Loading...
1/* Basic authentication token and access key management
2 *
3 * Copyright (C) 2004-2008 Red Hat, Inc. All Rights Reserved.
4 * Written by David Howells (dhowells@redhat.com)
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
10 */
11
12#include <linux/module.h>
13#include <linux/init.h>
14#include <linux/poison.h>
15#include <linux/sched.h>
16#include <linux/slab.h>
17#include <linux/security.h>
18#include <linux/workqueue.h>
19#include <linux/random.h>
20#include <linux/err.h>
21#include "internal.h"
22
23struct kmem_cache *key_jar;
24struct rb_root key_serial_tree; /* tree of keys indexed by serial */
25DEFINE_SPINLOCK(key_serial_lock);
26
27struct rb_root key_user_tree; /* tree of quota records indexed by UID */
28DEFINE_SPINLOCK(key_user_lock);
29
30unsigned int key_quota_root_maxkeys = 200; /* root's key count quota */
31unsigned int key_quota_root_maxbytes = 20000; /* root's key space quota */
32unsigned int key_quota_maxkeys = 200; /* general key count quota */
33unsigned int key_quota_maxbytes = 20000; /* general key space quota */
34
35static LIST_HEAD(key_types_list);
36static DECLARE_RWSEM(key_types_sem);
37
38/* We serialise key instantiation and link */
39DEFINE_MUTEX(key_construction_mutex);
40
41#ifdef KEY_DEBUGGING
42void __key_check(const struct key *key)
43{
44 printk("__key_check: key %p {%08x} should be {%08x}\n",
45 key, key->magic, KEY_DEBUG_MAGIC);
46 BUG();
47}
48#endif
49
50/*
51 * Get the key quota record for a user, allocating a new record if one doesn't
52 * already exist.
53 */
54struct key_user *key_user_lookup(kuid_t uid)
55{
56 struct key_user *candidate = NULL, *user;
57 struct rb_node *parent = NULL;
58 struct rb_node **p;
59
60try_again:
61 p = &key_user_tree.rb_node;
62 spin_lock(&key_user_lock);
63
64 /* search the tree for a user record with a matching UID */
65 while (*p) {
66 parent = *p;
67 user = rb_entry(parent, struct key_user, node);
68
69 if (uid_lt(uid, user->uid))
70 p = &(*p)->rb_left;
71 else if (uid_gt(uid, user->uid))
72 p = &(*p)->rb_right;
73 else
74 goto found;
75 }
76
77 /* if we get here, we failed to find a match in the tree */
78 if (!candidate) {
79 /* allocate a candidate user record if we don't already have
80 * one */
81 spin_unlock(&key_user_lock);
82
83 user = NULL;
84 candidate = kmalloc(sizeof(struct key_user), GFP_KERNEL);
85 if (unlikely(!candidate))
86 goto out;
87
88 /* the allocation may have scheduled, so we need to repeat the
89 * search lest someone else added the record whilst we were
90 * asleep */
91 goto try_again;
92 }
93
94 /* if we get here, then the user record still hadn't appeared on the
95 * second pass - so we use the candidate record */
96 atomic_set(&candidate->usage, 1);
97 atomic_set(&candidate->nkeys, 0);
98 atomic_set(&candidate->nikeys, 0);
99 candidate->uid = uid;
100 candidate->qnkeys = 0;
101 candidate->qnbytes = 0;
102 spin_lock_init(&candidate->lock);
103 mutex_init(&candidate->cons_lock);
104
105 rb_link_node(&candidate->node, parent, p);
106 rb_insert_color(&candidate->node, &key_user_tree);
107 spin_unlock(&key_user_lock);
108 user = candidate;
109 goto out;
110
111 /* okay - we found a user record for this UID */
112found:
113 atomic_inc(&user->usage);
114 spin_unlock(&key_user_lock);
115 kfree(candidate);
116out:
117 return user;
118}
119
120/*
121 * Dispose of a user structure
122 */
123void key_user_put(struct key_user *user)
124{
125 if (atomic_dec_and_lock(&user->usage, &key_user_lock)) {
126 rb_erase(&user->node, &key_user_tree);
127 spin_unlock(&key_user_lock);
128
129 kfree(user);
130 }
131}
132
133/*
134 * Allocate a serial number for a key. These are assigned randomly to avoid
135 * security issues through covert channel problems.
136 */
137static inline void key_alloc_serial(struct key *key)
138{
139 struct rb_node *parent, **p;
140 struct key *xkey;
141
142 /* propose a random serial number and look for a hole for it in the
143 * serial number tree */
144 do {
145 get_random_bytes(&key->serial, sizeof(key->serial));
146
147 key->serial >>= 1; /* negative numbers are not permitted */
148 } while (key->serial < 3);
149
150 spin_lock(&key_serial_lock);
151
152attempt_insertion:
153 parent = NULL;
154 p = &key_serial_tree.rb_node;
155
156 while (*p) {
157 parent = *p;
158 xkey = rb_entry(parent, struct key, serial_node);
159
160 if (key->serial < xkey->serial)
161 p = &(*p)->rb_left;
162 else if (key->serial > xkey->serial)
163 p = &(*p)->rb_right;
164 else
165 goto serial_exists;
166 }
167
168 /* we've found a suitable hole - arrange for this key to occupy it */
169 rb_link_node(&key->serial_node, parent, p);
170 rb_insert_color(&key->serial_node, &key_serial_tree);
171
172 spin_unlock(&key_serial_lock);
173 return;
174
175 /* we found a key with the proposed serial number - walk the tree from
176 * that point looking for the next unused serial number */
177serial_exists:
178 for (;;) {
179 key->serial++;
180 if (key->serial < 3) {
181 key->serial = 3;
182 goto attempt_insertion;
183 }
184
185 parent = rb_next(parent);
186 if (!parent)
187 goto attempt_insertion;
188
189 xkey = rb_entry(parent, struct key, serial_node);
190 if (key->serial < xkey->serial)
191 goto attempt_insertion;
192 }
193}
194
195/**
196 * key_alloc - Allocate a key of the specified type.
197 * @type: The type of key to allocate.
198 * @desc: The key description to allow the key to be searched out.
199 * @uid: The owner of the new key.
200 * @gid: The group ID for the new key's group permissions.
201 * @cred: The credentials specifying UID namespace.
202 * @perm: The permissions mask of the new key.
203 * @flags: Flags specifying quota properties.
204 *
205 * Allocate a key of the specified type with the attributes given. The key is
206 * returned in an uninstantiated state and the caller needs to instantiate the
207 * key before returning.
208 *
209 * The user's key count quota is updated to reflect the creation of the key and
210 * the user's key data quota has the default for the key type reserved. The
211 * instantiation function should amend this as necessary. If insufficient
212 * quota is available, -EDQUOT will be returned.
213 *
214 * The LSM security modules can prevent a key being created, in which case
215 * -EACCES will be returned.
216 *
217 * Returns a pointer to the new key if successful and an error code otherwise.
218 *
219 * Note that the caller needs to ensure the key type isn't uninstantiated.
220 * Internally this can be done by locking key_types_sem. Externally, this can
221 * be done by either never unregistering the key type, or making sure
222 * key_alloc() calls don't race with module unloading.
223 */
224struct key *key_alloc(struct key_type *type, const char *desc,
225 kuid_t uid, kgid_t gid, const struct cred *cred,
226 key_perm_t perm, unsigned long flags)
227{
228 struct key_user *user = NULL;
229 struct key *key;
230 size_t desclen, quotalen;
231 int ret;
232
233 key = ERR_PTR(-EINVAL);
234 if (!desc || !*desc)
235 goto error;
236
237 if (type->vet_description) {
238 ret = type->vet_description(desc);
239 if (ret < 0) {
240 key = ERR_PTR(ret);
241 goto error;
242 }
243 }
244
245 desclen = strlen(desc);
246 quotalen = desclen + 1 + type->def_datalen;
247
248 /* get hold of the key tracking for this user */
249 user = key_user_lookup(uid);
250 if (!user)
251 goto no_memory_1;
252
253 /* check that the user's quota permits allocation of another key and
254 * its description */
255 if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
256 unsigned maxkeys = uid_eq(uid, GLOBAL_ROOT_UID) ?
257 key_quota_root_maxkeys : key_quota_maxkeys;
258 unsigned maxbytes = uid_eq(uid, GLOBAL_ROOT_UID) ?
