Linux Audio

Check our new training course

Loading...
v3.15
 
   1/*
   2 *  linux/arch/arm/kernel/setup.c
   3 *
   4 *  Copyright (C) 1995-2001 Russell King
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License version 2 as
   8 * published by the Free Software Foundation.
   9 */
 
  10#include <linux/export.h>
  11#include <linux/kernel.h>
  12#include <linux/stddef.h>
  13#include <linux/ioport.h>
  14#include <linux/delay.h>
  15#include <linux/utsname.h>
  16#include <linux/initrd.h>
  17#include <linux/console.h>
  18#include <linux/bootmem.h>
  19#include <linux/seq_file.h>
  20#include <linux/screen_info.h>
  21#include <linux/of_platform.h>
  22#include <linux/init.h>
  23#include <linux/kexec.h>
 
  24#include <linux/of_fdt.h>
  25#include <linux/cpu.h>
  26#include <linux/interrupt.h>
  27#include <linux/smp.h>
  28#include <linux/proc_fs.h>
  29#include <linux/memblock.h>
  30#include <linux/bug.h>
  31#include <linux/compiler.h>
  32#include <linux/sort.h>
 
  33
  34#include <asm/unified.h>
  35#include <asm/cp15.h>
  36#include <asm/cpu.h>
  37#include <asm/cputype.h>
 
  38#include <asm/elf.h>
 
 
  39#include <asm/procinfo.h>
  40#include <asm/psci.h>
  41#include <asm/sections.h>
  42#include <asm/setup.h>
  43#include <asm/smp_plat.h>
  44#include <asm/mach-types.h>
  45#include <asm/cacheflush.h>
  46#include <asm/cachetype.h>
  47#include <asm/tlbflush.h>
 
  48
  49#include <asm/prom.h>
  50#include <asm/mach/arch.h>
  51#include <asm/mach/irq.h>
  52#include <asm/mach/time.h>
  53#include <asm/system_info.h>
  54#include <asm/system_misc.h>
  55#include <asm/traps.h>
  56#include <asm/unwind.h>
  57#include <asm/memblock.h>
  58#include <asm/virt.h>
 
  59
  60#include "atags.h"
  61
  62
  63#if defined(CONFIG_FPE_NWFPE) || defined(CONFIG_FPE_FASTFPE)
  64char fpe_type[8];
  65
  66static int __init fpe_setup(char *line)
  67{
  68	memcpy(fpe_type, line, 8);
  69	return 1;
  70}
  71
  72__setup("fpe=", fpe_setup);
  73#endif
  74
 
  75extern void paging_init(const struct machine_desc *desc);
  76extern void early_paging_init(const struct machine_desc *,
  77			      struct proc_info_list *);
  78extern void sanity_check_meminfo(void);
  79extern enum reboot_mode reboot_mode;
  80extern void setup_dma_zone(const struct machine_desc *desc);
  81
  82unsigned int processor_id;
  83EXPORT_SYMBOL(processor_id);
  84unsigned int __machine_arch_type __read_mostly;
  85EXPORT_SYMBOL(__machine_arch_type);
  86unsigned int cacheid __read_mostly;
  87EXPORT_SYMBOL(cacheid);
  88
  89unsigned int __atags_pointer __initdata;
  90
  91unsigned int system_rev;
  92EXPORT_SYMBOL(system_rev);
  93
 
 
 
  94unsigned int system_serial_low;
  95EXPORT_SYMBOL(system_serial_low);
  96
  97unsigned int system_serial_high;
  98EXPORT_SYMBOL(system_serial_high);
  99
 100unsigned int elf_hwcap __read_mostly;
 101EXPORT_SYMBOL(elf_hwcap);
 102
 103unsigned int elf_hwcap2 __read_mostly;
 104EXPORT_SYMBOL(elf_hwcap2);
 105
 106
 107#ifdef MULTI_CPU
 108struct processor processor __read_mostly;
 
 
 
 
 
 109#endif
 110#ifdef MULTI_TLB
 111struct cpu_tlb_fns cpu_tlb __read_mostly;
 112#endif
 113#ifdef MULTI_USER
 114struct cpu_user_fns cpu_user __read_mostly;
 115#endif
 116#ifdef MULTI_CACHE
 117struct cpu_cache_fns cpu_cache __read_mostly;
 118#endif
 119#ifdef CONFIG_OUTER_CACHE
 120struct outer_cache_fns outer_cache __read_mostly;
 121EXPORT_SYMBOL(outer_cache);
 122#endif
 123
 124/*
 125 * Cached cpu_architecture() result for use by assembler code.
 126 * C code should use the cpu_architecture() function instead of accessing this
 127 * variable directly.
 128 */
 129int __cpu_architecture __read_mostly = CPU_ARCH_UNKNOWN;
 130
 131struct stack {
 132	u32 irq[3];
 133	u32 abt[3];
 134	u32 und[3];
 
 135} ____cacheline_aligned;
 136
 137#ifndef CONFIG_CPU_V7M
 138static struct stack stacks[NR_CPUS];
 139#endif
 140
 141char elf_platform[ELF_PLATFORM_SIZE];
 142EXPORT_SYMBOL(elf_platform);
 143
 144static const char *cpu_name;
 145static const char *machine_name;
 146static char __initdata cmd_line[COMMAND_LINE_SIZE];
 147const struct machine_desc *machine_desc __initdata;
 148
 149static union { char c[4]; unsigned long l; } endian_test __initdata = { { 'l', '?', '?', 'b' } };
 150#define ENDIANNESS ((char)endian_test.l)
 151
 152DEFINE_PER_CPU(struct cpuinfo_arm, cpu_data);
 153
 154/*
 155 * Standard memory resources
 156 */
 157static struct resource mem_res[] = {
 158	{
 159		.name = "Video RAM",
 160		.start = 0,
 161		.end = 0,
 162		.flags = IORESOURCE_MEM
 163	},
 164	{
 165		.name = "Kernel code",
 166		.start = 0,
 167		.end = 0,
 168		.flags = IORESOURCE_MEM
 169	},
 170	{
 171		.name = "Kernel data",
 172		.start = 0,
 173		.end = 0,
 174		.flags = IORESOURCE_MEM
 175	}
 176};
 177
 178#define video_ram   mem_res[0]
 179#define kernel_code mem_res[1]
 180#define kernel_data mem_res[2]
 181
 182static struct resource io_res[] = {
 183	{
 184		.name = "reserved",
 185		.start = 0x3bc,
 186		.end = 0x3be,
 187		.flags = IORESOURCE_IO | IORESOURCE_BUSY
 188	},
 189	{
 190		.name = "reserved",
 191		.start = 0x378,
 192		.end = 0x37f,
 193		.flags = IORESOURCE_IO | IORESOURCE_BUSY
 194	},
 195	{
 196		.name = "reserved",
 197		.start = 0x278,
 198		.end = 0x27f,
 199		.flags = IORESOURCE_IO | IORESOURCE_BUSY
 200	}
 201};
 202
 203#define lp0 io_res[0]
 204#define lp1 io_res[1]
 205#define lp2 io_res[2]
 206
 207static const char *proc_arch[] = {
 208	"undefined/unknown",
 209	"3",
 210	"4",
 211	"4T",
 212	"5",
 213	"5T",
 214	"5TE",
 215	"5TEJ",
 216	"6TEJ",
 217	"7",
 218	"7M",
 219	"?(12)",
 220	"?(13)",
 221	"?(14)",
 222	"?(15)",
 223	"?(16)",
 224	"?(17)",
 225};
 226
 227#ifdef CONFIG_CPU_V7M
 228static int __get_cpu_architecture(void)
 229{
 230	return CPU_ARCH_ARMv7M;
 231}
 232#else
 233static int __get_cpu_architecture(void)
 234{
 235	int cpu_arch;
 236
 237	if ((read_cpuid_id() & 0x0008f000) == 0) {
 238		cpu_arch = CPU_ARCH_UNKNOWN;
 239	} else if ((read_cpuid_id() & 0x0008f000) == 0x00007000) {
 240		cpu_arch = (read_cpuid_id() & (1 << 23)) ? CPU_ARCH_ARMv4T : CPU_ARCH_ARMv3;
 241	} else if ((read_cpuid_id() & 0x00080000) == 0x00000000) {
 242		cpu_arch = (read_cpuid_id() >> 16) & 7;
 243		if (cpu_arch)
 244			cpu_arch += CPU_ARCH_ARMv3;
 245	} else if ((read_cpuid_id() & 0x000f0000) == 0x000f0000) {
 246		unsigned int mmfr0;
 247
 248		/* Revised CPUID format. Read the Memory Model Feature
 249		 * Register 0 and check for VMSAv7 or PMSAv7 */
 250		asm("mrc	p15, 0, %0, c0, c1, 4"
 251		    : "=r" (mmfr0));
 252		if ((mmfr0 & 0x0000000f) >= 0x00000003 ||
 253		    (mmfr0 & 0x000000f0) >= 0x00000030)
 254			cpu_arch = CPU_ARCH_ARMv7;
 255		else if ((mmfr0 & 0x0000000f) == 0x00000002 ||
 256			 (mmfr0 & 0x000000f0) == 0x00000020)
 257			cpu_arch = CPU_ARCH_ARMv6;
 258		else
 259			cpu_arch = CPU_ARCH_UNKNOWN;
 260	} else
 261		cpu_arch = CPU_ARCH_UNKNOWN;
 262
 263	return cpu_arch;
 264}
 265#endif
 266
 267int __pure cpu_architecture(void)
 268{
 269	BUG_ON(__cpu_architecture == CPU_ARCH_UNKNOWN);
 270
 271	return __cpu_architecture;
 272}
 273
 274static int cpu_has_aliasing_icache(unsigned int arch)
 275{
 276	int aliasing_icache;
 277	unsigned int id_reg, num_sets, line_size;
 278
 279	/* PIPT caches never alias. */
 280	if (icache_is_pipt())
 281		return 0;
 282
 283	/* arch specifies the register format */
 284	switch (arch) {
 285	case CPU_ARCH_ARMv7:
 286		asm("mcr	p15, 2, %0, c0, c0, 0 @ set CSSELR"
 287		    : /* No output operands */
 288		    : "r" (1));
 289		isb();
 290		asm("mrc	p15, 1, %0, c0, c0, 0 @ read CCSIDR"
 291		    : "=r" (id_reg));
 292		line_size = 4 << ((id_reg & 0x7) + 2);
 293		num_sets = ((id_reg >> 13) & 0x7fff) + 1;
 294		aliasing_icache = (line_size * num_sets) > PAGE_SIZE;
 295		break;
 296	case CPU_ARCH_ARMv6:
 297		aliasing_icache = read_cpuid_cachetype() & (1 << 11);
 298		break;
 299	default:
 300		/* I-cache aliases will be handled by D-cache aliasing code */
 301		aliasing_icache = 0;
 302	}
 303
 304	return aliasing_icache;
 305}
 306
 307static void __init cacheid_init(void)
 308{
 309	unsigned int arch = cpu_architecture();
 310
 311	if (arch == CPU_ARCH_ARMv7M) {
 312		cacheid = 0;
 313	} else if (arch >= CPU_ARCH_ARMv6) {
 314		unsigned int cachetype = read_cpuid_cachetype();
 315		if ((cachetype & (7 << 29)) == 4 << 29) {
 
 
 
