455	"add	r14, %0, %6\n\t"
 456	"mov	sp, r14\n\t"
 457	"msr	cpsr_c, %7"
 
 
 
 458	    :
 459	    : "r" (stk),
 460	      PLC (PSR_F_BIT | PSR_I_BIT | IRQ_MODE),
 461	      "I" (offsetof(struct stack, irq[0])),
 462	      PLC (PSR_F_BIT | PSR_I_BIT | ABT_MODE),
 463	      "I" (offsetof(struct stack, abt[0])),
 464	      PLC (PSR_F_BIT | PSR_I_BIT | UND_MODE),
 465	      "I" (offsetof(struct stack, und[0])),
 
 
 466	      PLC (PSR_F_BIT | PSR_I_BIT | SVC_MODE)
 467	    : "r14");
 468#endif
 469}
 470
 471u32 __cpu_logical_map[NR_CPUS] = { [0 ... NR_CPUS-1] = MPIDR_INVALID };
 472
 473void __init smp_setup_processor_id(void)
 474{
 475	int i;
 476	u32 mpidr = is_smp() ? read_cpuid_mpidr() & MPIDR_HWID_BITMASK : 0;
 477	u32 cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0);
 478
 479	cpu_logical_map(0) = cpu;
 480	for (i = 1; i < nr_cpu_ids; ++i)
 481		cpu_logical_map(i) = i == cpu ? 0 : i;
 482
 483	/*
 484	 * clear __my_cpu_offset on boot CPU to avoid hang caused by
 485	 * using percpu variable early, for example, lockdep will
 486	 * access percpu variable inside lock_release
 487	 */
 488	set_my_cpu_offset(0);
 489
 490	pr_info("Booting Linux on physical CPU 0x%x\n", mpidr);
 491}
 492
 493struct mpidr_hash mpidr_hash;
 494#ifdef CONFIG_SMP
 495/**
 496 * smp_build_mpidr_hash - Pre-compute shifts required at each affinity
 497 *			  level in order to build a linear index from an
 498 *			  MPIDR value. Resulting algorithm is a collision
 499 *			  free hash carried out through shifting and ORing
 500 */
 501static void __init smp_build_mpidr_hash(void)
 502{
 503	u32 i, affinity;
 504	u32 fs[3], bits[3], ls, mask = 0;
 505	/*
 506	 * Pre-scan the list of MPIDRS and filter out bits that do
 507	 * not contribute to affinity levels, ie they never toggle.
 508	 */
 509	for_each_possible_cpu(i)
 510		mask |= (cpu_logical_map(i) ^ cpu_logical_map(0));
 511	pr_debug("mask of set bits 0x%x\n", mask);
 512	/*
 513	 * Find and stash the last and first bit set at all affinity levels to
 514	 * check how many bits are required to represent them.
 515	 */
 516	for (i = 0; i < 3; i++) {
 517		affinity = MPIDR_AFFINITY_LEVEL(mask, i);
 518		/*
 519		 * Find the MSB bit and LSB bits position
 520		 * to determine how many bits are required
 521		 * to express the affinity level.
 522		 */
 523		ls = fls(affinity);
 524		fs[i] = affinity ? ffs(affinity) - 1 : 0;
 525		bits[i] = ls - fs[i];
 526	}
 527	/*
 528	 * An index can be created from the MPIDR by isolating the
 529	 * significant bits at each affinity level and by shifting
 530	 * them in order to compress the 24 bits values space to a
 531	 * compressed set of values. This is equivalent to hashing
 532	 * the MPIDR through shifting and ORing. It is a collision free
 533	 * hash though not minimal since some levels might contain a number
 534	 * of CPUs that is not an exact power of 2 and their bit
 535	 * representation might contain holes, eg MPIDR[7:0] = {0x2, 0x80}.
 536	 */
 537	mpidr_hash.shift_aff[0] = fs[0];
 538	mpidr_hash.shift_aff[1] = MPIDR_LEVEL_BITS + fs[1] - bits[0];
 539	mpidr_hash.shift_aff[2] = 2*MPIDR_LEVEL_BITS + fs[2] -
 540						(bits[1] + bits[0]);
 541	mpidr_hash.mask = mask;
 542	mpidr_hash.bits = bits[2] + bits[1] + bits[0];
 543	pr_debug("MPIDR hash: aff0[%u] aff1[%u] aff2[%u] mask[0x%x] bits[%u]\n",
 544				mpidr_hash.shift_aff[0],
 545				mpidr_hash.shift_aff[1],
 546				mpidr_hash.shift_aff[2],
 547				mpidr_hash.mask,
 548				mpidr_hash.bits);
 549	/*
 550	 * 4x is an arbitrary value used to warn on a hash table much bigger
 551	 * than expected on most systems.
 552	 */
 553	if (mpidr_hash_size() > 4 * num_possible_cpus())
 554		pr_warn("Large number of MPIDR hash buckets detected\n");
 555	sync_cache_w(&mpidr_hash);
 556}
 557#endif
 558
 559static void __init setup_processor(void)
 560{
 561	struct proc_info_list *list;
 562
 563	/*
 564	 * locate processor in the list of supported processor
 565	 * types.  The linker builds this table for us from the
 566	 * entries in arch/arm/mm/proc-*.S
 567	 */
 568	list = lookup_processor_type(read_cpuid_id());
 569	if (!list) {
 570		pr_err("CPU configuration botched (ID %08x), unable to continue.\n",
 571		       read_cpuid_id());
 572		while (1);
 573	}
 574
 575	cpu_name = list->cpu_name;
 576	__cpu_architecture = __get_cpu_architecture();
 577
 578#ifdef MULTI_CPU
 579	processor = *list->proc;
 580#endif
 581#ifdef MULTI_TLB
 582	cpu_tlb = *list->tlb;
 583#endif
 584#ifdef MULTI_USER
 585	cpu_user = *list->user;
 586#endif
 587#ifdef MULTI_CACHE
 588	cpu_cache = *list->cache;
 589#endif
 590
 591	pr_info("CPU: %s [%08x] revision %d (ARMv%s), cr=%08lx\n",
 592		cpu_name, read_cpuid_id(), read_cpuid_id() & 15,
 593		proc_arch[cpu_architecture()], cr_alignment);
 594
 595	snprintf(init_utsname()->machine, __NEW_UTS_LEN + 1, "%s%c",
 596		 list->arch_name, ENDIANNESS);
 597	snprintf(elf_platform, ELF_PLATFORM_SIZE, "%s%c",
 598		 list->elf_name, ENDIANNESS);
 599	elf_hwcap = list->elf_hwcap;
 600
 601	cpuid_init_hwcaps();
 
 602
 603#ifndef CONFIG_ARM_THUMB
 604	elf_hwcap &= ~(HWCAP_THUMB | HWCAP_IDIVT);
 605#endif
 606
 
 
 607	erratum_a15_798181_init();
 608
 609	feat_v6_fixup();
 610
 611	cacheid_init();
 612	cpu_init();
 613}
 614
 615void __init dump_machine_table(void)
 616{
 617	const struct machine_desc *p;
 618
 619	early_print("Available machine support:\n\nID (hex)\tNAME\n");
 620	for_each_machine_desc(p)
 621		early_print("%08x\t%s\n", p->nr, p->name);
 622
 623	early_print("\nPlease check your kernel config and/or bootloader.\n");
 624
 625	while (true)
 626		/* can't use cpu_relax() here as it may require MMU setup */;
 627}
 628
 629int __init arm_add_memory(u64 start, u64 size)
 630{
 631	struct membank *bank = &meminfo.bank[meminfo.nr_banks];
 632	u64 aligned_start;
 633
 634	if (meminfo.nr_banks >= NR_BANKS) {
 635		pr_crit("NR_BANKS too low, ignoring memory at 0x%08llx\n",
 636			(long long)start);
 637		return -EINVAL;
 638	}
 639
 640	/*
 641	 * Ensure that start/size are aligned to a page boundary.
 642	 * Size is appropriately rounded down, start is rounded up.
 643	 */
 644	size -= start & ~PAGE_MASK;
 645	aligned_start = PAGE_ALIGN(start);
 
 
 
 
 646
 647#ifndef CONFIG_ARCH_PHYS_ADDR_T_64BIT
 648	if (aligned_start > ULONG_MAX) {
 649		pr_crit("Ignoring memory at 0x%08llx outside 32-bit physical address space\n",
 650			(long long)start);
 651		return -EINVAL;
 652	}
 653
 654	if (aligned_start + size > ULONG_MAX) {
 655		pr_crit("Truncating memory at 0x%08llx to fit in 32-bit physical address space\n",
 656			(long long)start);
 657		/*
 658		 * To ensure bank->start + bank->size is representable in
 659		 * 32 bits, we use ULONG_MAX as the upper limit rather than 4GB.
 660		 * This means we lose a page after masking.
 661		 */
 662		size = ULONG_MAX - aligned_start;
 663	}
 664#endif
 665
 666	if (aligned_start < PHYS_OFFSET) {
 667		if (aligned_start + size <= PHYS_OFFSET) {
 668			pr_info("Ignoring memory below PHYS_OFFSET: 0x%08llx-0x%08llx\n",
 669				aligned_start, aligned_start + size);
 670			return -EINVAL;
 671		}
 672
 673		pr_info("Ignoring memory below PHYS_OFFSET: 0x%08llx-0x%08llx\n",
 674			aligned_start, (u64)PHYS_OFFSET);
 675
 676		size -= PHYS_OFFSET - aligned_start;
 677		aligned_start = PHYS_OFFSET;
 678	}
 679
 680	bank->start = aligned_start;
 681	bank->size = size & ~(phys_addr_t)(PAGE_SIZE - 1);
 682
 683	/*
 684	 * Check whether this memory region has non-zero size or
 685	 * invalid node number.
 686	 */
 687	if (bank->size == 0)
 688		return -EINVAL;
 689
 690	meminfo.nr_banks++;
 691	return 0;
 692}
 693
 694/*
 695 * Pick out the memory size.  We look for mem=size@start,
 696 * where start and size are "size[KkMm]"
 697 */
 