259 key_quota_root_maxbytes : key_quota_maxbytes;
260
261 spin_lock(&user->lock);
262 if (!(flags & KEY_ALLOC_QUOTA_OVERRUN)) {
263 if (user->qnkeys + 1 >= maxkeys ||
264 user->qnbytes + quotalen >= maxbytes ||
265 user->qnbytes + quotalen < user->qnbytes)
266 goto no_quota;
267 }
268
269 user->qnkeys++;
270 user->qnbytes += quotalen;
271 spin_unlock(&user->lock);
272 }
273
274 /* allocate and initialise the key and its description */
275 key = kmem_cache_zalloc(key_jar, GFP_KERNEL);
276 if (!key)
277 goto no_memory_2;
278
279 if (desc) {
280 key->index_key.desc_len = desclen;
281 key->index_key.description = kmemdup(desc, desclen + 1, GFP_KERNEL);
282 if (!key->description)
283 goto no_memory_3;
284 }
285
286 atomic_set(&key->usage, 1);
287 init_rwsem(&key->sem);
288 lockdep_set_class(&key->sem, &type->lock_class);
289 key->index_key.type = type;
290 key->user = user;
291 key->quotalen = quotalen;
292 key->datalen = type->def_datalen;
293 key->uid = uid;
294 key->gid = gid;
295 key->perm = perm;
296
297 if (!(flags & KEY_ALLOC_NOT_IN_QUOTA))
298 key->flags |= 1 << KEY_FLAG_IN_QUOTA;
299 if (flags & KEY_ALLOC_TRUSTED)
300 key->flags |= 1 << KEY_FLAG_TRUSTED;
301
302#ifdef KEY_DEBUGGING
303 key->magic = KEY_DEBUG_MAGIC;
304#endif
305
306 /* let the security module know about the key */
307 ret = security_key_alloc(key, cred, flags);
308 if (ret < 0)
309 goto security_error;
310
311 /* publish the key by giving it a serial number */
312 atomic_inc(&user->nkeys);
313 key_alloc_serial(key);
314
315error:
316 return key;
317
318security_error:
319 kfree(key->description);
320 kmem_cache_free(key_jar, key);
321 if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
322 spin_lock(&user->lock);
323 user->qnkeys--;
324 user->qnbytes -= quotalen;
325 spin_unlock(&user->lock);
326 }
327 key_user_put(user);
328 key = ERR_PTR(ret);
329 goto error;
330
331no_memory_3:
332 kmem_cache_free(key_jar, key);
333no_memory_2:
334 if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
335 spin_lock(&user->lock);
336 user->qnkeys--;
337 user->qnbytes -= quotalen;
338 spin_unlock(&user->lock);
339 }
340 key_user_put(user);
341no_memory_1:
342 key = ERR_PTR(-ENOMEM);
343 goto error;
344
345no_quota:
346 spin_unlock(&user->lock);
347 key_user_put(user);
348 key = ERR_PTR(-EDQUOT);
349 goto error;
350}
351EXPORT_SYMBOL(key_alloc);
352
353/**
354 * key_payload_reserve - Adjust data quota reservation for the key's payload
355 * @key: The key to make the reservation for.
356 * @datalen: The amount of data payload the caller now wants.
357 *
358 * Adjust the amount of the owning user's key data quota that a key reserves.
359 * If the amount is increased, then -EDQUOT may be returned if there isn't
360 * enough free quota available.
361 *
362 * If successful, 0 is returned.
363 */
364int key_payload_reserve(struct key *key, size_t datalen)
365{
366 int delta = (int)datalen - key->datalen;
367 int ret = 0;
368
369 key_check(key);
370
371 /* contemplate the quota adjustment */
372 if (delta != 0 && test_bit(KEY_FLAG_IN_QUOTA, &key->flags)) {
373 unsigned maxbytes = uid_eq(key->user->uid, GLOBAL_ROOT_UID) ?
374 key_quota_root_maxbytes : key_quota_maxbytes;
375
376 spin_lock(&key->user->lock);
377
378 if (delta > 0 &&
379 (key->user->qnbytes + delta >= maxbytes ||
380 key->user->qnbytes + delta < key->user->qnbytes)) {
381 ret = -EDQUOT;
382 }
383 else {
384 key->user->qnbytes += delta;
385 key->quotalen += delta;
386 }
387 spin_unlock(&key->user->lock);
388 }
389
390 /* change the recorded data length if that didn't generate an error */
391 if (ret == 0)
392 key->datalen = datalen;
393
394 return ret;
395}
396EXPORT_SYMBOL(key_payload_reserve);
397
398/*
399 * Instantiate a key and link it into the target keyring atomically. Must be
400 * called with the target keyring's semaphore writelocked. The target key's
401 * semaphore need not be locked as instantiation is serialised by
402 * key_construction_mutex.
403 */
404static int __key_instantiate_and_link(struct key *key,
405 struct key_preparsed_payload *prep,
406 struct key *keyring,
407 struct key *authkey,
408 struct assoc_array_edit **_edit)
409{
410 int ret, awaken;
411
412 key_check(key);
413 key_check(keyring);
414
415 awaken = 0;
416 ret = -EBUSY;
417
418 mutex_lock(&key_construction_mutex);
419
420 /* can't instantiate twice */
421 if (!test_bit(KEY_FLAG_INSTANTIATED, &key->flags)) {
422 /* instantiate the key */
423 ret = key->type->instantiate(key, prep);
424
425 if (ret == 0) {
426 /* mark the key as being instantiated */
427 atomic_inc(&key->user->nikeys);
428 set_bit(KEY_FLAG_INSTANTIATED, &key->flags);
429
430 if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
431 awaken = 1;
432
433 /* and link it into the destination keyring */
434 if (keyring)
435 __key_link(key, _edit);
436
437 /* disable the authorisation key */
438 if (authkey)
439 key_revoke(authkey);
440 }
441 }
442
443 mutex_unlock(&key_construction_mutex);
444
445 /* wake up anyone waiting for a key to be constructed */
446 if (awaken)
447 wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT);
448
449 return ret;
450}
451
452/**
453 * key_instantiate_and_link - Instantiate a key and link it into the keyring.
454 * @key: The key to instantiate.
455 * @data: The data to use to instantiate the keyring.
456 * @datalen: The length of @data.
457 * @keyring: Keyring to create a link in on success (or NULL).
458 * @authkey: The authorisation token permitting instantiation.
459 *
460 * Instantiate a key that's in the uninstantiated state using the provided data
461 * and, if successful, link it in to the destination keyring if one is
462 * supplied.
463 *
464 * If successful, 0 is returned, the authorisation token is revoked and anyone
465 * waiting for the key is woken up. If the key was already instantiated,
466 * -EBUSY will be returned.
467 */
468int key_instantiate_and_link(struct key *key,
469 const void *data,
470 size_t datalen,
471 struct key *keyring,
472 struct key *authkey)
473{
474 struct key_preparsed_payload prep;
475 struct assoc_array_edit *edit;
476 int ret;
477
478 memset(&prep, 0, sizeof(prep));
479 prep.data = data;
480 prep.datalen = datalen;
481 prep.quotalen = key->type->def_datalen;
482 if (key->type->preparse) {
483 ret = key->type->preparse(&prep);
484 if (ret < 0)
485 goto error;
486 }
487
488 if (keyring) {
489 ret = __key_link_begin(keyring, &key->index_key, &edit);
490 if (ret < 0)
491 goto error_free_preparse;
492 }
493
494 ret = __key_instantiate_and_link(key, &prep, keyring, authkey, &edit);
495
496 if (keyring)
497 __key_link_end(keyring, &key->index_key, edit);
498
499error_free_preparse:
500 if (key->type->preparse)
501 key->type->free_preparse(&prep);
502error:
503 return ret;
504}
505
506EXPORT_SYMBOL(key_instantiate_and_link);
507
508/**
509 * key_reject_and_link - Negatively instantiate a key and link it into the keyring.
510 * @key: The key to instantiate.
511 * @timeout: The timeout on the negative key.
512 * @error: The error to return when the key is hit.
513 * @keyring: Keyring to create a link in on success (or NULL).
514 * @authkey: The authorisation token permitting instantiation.
515 *
516 * Negatively instantiate a key that's in the uninstantiated state and, if
517 * successful, set its timeout and stored error and link it in to the
518 * destination keyring if one is supplied. The key and any links to the key
519 * will be automatically garbage collected after the timeout expires.
520 *
521 * Negative keys are used to rate limit repeated request_key() calls by causing
522 * them to return the stored error code (typically ENOKEY) until the negative
523 * key expires.
524 *
525 * If successful, 0 is returned, the authorisation token is revoked and anyone
526 * waiting for the key is woken up. If the key was already instantiated,
527 * -EBUSY will be returned.
528 */
529int key_reject_and_link(struct key *key,
530 unsigned timeout,
531 unsigned error,
532 struct key *keyring,
533 struct key *authkey)
534{
535 struct assoc_array_edit *edit;
536 struct timespec now;
537 int ret, awaken, link_ret = 0;
538
539 key_check(key);
540 key_check(keyring);
541
542 awaken = 0;
543 ret = -EBUSY;
544
545 if (keyring)
546 link_ret = __key_link_begin(keyring, &key->index_key, &edit);
547
548 mutex_lock(&key_construction_mutex);
549
550 /* can't instantiate twice */
551 if (!test_bit(KEY_FLAG_INSTANTIATED, &key->flags)) {
552 /* mark the key as being negatively instantiated */
553 atomic_inc(&key->user->nikeys);
554 key->type_data.reject_error = -error;
555 smp_wmb();
556 set_bit(KEY_FLAG_NEGATIVE, &key->flags);
557 set_bit(KEY_FLAG_INSTANTIATED, &key->flags);
558 now = current_kernel_time();
559 key->expiry = now.tv_sec + timeout;
560 key_schedule_gc(key->expiry + key_gc_delay);
561
562 if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
563 awaken = 1;
564
565 ret = 0;
566
567 /* and link it into the destination keyring */
568 if (keyring && link_ret == 0)
569 __key_link(key, &edit);
570
571 /* disable the authorisation key */
572 if (authkey)
573 key_revoke(authkey);
574 }
575
576 mutex_unlock(&key_construction_mutex);
577
578 if (keyring)
579 __key_link_end(keyring, &key->index_key, edit);
580
581 /* wake up anyone waiting for a key to be constructed */
582 if (awaken)
583 wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT);
584
585 return ret == 0 ? link_ret : ret;
586}
587EXPORT_SYMBOL(key_reject_and_link);
588
589/**
590 * key_put - Discard a reference to a key.
