Linux Audio

Check our new training course

Loading...
v3.15
   1/*
   2 *  linux/drivers/mmc/host/mmci.c - ARM PrimeCell MMCI PL180/1 driver
   3 *
   4 *  Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved.
   5 *  Copyright (C) 2010 ST-Ericsson SA
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License version 2 as
   9 * published by the Free Software Foundation.
  10 */
  11#include <linux/module.h>
  12#include <linux/moduleparam.h>
  13#include <linux/init.h>
  14#include <linux/ioport.h>
  15#include <linux/device.h>
 
  16#include <linux/interrupt.h>
  17#include <linux/kernel.h>
  18#include <linux/slab.h>
  19#include <linux/delay.h>
  20#include <linux/err.h>
  21#include <linux/highmem.h>
  22#include <linux/log2.h>
  23#include <linux/mmc/pm.h>
  24#include <linux/mmc/host.h>
  25#include <linux/mmc/card.h>
 
  26#include <linux/amba/bus.h>
  27#include <linux/clk.h>
  28#include <linux/scatterlist.h>
  29#include <linux/gpio.h>
  30#include <linux/of_gpio.h>
  31#include <linux/regulator/consumer.h>
  32#include <linux/dmaengine.h>
  33#include <linux/dma-mapping.h>
  34#include <linux/amba/mmci.h>
  35#include <linux/pm_runtime.h>
  36#include <linux/types.h>
  37#include <linux/pinctrl/consumer.h>
  38
  39#include <asm/div64.h>
  40#include <asm/io.h>
  41#include <asm/sizes.h>
  42
  43#include "mmci.h"
 
  44
  45#define DRIVER_NAME "mmci-pl18x"
  46
  47static unsigned int fmax = 515633;
  48
  49/**
  50 * struct variant_data - MMCI variant-specific quirks
  51 * @clkreg: default value for MCICLOCK register
  52 * @clkreg_enable: enable value for MMCICLOCK register
 
 
  53 * @datalength_bits: number of bits in the MMCIDATALENGTH register
  54 * @fifosize: number of bytes that can be written when MMCI_TXFIFOEMPTY
  55 *	      is asserted (likewise for RX)
  56 * @fifohalfsize: number of bytes that can be written when MCI_TXFIFOHALFEMPTY
  57 *		  is asserted (likewise for RX)
  58 * @sdio: variant supports SDIO
 
  59 * @st_clkdiv: true if using a ST-specific clock divider algorithm
 
  60 * @blksz_datactrl16: true if Block size is at b16..b30 position in datactrl register
 
 
 
  61 * @pwrreg_powerup: power up value for MMCIPOWER register
 
  62 * @signal_direction: input/out direction of bus signals can be indicated
  63 * @pwrreg_clkgate: MMCIPOWER register must be used to gate the clock
  64 * @busy_detect: true if busy detection on dat0 is supported
 
 
 
 
 
  65 * @pwrreg_nopower: bits in MMCIPOWER don't controls ext. power supply
 
 
 
 
  66 */
  67struct variant_data {
  68	unsigned int		clkreg;
  69	unsigned int		clkreg_enable;
 
 
  70	unsigned int		datalength_bits;
  71	unsigned int		fifosize;
  72	unsigned int		fifohalfsize;
  73	bool			sdio;
 
 
 
  74	bool			st_clkdiv;
  75	bool			blksz_datactrl16;
 
  76	u32			pwrreg_powerup;
 
  77	bool			signal_direction;
  78	bool			pwrreg_clkgate;
  79	bool			busy_detect;
 
 
 
  80	bool			pwrreg_nopower;
 
 
 
 
  81};
  82
  83static struct variant_data variant_arm = {
  84	.fifosize		= 16 * 4,
  85	.fifohalfsize		= 8 * 4,
  86	.datalength_bits	= 16,
  87	.pwrreg_powerup		= MCI_PWR_UP,
 
 
  88};
  89
  90static struct variant_data variant_arm_extended_fifo = {
  91	.fifosize		= 128 * 4,
  92	.fifohalfsize		= 64 * 4,
  93	.datalength_bits	= 16,
  94	.pwrreg_powerup		= MCI_PWR_UP,
 
  95};
  96
  97static struct variant_data variant_arm_extended_fifo_hwfc = {
  98	.fifosize		= 128 * 4,
  99	.fifohalfsize		= 64 * 4,
 100	.clkreg_enable		= MCI_ARM_HWFCEN,
 101	.datalength_bits	= 16,
 102	.pwrreg_powerup		= MCI_PWR_UP,
 
 103};
 104
 105static struct variant_data variant_u300 = {
 106	.fifosize		= 16 * 4,
 107	.fifohalfsize		= 8 * 4,
 108	.clkreg_enable		= MCI_ST_U300_HWFCEN,
 
 109	.datalength_bits	= 16,
 110	.sdio			= true,
 
 111	.pwrreg_powerup		= MCI_PWR_ON,
 
 112	.signal_direction	= true,
 113	.pwrreg_clkgate		= true,
 114	.pwrreg_nopower		= true,
 115};
 116
 117static struct variant_data variant_nomadik = {
 118	.fifosize		= 16 * 4,
 119	.fifohalfsize		= 8 * 4,
 120	.clkreg			= MCI_CLK_ENABLE,
 
 121	.datalength_bits	= 24,
 122	.sdio			= true,
 
 123	.st_clkdiv		= true,
 124	.pwrreg_powerup		= MCI_PWR_ON,
 
 125	.signal_direction	= true,
 126	.pwrreg_clkgate		= true,
 127	.pwrreg_nopower		= true,
 128};
 129
 130static struct variant_data variant_ux500 = {
 131	.fifosize		= 30 * 4,
 132	.fifohalfsize		= 8 * 4,
 133	.clkreg			= MCI_CLK_ENABLE,
 134	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
 
 
 135	.datalength_bits	= 24,
 136	.sdio			= true,
 
 137	.st_clkdiv		= true,
 138	.pwrreg_powerup		= MCI_PWR_ON,
 
 139	.signal_direction	= true,
 140	.pwrreg_clkgate		= true,
 141	.busy_detect		= true,
 
 
 
 142	.pwrreg_nopower		= true,
 143};
 144
 145static struct variant_data variant_ux500v2 = {
 146	.fifosize		= 30 * 4,
 147	.fifohalfsize		= 8 * 4,
 148	.clkreg			= MCI_CLK_ENABLE,
 149	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
 
 
 
 150	.datalength_bits	= 24,
 151	.sdio			= true,
 
 152	.st_clkdiv		= true,
 153	.blksz_datactrl16	= true,
 154	.pwrreg_powerup		= MCI_PWR_ON,
 
 155	.signal_direction	= true,
 156	.pwrreg_clkgate		= true,
 157	.busy_detect		= true,
 
 
 
 158	.pwrreg_nopower		= true,
 159};
 160
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 161static int mmci_card_busy(struct mmc_host *mmc)
 162{
 163	struct mmci_host *host = mmc_priv(mmc);
 164	unsigned long flags;
 165	int busy = 0;
 166
 167	pm_runtime_get_sync(mmc_dev(mmc));
 168
 169	spin_lock_irqsave(&host->lock, flags);
 170	if (readl(host->base + MMCISTATUS) & MCI_ST_CARDBUSY)
 171		busy = 1;
 172	spin_unlock_irqrestore(&host->lock, flags);
 173
 174	pm_runtime_mark_last_busy(mmc_dev(mmc));
 175	pm_runtime_put_autosuspend(mmc_dev(mmc));
 176
 177	return busy;
 178}
 179
 180/*
 181 * Validate mmc prerequisites
 182 */
 183static int mmci_validate_data(struct mmci_host *host,
 184			      struct mmc_data *data)
 185{
 186	if (!data)
 187		return 0;
 188
 189	if (!is_power_of_2(data->blksz)) {
 190		dev_err(mmc_dev(host->mmc),
 191			"unsupported block size (%d bytes)\n", data->blksz);
 192		return -EINVAL;
 193	}
 194
 195	return 0;
 196}
 197
 198static void mmci_reg_delay(struct mmci_host *host)
 199{
 200	/*
 201	 * According to the spec, at least three feedback clock cycles
 202	 * of max 52 MHz must pass between two writes to the MMCICLOCK reg.
 203	 * Three MCLK clock cycles must pass between two MMCIPOWER reg writes.
 204	 * Worst delay time during card init is at 100 kHz => 30 us.
 205	 * Worst delay time when up and running is at 25 MHz => 120 ns.
 206	 */
 207	if (host->cclk < 25000000)
 208		udelay(30);
 209	else
 210		ndelay(120);
 211}
 212
 213/*
 214 * This must be called with host->lock held
 215 */
 216static void mmci_write_clkreg(struct mmci_host *host, u32 clk)
 217{
 218	if (host->clk_reg != clk) {
 219		host->clk_reg = clk;
 220		writel(clk, host->base + MMCICLOCK);
 221	}
 222}
 223
 224/*
 225 * This must be called with host->lock held
 226 */
 227static void mmci_write_pwrreg(struct mmci_host *host, u32 pwr)
 228{
 229	if (host->pwr_reg != pwr) {
 230		host->pwr_reg = pwr;
 231		writel(pwr, host->base + MMCIPOWER);
 232	}
 233}
 234
 235/*
 236 * This must be called with host->lock held
 237 */
 238static void mmci_write_datactrlreg(struct mmci_host *host, u32 datactrl)
 239{
 240	/* Keep ST Micro busy mode if enabled */
 241	datactrl |= host->datactrl_reg & MCI_ST_DPSM_BUSYMODE;
 242
 243	if (host->datactrl_reg != datactrl) {
 244		host->datactrl_reg = datactrl;
 245		writel(datactrl, host->base + MMCIDATACTRL);
 246	}
 247}
 248
 249/*
 250 * This must be called with host->lock held
 251 */
 252static void mmci_set_clkreg(struct mmci_host *host, unsigned int desired)
 253{
 254	struct variant_data *variant = host->variant;
 255	u32 clk = variant->clkreg;
 256
 257	/* Make sure cclk reflects the current calculated clock */
 258	host->cclk = 0;
 259
 260	if (desired) {
 261		if (desired >= host->mclk) {
 
 
 262			clk = MCI_CLK_BYPASS;
 263			if (variant->st_clkdiv)
 264				clk |= MCI_ST_UX500_NEG_EDGE;
 265			host->cclk = host->mclk;
 266		} else if (variant->st_clkdiv) {
 267			/*
 268			 * DB8500 TRM says f = mclk / (clkdiv + 2)
 269			 * => clkdiv = (mclk / f) - 2
 270			 * Round the divider up so we don't exceed the max
 271			 * frequency
 272			 */
 273			clk = DIV_ROUND_UP(host->mclk, desired) - 2;
 274			if (clk >= 256)
 275				clk = 255;
 276			host->cclk = host->mclk / (clk + 2);
 277		} else {
 278			/*
 279			 * PL180 TRM says f = mclk / (2 * (clkdiv + 1))
 280			 * => clkdiv = mclk / (2 * f) - 1
 281			 */
 282			clk = host->mclk / (2 * desired) - 1;
 283			if (clk >= 256)
 284				clk = 255;
 285			host->cclk = host->mclk / (2 * (clk + 1));
 286		}
 287
 288		clk |= variant->clkreg_enable;
 289		clk |= MCI_CLK_ENABLE;
 290		/* This hasn't proven to be worthwhile */
 291		/* clk |= MCI_CLK_PWRSAVE; */
 292	}
 293
 294	/* Set actual clock for debug */
 295	host->mmc->actual_clock = host->cclk;
 296
 297	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4)
 298		clk |= MCI_4BIT_BUS;
 299	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8)
 300		clk |= MCI_ST_8BIT_BUS;
 301
 302	if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50)
 303		clk |= MCI_ST_UX500_NEG_EDGE;
 