 698static int __init early_mem(char *p)
 699{
 700	static int usermem __initdata = 0;
 701	u64 size;
 702	u64 start;
 703	char *endp;
 704
 705	/*
 706	 * If the user specifies memory size, we
 707	 * blow away any automatically generated
 708	 * size.
 709	 */
 710	if (usermem == 0) {
 711		usermem = 1;
 712		meminfo.nr_banks = 0;
 
 713	}
 714
 715	start = PHYS_OFFSET;
 716	size  = memparse(p, &endp);
 717	if (*endp == '@')
 718		start = memparse(endp + 1, NULL);
 719
 720	arm_add_memory(start, size);
 721
 722	return 0;
 723}
 724early_param("mem", early_mem);
 725
 726static void __init request_standard_resources(const struct machine_desc *mdesc)
 727{
 728	struct memblock_region *region;
 729	struct resource *res;
 730
 731	kernel_code.start   = virt_to_phys(_text);
 732	kernel_code.end     = virt_to_phys(_etext - 1);
 733	kernel_data.start   = virt_to_phys(_sdata);
 734	kernel_data.end     = virt_to_phys(_end - 1);
 735
 736	for_each_memblock(memory, region) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 737		res = memblock_virt_alloc(sizeof(*res), 0);
 738		res->name  = "System RAM";
 739		res->start = __pfn_to_phys(memblock_region_memory_base_pfn(region));
 740		res->end = __pfn_to_phys(memblock_region_memory_end_pfn(region)) - 1;
 741		res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
 742
 743		request_resource(&iomem_resource, res);
 744
 745		if (kernel_code.start >= res->start &&
 746		    kernel_code.end <= res->end)
 747			request_resource(res, &kernel_code);
 748		if (kernel_data.start >= res->start &&
 749		    kernel_data.end <= res->end)
 750			request_resource(res, &kernel_data);
 751	}
 752
 753	if (mdesc->video_start) {
 754		video_ram.start = mdesc->video_start;
 755		video_ram.end   = mdesc->video_end;
 756		request_resource(&iomem_resource, &video_ram);
 757	}
 758
 759	/*
 760	 * Some machines don't have the possibility of ever
 761	 * possessing lp0, lp1 or lp2
 762	 */
 763	if (mdesc->reserve_lp0)
 764		request_resource(&ioport_resource, &lp0);
 765	if (mdesc->reserve_lp1)
 766		request_resource(&ioport_resource, &lp1);
 767	if (mdesc->reserve_lp2)
 768		request_resource(&ioport_resource, &lp2);
 769}
 770
 771#if defined(CONFIG_VGA_CONSOLE) || defined(CONFIG_DUMMY_CONSOLE)
 
 772struct screen_info screen_info = {
 773 .orig_video_lines	= 30,
 774 .orig_video_cols	= 80,
 775 .orig_video_mode	= 0,
 776 .orig_video_ega_bx	= 0,
 777 .orig_video_isVGA	= 1,
 778 .orig_video_points	= 8
 779};
 780#endif
 781
 782static int __init customize_machine(void)
 783{
 784	/*
 785	 * customizes platform devices, or adds new ones
 786	 * On DT based machines, we fall back to populating the
 787	 * machine from the device tree, if no callback is provided,
 788	 * otherwise we would always need an init_machine callback.
 789	 */
 790	if (machine_desc->init_machine)
 791		machine_desc->init_machine();
 792#ifdef CONFIG_OF
 793	else
 794		of_platform_populate(NULL, of_default_bus_match_table,
 795					NULL, NULL);
 796#endif
 797	return 0;
 798}
 799arch_initcall(customize_machine);
 800
 801static int __init init_machine_late(void)
 802{
 
 
 
 803	if (machine_desc->init_late)
 804		machine_desc->init_late();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 805	return 0;
 806}
 807late_initcall(init_machine_late);
 808
 809#ifdef CONFIG_KEXEC
 
 
 
 
 
 
 810static inline unsigned long long get_total_mem(void)
 811{
 812	unsigned long total;
 813
 814	total = max_low_pfn - min_low_pfn;
 815	return total << PAGE_SHIFT;
 816}
 817
 818/**
 819 * reserve_crashkernel() - reserves memory are for crash kernel
 820 *
 821 * This function reserves memory area given in "crashkernel=" kernel command
 822 * line parameter. The memory reserved is used by a dump capture kernel when
 823 * primary kernel is crashing.
 824 */
 825static void __init reserve_crashkernel(void)
 826{
 827	unsigned long long crash_size, crash_base;
 828	unsigned long long total_mem;
 829	int ret;
 830
 831	total_mem = get_total_mem();
 832	ret = parse_crashkernel(boot_command_line, total_mem,
 833				&crash_size, &crash_base);
 834	if (ret)
 835		return;
 836
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 837	ret = memblock_reserve(crash_base, crash_size);
 838	if (ret < 0) {
 839		pr_warn("crashkernel reservation failed - memory is in use (0x%lx)\n",
 840			(unsigned long)crash_base);
 841		return;
 842	}
 843
 844	pr_info("Reserving %ldMB of memory at %ldMB for crashkernel (System RAM: %ldMB)\n",
 845		(unsigned long)(crash_size >> 20),
 846		(unsigned long)(crash_base >> 20),
 847		(unsigned long)(total_mem >> 20));
 848
 
 849	crashk_res.start = crash_base;
 850	crashk_res.end = crash_base + crash_size - 1;
 851	insert_resource(&iomem_resource, &crashk_res);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 852}
 853#else
 854static inline void reserve_crashkernel(void) {}
 855#endif /* CONFIG_KEXEC */
 856
 857static int __init meminfo_cmp(const void *_a, const void *_b)
 858{
 859	const struct membank *a = _a, *b = _b;
 860	long cmp = bank_pfn_start(a) - bank_pfn_start(b);
 861	return cmp < 0 ? -1 : cmp > 0 ? 1 : 0;
 862}
 863
 864void __init hyp_mode_check(void)
 865{
 866#ifdef CONFIG_ARM_VIRT_EXT
 867	sync_boot_mode();
 868
 869	if (is_hyp_mode_available()) {
 870		pr_info("CPU: All CPU(s) started in HYP mode.\n");
 871		pr_info("CPU: Virtualization extensions available.\n");
 872	} else if (is_hyp_mode_mismatched()) {
 873		pr_warn("CPU: WARNING: CPU(s) started in wrong/inconsistent modes (primary CPU mode 0x%x)\n",
 874			__boot_cpu_mode & MODE_MASK);
 875		pr_warn("CPU: This may indicate a broken bootloader or firmware.\n");
 876	} else
 877		pr_info("CPU: All CPU(s) started in SVC mode.\n");
 878#endif
 879}
 880
 881void __init setup_arch(char **cmdline_p)
 882{
 883	const struct machine_desc *mdesc;
 884
 885	setup_processor();
 886	mdesc = setup_machine_fdt(__atags_pointer);
 887	if (!mdesc)
 888		mdesc = setup_machine_tags(__atags_pointer, __machine_arch_type);
 
 
 
 
 
 
 
 
 
 
 889	machine_desc = mdesc;
 890	machine_name = mdesc->name;
 
 891
 892	if (mdesc->reboot_mode != REBOOT_HARD)
 893		reboot_mode = mdesc->reboot_mode;
 894
 895	init_mm.start_code = (unsigned long) _text;
 896	init_mm.end_code   = (unsigned long) _etext;
 897	init_mm.end_data   = (unsigned long) _edata;
 898	init_mm.brk	   = (unsigned long) _end;
 899
 900	/* populate cmd_line too for later use, preserving boot_command_line */
 901	strlcpy(cmd_line, boot_command_line, COMMAND_LINE_SIZE);
 902	*cmdline_p = cmd_line;
 903
 904	parse_early_param();
 
 905
 906	sort(&meminfo.bank, meminfo.nr_banks, sizeof(meminfo.bank[0]), meminfo_cmp, NULL);
 907
 908	early_paging_init(mdesc, lookup_processor_type(read_cpuid_id()));
 
 
 909	setup_dma_zone(mdesc);
 910	sanity_check_meminfo();
 911	arm_memblock_init(&meminfo, mdesc);
 
 
 
 
 
 
 
 
 
