Loading...
1/*
2 * linux/arch/arm/kernel/setup.c
3 *
4 * Copyright (C) 1995-2001 Russell King
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10#include <linux/export.h>
11#include <linux/kernel.h>
12#include <linux/stddef.h>
13#include <linux/ioport.h>
14#include <linux/delay.h>
15#include <linux/utsname.h>
16#include <linux/initrd.h>
17#include <linux/console.h>
18#include <linux/bootmem.h>
19#include <linux/seq_file.h>
20#include <linux/screen_info.h>
21#include <linux/of_platform.h>
22#include <linux/init.h>
23#include <linux/kexec.h>
24#include <linux/of_fdt.h>
25#include <linux/cpu.h>
26#include <linux/interrupt.h>
27#include <linux/smp.h>
28#include <linux/proc_fs.h>
29#include <linux/memblock.h>
30#include <linux/bug.h>
31#include <linux/compiler.h>
32#include <linux/sort.h>
33
34#include <asm/unified.h>
35#include <asm/cp15.h>
36#include <asm/cpu.h>
37#include <asm/cputype.h>
38#include <asm/elf.h>
39#include <asm/procinfo.h>
40#include <asm/psci.h>
41#include <asm/sections.h>
42#include <asm/setup.h>
43#include <asm/smp_plat.h>
44#include <asm/mach-types.h>
45#include <asm/cacheflush.h>
46#include <asm/cachetype.h>
47#include <asm/tlbflush.h>
48
49#include <asm/prom.h>
50#include <asm/mach/arch.h>
51#include <asm/mach/irq.h>
52#include <asm/mach/time.h>
53#include <asm/system_info.h>
54#include <asm/system_misc.h>
55#include <asm/traps.h>
56#include <asm/unwind.h>
57#include <asm/memblock.h>
58#include <asm/virt.h>
59
60#include "atags.h"
61
62
63#if defined(CONFIG_FPE_NWFPE) || defined(CONFIG_FPE_FASTFPE)
64char fpe_type[8];
65
66static int __init fpe_setup(char *line)
67{
68 memcpy(fpe_type, line, 8);
69 return 1;
70}
71
72__setup("fpe=", fpe_setup);
73#endif
74
75extern void paging_init(const struct machine_desc *desc);
76extern void early_paging_init(const struct machine_desc *,
77 struct proc_info_list *);
78extern void sanity_check_meminfo(void);
79extern enum reboot_mode reboot_mode;
80extern void setup_dma_zone(const struct machine_desc *desc);
81
82unsigned int processor_id;
83EXPORT_SYMBOL(processor_id);
84unsigned int __machine_arch_type __read_mostly;
85EXPORT_SYMBOL(__machine_arch_type);
86unsigned int cacheid __read_mostly;
87EXPORT_SYMBOL(cacheid);
88
89unsigned int __atags_pointer __initdata;
90
91unsigned int system_rev;
92EXPORT_SYMBOL(system_rev);
93
94unsigned int system_serial_low;
95EXPORT_SYMBOL(system_serial_low);
96
97unsigned int system_serial_high;
98EXPORT_SYMBOL(system_serial_high);
99
100unsigned int elf_hwcap __read_mostly;
101EXPORT_SYMBOL(elf_hwcap);
102
103unsigned int elf_hwcap2 __read_mostly;
104EXPORT_SYMBOL(elf_hwcap2);
105
106
107#ifdef MULTI_CPU
108struct processor processor __read_mostly;
109#endif
110#ifdef MULTI_TLB
111struct cpu_tlb_fns cpu_tlb __read_mostly;
112#endif
113#ifdef MULTI_USER
114struct cpu_user_fns cpu_user __read_mostly;
115#endif
116#ifdef MULTI_CACHE
117struct cpu_cache_fns cpu_cache __read_mostly;
118#endif
119#ifdef CONFIG_OUTER_CACHE
120struct outer_cache_fns outer_cache __read_mostly;
121EXPORT_SYMBOL(outer_cache);
122#endif
123
124/*
125 * Cached cpu_architecture() result for use by assembler code.
126 * C code should use the cpu_architecture() function instead of accessing this
127 * variable directly.
128 */
129int __cpu_architecture __read_mostly = CPU_ARCH_UNKNOWN;
130
131struct stack {
132 u32 irq[3];
133 u32 abt[3];
134 u32 und[3];
135} ____cacheline_aligned;
136
137#ifndef CONFIG_CPU_V7M
138static struct stack stacks[NR_CPUS];
139#endif
140
141char elf_platform[ELF_PLATFORM_SIZE];
142EXPORT_SYMBOL(elf_platform);
143
144static const char *cpu_name;
145static const char *machine_name;
146static char __initdata cmd_line[COMMAND_LINE_SIZE];
147const struct machine_desc *machine_desc __initdata;
148
149static union { char c[4]; unsigned long l; } endian_test __initdata = { { 'l', '?', '?', 'b' } };
150#define ENDIANNESS ((char)endian_test.l)
151
152DEFINE_PER_CPU(struct cpuinfo_arm, cpu_data);
153
154/*
155 * Standard memory resources
156 */
157static struct resource mem_res[] = {
158 {
159 .name = "Video RAM",
160 .start = 0,
161 .end = 0,
162 .flags = IORESOURCE_MEM
163 },
164 {
165 .name = "Kernel code",
166 .start = 0,
167 .end = 0,
168 .flags = IORESOURCE_MEM
169 },
170 {
171 .name = "Kernel data",
172 .start = 0,
173 .end = 0,
174 .flags = IORESOURCE_MEM
175 }
176};
177
178#define video_ram mem_res[0]
179#define kernel_code mem_res[1]
180#define kernel_data mem_res[2]
181
182static struct resource io_res[] = {
183 {
184 .name = "reserved",
185 .start = 0x3bc,
186 .end = 0x3be,
187 .flags = IORESOURCE_IO | IORESOURCE_BUSY
188 },
189 {
190 .name = "reserved",
191 .start = 0x378,
192 .end = 0x37f,
193 .flags = IORESOURCE_IO | IORESOURCE_BUSY
194 },
195 {
196 .name = "reserved",
197 .start = 0x278,
198 .end = 0x27f,
199 .flags = IORESOURCE_IO | IORESOURCE_BUSY
200 }
201};
202
203#define lp0 io_res[0]
204#define lp1 io_res[1]
205#define lp2 io_res[2]
206
207static const char *proc_arch[] = {
208 "undefined/unknown",
209 "3",
210 "4",
211 "4T",
212 "5",
213 "5T",
214 "5TE",
215 "5TEJ",
216 "6TEJ",
217 "7",
218 "7M",
219 "?(12)",
220 "?(13)",
221 "?(14)",
222 "?(15)",
223 "?(16)",
224 "?(17)",
225};
226
227#ifdef CONFIG_CPU_V7M
228static int __get_cpu_architecture(void)
229{
230 return CPU_ARCH_ARMv7M;
231}
232#else
233static int __get_cpu_architecture(void)
234{
235 int cpu_arch;
236
237 if ((read_cpuid_id() & 0x0008f000) == 0) {
238 cpu_arch = CPU_ARCH_UNKNOWN;
239 } else if ((read_cpuid_id() & 0x0008f000) == 0x00007000) {
240 cpu_arch = (read_cpuid_id() & (1 << 23)) ? CPU_ARCH_ARMv4T : CPU_ARCH_ARMv3;
241 } else if ((read_cpuid_id() & 0x00080000) == 0x00000000) {
242 cpu_arch = (read_cpuid_id() >> 16) & 7;
243 if (cpu_arch)
244 cpu_arch += CPU_ARCH_ARMv3;
245 } else if ((read_cpuid_id() & 0x000f0000) == 0x000f0000) {
246 unsigned int mmfr0;
247
248 /* Revised CPUID format. Read the Memory Model Feature
249 * Register 0 and check for VMSAv7 or PMSAv7 */
250 asm("mrc p15, 0, %0, c0, c1, 4"
251 : "=r" (mmfr0));
252 if ((mmfr0 & 0x0000000f) >= 0x00000003 ||
253 (mmfr0 & 0x000000f0) >= 0x00000030)
254 cpu_arch = CPU_ARCH_ARMv7;
255 else if ((mmfr0 & 0x0000000f) == 0x00000002 ||
256 (mmfr0 & 0x000000f0) == 0x00000020)
257 cpu_arch = CPU_ARCH_ARMv6;
258 else
259 cpu_arch = CPU_ARCH_UNKNOWN;
260 } else
261 cpu_arch = CPU_ARCH_UNKNOWN;
262
263 return cpu_arch;
264}
265#endif
266
267int __pure cpu_architecture(void)
268{
269 BUG_ON(__cpu_architecture == CPU_ARCH_UNKNOWN);
270
271 return __cpu_architecture;
272}
273
274static int cpu_has_aliasing_icache(unsigned int arch)
275{
276 int aliasing_icache;
277 unsigned int id_reg, num_sets, line_size;
278
279 /* PIPT caches never alias. */
280 if (icache_is_pipt())
281 return 0;
282
283 /* arch specifies the register format */
284 switch (arch) {
285 case CPU_ARCH_ARMv7:
286 asm("mcr p15, 2, %0, c0, c0, 0 @ set CSSELR"
287 : /* No output operands */
288 : "r" (1));
289 isb();
290 asm("mrc p15, 1, %0, c0, c0, 0 @ read CCSIDR"
291 : "=r" (id_reg));
292 line_size = 4 << ((id_reg & 0x7) + 2);
293 num_sets = ((id_reg >> 13) & 0x7fff) + 1;
294 aliasing_icache = (line_size * num_sets) > PAGE_SIZE;
295 break;
296 case CPU_ARCH_ARMv6:
297 aliasing_icache = read_cpuid_cachetype() & (1 << 11);
298 break;
299 default:
300 /* I-cache aliases will be handled by D-cache aliasing code */
301 aliasing_icache = 0;
302 }
303
304 return aliasing_icache;
305}
306
307static void __init cacheid_init(void)
308{
309 unsigned int arch = cpu_architecture();
310
311 if (arch == CPU_ARCH_ARMv7M) {
312 cacheid = 0;
313 } else if (arch >= CPU_ARCH_ARMv6) {
314 unsigned int cachetype = read_cpuid_cachetype();
315 if ((cachetype & (7 << 29)) == 4 << 29) {
316 /* ARMv7 register format */
317 arch = CPU_ARCH_ARMv7;
318 cacheid = CACHEID_VIPT_NONALIASING;
319 switch (cachetype & (3 << 14)) {
320 case (1 << 14):
321 cacheid |= CACHEID_ASID_TAGGED;
322 break;
323 case (3 << 14):
324 cacheid |= CACHEID_PIPT;
325 break;
326 }
327 } else {
328 arch = CPU_ARCH_ARMv6;
329 if (cachetype & (1 << 23))
330 cacheid = CACHEID_VIPT_ALIASING;
331 else
332 cacheid = CACHEID_VIPT_NONALIASING;
333 }
334 if (cpu_has_aliasing_icache(arch))
335 cacheid |= CACHEID_VIPT_I_ALIASING;
336 } else {
337 cacheid = CACHEID_VIVT;
338 }
339
340 pr_info("CPU: %s data cache, %s instruction cache\n",
341 cache_is_vivt() ? "VIVT" :
342 cache_is_vipt_aliasing() ? "VIPT aliasing" :
343 cache_is_vipt_nonaliasing() ? "PIPT / VIPT nonaliasing" : "unknown",
344 cache_is_vivt() ? "VIVT" :
345 icache_is_vivt_asid_tagged() ? "VIVT ASID tagged" :
346 icache_is_vipt_aliasing() ? "VIPT aliasing" :
347 icache_is_pipt() ? "PIPT" :
348 cache_is_vipt_nonaliasing() ? "VIPT nonaliasing" : "unknown");
349}
350
351/*
352 * These functions re-use the assembly code in head.S, which
353 * already provide the required functionality.