 304
 305	mmci_write_clkreg(host, clk);
 306}
 307
 308static void
 309mmci_request_end(struct mmci_host *host, struct mmc_request *mrq)
 310{
 311	writel(0, host->base + MMCICOMMAND);
 312
 313	BUG_ON(host->data);
 314
 315	host->mrq = NULL;
 316	host->cmd = NULL;
 317
 318	mmc_request_done(host->mmc, mrq);
 319
 320	pm_runtime_mark_last_busy(mmc_dev(host->mmc));
 321	pm_runtime_put_autosuspend(mmc_dev(host->mmc));
 322}
 323
 324static void mmci_set_mask1(struct mmci_host *host, unsigned int mask)
 325{
 326	void __iomem *base = host->base;
 327
 328	if (host->singleirq) {
 329		unsigned int mask0 = readl(base + MMCIMASK0);
 330
 331		mask0 &= ~MCI_IRQ1MASK;
 332		mask0 |= mask;
 333
 334		writel(mask0, base + MMCIMASK0);
 335	}
 336
 337	writel(mask, base + MMCIMASK1);
 338}
 339
 340static void mmci_stop_data(struct mmci_host *host)
 341{
 342	mmci_write_datactrlreg(host, 0);
 343	mmci_set_mask1(host, 0);
 344	host->data = NULL;
 345}
 346
 347static void mmci_init_sg(struct mmci_host *host, struct mmc_data *data)
 348{
 349	unsigned int flags = SG_MITER_ATOMIC;
 350
 351	if (data->flags & MMC_DATA_READ)
 352		flags |= SG_MITER_TO_SG;
 353	else
 354		flags |= SG_MITER_FROM_SG;
 355
 356	sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
 357}
 358
 359/*
 360 * All the DMA operation mode stuff goes inside this ifdef.
 361 * This assumes that you have a generic DMA device interface,
 362 * no custom DMA interfaces are supported.
 363 */
 364#ifdef CONFIG_DMA_ENGINE
 365static void mmci_dma_setup(struct mmci_host *host)
 366{
 367	struct mmci_platform_data *plat = host->plat;
 368	const char *rxname, *txname;
 369	dma_cap_mask_t mask;
 370
 371	host->dma_rx_channel = dma_request_slave_channel(mmc_dev(host->mmc), "rx");
 372	host->dma_tx_channel = dma_request_slave_channel(mmc_dev(host->mmc), "tx");
 373
 374	/* initialize pre request cookie */
 375	host->next_data.cookie = 1;
 376
 377	/* Try to acquire a generic DMA engine slave channel */
 378	dma_cap_zero(mask);
 379	dma_cap_set(DMA_SLAVE, mask);
 380
 381	if (plat && plat->dma_filter) {
 382		if (!host->dma_rx_channel && plat->dma_rx_param) {
 383			host->dma_rx_channel = dma_request_channel(mask,
 384							   plat->dma_filter,
 385							   plat->dma_rx_param);
 386			/* E.g if no DMA hardware is present */
 387			if (!host->dma_rx_channel)
 388				dev_err(mmc_dev(host->mmc), "no RX DMA channel\n");
 389		}
 390
 391		if (!host->dma_tx_channel && plat->dma_tx_param) {
 392			host->dma_tx_channel = dma_request_channel(mask,
 393							   plat->dma_filter,
 394							   plat->dma_tx_param);
 395			if (!host->dma_tx_channel)
 396				dev_warn(mmc_dev(host->mmc), "no TX DMA channel\n");
 397		}
 398	}
 399
 400	/*
 401	 * If only an RX channel is specified, the driver will
 402	 * attempt to use it bidirectionally, however if it is
 403	 * is specified but cannot be located, DMA will be disabled.
 404	 */
 405	if (host->dma_rx_channel && !host->dma_tx_channel)
 406		host->dma_tx_channel = host->dma_rx_channel;
 407
 408	if (host->dma_rx_channel)
 409		rxname = dma_chan_name(host->dma_rx_channel);
 410	else
 411		rxname = "none";
 412
 413	if (host->dma_tx_channel)
 414		txname = dma_chan_name(host->dma_tx_channel);
 415	else
 416		txname = "none";
 417
 418	dev_info(mmc_dev(host->mmc), "DMA channels RX %s, TX %s\n",
 419		 rxname, txname);
 420
 421	/*
 422	 * Limit the maximum segment size in any SG entry according to
 423	 * the parameters of the DMA engine device.
 424	 */
 425	if (host->dma_tx_channel) {
 426		struct device *dev = host->dma_tx_channel->device->dev;
 427		unsigned int max_seg_size = dma_get_max_seg_size(dev);
 428
 429		if (max_seg_size < host->mmc->max_seg_size)
 430			host->mmc->max_seg_size = max_seg_size;
 431	}
 432	if (host->dma_rx_channel) {
 433		struct device *dev = host->dma_rx_channel->device->dev;
 434		unsigned int max_seg_size = dma_get_max_seg_size(dev);
 435
 436		if (max_seg_size < host->mmc->max_seg_size)
 437			host->mmc->max_seg_size = max_seg_size;
 438	}
 
 
 
 
 439}
 440
 441/*
 442 * This is used in or so inline it
 443 * so it can be discarded.
 444 */
 445static inline void mmci_dma_release(struct mmci_host *host)
 446{
 447	struct mmci_platform_data *plat = host->plat;
 448
 449	if (host->dma_rx_channel)
 450		dma_release_channel(host->dma_rx_channel);
 451	if (host->dma_tx_channel && plat->dma_tx_param)
 452		dma_release_channel(host->dma_tx_channel);
 453	host->dma_rx_channel = host->dma_tx_channel = NULL;
 454}
 455
 456static void mmci_dma_data_error(struct mmci_host *host)
 457{
 458	dev_err(mmc_dev(host->mmc), "error during DMA transfer!\n");
 459	dmaengine_terminate_all(host->dma_current);
 460	host->dma_current = NULL;
 461	host->dma_desc_current = NULL;
 462	host->data->host_cookie = 0;
 463}
 464
 465static void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
 466{
 467	struct dma_chan *chan;
 468	enum dma_data_direction dir;
 469
 470	if (data->flags & MMC_DATA_READ) {
 471		dir = DMA_FROM_DEVICE;
 472		chan = host->dma_rx_channel;
 473	} else {
 474		dir = DMA_TO_DEVICE;
 475		chan = host->dma_tx_channel;
 476	}
 477
 478	dma_unmap_sg(chan->device->dev, data->sg, data->sg_len, dir);
 479}
 480
 481static void mmci_dma_finalize(struct mmci_host *host, struct mmc_data *data)
 482{
 483	u32 status;
 484	int i;
 485
 486	/* Wait up to 1ms for the DMA to complete */
 487	for (i = 0; ; i++) {
 488		status = readl(host->base + MMCISTATUS);
 489		if (!(status & MCI_RXDATAAVLBLMASK) || i >= 100)
 490			break;
 491		udelay(10);
 492	}
 493
 494	/*
 495	 * Check to see whether we still have some data left in the FIFO -
 496	 * this catches DMA controllers which are unable to monitor the
 497	 * DMALBREQ and DMALSREQ signals while allowing us to DMA to non-
 498	 * contiguous buffers.  On TX, we'll get a FIFO underrun error.
 499	 */
 500	if (status & MCI_RXDATAAVLBLMASK) {
 501		mmci_dma_data_error(host);
 502		if (!data->error)
 503			data->error = -EIO;
 504	}
 505
 506	if (!data->host_cookie)
 507		mmci_dma_unmap(host, data);
 508
 509	/*
 510	 * Use of DMA with scatter-gather is impossible.
 511	 * Give up with DMA and switch back to PIO mode.
 512	 */
 513	if (status & MCI_RXDATAAVLBLMASK) {
 514		dev_err(mmc_dev(host->mmc), "buggy DMA detected. Taking evasive action.\n");
 515		mmci_dma_release(host);
 516	}
 517
 518	host->dma_current = NULL;
 519	host->dma_desc_current = NULL;
 520}
 521
 522/* prepares DMA channel and DMA descriptor, returns non-zero on failure */
 523static int __mmci_dma_prep_data(struct mmci_host *host, struct mmc_data *data,
 524				struct dma_chan **dma_chan,
 525				struct dma_async_tx_descriptor **dma_desc)
 526{
 527	struct variant_data *variant = host->variant;
 528	struct dma_slave_config conf = {
 529		.src_addr = host->phybase + MMCIFIFO,
 530		.dst_addr = host->phybase + MMCIFIFO,
 531		.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
 532		.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
 533		.src_maxburst = variant->fifohalfsize >> 2, /* # of words */
 534		.dst_maxburst = variant->fifohalfsize >> 2, /* # of words */
 535		.device_fc = false,
 536	};
 537	struct dma_chan *chan;
 538	struct dma_device *device;
 539	struct dma_async_tx_descriptor *desc;
 540	enum dma_data_direction buffer_dirn;
 541	int nr_sg;
 
 542
 543	if (data->flags & MMC_DATA_READ) {
 544		conf.direction = DMA_DEV_TO_MEM;
 545		buffer_dirn = DMA_FROM_DEVICE;
 546		chan = host->dma_rx_channel;
 547	} else {
 548		conf.direction = DMA_MEM_TO_DEV;
 549		buffer_dirn = DMA_TO_DEVICE;
 550		chan = host->dma_tx_channel;
 551	}
 552
 553	/* If there's no DMA channel, fall back to PIO */
 554	if (!chan)
 555		return -EINVAL;
 556
 557	/* If less than or equal to the fifo size, don't bother with DMA */
 558	if (data->blksz * data->blocks <= variant->fifosize)
 559		return -EINVAL;
 560
 561	device = chan->device;
 562	nr_sg = dma_map_sg(device->dev, data->sg, data->sg_len, buffer_dirn);
 563	if (nr_sg == 0)
 564		return -EINVAL;
 565
 
 
 
 566	dmaengine_slave_config(chan, &conf);
 567	desc = dmaengine_prep_slave_sg(chan, data->sg, nr_sg,
 568					    conf.direction, DMA_CTRL_ACK);
 569	if (!desc)
 570		goto unmap_exit;
 571
 572	*dma_chan = chan;
 573	*dma_desc = desc;
 574
 575	return 0;
 576
 577 unmap_exit:
 578	dma_unmap_sg(device->dev, data->sg, data->sg_len, buffer_dirn);
 579	return -ENOMEM;
 580}
 581
 582static inline int mmci_dma_prep_data(struct mmci_host *host,
 583				     struct mmc_data *data)
 584{
 585	/* Check if next job is already prepared. */
 586	if (host->dma_current && host->dma_desc_current)
 587		return 0;
 588
 589	/* No job were prepared thus do it now. */
 590	return __mmci_dma_prep_data(host, data, &host->dma_current,
 591				    &host->dma_desc_current);
 592}
 593
 594static inline int mmci_dma_prep_next(struct mmci_host *host,
 595				     struct mmc_data *data)
 596{
 597	struct mmci_host_next *nd = &host->next_data;
 598	return __mmci_dma_prep_data(host, data, &nd->dma_chan, &nd->dma_desc);
 599}
 600
 601static int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
 602{
 603	int ret;
 604	struct mmc_data *data = host->data;
 605
 606	ret = mmci_dma_prep_data(host, host->data);
 607	if (ret)
 608		return ret;
 609
 610	/* Okay, go for it. */
 611	dev_vdbg(mmc_dev(host->mmc),
 612		 "Submit MMCI DMA job, sglen %d blksz %04x blks %04x flags %08x\n",
 613		 data->sg_len, data->blksz, data->blocks, data->flags);
 614	dmaengine_submit(host->dma_desc_current);
 615	dma_async_issue_pending(host->dma_current);
 616
 
 
 
 617	datactrl |= MCI_DPSM_DMAENABLE;
 618
 619	/* Trigger the DMA transfer */
 620	mmci_write_datactrlreg(host, datactrl);
 621
 622	/*
 623	 * Let the MMCI say when the data is ended and it's time
 624	 * to fire next DMA request. When that happens, MMCI will
 625	 * call mmci_data_end()
 626	 */
 627	writel(readl(host->base + MMCIMASK0) | MCI_DATAENDMASK,
 628	       host->base + MMCIMASK0);
 629	return 0;
 630}
 631
 632static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
 633{
 634	struct mmci_host_next *next = &host->next_data;
 635
 636	WARN_ON(data->host_cookie && data->host_cookie != next->cookie);
 637	WARN_ON(!data->host_cookie && (next->dma_desc || next->dma_chan));
 638
 639	host->dma_desc_current = next->dma_desc;
 640	host->dma_current = next->dma_chan;
 641	next->dma_desc = NULL;
 642	next->dma_chan = NULL;
 643}
 644
 645static void mmci_pre_request(struct mmc_host *mmc, struct mmc_request *mrq,
 646			     bool is_first_req)
 647{
 648	struct mmci_host *host = mmc_priv(mmc);
 649	struct mmc_data *data = mrq->data;
 650	struct mmci_host_next *nd = &host->next_data;
 651
 652	if (!data)
 653		return;
 654
 655	BUG_ON(data->host_cookie);
 656
 657	if (mmci_validate_data(host, data))
 658		return;
 659
 660	if (!mmci_dma_prep_next(host, data))
 661		data->host_cookie = ++nd->cookie < 0 ? 1 : nd->cookie;
 662}
 663
 664static void mmci_post_request(struct mmc_host *mmc, struct mmc_request *mrq,
 665			      int err)
 666{
 667	struct mmci_host *host = mmc_priv(mmc);
 668	struct mmc_data *data = mrq->data;
 669
 670	if (!data || !data->host_cookie)
 671		return;
 672
 673	mmci_dma_unmap(host, data);
 674
 675	if (err) {
 676		struct mmci_host_next *next = &host->next_data;
 677		struct dma_chan *chan;
 678		if (data->flags & MMC_DATA_READ)
 679			chan = host->dma_rx_channel;
 680		else
 681			chan = host->dma_tx_channel;
 682		dmaengine_terminate_all(chan);
 683
 
 
 
 
 
 
 684		next->dma_desc = NULL;
 685		next->dma_chan = NULL;
 