 
 912
 913	paging_init(mdesc);
 914	request_standard_resources(mdesc);
 915
 916	if (mdesc->restart)
 917		arm_pm_restart = mdesc->restart;
 918
 919	unflatten_device_tree();
 920
 921	arm_dt_init_cpu_maps();
 922	psci_init();
 923#ifdef CONFIG_SMP
 924	if (is_smp()) {
 925		if (!mdesc->smp_init || !mdesc->smp_init()) {
 926			if (psci_smp_available())
 927				smp_set_ops(&psci_smp_ops);
 928			else if (mdesc->smp)
 929				smp_set_ops(mdesc->smp);
 930		}
 931		smp_init_cpus();
 932		smp_build_mpidr_hash();
 933	}
 934#endif
 935
 936	if (!is_smp())
 937		hyp_mode_check();
 938
 939	reserve_crashkernel();
 940
 941#ifdef CONFIG_MULTI_IRQ_HANDLER
 942	handle_arch_irq = mdesc->handle_irq;
 943#endif
 944
 945#ifdef CONFIG_VT
 946#if defined(CONFIG_VGA_CONSOLE)
 947	conswitchp = &vga_con;
 948#elif defined(CONFIG_DUMMY_CONSOLE)
 949	conswitchp = &dummy_con;
 950#endif
 951#endif
 952
 953	if (mdesc->init_early)
 954		mdesc->init_early();
 955}
 956
 957
 958static int __init topology_init(void)
 959{
 960	int cpu;
 961
 962	for_each_possible_cpu(cpu) {
 963		struct cpuinfo_arm *cpuinfo = &per_cpu(cpu_data, cpu);
 964		cpuinfo->cpu.hotpluggable = 1;
 965		register_cpu(&cpuinfo->cpu, cpu);
 966	}
 967
 968	return 0;
 969}
 970subsys_initcall(topology_init);
 971
 972#ifdef CONFIG_HAVE_PROC_CPU
 973static int __init proc_cpu_init(void)
 974{
 975	struct proc_dir_entry *res;
 976
 977	res = proc_mkdir("cpu", NULL);
 978	if (!res)
 979		return -ENOMEM;
 980	return 0;
 981}
 982fs_initcall(proc_cpu_init);
 983#endif
 984
 985static const char *hwcap_str[] = {
 986	"swp",
 987	"half",
 988	"thumb",
 989	"26bit",
 990	"fastmult",
 991	"fpa",
 992	"vfp",
 993	"edsp",
 994	"java",
 995	"iwmmxt",
 996	"crunch",
 997	"thumbee",
 998	"neon",
 999	"vfpv3",
1000	"vfpv3d16",
1001	"tls",
1002	"vfpv4",
1003	"idiva",
1004	"idivt",
1005	"vfpd32",
1006	"lpae",
1007	"evtstrm",
1008	NULL
1009};
1010
1011static const char *hwcap2_str[] = {
1012	"aes",
1013	"pmull",
1014	"sha1",
1015	"sha2",
1016	"crc32",
1017	NULL
1018};
1019
1020static int c_show(struct seq_file *m, void *v)
1021{
1022	int i, j;
1023	u32 cpuid;
1024
1025	for_each_online_cpu(i) {
1026		/*
1027		 * glibc reads /proc/cpuinfo to determine the number of
1028		 * online processors, looking for lines beginning with
1029		 * "processor".  Give glibc what it expects.
1030		 */
1031		seq_printf(m, "processor\t: %d\n", i);
1032		cpuid = is_smp() ? per_cpu(cpu_data, i).cpuid : read_cpuid_id();
1033		seq_printf(m, "model name\t: %s rev %d (%s)\n",
1034			   cpu_name, cpuid & 15, elf_platform);
1035
 
 
 
 
 
 
 
 
 
1036		/* dump out the processor features */
1037		seq_puts(m, "Features\t: ");
1038
1039		for (j = 0; hwcap_str[j]; j++)
1040			if (elf_hwcap & (1 << j))
1041				seq_printf(m, "%s ", hwcap_str[j]);
1042
1043		for (j = 0; hwcap2_str[j]; j++)
1044			if (elf_hwcap2 & (1 << j))
1045				seq_printf(m, "%s ", hwcap2_str[j]);
1046
1047		seq_printf(m, "\nCPU implementer\t: 0x%02x\n", cpuid >> 24);
1048		seq_printf(m, "CPU architecture: %s\n",
1049			   proc_arch[cpu_architecture()]);
1050
1051		if ((cpuid & 0x0008f000) == 0x00000000) {
1052			/* pre-ARM7 */
1053			seq_printf(m, "CPU part\t: %07x\n", cpuid >> 4);
1054		} else {
1055			if ((cpuid & 0x0008f000) == 0x00007000) {
1056				/* ARM7 */
1057				seq_printf(m, "CPU variant\t: 0x%02x\n",
1058					   (cpuid >> 16) & 127);
1059			} else {
1060				/* post-ARM7 */
1061				seq_printf(m, "CPU variant\t: 0x%x\n",
1062					   (cpuid >> 20) & 15);
1063			}
1064			seq_printf(m, "CPU part\t: 0x%03x\n",
1065				   (cpuid >> 4) & 0xfff);
1066		}
1067		seq_printf(m, "CPU revision\t: %d\n\n", cpuid & 15);
1068	}
1069
1070	seq_printf(m, "Hardware\t: %s\n", machine_name);
1071	seq_printf(m, "Revision\t: %04x\n", system_rev);
1072	seq_printf(m, "Serial\t\t: %08x%08x\n",
1073		   system_serial_high, system_serial_low);
1074
1075	return 0;
1076}
1077
1078static void *c_start(struct seq_file *m, loff_t *pos)
1079{
1080	return *pos < 1 ? (void *)1 : NULL;
1081}
1082
1083static void *c_next(struct seq_file *m, void *v, loff_t *pos)
1084{
1085	++*pos;
1086	return NULL;
1087}
1088
1089static void c_stop(struct seq_file *m, void *v)
1090{
1091}
1092
1093const struct seq_operations cpuinfo_op = {
1094	.start	= c_start,
1095	.next	= c_next,
1096	.stop	= c_stop,
1097	.show	= c_show
1098};
v4.17
   1/*
   2 *  linux/arch/arm/kernel/setup.c
   3 *
   4 *  Copyright (C) 1995-2001 Russell King
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License version 2 as
   8 * published by the Free Software Foundation.
   9 */
  10#include <linux/efi.h>
  11#include <linux/export.h>
  12#include <linux/kernel.h>
  13#include <linux/stddef.h>
  14#include <linux/ioport.h>
  15#include <linux/delay.h>
  16#include <linux/utsname.h>
  17#include <linux/initrd.h>
  18#include <linux/console.h>
  19#include <linux/bootmem.h>
  20#include <linux/seq_file.h>
  21#include <linux/screen_info.h>
  22#include <linux/of_platform.h>
  23#include <linux/init.h>
  24#include <linux/kexec.h>
  25#include <linux/of_fdt.h>
  26#include <linux/cpu.h>
  27#include <linux/interrupt.h>
  28#include <linux/smp.h>
  29#include <linux/proc_fs.h>
  30#include <linux/memblock.h>
  31#include <linux/bug.h>
  32#include <linux/compiler.h>
  33#include <linux/sort.h>
  34#include <linux/psci.h>
  35
  36#include <asm/unified.h>
  37#include <asm/cp15.h>
  38#include <asm/cpu.h>
  39#include <asm/cputype.h>
  40#include <asm/efi.h>
  41#include <asm/elf.h>
  42#include <asm/early_ioremap.h>
  43#include <asm/fixmap.h>
  44#include <asm/procinfo.h>
  45#include <asm/psci.h>
  46#include <asm/sections.h>
  47#include <asm/setup.h>
  48#include <asm/smp_plat.h>
  49#include <asm/mach-types.h>
  50#include <asm/cacheflush.h>
  51#include <asm/cachetype.h>
  52#include <asm/tlbflush.h>
  53#include <asm/xen/hypervisor.h>
  54
  55#include <asm/prom.h>
  56#include <asm/mach/arch.h>
  57#include <asm/mach/irq.h>
  58#include <asm/mach/time.h>
  59#include <asm/system_info.h>
  60#include <asm/system_misc.h>
  61#include <asm/traps.h>
  62#include <asm/unwind.h>
  63#include <asm/memblock.h>
  64#include <asm/virt.h>
  65
  66#include "atags.h"
  67
  68
  69#if defined(CONFIG_FPE_NWFPE) || defined(CONFIG_FPE_FASTFPE)
  70char fpe_type[8];
  71
  72static int __init fpe_setup(char *line)
  73{
  74	memcpy(fpe_type, line, 8);
  75	return 1;
  76}
  77
  78__setup("fpe=", fpe_setup);
  79#endif
  80
  81extern void init_default_cache_policy(unsigned long);
  82extern void paging_init(const struct machine_desc *desc);
  83extern void early_mm_init(const struct machine_desc *);
  84extern void adjust_lowmem_bounds(void);
 