591 * @key: The key to discard a reference from.
592 *
593 * Discard a reference to a key, and when all the references are gone, we
594 * schedule the cleanup task to come and pull it out of the tree in process
595 * context at some later time.
596 */
597void key_put(struct key *key)
598{
599 if (key) {
600 key_check(key);
601
602 if (atomic_dec_and_test(&key->usage))
603 schedule_work(&key_gc_work);
604 }
605}
606EXPORT_SYMBOL(key_put);
607
608/*
609 * Find a key by its serial number.
610 */
611struct key *key_lookup(key_serial_t id)
612{
613 struct rb_node *n;
614 struct key *key;
615
616 spin_lock(&key_serial_lock);
617
618 /* search the tree for the specified key */
619 n = key_serial_tree.rb_node;
620 while (n) {
621 key = rb_entry(n, struct key, serial_node);
622
623 if (id < key->serial)
624 n = n->rb_left;
625 else if (id > key->serial)
626 n = n->rb_right;
627 else
628 goto found;
629 }
630
631not_found:
632 key = ERR_PTR(-ENOKEY);
633 goto error;
634
635found:
636 /* pretend it doesn't exist if it is awaiting deletion */
637 if (atomic_read(&key->usage) == 0)
638 goto not_found;
639
640 /* this races with key_put(), but that doesn't matter since key_put()
641 * doesn't actually change the key
642 */
643 __key_get(key);
644
645error:
646 spin_unlock(&key_serial_lock);
647 return key;
648}
649
650/*
651 * Find and lock the specified key type against removal.
652 *
653 * We return with the sem read-locked if successful. If the type wasn't
654 * available -ENOKEY is returned instead.
655 */
656struct key_type *key_type_lookup(const char *type)
657{
658 struct key_type *ktype;
659
660 down_read(&key_types_sem);
661
662 /* look up the key type to see if it's one of the registered kernel
663 * types */
664 list_for_each_entry(ktype, &key_types_list, link) {
665 if (strcmp(ktype->name, type) == 0)
666 goto found_kernel_type;
667 }
668
669 up_read(&key_types_sem);
670 ktype = ERR_PTR(-ENOKEY);
671
672found_kernel_type:
673 return ktype;
674}
675
676void key_set_timeout(struct key *key, unsigned timeout)
677{
678 struct timespec now;
679 time_t expiry = 0;
680
681 /* make the changes with the locks held to prevent races */
682 down_write(&key->sem);
683
684 if (timeout > 0) {
685 now = current_kernel_time();
686 expiry = now.tv_sec + timeout;
687 }
688
689 key->expiry = expiry;
690 key_schedule_gc(key->expiry + key_gc_delay);
691
692 up_write(&key->sem);
693}
694EXPORT_SYMBOL_GPL(key_set_timeout);
695
696/*
697 * Unlock a key type locked by key_type_lookup().
698 */
699void key_type_put(struct key_type *ktype)
700{
701 up_read(&key_types_sem);
702}
703
704/*
705 * Attempt to update an existing key.
706 *
707 * The key is given to us with an incremented refcount that we need to discard
708 * if we get an error.
709 */
710static inline key_ref_t __key_update(key_ref_t key_ref,
711 struct key_preparsed_payload *prep)
712{
713 struct key *key = key_ref_to_ptr(key_ref);
714 int ret;
715
716 /* need write permission on the key to update it */
717 ret = key_permission(key_ref, KEY_WRITE);
718 if (ret < 0)
719 goto error;
720
721 ret = -EEXIST;
722 if (!key->type->update)
723 goto error;
724
725 down_write(&key->sem);
726
727 ret = key->type->update(key, prep);
728 if (ret == 0)
729 /* updating a negative key instantiates it */
730 clear_bit(KEY_FLAG_NEGATIVE, &key->flags);
731
732 up_write(&key->sem);
733
734 if (ret < 0)
735 goto error;
736out:
737 return key_ref;
738
739error:
740 key_put(key);
741 key_ref = ERR_PTR(ret);
742 goto out;
743}
744
745/**
746 * key_create_or_update - Update or create and instantiate a key.
747 * @keyring_ref: A pointer to the destination keyring with possession flag.
748 * @type: The type of key.
749 * @description: The searchable description for the key.
750 * @payload: The data to use to instantiate or update the key.
751 * @plen: The length of @payload.
752 * @perm: The permissions mask for a new key.
753 * @flags: The quota flags for a new key.
754 *
755 * Search the destination keyring for a key of the same description and if one
756 * is found, update it, otherwise create and instantiate a new one and create a
757 * link to it from that keyring.
758 *
759 * If perm is KEY_PERM_UNDEF then an appropriate key permissions mask will be
760 * concocted.
761 *
762 * Returns a pointer to the new key if successful, -ENODEV if the key type
763 * wasn't available, -ENOTDIR if the keyring wasn't a keyring, -EACCES if the
764 * caller isn't permitted to modify the keyring or the LSM did not permit
765 * creation of the key.
766 *
767 * On success, the possession flag from the keyring ref will be tacked on to
768 * the key ref before it is returned.
769 */
770key_ref_t key_create_or_update(key_ref_t keyring_ref,
771 const char *type,
772 const char *description,
773 const void *payload,
774 size_t plen,
775 key_perm_t perm,
776 unsigned long flags)
777{
778 struct keyring_index_key index_key = {
779 .description = description,
780 };
781 struct key_preparsed_payload prep;
782 struct assoc_array_edit *edit;
783 const struct cred *cred = current_cred();
784 struct key *keyring, *key = NULL;
785 key_ref_t key_ref;
786 int ret;
787
788 /* look up the key type to see if it's one of the registered kernel
789 * types */
790 index_key.type = key_type_lookup(type);
791 if (IS_ERR(index_key.type)) {
792 key_ref = ERR_PTR(-ENODEV);
793 goto error;
794 }
795
796 key_ref = ERR_PTR(-EINVAL);
797 if (!index_key.type->match || !index_key.type->instantiate ||
798 (!index_key.description && !index_key.type->preparse))
799 goto error_put_type;
800
801 keyring = key_ref_to_ptr(keyring_ref);
802
803 key_check(keyring);
804
805 key_ref = ERR_PTR(-ENOTDIR);
806 if (keyring->type != &key_type_keyring)
807 goto error_put_type;
808
809 memset(&prep, 0, sizeof(prep));
810 prep.data = payload;
811 prep.datalen = plen;
812 prep.quotalen = index_key.type->def_datalen;
813 prep.trusted = flags & KEY_ALLOC_TRUSTED;
814 if (index_key.type->preparse) {
815 ret = index_key.type->preparse(&prep);
816 if (ret < 0) {
817 key_ref = ERR_PTR(ret);
818 goto error_put_type;
819 }
820 if (!index_key.description)
821 index_key.description = prep.description;
822 key_ref = ERR_PTR(-EINVAL);
823 if (!index_key.description)
824 goto error_free_prep;
825 }
826 index_key.desc_len = strlen(index_key.description);
827
828 key_ref = ERR_PTR(-EPERM);
829 if (!prep.trusted && test_bit(KEY_FLAG_TRUSTED_ONLY, &keyring->flags))
830 goto error_free_prep;
831 flags |= prep.trusted ? KEY_ALLOC_TRUSTED : 0;
832
833 ret = __key_link_begin(keyring, &index_key, &edit);
834 if (ret < 0) {
835 key_ref = ERR_PTR(ret);
836 goto error_free_prep;
837 }
838
839 /* if we're going to allocate a new key, we're going to have
840 * to modify the keyring */
841 ret = key_permission(keyring_ref, KEY_WRITE);
842 if (ret < 0) {
843 key_ref = ERR_PTR(ret);
844 goto error_link_end;
845 }
846
847 /* if it's possible to update this type of key, search for an existing
848 * key of the same type and description in the destination keyring and
849 * update that instead if possible
850 */
851 if (index_key.type->update) {
852 key_ref = find_key_to_update(keyring_ref, &index_key);
853 if (key_ref)
854 goto found_matching_key;
855 }
856
857 /* if the client doesn't provide, decide on the permissions we want */
858 if (perm == KEY_PERM_UNDEF) {
859 perm = KEY_POS_VIEW | KEY_POS_SEARCH | KEY_POS_LINK | KEY_POS_SETATTR;
860 perm |= KEY_USR_VIEW;
861
862 if (index_key.type->read)
863 perm |= KEY_POS_READ;
864
865 if (index_key.type == &key_type_keyring ||
866 index_key.type->update)
867 perm |= KEY_POS_WRITE;
868 }
869
870 /* allocate a new key */
871 key = key_alloc(index_key.type, index_key.description,
872 cred->fsuid, cred->fsgid, cred, perm, flags);
873 if (IS_ERR(key)) {
874 key_ref = ERR_CAST(key);
875 goto error_link_end;
876 }
877
878 /* instantiate it and link it into the target keyring */
879 ret = __key_instantiate_and_link(key, &prep, keyring, NULL, &edit);
880 if (ret < 0) {
881 key_put(key);
882 key_ref = ERR_PTR(ret);
883 goto error_link_end;
884 }
885
886 key_ref = make_key_ref(key, is_key_possessed(keyring_ref));
887
888error_link_end:
889 __key_link_end(keyring, &index_key, edit);
890error_free_prep:
891 if (index_key.type->preparse)
892 index_key.type->free_preparse(&prep);
893error_put_type:
894 key_type_put(index_key.type);
895error:
896 return key_ref;
897
898 found_matching_key:
899 /* we found a matching key, so we're going to try to update it
900 * - we can drop the locks first as we have the key pinned
901 */
902 __key_link_end(keyring, &index_key, edit);
903
904 key_ref = __key_update(key_ref, &prep);
905 goto error_free_prep;
906}
907EXPORT_SYMBOL(key_create_or_update);
908
909/**
910 * key_update - Update a key's contents.