 686	}
 687}
 688
 689#else
 690/* Blank functions if the DMA engine is not available */
 691static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
 692{
 693}
 694static inline void mmci_dma_setup(struct mmci_host *host)
 695{
 696}
 697
 698static inline void mmci_dma_release(struct mmci_host *host)
 699{
 700}
 701
 702static inline void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
 703{
 704}
 705
 706static inline void mmci_dma_finalize(struct mmci_host *host,
 707				     struct mmc_data *data)
 708{
 709}
 710
 711static inline void mmci_dma_data_error(struct mmci_host *host)
 712{
 713}
 714
 715static inline int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
 716{
 717	return -ENOSYS;
 718}
 719
 720#define mmci_pre_request NULL
 721#define mmci_post_request NULL
 722
 723#endif
 724
 725static void mmci_start_data(struct mmci_host *host, struct mmc_data *data)
 726{
 727	struct variant_data *variant = host->variant;
 728	unsigned int datactrl, timeout, irqmask;
 729	unsigned long long clks;
 730	void __iomem *base;
 731	int blksz_bits;
 732
 733	dev_dbg(mmc_dev(host->mmc), "blksz %04x blks %04x flags %08x\n",
 734		data->blksz, data->blocks, data->flags);
 735
 736	host->data = data;
 737	host->size = data->blksz * data->blocks;
 738	data->bytes_xfered = 0;
 739
 740	clks = (unsigned long long)data->timeout_ns * host->cclk;
 741	do_div(clks, 1000000000UL);
 742
 743	timeout = data->timeout_clks + (unsigned int)clks;
 744
 745	base = host->base;
 746	writel(timeout, base + MMCIDATATIMER);
 747	writel(host->size, base + MMCIDATALENGTH);
 748
 749	blksz_bits = ffs(data->blksz) - 1;
 750	BUG_ON(1 << blksz_bits != data->blksz);
 751
 752	if (variant->blksz_datactrl16)
 753		datactrl = MCI_DPSM_ENABLE | (data->blksz << 16);
 
 
 754	else
 755		datactrl = MCI_DPSM_ENABLE | blksz_bits << 4;
 756
 757	if (data->flags & MMC_DATA_READ)
 758		datactrl |= MCI_DPSM_DIRECTION;
 759
 760	/* The ST Micro variants has a special bit to enable SDIO */
 761	if (variant->sdio && host->mmc->card)
 762		if (mmc_card_sdio(host->mmc->card)) {
 763			/*
 764			 * The ST Micro variants has a special bit
 765			 * to enable SDIO.
 766			 */
 767			u32 clk;
 768
 769			datactrl |= MCI_ST_DPSM_SDIOEN;
 770
 771			/*
 772			 * The ST Micro variant for SDIO small write transfers
 773			 * needs to have clock H/W flow control disabled,
 774			 * otherwise the transfer will not start. The threshold
 775			 * depends on the rate of MCLK.
 776			 */
 777			if (data->flags & MMC_DATA_WRITE &&
 778			    (host->size < 8 ||
 779			     (host->size <= 8 && host->mclk > 50000000)))
 780				clk = host->clk_reg & ~variant->clkreg_enable;
 781			else
 782				clk = host->clk_reg | variant->clkreg_enable;
 783
 784			mmci_write_clkreg(host, clk);
 785		}
 786
 787	if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50)
 788		datactrl |= MCI_ST_DPSM_DDRMODE;
 
 789
 790	/*
 791	 * Attempt to use DMA operation mode, if this
 792	 * should fail, fall back to PIO mode
 793	 */
 794	if (!mmci_dma_start_data(host, datactrl))
 795		return;
 796
 797	/* IRQ mode, map the SG list for CPU reading/writing */
 798	mmci_init_sg(host, data);
 799
 800	if (data->flags & MMC_DATA_READ) {
 801		irqmask = MCI_RXFIFOHALFFULLMASK;
 802
 803		/*
 804		 * If we have less than the fifo 'half-full' threshold to
 805		 * transfer, trigger a PIO interrupt as soon as any data
 806		 * is available.
 807		 */
 808		if (host->size < variant->fifohalfsize)
 809			irqmask |= MCI_RXDATAAVLBLMASK;
 810	} else {
 811		/*
 812		 * We don't actually need to include "FIFO empty" here
 813		 * since its implicit in "FIFO half empty".
 814		 */
 815		irqmask = MCI_TXFIFOHALFEMPTYMASK;
 816	}
 817
 818	mmci_write_datactrlreg(host, datactrl);
 819	writel(readl(base + MMCIMASK0) & ~MCI_DATAENDMASK, base + MMCIMASK0);
 820	mmci_set_mask1(host, irqmask);
 821}
 822
 823static void
 824mmci_start_command(struct mmci_host *host, struct mmc_command *cmd, u32 c)
 825{
 826	void __iomem *base = host->base;
 827
 828	dev_dbg(mmc_dev(host->mmc), "op %02x arg %08x flags %08x\n",
 829	    cmd->opcode, cmd->arg, cmd->flags);
 830
 831	if (readl(base + MMCICOMMAND) & MCI_CPSM_ENABLE) {
 832		writel(0, base + MMCICOMMAND);
 833		udelay(1);
 834	}
 835
 836	c |= cmd->opcode | MCI_CPSM_ENABLE;
 837	if (cmd->flags & MMC_RSP_PRESENT) {
 838		if (cmd->flags & MMC_RSP_136)
 839			c |= MCI_CPSM_LONGRSP;
 840		c |= MCI_CPSM_RESPONSE;
 841	}
 842	if (/*interrupt*/0)
 843		c |= MCI_CPSM_INTERRUPT;
 844
 
 
 
 845	host->cmd = cmd;
 846
 847	writel(cmd->arg, base + MMCIARGUMENT);
 848	writel(c, base + MMCICOMMAND);
 849}
 850
 851static void
 852mmci_data_irq(struct mmci_host *host, struct mmc_data *data,
 853	      unsigned int status)
 854{
 
 
 
 
 855	/* First check for errors */
 856	if (status & (MCI_DATACRCFAIL|MCI_DATATIMEOUT|MCI_STARTBITERR|
 857		      MCI_TXUNDERRUN|MCI_RXOVERRUN)) {
 858		u32 remain, success;
 859
 860		/* Terminate the DMA transfer */
 861		if (dma_inprogress(host)) {
 862			mmci_dma_data_error(host);
 863			mmci_dma_unmap(host, data);
 864		}
 865
 866		/*
 867		 * Calculate how far we are into the transfer.  Note that
 868		 * the data counter gives the number of bytes transferred
 869		 * on the MMC bus, not on the host side.  On reads, this
 870		 * can be as much as a FIFO-worth of data ahead.  This
 871		 * matters for FIFO overruns only.
 872		 */
 873		remain = readl(host->base + MMCIDATACNT);
 874		success = data->blksz * data->blocks - remain;
 875
 876		dev_dbg(mmc_dev(host->mmc), "MCI ERROR IRQ, status 0x%08x at 0x%08x\n",
 877			status, success);
 878		if (status & MCI_DATACRCFAIL) {
 879			/* Last block was not successful */
 880			success -= 1;
 881			data->error = -EILSEQ;
 882		} else if (status & MCI_DATATIMEOUT) {
 883			data->error = -ETIMEDOUT;
 884		} else if (status & MCI_STARTBITERR) {
 885			data->error = -ECOMM;
 886		} else if (status & MCI_TXUNDERRUN) {
 887			data->error = -EIO;
 888		} else if (status & MCI_RXOVERRUN) {
 889			if (success > host->variant->fifosize)
 890				success -= host->variant->fifosize;
 891			else
 892				success = 0;
 893			data->error = -EIO;
 894		}
 895		data->bytes_xfered = round_down(success, data->blksz);
 896	}
 897
 898	if (status & MCI_DATABLOCKEND)
 899		dev_err(mmc_dev(host->mmc), "stray MCI_DATABLOCKEND interrupt\n");
 900
 901	if (status & MCI_DATAEND || data->error) {
 902		if (dma_inprogress(host))
 903			mmci_dma_finalize(host, data);
 904		mmci_stop_data(host);
 905
 906		if (!data->error)
 907			/* The error clause is handled above, success! */
 908			data->bytes_xfered = data->blksz * data->blocks;
 909
 910		if (!data->stop || host->mrq->sbc) {
 911			mmci_request_end(host, data->mrq);
 912		} else {
 913			mmci_start_command(host, data->stop, 0);
 914		}
 915	}
 916}
 917
 918static void
 919mmci_cmd_irq(struct mmci_host *host, struct mmc_command *cmd,
 920	     unsigned int status)
 921{
 922	void __iomem *base = host->base;
 923	bool sbc = (cmd == host->mrq->sbc);
 924	bool busy_resp = host->variant->busy_detect &&
 925			(cmd->flags & MMC_RSP_BUSY);
 926
 927	/* Check if we need to wait for busy completion. */
 928	if (host->busy_status && (status & MCI_ST_CARDBUSY))
 929		return;
 930
 931	/* Enable busy completion if needed and supported. */
 932	if (!host->busy_status && busy_resp &&
 933		!(status & (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT)) &&
 934		(readl(base + MMCISTATUS) & MCI_ST_CARDBUSY)) {
 935		writel(readl(base + MMCIMASK0) | MCI_ST_BUSYEND,
 936			base + MMCIMASK0);
 937		host->busy_status = status & (MCI_CMDSENT|MCI_CMDRESPEND);
 
 
 938		return;
 939	}
 940
 941	/* At busy completion, mask the IRQ and complete the request. */
 942	if (host->busy_status) {
 943		writel(readl(base + MMCIMASK0) & ~MCI_ST_BUSYEND,
 944			base + MMCIMASK0);
 945		host->busy_status = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 946	}
 947
 948	host->cmd = NULL;
 949
 950	if (status & MCI_CMDTIMEOUT) {
 951		cmd->error = -ETIMEDOUT;
 952	} else if (status & MCI_CMDCRCFAIL && cmd->flags & MMC_RSP_CRC) {
 953		cmd->error = -EILSEQ;
 954	} else {
 955		cmd->resp[0] = readl(base + MMCIRESPONSE0);
 956		cmd->resp[1] = readl(base + MMCIRESPONSE1);
 957		cmd->resp[2] = readl(base + MMCIRESPONSE2);
 958		cmd->resp[3] = readl(base + MMCIRESPONSE3);
 959	}
 960
 961	if ((!sbc && !cmd->data) || cmd->error) {
 962		if (host->data) {
 963			/* Terminate the DMA transfer */
 964			if (dma_inprogress(host)) {
 965				mmci_dma_data_error(host);
 966				mmci_dma_unmap(host, host->data);
 967			}
 968			mmci_stop_data(host);
 969		}
 970		mmci_request_end(host, host->mrq);
 971	} else if (sbc) {
 972		mmci_start_command(host, host->mrq->cmd, 0);
 973	} else if (!(cmd->data->flags & MMC_DATA_READ)) {
 974		mmci_start_data(host, cmd->data);
 975	}
 976}
 977
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 978static int mmci_pio_read(struct mmci_host *host, char *buffer, unsigned int remain)
 979{
 980	void __iomem *base = host->base;
 981	char *ptr = buffer;
 982	u32 status;
 983	int host_remain = host->size;
 984
 985	do {
 986		int count = host_remain - (readl(base + MMCIFIFOCNT) << 2);
 987
 988		if (count > remain)
 989			count = remain;
 990
 991		if (count <= 0)
 992			break;
 993
 994		/*
 995		 * SDIO especially may want to send something that is
 996		 * not divisible by 4 (as opposed to card sectors
 997		 * etc). Therefore make sure to always read the last bytes
 998		 * while only doing full 32-bit reads towards the FIFO.
 999		 */
1000		if (unlikely(count & 0x3)) {
1001			if (count < 4) {
1002				unsigned char buf[4];
1003				ioread32_rep(base + MMCIFIFO, buf, 1);
1004				memcpy(ptr, buf, count);
1005			} else {
1006				ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1007				count &= ~0x3;
1008			}
1009		} else {
1010			ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1011		}
1012
1013		ptr += count;
1014		remain -= count;
1015		host_remain -= count;
1016
1017		if (remain == 0)
1018			break;
1019
1020		status = readl(base + MMCISTATUS);
1021	} while (status & MCI_RXDATAAVLBL);
1022
1023	return ptr - buffer;
1024}
1025
1026static int mmci_pio_write(struct mmci_host *host, char *buffer, unsigned int remain, u32 status)
1027{
1028	struct variant_data *variant = host->variant;
1029	void __iomem *base = host->base;
1030	char *ptr = buffer;
1031
1032	do {
1033		unsigned int count, maxcnt;
1034
1035		maxcnt = status & MCI_TXFIFOEMPTY ?
1036			 variant->fifosize : variant->fifohalfsize;
1037		count = min(remain, maxcnt);
1038
1039		/*
1040		 * SDIO especially may want to send something that is
1041		 * not divisible by 4 (as opposed to card sectors
1042		 * etc), and the FIFO only accept full 32-bit writes.
1043		 * So compensate by adding +3 on the count, a single
1044		 * byte become a 32bit write, 7 bytes will be two
1045		 * 32bit writes etc.
1046		 */
1047		iowrite32_rep(base + MMCIFIFO, ptr, (count + 3) >> 2);
1048
1049		ptr += count;
1050		remain -= count;
1051
1052		if (remain == 0)
1053			break;
1054
1055		status = readl(base + MMCISTATUS);
1056	} while (status & MCI_TXFIFOHALFEMPTY);
1057
1058	return ptr - buffer;
1059}
1060
1061/*
1062 * PIO data transfer IRQ handler.
1063 */
1064static irqreturn_t mmci_pio_irq(int irq, void *dev_id)
1065{
1066	struct mmci_host *host = dev_id;
1067	struct sg_mapping_iter *sg_miter = &host->sg_miter;
1068	struct variant_data *variant = host->variant;
1069	void __iomem *base = host->base;
1070	unsigned long flags;
1071	u32 status;
1072
1073	status = readl(base + MMCISTATUS);
1074
1075	dev_dbg(mmc_dev(host->mmc), "irq1 (pio) %08x\n", status);
1076
1077	local_irq_save(flags);
1078
1079	do {
1080		unsigned int remain, len;
1081		char *buffer;
1082
1083		/*
1084		 * For write, we only need to test the half-empty flag
1085		 * here - if the FIFO is completely empty, then by
1086		 * definition it is more than half empty.
1087		 *
1088		 * For read, check for data available.
1089		 */
1090		if (!(status & (MCI_TXFIFOHALFEMPTY|MCI_RXDATAAVLBL)))
1091			break;
1092
1093		if (!sg_miter_next(sg_miter))
1094			break;
1095
1096		buffer = sg_miter->addr;
1097		remain = sg_miter->length;
1098
1099		len = 0;
1100		if (status & MCI_RXACTIVE)
1101			len = mmci_pio_read(host, buffer, remain);
1102		if (status & MCI_TXACTIVE)
1103			len = mmci_pio_write(host, buffer, remain, status);
1104
1105		sg_miter->consumed = len;
1106
1107		host->size -= len;
1108		remain -= len;
1109
1110		if (remain)
1111			break;
1112
1113		status = readl(base + MMCISTATUS);
1114	} while (1);
1115
1116	sg_miter_stop(sg_miter);
1117
1118	local_irq_restore(flags);
1119
1120	/*
1121	 * If we have less than the fifo 'half-full' threshold to transfer,
1122	 * trigger a PIO interrupt as soon as any data is available.
1123	 */
1124	if (status & MCI_RXACTIVE && host->size < variant->fifohalfsize)
1125		mmci_set_mask1(host, MCI_RXDATAAVLBLMASK);
1126
1127	/*
1128	 * If we run out of data, disable the data IRQs; this
1129	 * prevents a race where the FIFO becomes empty before
1130	 * the chip itself has disabled the data path, and
1131	 * stops us racing with our data end IRQ.
1132	 */
1133	if (host->size == 0) {
1134		mmci_set_mask1(host, 0);
1135		writel(readl(base + MMCIMASK0) | MCI_DATAENDMASK, base + MMCIMASK0);
1136	}
1137
1138	return IRQ_HANDLED;
1139}
1140
1141/*
1142 * Handle completion of command and data transfers.
1143 */
1144static irqreturn_t mmci_irq(int irq, void *dev_id)
1145{
1146	struct mmci_host *host = dev_id;
1147	u32 status;
1148	int ret = 0;
1149
1150	spin_lock(&host->lock);
1151
1152	do {
1153		struct mmc_command *cmd;
1154		struct mmc_data *data;
1155
1156		status = readl(host->base + MMCISTATUS);
1157
1158		if (host->singleirq) {
1159			if (status & readl(host->base + MMCIMASK1))
1160				mmci_pio_irq(irq, dev_id);
1161
1162			status &= ~MCI_IRQ1MASK;
1163		}
1164
1165		/*
1166		 * We intentionally clear the MCI_ST_CARDBUSY IRQ here (if it's
1167		 * enabled) since the HW seems to be triggering the IRQ on both
1168		 * edges while monitoring DAT0 for busy completion.
 