  85extern enum reboot_mode reboot_mode;
  86extern void setup_dma_zone(const struct machine_desc *desc);
  87
  88unsigned int processor_id;
  89EXPORT_SYMBOL(processor_id);
  90unsigned int __machine_arch_type __read_mostly;
  91EXPORT_SYMBOL(__machine_arch_type);
  92unsigned int cacheid __read_mostly;
  93EXPORT_SYMBOL(cacheid);
  94
  95unsigned int __atags_pointer __initdata;
  96
  97unsigned int system_rev;
  98EXPORT_SYMBOL(system_rev);
  99
 100const char *system_serial;
 101EXPORT_SYMBOL(system_serial);
 102
 103unsigned int system_serial_low;
 104EXPORT_SYMBOL(system_serial_low);
 105
 106unsigned int system_serial_high;
 107EXPORT_SYMBOL(system_serial_high);
 108
 109unsigned int elf_hwcap __read_mostly;
 110EXPORT_SYMBOL(elf_hwcap);
 111
 112unsigned int elf_hwcap2 __read_mostly;
 113EXPORT_SYMBOL(elf_hwcap2);
 114
 115
 116#ifdef MULTI_CPU
 117struct processor processor __ro_after_init;
 118#endif
 119#ifdef MULTI_TLB
 120struct cpu_tlb_fns cpu_tlb __ro_after_init;
 121#endif
 122#ifdef MULTI_USER
 123struct cpu_user_fns cpu_user __ro_after_init;
 124#endif
 125#ifdef MULTI_CACHE
 126struct cpu_cache_fns cpu_cache __ro_after_init;
 127#endif
 128#ifdef CONFIG_OUTER_CACHE
 129struct outer_cache_fns outer_cache __ro_after_init;
 130EXPORT_SYMBOL(outer_cache);
 131#endif
 132
 133/*
 134 * Cached cpu_architecture() result for use by assembler code.
 135 * C code should use the cpu_architecture() function instead of accessing this
 136 * variable directly.
 137 */
 138int __cpu_architecture __read_mostly = CPU_ARCH_UNKNOWN;
 139
 140struct stack {
 141	u32 irq[3];
 142	u32 abt[3];
 143	u32 und[3];
 144	u32 fiq[3];
 145} ____cacheline_aligned;
 146
 147#ifndef CONFIG_CPU_V7M
 148static struct stack stacks[NR_CPUS];
 149#endif
 150
 151char elf_platform[ELF_PLATFORM_SIZE];
 152EXPORT_SYMBOL(elf_platform);
 153
 154static const char *cpu_name;
 155static const char *machine_name;
 156static char __initdata cmd_line[COMMAND_LINE_SIZE];
 157const struct machine_desc *machine_desc __initdata;
 158
 159static union { char c[4]; unsigned long l; } endian_test __initdata = { { 'l', '?', '?', 'b' } };
 160#define ENDIANNESS ((char)endian_test.l)
 161
 162DEFINE_PER_CPU(struct cpuinfo_arm, cpu_data);
 163
 164/*
 165 * Standard memory resources
 166 */
 167static struct resource mem_res[] = {
 168	{
 169		.name = "Video RAM",
 170		.start = 0,
 171		.end = 0,
 172		.flags = IORESOURCE_MEM
 173	},
 174	{
 175		.name = "Kernel code",
 176		.start = 0,
 177		.end = 0,
 178		.flags = IORESOURCE_SYSTEM_RAM
 179	},
 180	{
 181		.name = "Kernel data",
 182		.start = 0,
 183		.end = 0,
 184		.flags = IORESOURCE_SYSTEM_RAM
 185	}
 186};
 187
 188#define video_ram   mem_res[0]
 189#define kernel_code mem_res[1]
 190#define kernel_data mem_res[2]
 191
 192static struct resource io_res[] = {
 193	{
 194		.name = "reserved",
 195		.start = 0x3bc,
 196		.end = 0x3be,
 197		.flags = IORESOURCE_IO | IORESOURCE_BUSY
 198	},
 199	{
 200		.name = "reserved",
 201		.start = 0x378,
 202		.end = 0x37f,
 203		.flags = IORESOURCE_IO | IORESOURCE_BUSY
 204	},
 205	{
 206		.name = "reserved",
 207		.start = 0x278,
 208		.end = 0x27f,
 209		.flags = IORESOURCE_IO | IORESOURCE_BUSY
 210	}
 211};
 212
 213#define lp0 io_res[0]
 214#define lp1 io_res[1]
 215#define lp2 io_res[2]
 216
 217static const char *proc_arch[] = {
 218	"undefined/unknown",
 219	"3",
 220	"4",
 221	"4T",
 222	"5",
 223	"5T",
 224	"5TE",
 225	"5TEJ",
 226	"6TEJ",
 227	"7",
 228	"7M",
 229	"?(12)",
 230	"?(13)",
 231	"?(14)",
 232	"?(15)",
 233	"?(16)",
 234	"?(17)",
 235};
 236
 237#ifdef CONFIG_CPU_V7M
 238static int __get_cpu_architecture(void)
 239{
 240	return CPU_ARCH_ARMv7M;
 241}
 242#else
 243static int __get_cpu_architecture(void)
 244{
 245	int cpu_arch;
 246
 247	if ((read_cpuid_id() & 0x0008f000) == 0) {
 248		cpu_arch = CPU_ARCH_UNKNOWN;
 249	} else if ((read_cpuid_id() & 0x0008f000) == 0x00007000) {
 250		cpu_arch = (read_cpuid_id() & (1 << 23)) ? CPU_ARCH_ARMv4T : CPU_ARCH_ARMv3;
 251	} else if ((read_cpuid_id() & 0x00080000) == 0x00000000) {
 252		cpu_arch = (read_cpuid_id() >> 16) & 7;
 253		if (cpu_arch)
 254			cpu_arch += CPU_ARCH_ARMv3;
 255	} else if ((read_cpuid_id() & 0x000f0000) == 0x000f0000) {
 
 
 256		/* Revised CPUID format. Read the Memory Model Feature
 257		 * Register 0 and check for VMSAv7 or PMSAv7 */
 258		unsigned int mmfr0 = read_cpuid_ext(CPUID_EXT_MMFR0);
 
 259		if ((mmfr0 & 0x0000000f) >= 0x00000003 ||
 260		    (mmfr0 & 0x000000f0) >= 0x00000030)
 261			cpu_arch = CPU_ARCH_ARMv7;
 262		else if ((mmfr0 & 0x0000000f) == 0x00000002 ||
 263			 (mmfr0 & 0x000000f0) == 0x00000020)
 264			cpu_arch = CPU_ARCH_ARMv6;
 265		else
 266			cpu_arch = CPU_ARCH_UNKNOWN;
 267	} else
 268		cpu_arch = CPU_ARCH_UNKNOWN;
 269
 270	return cpu_arch;
 271}
 272#endif
 273
 274int __pure cpu_architecture(void)
 275{
 276	BUG_ON(__cpu_architecture == CPU_ARCH_UNKNOWN);
 277
 278	return __cpu_architecture;
 279}
 280
 281static int cpu_has_aliasing_icache(unsigned int arch)
 282{
 283	int aliasing_icache;
 284	unsigned int id_reg, num_sets, line_size;
 285
 286	/* PIPT caches never alias. */
 287	if (icache_is_pipt())
 288		return 0;
 289
 290	/* arch specifies the register format */
 291	switch (arch) {
 292	case CPU_ARCH_ARMv7:
 293		set_csselr(CSSELR_ICACHE | CSSELR_L1);
 
 
 294		isb();
 295		id_reg = read_ccsidr();
 
 296		line_size = 4 << ((id_reg & 0x7) + 2);
 297		num_sets = ((id_reg >> 13) & 0x7fff) + 1;
 298		aliasing_icache = (line_size * num_sets) > PAGE_SIZE;
 299		break;
 300	case CPU_ARCH_ARMv6:
 301		aliasing_icache = read_cpuid_cachetype() & (1 << 11);
 302		break;
 303	default:
 304		/* I-cache aliases will be handled by D-cache aliasing code */
 305		aliasing_icache = 0;
 306	}
 307
 308	return aliasing_icache;
 309}
 310
 311static void __init cacheid_init(void)
 312{
 313	unsigned int arch = cpu_architecture();
 314
 315	if (arch >= CPU_ARCH_ARMv6) {
 