354 */
355extern struct proc_info_list *lookup_processor_type(unsigned int);
356
357void __init early_print(const char *str, ...)
358{
359 extern void printascii(const char *);
360 char buf[256];
361 va_list ap;
362
363 va_start(ap, str);
364 vsnprintf(buf, sizeof(buf), str, ap);
365 va_end(ap);
366
367#ifdef CONFIG_DEBUG_LL
368 printascii(buf);
369#endif
370 printk("%s", buf);
371}
372
373static void __init cpuid_init_hwcaps(void)
374{
375 unsigned int divide_instrs, vmsa;
376
377 if (cpu_architecture() < CPU_ARCH_ARMv7)
378 return;
379
380 divide_instrs = (read_cpuid_ext(CPUID_EXT_ISAR0) & 0x0f000000) >> 24;
381
382 switch (divide_instrs) {
383 case 2:
384 elf_hwcap |= HWCAP_IDIVA;
385 case 1:
386 elf_hwcap |= HWCAP_IDIVT;
387 }
388
389 /* LPAE implies atomic ldrd/strd instructions */
390 vmsa = (read_cpuid_ext(CPUID_EXT_MMFR0) & 0xf) >> 0;
391 if (vmsa >= 5)
392 elf_hwcap |= HWCAP_LPAE;
393}
394
395static void __init feat_v6_fixup(void)
396{
397 int id = read_cpuid_id();
398
399 if ((id & 0xff0f0000) != 0x41070000)
400 return;
401
402 /*
403 * HWCAP_TLS is available only on 1136 r1p0 and later,
404 * see also kuser_get_tls_init.
405 */
406 if ((((id >> 4) & 0xfff) == 0xb36) && (((id >> 20) & 3) == 0))
407 elf_hwcap &= ~HWCAP_TLS;
408}
409
410/*
411 * cpu_init - initialise one CPU.
412 *
413 * cpu_init sets up the per-CPU stacks.
414 */
415void notrace cpu_init(void)
416{
417#ifndef CONFIG_CPU_V7M
418 unsigned int cpu = smp_processor_id();
419 struct stack *stk = &stacks[cpu];
420
421 if (cpu >= NR_CPUS) {
422 pr_crit("CPU%u: bad primary CPU number\n", cpu);
423 BUG();
424 }
425
426 /*
427 * This only works on resume and secondary cores. For booting on the
428 * boot cpu, smp_prepare_boot_cpu is called after percpu area setup.
429 */
430 set_my_cpu_offset(per_cpu_offset(cpu));
431
432 cpu_proc_init();
433
434 /*
435 * Define the placement constraint for the inline asm directive below.
436 * In Thumb-2, msr with an immediate value is not allowed.
437 */
438#ifdef CONFIG_THUMB2_KERNEL
439#define PLC "r"
440#else
441#define PLC "I"
442#endif
443
444 /*
445 * setup stacks for re-entrant exception handlers
446 */
447 __asm__ (
448 "msr cpsr_c, %1\n\t"
449 "add r14, %0, %2\n\t"
450 "mov sp, r14\n\t"
451 "msr cpsr_c, %3\n\t"
452 "add r14, %0, %4\n\t"
453 "mov sp, r14\n\t"
454 "msr cpsr_c, %5\n\t"
455 "add r14, %0, %6\n\t"
456 "mov sp, r14\n\t"
457 "msr cpsr_c, %7"
458 :
459 : "r" (stk),
460 PLC (PSR_F_BIT | PSR_I_BIT | IRQ_MODE),
461 "I" (offsetof(struct stack, irq[0])),
462 PLC (PSR_F_BIT | PSR_I_BIT | ABT_MODE),
463 "I" (offsetof(struct stack, abt[0])),
464 PLC (PSR_F_BIT | PSR_I_BIT | UND_MODE),
465 "I" (offsetof(struct stack, und[0])),
466 PLC (PSR_F_BIT | PSR_I_BIT | SVC_MODE)
467 : "r14");
468#endif
469}
470
471u32 __cpu_logical_map[NR_CPUS] = { [0 ... NR_CPUS-1] = MPIDR_INVALID };
472
473void __init smp_setup_processor_id(void)
474{
475 int i;
476 u32 mpidr = is_smp() ? read_cpuid_mpidr() & MPIDR_HWID_BITMASK : 0;
477 u32 cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0);
478
479 cpu_logical_map(0) = cpu;
480 for (i = 1; i < nr_cpu_ids; ++i)
481 cpu_logical_map(i) = i == cpu ? 0 : i;
482
483 /*
484 * clear __my_cpu_offset on boot CPU to avoid hang caused by
485 * using percpu variable early, for example, lockdep will
486 * access percpu variable inside lock_release
487 */
488 set_my_cpu_offset(0);
489
490 pr_info("Booting Linux on physical CPU 0x%x\n", mpidr);
491}
492
493struct mpidr_hash mpidr_hash;
494#ifdef CONFIG_SMP
495/**
496 * smp_build_mpidr_hash - Pre-compute shifts required at each affinity
497 * level in order to build a linear index from an
498 * MPIDR value. Resulting algorithm is a collision
499 * free hash carried out through shifting and ORing
500 */
501static void __init smp_build_mpidr_hash(void)
502{
503 u32 i, affinity;
504 u32 fs[3], bits[3], ls, mask = 0;
505 /*
506 * Pre-scan the list of MPIDRS and filter out bits that do
507 * not contribute to affinity levels, ie they never toggle.
508 */
509 for_each_possible_cpu(i)
510 mask |= (cpu_logical_map(i) ^ cpu_logical_map(0));
511 pr_debug("mask of set bits 0x%x\n", mask);
512 /*
513 * Find and stash the last and first bit set at all affinity levels to
514 * check how many bits are required to represent them.
515 */
516 for (i = 0; i < 3; i++) {
517 affinity = MPIDR_AFFINITY_LEVEL(mask, i);
518 /*
519 * Find the MSB bit and LSB bits position
520 * to determine how many bits are required
521 * to express the affinity level.
522 */
523 ls = fls(affinity);
524 fs[i] = affinity ? ffs(affinity) - 1 : 0;
525 bits[i] = ls - fs[i];
526 }
527 /*
528 * An index can be created from the MPIDR by isolating the
529 * significant bits at each affinity level and by shifting
530 * them in order to compress the 24 bits values space to a
531 * compressed set of values. This is equivalent to hashing
532 * the MPIDR through shifting and ORing. It is a collision free
533 * hash though not minimal since some levels might contain a number
534 * of CPUs that is not an exact power of 2 and their bit
535 * representation might contain holes, eg MPIDR[7:0] = {0x2, 0x80}.
536 */
537 mpidr_hash.shift_aff[0] = fs[0];
538 mpidr_hash.shift_aff[1] = MPIDR_LEVEL_BITS + fs[1] - bits[0];
539 mpidr_hash.shift_aff[2] = 2*MPIDR_LEVEL_BITS + fs[2] -
540 (bits[1] + bits[0]);
541 mpidr_hash.mask = mask;
542 mpidr_hash.bits = bits[2] + bits[1] + bits[0];
543 pr_debug("MPIDR hash: aff0[%u] aff1[%u] aff2[%u] mask[0x%x] bits[%u]\n",
544 mpidr_hash.shift_aff[0],
545 mpidr_hash.shift_aff[1],
546 mpidr_hash.shift_aff[2],
547 mpidr_hash.mask,
548 mpidr_hash.bits);
549 /*
550 * 4x is an arbitrary value used to warn on a hash table much bigger
551 * than expected on most systems.
552 */
553 if (mpidr_hash_size() > 4 * num_possible_cpus())
554 pr_warn("Large number of MPIDR hash buckets detected\n");
555 sync_cache_w(&mpidr_hash);
556}
557#endif
558
559static void __init setup_processor(void)
560{
561 struct proc_info_list *list;
562
563 /*
564 * locate processor in the list of supported processor
565 * types. The linker builds this table for us from the
566 * entries in arch/arm/mm/proc-*.S
567 */
568 list = lookup_processor_type(read_cpuid_id());
569 if (!list) {
570 pr_err("CPU configuration botched (ID %08x), unable to continue.\n",
571 read_cpuid_id());
572 while (1);
573 }
574
575 cpu_name = list->cpu_name;
576 __cpu_architecture = __get_cpu_architecture();
577
578#ifdef MULTI_CPU
579 processor = *list->proc;
580#endif
581#ifdef MULTI_TLB
582 cpu_tlb = *list->tlb;
583#endif
584#ifdef MULTI_USER
585 cpu_user = *list->user;
586#endif
587#ifdef MULTI_CACHE
588 cpu_cache = *list->cache;
589#endif
590
591 pr_info("CPU: %s [%08x] revision %d (ARMv%s), cr=%08lx\n",
592 cpu_name, read_cpuid_id(), read_cpuid_id() & 15,
593 proc_arch[cpu_architecture()], cr_alignment);
594
595 snprintf(init_utsname()->machine, __NEW_UTS_LEN + 1, "%s%c",
596 list->arch_name, ENDIANNESS);
597 snprintf(elf_platform, ELF_PLATFORM_SIZE, "%s%c",
598 list->elf_name, ENDIANNESS);
599 elf_hwcap = list->elf_hwcap;
600
601 cpuid_init_hwcaps();
602
603#ifndef CONFIG_ARM_THUMB
604 elf_hwcap &= ~(HWCAP_THUMB | HWCAP_IDIVT);
605#endif
606
607 erratum_a15_798181_init();
608
609 feat_v6_fixup();
610
611 cacheid_init();
612 cpu_init();
613}
614
615void __init dump_machine_table(void)
616{
617 const struct machine_desc *p;
618
619 early_print("Available machine support:\n\nID (hex)\tNAME\n");
620 for_each_machine_desc(p)
621 early_print("%08x\t%s\n", p->nr, p->name);
622
623 early_print("\nPlease check your kernel config and/or bootloader.\n");
624
625 while (true)
626 /* can't use cpu_relax() here as it may require MMU setup */;
627}
628
629int __init arm_add_memory(u64 start, u64 size)
630{
631 struct membank *bank = &meminfo.bank[meminfo.nr_banks];
632 u64 aligned_start;
633
634 if (meminfo.nr_banks >= NR_BANKS) {
635 pr_crit("NR_BANKS too low, ignoring memory at 0x%08llx\n",
636 (long long)start);
637 return -EINVAL;
638 }
639
640 /*
641 * Ensure that start/size are aligned to a page boundary.