 
 
 
 
1169		 */
1170		status &= readl(host->base + MMCIMASK0);
1171		writel(status, host->base + MMCICLEAR);
 
 
 
 
1172
1173		dev_dbg(mmc_dev(host->mmc), "irq0 (data+cmd) %08x\n", status);
1174
1175		cmd = host->cmd;
1176		if ((status|host->busy_status) & (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT|
1177			MCI_CMDSENT|MCI_CMDRESPEND) && cmd)
1178			mmci_cmd_irq(host, cmd, status);
1179
1180		data = host->data;
1181		if (status & (MCI_DATACRCFAIL|MCI_DATATIMEOUT|MCI_STARTBITERR|
1182			      MCI_TXUNDERRUN|MCI_RXOVERRUN|MCI_DATAEND|
1183			      MCI_DATABLOCKEND) && data)
1184			mmci_data_irq(host, data, status);
1185
1186		/* Don't poll for busy completion in irq context. */
1187		if (host->busy_status)
1188			status &= ~MCI_ST_CARDBUSY;
1189
1190		ret = 1;
1191	} while (status);
1192
1193	spin_unlock(&host->lock);
1194
1195	return IRQ_RETVAL(ret);
1196}
1197
1198static void mmci_request(struct mmc_host *mmc, struct mmc_request *mrq)
1199{
1200	struct mmci_host *host = mmc_priv(mmc);
1201	unsigned long flags;
1202
1203	WARN_ON(host->mrq != NULL);
1204
1205	mrq->cmd->error = mmci_validate_data(host, mrq->data);
1206	if (mrq->cmd->error) {
1207		mmc_request_done(mmc, mrq);
1208		return;
1209	}
1210
1211	pm_runtime_get_sync(mmc_dev(mmc));
1212
1213	spin_lock_irqsave(&host->lock, flags);
1214
1215	host->mrq = mrq;
1216
1217	if (mrq->data)
1218		mmci_get_next_data(host, mrq->data);
1219
1220	if (mrq->data && mrq->data->flags & MMC_DATA_READ)
1221		mmci_start_data(host, mrq->data);
1222
1223	if (mrq->sbc)
1224		mmci_start_command(host, mrq->sbc, 0);
1225	else
1226		mmci_start_command(host, mrq->cmd, 0);
1227
1228	spin_unlock_irqrestore(&host->lock, flags);
1229}
1230
1231static void mmci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1232{
1233	struct mmci_host *host = mmc_priv(mmc);
1234	struct variant_data *variant = host->variant;
1235	u32 pwr = 0;
1236	unsigned long flags;
1237	int ret;
1238
1239	pm_runtime_get_sync(mmc_dev(mmc));
1240
1241	if (host->plat->ios_handler &&
1242		host->plat->ios_handler(mmc_dev(mmc), ios))
1243			dev_err(mmc_dev(mmc), "platform ios_handler failed\n");
1244
1245	switch (ios->power_mode) {
1246	case MMC_POWER_OFF:
1247		if (!IS_ERR(mmc->supply.vmmc))
1248			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1249
1250		if (!IS_ERR(mmc->supply.vqmmc) && host->vqmmc_enabled) {
1251			regulator_disable(mmc->supply.vqmmc);
1252			host->vqmmc_enabled = false;
1253		}
1254
1255		break;
1256	case MMC_POWER_UP:
1257		if (!IS_ERR(mmc->supply.vmmc))
1258			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
1259
1260		/*
1261		 * The ST Micro variant doesn't have the PL180s MCI_PWR_UP
1262		 * and instead uses MCI_PWR_ON so apply whatever value is
1263		 * configured in the variant data.
1264		 */
1265		pwr |= variant->pwrreg_powerup;
1266
1267		break;
1268	case MMC_POWER_ON:
1269		if (!IS_ERR(mmc->supply.vqmmc) && !host->vqmmc_enabled) {
1270			ret = regulator_enable(mmc->supply.vqmmc);
1271			if (ret < 0)
1272				dev_err(mmc_dev(mmc),
1273					"failed to enable vqmmc regulator\n");
1274			else
1275				host->vqmmc_enabled = true;
1276		}
1277
1278		pwr |= MCI_PWR_ON;
1279		break;
1280	}
1281
1282	if (variant->signal_direction && ios->power_mode != MMC_POWER_OFF) {
1283		/*
1284		 * The ST Micro variant has some additional bits
1285		 * indicating signal direction for the signals in
1286		 * the SD/MMC bus and feedback-clock usage.
1287		 */
1288		pwr |= host->plat->sigdir;
1289
1290		if (ios->bus_width == MMC_BUS_WIDTH_4)
1291			pwr &= ~MCI_ST_DATA74DIREN;
1292		else if (ios->bus_width == MMC_BUS_WIDTH_1)
1293			pwr &= (~MCI_ST_DATA74DIREN &
1294				~MCI_ST_DATA31DIREN &
1295				~MCI_ST_DATA2DIREN);
1296	}
1297
1298	if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN) {
1299		if (host->hw_designer != AMBA_VENDOR_ST)
1300			pwr |= MCI_ROD;
1301		else {
1302			/*
1303			 * The ST Micro variant use the ROD bit for something
1304			 * else and only has OD (Open Drain).
1305			 */
1306			pwr |= MCI_OD;
1307		}
1308	}
1309
1310	/*
1311	 * If clock = 0 and the variant requires the MMCIPOWER to be used for
1312	 * gating the clock, the MCI_PWR_ON bit is cleared.
1313	 */
1314	if (!ios->clock && variant->pwrreg_clkgate)
1315		pwr &= ~MCI_PWR_ON;
1316
 
 
 
 
 
 
 
 
 
 
 
1317	spin_lock_irqsave(&host->lock, flags);
1318
1319	mmci_set_clkreg(host, ios->clock);
1320	mmci_write_pwrreg(host, pwr);
1321	mmci_reg_delay(host);
1322
1323	spin_unlock_irqrestore(&host->lock, flags);
1324
1325	pm_runtime_mark_last_busy(mmc_dev(mmc));
1326	pm_runtime_put_autosuspend(mmc_dev(mmc));
1327}
1328
1329static int mmci_get_ro(struct mmc_host *mmc)
1330{
1331	struct mmci_host *host = mmc_priv(mmc);
1332
1333	if (host->gpio_wp == -ENOSYS)
1334		return -ENOSYS;
1335
1336	return gpio_get_value_cansleep(host->gpio_wp);
1337}
1338
1339static int mmci_get_cd(struct mmc_host *mmc)
1340{
1341	struct mmci_host *host = mmc_priv(mmc);
1342	struct mmci_platform_data *plat = host->plat;
1343	unsigned int status;
1344
1345	if (host->gpio_cd == -ENOSYS) {
1346		if (!plat->status)
1347			return 1; /* Assume always present */
1348
1349		status = plat->status(mmc_dev(host->mmc));
1350	} else
1351		status = !!gpio_get_value_cansleep(host->gpio_cd)
1352			^ plat->cd_invert;
1353
1354	/*
1355	 * Use positive logic throughout - status is zero for no card,
1356	 * non-zero for card inserted.
1357	 */
1358	return status;
1359}
1360
1361static int mmci_sig_volt_switch(struct mmc_host *mmc, struct mmc_ios *ios)
1362{
1363	int ret = 0;
1364
1365	if (!IS_ERR(mmc->supply.vqmmc)) {
1366
1367		pm_runtime_get_sync(mmc_dev(mmc));
1368
1369		switch (ios->signal_voltage) {
1370		case MMC_SIGNAL_VOLTAGE_330:
1371			ret = regulator_set_voltage(mmc->supply.vqmmc,
1372						2700000, 3600000);
1373			break;
1374		case MMC_SIGNAL_VOLTAGE_180:
1375			ret = regulator_set_voltage(mmc->supply.vqmmc,
1376						1700000, 1950000);
1377			break;
1378		case MMC_SIGNAL_VOLTAGE_120:
1379			ret = regulator_set_voltage(mmc->supply.vqmmc,
1380						1100000, 1300000);
1381			break;
1382		}
1383
1384		if (ret)
1385			dev_warn(mmc_dev(mmc), "Voltage switch failed\n");
1386
1387		pm_runtime_mark_last_busy(mmc_dev(mmc));
1388		pm_runtime_put_autosuspend(mmc_dev(mmc));
1389	}
1390
1391	return ret;
1392}
1393
1394static irqreturn_t mmci_cd_irq(int irq, void *dev_id)
1395{
1396	struct mmci_host *host = dev_id;
1397
1398	mmc_detect_change(host->mmc, msecs_to_jiffies(500));
1399
1400	return IRQ_HANDLED;
1401}
1402
1403static struct mmc_host_ops mmci_ops = {
1404	.request	= mmci_request,
1405	.pre_req	= mmci_pre_request,
1406	.post_req	= mmci_post_request,
1407	.set_ios	= mmci_set_ios,
1408	.get_ro		= mmci_get_ro,
1409	.get_cd		= mmci_get_cd,
1410	.start_signal_voltage_switch = mmci_sig_volt_switch,
1411};
1412
1413#ifdef CONFIG_OF
1414static void mmci_dt_populate_generic_pdata(struct device_node *np,
1415					struct mmci_platform_data *pdata)
1416{
1417	int bus_width = 0;
1418
1419	pdata->gpio_wp = of_get_named_gpio(np, "wp-gpios", 0);
1420	pdata->gpio_cd = of_get_named_gpio(np, "cd-gpios", 0);
1421
1422	if (of_get_property(np, "cd-inverted", NULL))
1423		pdata->cd_invert = true;
1424	else
1425		pdata->cd_invert = false;
1426
1427	of_property_read_u32(np, "max-frequency", &pdata->f_max);
1428	if (!pdata->f_max)
1429		pr_warn("%s has no 'max-frequency' property\n", np->full_name);
 