 316			/* ARMv7 register format */
 317			arch = CPU_ARCH_ARMv7;
 318			cacheid = CACHEID_VIPT_NONALIASING;
 319			switch (cachetype & (3 << 14)) {
 320			case (1 << 14):
 321				cacheid |= CACHEID_ASID_TAGGED;
 322				break;
 323			case (3 << 14):
 324				cacheid |= CACHEID_PIPT;
 325				break;
 326			}
 327		} else {
 328			arch = CPU_ARCH_ARMv6;
 329			if (cachetype & (1 << 23))
 330				cacheid = CACHEID_VIPT_ALIASING;
 331			else
 332				cacheid = CACHEID_VIPT_NONALIASING;
 333		}
 334		if (cpu_has_aliasing_icache(arch))
 335			cacheid |= CACHEID_VIPT_I_ALIASING;
 336	} else {
 337		cacheid = CACHEID_VIVT;
 338	}
 339
 340	pr_info("CPU: %s data cache, %s instruction cache\n",
 341		cache_is_vivt() ? "VIVT" :
 342		cache_is_vipt_aliasing() ? "VIPT aliasing" :
 343		cache_is_vipt_nonaliasing() ? "PIPT / VIPT nonaliasing" : "unknown",
 344		cache_is_vivt() ? "VIVT" :
 345		icache_is_vivt_asid_tagged() ? "VIVT ASID tagged" :
 346		icache_is_vipt_aliasing() ? "VIPT aliasing" :
 347		icache_is_pipt() ? "PIPT" :
 348		cache_is_vipt_nonaliasing() ? "VIPT nonaliasing" : "unknown");
 349}
 350
 351/*
 352 * These functions re-use the assembly code in head.S, which
 353 * already provide the required functionality.
 354 */
 355extern struct proc_info_list *lookup_processor_type(unsigned int);
 356
 357void __init early_print(const char *str, ...)
 358{
 359	extern void printascii(const char *);
 360	char buf[256];
 361	va_list ap;
 362
 363	va_start(ap, str);
 364	vsnprintf(buf, sizeof(buf), str, ap);
 365	va_end(ap);
 366
 367#ifdef CONFIG_DEBUG_LL
 368	printascii(buf);
 369#endif
 370	printk("%s", buf);
 371}
 372
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 373static void __init cpuid_init_hwcaps(void)
 374{
 375	unsigned int divide_instrs, vmsa;
 
 
 
 376
 377	if (cpu_architecture() < CPU_ARCH_ARMv7)
 378		return;
 379
 380	divide_instrs = (read_cpuid_ext(CPUID_EXT_ISAR0) & 0x0f000000) >> 24;
 381
 382	switch (divide_instrs) {
 383	case 2:
 384		elf_hwcap |= HWCAP_IDIVA;
 385	case 1:
 386		elf_hwcap |= HWCAP_IDIVT;
 387	}
 388
 389	/* LPAE implies atomic ldrd/strd instructions */
 390	vmsa = (read_cpuid_ext(CPUID_EXT_MMFR0) & 0xf) >> 0;
 391	if (vmsa >= 5)
 392		elf_hwcap |= HWCAP_LPAE;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 393}
 394
 395static void __init feat_v6_fixup(void)
 396{
 397	int id = read_cpuid_id();
 398
 399	if ((id & 0xff0f0000) != 0x41070000)
 400		return;
 401
 402	/*
 403	 * HWCAP_TLS is available only on 1136 r1p0 and later,
 404	 * see also kuser_get_tls_init.
 405	 */
 406	if ((((id >> 4) & 0xfff) == 0xb36) && (((id >> 20) & 3) == 0))
 
 407		elf_hwcap &= ~HWCAP_TLS;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 408}
 409
 410/*
 411 * cpu_init - initialise one CPU.
 412 *
 413 * cpu_init sets up the per-CPU stacks.
 414 */
 415void notrace cpu_init(void)
 416{
 417#ifndef CONFIG_CPU_V7M
 418	unsigned int cpu = smp_processor_id();
 419	struct stack *stk = &stacks[cpu];
 420
 421	if (cpu >= NR_CPUS) {
 422		pr_crit("CPU%u: bad primary CPU number\n", cpu);
 423		BUG();
 424	}
 425
 426	/*
 427	 * This only works on resume and secondary cores. For booting on the
 428	 * boot cpu, smp_prepare_boot_cpu is called after percpu area setup.
 429	 */
 430	set_my_cpu_offset(per_cpu_offset(cpu));
 431
 432	cpu_proc_init();
 433
 434	/*
 435	 * Define the placement constraint for the inline asm directive below.
 436	 * In Thumb-2, msr with an immediate value is not allowed.
 437	 */
 438#ifdef CONFIG_THUMB2_KERNEL
 439#define PLC	"r"
 
 440#else
 441#define PLC	"I"
 
 442#endif
 443
 444	/*
 445	 * setup stacks for re-entrant exception handlers
 446	 */
 447	__asm__ (
 448	"msr	cpsr_c, %1\n\t"
 449	"add	r14, %0, %2\n\t"
 450	"mov	sp, r14\n\t"
 451	"msr	cpsr_c, %3\n\t"
 452	"add	r14, %0, %4\n\t"
 453	"mov	sp, r14\n\t"
 454	"msr	cpsr_c, %5\n\t"
 455	"add	r14, %0, %6\n\t"
 456	"mov	sp, r14\n\t"
 457	"msr	cpsr_c, %7"
 
 
 
 458	    :
 459	    : "r" (stk),
 460	      PLC (PSR_F_BIT | PSR_I_BIT | IRQ_MODE),
 461	      "I" (offsetof(struct stack, irq[0])),
 462	      PLC (PSR_F_BIT | PSR_I_BIT | ABT_MODE),
 463	      "I" (offsetof(struct stack, abt[0])),
 464	      PLC (PSR_F_BIT | PSR_I_BIT | UND_MODE),
 465	      "I" (offsetof(struct stack, und[0])),
 466	      PLC (PSR_F_BIT | PSR_I_BIT | SVC_MODE)
 
 
 467	    : "r14");
 468#endif
 469}
 470
 471u32 __cpu_logical_map[NR_CPUS] = { [0 ... NR_CPUS-1] = MPIDR_INVALID };
 472
 473void __init smp_setup_processor_id(void)
 474{
 475	int i;
 476	u32 mpidr = is_smp() ? read_cpuid_mpidr() & MPIDR_HWID_BITMASK : 0;
 477	u32 cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0);
 478
 479	cpu_logical_map(0) = cpu;
 480	for (i = 1; i < nr_cpu_ids; ++i)
 481		cpu_logical_map(i) = i == cpu ? 0 : i;
 482
 483	/*
 484	 * clear __my_cpu_offset on boot CPU to avoid hang caused by
 485	 * using percpu variable early, for example, lockdep will
 486	 * access percpu variable inside lock_release
 487	 */
 488	set_my_cpu_offset(0);
 489
 490	pr_info("Booting Linux on physical CPU 0x%x\n", mpidr);
 491}
 492
 493struct mpidr_hash mpidr_hash;
 494#ifdef CONFIG_SMP
 495/**
 496 * smp_build_mpidr_hash - Pre-compute shifts required at each affinity
 497 *			  level in order to build a linear index from an
 498 *			  MPIDR value. Resulting algorithm is a collision
 499 *			  free hash carried out through shifting and ORing
 500 */
 501static void __init smp_build_mpidr_hash(void)
 502{
 503	u32 i, affinity;
 504	u32 fs[3], bits[3], ls, mask = 0;
 505	/*
 506	 * Pre-scan the list of MPIDRS and filter out bits that do
 507	 * not contribute to affinity levels, ie they never toggle.
 508	 */
 509	for_each_possible_cpu(i)
 510		mask |= (cpu_logical_map(i) ^ cpu_logical_map(0));
 511	pr_debug("mask of set bits 0x%x\n", mask);
 512	/*
 513	 * Find and stash the last and first bit set at all affinity levels to
 514	 * check how many bits are required to represent them.
 515	 */
 516	for (i = 0; i < 3; i++) {
 517		affinity = MPIDR_AFFINITY_LEVEL(mask, i);
 518		/*
 519		 * Find the MSB bit and LSB bits position
 520		 * to determine how many bits are required
 521		 * to express the affinity level.
 522		 */
 523		ls = fls(affinity);
 524		fs[i] = affinity ? ffs(affinity) - 1 : 0;
 525		bits[i] = ls - fs[i];
 526	}
 527	/*
 528	 * An index can be created from the MPIDR by isolating the
 529	 * significant bits at each affinity level and by shifting
 530	 * them in order to compress the 24 bits values space to a
 531	 * compressed set of values. This is equivalent to hashing
 532	 * the MPIDR through shifting and ORing. It is a collision free
 533	 * hash though not minimal since some levels might contain a number
 534	 * of CPUs that is not an exact power of 2 and their bit
 535	 * representation might contain holes, eg MPIDR[7:0] = {0x2, 0x80}.
 536	 */
 537	mpidr_hash.shift_aff[0] = fs[0];
 538	mpidr_hash.shift_aff[1] = MPIDR_LEVEL_BITS + fs[1] - bits[0];
 539	mpidr_hash.shift_aff[2] = 2*MPIDR_LEVEL_BITS + fs[2] -
 540						(bits[1] + bits[0]);
 541	mpidr_hash.mask = mask;
 542	mpidr_hash.bits = bits[2] + bits[1] + bits[0];
 543	pr_debug("MPIDR hash: aff0[%u] aff1[%u] aff2[%u] mask[0x%x] bits[%u]\n",
 544				mpidr_hash.shift_aff[0],
 545				mpidr_hash.shift_aff[1],
 546				mpidr_hash.shift_aff[2],
 547				mpidr_hash.mask,
 548				mpidr_hash.bits);
 549	/*
 550	 * 4x is an arbitrary value used to warn on a hash table much bigger
 551	 * than expected on most systems.
 552	 */
 553	if (mpidr_hash_size() > 4 * num_possible_cpus())
 554		pr_warn("Large number of MPIDR hash buckets detected\n");
 555	sync_cache_w(&mpidr_hash);
 556}
 557#endif
 558
 559static void __init setup_processor(void)
 
 
 
 
 560{
 561	struct proc_info_list *list;
 562
 563	/*
 564	 * locate processor in the list of supported processor
 565	 * types.  The linker builds this table for us from the
 566	 * entries in arch/arm/mm/proc-*.S
 567	 */
 568	list = lookup_processor_type(read_cpuid_id());
 569	if (!list) {
 570		pr_err("CPU configuration botched (ID %08x), unable to continue.\n",
 571		       read_cpuid_id());
 572		while (1);
 
 573	}
 574
 
 
 
 
 
 
 
 
 575	cpu_name = list->cpu_name;
 576	__cpu_architecture = __get_cpu_architecture();
 577
 578#ifdef MULTI_CPU
 579	processor = *list->proc;
 580#endif
 581#ifdef MULTI_TLB
 582	cpu_tlb = *list->tlb;
 583#endif
 584#ifdef MULTI_USER
 585	cpu_user = *list->user;
 586#endif
 587#ifdef MULTI_CACHE
 588	cpu_cache = *list->cache;
 589#endif
 590
 591	pr_info("CPU: %s [%08x] revision %d (ARMv%s), cr=%08lx\n",
 592		cpu_name, read_cpuid_id(), read_cpuid_id() & 15,
 593		proc_arch[cpu_architecture()], cr_alignment);
 594
 595	snprintf(init_utsname()->machine, __NEW_UTS_LEN + 1, "%s%c",
 596		 list->arch_name, ENDIANNESS);
 597	snprintf(elf_platform, ELF_PLATFORM_SIZE, "%s%c",
 598		 list->elf_name, ENDIANNESS);
 599	elf_hwcap = list->elf_hwcap;
 600
 601	cpuid_init_hwcaps();
 