642 * Size is appropriately rounded down, start is rounded up.
643 */
644 size -= start & ~PAGE_MASK;
645 aligned_start = PAGE_ALIGN(start);
646
647#ifndef CONFIG_ARCH_PHYS_ADDR_T_64BIT
648 if (aligned_start > ULONG_MAX) {
649 pr_crit("Ignoring memory at 0x%08llx outside 32-bit physical address space\n",
650 (long long)start);
651 return -EINVAL;
652 }
653
654 if (aligned_start + size > ULONG_MAX) {
655 pr_crit("Truncating memory at 0x%08llx to fit in 32-bit physical address space\n",
656 (long long)start);
657 /*
658 * To ensure bank->start + bank->size is representable in
659 * 32 bits, we use ULONG_MAX as the upper limit rather than 4GB.
660 * This means we lose a page after masking.
661 */
662 size = ULONG_MAX - aligned_start;
663 }
664#endif
665
666 if (aligned_start < PHYS_OFFSET) {
667 if (aligned_start + size <= PHYS_OFFSET) {
668 pr_info("Ignoring memory below PHYS_OFFSET: 0x%08llx-0x%08llx\n",
669 aligned_start, aligned_start + size);
670 return -EINVAL;
671 }
672
673 pr_info("Ignoring memory below PHYS_OFFSET: 0x%08llx-0x%08llx\n",
674 aligned_start, (u64)PHYS_OFFSET);
675
676 size -= PHYS_OFFSET - aligned_start;
677 aligned_start = PHYS_OFFSET;
678 }
679
680 bank->start = aligned_start;
681 bank->size = size & ~(phys_addr_t)(PAGE_SIZE - 1);
682
683 /*
684 * Check whether this memory region has non-zero size or
685 * invalid node number.
686 */
687 if (bank->size == 0)
688 return -EINVAL;
689
690 meminfo.nr_banks++;
691 return 0;
692}
693
694/*
695 * Pick out the memory size. We look for mem=size@start,
696 * where start and size are "size[KkMm]"
697 */
698static int __init early_mem(char *p)
699{
700 static int usermem __initdata = 0;
701 u64 size;
702 u64 start;
703 char *endp;
704
705 /*
706 * If the user specifies memory size, we
707 * blow away any automatically generated
708 * size.
709 */
710 if (usermem == 0) {
711 usermem = 1;
712 meminfo.nr_banks = 0;
713 }
714
715 start = PHYS_OFFSET;
716 size = memparse(p, &endp);
717 if (*endp == '@')
718 start = memparse(endp + 1, NULL);
719
720 arm_add_memory(start, size);
721
722 return 0;
723}
724early_param("mem", early_mem);
725
726static void __init request_standard_resources(const struct machine_desc *mdesc)
727{
728 struct memblock_region *region;
729 struct resource *res;
730
731 kernel_code.start = virt_to_phys(_text);
732 kernel_code.end = virt_to_phys(_etext - 1);
733 kernel_data.start = virt_to_phys(_sdata);
734 kernel_data.end = virt_to_phys(_end - 1);
735
736 for_each_memblock(memory, region) {
737 res = memblock_virt_alloc(sizeof(*res), 0);
738 res->name = "System RAM";
739 res->start = __pfn_to_phys(memblock_region_memory_base_pfn(region));
740 res->end = __pfn_to_phys(memblock_region_memory_end_pfn(region)) - 1;
741 res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
742
743 request_resource(&iomem_resource, res);
744
745 if (kernel_code.start >= res->start &&
746 kernel_code.end <= res->end)
747 request_resource(res, &kernel_code);
748 if (kernel_data.start >= res->start &&
749 kernel_data.end <= res->end)
750 request_resource(res, &kernel_data);
751 }
752
753 if (mdesc->video_start) {
754 video_ram.start = mdesc->video_start;
755 video_ram.end = mdesc->video_end;
756 request_resource(&iomem_resource, &video_ram);
757 }
758
759 /*
760 * Some machines don't have the possibility of ever
761 * possessing lp0, lp1 or lp2
762 */
763 if (mdesc->reserve_lp0)
764 request_resource(&ioport_resource, &lp0);
765 if (mdesc->reserve_lp1)
766 request_resource(&ioport_resource, &lp1);
767 if (mdesc->reserve_lp2)
768 request_resource(&ioport_resource, &lp2);
769}
770
771#if defined(CONFIG_VGA_CONSOLE) || defined(CONFIG_DUMMY_CONSOLE)
772struct screen_info screen_info = {
773 .orig_video_lines = 30,
774 .orig_video_cols = 80,
775 .orig_video_mode = 0,
776 .orig_video_ega_bx = 0,
777 .orig_video_isVGA = 1,
778 .orig_video_points = 8
779};
780#endif
781
782static int __init customize_machine(void)
783{
784 /*
785 * customizes platform devices, or adds new ones
786 * On DT based machines, we fall back to populating the
787 * machine from the device tree, if no callback is provided,
788 * otherwise we would always need an init_machine callback.
789 */
790 if (machine_desc->init_machine)
791 machine_desc->init_machine();
792#ifdef CONFIG_OF
793 else
794 of_platform_populate(NULL, of_default_bus_match_table,
795 NULL, NULL);
796#endif
797 return 0;
798}
799arch_initcall(customize_machine);
800
801static int __init init_machine_late(void)
802{
803 if (machine_desc->init_late)
804 machine_desc->init_late();
805 return 0;
806}
807late_initcall(init_machine_late);
808
809#ifdef CONFIG_KEXEC
810static inline unsigned long long get_total_mem(void)
811{
812 unsigned long total;
813
814 total = max_low_pfn - min_low_pfn;
815 return total << PAGE_SHIFT;
816}
817
818/**
819 * reserve_crashkernel() - reserves memory are for crash kernel
820 *
821 * This function reserves memory area given in "crashkernel=" kernel command
822 * line parameter. The memory reserved is used by a dump capture kernel when
823 * primary kernel is crashing.
824 */
825static void __init reserve_crashkernel(void)
826{
827 unsigned long long crash_size, crash_base;
828 unsigned long long total_mem;
829 int ret;
830
831 total_mem = get_total_mem();
832 ret = parse_crashkernel(boot_command_line, total_mem,
833 &crash_size, &crash_base);
834 if (ret)
835 return;
836
837 ret = memblock_reserve(crash_base, crash_size);
838 if (ret < 0) {
839 pr_warn("crashkernel reservation failed - memory is in use (0x%lx)\n",
840 (unsigned long)crash_base);
841 return;
842 }
843
844 pr_info("Reserving %ldMB of memory at %ldMB for crashkernel (System RAM: %ldMB)\n",
845 (unsigned long)(crash_size >> 20),
846 (unsigned long)(crash_base >> 20),
847 (unsigned long)(total_mem >> 20));
848
849 crashk_res.start = crash_base;
850 crashk_res.end = crash_base + crash_size - 1;
851 insert_resource(&iomem_resource, &crashk_res);
852}
853#else
854static inline void reserve_crashkernel(void) {}
855#endif /* CONFIG_KEXEC */
856
857static int __init meminfo_cmp(const void *_a, const void *_b)
858{
859 const struct membank *a = _a, *b = _b;
860 long cmp = bank_pfn_start(a) - bank_pfn_start(b);
861 return cmp < 0 ? -1 : cmp > 0 ? 1 : 0;
862}
863
864void __init hyp_mode_check(void)
865{
866#ifdef CONFIG_ARM_VIRT_EXT
867 sync_boot_mode();
868
869 if (is_hyp_mode_available()) {
870 pr_info("CPU: All CPU(s) started in HYP mode.\n");
871 pr_info("CPU: Virtualization extensions available.\n");
872 } else if (is_hyp_mode_mismatched()) {
873 pr_warn("CPU: WARNING: CPU(s) started in wrong/inconsistent modes (primary CPU mode 0x%x)\n",
874 __boot_cpu_mode & MODE_MASK);
875 pr_warn("CPU: This may indicate a broken bootloader or firmware.\n");
876 } else
877 pr_info("CPU: All CPU(s) started in SVC mode.\n");
878#endif
879}
880
881void __init setup_arch(char **cmdline_p)
882{
883 const struct machine_desc *mdesc;
884
885 setup_processor();
886 mdesc = setup_machine_fdt(__atags_pointer);
887 if (!mdesc)
888 mdesc = setup_machine_tags(__atags_pointer, __machine_arch_type);
889 machine_desc = mdesc;
890 machine_name = mdesc->name;
891
892 if (mdesc->reboot_mode != REBOOT_HARD)
893 reboot_mode = mdesc->reboot_mode;
894
895 init_mm.start_code = (unsigned long) _text;
896 init_mm.end_code = (unsigned long) _etext;
897 init_mm.end_data = (unsigned long) _edata;
898 init_mm.brk = (unsigned long) _end;
899
900 /* populate cmd_line too for later use, preserving boot_command_line */
901 strlcpy(cmd_line, boot_command_line, COMMAND_LINE_SIZE);
902 *cmdline_p = cmd_line;
903
904 parse_early_param();
905
906 sort(&meminfo.bank, meminfo.nr_banks, sizeof(meminfo.bank[0]), meminfo_cmp, NULL);
907
908 early_paging_init(mdesc, lookup_processor_type(read_cpuid_id()));