 
 
 
 
 
 
 
 
1430
1431	if (of_get_property(np, "mmc-cap-mmc-highspeed", NULL))
1432		pdata->capabilities |= MMC_CAP_MMC_HIGHSPEED;
1433	if (of_get_property(np, "mmc-cap-sd-highspeed", NULL))
1434		pdata->capabilities |= MMC_CAP_SD_HIGHSPEED;
1435
1436	of_property_read_u32(np, "bus-width", &bus_width);
1437	switch (bus_width) {
1438	case 0 :
1439		/* No bus-width supplied. */
1440		break;
1441	case 4 :
1442		pdata->capabilities |= MMC_CAP_4_BIT_DATA;
1443		break;
1444	case 8 :
1445		pdata->capabilities |= MMC_CAP_8_BIT_DATA;
1446		break;
1447	default :
1448		pr_warn("%s: Unsupported bus width\n", np->full_name);
1449	}
1450}
1451#else
1452static void mmci_dt_populate_generic_pdata(struct device_node *np,
1453					struct mmci_platform_data *pdata)
1454{
1455	return;
1456}
1457#endif
1458
1459static int mmci_probe(struct amba_device *dev,
1460	const struct amba_id *id)
1461{
1462	struct mmci_platform_data *plat = dev->dev.platform_data;
1463	struct device_node *np = dev->dev.of_node;
1464	struct variant_data *variant = id->data;
1465	struct mmci_host *host;
1466	struct mmc_host *mmc;
1467	int ret;
1468
1469	/* Must have platform data or Device Tree. */
1470	if (!plat && !np) {
1471		dev_err(&dev->dev, "No plat data or DT found\n");
1472		return -EINVAL;
1473	}
1474
1475	if (!plat) {
1476		plat = devm_kzalloc(&dev->dev, sizeof(*plat), GFP_KERNEL);
1477		if (!plat)
1478			return -ENOMEM;
1479	}
1480
1481	if (np)
1482		mmci_dt_populate_generic_pdata(np, plat);
 
1483
1484	ret = amba_request_regions(dev, DRIVER_NAME);
1485	if (ret)
1486		goto out;
1487
1488	mmc = mmc_alloc_host(sizeof(struct mmci_host), &dev->dev);
1489	if (!mmc) {
1490		ret = -ENOMEM;
1491		goto rel_regions;
1492	}
1493
1494	host = mmc_priv(mmc);
1495	host->mmc = mmc;
1496
1497	host->gpio_wp = -ENOSYS;
1498	host->gpio_cd = -ENOSYS;
1499	host->gpio_cd_irq = -1;
1500
1501	host->hw_designer = amba_manf(dev);
1502	host->hw_revision = amba_rev(dev);
1503	dev_dbg(mmc_dev(mmc), "designer ID = 0x%02x\n", host->hw_designer);
1504	dev_dbg(mmc_dev(mmc), "revision = 0x%01x\n", host->hw_revision);
1505
1506	host->clk = devm_clk_get(&dev->dev, NULL);
1507	if (IS_ERR(host->clk)) {
1508		ret = PTR_ERR(host->clk);
1509		goto host_free;
1510	}
1511
1512	ret = clk_prepare_enable(host->clk);
1513	if (ret)
1514		goto host_free;
1515
 
 
 
 
 
1516	host->plat = plat;
1517	host->variant = variant;
1518	host->mclk = clk_get_rate(host->clk);
1519	/*
1520	 * According to the spec, mclk is max 100 MHz,
1521	 * so we try to adjust the clock down to this,
1522	 * (if possible).
1523	 */
1524	if (host->mclk > 100000000) {
1525		ret = clk_set_rate(host->clk, 100000000);
1526		if (ret < 0)
1527			goto clk_disable;
1528		host->mclk = clk_get_rate(host->clk);
1529		dev_dbg(mmc_dev(mmc), "eventual mclk rate: %u Hz\n",
1530			host->mclk);
1531	}
 
1532	host->phybase = dev->res.start;
1533	host->base = ioremap(dev->res.start, resource_size(&dev->res));
1534	if (!host->base) {
1535		ret = -ENOMEM;
1536		goto clk_disable;
1537	}
1538
1539	/*
1540	 * The ARM and ST versions of the block have slightly different
1541	 * clock divider equations which means that the minimum divider
1542	 * differs too.
 
1543	 */
1544	if (variant->st_clkdiv)
1545		mmc->f_min = DIV_ROUND_UP(host->mclk, 257);
 
 
1546	else
1547		mmc->f_min = DIV_ROUND_UP(host->mclk, 512);
1548	/*
1549	 * If the platform data supplies a maximum operating
1550	 * frequency, this takes precedence. Else, we fall back
1551	 * to using the module parameter, which has a (low)
1552	 * default value in case it is not specified. Either
1553	 * value must not exceed the clock rate into the block,
1554	 * of course.
1555	 */
1556	if (plat->f_max)
1557		mmc->f_max = min(host->mclk, plat->f_max);
 
 
1558	else
1559		mmc->f_max = min(host->mclk, fmax);
 
 
 
1560	dev_dbg(mmc_dev(mmc), "clocking block at %u Hz\n", mmc->f_max);
1561
1562	/* Get regulators and the supported OCR mask */
1563	mmc_regulator_get_supply(mmc);
 
 
 
1564	if (!mmc->ocr_avail)
1565		mmc->ocr_avail = plat->ocr_mask;
1566	else if (plat->ocr_mask)
1567		dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
1568
1569	mmc->caps = plat->capabilities;
1570	mmc->caps2 = plat->capabilities2;
 
 
 
 
1571
 
 
 
 
 
 
1572	if (variant->busy_detect) {
1573		mmci_ops.card_busy = mmci_card_busy;
1574		mmci_write_datactrlreg(host, MCI_ST_DPSM_BUSYMODE);
 
 
 
 
 
 
1575		mmc->caps |= MMC_CAP_WAIT_WHILE_BUSY;
1576		mmc->max_busy_timeout = 0;
1577	}
1578
1579	mmc->ops = &mmci_ops;
1580
1581	/* We support these PM capabilities. */
1582	mmc->pm_caps = MMC_PM_KEEP_POWER;
1583
1584	/*
1585	 * We can do SGIO
1586	 */
1587	mmc->max_segs = NR_SG;
1588
1589	/*
1590	 * Since only a certain number of bits are valid in the data length
1591	 * register, we must ensure that we don't exceed 2^num-1 bytes in a
1592	 * single request.
1593	 */
1594	mmc->max_req_size = (1 << variant->datalength_bits) - 1;
1595
1596	/*
1597	 * Set the maximum segment size.  Since we aren't doing DMA
1598	 * (yet) we are only limited by the data length register.
1599	 */
1600	mmc->max_seg_size = mmc->max_req_size;
1601
1602	/*
1603	 * Block size can be up to 2048 bytes, but must be a power of two.
1604	 */
1605	mmc->max_blk_size = 1 << 11;
1606
1607	/*
1608	 * Limit the number of blocks transferred so that we don't overflow
1609	 * the maximum request size.
1610	 */
1611	mmc->max_blk_count = mmc->max_req_size >> 11;
1612
1613	spin_lock_init(&host->lock);
1614
1615	writel(0, host->base + MMCIMASK0);
1616	writel(0, host->base + MMCIMASK1);
1617	writel(0xfff, host->base + MMCICLEAR);
1618
1619	if (plat->gpio_cd == -EPROBE_DEFER) {
1620		ret = -EPROBE_DEFER;
1621		goto err_gpio_cd;
1622	}
1623	if (gpio_is_valid(plat->gpio_cd)) {
1624		ret = gpio_request(plat->gpio_cd, DRIVER_NAME " (cd)");
1625		if (ret == 0)
1626			ret = gpio_direction_input(plat->gpio_cd);
1627		if (ret == 0)
1628			host->gpio_cd = plat->gpio_cd;
1629		else if (ret != -ENOSYS)
1630			goto err_gpio_cd;
 
 
 
 
 
 
1631
1632		/*
1633		 * A gpio pin that will detect cards when inserted and removed
1634		 * will most likely want to trigger on the edges if it is
1635		 * 0 when ejected and 1 when inserted (or mutatis mutandis
1636		 * for the inverted case) so we request triggers on both
1637		 * edges.
1638		 */
1639		ret = request_any_context_irq(gpio_to_irq(plat->gpio_cd),
1640				mmci_cd_irq,
1641				IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING,
1642				DRIVER_NAME " (cd)", host);
1643		if (ret >= 0)
1644			host->gpio_cd_irq = gpio_to_irq(plat->gpio_cd);
1645	}
1646	if (plat->gpio_wp == -EPROBE_DEFER) {
1647		ret = -EPROBE_DEFER;
1648		goto err_gpio_wp;
1649	}
1650	if (gpio_is_valid(plat->gpio_wp)) {
1651		ret = gpio_request(plat->gpio_wp, DRIVER_NAME " (wp)");
1652		if (ret == 0)
1653			ret = gpio_direction_input(plat->gpio_wp);
1654		if (ret == 0)
1655			host->gpio_wp = plat->gpio_wp;
1656		else if (ret != -ENOSYS)
1657			goto err_gpio_wp;
1658	}
1659
1660	if ((host->plat->status || host->gpio_cd != -ENOSYS)
1661	    && host->gpio_cd_irq < 0)
1662		mmc->caps |= MMC_CAP_NEEDS_POLL;
1663
1664	ret = request_irq(dev->irq[0], mmci_irq, IRQF_SHARED, DRIVER_NAME " (cmd)", host);
 
1665	if (ret)
1666		goto unmap;
1667
1668	if (!dev->irq[1])
1669		host->singleirq = true;
1670	else {
1671		ret = request_irq(dev->irq[1], mmci_pio_irq, IRQF_SHARED,
1672				  DRIVER_NAME " (pio)", host);
1673		if (ret)
1674			goto irq0_free;
1675	}
1676
1677	writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1678
1679	amba_set_drvdata(dev, mmc);
1680
1681	dev_info(&dev->dev, "%s: PL%03x manf %x rev%u at 0x%08llx irq %d,%d (pio)\n",
1682		 mmc_hostname(mmc), amba_part(dev), amba_manf(dev),
1683		 amba_rev(dev), (unsigned long long)dev->res.start,
1684		 dev->irq[0], dev->irq[1]);
1685
1686	mmci_dma_setup(host);
1687
1688	pm_runtime_set_autosuspend_delay(&dev->dev, 50);
1689	pm_runtime_use_autosuspend(&dev->dev);
1690	pm_runtime_put(&dev->dev);
1691
1692	mmc_add_host(mmc);
1693
 
1694	return 0;
1695
1696 irq0_free:
1697	free_irq(dev->irq[0], host);
1698 unmap:
1699	if (host->gpio_wp != -ENOSYS)
1700		gpio_free(host->gpio_wp);
1701 err_gpio_wp:
1702	if (host->gpio_cd_irq >= 0)
1703		free_irq(host->gpio_cd_irq, host);
1704	if (host->gpio_cd != -ENOSYS)
1705		gpio_free(host->gpio_cd);
1706 err_gpio_cd:
1707	iounmap(host->base);
1708 clk_disable:
1709	clk_disable_unprepare(host->clk);
1710 host_free:
1711	mmc_free_host(mmc);
1712 rel_regions:
1713	amba_release_regions(dev);
1714 out:
1715	return ret;
1716}
1717
1718static int mmci_remove(struct amba_device *dev)
1719{
1720	struct mmc_host *mmc = amba_get_drvdata(dev);
1721
1722	if (mmc) {
1723		struct mmci_host *host = mmc_priv(mmc);
1724
1725		/*
1726		 * Undo pm_runtime_put() in probe.  We use the _sync
1727		 * version here so that we can access the primecell.
1728		 */
1729		pm_runtime_get_sync(&dev->dev);
1730
1731		mmc_remove_host(mmc);
1732
1733		writel(0, host->base + MMCIMASK0);
1734		writel(0, host->base + MMCIMASK1);
1735
1736		writel(0, host->base + MMCICOMMAND);
1737		writel(0, host->base + MMCIDATACTRL);
1738
1739		mmci_dma_release(host);
1740		free_irq(dev->irq[0], host);
1741		if (!host->singleirq)
1742			free_irq(dev->irq[1], host);
1743
1744		if (host->gpio_wp != -ENOSYS)
1745			gpio_free(host->gpio_wp);
1746		if (host->gpio_cd_irq >= 0)
1747			free_irq(host->gpio_cd_irq, host);
1748		if (host->gpio_cd != -ENOSYS)
1749			gpio_free(host->gpio_cd);
1750
1751		iounmap(host->base);
1752		clk_disable_unprepare(host->clk);
1753
1754		mmc_free_host(mmc);
1755
1756		amba_release_regions(dev);
1757	}
1758
1759	return 0;
1760}
1761
1762#ifdef CONFIG_SUSPEND
1763static int mmci_suspend(struct device *dev)
1764{
1765	struct amba_device *adev = to_amba_device(dev);
1766	struct mmc_host *mmc = amba_get_drvdata(adev);
1767
1768	if (mmc) {
1769		struct mmci_host *host = mmc_priv(mmc);
1770		pm_runtime_get_sync(dev);
1771		writel(0, host->base + MMCIMASK0);
1772	}
1773
1774	return 0;
1775}
1776
1777static int mmci_resume(struct device *dev)
1778{
1779	struct amba_device *adev = to_amba_device(dev);
1780	struct mmc_host *mmc = amba_get_drvdata(adev);
1781
1782	if (mmc) {
1783		struct mmci_host *host = mmc_priv(mmc);
1784		writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1785		pm_runtime_put(dev);
1786	}
1787
1788	return 0;
1789}
1790#endif
1791
1792#ifdef CONFIG_PM_RUNTIME
1793static void mmci_save(struct mmci_host *host)
1794{
1795	unsigned long flags;
1796
1797	if (host->variant->pwrreg_nopower) {
1798		spin_lock_irqsave(&host->lock, flags);
1799
1800		writel(0, host->base + MMCIMASK0);
 