 602
 603#ifndef CONFIG_ARM_THUMB
 604	elf_hwcap &= ~(HWCAP_THUMB | HWCAP_IDIVT);
 605#endif
 606
 
 
 607	erratum_a15_798181_init();
 608
 609	feat_v6_fixup();
 610
 611	cacheid_init();
 612	cpu_init();
 613}
 614
 615void __init dump_machine_table(void)
 616{
 617	const struct machine_desc *p;
 618
 619	early_print("Available machine support:\n\nID (hex)\tNAME\n");
 620	for_each_machine_desc(p)
 621		early_print("%08x\t%s\n", p->nr, p->name);
 622
 623	early_print("\nPlease check your kernel config and/or bootloader.\n");
 624
 625	while (true)
 626		/* can't use cpu_relax() here as it may require MMU setup */;
 627}
 628
 629int __init arm_add_memory(u64 start, u64 size)
 630{
 631	struct membank *bank = &meminfo.bank[meminfo.nr_banks];
 632	u64 aligned_start;
 633
 634	if (meminfo.nr_banks >= NR_BANKS) {
 635		pr_crit("NR_BANKS too low, ignoring memory at 0x%08llx\n",
 636			(long long)start);
 637		return -EINVAL;
 638	}
 639
 640	/*
 641	 * Ensure that start/size are aligned to a page boundary.
 642	 * Size is appropriately rounded down, start is rounded up.
 643	 */
 644	size -= start & ~PAGE_MASK;
 645	aligned_start = PAGE_ALIGN(start);
 
 
 
 
 646
 647#ifndef CONFIG_ARCH_PHYS_ADDR_T_64BIT
 648	if (aligned_start > ULONG_MAX) {
 649		pr_crit("Ignoring memory at 0x%08llx outside 32-bit physical address space\n",
 650			(long long)start);
 651		return -EINVAL;
 652	}
 653
 654	if (aligned_start + size > ULONG_MAX) {
 655		pr_crit("Truncating memory at 0x%08llx to fit in 32-bit physical address space\n",
 656			(long long)start);
 657		/*
 658		 * To ensure bank->start + bank->size is representable in
 659		 * 32 bits, we use ULONG_MAX as the upper limit rather than 4GB.
 660		 * This means we lose a page after masking.
 661		 */
 662		size = ULONG_MAX - aligned_start;
 663	}
 664#endif
 665
 666	if (aligned_start < PHYS_OFFSET) {
 667		if (aligned_start + size <= PHYS_OFFSET) {
 668			pr_info("Ignoring memory below PHYS_OFFSET: 0x%08llx-0x%08llx\n",
 669				aligned_start, aligned_start + size);
 670			return -EINVAL;
 671		}
 672
 673		pr_info("Ignoring memory below PHYS_OFFSET: 0x%08llx-0x%08llx\n",
 674			aligned_start, (u64)PHYS_OFFSET);
 675
 676		size -= PHYS_OFFSET - aligned_start;
 677		aligned_start = PHYS_OFFSET;
 678	}
 679
 680	bank->start = aligned_start;
 681	bank->size = size & ~(phys_addr_t)(PAGE_SIZE - 1);
 682
 683	/*
 684	 * Check whether this memory region has non-zero size or
 685	 * invalid node number.
 686	 */
 687	if (bank->size == 0)
 688		return -EINVAL;
 689
 690	meminfo.nr_banks++;
 691	return 0;
 692}
 693
 694/*
 695 * Pick out the memory size.  We look for mem=size@start,
 696 * where start and size are "size[KkMm]"
 697 */
 
 698static int __init early_mem(char *p)
 699{
 700	static int usermem __initdata = 0;
 701	u64 size;
 702	u64 start;
 703	char *endp;
 704
 705	/*
 706	 * If the user specifies memory size, we
 707	 * blow away any automatically generated
 708	 * size.
 709	 */
 710	if (usermem == 0) {
 711		usermem = 1;
 712		meminfo.nr_banks = 0;
 
 713	}
 714
 715	start = PHYS_OFFSET;
 716	size  = memparse(p, &endp);
 717	if (*endp == '@')
 718		start = memparse(endp + 1, NULL);
 719
 720	arm_add_memory(start, size);
 721
 722	return 0;
 723}
 724early_param("mem", early_mem);
 725
 726static void __init request_standard_resources(const struct machine_desc *mdesc)
 727{
 728	struct memblock_region *region;
 729	struct resource *res;
 
 730
 731	kernel_code.start   = virt_to_phys(_text);
 732	kernel_code.end     = virt_to_phys(_etext - 1);
 733	kernel_data.start   = virt_to_phys(_sdata);
 734	kernel_data.end     = virt_to_phys(_end - 1);
 735
 736	for_each_memblock(memory, region) {
 737		res = memblock_virt_alloc(sizeof(*res), 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 738		res->name  = "System RAM";
 739		res->start = __pfn_to_phys(memblock_region_memory_base_pfn(region));
 740		res->end = __pfn_to_phys(memblock_region_memory_end_pfn(region)) - 1;
 741		res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
 742
 743		request_resource(&iomem_resource, res);
 744
 745		if (kernel_code.start >= res->start &&
 746		    kernel_code.end <= res->end)
 747			request_resource(res, &kernel_code);
 748		if (kernel_data.start >= res->start &&
 749		    kernel_data.end <= res->end)
 750			request_resource(res, &kernel_data);
 751	}
 752
 753	if (mdesc->video_start) {
 754		video_ram.start = mdesc->video_start;
 755		video_ram.end   = mdesc->video_end;
 756		request_resource(&iomem_resource, &video_ram);
 757	}
 758
 759	/*
 760	 * Some machines don't have the possibility of ever
 761	 * possessing lp0, lp1 or lp2
 762	 */
 763	if (mdesc->reserve_lp0)
 764		request_resource(&ioport_resource, &lp0);
 765	if (mdesc->reserve_lp1)
 766		request_resource(&ioport_resource, &lp1);
 767	if (mdesc->reserve_lp2)
 768		request_resource(&ioport_resource, &lp2);
 769}
 770
 771#if defined(CONFIG_VGA_CONSOLE) || defined(CONFIG_DUMMY_CONSOLE)
 
 772struct screen_info screen_info = {
 773 .orig_video_lines	= 30,
 774 .orig_video_cols	= 80,
 775 .orig_video_mode	= 0,
 776 .orig_video_ega_bx	= 0,
 777 .orig_video_isVGA	= 1,
 778 .orig_video_points	= 8
 779};
 780#endif
 781
 782static int __init customize_machine(void)
 783{
 784	/*
 785	 * customizes platform devices, or adds new ones
 786	 * On DT based machines, we fall back to populating the
 787	 * machine from the device tree, if no callback is provided,
 788	 * otherwise we would always need an init_machine callback.
 789	 */
 790	if (machine_desc->init_machine)
 791		machine_desc->init_machine();
 792#ifdef CONFIG_OF
 793	else
 794		of_platform_populate(NULL, of_default_bus_match_table,
 795					NULL, NULL);
 796#endif
 797	return 0;
 798}
 799arch_initcall(customize_machine);
 800
 801static int __init init_machine_late(void)
 802{
 
 
 
 803	if (machine_desc->init_late)
 804		machine_desc->init_late();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 805	return 0;
 806}
 807late_initcall(init_machine_late);
 808
 809#ifdef CONFIG_KEXEC
 
 
 
 
 
 
 810static inline unsigned long long get_total_mem(void)
 811{
 812	unsigned long total;
 813
 814	total = max_low_pfn - min_low_pfn;
 815	return total << PAGE_SHIFT;
 816}
 817
 818/**
 819 * reserve_crashkernel() - reserves memory are for crash kernel
 820 *
 821 * This function reserves memory area given in "crashkernel=" kernel command
 822 * line parameter. The memory reserved is used by a dump capture kernel when
 823 * primary kernel is crashing.
 824 */
 825static void __init reserve_crashkernel(void)
 826{
 827	unsigned long long crash_size, crash_base;
 828	unsigned long long total_mem;
 829	int ret;
 830
 831	total_mem = get_total_mem();
 832	ret = parse_crashkernel(boot_command_line, total_mem,
 833				&crash_size, &crash_base);
 834	if (ret)
 
 835		return;
 836
 837	ret = memblock_reserve(crash_base, crash_size);
 838	if (ret < 0) {
 839		pr_warn("crashkernel reservation failed - memory is in use (0x%lx)\n",
 840			(unsigned long)crash_base);
 841		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 842	}
 843
 844	pr_info("Reserving %ldMB of memory at %ldMB for crashkernel (System RAM: %ldMB)\n",
 845		(unsigned long)(crash_size >> 20),
 846		(unsigned long)(crash_base >> 20),
 847		(unsigned long)(total_mem >> 20));
 848
 
 849	crashk_res.start = crash_base;
 850	crashk_res.end = crash_base + crash_size - 1;
 851	insert_resource(&iomem_resource, &crashk_res);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 852}
 853#else
 854static inline void reserve_crashkernel(void) {}
 855#endif /* CONFIG_KEXEC */
 856
 857static int __init meminfo_cmp(const void *_a, const void *_b)
 858{
 859	const struct membank *a = _a, *b = _b;
 860	long cmp = bank_pfn_start(a) - bank_pfn_start(b);
 861	return cmp < 0 ? -1 : cmp > 0 ? 1 : 0;
 862}
 863
 864void __init hyp_mode_check(void)
 865{
 866#ifdef CONFIG_ARM_VIRT_EXT
 867	sync_boot_mode();
 868
 869	if (is_hyp_mode_available()) {
 870		pr_info("CPU: All CPU(s) started in HYP mode.\n");
 871		pr_info("CPU: Virtualization extensions available.\n");
 872	} else if (is_hyp_mode_mismatched()) {
 873		pr_warn("CPU: WARNING: CPU(s) started in wrong/inconsistent modes (primary CPU mode 0x%x)\n",
 874			__boot_cpu_mode & MODE_MASK);
 875		pr_warn("CPU: This may indicate a broken bootloader or firmware.\n");
 876	} else
 877		pr_info("CPU: All CPU(s) started in SVC mode.\n");
 878#endif
 879}
 880
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 881void __init setup_arch(char **cmdline_p)
 882{
 883	const struct machine_desc *mdesc;
 
 
 
 
 884
 885	setup_processor();
 886	mdesc = setup_machine_fdt(__atags_pointer);
 
 
 
 
 
 887	if (!mdesc)
 888		mdesc = setup_machine_tags(__atags_pointer, __machine_arch_type);
 
 
 
 
 
 
 
 
 
 889	machine_desc = mdesc;
 890	machine_name = mdesc->name;
 
 891
 892	if (mdesc->reboot_mode != REBOOT_HARD)
 893		reboot_mode = mdesc->reboot_mode;
 894
 895	init_mm.start_code = (unsigned long) _text;
 896	init_mm.end_code   = (unsigned long) _etext;
 897	init_mm.end_data   = (unsigned long) _edata;
 898	init_mm.brk	   = (unsigned long) _end;
 899
 900	/* populate cmd_line too for later use, preserving boot_command_line */
 901	strlcpy(cmd_line, boot_command_line, COMMAND_LINE_SIZE);
 902	*cmdline_p = cmd_line;
 903
 904	parse_early_param();
 
 905
 906	sort(&meminfo.bank, meminfo.nr_banks, sizeof(meminfo.bank[0]), meminfo_cmp, NULL);
 907
 908	early_paging_init(mdesc, lookup_processor_type(read_cpuid_id()));
 
 
 909	setup_dma_zone(mdesc);
 910	sanity_check_meminfo();
 911	arm_memblock_init(&meminfo, mdesc);
 