911 * @key_ref: The pointer (plus possession flag) to the key.
912 * @payload: The data to be used to update the key.
913 * @plen: The length of @payload.
914 *
915 * Attempt to update the contents of a key with the given payload data. The
916 * caller must be granted Write permission on the key. Negative keys can be
917 * instantiated by this method.
918 *
919 * Returns 0 on success, -EACCES if not permitted and -EOPNOTSUPP if the key
920 * type does not support updating. The key type may return other errors.
921 */
922int key_update(key_ref_t key_ref, const void *payload, size_t plen)
923{
924 struct key_preparsed_payload prep;
925 struct key *key = key_ref_to_ptr(key_ref);
926 int ret;
927
928 key_check(key);
929
930 /* the key must be writable */
931 ret = key_permission(key_ref, KEY_WRITE);
932 if (ret < 0)
933 goto error;
934
935 /* attempt to update it if supported */
936 ret = -EOPNOTSUPP;
937 if (!key->type->update)
938 goto error;
939
940 memset(&prep, 0, sizeof(prep));
941 prep.data = payload;
942 prep.datalen = plen;
943 prep.quotalen = key->type->def_datalen;
944 if (key->type->preparse) {
945 ret = key->type->preparse(&prep);
946 if (ret < 0)
947 goto error;
948 }
949
950 down_write(&key->sem);
951
952 ret = key->type->update(key, &prep);
953 if (ret == 0)
954 /* updating a negative key instantiates it */
955 clear_bit(KEY_FLAG_NEGATIVE, &key->flags);
956
957 up_write(&key->sem);
958
959 if (key->type->preparse)
960 key->type->free_preparse(&prep);
961error:
962 return ret;
963}
964EXPORT_SYMBOL(key_update);
965
966/**
967 * key_revoke - Revoke a key.
968 * @key: The key to be revoked.
969 *
970 * Mark a key as being revoked and ask the type to free up its resources. The
971 * revocation timeout is set and the key and all its links will be
972 * automatically garbage collected after key_gc_delay amount of time if they
973 * are not manually dealt with first.
974 */
975void key_revoke(struct key *key)
976{
977 struct timespec now;
978 time_t time;
979
980 key_check(key);
981
982 /* make sure no one's trying to change or use the key when we mark it
983 * - we tell lockdep that we might nest because we might be revoking an
984 * authorisation key whilst holding the sem on a key we've just
985 * instantiated
986 */
987 down_write_nested(&key->sem, 1);
988 if (!test_and_set_bit(KEY_FLAG_REVOKED, &key->flags) &&
989 key->type->revoke)
990 key->type->revoke(key);
991
992 /* set the death time to no more than the expiry time */
993 now = current_kernel_time();
994 time = now.tv_sec;
995 if (key->revoked_at == 0 || key->revoked_at > time) {
996 key->revoked_at = time;
997 key_schedule_gc(key->revoked_at + key_gc_delay);
998 }
999
1000 up_write(&key->sem);
1001}
1002EXPORT_SYMBOL(key_revoke);
1003
1004/**
1005 * key_invalidate - Invalidate a key.
1006 * @key: The key to be invalidated.
1007 *
1008 * Mark a key as being invalidated and have it cleaned up immediately. The key
1009 * is ignored by all searches and other operations from this point.
1010 */
1011void key_invalidate(struct key *key)
1012{
1013 kenter("%d", key_serial(key));
1014
1015 key_check(key);
1016
1017 if (!test_bit(KEY_FLAG_INVALIDATED, &key->flags)) {
1018 down_write_nested(&key->sem, 1);
1019 if (!test_and_set_bit(KEY_FLAG_INVALIDATED, &key->flags))
1020 key_schedule_gc_links();
1021 up_write(&key->sem);
1022 }
1023}
1024EXPORT_SYMBOL(key_invalidate);
1025
1026/**
1027 * register_key_type - Register a type of key.
1028 * @ktype: The new key type.
1029 *
1030 * Register a new key type.
1031 *
1032 * Returns 0 on success or -EEXIST if a type of this name already exists.
1033 */
1034int register_key_type(struct key_type *ktype)
1035{
1036 struct key_type *p;
1037 int ret;
1038
1039 memset(&ktype->lock_class, 0, sizeof(ktype->lock_class));
1040
1041 ret = -EEXIST;
1042 down_write(&key_types_sem);
1043
1044 /* disallow key types with the same name */
1045 list_for_each_entry(p, &key_types_list, link) {
1046 if (strcmp(p->name, ktype->name) == 0)
1047 goto out;
1048 }
1049
1050 /* store the type */
1051 list_add(&ktype->link, &key_types_list);
1052
1053 pr_notice("Key type %s registered\n", ktype->name);
1054 ret = 0;
1055
1056out:
1057 up_write(&key_types_sem);
1058 return ret;
1059}
1060EXPORT_SYMBOL(register_key_type);
1061
1062/**
1063 * unregister_key_type - Unregister a type of key.
1064 * @ktype: The key type.
1065 *
1066 * Unregister a key type and mark all the extant keys of this type as dead.
1067 * Those keys of this type are then destroyed to get rid of their payloads and
1068 * they and their links will be garbage collected as soon as possible.
1069 */
1070void unregister_key_type(struct key_type *ktype)
1071{
1072 down_write(&key_types_sem);
1073 list_del_init(&ktype->link);
1074 downgrade_write(&key_types_sem);
1075 key_gc_keytype(ktype);
1076 pr_notice("Key type %s unregistered\n", ktype->name);
1077 up_read(&key_types_sem);
1078}
1079EXPORT_SYMBOL(unregister_key_type);
1080
1081/*
1082 * Initialise the key management state.
1083 */
1084void __init key_init(void)
1085{
1086 /* allocate a slab in which we can store keys */
1087 key_jar = kmem_cache_create("key_jar", sizeof(struct key),
1088 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1089
1090 /* add the special key types */
1091 list_add_tail(&key_type_keyring.link, &key_types_list);
1092 list_add_tail(&key_type_dead.link, &key_types_list);
1093 list_add_tail(&key_type_user.link, &key_types_list);
1094 list_add_tail(&key_type_logon.link, &key_types_list);
1095
1096 /* record the root user tracking */
1097 rb_link_node(&root_key_user.node,
1098 NULL,
1099 &key_user_tree.rb_node);
1100
1101 rb_insert_color(&root_key_user.node,
1102 &key_user_tree);
1103}
1/* Basic authentication token and access key management
2 *
3 * Copyright (C) 2004-2008 Red Hat, Inc. All Rights Reserved.
4 * Written by David Howells (dhowells@redhat.com)
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
10 */
11
12#include <linux/module.h>
13#include <linux/init.h>
14#include <linux/poison.h>
15#include <linux/sched.h>
16#include <linux/slab.h>
17#include <linux/security.h>
18#include <linux/workqueue.h>
19#include <linux/random.h>
20#include <linux/err.h>
21#include "internal.h"
22
23struct kmem_cache *key_jar;
24struct rb_root key_serial_tree; /* tree of keys indexed by serial */
25DEFINE_SPINLOCK(key_serial_lock);
26
27struct rb_root key_user_tree; /* tree of quota records indexed by UID */
28DEFINE_SPINLOCK(key_user_lock);
29
30unsigned int key_quota_root_maxkeys = 1000000; /* root's key count quota */
31unsigned int key_quota_root_maxbytes = 25000000; /* root's key space quota */
32unsigned int key_quota_maxkeys = 200; /* general key count quota */
33unsigned int key_quota_maxbytes = 20000; /* general key space quota */
34
35static LIST_HEAD(key_types_list);
36static DECLARE_RWSEM(key_types_sem);
37
38/* We serialise key instantiation and link */
39DEFINE_MUTEX(key_construction_mutex);
40
41#ifdef KEY_DEBUGGING
42void __key_check(const struct key *key)
43{
44 printk("__key_check: key %p {%08x} should be {%08x}\n",
45 key, key->magic, KEY_DEBUG_MAGIC);
46 BUG();
47}
48#endif
49
50/*
51 * Get the key quota record for a user, allocating a new record if one doesn't
52 * already exist.