909 setup_dma_zone(mdesc);
910 sanity_check_meminfo();
911 arm_memblock_init(&meminfo, mdesc);
912
913 paging_init(mdesc);
914 request_standard_resources(mdesc);
915
916 if (mdesc->restart)
917 arm_pm_restart = mdesc->restart;
918
919 unflatten_device_tree();
920
921 arm_dt_init_cpu_maps();
922 psci_init();
923#ifdef CONFIG_SMP
924 if (is_smp()) {
925 if (!mdesc->smp_init || !mdesc->smp_init()) {
926 if (psci_smp_available())
927 smp_set_ops(&psci_smp_ops);
928 else if (mdesc->smp)
929 smp_set_ops(mdesc->smp);
930 }
931 smp_init_cpus();
932 smp_build_mpidr_hash();
933 }
934#endif
935
936 if (!is_smp())
937 hyp_mode_check();
938
939 reserve_crashkernel();
940
941#ifdef CONFIG_MULTI_IRQ_HANDLER
942 handle_arch_irq = mdesc->handle_irq;
943#endif
944
945#ifdef CONFIG_VT
946#if defined(CONFIG_VGA_CONSOLE)
947 conswitchp = &vga_con;
948#elif defined(CONFIG_DUMMY_CONSOLE)
949 conswitchp = &dummy_con;
950#endif
951#endif
952
953 if (mdesc->init_early)
954 mdesc->init_early();
955}
956
957
958static int __init topology_init(void)
959{
960 int cpu;
961
962 for_each_possible_cpu(cpu) {
963 struct cpuinfo_arm *cpuinfo = &per_cpu(cpu_data, cpu);
964 cpuinfo->cpu.hotpluggable = 1;
965 register_cpu(&cpuinfo->cpu, cpu);
966 }
967
968 return 0;
969}
970subsys_initcall(topology_init);
971
972#ifdef CONFIG_HAVE_PROC_CPU
973static int __init proc_cpu_init(void)
974{
975 struct proc_dir_entry *res;
976
977 res = proc_mkdir("cpu", NULL);
978 if (!res)
979 return -ENOMEM;
980 return 0;
981}
982fs_initcall(proc_cpu_init);
983#endif
984
985static const char *hwcap_str[] = {
986 "swp",
987 "half",
988 "thumb",
989 "26bit",
990 "fastmult",
991 "fpa",
992 "vfp",
993 "edsp",
994 "java",
995 "iwmmxt",
996 "crunch",
997 "thumbee",
998 "neon",
999 "vfpv3",
1000 "vfpv3d16",
1001 "tls",
1002 "vfpv4",
1003 "idiva",
1004 "idivt",
1005 "vfpd32",
1006 "lpae",
1007 "evtstrm",
1008 NULL
1009};
1010
1011static const char *hwcap2_str[] = {
1012 "aes",
1013 "pmull",
1014 "sha1",
1015 "sha2",
1016 "crc32",
1017 NULL
1018};
1019
1020static int c_show(struct seq_file *m, void *v)
1021{
1022 int i, j;
1023 u32 cpuid;
1024
1025 for_each_online_cpu(i) {
1026 /*
1027 * glibc reads /proc/cpuinfo to determine the number of
1028 * online processors, looking for lines beginning with
1029 * "processor". Give glibc what it expects.
1030 */
1031 seq_printf(m, "processor\t: %d\n", i);
1032 cpuid = is_smp() ? per_cpu(cpu_data, i).cpuid : read_cpuid_id();
1033 seq_printf(m, "model name\t: %s rev %d (%s)\n",
1034 cpu_name, cpuid & 15, elf_platform);
1035
1036 /* dump out the processor features */
1037 seq_puts(m, "Features\t: ");
1038
1039 for (j = 0; hwcap_str[j]; j++)
1040 if (elf_hwcap & (1 << j))
1041 seq_printf(m, "%s ", hwcap_str[j]);
1042
1043 for (j = 0; hwcap2_str[j]; j++)
1044 if (elf_hwcap2 & (1 << j))
1045 seq_printf(m, "%s ", hwcap2_str[j]);
1046
1047 seq_printf(m, "\nCPU implementer\t: 0x%02x\n", cpuid >> 24);
1048 seq_printf(m, "CPU architecture: %s\n",
1049 proc_arch[cpu_architecture()]);
1050
1051 if ((cpuid & 0x0008f000) == 0x00000000) {
1052 /* pre-ARM7 */
1053 seq_printf(m, "CPU part\t: %07x\n", cpuid >> 4);
1054 } else {
1055 if ((cpuid & 0x0008f000) == 0x00007000) {
1056 /* ARM7 */
1057 seq_printf(m, "CPU variant\t: 0x%02x\n",
1058 (cpuid >> 16) & 127);
1059 } else {
1060 /* post-ARM7 */
1061 seq_printf(m, "CPU variant\t: 0x%x\n",
1062 (cpuid >> 20) & 15);
1063 }
1064 seq_printf(m, "CPU part\t: 0x%03x\n",
1065 (cpuid >> 4) & 0xfff);
1066 }
1067 seq_printf(m, "CPU revision\t: %d\n\n", cpuid & 15);
1068 }
1069
1070 seq_printf(m, "Hardware\t: %s\n", machine_name);
1071 seq_printf(m, "Revision\t: %04x\n", system_rev);
1072 seq_printf(m, "Serial\t\t: %08x%08x\n",
1073 system_serial_high, system_serial_low);
1074
1075 return 0;
1076}
1077
1078static void *c_start(struct seq_file *m, loff_t *pos)
1079{
1080 return *pos < 1 ? (void *)1 : NULL;
1081}
1082
1083static void *c_next(struct seq_file *m, void *v, loff_t *pos)
1084{
1085 ++*pos;
1086 return NULL;
1087}
1088
1089static void c_stop(struct seq_file *m, void *v)
1090{
1091}
1092
1093const struct seq_operations cpuinfo_op = {
1094 .start = c_start,
1095 .next = c_next,
1096 .stop = c_stop,
1097 .show = c_show
1098};
1/*
2 * linux/arch/arm/kernel/setup.c
3 *
4 * Copyright (C) 1995-2001 Russell King
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10#include <linux/efi.h>
11#include <linux/export.h>
12#include <linux/kernel.h>
13#include <linux/stddef.h>
14#include <linux/ioport.h>
15#include <linux/delay.h>
16#include <linux/utsname.h>
17#include <linux/initrd.h>
18#include <linux/console.h>
19#include <linux/bootmem.h>
20#include <linux/seq_file.h>
21#include <linux/screen_info.h>
22#include <linux/of_platform.h>
23#include <linux/init.h>
24#include <linux/kexec.h>
25#include <linux/of_fdt.h>
26#include <linux/cpu.h>
27#include <linux/interrupt.h>
28#include <linux/smp.h>
29#include <linux/proc_fs.h>
30#include <linux/memblock.h>
31#include <linux/bug.h>
32#include <linux/compiler.h>
33#include <linux/sort.h>
34#include <linux/psci.h>
35
36#include <asm/unified.h>
37#include <asm/cp15.h>
38#include <asm/cpu.h>
39#include <asm/cputype.h>
40#include <asm/efi.h>
41#include <asm/elf.h>
42#include <asm/early_ioremap.h>
43#include <asm/fixmap.h>
44#include <asm/procinfo.h>
45#include <asm/psci.h>
46#include <asm/sections.h>
47#include <asm/setup.h>
48#include <asm/smp_plat.h>
49#include <asm/mach-types.h>
50#include <asm/cacheflush.h>
51#include <asm/cachetype.h>
52#include <asm/tlbflush.h>
53#include <asm/xen/hypervisor.h>
54
55#include <asm/prom.h>
56#include <asm/mach/arch.h>
57#include <asm/mach/irq.h>
58#include <asm/mach/time.h>
59#include <asm/system_info.h>
60#include <asm/system_misc.h>
61#include <asm/traps.h>
62#include <asm/unwind.h>
63#include <asm/memblock.h>
64#include <asm/virt.h>
65
66#include "atags.h"
67
68
69#if defined(CONFIG_FPE_NWFPE) || defined(CONFIG_FPE_FASTFPE)
70char fpe_type[8];
71
72static int __init fpe_setup(char *line)
73{
74 memcpy(fpe_type, line, 8);
75 return 1;
76}
77
78__setup("fpe=", fpe_setup);
79#endif
80
81extern void init_default_cache_policy(unsigned long);
82extern void paging_init(const struct machine_desc *desc);
83extern void early_mm_init(const struct machine_desc *);
84extern void adjust_lowmem_bounds(void);
85extern enum reboot_mode reboot_mode;
86extern void setup_dma_zone(const struct machine_desc *desc);
87
88unsigned int processor_id;
89EXPORT_SYMBOL(processor_id);
90unsigned int __machine_arch_type __read_mostly;
91EXPORT_SYMBOL(__machine_arch_type);
92unsigned int cacheid __read_mostly;
93EXPORT_SYMBOL(cacheid);
94
95unsigned int __atags_pointer __initdata;
96
97unsigned int system_rev;
98EXPORT_SYMBOL(system_rev);
99
100const char *system_serial;
101EXPORT_SYMBOL(system_serial);
102
103unsigned int system_serial_low;
104EXPORT_SYMBOL(system_serial_low);
105
106unsigned int system_serial_high;
107EXPORT_SYMBOL(system_serial_high);
108
109unsigned int elf_hwcap __read_mostly;
110EXPORT_SYMBOL(elf_hwcap);
111
112unsigned int elf_hwcap2 __read_mostly;
113EXPORT_SYMBOL(elf_hwcap2);
114
115
116#ifdef MULTI_CPU
117struct processor processor __ro_after_init;
118#endif
119#ifdef MULTI_TLB
120struct cpu_tlb_fns cpu_tlb __ro_after_init;
121#endif
122#ifdef MULTI_USER
123struct cpu_user_fns cpu_user __ro_after_init;
124#endif
125#ifdef MULTI_CACHE
126struct cpu_cache_fns cpu_cache __ro_after_init;
127#endif
128#ifdef CONFIG_OUTER_CACHE
129struct outer_cache_fns outer_cache __ro_after_init;
130EXPORT_SYMBOL(outer_cache);
131#endif
132
133/*
134 * Cached cpu_architecture() result for use by assembler code.
135 * C code should use the cpu_architecture() function instead of accessing this
136 * variable directly.