 
 
 
 
 
 
 
 
 
 912
 913	paging_init(mdesc);
 
 914	request_standard_resources(mdesc);
 915
 916	if (mdesc->restart)
 917		arm_pm_restart = mdesc->restart;
 
 
 918
 919	unflatten_device_tree();
 920
 921	arm_dt_init_cpu_maps();
 922	psci_init();
 923#ifdef CONFIG_SMP
 924	if (is_smp()) {
 925		if (!mdesc->smp_init || !mdesc->smp_init()) {
 926			if (psci_smp_available())
 927				smp_set_ops(&psci_smp_ops);
 928			else if (mdesc->smp)
 929				smp_set_ops(mdesc->smp);
 930		}
 931		smp_init_cpus();
 932		smp_build_mpidr_hash();
 933	}
 934#endif
 935
 936	if (!is_smp())
 937		hyp_mode_check();
 938
 939	reserve_crashkernel();
 940
 941#ifdef CONFIG_MULTI_IRQ_HANDLER
 942	handle_arch_irq = mdesc->handle_irq;
 943#endif
 944
 945#ifdef CONFIG_VT
 946#if defined(CONFIG_VGA_CONSOLE)
 947	conswitchp = &vga_con;
 948#elif defined(CONFIG_DUMMY_CONSOLE)
 949	conswitchp = &dummy_con;
 950#endif
 951#endif
 952
 953	if (mdesc->init_early)
 954		mdesc->init_early();
 955}
 956
 957
 958static int __init topology_init(void)
 959{
 960	int cpu;
 961
 962	for_each_possible_cpu(cpu) {
 963		struct cpuinfo_arm *cpuinfo = &per_cpu(cpu_data, cpu);
 964		cpuinfo->cpu.hotpluggable = 1;
 965		register_cpu(&cpuinfo->cpu, cpu);
 966	}
 967
 968	return 0;
 969}
 970subsys_initcall(topology_init);
 971
 972#ifdef CONFIG_HAVE_PROC_CPU
 973static int __init proc_cpu_init(void)
 974{
 975	struct proc_dir_entry *res;
 976
 977	res = proc_mkdir("cpu", NULL);
 978	if (!res)
 979		return -ENOMEM;
 980	return 0;
 981}
 982fs_initcall(proc_cpu_init);
 983#endif
 984
 985static const char *hwcap_str[] = {
 986	"swp",
 987	"half",
 988	"thumb",
 989	"26bit",
 990	"fastmult",
 991	"fpa",
 992	"vfp",
 993	"edsp",
 994	"java",
 995	"iwmmxt",
 996	"crunch",
 997	"thumbee",
 998	"neon",
 999	"vfpv3",
1000	"vfpv3d16",
1001	"tls",
1002	"vfpv4",
1003	"idiva",
1004	"idivt",
1005	"vfpd32",
1006	"lpae",
1007	"evtstrm",
 
 
 
 
 
 
1008	NULL
1009};
1010
1011static const char *hwcap2_str[] = {
1012	"aes",
1013	"pmull",
1014	"sha1",
1015	"sha2",
1016	"crc32",
 
 
1017	NULL
1018};
1019
1020static int c_show(struct seq_file *m, void *v)
1021{
1022	int i, j;
1023	u32 cpuid;
1024
1025	for_each_online_cpu(i) {
1026		/*
1027		 * glibc reads /proc/cpuinfo to determine the number of
1028		 * online processors, looking for lines beginning with
1029		 * "processor".  Give glibc what it expects.
1030		 */
1031		seq_printf(m, "processor\t: %d\n", i);
1032		cpuid = is_smp() ? per_cpu(cpu_data, i).cpuid : read_cpuid_id();
1033		seq_printf(m, "model name\t: %s rev %d (%s)\n",
1034			   cpu_name, cpuid & 15, elf_platform);
1035
 
 
 
 
 
 
 
 
 
1036		/* dump out the processor features */
1037		seq_puts(m, "Features\t: ");
1038
1039		for (j = 0; hwcap_str[j]; j++)
1040			if (elf_hwcap & (1 << j))
1041				seq_printf(m, "%s ", hwcap_str[j]);
1042
1043		for (j = 0; hwcap2_str[j]; j++)
1044			if (elf_hwcap2 & (1 << j))
1045				seq_printf(m, "%s ", hwcap2_str[j]);
1046
1047		seq_printf(m, "\nCPU implementer\t: 0x%02x\n", cpuid >> 24);
1048		seq_printf(m, "CPU architecture: %s\n",
1049			   proc_arch[cpu_architecture()]);
1050
1051		if ((cpuid & 0x0008f000) == 0x00000000) {
1052			/* pre-ARM7 */
1053			seq_printf(m, "CPU part\t: %07x\n", cpuid >> 4);
1054		} else {
1055			if ((cpuid & 0x0008f000) == 0x00007000) {
1056				/* ARM7 */
1057				seq_printf(m, "CPU variant\t: 0x%02x\n",
1058					   (cpuid >> 16) & 127);
1059			} else {
1060				/* post-ARM7 */
1061				seq_printf(m, "CPU variant\t: 0x%x\n",
1062					   (cpuid >> 20) & 15);
1063			}
1064			seq_printf(m, "CPU part\t: 0x%03x\n",
1065				   (cpuid >> 4) & 0xfff);
1066		}
1067		seq_printf(m, "CPU revision\t: %d\n\n", cpuid & 15);
1068	}
1069
1070	seq_printf(m, "Hardware\t: %s\n", machine_name);
1071	seq_printf(m, "Revision\t: %04x\n", system_rev);
1072	seq_printf(m, "Serial\t\t: %08x%08x\n",
1073		   system_serial_high, system_serial_low);
1074
1075	return 0;
1076}
1077
1078static void *c_start(struct seq_file *m, loff_t *pos)
1079{
1080	return *pos < 1 ? (void *)1 : NULL;
1081}
1082
1083static void *c_next(struct seq_file *m, void *v, loff_t *pos)
1084{
1085	++*pos;
1086	return NULL;
1087}
1088
1089static void c_stop(struct seq_file *m, void *v)
1090{
1091}
1092
1093const struct seq_operations cpuinfo_op = {
1094	.start	= c_start,
1095	.next	= c_next,
1096	.stop	= c_stop,
1097	.show	= c_show
1098};
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/arch/arm/kernel/setup.c
   4 *
   5 *  Copyright (C) 1995-2001 Russell King
 
 
 
 
   6 */
   7#include <linux/efi.h>
   8#include <linux/export.h>
   9#include <linux/kernel.h>
  10#include <linux/stddef.h>
  11#include <linux/ioport.h>
  12#include <linux/delay.h>
  13#include <linux/utsname.h>
  14#include <linux/initrd.h>
  15#include <linux/console.h>
 
  16#include <linux/seq_file.h>
  17#include <linux/screen_info.h>
  18#include <linux/of_platform.h>
  19#include <linux/init.h>
  20#include <linux/kexec.h>
  21#include <linux/libfdt.h>
  22#include <linux/of_fdt.h>
  23#include <linux/cpu.h>
  24#include <linux/interrupt.h>
  25#include <linux/smp.h>
  26#include <linux/proc_fs.h>
  27#include <linux/memblock.h>
  28#include <linux/bug.h>
  29#include <linux/compiler.h>
  30#include <linux/sort.h>
  31#include <linux/psci.h>
  32
  33#include <asm/unified.h>
  34#include <asm/cp15.h>
  35#include <asm/cpu.h>
  36#include <asm/cputype.h>
  37#include <asm/efi.h>
  38#include <asm/elf.h>
  39#include <asm/early_ioremap.h>
  40#include <asm/fixmap.h>
  41#include <asm/procinfo.h>
  42#include <asm/psci.h>
  43#include <asm/sections.h>
  44#include <asm/setup.h>
  45#include <asm/smp_plat.h>
  46#include <asm/mach-types.h>
  47#include <asm/cacheflush.h>
  48#include <asm/cachetype.h>
  49#include <asm/tlbflush.h>
  50#include <asm/xen/hypervisor.h>
  51
  52#include <asm/prom.h>
  53#include <asm/mach/arch.h>
  54#include <asm/mach/irq.h>
  55#include <asm/mach/time.h>
  56#include <asm/system_info.h>
  57#include <asm/system_misc.h>
  58#include <asm/traps.h>
  59#include <asm/unwind.h>
  60#include <asm/memblock.h>
  61#include <asm/virt.h>
  62#include <asm/kasan.h>
  63
  64#include "atags.h"
  65
  66
  67#if defined(CONFIG_FPE_NWFPE) || defined(CONFIG_FPE_FASTFPE)
  68char fpe_type[8];
  69
  70static int __init fpe_setup(char *line)
  71{
  72	memcpy(fpe_type, line, 8);
  73	return 1;
  74}
  75
  76__setup("fpe=", fpe_setup);
  77#endif
  78
  79extern void init_default_cache_policy(unsigned long);
  80extern void paging_init(const struct machine_desc *desc);
  81extern void early_mm_init(const struct machine_desc *);
  82extern void adjust_lowmem_bounds(void);
 