53 */
54struct key_user *key_user_lookup(kuid_t uid)
55{
56 struct key_user *candidate = NULL, *user;
57 struct rb_node *parent = NULL;
58 struct rb_node **p;
59
60try_again:
61 p = &key_user_tree.rb_node;
62 spin_lock(&key_user_lock);
63
64 /* search the tree for a user record with a matching UID */
65 while (*p) {
66 parent = *p;
67 user = rb_entry(parent, struct key_user, node);
68
69 if (uid_lt(uid, user->uid))
70 p = &(*p)->rb_left;
71 else if (uid_gt(uid, user->uid))
72 p = &(*p)->rb_right;
73 else
74 goto found;
75 }
76
77 /* if we get here, we failed to find a match in the tree */
78 if (!candidate) {
79 /* allocate a candidate user record if we don't already have
80 * one */
81 spin_unlock(&key_user_lock);
82
83 user = NULL;
84 candidate = kmalloc(sizeof(struct key_user), GFP_KERNEL);
85 if (unlikely(!candidate))
86 goto out;
87
88 /* the allocation may have scheduled, so we need to repeat the
89 * search lest someone else added the record whilst we were
90 * asleep */
91 goto try_again;
92 }
93
94 /* if we get here, then the user record still hadn't appeared on the
95 * second pass - so we use the candidate record */
96 atomic_set(&candidate->usage, 1);
97 atomic_set(&candidate->nkeys, 0);
98 atomic_set(&candidate->nikeys, 0);
99 candidate->uid = uid;
100 candidate->qnkeys = 0;
101 candidate->qnbytes = 0;
102 spin_lock_init(&candidate->lock);
103 mutex_init(&candidate->cons_lock);
104
105 rb_link_node(&candidate->node, parent, p);
106 rb_insert_color(&candidate->node, &key_user_tree);
107 spin_unlock(&key_user_lock);
108 user = candidate;
109 goto out;
110
111 /* okay - we found a user record for this UID */
112found:
113 atomic_inc(&user->usage);
114 spin_unlock(&key_user_lock);
115 kfree(candidate);
116out:
117 return user;
118}
119
120/*
121 * Dispose of a user structure
122 */
123void key_user_put(struct key_user *user)
124{
125 if (atomic_dec_and_lock(&user->usage, &key_user_lock)) {
126 rb_erase(&user->node, &key_user_tree);
127 spin_unlock(&key_user_lock);
128
129 kfree(user);
130 }
131}
132
133/*
134 * Allocate a serial number for a key. These are assigned randomly to avoid
135 * security issues through covert channel problems.
136 */
137static inline void key_alloc_serial(struct key *key)
138{
139 struct rb_node *parent, **p;
140 struct key *xkey;
141
142 /* propose a random serial number and look for a hole for it in the
143 * serial number tree */
144 do {
145 get_random_bytes(&key->serial, sizeof(key->serial));
146
147 key->serial >>= 1; /* negative numbers are not permitted */
148 } while (key->serial < 3);
149
150 spin_lock(&key_serial_lock);
151
152attempt_insertion:
153 parent = NULL;
154 p = &key_serial_tree.rb_node;
155
156 while (*p) {
157 parent = *p;
158 xkey = rb_entry(parent, struct key, serial_node);
159
160 if (key->serial < xkey->serial)
161 p = &(*p)->rb_left;
162 else if (key->serial > xkey->serial)
163 p = &(*p)->rb_right;
164 else
165 goto serial_exists;
166 }
167
168 /* we've found a suitable hole - arrange for this key to occupy it */
169 rb_link_node(&key->serial_node, parent, p);
170 rb_insert_color(&key->serial_node, &key_serial_tree);
171
172 spin_unlock(&key_serial_lock);
173 return;
174
175 /* we found a key with the proposed serial number - walk the tree from
176 * that point looking for the next unused serial number */
177serial_exists:
178 for (;;) {
179 key->serial++;
180 if (key->serial < 3) {
181 key->serial = 3;
182 goto attempt_insertion;
183 }
184
185 parent = rb_next(parent);
186 if (!parent)
187 goto attempt_insertion;
188
189 xkey = rb_entry(parent, struct key, serial_node);
190 if (key->serial < xkey->serial)
191 goto attempt_insertion;
192 }
193}
194
195/**
196 * key_alloc - Allocate a key of the specified type.
197 * @type: The type of key to allocate.
198 * @desc: The key description to allow the key to be searched out.
199 * @uid: The owner of the new key.
200 * @gid: The group ID for the new key's group permissions.
201 * @cred: The credentials specifying UID namespace.
202 * @perm: The permissions mask of the new key.
203 * @flags: Flags specifying quota properties.
204 * @restrict_link: Optional link restriction method for new keyrings.
205 *
206 * Allocate a key of the specified type with the attributes given. The key is
207 * returned in an uninstantiated state and the caller needs to instantiate the
208 * key before returning.
209 *
210 * The user's key count quota is updated to reflect the creation of the key and
211 * the user's key data quota has the default for the key type reserved. The
212 * instantiation function should amend this as necessary. If insufficient
213 * quota is available, -EDQUOT will be returned.
214 *
215 * The LSM security modules can prevent a key being created, in which case
216 * -EACCES will be returned.
217 *
218 * Returns a pointer to the new key if successful and an error code otherwise.
219 *
220 * Note that the caller needs to ensure the key type isn't uninstantiated.
221 * Internally this can be done by locking key_types_sem. Externally, this can
222 * be done by either never unregistering the key type, or making sure
223 * key_alloc() calls don't race with module unloading.
224 */
225struct key *key_alloc(struct key_type *type, const char *desc,
226 kuid_t uid, kgid_t gid, const struct cred *cred,
227 key_perm_t perm, unsigned long flags,
228 int (*restrict_link)(struct key *,
229 const struct key_type *,
230 const union key_payload *))
231{
232 struct key_user *user = NULL;
233 struct key *key;
234 size_t desclen, quotalen;
235 int ret;
236
237 key = ERR_PTR(-EINVAL);
238 if (!desc || !*desc)
239 goto error;
240
241 if (type->vet_description) {
242 ret = type->vet_description(desc);
243 if (ret < 0) {
244 key = ERR_PTR(ret);
245 goto error;
246 }
247 }
248
249 desclen = strlen(desc);
250 quotalen = desclen + 1 + type->def_datalen;
251
252 /* get hold of the key tracking for this user */
253 user = key_user_lookup(uid);
254 if (!user)
255 goto no_memory_1;
256
257 /* check that the user's quota permits allocation of another key and
258 * its description */
259 if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
260 unsigned maxkeys = uid_eq(uid, GLOBAL_ROOT_UID) ?
261 key_quota_root_maxkeys : key_quota_maxkeys;
262 unsigned maxbytes = uid_eq(uid, GLOBAL_ROOT_UID) ?
263 key_quota_root_maxbytes : key_quota_maxbytes;
264
265 spin_lock(&user->lock);
266 if (!(flags & KEY_ALLOC_QUOTA_OVERRUN)) {
267 if (user->qnkeys + 1 >= maxkeys ||
268 user->qnbytes + quotalen >= maxbytes ||
269 user->qnbytes + quotalen < user->qnbytes)
270 goto no_quota;
271 }
272
273 user->qnkeys++;
274 user->qnbytes += quotalen;
275 spin_unlock(&user->lock);
276 }
277
278 /* allocate and initialise the key and its description */
279 key = kmem_cache_zalloc(key_jar, GFP_KERNEL);
280 if (!key)
281 goto no_memory_2;
282
283 key->index_key.desc_len = desclen;
284 key->index_key.description = kmemdup(desc, desclen + 1, GFP_KERNEL);
285 if (!key->index_key.description)
286 goto no_memory_3;
287
288 atomic_set(&key->usage, 1);
289 init_rwsem(&key->sem);
290 lockdep_set_class(&key->sem, &type->lock_class);
291 key->index_key.type = type;
292 key->user = user;
293 key->quotalen = quotalen;
294 key->datalen = type->def_datalen;
295 key->uid = uid;
296 key->gid = gid;
297 key->perm = perm;
298 key->restrict_link = restrict_link;
299
300 if (!(flags & KEY_ALLOC_NOT_IN_QUOTA))
301 key->flags |= 1 << KEY_FLAG_IN_QUOTA;
302 if (flags & KEY_ALLOC_BUILT_IN)
303 key->flags |= 1 << KEY_FLAG_BUILTIN;
304
305#ifdef KEY_DEBUGGING
306 key->magic = KEY_DEBUG_MAGIC;
307#endif
308
309 /* let the security module know about the key */
310 ret = security_key_alloc(key, cred, flags);
311 if (ret < 0)
312 goto security_error;
313
314 /* publish the key by giving it a serial number */
315 atomic_inc(&user->nkeys);
316 key_alloc_serial(key);
317
318error:
319 return key;
320
321security_error:
322 kfree(key->description);
323 kmem_cache_free(key_jar, key);
324 if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
325 spin_lock(&user->lock);
326 user->qnkeys--;
327 user->qnbytes -= quotalen;
328 spin_unlock(&user->lock);
329 }
330 key_user_put(user);
331 key = ERR_PTR(ret);
332 goto error;
333
334no_memory_3:
335 kmem_cache_free(key_jar, key);
336no_memory_2:
337 if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
338 spin_lock(&user->lock);
339 user->qnkeys--;
340 user->qnbytes -= quotalen;
341 spin_unlock(&user->lock);
342 }
343 key_user_put(user);
344no_memory_1:
345 key = ERR_PTR(-ENOMEM);
346 goto error;
347
348no_quota:
349 spin_unlock(&user->lock);
350 key_user_put(user);
351 key = ERR_PTR(-EDQUOT);
352 goto error;
353}
354EXPORT_SYMBOL(key_alloc);
355
356/**
357 * key_payload_reserve - Adjust data quota reservation for the key's payload
358 * @key: The key to make the reservation for.