137 */
138int __cpu_architecture __read_mostly = CPU_ARCH_UNKNOWN;
139
140struct stack {
141 u32 irq[3];
142 u32 abt[3];
143 u32 und[3];
144 u32 fiq[3];
145} ____cacheline_aligned;
146
147#ifndef CONFIG_CPU_V7M
148static struct stack stacks[NR_CPUS];
149#endif
150
151char elf_platform[ELF_PLATFORM_SIZE];
152EXPORT_SYMBOL(elf_platform);
153
154static const char *cpu_name;
155static const char *machine_name;
156static char __initdata cmd_line[COMMAND_LINE_SIZE];
157const struct machine_desc *machine_desc __initdata;
158
159static union { char c[4]; unsigned long l; } endian_test __initdata = { { 'l', '?', '?', 'b' } };
160#define ENDIANNESS ((char)endian_test.l)
161
162DEFINE_PER_CPU(struct cpuinfo_arm, cpu_data);
163
164/*
165 * Standard memory resources
166 */
167static struct resource mem_res[] = {
168 {
169 .name = "Video RAM",
170 .start = 0,
171 .end = 0,
172 .flags = IORESOURCE_MEM
173 },
174 {
175 .name = "Kernel code",
176 .start = 0,
177 .end = 0,
178 .flags = IORESOURCE_SYSTEM_RAM
179 },
180 {
181 .name = "Kernel data",
182 .start = 0,
183 .end = 0,
184 .flags = IORESOURCE_SYSTEM_RAM
185 }
186};
187
188#define video_ram mem_res[0]
189#define kernel_code mem_res[1]
190#define kernel_data mem_res[2]
191
192static struct resource io_res[] = {
193 {
194 .name = "reserved",
195 .start = 0x3bc,
196 .end = 0x3be,
197 .flags = IORESOURCE_IO | IORESOURCE_BUSY
198 },
199 {
200 .name = "reserved",
201 .start = 0x378,
202 .end = 0x37f,
203 .flags = IORESOURCE_IO | IORESOURCE_BUSY
204 },
205 {
206 .name = "reserved",
207 .start = 0x278,
208 .end = 0x27f,
209 .flags = IORESOURCE_IO | IORESOURCE_BUSY
210 }
211};
212
213#define lp0 io_res[0]
214#define lp1 io_res[1]
215#define lp2 io_res[2]
216
217static const char *proc_arch[] = {
218 "undefined/unknown",
219 "3",
220 "4",
221 "4T",
222 "5",
223 "5T",
224 "5TE",
225 "5TEJ",
226 "6TEJ",
227 "7",
228 "7M",
229 "?(12)",
230 "?(13)",
231 "?(14)",
232 "?(15)",
233 "?(16)",
234 "?(17)",
235};
236
237#ifdef CONFIG_CPU_V7M
238static int __get_cpu_architecture(void)
239{
240 return CPU_ARCH_ARMv7M;
241}
242#else
243static int __get_cpu_architecture(void)
244{
245 int cpu_arch;
246
247 if ((read_cpuid_id() & 0x0008f000) == 0) {
248 cpu_arch = CPU_ARCH_UNKNOWN;
249 } else if ((read_cpuid_id() & 0x0008f000) == 0x00007000) {
250 cpu_arch = (read_cpuid_id() & (1 << 23)) ? CPU_ARCH_ARMv4T : CPU_ARCH_ARMv3;
251 } else if ((read_cpuid_id() & 0x00080000) == 0x00000000) {
252 cpu_arch = (read_cpuid_id() >> 16) & 7;
253 if (cpu_arch)
254 cpu_arch += CPU_ARCH_ARMv3;
255 } else if ((read_cpuid_id() & 0x000f0000) == 0x000f0000) {
256 /* Revised CPUID format. Read the Memory Model Feature
257 * Register 0 and check for VMSAv7 or PMSAv7 */
258 unsigned int mmfr0 = read_cpuid_ext(CPUID_EXT_MMFR0);
259 if ((mmfr0 & 0x0000000f) >= 0x00000003 ||
260 (mmfr0 & 0x000000f0) >= 0x00000030)
261 cpu_arch = CPU_ARCH_ARMv7;
262 else if ((mmfr0 & 0x0000000f) == 0x00000002 ||
263 (mmfr0 & 0x000000f0) == 0x00000020)
264 cpu_arch = CPU_ARCH_ARMv6;
265 else
266 cpu_arch = CPU_ARCH_UNKNOWN;
267 } else
268 cpu_arch = CPU_ARCH_UNKNOWN;
269
270 return cpu_arch;
271}
272#endif
273
274int __pure cpu_architecture(void)
275{
276 BUG_ON(__cpu_architecture == CPU_ARCH_UNKNOWN);
277
278 return __cpu_architecture;
279}
280
281static int cpu_has_aliasing_icache(unsigned int arch)
282{
283 int aliasing_icache;
284 unsigned int id_reg, num_sets, line_size;
285
286 /* PIPT caches never alias. */
287 if (icache_is_pipt())
288 return 0;
289
290 /* arch specifies the register format */
291 switch (arch) {
292 case CPU_ARCH_ARMv7:
293 set_csselr(CSSELR_ICACHE | CSSELR_L1);
294 isb();
295 id_reg = read_ccsidr();
296 line_size = 4 << ((id_reg & 0x7) + 2);
297 num_sets = ((id_reg >> 13) & 0x7fff) + 1;
298 aliasing_icache = (line_size * num_sets) > PAGE_SIZE;
299 break;
300 case CPU_ARCH_ARMv6:
301 aliasing_icache = read_cpuid_cachetype() & (1 << 11);
302 break;
303 default:
304 /* I-cache aliases will be handled by D-cache aliasing code */
305 aliasing_icache = 0;
306 }
307
308 return aliasing_icache;
309}
310
311static void __init cacheid_init(void)
312{
313 unsigned int arch = cpu_architecture();
314
315 if (arch >= CPU_ARCH_ARMv6) {
316 unsigned int cachetype = read_cpuid_cachetype();
317
318 if ((arch == CPU_ARCH_ARMv7M) && !(cachetype & 0xf000f)) {
319 cacheid = 0;
320 } else if ((cachetype & (7 << 29)) == 4 << 29) {
321 /* ARMv7 register format */
322 arch = CPU_ARCH_ARMv7;
323 cacheid = CACHEID_VIPT_NONALIASING;
324 switch (cachetype & (3 << 14)) {
325 case (1 << 14):
326 cacheid |= CACHEID_ASID_TAGGED;
327 break;
328 case (3 << 14):
329 cacheid |= CACHEID_PIPT;
330 break;
331 }
332 } else {
333 arch = CPU_ARCH_ARMv6;
334 if (cachetype & (1 << 23))
335 cacheid = CACHEID_VIPT_ALIASING;
336 else
337 cacheid = CACHEID_VIPT_NONALIASING;
338 }
339 if (cpu_has_aliasing_icache(arch))
340 cacheid |= CACHEID_VIPT_I_ALIASING;
341 } else {
342 cacheid = CACHEID_VIVT;
343 }
344
345 pr_info("CPU: %s data cache, %s instruction cache\n",
346 cache_is_vivt() ? "VIVT" :
347 cache_is_vipt_aliasing() ? "VIPT aliasing" :
348 cache_is_vipt_nonaliasing() ? "PIPT / VIPT nonaliasing" : "unknown",
349 cache_is_vivt() ? "VIVT" :
350 icache_is_vivt_asid_tagged() ? "VIVT ASID tagged" :
351 icache_is_vipt_aliasing() ? "VIPT aliasing" :
352 icache_is_pipt() ? "PIPT" :
353 cache_is_vipt_nonaliasing() ? "VIPT nonaliasing" : "unknown");
354}
355
356/*
357 * These functions re-use the assembly code in head.S, which
358 * already provide the required functionality.
359 */
360extern struct proc_info_list *lookup_processor_type(unsigned int);
361
362void __init early_print(const char *str, ...)
363{
364 extern void printascii(const char *);
365 char buf[256];
366 va_list ap;
367
368 va_start(ap, str);
369 vsnprintf(buf, sizeof(buf), str, ap);
370 va_end(ap);
371
372#ifdef CONFIG_DEBUG_LL
373 printascii(buf);
374#endif
375 printk("%s", buf);
376}
377
378#ifdef CONFIG_ARM_PATCH_IDIV
379
380static inline u32 __attribute_const__ sdiv_instruction(void)
381{
382 if (IS_ENABLED(CONFIG_THUMB2_KERNEL)) {
383 /* "sdiv r0, r0, r1" */
384 u32 insn = __opcode_thumb32_compose(0xfb90, 0xf0f1);
385 return __opcode_to_mem_thumb32(insn);
386 }
387
388 /* "sdiv r0, r0, r1" */
389 return __opcode_to_mem_arm(0xe710f110);
390}
391
392static inline u32 __attribute_const__ udiv_instruction(void)
393{
394 if (IS_ENABLED(CONFIG_THUMB2_KERNEL)) {
395 /* "udiv r0, r0, r1" */
396 u32 insn = __opcode_thumb32_compose(0xfbb0, 0xf0f1);
397 return __opcode_to_mem_thumb32(insn);
398 }
399
400 /* "udiv r0, r0, r1" */
401 return __opcode_to_mem_arm(0xe730f110);
402}
403
404static inline u32 __attribute_const__ bx_lr_instruction(void)
405{
406 if (IS_ENABLED(CONFIG_THUMB2_KERNEL)) {
407 /* "bx lr; nop" */
408 u32 insn = __opcode_thumb32_compose(0x4770, 0x46c0);
409 return __opcode_to_mem_thumb32(insn);
410 }
411
412 /* "bx lr" */
413 return __opcode_to_mem_arm(0xe12fff1e);
414}
415
416static void __init patch_aeabi_idiv(void)
417{
418 extern void __aeabi_uidiv(void);
419 extern void __aeabi_idiv(void);
420 uintptr_t fn_addr;
421 unsigned int mask;
422
423 mask = IS_ENABLED(CONFIG_THUMB2_KERNEL) ? HWCAP_IDIVT : HWCAP_IDIVA;
424 if (!(elf_hwcap & mask))
425 return;
426
427 pr_info("CPU: div instructions available: patching division code\n");
428
429 fn_addr = ((uintptr_t)&__aeabi_uidiv) & ~1;
430 asm ("" : "+g" (fn_addr));
431 ((u32 *)fn_addr)[0] = udiv_instruction();
432 ((u32 *)fn_addr)[1] = bx_lr_instruction();
433 flush_icache_range(fn_addr, fn_addr + 8);
434
435 fn_addr = ((uintptr_t)&__aeabi_idiv) & ~1;
436 asm ("" : "+g" (fn_addr));
437 ((u32 *)fn_addr)[0] = sdiv_instruction();
438 ((u32 *)fn_addr)[1] = bx_lr_instruction();
439 flush_icache_range(fn_addr, fn_addr + 8);
440}
441
442#else
443static inline void patch_aeabi_idiv(void) { }
444#endif
445
446static void __init cpuid_init_hwcaps(void)
447{
448 int block;
449 u32 isar5;
450
451 if (cpu_architecture() < CPU_ARCH_ARMv7)
452 return;
453
454 block = cpuid_feature_extract(CPUID_EXT_ISAR0, 24);
455 if (block >= 2)
456 elf_hwcap |= HWCAP_IDIVA;
457 if (block >= 1)
458 elf_hwcap |= HWCAP_IDIVT;
459
460 /* LPAE implies atomic ldrd/strd instructions */
461 block = cpuid_feature_extract(CPUID_EXT_MMFR0, 0);
462 if (block >= 5)
463 elf_hwcap |= HWCAP_LPAE;
464
465 /* check for supported v8 Crypto instructions */
466 isar5 = read_cpuid_ext(CPUID_EXT_ISAR5);
467
468 block = cpuid_feature_extract_field(isar5, 4);
469 if (block >= 2)
470 elf_hwcap2 |= HWCAP2_PMULL;
471 if (block >= 1)
472 elf_hwcap2 |= HWCAP2_AES;
473
474 block = cpuid_feature_extract_field(isar5, 8);
475 if (block >= 1)
476 elf_hwcap2 |= HWCAP2_SHA1;
477
478 block = cpuid_feature_extract_field(isar5, 12);
479 if (block >= 1)
480 elf_hwcap2 |= HWCAP2_SHA2;
481
482 block = cpuid_feature_extract_field(isar5, 16);
483 if (block >= 1)
484 elf_hwcap2 |= HWCAP2_CRC32;
485}
486
487static void __init elf_hwcap_fixup(void)
488{
489 unsigned id = read_cpuid_id();
490
491 /*
492 * HWCAP_TLS is available only on 1136 r1p0 and later,
493 * see also kuser_get_tls_init.