1801		writel(0, host->base + MMCIDATACTRL);
1802		writel(0, host->base + MMCIPOWER);
1803		writel(0, host->base + MMCICLOCK);
1804		mmci_reg_delay(host);
1805
1806		spin_unlock_irqrestore(&host->lock, flags);
1807	}
 
1808
 
1809}
1810
1811static void mmci_restore(struct mmci_host *host)
1812{
1813	unsigned long flags;
1814
1815	if (host->variant->pwrreg_nopower) {
1816		spin_lock_irqsave(&host->lock, flags);
1817
 
1818		writel(host->clk_reg, host->base + MMCICLOCK);
1819		writel(host->datactrl_reg, host->base + MMCIDATACTRL);
1820		writel(host->pwr_reg, host->base + MMCIPOWER);
1821		writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1822		mmci_reg_delay(host);
1823
1824		spin_unlock_irqrestore(&host->lock, flags);
1825	}
 
 
 
 
1826}
1827
1828static int mmci_runtime_suspend(struct device *dev)
1829{
1830	struct amba_device *adev = to_amba_device(dev);
1831	struct mmc_host *mmc = amba_get_drvdata(adev);
1832
1833	if (mmc) {
1834		struct mmci_host *host = mmc_priv(mmc);
1835		pinctrl_pm_select_sleep_state(dev);
1836		mmci_save(host);
1837		clk_disable_unprepare(host->clk);
1838	}
1839
1840	return 0;
1841}
1842
1843static int mmci_runtime_resume(struct device *dev)
1844{
1845	struct amba_device *adev = to_amba_device(dev);
1846	struct mmc_host *mmc = amba_get_drvdata(adev);
1847
1848	if (mmc) {
1849		struct mmci_host *host = mmc_priv(mmc);
1850		clk_prepare_enable(host->clk);
1851		mmci_restore(host);
1852		pinctrl_pm_select_default_state(dev);
1853	}
1854
1855	return 0;
1856}
1857#endif
1858
1859static const struct dev_pm_ops mmci_dev_pm_ops = {
1860	SET_SYSTEM_SLEEP_PM_OPS(mmci_suspend, mmci_resume)
 
1861	SET_RUNTIME_PM_OPS(mmci_runtime_suspend, mmci_runtime_resume, NULL)
1862};
1863
1864static struct amba_id mmci_ids[] = {
1865	{
1866		.id	= 0x00041180,
1867		.mask	= 0xff0fffff,
1868		.data	= &variant_arm,
1869	},
1870	{
1871		.id	= 0x01041180,
1872		.mask	= 0xff0fffff,
1873		.data	= &variant_arm_extended_fifo,
1874	},
1875	{
1876		.id	= 0x02041180,
1877		.mask	= 0xff0fffff,
1878		.data	= &variant_arm_extended_fifo_hwfc,
1879	},
1880	{
1881		.id	= 0x00041181,
1882		.mask	= 0x000fffff,
1883		.data	= &variant_arm,
1884	},
1885	/* ST Micro variants */
1886	{
1887		.id     = 0x00180180,
1888		.mask   = 0x00ffffff,
1889		.data	= &variant_u300,
1890	},
1891	{
1892		.id     = 0x10180180,
1893		.mask   = 0xf0ffffff,
1894		.data	= &variant_nomadik,
1895	},
1896	{
1897		.id     = 0x00280180,
1898		.mask   = 0x00ffffff,
1899		.data	= &variant_u300,
1900	},
1901	{
1902		.id     = 0x00480180,
1903		.mask   = 0xf0ffffff,
1904		.data	= &variant_ux500,
1905	},
1906	{
1907		.id     = 0x10480180,
1908		.mask   = 0xf0ffffff,
1909		.data	= &variant_ux500v2,
 
 
 
 
 
 
1910	},
1911	{ 0, 0 },
1912};
1913
1914MODULE_DEVICE_TABLE(amba, mmci_ids);
1915
1916static struct amba_driver mmci_driver = {
1917	.drv		= {
1918		.name	= DRIVER_NAME,
1919		.pm	= &mmci_dev_pm_ops,
1920	},
1921	.probe		= mmci_probe,
1922	.remove		= mmci_remove,
1923	.id_table	= mmci_ids,
1924};
1925
1926module_amba_driver(mmci_driver);
1927
1928module_param(fmax, uint, 0444);
1929
1930MODULE_DESCRIPTION("ARM PrimeCell PL180/181 Multimedia Card Interface driver");
1931MODULE_LICENSE("GPL");
v4.10.11
   1/*
   2 *  linux/drivers/mmc/host/mmci.c - ARM PrimeCell MMCI PL180/1 driver
   3 *
   4 *  Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved.
   5 *  Copyright (C) 2010 ST-Ericsson SA
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License version 2 as
   9 * published by the Free Software Foundation.
  10 */
  11#include <linux/module.h>
  12#include <linux/moduleparam.h>
  13#include <linux/init.h>
  14#include <linux/ioport.h>
  15#include <linux/device.h>
  16#include <linux/io.h>
  17#include <linux/interrupt.h>
  18#include <linux/kernel.h>
  19#include <linux/slab.h>
  20#include <linux/delay.h>
  21#include <linux/err.h>
  22#include <linux/highmem.h>
  23#include <linux/log2.h>
  24#include <linux/mmc/pm.h>
  25#include <linux/mmc/host.h>
  26#include <linux/mmc/card.h>
  27#include <linux/mmc/slot-gpio.h>
  28#include <linux/amba/bus.h>
  29#include <linux/clk.h>
  30#include <linux/scatterlist.h>
  31#include <linux/gpio.h>
  32#include <linux/of_gpio.h>
  33#include <linux/regulator/consumer.h>
  34#include <linux/dmaengine.h>
  35#include <linux/dma-mapping.h>
  36#include <linux/amba/mmci.h>
  37#include <linux/pm_runtime.h>
  38#include <linux/types.h>
  39#include <linux/pinctrl/consumer.h>
  40
  41#include <asm/div64.h>
  42#include <asm/io.h>
 
  43
  44#include "mmci.h"
  45#include "mmci_qcom_dml.h"
  46
  47#define DRIVER_NAME "mmci-pl18x"
  48
  49static unsigned int fmax = 515633;
  50
  51/**
  52 * struct variant_data - MMCI variant-specific quirks
  53 * @clkreg: default value for MCICLOCK register
  54 * @clkreg_enable: enable value for MMCICLOCK register
  55 * @clkreg_8bit_bus_enable: enable value for 8 bit bus
  56 * @clkreg_neg_edge_enable: enable value for inverted data/cmd output
  57 * @datalength_bits: number of bits in the MMCIDATALENGTH register
  58 * @fifosize: number of bytes that can be written when MMCI_TXFIFOEMPTY
  59 *	      is asserted (likewise for RX)
  60 * @fifohalfsize: number of bytes that can be written when MCI_TXFIFOHALFEMPTY
  61 *		  is asserted (likewise for RX)
  62 * @data_cmd_enable: enable value for data commands.
  63 * @st_sdio: enable ST specific SDIO logic
  64 * @st_clkdiv: true if using a ST-specific clock divider algorithm
  65 * @datactrl_mask_ddrmode: ddr mode mask in datactrl register.
  66 * @blksz_datactrl16: true if Block size is at b16..b30 position in datactrl register
  67 * @blksz_datactrl4: true if Block size is at b4..b16 position in datactrl
  68 *		     register
  69 * @datactrl_mask_sdio: SDIO enable mask in datactrl register
  70 * @pwrreg_powerup: power up value for MMCIPOWER register
  71 * @f_max: maximum clk frequency supported by the controller.
  72 * @signal_direction: input/out direction of bus signals can be indicated
  73 * @pwrreg_clkgate: MMCIPOWER register must be used to gate the clock
  74 * @busy_detect: true if the variant supports busy detection on DAT0.
  75 * @busy_dpsm_flag: bitmask enabling busy detection in the DPSM
  76 * @busy_detect_flag: bitmask identifying the bit in the MMCISTATUS register
  77 *		      indicating that the card is busy
  78 * @busy_detect_mask: bitmask identifying the bit in the MMCIMASK0 to mask for
  79 *		      getting busy end detection interrupts
  80 * @pwrreg_nopower: bits in MMCIPOWER don't controls ext. power supply
  81 * @explicit_mclk_control: enable explicit mclk control in driver.
  82 * @qcom_fifo: enables qcom specific fifo pio read logic.
  83 * @qcom_dml: enables qcom specific dma glue for dma transfers.
  84 * @reversed_irq_handling: handle data irq before cmd irq.
  85 */
  86struct variant_data {
  87	unsigned int		clkreg;
  88	unsigned int		clkreg_enable;
  89	unsigned int		clkreg_8bit_bus_enable;
  90	unsigned int		clkreg_neg_edge_enable;
  91	unsigned int		datalength_bits;
  92	unsigned int		fifosize;
  93	unsigned int		fifohalfsize;
  94	unsigned int		data_cmd_enable;
  95	unsigned int		datactrl_mask_ddrmode;
  96	unsigned int		datactrl_mask_sdio;
  97	bool			st_sdio;
  98	bool			st_clkdiv;
  99	bool			blksz_datactrl16;
 100	bool			blksz_datactrl4;
 101	u32			pwrreg_powerup;
 102	u32			f_max;
 103	bool			signal_direction;
 104	bool			pwrreg_clkgate;
 105	bool			busy_detect;
 106	u32			busy_dpsm_flag;
 107	u32			busy_detect_flag;
 108	u32			busy_detect_mask;
 109	bool			pwrreg_nopower;
 110	bool			explicit_mclk_control;
 111	bool			qcom_fifo;
 112	bool			qcom_dml;
 113	bool			reversed_irq_handling;
 114};
 115
 116static struct variant_data variant_arm = {
 117	.fifosize		= 16 * 4,
 118	.fifohalfsize		= 8 * 4,
 119	.datalength_bits	= 16,
 120	.pwrreg_powerup		= MCI_PWR_UP,
 121	.f_max			= 100000000,
 122	.reversed_irq_handling	= true,
 123};
 124
 125static struct variant_data variant_arm_extended_fifo = {
 126	.fifosize		= 128 * 4,
 127	.fifohalfsize		= 64 * 4,
 128	.datalength_bits	= 16,
 129	.pwrreg_powerup		= MCI_PWR_UP,
 130	.f_max			= 100000000,
 131};
 132
 133static struct variant_data variant_arm_extended_fifo_hwfc = {
 134	.fifosize		= 128 * 4,
 135	.fifohalfsize		= 64 * 4,
 136	.clkreg_enable		= MCI_ARM_HWFCEN,
 137	.datalength_bits	= 16,
 138	.pwrreg_powerup		= MCI_PWR_UP,
 139	.f_max			= 100000000,
 140};
 141
 142static struct variant_data variant_u300 = {
 143	.fifosize		= 16 * 4,
 144	.fifohalfsize		= 8 * 4,
 145	.clkreg_enable		= MCI_ST_U300_HWFCEN,
 146	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
 147	.datalength_bits	= 16,
 148	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
 149	.st_sdio			= true,
 150	.pwrreg_powerup		= MCI_PWR_ON,
 151	.f_max			= 100000000,
 152	.signal_direction	= true,
 153	.pwrreg_clkgate		= true,
 154	.pwrreg_nopower		= true,
 155};
 156
 157static struct variant_data variant_nomadik = {
 158	.fifosize		= 16 * 4,
 159	.fifohalfsize		= 8 * 4,
 160	.clkreg			= MCI_CLK_ENABLE,
 161	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
 162	.datalength_bits	= 24,
 163	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
 164	.st_sdio		= true,
 165	.st_clkdiv		= true,
 166	.pwrreg_powerup		= MCI_PWR_ON,
 167	.f_max			= 100000000,
 168	.signal_direction	= true,
 169	.pwrreg_clkgate		= true,
 170	.pwrreg_nopower		= true,
 171};
 172
 173static struct variant_data variant_ux500 = {
 174	.fifosize		= 30 * 4,
 175	.fifohalfsize		= 8 * 4,
 176	.clkreg			= MCI_CLK_ENABLE,
 177	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
 178	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
 179	.clkreg_neg_edge_enable	= MCI_ST_UX500_NEG_EDGE,
 180	.datalength_bits	= 24,
 181	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
 182	.st_sdio		= true,
 183	.st_clkdiv		= true,
 184	.pwrreg_powerup		= MCI_PWR_ON,
 185	.f_max			= 100000000,
 186	.signal_direction	= true,
 187	.pwrreg_clkgate		= true,
 188	.busy_detect		= true,
 189	.busy_dpsm_flag		= MCI_DPSM_ST_BUSYMODE,
 190	.busy_detect_flag	= MCI_ST_CARDBUSY,
 191	.busy_detect_mask	= MCI_ST_BUSYENDMASK,
 192	.pwrreg_nopower		= true,
 193};
 194
 195static struct variant_data variant_ux500v2 = {
 196	.fifosize		= 30 * 4,
 197	.fifohalfsize		= 8 * 4,
 198	.clkreg			= MCI_CLK_ENABLE,
 199	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
 200	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
 201	.clkreg_neg_edge_enable	= MCI_ST_UX500_NEG_EDGE,
 202	.datactrl_mask_ddrmode	= MCI_DPSM_ST_DDRMODE,
 203	.datalength_bits	= 24,
 204	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
 205	.st_sdio		= true,
 206	.st_clkdiv		= true,
 207	.blksz_datactrl16	= true,
 208	.pwrreg_powerup		= MCI_PWR_ON,
 209	.f_max			= 100000000,
 210	.signal_direction	= true,
 211	.pwrreg_clkgate		= true,
 212	.busy_detect		= true,
 213	.busy_dpsm_flag		= MCI_DPSM_ST_BUSYMODE,
 214	.busy_detect_flag	= MCI_ST_CARDBUSY,
 215	.busy_detect_mask	= MCI_ST_BUSYENDMASK,
 216	.pwrreg_nopower		= true,
 217};
 218
 219static struct variant_data variant_qcom = {
 220	.fifosize		= 16 * 4,
 221	.fifohalfsize		= 8 * 4,
 222	.clkreg			= MCI_CLK_ENABLE,
 223	.clkreg_enable		= MCI_QCOM_CLK_FLOWENA |
 224				  MCI_QCOM_CLK_SELECT_IN_FBCLK,
 225	.clkreg_8bit_bus_enable = MCI_QCOM_CLK_WIDEBUS_8,
 226	.datactrl_mask_ddrmode	= MCI_QCOM_CLK_SELECT_IN_DDR_MODE,
 227	.data_cmd_enable	= MCI_CPSM_QCOM_DATCMD,
 228	.blksz_datactrl4	= true,
 229	.datalength_bits	= 24,
 230	.pwrreg_powerup		= MCI_PWR_UP,
 231	.f_max			= 208000000,
 232	.explicit_mclk_control	= true,
 233	.qcom_fifo		= true,
 234	.qcom_dml		= true,
 235};
 236
 237/* Busy detection for the ST Micro variant */
 238static int mmci_card_busy(struct mmc_host *mmc)
 239{
 240	struct mmci_host *host = mmc_priv(mmc);
 241	unsigned long flags;
 242	int busy = 0;
 243
 