359 * @datalen: The amount of data payload the caller now wants.
360 *
361 * Adjust the amount of the owning user's key data quota that a key reserves.
362 * If the amount is increased, then -EDQUOT may be returned if there isn't
363 * enough free quota available.
364 *
365 * If successful, 0 is returned.
366 */
367int key_payload_reserve(struct key *key, size_t datalen)
368{
369 int delta = (int)datalen - key->datalen;
370 int ret = 0;
371
372 key_check(key);
373
374 /* contemplate the quota adjustment */
375 if (delta != 0 && test_bit(KEY_FLAG_IN_QUOTA, &key->flags)) {
376 unsigned maxbytes = uid_eq(key->user->uid, GLOBAL_ROOT_UID) ?
377 key_quota_root_maxbytes : key_quota_maxbytes;
378
379 spin_lock(&key->user->lock);
380
381 if (delta > 0 &&
382 (key->user->qnbytes + delta >= maxbytes ||
383 key->user->qnbytes + delta < key->user->qnbytes)) {
384 ret = -EDQUOT;
385 }
386 else {
387 key->user->qnbytes += delta;
388 key->quotalen += delta;
389 }
390 spin_unlock(&key->user->lock);
391 }
392
393 /* change the recorded data length if that didn't generate an error */
394 if (ret == 0)
395 key->datalen = datalen;
396
397 return ret;
398}
399EXPORT_SYMBOL(key_payload_reserve);
400
401/*
402 * Instantiate a key and link it into the target keyring atomically. Must be
403 * called with the target keyring's semaphore writelocked. The target key's
404 * semaphore need not be locked as instantiation is serialised by
405 * key_construction_mutex.
406 */
407static int __key_instantiate_and_link(struct key *key,
408 struct key_preparsed_payload *prep,
409 struct key *keyring,
410 struct key *authkey,
411 struct assoc_array_edit **_edit)
412{
413 int ret, awaken;
414
415 key_check(key);
416 key_check(keyring);
417
418 awaken = 0;
419 ret = -EBUSY;
420
421 mutex_lock(&key_construction_mutex);
422
423 /* can't instantiate twice */
424 if (!test_bit(KEY_FLAG_INSTANTIATED, &key->flags)) {
425 /* instantiate the key */
426 ret = key->type->instantiate(key, prep);
427
428 if (ret == 0) {
429 /* mark the key as being instantiated */
430 atomic_inc(&key->user->nikeys);
431 set_bit(KEY_FLAG_INSTANTIATED, &key->flags);
432
433 if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
434 awaken = 1;
435
436 /* and link it into the destination keyring */
437 if (keyring) {
438 if (test_bit(KEY_FLAG_KEEP, &keyring->flags))
439 set_bit(KEY_FLAG_KEEP, &key->flags);
440
441 __key_link(key, _edit);
442 }
443
444 /* disable the authorisation key */
445 if (authkey)
446 key_revoke(authkey);
447
448 if (prep->expiry != TIME_T_MAX) {
449 key->expiry = prep->expiry;
450 key_schedule_gc(prep->expiry + key_gc_delay);
451 }
452 }
453 }
454
455 mutex_unlock(&key_construction_mutex);
456
457 /* wake up anyone waiting for a key to be constructed */
458 if (awaken)
459 wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT);
460
461 return ret;
462}
463
464/**
465 * key_instantiate_and_link - Instantiate a key and link it into the keyring.
466 * @key: The key to instantiate.
467 * @data: The data to use to instantiate the keyring.
468 * @datalen: The length of @data.
469 * @keyring: Keyring to create a link in on success (or NULL).
470 * @authkey: The authorisation token permitting instantiation.
471 *
472 * Instantiate a key that's in the uninstantiated state using the provided data
473 * and, if successful, link it in to the destination keyring if one is
474 * supplied.
475 *
476 * If successful, 0 is returned, the authorisation token is revoked and anyone
477 * waiting for the key is woken up. If the key was already instantiated,
478 * -EBUSY will be returned.
479 */
480int key_instantiate_and_link(struct key *key,
481 const void *data,
482 size_t datalen,
483 struct key *keyring,
484 struct key *authkey)
485{
486 struct key_preparsed_payload prep;
487 struct assoc_array_edit *edit;
488 int ret;
489
490 memset(&prep, 0, sizeof(prep));
491 prep.data = data;
492 prep.datalen = datalen;
493 prep.quotalen = key->type->def_datalen;
494 prep.expiry = TIME_T_MAX;
495 if (key->type->preparse) {
496 ret = key->type->preparse(&prep);
497 if (ret < 0)
498 goto error;
499 }
500
501 if (keyring) {
502 if (keyring->restrict_link) {
503 ret = keyring->restrict_link(keyring, key->type,
504 &prep.payload);
505 if (ret < 0)
506 goto error;
507 }
508 ret = __key_link_begin(keyring, &key->index_key, &edit);
509 if (ret < 0)
510 goto error;
511 }
512
513 ret = __key_instantiate_and_link(key, &prep, keyring, authkey, &edit);
514
515 if (keyring)
516 __key_link_end(keyring, &key->index_key, edit);
517
518error:
519 if (key->type->preparse)
520 key->type->free_preparse(&prep);
521 return ret;
522}
523
524EXPORT_SYMBOL(key_instantiate_and_link);
525
526/**
527 * key_reject_and_link - Negatively instantiate a key and link it into the keyring.
528 * @key: The key to instantiate.
529 * @timeout: The timeout on the negative key.
530 * @error: The error to return when the key is hit.
531 * @keyring: Keyring to create a link in on success (or NULL).
532 * @authkey: The authorisation token permitting instantiation.
533 *
534 * Negatively instantiate a key that's in the uninstantiated state and, if
535 * successful, set its timeout and stored error and link it in to the
536 * destination keyring if one is supplied. The key and any links to the key
537 * will be automatically garbage collected after the timeout expires.
538 *
539 * Negative keys are used to rate limit repeated request_key() calls by causing
540 * them to return the stored error code (typically ENOKEY) until the negative
541 * key expires.
542 *
543 * If successful, 0 is returned, the authorisation token is revoked and anyone
544 * waiting for the key is woken up. If the key was already instantiated,
545 * -EBUSY will be returned.
546 */
547int key_reject_and_link(struct key *key,
548 unsigned timeout,
549 unsigned error,
550 struct key *keyring,
551 struct key *authkey)
552{
553 struct assoc_array_edit *edit;
554 struct timespec now;
555 int ret, awaken, link_ret = 0;
556
557 key_check(key);
558 key_check(keyring);
559
560 awaken = 0;
561 ret = -EBUSY;
562
563 if (keyring) {
564 if (keyring->restrict_link)
565 return -EPERM;
566
567 link_ret = __key_link_begin(keyring, &key->index_key, &edit);
568 }
569
570 mutex_lock(&key_construction_mutex);
571
572 /* can't instantiate twice */
573 if (!test_bit(KEY_FLAG_INSTANTIATED, &key->flags)) {
574 /* mark the key as being negatively instantiated */
575 atomic_inc(&key->user->nikeys);
576 key->reject_error = -error;
577 smp_wmb();
578 set_bit(KEY_FLAG_NEGATIVE, &key->flags);
579 set_bit(KEY_FLAG_INSTANTIATED, &key->flags);
580 now = current_kernel_time();
581 key->expiry = now.tv_sec + timeout;
582 key_schedule_gc(key->expiry + key_gc_delay);
583
584 if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
585 awaken = 1;
586
587 ret = 0;
588
589 /* and link it into the destination keyring */
590 if (keyring && link_ret == 0)
591 __key_link(key, &edit);
592
593 /* disable the authorisation key */
594 if (authkey)
595 key_revoke(authkey);
596 }
597
598 mutex_unlock(&key_construction_mutex);
599
600 if (keyring && link_ret == 0)
601 __key_link_end(keyring, &key->index_key, edit);
602
603 /* wake up anyone waiting for a key to be constructed */
604 if (awaken)
605 wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT);
606
607 return ret == 0 ? link_ret : ret;
608}
609EXPORT_SYMBOL(key_reject_and_link);
610
611/**
612 * key_put - Discard a reference to a key.