494 */
495 if (read_cpuid_part() == ARM_CPU_PART_ARM1136 &&
496 ((id >> 20) & 3) == 0) {
497 elf_hwcap &= ~HWCAP_TLS;
498 return;
499 }
500
501 /* Verify if CPUID scheme is implemented */
502 if ((id & 0x000f0000) != 0x000f0000)
503 return;
504
505 /*
506 * If the CPU supports LDREX/STREX and LDREXB/STREXB,
507 * avoid advertising SWP; it may not be atomic with
508 * multiprocessing cores.
509 */
510 if (cpuid_feature_extract(CPUID_EXT_ISAR3, 12) > 1 ||
511 (cpuid_feature_extract(CPUID_EXT_ISAR3, 12) == 1 &&
512 cpuid_feature_extract(CPUID_EXT_ISAR4, 20) >= 3))
513 elf_hwcap &= ~HWCAP_SWP;
514}
515
516/*
517 * cpu_init - initialise one CPU.
518 *
519 * cpu_init sets up the per-CPU stacks.
520 */
521void notrace cpu_init(void)
522{
523#ifndef CONFIG_CPU_V7M
524 unsigned int cpu = smp_processor_id();
525 struct stack *stk = &stacks[cpu];
526
527 if (cpu >= NR_CPUS) {
528 pr_crit("CPU%u: bad primary CPU number\n", cpu);
529 BUG();
530 }
531
532 /*
533 * This only works on resume and secondary cores. For booting on the
534 * boot cpu, smp_prepare_boot_cpu is called after percpu area setup.
535 */
536 set_my_cpu_offset(per_cpu_offset(cpu));
537
538 cpu_proc_init();
539
540 /*
541 * Define the placement constraint for the inline asm directive below.
542 * In Thumb-2, msr with an immediate value is not allowed.
543 */
544#ifdef CONFIG_THUMB2_KERNEL
545#define PLC "r"
546#else
547#define PLC "I"
548#endif
549
550 /*
551 * setup stacks for re-entrant exception handlers
552 */
553 __asm__ (
554 "msr cpsr_c, %1\n\t"
555 "add r14, %0, %2\n\t"
556 "mov sp, r14\n\t"
557 "msr cpsr_c, %3\n\t"
558 "add r14, %0, %4\n\t"
559 "mov sp, r14\n\t"
560 "msr cpsr_c, %5\n\t"
561 "add r14, %0, %6\n\t"
562 "mov sp, r14\n\t"
563 "msr cpsr_c, %7\n\t"
564 "add r14, %0, %8\n\t"
565 "mov sp, r14\n\t"
566 "msr cpsr_c, %9"
567 :
568 : "r" (stk),
569 PLC (PSR_F_BIT | PSR_I_BIT | IRQ_MODE),
570 "I" (offsetof(struct stack, irq[0])),
571 PLC (PSR_F_BIT | PSR_I_BIT | ABT_MODE),
572 "I" (offsetof(struct stack, abt[0])),
573 PLC (PSR_F_BIT | PSR_I_BIT | UND_MODE),
574 "I" (offsetof(struct stack, und[0])),
575 PLC (PSR_F_BIT | PSR_I_BIT | FIQ_MODE),
576 "I" (offsetof(struct stack, fiq[0])),
577 PLC (PSR_F_BIT | PSR_I_BIT | SVC_MODE)
578 : "r14");
579#endif
580}
581
582u32 __cpu_logical_map[NR_CPUS] = { [0 ... NR_CPUS-1] = MPIDR_INVALID };
583
584void __init smp_setup_processor_id(void)
585{
586 int i;
587 u32 mpidr = is_smp() ? read_cpuid_mpidr() & MPIDR_HWID_BITMASK : 0;
588 u32 cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0);
589
590 cpu_logical_map(0) = cpu;
591 for (i = 1; i < nr_cpu_ids; ++i)
592 cpu_logical_map(i) = i == cpu ? 0 : i;
593
594 /*
595 * clear __my_cpu_offset on boot CPU to avoid hang caused by
596 * using percpu variable early, for example, lockdep will
597 * access percpu variable inside lock_release
598 */
599 set_my_cpu_offset(0);
600
601 pr_info("Booting Linux on physical CPU 0x%x\n", mpidr);
602}
603
604struct mpidr_hash mpidr_hash;
605#ifdef CONFIG_SMP
606/**
607 * smp_build_mpidr_hash - Pre-compute shifts required at each affinity
608 * level in order to build a linear index from an
609 * MPIDR value. Resulting algorithm is a collision
610 * free hash carried out through shifting and ORing
611 */
612static void __init smp_build_mpidr_hash(void)
613{
614 u32 i, affinity;
615 u32 fs[3], bits[3], ls, mask = 0;
616 /*
617 * Pre-scan the list of MPIDRS and filter out bits that do
618 * not contribute to affinity levels, ie they never toggle.
619 */
620 for_each_possible_cpu(i)
621 mask |= (cpu_logical_map(i) ^ cpu_logical_map(0));
622 pr_debug("mask of set bits 0x%x\n", mask);
623 /*
624 * Find and stash the last and first bit set at all affinity levels to
625 * check how many bits are required to represent them.
626 */
627 for (i = 0; i < 3; i++) {
628 affinity = MPIDR_AFFINITY_LEVEL(mask, i);
629 /*
630 * Find the MSB bit and LSB bits position
631 * to determine how many bits are required
632 * to express the affinity level.
633 */
634 ls = fls(affinity);
635 fs[i] = affinity ? ffs(affinity) - 1 : 0;
636 bits[i] = ls - fs[i];
637 }
638 /*
639 * An index can be created from the MPIDR by isolating the
640 * significant bits at each affinity level and by shifting
641 * them in order to compress the 24 bits values space to a
642 * compressed set of values. This is equivalent to hashing
643 * the MPIDR through shifting and ORing. It is a collision free
644 * hash though not minimal since some levels might contain a number
645 * of CPUs that is not an exact power of 2 and their bit
646 * representation might contain holes, eg MPIDR[7:0] = {0x2, 0x80}.
647 */
648 mpidr_hash.shift_aff[0] = fs[0];
649 mpidr_hash.shift_aff[1] = MPIDR_LEVEL_BITS + fs[1] - bits[0];
650 mpidr_hash.shift_aff[2] = 2*MPIDR_LEVEL_BITS + fs[2] -
651 (bits[1] + bits[0]);
652 mpidr_hash.mask = mask;
653 mpidr_hash.bits = bits[2] + bits[1] + bits[0];
654 pr_debug("MPIDR hash: aff0[%u] aff1[%u] aff2[%u] mask[0x%x] bits[%u]\n",
655 mpidr_hash.shift_aff[0],
656 mpidr_hash.shift_aff[1],
657 mpidr_hash.shift_aff[2],
658 mpidr_hash.mask,
659 mpidr_hash.bits);
660 /*
661 * 4x is an arbitrary value used to warn on a hash table much bigger
662 * than expected on most systems.