 
 244	spin_lock_irqsave(&host->lock, flags);
 245	if (readl(host->base + MMCISTATUS) & host->variant->busy_detect_flag)
 246		busy = 1;
 247	spin_unlock_irqrestore(&host->lock, flags);
 248
 
 
 
 249	return busy;
 250}
 251
 252/*
 253 * Validate mmc prerequisites
 254 */
 255static int mmci_validate_data(struct mmci_host *host,
 256			      struct mmc_data *data)
 257{
 258	if (!data)
 259		return 0;
 260
 261	if (!is_power_of_2(data->blksz)) {
 262		dev_err(mmc_dev(host->mmc),
 263			"unsupported block size (%d bytes)\n", data->blksz);
 264		return -EINVAL;
 265	}
 266
 267	return 0;
 268}
 269
 270static void mmci_reg_delay(struct mmci_host *host)
 271{
 272	/*
 273	 * According to the spec, at least three feedback clock cycles
 274	 * of max 52 MHz must pass between two writes to the MMCICLOCK reg.
 275	 * Three MCLK clock cycles must pass between two MMCIPOWER reg writes.
 276	 * Worst delay time during card init is at 100 kHz => 30 us.
 277	 * Worst delay time when up and running is at 25 MHz => 120 ns.
 278	 */
 279	if (host->cclk < 25000000)
 280		udelay(30);
 281	else
 282		ndelay(120);
 283}
 284
 285/*
 286 * This must be called with host->lock held
 287 */
 288static void mmci_write_clkreg(struct mmci_host *host, u32 clk)
 289{
 290	if (host->clk_reg != clk) {
 291		host->clk_reg = clk;
 292		writel(clk, host->base + MMCICLOCK);
 293	}
 294}
 295
 296/*
 297 * This must be called with host->lock held
 298 */
 299static void mmci_write_pwrreg(struct mmci_host *host, u32 pwr)
 300{
 301	if (host->pwr_reg != pwr) {
 302		host->pwr_reg = pwr;
 303		writel(pwr, host->base + MMCIPOWER);
 304	}
 305}
 306
 307/*
 308 * This must be called with host->lock held
 309 */
 310static void mmci_write_datactrlreg(struct mmci_host *host, u32 datactrl)
 311{
 312	/* Keep busy mode in DPSM if enabled */
 313	datactrl |= host->datactrl_reg & host->variant->busy_dpsm_flag;
 314
 315	if (host->datactrl_reg != datactrl) {
 316		host->datactrl_reg = datactrl;
 317		writel(datactrl, host->base + MMCIDATACTRL);
 318	}
 319}
 320
 321/*
 322 * This must be called with host->lock held
 323 */
 324static void mmci_set_clkreg(struct mmci_host *host, unsigned int desired)
 325{
 326	struct variant_data *variant = host->variant;
 327	u32 clk = variant->clkreg;
 328
 329	/* Make sure cclk reflects the current calculated clock */
 330	host->cclk = 0;
 331
 332	if (desired) {
 333		if (variant->explicit_mclk_control) {
 334			host->cclk = host->mclk;
 335		} else if (desired >= host->mclk) {
 336			clk = MCI_CLK_BYPASS;
 337			if (variant->st_clkdiv)
 338				clk |= MCI_ST_UX500_NEG_EDGE;
 339			host->cclk = host->mclk;
 340		} else if (variant->st_clkdiv) {
 341			/*
 342			 * DB8500 TRM says f = mclk / (clkdiv + 2)
 343			 * => clkdiv = (mclk / f) - 2
 344			 * Round the divider up so we don't exceed the max
 345			 * frequency
 346			 */
 347			clk = DIV_ROUND_UP(host->mclk, desired) - 2;
 348			if (clk >= 256)
 349				clk = 255;
 350			host->cclk = host->mclk / (clk + 2);
 351		} else {
 352			/*
 353			 * PL180 TRM says f = mclk / (2 * (clkdiv + 1))
 354			 * => clkdiv = mclk / (2 * f) - 1
 355			 */
 356			clk = host->mclk / (2 * desired) - 1;
 357			if (clk >= 256)
 358				clk = 255;
 359			host->cclk = host->mclk / (2 * (clk + 1));
 360		}
 361
 362		clk |= variant->clkreg_enable;
 363		clk |= MCI_CLK_ENABLE;
 364		/* This hasn't proven to be worthwhile */
 365		/* clk |= MCI_CLK_PWRSAVE; */
 366	}
 367
 368	/* Set actual clock for debug */
 369	host->mmc->actual_clock = host->cclk;
 370
 371	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4)
 372		clk |= MCI_4BIT_BUS;
 373	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8)
 374		clk |= variant->clkreg_8bit_bus_enable;
 375
 376	if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
 377	    host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
 378		clk |= variant->clkreg_neg_edge_enable;
 379
 380	mmci_write_clkreg(host, clk);
 381}
 382
 383static void
 384mmci_request_end(struct mmci_host *host, struct mmc_request *mrq)
 385{
 386	writel(0, host->base + MMCICOMMAND);
 387
 388	BUG_ON(host->data);
 389
 390	host->mrq = NULL;
 391	host->cmd = NULL;
 392
 393	mmc_request_done(host->mmc, mrq);
 
 
 
 394}
 395
 396static void mmci_set_mask1(struct mmci_host *host, unsigned int mask)
 397{
 398	void __iomem *base = host->base;
 399
 400	if (host->singleirq) {
 401		unsigned int mask0 = readl(base + MMCIMASK0);
 402
 403		mask0 &= ~MCI_IRQ1MASK;
 404		mask0 |= mask;
 405
 406		writel(mask0, base + MMCIMASK0);
 407	}
 408
 409	writel(mask, base + MMCIMASK1);
 410}
 411
 412static void mmci_stop_data(struct mmci_host *host)
 413{
 414	mmci_write_datactrlreg(host, 0);
 415	mmci_set_mask1(host, 0);
 416	host->data = NULL;
 417}
 418
 419static void mmci_init_sg(struct mmci_host *host, struct mmc_data *data)
 420{
 421	unsigned int flags = SG_MITER_ATOMIC;
 422
 423	if (data->flags & MMC_DATA_READ)
 424		flags |= SG_MITER_TO_SG;
 425	else
 426		flags |= SG_MITER_FROM_SG;
 427
 428	sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
 429}
 430
 431/*
 432 * All the DMA operation mode stuff goes inside this ifdef.
 433 * This assumes that you have a generic DMA device interface,
 434 * no custom DMA interfaces are supported.
 435 */
 436#ifdef CONFIG_DMA_ENGINE
 437static void mmci_dma_setup(struct mmci_host *host)
 438{
 
 439	const char *rxname, *txname;
 440	struct variant_data *variant = host->variant;
 441
 442	host->dma_rx_channel = dma_request_slave_channel(mmc_dev(host->mmc), "rx");
 443	host->dma_tx_channel = dma_request_slave_channel(mmc_dev(host->mmc), "tx");
 444
 445	/* initialize pre request cookie */
 446	host->next_data.cookie = 1;
 447
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 448	/*
 449	 * If only an RX channel is specified, the driver will
 450	 * attempt to use it bidirectionally, however if it is
 451	 * is specified but cannot be located, DMA will be disabled.
 452	 */
 453	if (host->dma_rx_channel && !host->dma_tx_channel)
 454		host->dma_tx_channel = host->dma_rx_channel;
 455
 456	if (host->dma_rx_channel)
 457		rxname = dma_chan_name(host->dma_rx_channel);
 458	else
 459		rxname = "none";
 460
 461	if (host->dma_tx_channel)
 462		txname = dma_chan_name(host->dma_tx_channel);
 463	else
 464		txname = "none";
 465
 466	dev_info(mmc_dev(host->mmc), "DMA channels RX %s, TX %s\n",
 467		 rxname, txname);
 468
 469	/*
 470	 * Limit the maximum segment size in any SG entry according to
 471	 * the parameters of the DMA engine device.
 472	 */
 473	if (host->dma_tx_channel) {
 474		struct device *dev = host->dma_tx_channel->device->dev;
 475		unsigned int max_seg_size = dma_get_max_seg_size(dev);
 476
 477		if (max_seg_size < host->mmc->max_seg_size)
 478			host->mmc->max_seg_size = max_seg_size;
 479	}
 480	if (host->dma_rx_channel) {
 481		struct device *dev = host->dma_rx_channel->device->dev;
 482		unsigned int max_seg_size = dma_get_max_seg_size(dev);
 483
 484		if (max_seg_size < host->mmc->max_seg_size)
 485			host->mmc->max_seg_size = max_seg_size;
 486	}
 487
 488	if (variant->qcom_dml && host->dma_rx_channel && host->dma_tx_channel)
 489		if (dml_hw_init(host, host->mmc->parent->of_node))
 490			variant->qcom_dml = false;
 491}
 492
 493/*
 494 * This is used in or so inline it
 495 * so it can be discarded.
 496 */
 497static inline void mmci_dma_release(struct mmci_host *host)
 498{
 