 
 316		unsigned int cachetype = read_cpuid_cachetype();
 317
 318		if ((arch == CPU_ARCH_ARMv7M) && !(cachetype & 0xf000f)) {
 319			cacheid = 0;
 320		} else if ((cachetype & (7 << 29)) == 4 << 29) {
 321			/* ARMv7 register format */
 322			arch = CPU_ARCH_ARMv7;
 323			cacheid = CACHEID_VIPT_NONALIASING;
 324			switch (cachetype & (3 << 14)) {
 325			case (1 << 14):
 326				cacheid |= CACHEID_ASID_TAGGED;
 327				break;
 328			case (3 << 14):
 329				cacheid |= CACHEID_PIPT;
 330				break;
 331			}
 332		} else {
 333			arch = CPU_ARCH_ARMv6;
 334			if (cachetype & (1 << 23))
 335				cacheid = CACHEID_VIPT_ALIASING;
 336			else
 337				cacheid = CACHEID_VIPT_NONALIASING;
 338		}
 339		if (cpu_has_aliasing_icache(arch))
 340			cacheid |= CACHEID_VIPT_I_ALIASING;
 341	} else {
 342		cacheid = CACHEID_VIVT;
 343	}
 344
 345	pr_info("CPU: %s data cache, %s instruction cache\n",
 346		cache_is_vivt() ? "VIVT" :
 347		cache_is_vipt_aliasing() ? "VIPT aliasing" :
 348		cache_is_vipt_nonaliasing() ? "PIPT / VIPT nonaliasing" : "unknown",
 349		cache_is_vivt() ? "VIVT" :
 350		icache_is_vivt_asid_tagged() ? "VIVT ASID tagged" :
 351		icache_is_vipt_aliasing() ? "VIPT aliasing" :
 352		icache_is_pipt() ? "PIPT" :
 353		cache_is_vipt_nonaliasing() ? "VIPT nonaliasing" : "unknown");
 354}
 355
 356/*
 357 * These functions re-use the assembly code in head.S, which
 358 * already provide the required functionality.
 359 */
 360extern struct proc_info_list *lookup_processor_type(unsigned int);
 361
 362void __init early_print(const char *str, ...)
 363{
 364	extern void printascii(const char *);
 365	char buf[256];
 366	va_list ap;
 367
 368	va_start(ap, str);
 369	vsnprintf(buf, sizeof(buf), str, ap);
 370	va_end(ap);
 371
 372#ifdef CONFIG_DEBUG_LL
 373	printascii(buf);
 374#endif
 375	printk("%s", buf);
 376}
 377
 378#ifdef CONFIG_ARM_PATCH_IDIV
 379
 380static inline u32 __attribute_const__ sdiv_instruction(void)
 381{
 382	if (IS_ENABLED(CONFIG_THUMB2_KERNEL)) {
 383		/* "sdiv r0, r0, r1" */
 384		u32 insn = __opcode_thumb32_compose(0xfb90, 0xf0f1);
 385		return __opcode_to_mem_thumb32(insn);
 386	}
 387
 388	/* "sdiv r0, r0, r1" */
 389	return __opcode_to_mem_arm(0xe710f110);
 390}
 391
 392static inline u32 __attribute_const__ udiv_instruction(void)
 393{
 394	if (IS_ENABLED(CONFIG_THUMB2_KERNEL)) {
 395		/* "udiv r0, r0, r1" */
 396		u32 insn = __opcode_thumb32_compose(0xfbb0, 0xf0f1);
 397		return __opcode_to_mem_thumb32(insn);
 398	}
 399
 400	/* "udiv r0, r0, r1" */
 401	return __opcode_to_mem_arm(0xe730f110);
 402}
 403
 404static inline u32 __attribute_const__ bx_lr_instruction(void)
 405{
 406	if (IS_ENABLED(CONFIG_THUMB2_KERNEL)) {
 407		/* "bx lr; nop" */
 408		u32 insn = __opcode_thumb32_compose(0x4770, 0x46c0);
 409		return __opcode_to_mem_thumb32(insn);
 410	}
 411
 412	/* "bx lr" */
 413	return __opcode_to_mem_arm(0xe12fff1e);
 414}
 415
 416static void __init patch_aeabi_idiv(void)
 417{
 418	extern void __aeabi_uidiv(void);
 419	extern void __aeabi_idiv(void);
 420	uintptr_t fn_addr;
 421	unsigned int mask;
 422
 423	mask = IS_ENABLED(CONFIG_THUMB2_KERNEL) ? HWCAP_IDIVT : HWCAP_IDIVA;
 424	if (!(elf_hwcap & mask))
 425		return;
 426
 427	pr_info("CPU: div instructions available: patching division code\n");
 428
 429	fn_addr = ((uintptr_t)&__aeabi_uidiv) & ~1;
 430	asm ("" : "+g" (fn_addr));
 431	((u32 *)fn_addr)[0] = udiv_instruction();
 432	((u32 *)fn_addr)[1] = bx_lr_instruction();
 433	flush_icache_range(fn_addr, fn_addr + 8);
 434
 435	fn_addr = ((uintptr_t)&__aeabi_idiv) & ~1;
 436	asm ("" : "+g" (fn_addr));
 437	((u32 *)fn_addr)[0] = sdiv_instruction();
 438	((u32 *)fn_addr)[1] = bx_lr_instruction();
 439	flush_icache_range(fn_addr, fn_addr + 8);
 440}
 441
 442#else
 443static inline void patch_aeabi_idiv(void) { }
 444#endif
 445
 446static void __init cpuid_init_hwcaps(void)
 447{
 448	int block;
 449	u32 isar5;
 450
 451	if (cpu_architecture() < CPU_ARCH_ARMv7)
 452		return;
 453
 454	block = cpuid_feature_extract(CPUID_EXT_ISAR0, 24);
 455	if (block >= 2)
 
 
 456		elf_hwcap |= HWCAP_IDIVA;
 457	if (block >= 1)
 458		elf_hwcap |= HWCAP_IDIVT;
 
 459
 460	/* LPAE implies atomic ldrd/strd instructions */
 461	block = cpuid_feature_extract(CPUID_EXT_MMFR0, 0);
 462	if (block >= 5)
 463		elf_hwcap |= HWCAP_LPAE;
 464
 465	/* check for supported v8 Crypto instructions */
 466	isar5 = read_cpuid_ext(CPUID_EXT_ISAR5);
 467
 468	block = cpuid_feature_extract_field(isar5, 4);
 469	if (block >= 2)
 470		elf_hwcap2 |= HWCAP2_PMULL;
 471	if (block >= 1)
 472		elf_hwcap2 |= HWCAP2_AES;
 473
 474	block = cpuid_feature_extract_field(isar5, 8);
 475	if (block >= 1)
 476		elf_hwcap2 |= HWCAP2_SHA1;
 477
 478	block = cpuid_feature_extract_field(isar5, 12);
 479	if (block >= 1)
 480		elf_hwcap2 |= HWCAP2_SHA2;
 481
 482	block = cpuid_feature_extract_field(isar5, 16);
 483	if (block >= 1)
 484		elf_hwcap2 |= HWCAP2_CRC32;
 485}
 486
 487static void __init elf_hwcap_fixup(void)
 488{
 489	unsigned id = read_cpuid_id();
 
 
 