663 */
664 if (mpidr_hash_size() > 4 * num_possible_cpus())
665 pr_warn("Large number of MPIDR hash buckets detected\n");
666 sync_cache_w(&mpidr_hash);
667}
668#endif
669
670static void __init setup_processor(void)
671{
672 struct proc_info_list *list;
673
674 /*
675 * locate processor in the list of supported processor
676 * types. The linker builds this table for us from the
677 * entries in arch/arm/mm/proc-*.S
678 */
679 list = lookup_processor_type(read_cpuid_id());
680 if (!list) {
681 pr_err("CPU configuration botched (ID %08x), unable to continue.\n",
682 read_cpuid_id());
683 while (1);
684 }
685
686 cpu_name = list->cpu_name;
687 __cpu_architecture = __get_cpu_architecture();
688
689#ifdef MULTI_CPU
690 processor = *list->proc;
691#endif
692#ifdef MULTI_TLB
693 cpu_tlb = *list->tlb;
694#endif
695#ifdef MULTI_USER
696 cpu_user = *list->user;
697#endif
698#ifdef MULTI_CACHE
699 cpu_cache = *list->cache;
700#endif
701
702 pr_info("CPU: %s [%08x] revision %d (ARMv%s), cr=%08lx\n",
703 cpu_name, read_cpuid_id(), read_cpuid_id() & 15,
704 proc_arch[cpu_architecture()], get_cr());
705
706 snprintf(init_utsname()->machine, __NEW_UTS_LEN + 1, "%s%c",
707 list->arch_name, ENDIANNESS);
708 snprintf(elf_platform, ELF_PLATFORM_SIZE, "%s%c",
709 list->elf_name, ENDIANNESS);
710 elf_hwcap = list->elf_hwcap;
711
712 cpuid_init_hwcaps();
713 patch_aeabi_idiv();
714
715#ifndef CONFIG_ARM_THUMB
716 elf_hwcap &= ~(HWCAP_THUMB | HWCAP_IDIVT);
717#endif
718#ifdef CONFIG_MMU
719 init_default_cache_policy(list->__cpu_mm_mmu_flags);
720#endif
721 erratum_a15_798181_init();
722
723 elf_hwcap_fixup();
724
725 cacheid_init();
726 cpu_init();
727}
728
729void __init dump_machine_table(void)
730{
731 const struct machine_desc *p;
732
733 early_print("Available machine support:\n\nID (hex)\tNAME\n");
734 for_each_machine_desc(p)
735 early_print("%08x\t%s\n", p->nr, p->name);
736
737 early_print("\nPlease check your kernel config and/or bootloader.\n");
738
739 while (true)
740 /* can't use cpu_relax() here as it may require MMU setup */;
741}
742
743int __init arm_add_memory(u64 start, u64 size)
744{
745 u64 aligned_start;
746
747 /*
748 * Ensure that start/size are aligned to a page boundary.
749 * Size is rounded down, start is rounded up.
750 */
751 aligned_start = PAGE_ALIGN(start);
752 if (aligned_start > start + size)
753 size = 0;
754 else
755 size -= aligned_start - start;
756
757#ifndef CONFIG_ARCH_PHYS_ADDR_T_64BIT
758 if (aligned_start > ULONG_MAX) {
759 pr_crit("Ignoring memory at 0x%08llx outside 32-bit physical address space\n",
760 (long long)start);
761 return -EINVAL;
762 }
763
764 if (aligned_start + size > ULONG_MAX) {
765 pr_crit("Truncating memory at 0x%08llx to fit in 32-bit physical address space\n",
766 (long long)start);
767 /*
768 * To ensure bank->start + bank->size is representable in
769 * 32 bits, we use ULONG_MAX as the upper limit rather than 4GB.
770 * This means we lose a page after masking.
771 */
772 size = ULONG_MAX - aligned_start;
773 }
774#endif
775
776 if (aligned_start < PHYS_OFFSET) {
777 if (aligned_start + size <= PHYS_OFFSET) {
778 pr_info("Ignoring memory below PHYS_OFFSET: 0x%08llx-0x%08llx\n",
779 aligned_start, aligned_start + size);
780 return -EINVAL;
781 }
782
783 pr_info("Ignoring memory below PHYS_OFFSET: 0x%08llx-0x%08llx\n",
784 aligned_start, (u64)PHYS_OFFSET);
785
786 size -= PHYS_OFFSET - aligned_start;
787 aligned_start = PHYS_OFFSET;
788 }
789
790 start = aligned_start;
791 size = size & ~(phys_addr_t)(PAGE_SIZE - 1);
792
793 /*
794 * Check whether this memory region has non-zero size or
795 * invalid node number.
796 */
797 if (size == 0)
798 return -EINVAL;
799
800 memblock_add(start, size);
801 return 0;
802}
803
804/*
805 * Pick out the memory size. We look for mem=size@start,
806 * where start and size are "size[KkMm]"
807 */
808
809static int __init early_mem(char *p)
810{
811 static int usermem __initdata = 0;
812 u64 size;
813 u64 start;
814 char *endp;
815
816 /*
817 * If the user specifies memory size, we
818 * blow away any automatically generated
819 * size.
820 */
821 if (usermem == 0) {
822 usermem = 1;
823 memblock_remove(memblock_start_of_DRAM(),
824 memblock_end_of_DRAM() - memblock_start_of_DRAM());
825 }
826
827 start = PHYS_OFFSET;
828 size = memparse(p, &endp);
829 if (*endp == '@')
830 start = memparse(endp + 1, NULL);
831
832 arm_add_memory(start, size);
833
834 return 0;
835}
836early_param("mem", early_mem);
837
838static void __init request_standard_resources(const struct machine_desc *mdesc)
839{
840 struct memblock_region *region;
841 struct resource *res;
842
843 kernel_code.start = virt_to_phys(_text);
844 kernel_code.end = virt_to_phys(__init_begin - 1);
845 kernel_data.start = virt_to_phys(_sdata);
846 kernel_data.end = virt_to_phys(_end - 1);
847
848 for_each_memblock(memory, region) {
849 phys_addr_t start = __pfn_to_phys(memblock_region_memory_base_pfn(region));
850 phys_addr_t end = __pfn_to_phys(memblock_region_memory_end_pfn(region)) - 1;
851 unsigned long boot_alias_start;
852
853 /*
854 * Some systems have a special memory alias which is only
855 * used for booting. We need to advertise this region to
856 * kexec-tools so they know where bootable RAM is located.
857 */
858 boot_alias_start = phys_to_idmap(start);
859 if (arm_has_idmap_alias() && boot_alias_start != IDMAP_INVALID_ADDR) {
860 res = memblock_virt_alloc(sizeof(*res), 0);
861 res->name = "System RAM (boot alias)";
862 res->start = boot_alias_start;
863 res->end = phys_to_idmap(end);
864 res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
865 request_resource(&iomem_resource, res);
866 }
867
868 res = memblock_virt_alloc(sizeof(*res), 0);
869 res->name = "System RAM";
870 res->start = start;
871 res->end = end;
872 res->flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
873
874 request_resource(&iomem_resource, res);
875
876 if (kernel_code.start >= res->start &&
877 kernel_code.end <= res->end)
878 request_resource(res, &kernel_code);
879 if (kernel_data.start >= res->start &&
880 kernel_data.end <= res->end)
881 request_resource(res, &kernel_data);
882 }
883
884 if (mdesc->video_start) {
885 video_ram.start = mdesc->video_start;
886 video_ram.end = mdesc->video_end;
887 request_resource(&iomem_resource, &video_ram);
888 }
889
890 /*
891 * Some machines don't have the possibility of ever
892 * possessing lp0, lp1 or lp2
893 */
894 if (mdesc->reserve_lp0)
895 request_resource(&ioport_resource, &lp0);
896 if (mdesc->reserve_lp1)
897 request_resource(&ioport_resource, &lp1);
898 if (mdesc->reserve_lp2)
899 request_resource(&ioport_resource, &lp2);
900}
901
902#if defined(CONFIG_VGA_CONSOLE) || defined(CONFIG_DUMMY_CONSOLE) || \
903 defined(CONFIG_EFI)
904struct screen_info screen_info = {
905 .orig_video_lines = 30,
906 .orig_video_cols = 80,
907 .orig_video_mode = 0,
908 .orig_video_ega_bx = 0,
909 .orig_video_isVGA = 1,
910 .orig_video_points = 8
911};
912#endif
913
914static int __init customize_machine(void)
915{
916 /*
917 * customizes platform devices, or adds new ones
918 * On DT based machines, we fall back to populating the
919 * machine from the device tree, if no callback is provided,
920 * otherwise we would always need an init_machine callback.
921 */
922 if (machine_desc->init_machine)
923 machine_desc->init_machine();
924
925 return 0;
926}
927arch_initcall(customize_machine);
928
929static int __init init_machine_late(void)
930{
931 struct device_node *root;
932 int ret;
933
934 if (machine_desc->init_late)
935 machine_desc->init_late();
936
937 root = of_find_node_by_path("/");
938 if (root) {
939 ret = of_property_read_string(root, "serial-number",
940 &system_serial);
941 if (ret)
942 system_serial = NULL;
943 }
944
945 if (!system_serial)
946 system_serial = kasprintf(GFP_KERNEL, "%08x%08x",
947 system_serial_high,
948 system_serial_low);
949
950 return 0;
951}
952late_initcall(init_machine_late);
953
954#ifdef CONFIG_KEXEC
955/*
956 * The crash region must be aligned to 128MB to avoid
957 * zImage relocating below the reserved region.
958 */
959#define CRASH_ALIGN (128 << 20)
960
961static inline unsigned long long get_total_mem(void)
962{
963 unsigned long total;
964
965 total = max_low_pfn - min_low_pfn;
966 return total << PAGE_SHIFT;
967}
968
969/**
970 * reserve_crashkernel() - reserves memory are for crash kernel
971 *
972 * This function reserves memory area given in "crashkernel=" kernel command
973 * line parameter. The memory reserved is used by a dump capture kernel when
974 * primary kernel is crashing.
975 */
976static void __init reserve_crashkernel(void)
977{
978 unsigned long long crash_size, crash_base;
979 unsigned long long total_mem;
980 int ret;
981
982 total_mem = get_total_mem();
983 ret = parse_crashkernel(boot_command_line, total_mem,
984 &crash_size, &crash_base);
985 if (ret)
986 return;
987
988 if (crash_base <= 0) {
989 unsigned long long crash_max = idmap_to_phys((u32)~0);
990 unsigned long long lowmem_max = __pa(high_memory - 1) + 1;
991 if (crash_max > lowmem_max)
992 crash_max = lowmem_max;
993 crash_base = memblock_find_in_range(CRASH_ALIGN, crash_max,
994 crash_size, CRASH_ALIGN);
995 if (!crash_base) {
996 pr_err("crashkernel reservation failed - No suitable area found.\n");
997 return;
998 }
999 } else {
1000 unsigned long long start;
1001
1002 start = memblock_find_in_range(crash_base,
1003 crash_base + crash_size,
1004 crash_size, SECTION_SIZE);
1005 if (start != crash_base) {
1006 pr_err("crashkernel reservation failed - memory is in use.\n");
1007 return;
1008 }
1009 }
1010
1011 ret = memblock_reserve(crash_base, crash_size);
1012 if (ret < 0) {
1013 pr_warn("crashkernel reservation failed - memory is in use (0x%lx)\n",
1014 (unsigned long)crash_base);
1015 return;
1016 }
1017
1018 pr_info("Reserving %ldMB of memory at %ldMB for crashkernel (System RAM: %ldMB)\n",
1019 (unsigned long)(crash_size >> 20),
1020 (unsigned long)(crash_base >> 20),
1021 (unsigned long)(total_mem >> 20));
1022
1023 /* The crashk resource must always be located in normal mem */
1024 crashk_res.start = crash_base;
1025 crashk_res.end = crash_base + crash_size - 1;
1026 insert_resource(&iomem_resource, &crashk_res);
1027
1028 if (arm_has_idmap_alias()) {
1029 /*
1030 * If we have a special RAM alias for use at boot, we
1031 * need to advertise to kexec tools where the alias is.