  83extern enum reboot_mode reboot_mode;
  84extern void setup_dma_zone(const struct machine_desc *desc);
  85
  86unsigned int processor_id;
  87EXPORT_SYMBOL(processor_id);
  88unsigned int __machine_arch_type __read_mostly;
  89EXPORT_SYMBOL(__machine_arch_type);
  90unsigned int cacheid __read_mostly;
  91EXPORT_SYMBOL(cacheid);
  92
  93unsigned int __atags_pointer __initdata;
  94
  95unsigned int system_rev;
  96EXPORT_SYMBOL(system_rev);
  97
  98const char *system_serial;
  99EXPORT_SYMBOL(system_serial);
 100
 101unsigned int system_serial_low;
 102EXPORT_SYMBOL(system_serial_low);
 103
 104unsigned int system_serial_high;
 105EXPORT_SYMBOL(system_serial_high);
 106
 107unsigned int elf_hwcap __read_mostly;
 108EXPORT_SYMBOL(elf_hwcap);
 109
 110unsigned int elf_hwcap2 __read_mostly;
 111EXPORT_SYMBOL(elf_hwcap2);
 112
 113
 114#ifdef MULTI_CPU
 115struct processor processor __ro_after_init;
 116#if defined(CONFIG_BIG_LITTLE) && defined(CONFIG_HARDEN_BRANCH_PREDICTOR)
 117struct processor *cpu_vtable[NR_CPUS] = {
 118	[0] = &processor,
 119};
 120#endif
 121#endif
 122#ifdef MULTI_TLB
 123struct cpu_tlb_fns cpu_tlb __ro_after_init;
 124#endif
 125#ifdef MULTI_USER
 126struct cpu_user_fns cpu_user __ro_after_init;
 127#endif
 128#ifdef MULTI_CACHE
 129struct cpu_cache_fns cpu_cache __ro_after_init;
 130#endif
 131#ifdef CONFIG_OUTER_CACHE
 132struct outer_cache_fns outer_cache __ro_after_init;
 133EXPORT_SYMBOL(outer_cache);
 134#endif
 135
 136/*
 137 * Cached cpu_architecture() result for use by assembler code.
 138 * C code should use the cpu_architecture() function instead of accessing this
 139 * variable directly.
 140 */
 141int __cpu_architecture __read_mostly = CPU_ARCH_UNKNOWN;
 142
 143struct stack {
 144	u32 irq[4];
 145	u32 abt[4];
 146	u32 und[4];
 147	u32 fiq[4];
 148} ____cacheline_aligned;
 149
 150#ifndef CONFIG_CPU_V7M
 151static struct stack stacks[NR_CPUS];
 152#endif
 153
 154char elf_platform[ELF_PLATFORM_SIZE];
 155EXPORT_SYMBOL(elf_platform);
 156
 157static const char *cpu_name;
 158static const char *machine_name;
 159static char __initdata cmd_line[COMMAND_LINE_SIZE];
 160const struct machine_desc *machine_desc __initdata;
 161
 162static union { char c[4]; unsigned long l; } endian_test __initdata = { { 'l', '?', '?', 'b' } };
 163#define ENDIANNESS ((char)endian_test.l)
 164
 165DEFINE_PER_CPU(struct cpuinfo_arm, cpu_data);
 166
 167/*
 168 * Standard memory resources
 169 */
 170static struct resource mem_res[] = {
 171	{
 172		.name = "Video RAM",
 173		.start = 0,
 174		.end = 0,
 175		.flags = IORESOURCE_MEM
 176	},
 177	{
 178		.name = "Kernel code",
 179		.start = 0,
 180		.end = 0,
 181		.flags = IORESOURCE_SYSTEM_RAM
 182	},
 183	{
 184		.name = "Kernel data",
 185		.start = 0,
 186		.end = 0,
 187		.flags = IORESOURCE_SYSTEM_RAM
 188	}
 189};
 190
 191#define video_ram   mem_res[0]
 192#define kernel_code mem_res[1]
 193#define kernel_data mem_res[2]
 194
 195static struct resource io_res[] = {
 196	{
 197		.name = "reserved",
 198		.start = 0x3bc,
 199		.end = 0x3be,
 200		.flags = IORESOURCE_IO | IORESOURCE_BUSY
 201	},
 202	{
 203		.name = "reserved",
 204		.start = 0x378,
 205		.end = 0x37f,
 206		.flags = IORESOURCE_IO | IORESOURCE_BUSY
 207	},
 208	{
 209		.name = "reserved",
 210		.start = 0x278,
 211		.end = 0x27f,
 212		.flags = IORESOURCE_IO | IORESOURCE_BUSY
 213	}
 214};
 215
 216#define lp0 io_res[0]
 217#define lp1 io_res[1]
 218#define lp2 io_res[2]
 219
 220static const char *proc_arch[] = {
 221	"undefined/unknown",
 222	"3",
 223	"4",
 224	"4T",
 225	"5",
 226	"5T",
 227	"5TE",
 228	"5TEJ",
 229	"6TEJ",
 230	"7",
 231	"7M",
 232	"?(12)",
 233	"?(13)",
 234	"?(14)",
 235	"?(15)",
 236	"?(16)",
 237	"?(17)",
 238};
 239
 240#ifdef CONFIG_CPU_V7M
 241static int __get_cpu_architecture(void)
 242{
 243	return CPU_ARCH_ARMv7M;
 244}
 245#else
 246static int __get_cpu_architecture(void)
 247{
 248	int cpu_arch;
 249
 250	if ((read_cpuid_id() & 0x0008f000) == 0) {
 251		cpu_arch = CPU_ARCH_UNKNOWN;
 252	} else if ((read_cpuid_id() & 0x0008f000) == 0x00007000) {
 253		cpu_arch = (read_cpuid_id() & (1 << 23)) ? CPU_ARCH_ARMv4T : CPU_ARCH_ARMv3;
 254	} else if ((read_cpuid_id() & 0x00080000) == 0x00000000) {
 255		cpu_arch = (read_cpuid_id() >> 16) & 7;
 256		if (cpu_arch)
 257			cpu_arch += CPU_ARCH_ARMv3;
 258	} else if ((read_cpuid_id() & 0x000f0000) == 0x000f0000) {
 
 
 259		/* Revised CPUID format. Read the Memory Model Feature
 260		 * Register 0 and check for VMSAv7 or PMSAv7 */
 261		unsigned int mmfr0 = read_cpuid_ext(CPUID_EXT_MMFR0);
 
 262		if ((mmfr0 & 0x0000000f) >= 0x00000003 ||
 263		    (mmfr0 & 0x000000f0) >= 0x00000030)
 264			cpu_arch = CPU_ARCH_ARMv7;
 265		else if ((mmfr0 & 0x0000000f) == 0x00000002 ||
 266			 (mmfr0 & 0x000000f0) == 0x00000020)
 267			cpu_arch = CPU_ARCH_ARMv6;
 268		else
 269			cpu_arch = CPU_ARCH_UNKNOWN;
 270	} else
 271		cpu_arch = CPU_ARCH_UNKNOWN;
 272
 273	return cpu_arch;
 274}
 275#endif
 276
 277int __pure cpu_architecture(void)
 278{
 279	BUG_ON(__cpu_architecture == CPU_ARCH_UNKNOWN);
 280
 281	return __cpu_architecture;
 282}
 283
 284static int cpu_has_aliasing_icache(unsigned int arch)
 285{
 286	int aliasing_icache;
 287	unsigned int id_reg, num_sets, line_size;
 288
 289	/* PIPT caches never alias. */
 290	if (icache_is_pipt())
 291		return 0;
 292
 293	/* arch specifies the register format */
 294	switch (arch) {
 295	case CPU_ARCH_ARMv7:
 296		set_csselr(CSSELR_ICACHE | CSSELR_L1);
 
 
 297		isb();
 298		id_reg = read_ccsidr();
 
 299		line_size = 4 << ((id_reg & 0x7) + 2);
 300		num_sets = ((id_reg >> 13) & 0x7fff) + 1;
 301		aliasing_icache = (line_size * num_sets) > PAGE_SIZE;
 302		break;
 303	case CPU_ARCH_ARMv6:
 304		aliasing_icache = read_cpuid_cachetype() & (1 << 11);
 305		break;
 306	default:
 307		/* I-cache aliases will be handled by D-cache aliasing code */
 308		aliasing_icache = 0;
 309	}
 310
 311	return aliasing_icache;
 312}
 313
 314static void __init cacheid_init(void)
 315{
 316	unsigned int arch = cpu_architecture();
 317
 318	if (arch >= CPU_ARCH_ARMv6) {
 
 
 319		unsigned int cachetype = read_cpuid_cachetype();
 320
 321		if ((arch == CPU_ARCH_ARMv7M) && !(cachetype & 0xf000f)) {
 322			cacheid = 0;
 323		} else if ((cachetype & (7 << 29)) == 4 << 29) {
 324			/* ARMv7 register format */
 325			arch = CPU_ARCH_ARMv7;
 326			cacheid = CACHEID_VIPT_NONALIASING;
 327			switch (cachetype & (3 << 14)) {
 328			case (1 << 14):
 329				cacheid |= CACHEID_ASID_TAGGED;
 330				break;
 331			case (3 << 14):
 332				cacheid |= CACHEID_PIPT;
 333				break;
 334			}
 335		} else {
 336			arch = CPU_ARCH_ARMv6;
 337			if (cachetype & (1 << 23))
 338				cacheid = CACHEID_VIPT_ALIASING;
 339			else
 340				cacheid = CACHEID_VIPT_NONALIASING;
 341		}
 342		if (cpu_has_aliasing_icache(arch))
 343			cacheid |= CACHEID_VIPT_I_ALIASING;
 344	} else {
 345		cacheid = CACHEID_VIVT;
 346	}
 347
 348	pr_info("CPU: %s data cache, %s instruction cache\n",
 349		cache_is_vivt() ? "VIVT" :
 350		cache_is_vipt_aliasing() ? "VIPT aliasing" :
 351		cache_is_vipt_nonaliasing() ? "PIPT / VIPT nonaliasing" : "unknown",
 352		cache_is_vivt() ? "VIVT" :
 353		icache_is_vivt_asid_tagged() ? "VIVT ASID tagged" :
 354		icache_is_vipt_aliasing() ? "VIPT aliasing" :
 355		icache_is_pipt() ? "PIPT" :
 356		cache_is_vipt_nonaliasing() ? "VIPT nonaliasing" : "unknown");
 357}
 358
 359/*
 360 * These functions re-use the assembly code in head.S, which
 361 * already provide the required functionality.
 362 */
 363extern struct proc_info_list *lookup_processor_type(unsigned int);
 364
 365void __init early_print(const char *str, ...)
 366{
 367	extern void printascii(const char *);
 368	char buf[256];
 369	va_list ap;
 370
 371	va_start(ap, str);
 372	vsnprintf(buf, sizeof(buf), str, ap);
 373	va_end(ap);
 374
 375#ifdef CONFIG_DEBUG_LL
 376	printascii(buf);
 377#endif
 378	printk("%s", buf);
 379}
 380
 381#ifdef CONFIG_ARM_PATCH_IDIV
 382
 383static inline u32 __attribute_const__ sdiv_instruction(void)
 384{
 385	if (IS_ENABLED(CONFIG_THUMB2_KERNEL)) {
 386		/* "sdiv r0, r0, r1" */
 387		u32 insn = __opcode_thumb32_compose(0xfb90, 0xf0f1);
 388		return __opcode_to_mem_thumb32(insn);
 389	}
 390
 391	/* "sdiv r0, r0, r1" */
 392	return __opcode_to_mem_arm(0xe710f110);
 393}
 394
 395static inline u32 __attribute_const__ udiv_instruction(void)
 396{
 397	if (IS_ENABLED(CONFIG_THUMB2_KERNEL)) {
 398		/* "udiv r0, r0, r1" */
 399		u32 insn = __opcode_thumb32_compose(0xfbb0, 0xf0f1);
 400		return __opcode_to_mem_thumb32(insn);
 401	}
 402
 403	/* "udiv r0, r0, r1" */
 404	return __opcode_to_mem_arm(0xe730f110);
 405}
 406
 407static inline u32 __attribute_const__ bx_lr_instruction(void)
 408{
 409	if (IS_ENABLED(CONFIG_THUMB2_KERNEL)) {
 410		/* "bx lr; nop" */
 411		u32 insn = __opcode_thumb32_compose(0x4770, 0x46c0);
 412		return __opcode_to_mem_thumb32(insn);
 413	}
 414
 415	/* "bx lr" */
 416	return __opcode_to_mem_arm(0xe12fff1e);
 417}
 418
 419static void __init patch_aeabi_idiv(void)
 420{
 421	extern void __aeabi_uidiv(void);
 422	extern void __aeabi_idiv(void);
 423	uintptr_t fn_addr;
 424	unsigned int mask;
 425
 426	mask = IS_ENABLED(CONFIG_THUMB2_KERNEL) ? HWCAP_IDIVT : HWCAP_IDIVA;
 427	if (!(elf_hwcap & mask))
 428		return;
 429
 430	pr_info("CPU: div instructions available: patching division code\n");
 431
 432	fn_addr = ((uintptr_t)&__aeabi_uidiv) & ~1;
 433	asm ("" : "+g" (fn_addr));
 434	((u32 *)fn_addr)[0] = udiv_instruction();
 435	((u32 *)fn_addr)[1] = bx_lr_instruction();
 436	flush_icache_range(fn_addr, fn_addr + 8);
 437
 438	fn_addr = ((uintptr_t)&__aeabi_idiv) & ~1;
 439	asm ("" : "+g" (fn_addr));
 440	((u32 *)fn_addr)[0] = sdiv_instruction();
 441	((u32 *)fn_addr)[1] = bx_lr_instruction();
 442	flush_icache_range(fn_addr, fn_addr + 8);
 443}
 444
 445#else
 446static inline void patch_aeabi_idiv(void) { }
 447#endif
 448
 449static void __init cpuid_init_hwcaps(void)
 450{
 451	int block;
 452	u32 isar5;
 453	u32 isar6;
 454	u32 pfr2;
 455
 456	if (cpu_architecture() < CPU_ARCH_ARMv7)
 457		return;
 458
 459	block = cpuid_feature_extract(CPUID_EXT_ISAR0, 24);
 460	if (block >= 2)
 