 490
 491	/*
 492	 * HWCAP_TLS is available only on 1136 r1p0 and later,
 493	 * see also kuser_get_tls_init.
 494	 */
 495	if (read_cpuid_part() == ARM_CPU_PART_ARM1136 &&
 496	    ((id >> 20) & 3) == 0) {
 497		elf_hwcap &= ~HWCAP_TLS;
 498		return;
 499	}
 500
 501	/* Verify if CPUID scheme is implemented */
 502	if ((id & 0x000f0000) != 0x000f0000)
 503		return;
 504
 505	/*
 506	 * If the CPU supports LDREX/STREX and LDREXB/STREXB,
 507	 * avoid advertising SWP; it may not be atomic with
 508	 * multiprocessing cores.
 509	 */
 510	if (cpuid_feature_extract(CPUID_EXT_ISAR3, 12) > 1 ||
 511	    (cpuid_feature_extract(CPUID_EXT_ISAR3, 12) == 1 &&
 512	     cpuid_feature_extract(CPUID_EXT_ISAR4, 20) >= 3))
 513		elf_hwcap &= ~HWCAP_SWP;
 514}
 515
 516/*
 517 * cpu_init - initialise one CPU.
 518 *
 519 * cpu_init sets up the per-CPU stacks.
 520 */
 521void notrace cpu_init(void)
 522{
 523#ifndef CONFIG_CPU_V7M
 524	unsigned int cpu = smp_processor_id();
 525	struct stack *stk = &stacks[cpu];
 526
 527	if (cpu >= NR_CPUS) {
 528		pr_crit("CPU%u: bad primary CPU number\n", cpu);
 529		BUG();
 530	}
 531
 532	/*
 533	 * This only works on resume and secondary cores. For booting on the
 534	 * boot cpu, smp_prepare_boot_cpu is called after percpu area setup.
 535	 */
 536	set_my_cpu_offset(per_cpu_offset(cpu));
 537
 538	cpu_proc_init();
 539
 540	/*
 541	 * Define the placement constraint for the inline asm directive below.
 542	 * In Thumb-2, msr with an immediate value is not allowed.
 543	 */
 544#ifdef CONFIG_THUMB2_KERNEL
 545#define PLC	"r"
 546#else
 547#define PLC	"I"
 548#endif
 549
 550	/*
 551	 * setup stacks for re-entrant exception handlers
 552	 */
 553	__asm__ (
 554	"msr	cpsr_c, %1\n\t"
 555	"add	r14, %0, %2\n\t"
 556	"mov	sp, r14\n\t"
 557	"msr	cpsr_c, %3\n\t"
 558	"add	r14, %0, %4\n\t"
 559	"mov	sp, r14\n\t"
 560	"msr	cpsr_c, %5\n\t"
 561	"add	r14, %0, %6\n\t"
 562	"mov	sp, r14\n\t"
 563	"msr	cpsr_c, %7\n\t"
 564	"add	r14, %0, %8\n\t"
 565	"mov	sp, r14\n\t"
 566	"msr	cpsr_c, %9"
 567	    :
 568	    : "r" (stk),
 569	      PLC (PSR_F_BIT | PSR_I_BIT | IRQ_MODE),
 570	      "I" (offsetof(struct stack, irq[0])),
 571	      PLC (PSR_F_BIT | PSR_I_BIT | ABT_MODE),
 572	      "I" (offsetof(struct stack, abt[0])),
 573	      PLC (PSR_F_BIT | PSR_I_BIT | UND_MODE),
 574	      "I" (offsetof(struct stack, und[0])),
 575	      PLC (PSR_F_BIT | PSR_I_BIT | FIQ_MODE),
 576	      "I" (offsetof(struct stack, fiq[0])),
 577	      PLC (PSR_F_BIT | PSR_I_BIT | SVC_MODE)
 578	    : "r14");
 579#endif
 580}
 581
 582u32 __cpu_logical_map[NR_CPUS] = { [0 ... NR_CPUS-1] = MPIDR_INVALID };
 583
 584void __init smp_setup_processor_id(void)
 585{
 586	int i;
 587	u32 mpidr = is_smp() ? read_cpuid_mpidr() & MPIDR_HWID_BITMASK : 0;
 588	u32 cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0);
 589
 590	cpu_logical_map(0) = cpu;
 591	for (i = 1; i < nr_cpu_ids; ++i)
 592		cpu_logical_map(i) = i == cpu ? 0 : i;
 593
 594	/*
 595	 * clear __my_cpu_offset on boot CPU to avoid hang caused by
 596	 * using percpu variable early, for example, lockdep will
 597	 * access percpu variable inside lock_release
 598	 */
 599	set_my_cpu_offset(0);
 600
 601	pr_info("Booting Linux on physical CPU 0x%x\n", mpidr);
 602}
 603
 604struct mpidr_hash mpidr_hash;
 605#ifdef CONFIG_SMP
 606/**
 607 * smp_build_mpidr_hash - Pre-compute shifts required at each affinity
 608 *			  level in order to build a linear index from an
 609 *			  MPIDR value. Resulting algorithm is a collision
 610 *			  free hash carried out through shifting and ORing
 611 */
 612static void __init smp_build_mpidr_hash(void)
 613{
 614	u32 i, affinity;
 615	u32 fs[3], bits[3], ls, mask = 0;
 616	/*
 617	 * Pre-scan the list of MPIDRS and filter out bits that do
 618	 * not contribute to affinity levels, ie they never toggle.
 619	 */
 620	for_each_possible_cpu(i)
 621		mask |= (cpu_logical_map(i) ^ cpu_logical_map(0));
 622	pr_debug("mask of set bits 0x%x\n", mask);
 623	/*
 624	 * Find and stash the last and first bit set at all affinity levels to
 625	 * check how many bits are required to represent them.
 626	 */
 627	for (i = 0; i < 3; i++) {
 628		affinity = MPIDR_AFFINITY_LEVEL(mask, i);
 629		/*
 630		 * Find the MSB bit and LSB bits position
 631		 * to determine how many bits are required
 632		 * to express the affinity level.
 633		 */
 634		ls = fls(affinity);
 635		fs[i] = affinity ? ffs(affinity) - 1 : 0;
 636		bits[i] = ls - fs[i];
 637	}
 638	/*
 639	 * An index can be created from the MPIDR by isolating the
 640	 * significant bits at each affinity level and by shifting
 641	 * them in order to compress the 24 bits values space to a
 642	 * compressed set of values. This is equivalent to hashing
 643	 * the MPIDR through shifting and ORing. It is a collision free
 644	 * hash though not minimal since some levels might contain a number
 645	 * of CPUs that is not an exact power of 2 and their bit
 646	 * representation might contain holes, eg MPIDR[7:0] = {0x2, 0x80}.
 647	 */
 648	mpidr_hash.shift_aff[0] = fs[0];
 649	mpidr_hash.shift_aff[1] = MPIDR_LEVEL_BITS + fs[1] - bits[0];
 650	mpidr_hash.shift_aff[2] = 2*MPIDR_LEVEL_BITS + fs[2] -
 651						(bits[1] + bits[0]);
 652	mpidr_hash.mask = mask;
 653	mpidr_hash.bits = bits[2] + bits[1] + bits[0];
 654	pr_debug("MPIDR hash: aff0[%u] aff1[%u] aff2[%u] mask[0x%x] bits[%u]\n",
 655				mpidr_hash.shift_aff[0],
 656				mpidr_hash.shift_aff[1],
 657				mpidr_hash.shift_aff[2],
 658				mpidr_hash.mask,
 659				mpidr_hash.bits);
 660	/*
 661	 * 4x is an arbitrary value used to warn on a hash table much bigger
 662	 * than expected on most systems.
 663	 */
 664	if (mpidr_hash_size() > 4 * num_possible_cpus())
 665		pr_warn("Large number of MPIDR hash buckets detected\n");
 666	sync_cache_w(&mpidr_hash);
 667}
 668#endif
 669
 670static void __init setup_processor(void)
 671{
 672	struct proc_info_list *list;
 673
 674	/*
 675	 * locate processor in the list of supported processor
 676	 * types.  The linker builds this table for us from the
 677	 * entries in arch/arm/mm/proc-*.S
 678	 */
 679	list = lookup_processor_type(read_cpuid_id());
 680	if (!list) {
 681		pr_err("CPU configuration botched (ID %08x), unable to continue.\n",
 682		       read_cpuid_id());
 683		while (1);
 684	}
 685
 686	cpu_name = list->cpu_name;
 687	__cpu_architecture = __get_cpu_architecture();
 688
 689#ifdef MULTI_CPU
 690	processor = *list->proc;
 691#endif
 692#ifdef MULTI_TLB
 693	cpu_tlb = *list->tlb;
 694#endif
 695#ifdef MULTI_USER
 696	cpu_user = *list->user;
 697#endif
 698#ifdef MULTI_CACHE
 699	cpu_cache = *list->cache;
 700#endif
 701
 702	pr_info("CPU: %s [%08x] revision %d (ARMv%s), cr=%08lx\n",
 703		cpu_name, read_cpuid_id(), read_cpuid_id() & 15,
 704		proc_arch[cpu_architecture()], get_cr());
 705
 706	snprintf(init_utsname()->machine, __NEW_UTS_LEN + 1, "%s%c",
 707		 list->arch_name, ENDIANNESS);
 708	snprintf(elf_platform, ELF_PLATFORM_SIZE, "%s%c",
 709		 list->elf_name, ENDIANNESS);
 710	elf_hwcap = list->elf_hwcap;
 711
 712	cpuid_init_hwcaps();
 713	patch_aeabi_idiv();
 714
 715#ifndef CONFIG_ARM_THUMB
 716	elf_hwcap &= ~(HWCAP_THUMB | HWCAP_IDIVT);
 717#endif
 718#ifdef CONFIG_MMU
 719	init_default_cache_policy(list->__cpu_mm_mmu_flags);
 720#endif
 721	erratum_a15_798181_init();
 722
 723	elf_hwcap_fixup();
 724
 725	cacheid_init();
 726	cpu_init();
 727}
 728
 729void __init dump_machine_table(void)
 730{
 731	const struct machine_desc *p;
 732
 733	early_print("Available machine support:\n\nID (hex)\tNAME\n");
 734	for_each_machine_desc(p)
 735		early_print("%08x\t%s\n", p->nr, p->name);
 736
 737	early_print("\nPlease check your kernel config and/or bootloader.\n");
 738
 739	while (true)
 740		/* can't use cpu_relax() here as it may require MMU setup */;
 741}
 742
 743int __init arm_add_memory(u64 start, u64 size)
 744{
 
 745	u64 aligned_start;
 746
 
 
 
 
 
 
 747	/*
 748	 * Ensure that start/size are aligned to a page boundary.
 749	 * Size is rounded down, start is rounded up.
 750	 */
 