613 * @key: The key to discard a reference from.
614 *
615 * Discard a reference to a key, and when all the references are gone, we
616 * schedule the cleanup task to come and pull it out of the tree in process
617 * context at some later time.
618 */
619void key_put(struct key *key)
620{
621 if (key) {
622 key_check(key);
623
624 if (atomic_dec_and_test(&key->usage))
625 schedule_work(&key_gc_work);
626 }
627}
628EXPORT_SYMBOL(key_put);
629
630/*
631 * Find a key by its serial number.
632 */
633struct key *key_lookup(key_serial_t id)
634{
635 struct rb_node *n;
636 struct key *key;
637
638 spin_lock(&key_serial_lock);
639
640 /* search the tree for the specified key */
641 n = key_serial_tree.rb_node;
642 while (n) {
643 key = rb_entry(n, struct key, serial_node);
644
645 if (id < key->serial)
646 n = n->rb_left;
647 else if (id > key->serial)
648 n = n->rb_right;
649 else
650 goto found;
651 }
652
653not_found:
654 key = ERR_PTR(-ENOKEY);
655 goto error;
656
657found:
658 /* pretend it doesn't exist if it is awaiting deletion */
659 if (atomic_read(&key->usage) == 0)
660 goto not_found;
661
662 /* this races with key_put(), but that doesn't matter since key_put()
663 * doesn't actually change the key
664 */
665 __key_get(key);
666
667error:
668 spin_unlock(&key_serial_lock);
669 return key;
670}
671
672/*
673 * Find and lock the specified key type against removal.
674 *
675 * We return with the sem read-locked if successful. If the type wasn't
676 * available -ENOKEY is returned instead.
677 */
678struct key_type *key_type_lookup(const char *type)
679{
680 struct key_type *ktype;
681
682 down_read(&key_types_sem);
683
684 /* look up the key type to see if it's one of the registered kernel
685 * types */
686 list_for_each_entry(ktype, &key_types_list, link) {
687 if (strcmp(ktype->name, type) == 0)
688 goto found_kernel_type;
689 }
690
691 up_read(&key_types_sem);
692 ktype = ERR_PTR(-ENOKEY);
693
694found_kernel_type:
695 return ktype;
696}
697
698void key_set_timeout(struct key *key, unsigned timeout)
699{
700 struct timespec now;
701 time_t expiry = 0;
702
703 /* make the changes with the locks held to prevent races */
704 down_write(&key->sem);
705
706 if (timeout > 0) {
707 now = current_kernel_time();
708 expiry = now.tv_sec + timeout;
709 }
710
711 key->expiry = expiry;
712 key_schedule_gc(key->expiry + key_gc_delay);
713
714 up_write(&key->sem);
715}
716EXPORT_SYMBOL_GPL(key_set_timeout);
717
718/*
719 * Unlock a key type locked by key_type_lookup().
720 */
721void key_type_put(struct key_type *ktype)
722{
723 up_read(&key_types_sem);
724}
725
726/*
727 * Attempt to update an existing key.
728 *
729 * The key is given to us with an incremented refcount that we need to discard
730 * if we get an error.
731 */
732static inline key_ref_t __key_update(key_ref_t key_ref,
733 struct key_preparsed_payload *prep)
734{
735 struct key *key = key_ref_to_ptr(key_ref);
736 int ret;
737
738 /* need write permission on the key to update it */
739 ret = key_permission(key_ref, KEY_NEED_WRITE);
740 if (ret < 0)
741 goto error;
742
743 ret = -EEXIST;
744 if (!key->type->update)
745 goto error;
746
747 down_write(&key->sem);
748
749 ret = key->type->update(key, prep);
750 if (ret == 0)
751 /* updating a negative key instantiates it */
752 clear_bit(KEY_FLAG_NEGATIVE, &key->flags);
753
754 up_write(&key->sem);
755
756 if (ret < 0)
757 goto error;
758out:
759 return key_ref;
760
761error:
762 key_put(key);
763 key_ref = ERR_PTR(ret);
764 goto out;
765}
766
767/**
768 * key_create_or_update - Update or create and instantiate a key.
769 * @keyring_ref: A pointer to the destination keyring with possession flag.
770 * @type: The type of key.
771 * @description: The searchable description for the key.
772 * @payload: The data to use to instantiate or update the key.
773 * @plen: The length of @payload.
774 * @perm: The permissions mask for a new key.
775 * @flags: The quota flags for a new key.
776 *
777 * Search the destination keyring for a key of the same description and if one
778 * is found, update it, otherwise create and instantiate a new one and create a
779 * link to it from that keyring.
780 *
781 * If perm is KEY_PERM_UNDEF then an appropriate key permissions mask will be
782 * concocted.
783 *
784 * Returns a pointer to the new key if successful, -ENODEV if the key type
785 * wasn't available, -ENOTDIR if the keyring wasn't a keyring, -EACCES if the
786 * caller isn't permitted to modify the keyring or the LSM did not permit
787 * creation of the key.
788 *
789 * On success, the possession flag from the keyring ref will be tacked on to
790 * the key ref before it is returned.
791 */
792key_ref_t key_create_or_update(key_ref_t keyring_ref,
793 const char *type,
794 const char *description,
795 const void *payload,
796 size_t plen,
797 key_perm_t perm,
798 unsigned long flags)
799{
800 struct keyring_index_key index_key = {
801 .description = description,
802 };
803 struct key_preparsed_payload prep;
804 struct assoc_array_edit *edit;
805 const struct cred *cred = current_cred();
806 struct key *keyring, *key = NULL;
807 key_ref_t key_ref;
808 int ret;
809 int (*restrict_link)(struct key *,
810 const struct key_type *,
811 const union key_payload *) = NULL;
812
813 /* look up the key type to see if it's one of the registered kernel
814 * types */
815 index_key.type = key_type_lookup(type);
816 if (IS_ERR(index_key.type)) {
817 key_ref = ERR_PTR(-ENODEV);
818 goto error;
819 }
820
821 key_ref = ERR_PTR(-EINVAL);
822 if (!index_key.type->instantiate ||
823 (!index_key.description && !index_key.type->preparse))
824 goto error_put_type;
825
826 keyring = key_ref_to_ptr(keyring_ref);
827
828 key_check(keyring);
829
830 key_ref = ERR_PTR(-EPERM);
831 if (!(flags & KEY_ALLOC_BYPASS_RESTRICTION))
832 restrict_link = keyring->restrict_link;
833
834 key_ref = ERR_PTR(-ENOTDIR);
835 if (keyring->type != &key_type_keyring)
836 goto error_put_type;
837
838 memset(&prep, 0, sizeof(prep));
839 prep.data = payload;
840 prep.datalen = plen;
841 prep.quotalen = index_key.type->def_datalen;
842 prep.expiry = TIME_T_MAX;
843 if (index_key.type->preparse) {
844 ret = index_key.type->preparse(&prep);
845 if (ret < 0) {
846 key_ref = ERR_PTR(ret);
847 goto error_free_prep;
848 }
849 if (!index_key.description)
850 index_key.description = prep.description;
851 key_ref = ERR_PTR(-EINVAL);
852 if (!index_key.description)
853 goto error_free_prep;
854 }
855 index_key.desc_len = strlen(index_key.description);
856
857 if (restrict_link) {
858 ret = restrict_link(keyring, index_key.type, &prep.payload);
859 if (ret < 0) {
860 key_ref = ERR_PTR(ret);
861 goto error_free_prep;
862 }
863 }
864
865 ret = __key_link_begin(keyring, &index_key, &edit);
866 if (ret < 0) {
867 key_ref = ERR_PTR(ret);
868 goto error_free_prep;
869 }
870
871 /* if we're going to allocate a new key, we're going to have
872 * to modify the keyring */
873 ret = key_permission(keyring_ref, KEY_NEED_WRITE);
874 if (ret < 0) {
875 key_ref = ERR_PTR(ret);
876 goto error_link_end;
877 }
878
879 /* if it's possible to update this type of key, search for an existing
880 * key of the same type and description in the destination keyring and
881 * update that instead if possible
882 */
883 if (index_key.type->update) {
884 key_ref = find_key_to_update(keyring_ref, &index_key);
885 if (key_ref)
886 goto found_matching_key;
887 }
888
889 /* if the client doesn't provide, decide on the permissions we want */
890 if (perm == KEY_PERM_UNDEF) {
891 perm = KEY_POS_VIEW | KEY_POS_SEARCH | KEY_POS_LINK | KEY_POS_SETATTR;
892 perm |= KEY_USR_VIEW;
893
894 if (index_key.type->read)
895 perm |= KEY_POS_READ;
896
897 if (index_key.type == &key_type_keyring ||
898 index_key.type->update)
899 perm |= KEY_POS_WRITE;
900 }
901
902 /* allocate a new key */
903 key = key_alloc(index_key.type, index_key.description,
904 cred->fsuid, cred->fsgid, cred, perm, flags, NULL);
905 if (IS_ERR(key)) {
906 key_ref = ERR_CAST(key);
907 goto error_link_end;
908 }
909
910 /* instantiate it and link it into the target keyring */
911 ret = __key_instantiate_and_link(key, &prep, keyring, NULL, &edit);
912 if (ret < 0) {
913 key_put(key);
914 key_ref = ERR_PTR(ret);
915 goto error_link_end;
916 }
917
918 key_ref = make_key_ref(key, is_key_possessed(keyring_ref));
919
920error_link_end:
921 __key_link_end(keyring, &index_key, edit);
922error_free_prep:
923 if (index_key.type->preparse)
924 index_key.type->free_preparse(&prep);
925error_put_type:
926 key_type_put(index_key.type);
927error:
928 return key_ref;
929
930 found_matching_key:
931 /* we found a matching key, so we're going to try to update it
932 * - we can drop the locks first as we have the key pinned
933 */
934 __key_link_end(keyring, &index_key, edit);
935
936 key_ref = __key_update(key_ref, &prep);
937 goto error_free_prep;
938}
939EXPORT_SYMBOL(key_create_or_update);
940
941/**
942 * key_update - Update a key's contents.