 
 461		elf_hwcap |= HWCAP_IDIVA;
 462	if (block >= 1)
 463		elf_hwcap |= HWCAP_IDIVT;
 
 464
 465	/* LPAE implies atomic ldrd/strd instructions */
 466	block = cpuid_feature_extract(CPUID_EXT_MMFR0, 0);
 467	if (block >= 5)
 468		elf_hwcap |= HWCAP_LPAE;
 469
 470	/* check for supported v8 Crypto instructions */
 471	isar5 = read_cpuid_ext(CPUID_EXT_ISAR5);
 472
 473	block = cpuid_feature_extract_field(isar5, 4);
 474	if (block >= 2)
 475		elf_hwcap2 |= HWCAP2_PMULL;
 476	if (block >= 1)
 477		elf_hwcap2 |= HWCAP2_AES;
 478
 479	block = cpuid_feature_extract_field(isar5, 8);
 480	if (block >= 1)
 481		elf_hwcap2 |= HWCAP2_SHA1;
 482
 483	block = cpuid_feature_extract_field(isar5, 12);
 484	if (block >= 1)
 485		elf_hwcap2 |= HWCAP2_SHA2;
 486
 487	block = cpuid_feature_extract_field(isar5, 16);
 488	if (block >= 1)
 489		elf_hwcap2 |= HWCAP2_CRC32;
 490
 491	/* Check for Speculation barrier instruction */
 492	isar6 = read_cpuid_ext(CPUID_EXT_ISAR6);
 493	block = cpuid_feature_extract_field(isar6, 12);
 494	if (block >= 1)
 495		elf_hwcap2 |= HWCAP2_SB;
 496
 497	/* Check for Speculative Store Bypassing control */
 498	pfr2 = read_cpuid_ext(CPUID_EXT_PFR2);
 499	block = cpuid_feature_extract_field(pfr2, 4);
 500	if (block >= 1)
 501		elf_hwcap2 |= HWCAP2_SSBS;
 502}
 503
 504static void __init elf_hwcap_fixup(void)
 505{
 506	unsigned id = read_cpuid_id();
 
 
 
 507
 508	/*
 509	 * HWCAP_TLS is available only on 1136 r1p0 and later,
 510	 * see also kuser_get_tls_init.
 511	 */
 512	if (read_cpuid_part() == ARM_CPU_PART_ARM1136 &&
 513	    ((id >> 20) & 3) == 0) {
 514		elf_hwcap &= ~HWCAP_TLS;
 515		return;
 516	}
 517
 518	/* Verify if CPUID scheme is implemented */
 519	if ((id & 0x000f0000) != 0x000f0000)
 520		return;
 521
 522	/*
 523	 * If the CPU supports LDREX/STREX and LDREXB/STREXB,
 524	 * avoid advertising SWP; it may not be atomic with
 525	 * multiprocessing cores.
 526	 */
 527	if (cpuid_feature_extract(CPUID_EXT_ISAR3, 12) > 1 ||
 528	    (cpuid_feature_extract(CPUID_EXT_ISAR3, 12) == 1 &&
 529	     cpuid_feature_extract(CPUID_EXT_ISAR4, 20) >= 3))
 530		elf_hwcap &= ~HWCAP_SWP;
 531}
 532
 533/*
 534 * cpu_init - initialise one CPU.
 535 *
 536 * cpu_init sets up the per-CPU stacks.
 537 */
 538void notrace cpu_init(void)
 539{
 540#ifndef CONFIG_CPU_V7M
 541	unsigned int cpu = smp_processor_id();
 542	struct stack *stk = &stacks[cpu];
 543
 544	if (cpu >= NR_CPUS) {
 545		pr_crit("CPU%u: bad primary CPU number\n", cpu);
 546		BUG();
 547	}
 548
 549	/*
 550	 * This only works on resume and secondary cores. For booting on the
 551	 * boot cpu, smp_prepare_boot_cpu is called after percpu area setup.
 552	 */
 553	set_my_cpu_offset(per_cpu_offset(cpu));
 554
 555	cpu_proc_init();
 556
 557	/*
 558	 * Define the placement constraint for the inline asm directive below.
 559	 * In Thumb-2, msr with an immediate value is not allowed.
 560	 */
 561#ifdef CONFIG_THUMB2_KERNEL
 562#define PLC_l	"l"
 563#define PLC_r	"r"
 564#else
 565#define PLC_l	"I"
 566#define PLC_r	"I"
 567#endif
 568
 569	/*
 570	 * setup stacks for re-entrant exception handlers
 571	 */
 572	__asm__ (
 573	"msr	cpsr_c, %1\n\t"
 574	"add	r14, %0, %2\n\t"
 575	"mov	sp, r14\n\t"
 576	"msr	cpsr_c, %3\n\t"
 577	"add	r14, %0, %4\n\t"
 578	"mov	sp, r14\n\t"
 579	"msr	cpsr_c, %5\n\t"
 580	"add	r14, %0, %6\n\t"
 581	"mov	sp, r14\n\t"
 582	"msr	cpsr_c, %7\n\t"
 583	"add	r14, %0, %8\n\t"
 584	"mov	sp, r14\n\t"
 585	"msr	cpsr_c, %9"
 586	    :
 587	    : "r" (stk),
 588	      PLC_r (PSR_F_BIT | PSR_I_BIT | IRQ_MODE),
 589	      "I" (offsetof(struct stack, irq[0])),
 590	      PLC_r (PSR_F_BIT | PSR_I_BIT | ABT_MODE),
 591	      "I" (offsetof(struct stack, abt[0])),
 592	      PLC_r (PSR_F_BIT | PSR_I_BIT | UND_MODE),
 593	      "I" (offsetof(struct stack, und[0])),
 594	      PLC_r (PSR_F_BIT | PSR_I_BIT | FIQ_MODE),
 595	      "I" (offsetof(struct stack, fiq[0])),
 596	      PLC_l (PSR_F_BIT | PSR_I_BIT | SVC_MODE)
 597	    : "r14");
 598#endif
 599}
 600
 601u32 __cpu_logical_map[NR_CPUS] = { [0 ... NR_CPUS-1] = MPIDR_INVALID };
 602
 603void __init smp_setup_processor_id(void)
 604{
 605	int i;
 606	u32 mpidr = is_smp() ? read_cpuid_mpidr() & MPIDR_HWID_BITMASK : 0;
 607	u32 cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0);
 608
 609	cpu_logical_map(0) = cpu;
 610	for (i = 1; i < nr_cpu_ids; ++i)
 611		cpu_logical_map(i) = i == cpu ? 0 : i;
 612
 613	/*
 614	 * clear __my_cpu_offset on boot CPU to avoid hang caused by
 615	 * using percpu variable early, for example, lockdep will
 616	 * access percpu variable inside lock_release
 617	 */
 618	set_my_cpu_offset(0);
 619
 620	pr_info("Booting Linux on physical CPU 0x%x\n", mpidr);
 621}
 622
 623struct mpidr_hash mpidr_hash;
 624#ifdef CONFIG_SMP
 625/**
 626 * smp_build_mpidr_hash - Pre-compute shifts required at each affinity
 627 *			  level in order to build a linear index from an
 628 *			  MPIDR value. Resulting algorithm is a collision
 629 *			  free hash carried out through shifting and ORing
 630 */
 631static void __init smp_build_mpidr_hash(void)
 632{
 633	u32 i, affinity;
 634	u32 fs[3], bits[3], ls, mask = 0;
 635	/*
 636	 * Pre-scan the list of MPIDRS and filter out bits that do
 637	 * not contribute to affinity levels, ie they never toggle.
 638	 */
 639	for_each_possible_cpu(i)
 640		mask |= (cpu_logical_map(i) ^ cpu_logical_map(0));
 641	pr_debug("mask of set bits 0x%x\n", mask);
 642	/*
 643	 * Find and stash the last and first bit set at all affinity levels to
 644	 * check how many bits are required to represent them.
 645	 */
 646	for (i = 0; i < 3; i++) {
 647		affinity = MPIDR_AFFINITY_LEVEL(mask, i);
 648		/*
 649		 * Find the MSB bit and LSB bits position
 650		 * to determine how many bits are required
 651		 * to express the affinity level.
 652		 */
 653		ls = fls(affinity);
 654		fs[i] = affinity ? ffs(affinity) - 1 : 0;
 655		bits[i] = ls - fs[i];
 656	}
 657	/*
 658	 * An index can be created from the MPIDR by isolating the
 659	 * significant bits at each affinity level and by shifting
 660	 * them in order to compress the 24 bits values space to a
 661	 * compressed set of values. This is equivalent to hashing
 662	 * the MPIDR through shifting and ORing. It is a collision free
 663	 * hash though not minimal since some levels might contain a number
 664	 * of CPUs that is not an exact power of 2 and their bit
 665	 * representation might contain holes, eg MPIDR[7:0] = {0x2, 0x80}.
 666	 */
 667	mpidr_hash.shift_aff[0] = fs[0];
 668	mpidr_hash.shift_aff[1] = MPIDR_LEVEL_BITS + fs[1] - bits[0];
 669	mpidr_hash.shift_aff[2] = 2*MPIDR_LEVEL_BITS + fs[2] -
 670						(bits[1] + bits[0]);
 671	mpidr_hash.mask = mask;
 672	mpidr_hash.bits = bits[2] + bits[1] + bits[0];
 673	pr_debug("MPIDR hash: aff0[%u] aff1[%u] aff2[%u] mask[0x%x] bits[%u]\n",
 674				mpidr_hash.shift_aff[0],
 675				mpidr_hash.shift_aff[1],
 676				mpidr_hash.shift_aff[2],
 677				mpidr_hash.mask,
 678				mpidr_hash.bits);
 679	/*
 680	 * 4x is an arbitrary value used to warn on a hash table much bigger
 681	 * than expected on most systems.
 682	 */
 683	if (mpidr_hash_size() > 4 * num_possible_cpus())
 684		pr_warn("Large number of MPIDR hash buckets detected\n");
 685	sync_cache_w(&mpidr_hash);
 686}
 687#endif
 688
 689/*
 690 * locate processor in the list of supported processor types.  The linker
 691 * builds this table for us from the entries in arch/arm/mm/proc-*.S
 692 */
 693struct proc_info_list *lookup_processor(u32 midr)
 694{
 695	struct proc_info_list *list = lookup_processor_type(midr);
 696
 
 
 
 
 
 
 697	if (!list) {
 698		pr_err("CPU%u: configuration botched (ID %08x), CPU halted\n",
 699		       smp_processor_id(), midr);
 700		while (1)
 701		/* can't use cpu_relax() here as it may require MMU setup */;
 702	}
 703
 704	return list;
 705}
 706
 707static void __init setup_processor(void)
 708{
 709	unsigned int midr = read_cpuid_id();
 710	struct proc_info_list *list = lookup_processor(midr);
 711
 712	cpu_name = list->cpu_name;
 713	__cpu_architecture = __get_cpu_architecture();
 714
 715	init_proc_vtable(list->proc);
 