1032 */
1033 static struct resource crashk_boot_res = {
1034 .name = "Crash kernel (boot alias)",
1035 .flags = IORESOURCE_BUSY | IORESOURCE_MEM,
1036 };
1037
1038 crashk_boot_res.start = phys_to_idmap(crash_base);
1039 crashk_boot_res.end = crashk_boot_res.start + crash_size - 1;
1040 insert_resource(&iomem_resource, &crashk_boot_res);
1041 }
1042}
1043#else
1044static inline void reserve_crashkernel(void) {}
1045#endif /* CONFIG_KEXEC */
1046
1047void __init hyp_mode_check(void)
1048{
1049#ifdef CONFIG_ARM_VIRT_EXT
1050 sync_boot_mode();
1051
1052 if (is_hyp_mode_available()) {
1053 pr_info("CPU: All CPU(s) started in HYP mode.\n");
1054 pr_info("CPU: Virtualization extensions available.\n");
1055 } else if (is_hyp_mode_mismatched()) {
1056 pr_warn("CPU: WARNING: CPU(s) started in wrong/inconsistent modes (primary CPU mode 0x%x)\n",
1057 __boot_cpu_mode & MODE_MASK);
1058 pr_warn("CPU: This may indicate a broken bootloader or firmware.\n");
1059 } else
1060 pr_info("CPU: All CPU(s) started in SVC mode.\n");
1061#endif
1062}
1063
1064void __init setup_arch(char **cmdline_p)
1065{
1066 const struct machine_desc *mdesc;
1067
1068 setup_processor();
1069 mdesc = setup_machine_fdt(__atags_pointer);
1070 if (!mdesc)
1071 mdesc = setup_machine_tags(__atags_pointer, __machine_arch_type);
1072 if (!mdesc) {
1073 early_print("\nError: invalid dtb and unrecognized/unsupported machine ID\n");
1074 early_print(" r1=0x%08x, r2=0x%08x\n", __machine_arch_type,
1075 __atags_pointer);
1076 if (__atags_pointer)
1077 early_print(" r2[]=%*ph\n", 16,
1078 phys_to_virt(__atags_pointer));
1079 dump_machine_table();
1080 }
1081
1082 machine_desc = mdesc;
1083 machine_name = mdesc->name;
1084 dump_stack_set_arch_desc("%s", mdesc->name);
1085
1086 if (mdesc->reboot_mode != REBOOT_HARD)
1087 reboot_mode = mdesc->reboot_mode;
1088
1089 init_mm.start_code = (unsigned long) _text;
1090 init_mm.end_code = (unsigned long) _etext;
1091 init_mm.end_data = (unsigned long) _edata;
1092 init_mm.brk = (unsigned long) _end;
1093
1094 /* populate cmd_line too for later use, preserving boot_command_line */
1095 strlcpy(cmd_line, boot_command_line, COMMAND_LINE_SIZE);
1096 *cmdline_p = cmd_line;
1097
1098 early_fixmap_init();
1099 early_ioremap_init();
1100
1101 parse_early_param();
1102
1103#ifdef CONFIG_MMU
1104 early_mm_init(mdesc);
1105#endif
1106 setup_dma_zone(mdesc);
1107 xen_early_init();
1108 efi_init();
1109 /*
1110 * Make sure the calculation for lowmem/highmem is set appropriately
1111 * before reserving/allocating any mmeory
1112 */
1113 adjust_lowmem_bounds();
1114 arm_memblock_init(mdesc);
1115 /* Memory may have been removed so recalculate the bounds. */
1116 adjust_lowmem_bounds();
1117
1118 early_ioremap_reset();
1119
1120 paging_init(mdesc);
1121 request_standard_resources(mdesc);
1122
1123 if (mdesc->restart)
1124 arm_pm_restart = mdesc->restart;
1125
1126 unflatten_device_tree();
1127
1128 arm_dt_init_cpu_maps();
1129 psci_dt_init();
1130#ifdef CONFIG_SMP
1131 if (is_smp()) {
1132 if (!mdesc->smp_init || !mdesc->smp_init()) {
1133 if (psci_smp_available())
1134 smp_set_ops(&psci_smp_ops);
1135 else if (mdesc->smp)
1136 smp_set_ops(mdesc->smp);
1137 }
1138 smp_init_cpus();
1139 smp_build_mpidr_hash();
1140 }
1141#endif
1142
1143 if (!is_smp())
1144 hyp_mode_check();
1145
1146 reserve_crashkernel();
1147
1148#ifdef CONFIG_MULTI_IRQ_HANDLER
1149 handle_arch_irq = mdesc->handle_irq;
1150#endif
1151
1152#ifdef CONFIG_VT
1153#if defined(CONFIG_VGA_CONSOLE)
1154 conswitchp = &vga_con;
1155#elif defined(CONFIG_DUMMY_CONSOLE)
1156 conswitchp = &dummy_con;
1157#endif
1158#endif
1159
1160 if (mdesc->init_early)
1161 mdesc->init_early();
1162}
1163
1164
1165static int __init topology_init(void)
1166{
1167 int cpu;
1168
1169 for_each_possible_cpu(cpu) {
1170 struct cpuinfo_arm *cpuinfo = &per_cpu(cpu_data, cpu);
1171 cpuinfo->cpu.hotpluggable = platform_can_hotplug_cpu(cpu);
1172 register_cpu(&cpuinfo->cpu, cpu);
1173 }
1174
1175 return 0;
1176}
1177subsys_initcall(topology_init);
1178
1179#ifdef CONFIG_HAVE_PROC_CPU
1180static int __init proc_cpu_init(void)
1181{
1182 struct proc_dir_entry *res;
1183
1184 res = proc_mkdir("cpu", NULL);
1185 if (!res)
1186 return -ENOMEM;
1187 return 0;
1188}
1189fs_initcall(proc_cpu_init);
1190#endif
1191
1192static const char *hwcap_str[] = {
1193 "swp",
1194 "half",
1195 "thumb",
1196 "26bit",
1197 "fastmult",
1198 "fpa",
1199 "vfp",
1200 "edsp",
1201 "java",
1202 "iwmmxt",
1203 "crunch",
1204 "thumbee",
1205 "neon",
1206 "vfpv3",
1207 "vfpv3d16",
1208 "tls",
1209 "vfpv4",
1210 "idiva",
1211 "idivt",
1212 "vfpd32",
1213 "lpae",
1214 "evtstrm",
1215 NULL
1216};
1217
1218static const char *hwcap2_str[] = {
1219 "aes",
1220 "pmull",
1221 "sha1",
1222 "sha2",
1223 "crc32",
1224 NULL
1225};
1226
1227static int c_show(struct seq_file *m, void *v)
1228{
1229 int i, j;
1230 u32 cpuid;
1231
1232 for_each_online_cpu(i) {
1233 /*
1234 * glibc reads /proc/cpuinfo to determine the number of
1235 * online processors, looking for lines beginning with
1236 * "processor". Give glibc what it expects.
1237 */
1238 seq_printf(m, "processor\t: %d\n", i);
1239 cpuid = is_smp() ? per_cpu(cpu_data, i).cpuid : read_cpuid_id();
1240 seq_printf(m, "model name\t: %s rev %d (%s)\n",
1241 cpu_name, cpuid & 15, elf_platform);
1242
1243#if defined(CONFIG_SMP)
1244 seq_printf(m, "BogoMIPS\t: %lu.%02lu\n",
1245 per_cpu(cpu_data, i).loops_per_jiffy / (500000UL/HZ),
1246 (per_cpu(cpu_data, i).loops_per_jiffy / (5000UL/HZ)) % 100);
1247#else
1248 seq_printf(m, "BogoMIPS\t: %lu.%02lu\n",
1249 loops_per_jiffy / (500000/HZ),
1250 (loops_per_jiffy / (5000/HZ)) % 100);
1251#endif
1252 /* dump out the processor features */
1253 seq_puts(m, "Features\t: ");
1254
1255 for (j = 0; hwcap_str[j]; j++)
1256 if (elf_hwcap & (1 << j))
1257 seq_printf(m, "%s ", hwcap_str[j]);
1258
1259 for (j = 0; hwcap2_str[j]; j++)
1260 if (elf_hwcap2 & (1 << j))
1261 seq_printf(m, "%s ", hwcap2_str[j]);
1262
1263 seq_printf(m, "\nCPU implementer\t: 0x%02x\n", cpuid >> 24);
1264 seq_printf(m, "CPU architecture: %s\n",
1265 proc_arch[cpu_architecture()]);
1266
1267 if ((cpuid & 0x0008f000) == 0x00000000) {
1268 /* pre-ARM7 */
1269 seq_printf(m, "CPU part\t: %07x\n", cpuid >> 4);
1270 } else {
1271 if ((cpuid & 0x0008f000) == 0x00007000) {
1272 /* ARM7 */
1273 seq_printf(m, "CPU variant\t: 0x%02x\n",
1274 (cpuid >> 16) & 127);
1275 } else {
1276 /* post-ARM7 */
1277 seq_printf(m, "CPU variant\t: 0x%x\n",
1278 (cpuid >> 20) & 15);
1279 }
1280 seq_printf(m, "CPU part\t: 0x%03x\n",
1281 (cpuid >> 4) & 0xfff);
1282 }
1283 seq_printf(m, "CPU revision\t: %d\n\n", cpuid & 15);
1284 }
1285
1286 seq_printf(m, "Hardware\t: %s\n", machine_name);
1287 seq_printf(m, "Revision\t: %04x\n", system_rev);
1288 seq_printf(m, "Serial\t\t: %s\n", system_serial);
1289
1290 return 0;
1291}
1292
1293static void *c_start(struct seq_file *m, loff_t *pos)
1294{
1295 return *pos < 1 ? (void *)1 : NULL;
1296}
1297
1298static void *c_next(struct seq_file *m, void *v, loff_t *pos)
1299{
1300 ++*pos;
1301 return NULL;
1302}
1303
1304static void c_stop(struct seq_file *m, void *v)
1305{
1306}
1307
1308const struct seq_operations cpuinfo_op = {
1309 .start = c_start,
1310 .next = c_next,
1311 .stop = c_stop,
1312 .show = c_show
1313};