 751	aligned_start = PAGE_ALIGN(start);
 752	if (aligned_start > start + size)
 753		size = 0;
 754	else
 755		size -= aligned_start - start;
 756
 757#ifndef CONFIG_ARCH_PHYS_ADDR_T_64BIT
 758	if (aligned_start > ULONG_MAX) {
 759		pr_crit("Ignoring memory at 0x%08llx outside 32-bit physical address space\n",
 760			(long long)start);
 761		return -EINVAL;
 762	}
 763
 764	if (aligned_start + size > ULONG_MAX) {
 765		pr_crit("Truncating memory at 0x%08llx to fit in 32-bit physical address space\n",
 766			(long long)start);
 767		/*
 768		 * To ensure bank->start + bank->size is representable in
 769		 * 32 bits, we use ULONG_MAX as the upper limit rather than 4GB.
 770		 * This means we lose a page after masking.
 771		 */
 772		size = ULONG_MAX - aligned_start;
 773	}
 774#endif
 775
 776	if (aligned_start < PHYS_OFFSET) {
 777		if (aligned_start + size <= PHYS_OFFSET) {
 778			pr_info("Ignoring memory below PHYS_OFFSET: 0x%08llx-0x%08llx\n",
 779				aligned_start, aligned_start + size);
 780			return -EINVAL;
 781		}
 782
 783		pr_info("Ignoring memory below PHYS_OFFSET: 0x%08llx-0x%08llx\n",
 784			aligned_start, (u64)PHYS_OFFSET);
 785
 786		size -= PHYS_OFFSET - aligned_start;
 787		aligned_start = PHYS_OFFSET;
 788	}
 789
 790	start = aligned_start;
 791	size = size & ~(phys_addr_t)(PAGE_SIZE - 1);
 792
 793	/*
 794	 * Check whether this memory region has non-zero size or
 795	 * invalid node number.
 796	 */
 797	if (size == 0)
 798		return -EINVAL;
 799
 800	memblock_add(start, size);
 801	return 0;
 802}
 803
 804/*
 805 * Pick out the memory size.  We look for mem=size@start,
 806 * where start and size are "size[KkMm]"
 807 */
 808
 809static int __init early_mem(char *p)
 810{
 811	static int usermem __initdata = 0;
 812	u64 size;
 813	u64 start;
 814	char *endp;
 815
 816	/*
 817	 * If the user specifies memory size, we
 818	 * blow away any automatically generated
 819	 * size.
 820	 */
 821	if (usermem == 0) {
 822		usermem = 1;
 823		memblock_remove(memblock_start_of_DRAM(),
 824			memblock_end_of_DRAM() - memblock_start_of_DRAM());
 825	}
 826
 827	start = PHYS_OFFSET;
 828	size  = memparse(p, &endp);
 829	if (*endp == '@')
 830		start = memparse(endp + 1, NULL);
 831
 832	arm_add_memory(start, size);
 833
 834	return 0;
 835}
 836early_param("mem", early_mem);
 837
 838static void __init request_standard_resources(const struct machine_desc *mdesc)
 839{
 840	struct memblock_region *region;
 841	struct resource *res;
 842
 843	kernel_code.start   = virt_to_phys(_text);
 844	kernel_code.end     = virt_to_phys(__init_begin - 1);
 845	kernel_data.start   = virt_to_phys(_sdata);
 846	kernel_data.end     = virt_to_phys(_end - 1);
 847
 848	for_each_memblock(memory, region) {
 849		phys_addr_t start = __pfn_to_phys(memblock_region_memory_base_pfn(region));
 850		phys_addr_t end = __pfn_to_phys(memblock_region_memory_end_pfn(region)) - 1;
 851		unsigned long boot_alias_start;
 852
 853		/*
 854		 * Some systems have a special memory alias which is only
 855		 * used for booting.  We need to advertise this region to
 856		 * kexec-tools so they know where bootable RAM is located.
 857		 */
 858		boot_alias_start = phys_to_idmap(start);
 859		if (arm_has_idmap_alias() && boot_alias_start != IDMAP_INVALID_ADDR) {
 860			res = memblock_virt_alloc(sizeof(*res), 0);
 861			res->name = "System RAM (boot alias)";
 862			res->start = boot_alias_start;
 863			res->end = phys_to_idmap(end);
 864			res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
 865			request_resource(&iomem_resource, res);
 866		}
 867
 868		res = memblock_virt_alloc(sizeof(*res), 0);
 869		res->name  = "System RAM";
 870		res->start = start;
 871		res->end = end;
 872		res->flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
 873
 874		request_resource(&iomem_resource, res);
 875
 876		if (kernel_code.start >= res->start &&
 877		    kernel_code.end <= res->end)
 878			request_resource(res, &kernel_code);
 879		if (kernel_data.start >= res->start &&
 880		    kernel_data.end <= res->end)
 881			request_resource(res, &kernel_data);
 882	}
 883
 884	if (mdesc->video_start) {
 885		video_ram.start = mdesc->video_start;
 886		video_ram.end   = mdesc->video_end;
 887		request_resource(&iomem_resource, &video_ram);
 888	}
 889
 890	/*
 891	 * Some machines don't have the possibility of ever
 892	 * possessing lp0, lp1 or lp2
 893	 */
 894	if (mdesc->reserve_lp0)
 895		request_resource(&ioport_resource, &lp0);
 896	if (mdesc->reserve_lp1)
 897		request_resource(&ioport_resource, &lp1);
 898	if (mdesc->reserve_lp2)
 899		request_resource(&ioport_resource, &lp2);
 900}
 901
 902#if defined(CONFIG_VGA_CONSOLE) || defined(CONFIG_DUMMY_CONSOLE) || \
 903    defined(CONFIG_EFI)
 904struct screen_info screen_info = {
 905 .orig_video_lines	= 30,
 906 .orig_video_cols	= 80,
 907 .orig_video_mode	= 0,
 908 .orig_video_ega_bx	= 0,
 909 .orig_video_isVGA	= 1,
 910 .orig_video_points	= 8
 911};
 912#endif
 913
 914static int __init customize_machine(void)
 915{
 916	/*
 917	 * customizes platform devices, or adds new ones
 918	 * On DT based machines, we fall back to populating the
 919	 * machine from the device tree, if no callback is provided,
 920	 * otherwise we would always need an init_machine callback.
 921	 */
 922	if (machine_desc->init_machine)
 923		machine_desc->init_machine();
 924
 
 
 
 
 925	return 0;
 926}
 927arch_initcall(customize_machine);
 928
 929static int __init init_machine_late(void)
 930{
 931	struct device_node *root;
 932	int ret;
 933
 934	if (machine_desc->init_late)
 935		machine_desc->init_late();
 936
 937	root = of_find_node_by_path("/");
 938	if (root) {
 939		ret = of_property_read_string(root, "serial-number",
 940					      &system_serial);
 941		if (ret)
 942			system_serial = NULL;
 943	}
 944
 945	if (!system_serial)
 946		system_serial = kasprintf(GFP_KERNEL, "%08x%08x",
 947					  system_serial_high,
 948					  system_serial_low);
 949
 950	return 0;
 951}
 952late_initcall(init_machine_late);
 953
 954#ifdef CONFIG_KEXEC
 955/*
 956 * The crash region must be aligned to 128MB to avoid
 957 * zImage relocating below the reserved region.
 958 */
 959#define CRASH_ALIGN	(128 << 20)
 960
 961static inline unsigned long long get_total_mem(void)
 962{
 963	unsigned long total;
 964
 965	total = max_low_pfn - min_low_pfn;
 966	return total << PAGE_SHIFT;
 967}
 968
 969/**
 970 * reserve_crashkernel() - reserves memory are for crash kernel
 971 *
 972 * This function reserves memory area given in "crashkernel=" kernel command
 973 * line parameter. The memory reserved is used by a dump capture kernel when
 974 * primary kernel is crashing.
 975 */
 976static void __init reserve_crashkernel(void)
 977{
 978	unsigned long long crash_size, crash_base;
 979	unsigned long long total_mem;
 980	int ret;
 981
 982	total_mem = get_total_mem();
 983	ret = parse_crashkernel(boot_command_line, total_mem,
 984				&crash_size, &crash_base);
 985	if (ret)
 986		return;
 987
 988	if (crash_base <= 0) {
 989		unsigned long long crash_max = idmap_to_phys((u32)~0);
 990		unsigned long long lowmem_max = __pa(high_memory - 1) + 1;
 991		if (crash_max > lowmem_max)
 992			crash_max = lowmem_max;
 993		crash_base = memblock_find_in_range(CRASH_ALIGN, crash_max,
 994						    crash_size, CRASH_ALIGN);
 995		if (!crash_base) {
 996			pr_err("crashkernel reservation failed - No suitable area found.\n");
 997			return;
 998		}
 999	} else {
1000		unsigned long long start;
1001
1002		start = memblock_find_in_range(crash_base,
1003					       crash_base + crash_size,
1004					       crash_size, SECTION_SIZE);
1005		if (start != crash_base) {
1006			pr_err("crashkernel reservation failed - memory is in use.\n");
1007			return;
1008		}
1009	}
1010
1011	ret = memblock_reserve(crash_base, crash_size);
1012	if (ret < 0) {
1013		pr_warn("crashkernel reservation failed - memory is in use (0x%lx)\n",
1014			(unsigned long)crash_base);
1015		return;
1016	}
1017
1018	pr_info("Reserving %ldMB of memory at %ldMB for crashkernel (System RAM: %ldMB)\n",
1019		(unsigned long)(crash_size >> 20),
1020		(unsigned long)(crash_base >> 20),
1021		(unsigned long)(total_mem >> 20));
1022
1023	/* The crashk resource must always be located in normal mem */
1024	crashk_res.start = crash_base;
1025	crashk_res.end = crash_base + crash_size - 1;
1026	insert_resource(&iomem_resource, &crashk_res);
1027
1028	if (arm_has_idmap_alias()) {
1029		/*
1030		 * If we have a special RAM alias for use at boot, we
1031		 * need to advertise to kexec tools where the alias is.
1032		 */
1033		static struct resource crashk_boot_res = {
1034			.name = "Crash kernel (boot alias)",
1035			.flags = IORESOURCE_BUSY | IORESOURCE_MEM,
1036		};
1037
1038		crashk_boot_res.start = phys_to_idmap(crash_base);
1039		crashk_boot_res.end = crashk_boot_res.start + crash_size - 1;
1040		insert_resource(&iomem_resource, &crashk_boot_res);
1041	}
1042}
1043#else
1044static inline void reserve_crashkernel(void) {}
1045#endif /* CONFIG_KEXEC */
1046
 
 
 
 
 
 
 