 
 716#ifdef MULTI_TLB
 717	cpu_tlb = *list->tlb;
 718#endif
 719#ifdef MULTI_USER
 720	cpu_user = *list->user;
 721#endif
 722#ifdef MULTI_CACHE
 723	cpu_cache = *list->cache;
 724#endif
 725
 726	pr_info("CPU: %s [%08x] revision %d (ARMv%s), cr=%08lx\n",
 727		list->cpu_name, midr, midr & 15,
 728		proc_arch[cpu_architecture()], get_cr());
 729
 730	snprintf(init_utsname()->machine, __NEW_UTS_LEN + 1, "%s%c",
 731		 list->arch_name, ENDIANNESS);
 732	snprintf(elf_platform, ELF_PLATFORM_SIZE, "%s%c",
 733		 list->elf_name, ENDIANNESS);
 734	elf_hwcap = list->elf_hwcap;
 735
 736	cpuid_init_hwcaps();
 737	patch_aeabi_idiv();
 738
 739#ifndef CONFIG_ARM_THUMB
 740	elf_hwcap &= ~(HWCAP_THUMB | HWCAP_IDIVT);
 741#endif
 742#ifdef CONFIG_MMU
 743	init_default_cache_policy(list->__cpu_mm_mmu_flags);
 744#endif
 745	erratum_a15_798181_init();
 746
 747	elf_hwcap_fixup();
 748
 749	cacheid_init();
 750	cpu_init();
 751}
 752
 753void __init dump_machine_table(void)
 754{
 755	const struct machine_desc *p;
 756
 757	early_print("Available machine support:\n\nID (hex)\tNAME\n");
 758	for_each_machine_desc(p)
 759		early_print("%08x\t%s\n", p->nr, p->name);
 760
 761	early_print("\nPlease check your kernel config and/or bootloader.\n");
 762
 763	while (true)
 764		/* can't use cpu_relax() here as it may require MMU setup */;
 765}
 766
 767int __init arm_add_memory(u64 start, u64 size)
 768{
 
 769	u64 aligned_start;
 770
 
 
 
 
 
 
 771	/*
 772	 * Ensure that start/size are aligned to a page boundary.
 773	 * Size is rounded down, start is rounded up.
 774	 */
 
 775	aligned_start = PAGE_ALIGN(start);
 776	if (aligned_start > start + size)
 777		size = 0;
 778	else
 779		size -= aligned_start - start;
 780
 781#ifndef CONFIG_PHYS_ADDR_T_64BIT
 782	if (aligned_start > ULONG_MAX) {
 783		pr_crit("Ignoring memory at 0x%08llx outside 32-bit physical address space\n",
 784			start);
 785		return -EINVAL;
 786	}
 787
 788	if (aligned_start + size > ULONG_MAX) {
 789		pr_crit("Truncating memory at 0x%08llx to fit in 32-bit physical address space\n",
 790			(long long)start);
 791		/*
 792		 * To ensure bank->start + bank->size is representable in
 793		 * 32 bits, we use ULONG_MAX as the upper limit rather than 4GB.
 794		 * This means we lose a page after masking.
 795		 */
 796		size = ULONG_MAX - aligned_start;
 797	}
 798#endif
 799
 800	if (aligned_start < PHYS_OFFSET) {
 801		if (aligned_start + size <= PHYS_OFFSET) {
 802			pr_info("Ignoring memory below PHYS_OFFSET: 0x%08llx-0x%08llx\n",
 803				aligned_start, aligned_start + size);
 804			return -EINVAL;
 805		}
 806
 807		pr_info("Ignoring memory below PHYS_OFFSET: 0x%08llx-0x%08llx\n",
 808			aligned_start, (u64)PHYS_OFFSET);
 809
 810		size -= PHYS_OFFSET - aligned_start;
 811		aligned_start = PHYS_OFFSET;
 812	}
 813
 814	start = aligned_start;
 815	size = size & ~(phys_addr_t)(PAGE_SIZE - 1);
 816
 817	/*
 818	 * Check whether this memory region has non-zero size or
 819	 * invalid node number.
 820	 */
 821	if (size == 0)
 822		return -EINVAL;
 823
 824	memblock_add(start, size);
 825	return 0;
 826}
 827
 828/*
 829 * Pick out the memory size.  We look for mem=size@start,
 830 * where start and size are "size[KkMm]"
 831 */
 832
 833static int __init early_mem(char *p)
 834{
 835	static int usermem __initdata = 0;
 836	u64 size;
 837	u64 start;
 838	char *endp;
 839
 840	/*
 841	 * If the user specifies memory size, we
 842	 * blow away any automatically generated
 843	 * size.
 844	 */
 845	if (usermem == 0) {
 846		usermem = 1;
 847		memblock_remove(memblock_start_of_DRAM(),
 848			memblock_end_of_DRAM() - memblock_start_of_DRAM());
 849	}
 850
 851	start = PHYS_OFFSET;
 852	size  = memparse(p, &endp);
 853	if (*endp == '@')
 854		start = memparse(endp + 1, NULL);
 855
 856	arm_add_memory(start, size);
 857
 858	return 0;
 859}
 860early_param("mem", early_mem);
 861
 862static void __init request_standard_resources(const struct machine_desc *mdesc)
 863{
 864	phys_addr_t start, end, res_end;
 865	struct resource *res;
 866	u64 i;
 867
 868	kernel_code.start   = virt_to_phys(_text);
 869	kernel_code.end     = virt_to_phys(__init_begin - 1);
 870	kernel_data.start   = virt_to_phys(_sdata);
 871	kernel_data.end     = virt_to_phys(_end - 1);
 872
 873	for_each_mem_range(i, &start, &end) {
 874		unsigned long boot_alias_start;
 875
 876		/*
 877		 * In memblock, end points to the first byte after the
 878		 * range while in resourses, end points to the last byte in
 879		 * the range.
 880		 */
 881		res_end = end - 1;
 882
 883		/*
 884		 * Some systems have a special memory alias which is only
 885		 * used for booting.  We need to advertise this region to
 886		 * kexec-tools so they know where bootable RAM is located.
 887		 */
 888		boot_alias_start = phys_to_idmap(start);
 889		if (arm_has_idmap_alias() && boot_alias_start != IDMAP_INVALID_ADDR) {
 890			res = memblock_alloc(sizeof(*res), SMP_CACHE_BYTES);
 891			if (!res)
 892				panic("%s: Failed to allocate %zu bytes\n",
 893				      __func__, sizeof(*res));
 894			res->name = "System RAM (boot alias)";
 895			res->start = boot_alias_start;
 896			res->end = phys_to_idmap(res_end);
 897			res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
 898			request_resource(&iomem_resource, res);
 899		}
 900
 901		res = memblock_alloc(sizeof(*res), SMP_CACHE_BYTES);
 902		if (!res)
 903			panic("%s: Failed to allocate %zu bytes\n", __func__,
 904			      sizeof(*res));
 905		res->name  = "System RAM";
 906		res->start = start;
 907		res->end = res_end;
 908		res->flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
 909
 910		request_resource(&iomem_resource, res);
 911
 912		if (kernel_code.start >= res->start &&
 913		    kernel_code.end <= res->end)
 914			request_resource(res, &kernel_code);
 915		if (kernel_data.start >= res->start &&
 916		    kernel_data.end <= res->end)
 917			request_resource(res, &kernel_data);
 918	}
 919
 920	if (mdesc->video_start) {
 921		video_ram.start = mdesc->video_start;
 922		video_ram.end   = mdesc->video_end;
 923		request_resource(&iomem_resource, &video_ram);
 924	}
 925
 926	/*
 927	 * Some machines don't have the possibility of ever
 928	 * possessing lp0, lp1 or lp2
 929	 */
 930	if (mdesc->reserve_lp0)
 931		request_resource(&ioport_resource, &lp0);
 932	if (mdesc->reserve_lp1)
 933		request_resource(&ioport_resource, &lp1);
 934	if (mdesc->reserve_lp2)
 935		request_resource(&ioport_resource, &lp2);
 936}
 937
 938#if defined(CONFIG_VGA_CONSOLE) || defined(CONFIG_DUMMY_CONSOLE) || \
 939    defined(CONFIG_EFI)
 940struct screen_info screen_info = {
 941 .orig_video_lines	= 30,
 942 .orig_video_cols	= 80,
 943 .orig_video_mode	= 0,
 944 .orig_video_ega_bx	= 0,
 945 .orig_video_isVGA	= 1,
 946 .orig_video_points	= 8
 947};
 948#endif
 949
 950static int __init customize_machine(void)
 951{
 952	/*
 953	 * customizes platform devices, or adds new ones
 954	 * On DT based machines, we fall back to populating the
 955	 * machine from the device tree, if no callback is provided,
 956	 * otherwise we would always need an init_machine callback.
 957	 */
 958	if (machine_desc->init_machine)
 959		machine_desc->init_machine();
 960
 
 
 
 
 961	return 0;
 962}
 963arch_initcall(customize_machine);
 964
 965static int __init init_machine_late(void)
 966{
 967	struct device_node *root;
 968	int ret;
 969
 970	if (machine_desc->init_late)
 971		machine_desc->init_late();
 972
 973	root = of_find_node_by_path("/");
 974	if (root) {
 975		ret = of_property_read_string(root, "serial-number",
 976					      &system_serial);
 977		if (ret)
 978			system_serial = NULL;
 979	}
 980
 981	if (!system_serial)
 982		system_serial = kasprintf(GFP_KERNEL, "%08x%08x",
 983					  system_serial_high,
 984					  system_serial_low);
 985
 986	return 0;
 987}
 988late_initcall(init_machine_late);
 989
 990#ifdef CONFIG_KEXEC
 991/*
 992 * The crash region must be aligned to 128MB to avoid
 993 * zImage relocating below the reserved region.
 994 */
 995#define CRASH_ALIGN	(128 << 20)
 996
 997static inline unsigned long long get_total_mem(void)
 998{
 999	unsigned long total;
1000
1001	total = max_low_pfn - min_low_pfn;
1002	return total << PAGE_SHIFT;
1003}
1004
1005/**
1006 * reserve_crashkernel() - reserves memory are for crash kernel
1007 *
1008 * This function reserves memory area given in "crashkernel=" kernel command
1009 * line parameter. The memory reserved is used by a dump capture kernel when
1010 * primary kernel is crashing.
1011 */
1012static void __init reserve_crashkernel(void)
1013{
1014	unsigned long long crash_size, crash_base;
1015	unsigned long long total_mem;
1016	int ret;
1017
1018	total_mem = get_total_mem();
1019	ret = parse_crashkernel(boot_command_line, total_mem,
1020				&crash_size, &crash_base);
1021	/* invalid value specified or crashkernel=0 */
1022	if (ret || !crash_size)
1023		return;
1024
1025	if (crash_base <= 0) {
1026		unsigned long long crash_max = idmap_to_phys((u32)~0);
1027		unsigned long long lowmem_max = __pa(high_memory - 1) + 1;
1028		if (crash_max > lowmem_max)
1029			crash_max = lowmem_max;
1030
1031		crash_base = memblock_phys_alloc_range(crash_size, CRASH_ALIGN,
1032						       CRASH_ALIGN, crash_max);
1033		if (!crash_base) {
1034			pr_err("crashkernel reservation failed - No suitable area found.\n");
1035			return;
1036		}
1037	} else {
1038		unsigned long long crash_max = crash_base + crash_size;
1039		unsigned long long start;
1040
1041		start = memblock_phys_alloc_range(crash_size, SECTION_SIZE,
1042						  crash_base, crash_max);
1043		if (!start) {
1044			pr_err("crashkernel reservation failed - memory is in use.\n");
1045			return;
1046		}
1047	}
1048
1049	pr_info("Reserving %ldMB of memory at %ldMB for crashkernel (System RAM: %ldMB)\n",
1050		(unsigned long)(crash_size >> 20),
1051		(unsigned long)(crash_base >> 20),
1052		(unsigned long)(total_mem >> 20));
1053
1054	/* The crashk resource must always be located in normal mem */
1055	crashk_res.start = crash_base;
1056	crashk_res.end = crash_base + crash_size - 1;
1057	insert_resource(&iomem_resource, &crashk_res);
1058
1059	if (arm_has_idmap_alias()) {
1060		/*
1061		 * If we have a special RAM alias for use at boot, we
1062		 * need to advertise to kexec tools where the alias is.
1063		 */
1064		static struct resource crashk_boot_res = {
1065			.name = "Crash kernel (boot alias)",
1066			.flags = IORESOURCE_BUSY | IORESOURCE_MEM,
1067		};
1068
1069		crashk_boot_res.start = phys_to_idmap(crash_base);
1070		crashk_boot_res.end = crashk_boot_res.start + crash_size - 1;
1071		insert_resource(&iomem_resource, &crashk_boot_res);
1072	}
1073}
1074#else
1075static inline void reserve_crashkernel(void) {}
1076#endif /* CONFIG_KEXEC */
1077
 