943 * @key_ref: The pointer (plus possession flag) to the key.
944 * @payload: The data to be used to update the key.
945 * @plen: The length of @payload.
946 *
947 * Attempt to update the contents of a key with the given payload data. The
948 * caller must be granted Write permission on the key. Negative keys can be
949 * instantiated by this method.
950 *
951 * Returns 0 on success, -EACCES if not permitted and -EOPNOTSUPP if the key
952 * type does not support updating. The key type may return other errors.
953 */
954int key_update(key_ref_t key_ref, const void *payload, size_t plen)
955{
956 struct key_preparsed_payload prep;
957 struct key *key = key_ref_to_ptr(key_ref);
958 int ret;
959
960 key_check(key);
961
962 /* the key must be writable */
963 ret = key_permission(key_ref, KEY_NEED_WRITE);
964 if (ret < 0)
965 goto error;
966
967 /* attempt to update it if supported */
968 ret = -EOPNOTSUPP;
969 if (!key->type->update)
970 goto error;
971
972 memset(&prep, 0, sizeof(prep));
973 prep.data = payload;
974 prep.datalen = plen;
975 prep.quotalen = key->type->def_datalen;
976 prep.expiry = TIME_T_MAX;
977 if (key->type->preparse) {
978 ret = key->type->preparse(&prep);
979 if (ret < 0)
980 goto error;
981 }
982
983 down_write(&key->sem);
984
985 ret = key->type->update(key, &prep);
986 if (ret == 0)
987 /* updating a negative key instantiates it */
988 clear_bit(KEY_FLAG_NEGATIVE, &key->flags);
989
990 up_write(&key->sem);
991
992error:
993 if (key->type->preparse)
994 key->type->free_preparse(&prep);
995 return ret;
996}
997EXPORT_SYMBOL(key_update);
998
999/**
1000 * key_revoke - Revoke a key.
1001 * @key: The key to be revoked.
1002 *
1003 * Mark a key as being revoked and ask the type to free up its resources. The
1004 * revocation timeout is set and the key and all its links will be
1005 * automatically garbage collected after key_gc_delay amount of time if they
1006 * are not manually dealt with first.
1007 */
1008void key_revoke(struct key *key)
1009{
1010 struct timespec now;
1011 time_t time;
1012
1013 key_check(key);
1014
1015 /* make sure no one's trying to change or use the key when we mark it
1016 * - we tell lockdep that we might nest because we might be revoking an
1017 * authorisation key whilst holding the sem on a key we've just
1018 * instantiated
1019 */
1020 down_write_nested(&key->sem, 1);
1021 if (!test_and_set_bit(KEY_FLAG_REVOKED, &key->flags) &&
1022 key->type->revoke)
1023 key->type->revoke(key);
1024
1025 /* set the death time to no more than the expiry time */
1026 now = current_kernel_time();
1027 time = now.tv_sec;
1028 if (key->revoked_at == 0 || key->revoked_at > time) {
1029 key->revoked_at = time;
1030 key_schedule_gc(key->revoked_at + key_gc_delay);
1031 }
1032
1033 up_write(&key->sem);
1034}
1035EXPORT_SYMBOL(key_revoke);
1036
1037/**
1038 * key_invalidate - Invalidate a key.
1039 * @key: The key to be invalidated.
1040 *
1041 * Mark a key as being invalidated and have it cleaned up immediately. The key
1042 * is ignored by all searches and other operations from this point.
1043 */
1044void key_invalidate(struct key *key)
1045{
1046 kenter("%d", key_serial(key));
1047
1048 key_check(key);
1049
1050 if (!test_bit(KEY_FLAG_INVALIDATED, &key->flags)) {
1051 down_write_nested(&key->sem, 1);
1052 if (!test_and_set_bit(KEY_FLAG_INVALIDATED, &key->flags))
1053 key_schedule_gc_links();
1054 up_write(&key->sem);
1055 }
1056}
1057EXPORT_SYMBOL(key_invalidate);
1058
1059/**
1060 * generic_key_instantiate - Simple instantiation of a key from preparsed data
1061 * @key: The key to be instantiated
1062 * @prep: The preparsed data to load.
1063 *
1064 * Instantiate a key from preparsed data. We assume we can just copy the data
1065 * in directly and clear the old pointers.
1066 *
1067 * This can be pointed to directly by the key type instantiate op pointer.
1068 */
1069int generic_key_instantiate(struct key *key, struct key_preparsed_payload *prep)
1070{
1071 int ret;
1072
1073 pr_devel("==>%s()\n", __func__);
1074
1075 ret = key_payload_reserve(key, prep->quotalen);
1076 if (ret == 0) {
1077 rcu_assign_keypointer(key, prep->payload.data[0]);
1078 key->payload.data[1] = prep->payload.data[1];
1079 key->payload.data[2] = prep->payload.data[2];
1080 key->payload.data[3] = prep->payload.data[3];
1081 prep->payload.data[0] = NULL;
1082 prep->payload.data[1] = NULL;
1083 prep->payload.data[2] = NULL;
1084 prep->payload.data[3] = NULL;
1085 }
1086 pr_devel("<==%s() = %d\n", __func__, ret);
1087 return ret;
1088}
1089EXPORT_SYMBOL(generic_key_instantiate);
1090
1091/**
1092 * register_key_type - Register a type of key.
1093 * @ktype: The new key type.
1094 *
1095 * Register a new key type.
1096 *
1097 * Returns 0 on success or -EEXIST if a type of this name already exists.
1098 */
1099int register_key_type(struct key_type *ktype)
1100{
1101 struct key_type *p;
1102 int ret;
1103
1104 memset(&ktype->lock_class, 0, sizeof(ktype->lock_class));
1105
1106 ret = -EEXIST;
1107 down_write(&key_types_sem);
1108
1109 /* disallow key types with the same name */
1110 list_for_each_entry(p, &key_types_list, link) {
1111 if (strcmp(p->name, ktype->name) == 0)
1112 goto out;
1113 }
1114
1115 /* store the type */
1116 list_add(&ktype->link, &key_types_list);
1117
1118 pr_notice("Key type %s registered\n", ktype->name);
1119 ret = 0;
1120
1121out:
1122 up_write(&key_types_sem);
1123 return ret;
1124}
1125EXPORT_SYMBOL(register_key_type);
1126
1127/**
1128 * unregister_key_type - Unregister a type of key.
1129 * @ktype: The key type.
1130 *
1131 * Unregister a key type and mark all the extant keys of this type as dead.
1132 * Those keys of this type are then destroyed to get rid of their payloads and
1133 * they and their links will be garbage collected as soon as possible.
1134 */
1135void unregister_key_type(struct key_type *ktype)
1136{
1137 down_write(&key_types_sem);
1138 list_del_init(&ktype->link);
1139 downgrade_write(&key_types_sem);
1140 key_gc_keytype(ktype);
1141 pr_notice("Key type %s unregistered\n", ktype->name);
1142 up_read(&key_types_sem);
1143}
1144EXPORT_SYMBOL(unregister_key_type);
1145
1146/*
1147 * Initialise the key management state.
1148 */
1149void __init key_init(void)
1150{
1151 /* allocate a slab in which we can store keys */
1152 key_jar = kmem_cache_create("key_jar", sizeof(struct key),
1153 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1154
1155 /* add the special key types */
1156 list_add_tail(&key_type_keyring.link, &key_types_list);
1157 list_add_tail(&key_type_dead.link, &key_types_list);
1158 list_add_tail(&key_type_user.link, &key_types_list);
1159 list_add_tail(&key_type_logon.link, &key_types_list);
1160
1161 /* record the root user tracking */
1162 rb_link_node(&root_key_user.node,
1163 NULL,
1164 &key_user_tree.rb_node);
1165
1166 rb_insert_color(&root_key_user.node,
1167 &key_user_tree);
1168}