1047void __init hyp_mode_check(void)
1048{
1049#ifdef CONFIG_ARM_VIRT_EXT
1050	sync_boot_mode();
1051
1052	if (is_hyp_mode_available()) {
1053		pr_info("CPU: All CPU(s) started in HYP mode.\n");
1054		pr_info("CPU: Virtualization extensions available.\n");
1055	} else if (is_hyp_mode_mismatched()) {
1056		pr_warn("CPU: WARNING: CPU(s) started in wrong/inconsistent modes (primary CPU mode 0x%x)\n",
1057			__boot_cpu_mode & MODE_MASK);
1058		pr_warn("CPU: This may indicate a broken bootloader or firmware.\n");
1059	} else
1060		pr_info("CPU: All CPU(s) started in SVC mode.\n");
1061#endif
1062}
1063
1064void __init setup_arch(char **cmdline_p)
1065{
1066	const struct machine_desc *mdesc;
1067
1068	setup_processor();
1069	mdesc = setup_machine_fdt(__atags_pointer);
1070	if (!mdesc)
1071		mdesc = setup_machine_tags(__atags_pointer, __machine_arch_type);
1072	if (!mdesc) {
1073		early_print("\nError: invalid dtb and unrecognized/unsupported machine ID\n");
1074		early_print("  r1=0x%08x, r2=0x%08x\n", __machine_arch_type,
1075			    __atags_pointer);
1076		if (__atags_pointer)
1077			early_print("  r2[]=%*ph\n", 16,
1078				    phys_to_virt(__atags_pointer));
1079		dump_machine_table();
1080	}
1081
1082	machine_desc = mdesc;
1083	machine_name = mdesc->name;
1084	dump_stack_set_arch_desc("%s", mdesc->name);
1085
1086	if (mdesc->reboot_mode != REBOOT_HARD)
1087		reboot_mode = mdesc->reboot_mode;
1088
1089	init_mm.start_code = (unsigned long) _text;
1090	init_mm.end_code   = (unsigned long) _etext;
1091	init_mm.end_data   = (unsigned long) _edata;
1092	init_mm.brk	   = (unsigned long) _end;
1093
1094	/* populate cmd_line too for later use, preserving boot_command_line */
1095	strlcpy(cmd_line, boot_command_line, COMMAND_LINE_SIZE);
1096	*cmdline_p = cmd_line;
1097
1098	early_fixmap_init();
1099	early_ioremap_init();
1100
1101	parse_early_param();
1102
1103#ifdef CONFIG_MMU
1104	early_mm_init(mdesc);
1105#endif
1106	setup_dma_zone(mdesc);
1107	xen_early_init();
1108	efi_init();
1109	/*
1110	 * Make sure the calculation for lowmem/highmem is set appropriately
1111	 * before reserving/allocating any mmeory
1112	 */
1113	adjust_lowmem_bounds();
1114	arm_memblock_init(mdesc);
1115	/* Memory may have been removed so recalculate the bounds. */
1116	adjust_lowmem_bounds();
1117
1118	early_ioremap_reset();
1119
1120	paging_init(mdesc);
1121	request_standard_resources(mdesc);
1122
1123	if (mdesc->restart)
1124		arm_pm_restart = mdesc->restart;
1125
1126	unflatten_device_tree();
1127
1128	arm_dt_init_cpu_maps();
1129	psci_dt_init();
1130#ifdef CONFIG_SMP
1131	if (is_smp()) {
1132		if (!mdesc->smp_init || !mdesc->smp_init()) {
1133			if (psci_smp_available())
1134				smp_set_ops(&psci_smp_ops);
1135			else if (mdesc->smp)
1136				smp_set_ops(mdesc->smp);
1137		}
1138		smp_init_cpus();
1139		smp_build_mpidr_hash();
1140	}
1141#endif
1142
1143	if (!is_smp())
1144		hyp_mode_check();
1145
1146	reserve_crashkernel();
1147
1148#ifdef CONFIG_MULTI_IRQ_HANDLER
1149	handle_arch_irq = mdesc->handle_irq;
1150#endif
1151
1152#ifdef CONFIG_VT
1153#if defined(CONFIG_VGA_CONSOLE)
1154	conswitchp = &vga_con;
1155#elif defined(CONFIG_DUMMY_CONSOLE)
1156	conswitchp = &dummy_con;
1157#endif
1158#endif
1159
1160	if (mdesc->init_early)
1161		mdesc->init_early();
1162}
1163
1164
1165static int __init topology_init(void)
1166{
1167	int cpu;
1168
1169	for_each_possible_cpu(cpu) {
1170		struct cpuinfo_arm *cpuinfo = &per_cpu(cpu_data, cpu);
1171		cpuinfo->cpu.hotpluggable = platform_can_hotplug_cpu(cpu);
1172		register_cpu(&cpuinfo->cpu, cpu);
1173	}
1174
1175	return 0;
1176}
1177subsys_initcall(topology_init);
1178
1179#ifdef CONFIG_HAVE_PROC_CPU
1180static int __init proc_cpu_init(void)
1181{
1182	struct proc_dir_entry *res;
1183
1184	res = proc_mkdir("cpu", NULL);
1185	if (!res)
1186		return -ENOMEM;
1187	return 0;
1188}
1189fs_initcall(proc_cpu_init);
1190#endif
1191
1192static const char *hwcap_str[] = {
1193	"swp",
1194	"half",
1195	"thumb",
1196	"26bit",
1197	"fastmult",
1198	"fpa",
1199	"vfp",
1200	"edsp",
1201	"java",
1202	"iwmmxt",
1203	"crunch",
1204	"thumbee",
1205	"neon",
1206	"vfpv3",
1207	"vfpv3d16",
1208	"tls",
1209	"vfpv4",
1210	"idiva",
1211	"idivt",
1212	"vfpd32",
1213	"lpae",
1214	"evtstrm",
1215	NULL
1216};
1217
1218static const char *hwcap2_str[] = {
1219	"aes",
1220	"pmull",
1221	"sha1",
1222	"sha2",
1223	"crc32",
1224	NULL
1225};
1226
1227static int c_show(struct seq_file *m, void *v)
1228{
1229	int i, j;
1230	u32 cpuid;
1231
1232	for_each_online_cpu(i) {
1233		/*
1234		 * glibc reads /proc/cpuinfo to determine the number of
1235		 * online processors, looking for lines beginning with
1236		 * "processor".  Give glibc what it expects.
1237		 */
1238		seq_printf(m, "processor\t: %d\n", i);
1239		cpuid = is_smp() ? per_cpu(cpu_data, i).cpuid : read_cpuid_id();
1240		seq_printf(m, "model name\t: %s rev %d (%s)\n",
1241			   cpu_name, cpuid & 15, elf_platform);
1242
1243#if defined(CONFIG_SMP)
1244		seq_printf(m, "BogoMIPS\t: %lu.%02lu\n",
1245			   per_cpu(cpu_data, i).loops_per_jiffy / (500000UL/HZ),
1246			   (per_cpu(cpu_data, i).loops_per_jiffy / (5000UL/HZ)) % 100);
1247#else
1248		seq_printf(m, "BogoMIPS\t: %lu.%02lu\n",
1249			   loops_per_jiffy / (500000/HZ),
1250			   (loops_per_jiffy / (5000/HZ)) % 100);
1251#endif
1252		/* dump out the processor features */
1253		seq_puts(m, "Features\t: ");
1254
1255		for (j = 0; hwcap_str[j]; j++)
1256			if (elf_hwcap & (1 << j))
1257				seq_printf(m, "%s ", hwcap_str[j]);
1258
1259		for (j = 0; hwcap2_str[j]; j++)
1260			if (elf_hwcap2 & (1 << j))
1261				seq_printf(m, "%s ", hwcap2_str[j]);
1262
1263		seq_printf(m, "\nCPU implementer\t: 0x%02x\n", cpuid >> 24);
1264		seq_printf(m, "CPU architecture: %s\n",
1265			   proc_arch[cpu_architecture()]);
1266
1267		if ((cpuid & 0x0008f000) == 0x00000000) {
1268			/* pre-ARM7 */
1269			seq_printf(m, "CPU part\t: %07x\n", cpuid >> 4);
1270		} else {
1271			if ((cpuid & 0x0008f000) == 0x00007000) {
1272				/* ARM7 */
1273				seq_printf(m, "CPU variant\t: 0x%02x\n",
1274					   (cpuid >> 16) & 127);
1275			} else {
1276				/* post-ARM7 */
1277				seq_printf(m, "CPU variant\t: 0x%x\n",
1278					   (cpuid >> 20) & 15);
1279			}
1280			seq_printf(m, "CPU part\t: 0x%03x\n",
1281				   (cpuid >> 4) & 0xfff);
1282		}
1283		seq_printf(m, "CPU revision\t: %d\n\n", cpuid & 15);
1284	}
1285
1286	seq_printf(m, "Hardware\t: %s\n", machine_name);
1287	seq_printf(m, "Revision\t: %04x\n", system_rev);
1288	seq_printf(m, "Serial\t\t: %s\n", system_serial);
 
1289
1290	return 0;
1291}
1292
1293static void *c_start(struct seq_file *m, loff_t *pos)
1294{
1295	return *pos < 1 ? (void *)1 : NULL;
1296}
1297
1298static void *c_next(struct seq_file *m, void *v, loff_t *pos)
1299{
1300	++*pos;
1301	return NULL;
1302}
1303
1304static void c_stop(struct seq_file *m, void *v)
1305{
1306}
1307
1308const struct seq_operations cpuinfo_op = {
1309	.start	= c_start,
1310	.next	= c_next,
1311	.stop	= c_stop,
1312	.show	= c_show
1313};