 
 
 
 
 
 
1078void __init hyp_mode_check(void)
1079{
1080#ifdef CONFIG_ARM_VIRT_EXT
1081	sync_boot_mode();
1082
1083	if (is_hyp_mode_available()) {
1084		pr_info("CPU: All CPU(s) started in HYP mode.\n");
1085		pr_info("CPU: Virtualization extensions available.\n");
1086	} else if (is_hyp_mode_mismatched()) {
1087		pr_warn("CPU: WARNING: CPU(s) started in wrong/inconsistent modes (primary CPU mode 0x%x)\n",
1088			__boot_cpu_mode & MODE_MASK);
1089		pr_warn("CPU: This may indicate a broken bootloader or firmware.\n");
1090	} else
1091		pr_info("CPU: All CPU(s) started in SVC mode.\n");
1092#endif
1093}
1094
1095static void (*__arm_pm_restart)(enum reboot_mode reboot_mode, const char *cmd);
1096
1097static int arm_restart(struct notifier_block *nb, unsigned long action,
1098		       void *data)
1099{
1100	__arm_pm_restart(action, data);
1101	return NOTIFY_DONE;
1102}
1103
1104static struct notifier_block arm_restart_nb = {
1105	.notifier_call = arm_restart,
1106	.priority = 128,
1107};
1108
1109void __init setup_arch(char **cmdline_p)
1110{
1111	const struct machine_desc *mdesc = NULL;
1112	void *atags_vaddr = NULL;
1113
1114	if (__atags_pointer)
1115		atags_vaddr = FDT_VIRT_BASE(__atags_pointer);
1116
1117	setup_processor();
1118	if (atags_vaddr) {
1119		mdesc = setup_machine_fdt(atags_vaddr);
1120		if (mdesc)
1121			memblock_reserve(__atags_pointer,
1122					 fdt_totalsize(atags_vaddr));
1123	}
1124	if (!mdesc)
1125		mdesc = setup_machine_tags(atags_vaddr, __machine_arch_type);
1126	if (!mdesc) {
1127		early_print("\nError: invalid dtb and unrecognized/unsupported machine ID\n");
1128		early_print("  r1=0x%08x, r2=0x%08x\n", __machine_arch_type,
1129			    __atags_pointer);
1130		if (__atags_pointer)
1131			early_print("  r2[]=%*ph\n", 16, atags_vaddr);
1132		dump_machine_table();
1133	}
1134
1135	machine_desc = mdesc;
1136	machine_name = mdesc->name;
1137	dump_stack_set_arch_desc("%s", mdesc->name);
1138
1139	if (mdesc->reboot_mode != REBOOT_HARD)
1140		reboot_mode = mdesc->reboot_mode;
1141
1142	setup_initial_init_mm(_text, _etext, _edata, _end);
 
 
 
1143
1144	/* populate cmd_line too for later use, preserving boot_command_line */
1145	strlcpy(cmd_line, boot_command_line, COMMAND_LINE_SIZE);
1146	*cmdline_p = cmd_line;
1147
1148	early_fixmap_init();
1149	early_ioremap_init();
1150
1151	parse_early_param();
1152
1153#ifdef CONFIG_MMU
1154	early_mm_init(mdesc);
1155#endif
1156	setup_dma_zone(mdesc);
1157	xen_early_init();
1158	arm_efi_init();
1159	/*
1160	 * Make sure the calculation for lowmem/highmem is set appropriately
1161	 * before reserving/allocating any memory
1162	 */
1163	adjust_lowmem_bounds();
1164	arm_memblock_init(mdesc);
1165	/* Memory may have been removed so recalculate the bounds. */
1166	adjust_lowmem_bounds();
1167
1168	early_ioremap_reset();
1169
1170	paging_init(mdesc);
1171	kasan_init();
1172	request_standard_resources(mdesc);
1173
1174	if (mdesc->restart) {
1175		__arm_pm_restart = mdesc->restart;
1176		register_restart_handler(&arm_restart_nb);
1177	}
1178
1179	unflatten_device_tree();
1180
1181	arm_dt_init_cpu_maps();
1182	psci_dt_init();
1183#ifdef CONFIG_SMP
1184	if (is_smp()) {
1185		if (!mdesc->smp_init || !mdesc->smp_init()) {
1186			if (psci_smp_available())
1187				smp_set_ops(&psci_smp_ops);
1188			else if (mdesc->smp)
1189				smp_set_ops(mdesc->smp);
1190		}
1191		smp_init_cpus();
1192		smp_build_mpidr_hash();
1193	}
1194#endif
1195
1196	if (!is_smp())
1197		hyp_mode_check();
1198
1199	reserve_crashkernel();
1200
1201#ifdef CONFIG_GENERIC_IRQ_MULTI_HANDLER
1202	handle_arch_irq = mdesc->handle_irq;
1203#endif
1204
1205#ifdef CONFIG_VT
1206#if defined(CONFIG_VGA_CONSOLE)
1207	conswitchp = &vga_con;
 
 
1208#endif
1209#endif
1210
1211	if (mdesc->init_early)
1212		mdesc->init_early();
1213}
1214
1215
1216static int __init topology_init(void)
1217{
1218	int cpu;
1219
1220	for_each_possible_cpu(cpu) {
1221		struct cpuinfo_arm *cpuinfo = &per_cpu(cpu_data, cpu);
1222		cpuinfo->cpu.hotpluggable = platform_can_hotplug_cpu(cpu);
1223		register_cpu(&cpuinfo->cpu, cpu);
1224	}
1225
1226	return 0;
1227}
1228subsys_initcall(topology_init);
1229
1230#ifdef CONFIG_HAVE_PROC_CPU
1231static int __init proc_cpu_init(void)
1232{
1233	struct proc_dir_entry *res;
1234
1235	res = proc_mkdir("cpu", NULL);
1236	if (!res)
1237		return -ENOMEM;
1238	return 0;
1239}
1240fs_initcall(proc_cpu_init);
1241#endif
1242
1243static const char *hwcap_str[] = {
1244	"swp",
1245	"half",
1246	"thumb",
1247	"26bit",
1248	"fastmult",
1249	"fpa",
1250	"vfp",
1251	"edsp",
1252	"java",
1253	"iwmmxt",
1254	"crunch",
1255	"thumbee",
1256	"neon",
1257	"vfpv3",
1258	"vfpv3d16",
1259	"tls",
1260	"vfpv4",
1261	"idiva",
1262	"idivt",
1263	"vfpd32",
1264	"lpae",
1265	"evtstrm",
1266	"fphp",
1267	"asimdhp",
1268	"asimddp",
1269	"asimdfhm",
1270	"asimdbf16",
1271	"i8mm",
1272	NULL
1273};
1274
1275static const char *hwcap2_str[] = {
1276	"aes",
1277	"pmull",
1278	"sha1",
1279	"sha2",
1280	"crc32",
1281	"sb",
1282	"ssbs",
1283	NULL
1284};
1285
1286static int c_show(struct seq_file *m, void *v)
1287{
1288	int i, j;
1289	u32 cpuid;
1290
1291	for_each_online_cpu(i) {
1292		/*
1293		 * glibc reads /proc/cpuinfo to determine the number of
1294		 * online processors, looking for lines beginning with
1295		 * "processor".  Give glibc what it expects.
1296		 */
1297		seq_printf(m, "processor\t: %d\n", i);
1298		cpuid = is_smp() ? per_cpu(cpu_data, i).cpuid : read_cpuid_id();
1299		seq_printf(m, "model name\t: %s rev %d (%s)\n",
1300			   cpu_name, cpuid & 15, elf_platform);
1301
1302#if defined(CONFIG_SMP)
1303		seq_printf(m, "BogoMIPS\t: %lu.%02lu\n",
1304			   per_cpu(cpu_data, i).loops_per_jiffy / (500000UL/HZ),
1305			   (per_cpu(cpu_data, i).loops_per_jiffy / (5000UL/HZ)) % 100);
1306#else
1307		seq_printf(m, "BogoMIPS\t: %lu.%02lu\n",
1308			   loops_per_jiffy / (500000/HZ),
1309			   (loops_per_jiffy / (5000/HZ)) % 100);
1310#endif
1311		/* dump out the processor features */
1312		seq_puts(m, "Features\t: ");
1313
1314		for (j = 0; hwcap_str[j]; j++)
1315			if (elf_hwcap & (1 << j))
1316				seq_printf(m, "%s ", hwcap_str[j]);
1317
1318		for (j = 0; hwcap2_str[j]; j++)
1319			if (elf_hwcap2 & (1 << j))
1320				seq_printf(m, "%s ", hwcap2_str[j]);
1321
1322		seq_printf(m, "\nCPU implementer\t: 0x%02x\n", cpuid >> 24);
1323		seq_printf(m, "CPU architecture: %s\n",
1324			   proc_arch[cpu_architecture()]);
1325
1326		if ((cpuid & 0x0008f000) == 0x00000000) {
1327			/* pre-ARM7 */
1328			seq_printf(m, "CPU part\t: %07x\n", cpuid >> 4);
1329		} else {
1330			if ((cpuid & 0x0008f000) == 0x00007000) {
1331				/* ARM7 */
1332				seq_printf(m, "CPU variant\t: 0x%02x\n",
1333					   (cpuid >> 16) & 127);
1334			} else {
1335				/* post-ARM7 */
1336				seq_printf(m, "CPU variant\t: 0x%x\n",
1337					   (cpuid >> 20) & 15);
1338			}
1339			seq_printf(m, "CPU part\t: 0x%03x\n",
1340				   (cpuid >> 4) & 0xfff);
1341		}
1342		seq_printf(m, "CPU revision\t: %d\n\n", cpuid & 15);
1343	}
1344
1345	seq_printf(m, "Hardware\t: %s\n", machine_name);
1346	seq_printf(m, "Revision\t: %04x\n", system_rev);
1347	seq_printf(m, "Serial\t\t: %s\n", system_serial);
 
1348
1349	return 0;
1350}
1351
1352static void *c_start(struct seq_file *m, loff_t *pos)
1353{
1354	return *pos < 1 ? (void *)1 : NULL;
1355}
1356
1357static void *c_next(struct seq_file *m, void *v, loff_t *pos)
1358{
1359	++*pos;
1360	return NULL;
1361}
1362
1363static void c_stop(struct seq_file *m, void *v)
1364{
1365}
1366
1367const struct seq_operations cpuinfo_op = {
1368	.start	= c_start,
1369	.next	= c_next,
1370	.stop	= c_stop,
1371	.show	= c_show
1372};