 
 499	if (host->dma_rx_channel)
 500		dma_release_channel(host->dma_rx_channel);
 501	if (host->dma_tx_channel)
 502		dma_release_channel(host->dma_tx_channel);
 503	host->dma_rx_channel = host->dma_tx_channel = NULL;
 504}
 505
 506static void mmci_dma_data_error(struct mmci_host *host)
 507{
 508	dev_err(mmc_dev(host->mmc), "error during DMA transfer!\n");
 509	dmaengine_terminate_all(host->dma_current);
 510	host->dma_current = NULL;
 511	host->dma_desc_current = NULL;
 512	host->data->host_cookie = 0;
 513}
 514
 515static void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
 516{
 517	struct dma_chan *chan;
 518	enum dma_data_direction dir;
 519
 520	if (data->flags & MMC_DATA_READ) {
 521		dir = DMA_FROM_DEVICE;
 522		chan = host->dma_rx_channel;
 523	} else {
 524		dir = DMA_TO_DEVICE;
 525		chan = host->dma_tx_channel;
 526	}
 527
 528	dma_unmap_sg(chan->device->dev, data->sg, data->sg_len, dir);
 529}
 530
 531static void mmci_dma_finalize(struct mmci_host *host, struct mmc_data *data)
 532{
 533	u32 status;
 534	int i;
 535
 536	/* Wait up to 1ms for the DMA to complete */
 537	for (i = 0; ; i++) {
 538		status = readl(host->base + MMCISTATUS);
 539		if (!(status & MCI_RXDATAAVLBLMASK) || i >= 100)
 540			break;
 541		udelay(10);
 542	}
 543
 544	/*
 545	 * Check to see whether we still have some data left in the FIFO -
 546	 * this catches DMA controllers which are unable to monitor the
 547	 * DMALBREQ and DMALSREQ signals while allowing us to DMA to non-
 548	 * contiguous buffers.  On TX, we'll get a FIFO underrun error.
 549	 */
 550	if (status & MCI_RXDATAAVLBLMASK) {
 551		mmci_dma_data_error(host);
 552		if (!data->error)
 553			data->error = -EIO;
 554	}
 555
 556	if (!data->host_cookie)
 557		mmci_dma_unmap(host, data);
 558
 559	/*
 560	 * Use of DMA with scatter-gather is impossible.
 561	 * Give up with DMA and switch back to PIO mode.
 562	 */
 563	if (status & MCI_RXDATAAVLBLMASK) {
 564		dev_err(mmc_dev(host->mmc), "buggy DMA detected. Taking evasive action.\n");
 565		mmci_dma_release(host);
 566	}
 567
 568	host->dma_current = NULL;
 569	host->dma_desc_current = NULL;
 570}
 571
 572/* prepares DMA channel and DMA descriptor, returns non-zero on failure */
 573static int __mmci_dma_prep_data(struct mmci_host *host, struct mmc_data *data,
 574				struct dma_chan **dma_chan,
 575				struct dma_async_tx_descriptor **dma_desc)
 576{
 577	struct variant_data *variant = host->variant;
 578	struct dma_slave_config conf = {
 579		.src_addr = host->phybase + MMCIFIFO,
 580		.dst_addr = host->phybase + MMCIFIFO,
 581		.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
 582		.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
 583		.src_maxburst = variant->fifohalfsize >> 2, /* # of words */
 584		.dst_maxburst = variant->fifohalfsize >> 2, /* # of words */
 585		.device_fc = false,
 586	};
 587	struct dma_chan *chan;
 588	struct dma_device *device;
 589	struct dma_async_tx_descriptor *desc;
 590	enum dma_data_direction buffer_dirn;
 591	int nr_sg;
 592	unsigned long flags = DMA_CTRL_ACK;
 593
 594	if (data->flags & MMC_DATA_READ) {
 595		conf.direction = DMA_DEV_TO_MEM;
 596		buffer_dirn = DMA_FROM_DEVICE;
 597		chan = host->dma_rx_channel;
 598	} else {
 599		conf.direction = DMA_MEM_TO_DEV;
 600		buffer_dirn = DMA_TO_DEVICE;
 601		chan = host->dma_tx_channel;
 602	}
 603
 604	/* If there's no DMA channel, fall back to PIO */
 605	if (!chan)
 606		return -EINVAL;
 607
 608	/* If less than or equal to the fifo size, don't bother with DMA */
 609	if (data->blksz * data->blocks <= variant->fifosize)
 610		return -EINVAL;
 611
 612	device = chan->device;
 613	nr_sg = dma_map_sg(device->dev, data->sg, data->sg_len, buffer_dirn);
 614	if (nr_sg == 0)
 615		return -EINVAL;
 616
 617	if (host->variant->qcom_dml)
 618		flags |= DMA_PREP_INTERRUPT;
 619
 620	dmaengine_slave_config(chan, &conf);
 621	desc = dmaengine_prep_slave_sg(chan, data->sg, nr_sg,
 622					    conf.direction, flags);
 623	if (!desc)
 624		goto unmap_exit;
 625
 626	*dma_chan = chan;
 627	*dma_desc = desc;
 628
 629	return 0;
 630
 631 unmap_exit:
 632	dma_unmap_sg(device->dev, data->sg, data->sg_len, buffer_dirn);
 633	return -ENOMEM;
 634}
 635
 636static inline int mmci_dma_prep_data(struct mmci_host *host,
 637				     struct mmc_data *data)
 638{
 639	/* Check if next job is already prepared. */
 640	if (host->dma_current && host->dma_desc_current)
 641		return 0;
 642
 643	/* No job were prepared thus do it now. */
 644	return __mmci_dma_prep_data(host, data, &host->dma_current,
 645				    &host->dma_desc_current);
 646}
 647
 648static inline int mmci_dma_prep_next(struct mmci_host *host,
 649				     struct mmc_data *data)
 650{
 651	struct mmci_host_next *nd = &host->next_data;
 652	return __mmci_dma_prep_data(host, data, &nd->dma_chan, &nd->dma_desc);
 653}
 654
 655static int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
 656{
 657	int ret;
 658	struct mmc_data *data = host->data;
 659
 660	ret = mmci_dma_prep_data(host, host->data);
 661	if (ret)
 662		return ret;
 663
 664	/* Okay, go for it. */
 665	dev_vdbg(mmc_dev(host->mmc),
 666		 "Submit MMCI DMA job, sglen %d blksz %04x blks %04x flags %08x\n",
 667		 data->sg_len, data->blksz, data->blocks, data->flags);
 668	dmaengine_submit(host->dma_desc_current);
 669	dma_async_issue_pending(host->dma_current);
 670
 671	if (host->variant->qcom_dml)
 672		dml_start_xfer(host, data);
 673
 674	datactrl |= MCI_DPSM_DMAENABLE;
 675
 676	/* Trigger the DMA transfer */
 677	mmci_write_datactrlreg(host, datactrl);
 678
 679	/*
 680	 * Let the MMCI say when the data is ended and it's time
 681	 * to fire next DMA request. When that happens, MMCI will
 682	 * call mmci_data_end()
 683	 */
 684	writel(readl(host->base + MMCIMASK0) | MCI_DATAENDMASK,
 685	       host->base + MMCIMASK0);
 686	return 0;
 687}
 688
 689static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
 690{
 691	struct mmci_host_next *next = &host->next_data;
 692
 693	WARN_ON(data->host_cookie && data->host_cookie != next->cookie);
 694	WARN_ON(!data->host_cookie && (next->dma_desc || next->dma_chan));
 695
 696	host->dma_desc_current = next->dma_desc;
 697	host->dma_current = next->dma_chan;
 698	next->dma_desc = NULL;
 699	next->dma_chan = NULL;
 700}
 701
 702static void mmci_pre_request(struct mmc_host *mmc, struct mmc_request *mrq)
 
 703{
 704	struct mmci_host *host = mmc_priv(mmc);
 705	struct mmc_data *data = mrq->data;
 706	struct mmci_host_next *nd = &host->next_data;
 707
 708	if (!data)
 709		return;
 710
 711	BUG_ON(data->host_cookie);
 712
 713	if (mmci_validate_data(host, data))
 714		return;
 715
 716	if (!mmci_dma_prep_next(host, data))
 717		data->host_cookie = ++nd->cookie < 0 ? 1 : nd->cookie;
 718}
 719
 720static void mmci_post_request(struct mmc_host *mmc, struct mmc_request *mrq,
 721			      int err)
 722{
 723	struct mmci_host *host = mmc_priv(mmc);
 724	struct mmc_data *data = mrq->data;
 725
 726	if (!data || !data->host_cookie)
 727		return;
 728
 729	mmci_dma_unmap(host, data);
 730
 731	if (err) {
 732		struct mmci_host_next *next = &host->next_data;
 733		struct dma_chan *chan;
 734		if (data->flags & MMC_DATA_READ)
 735			chan = host->dma_rx_channel;
 736		else
 737			chan = host->dma_tx_channel;
 738		dmaengine_terminate_all(chan);
 739
 740		if (host->dma_desc_current == next->dma_desc)
 741			host->dma_desc_current = NULL;
 742
 743		if (host->dma_current == next->dma_chan)
 744			host->dma_current = NULL;
 745
 746		next->dma_desc = NULL;
 747		next->dma_chan = NULL;
 748		data->host_cookie = 0;
 749	}
 750}
 751
 752#else
 753/* Blank functions if the DMA engine is not available */
 754static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
 755{
 756}
 757static inline void mmci_dma_setup(struct mmci_host *host)
 758{
 759}
 760
 761static inline void mmci_dma_release(struct mmci_host *host)
 762{
 763}
 764
 765static inline void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
 766{
 767}
 768
 769static inline void mmci_dma_finalize(struct mmci_host *host,
 770				     struct mmc_data *data)
 771{
 772}
 773
 774static inline void mmci_dma_data_error(struct mmci_host *host)
 775{
 776}
 777
 778static inline int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
 779{
 780	return -ENOSYS;
 781}
 782
 783#define mmci_pre_request NULL
 784#define mmci_post_request NULL
 785
 786#endif
 787
 788static void mmci_start_data(struct mmci_host *host, struct mmc_data *data)
 789{
 790	struct variant_data *variant = host->variant;
 791	unsigned int datactrl, timeout, irqmask;
 792	unsigned long long clks;
 793	void __iomem *base;
 794	int blksz_bits;
 795
 796	dev_dbg(mmc_dev(host->mmc), "blksz %04x blks %04x flags %08x\n",
 797		data->blksz, data->blocks, data->flags);
 798
 799	host->data = data;
 800	host->size = data->blksz * data->blocks;
 801	data->bytes_xfered = 0;
 802
 803	clks = (unsigned long long)data->timeout_ns * host->cclk;
 804	do_div(clks, NSEC_PER_SEC);
 805
 806	timeout = data->timeout_clks + (unsigned int)clks;
 807
 808	base = host->base;
 809	writel(timeout, base + MMCIDATATIMER);
 810	writel(host->size, base + MMCIDATALENGTH);
 811
 812	blksz_bits = ffs(data->blksz) - 1;
 813	BUG_ON(1 << blksz_bits != data->blksz);
 814
 815	if (variant->blksz_datactrl16)
 816		datactrl = MCI_DPSM_ENABLE | (data->blksz << 16);
 817	else if (variant->blksz_datactrl4)
 818		datactrl = MCI_DPSM_ENABLE | (data->blksz << 4);
 819	else
 820		datactrl = MCI_DPSM_ENABLE | blksz_bits << 4;
 821
 822	if (data->flags & MMC_DATA_READ)
 823		datactrl |= MCI_DPSM_DIRECTION;
 824
 825	if (host->mmc->card && mmc_card_sdio(host->mmc->card)) {
 826		u32 clk;
 
 
 
 
 
 
 827
 828		datactrl |= variant->datactrl_mask_sdio;
 829
 830		/*
 831		 * The ST Micro variant for SDIO small write transfers
 832		 * needs to have clock H/W flow control disabled,
 833		 * otherwise the transfer will not start. The threshold
 834		 * depends on the rate of MCLK.
 835		 */
 836		if (variant->st_sdio && data->flags & MMC_DATA_WRITE &&
 837		    (host->size < 8 ||
 838		     (host->size <= 8 && host->mclk > 50000000)))
 839			clk = host->clk_reg & ~variant->clkreg_enable;
 840		else
 841			clk = host->clk_reg | variant->clkreg_enable;
 842
 843		mmci_write_clkreg(host, clk);
 844	}
 845
 846	if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
 847	    host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
 848		datactrl |= variant->datactrl_mask_ddrmode;
 849
 850	/*
 851	 * Attempt to use DMA operation mode, if this
 852	 * should fail, fall back to PIO mode
 853	 */
 854	if (!mmci_dma_start_data(host, datactrl))
 855		return;
 856
 857	/* IRQ mode, map the SG list for CPU reading/writing */
 858	mmci_init_sg(host, data);
 859
 860	if (data->flags & MMC_DATA_READ) {
 861		irqmask = MCI_RXFIFOHALFFULLMASK;
 862
 863		/*
 864		 * If we have less than the fifo 'half-full' threshold to
 865		 * transfer, trigger a PIO interrupt as soon as any data
 866		 * is available.
 867		 */
 868		if (host->size < variant->fifohalfsize)
 869			irqmask |= MCI_RXDATAAVLBLMASK;
 870	} else {
 871		/*
 872		 * We don't actually need to include "FIFO empty" here
 873		 * since its implicit in "FIFO half empty".
 874		 */
 875		irqmask = MCI_TXFIFOHALFEMPTYMASK;
 876	}
 877
 878	mmci_write_datactrlreg(host, datactrl);
 879	writel(readl(base + MMCIMASK0) & ~MCI_DATAENDMASK, base + MMCIMASK0);
 880	mmci_set_mask1(host, irqmask);
 881}
 882
 883static void
 884mmci_start_command(struct mmci_host *host, struct mmc_command *cmd, u32 c)
 885{
 886	void __iomem *base = host->base;
 887
 888	dev_dbg(mmc_dev(host->mmc), "op %02x arg %08x flags %08x\n",
 889	    cmd->opcode, cmd->arg, cmd->flags);
 890
 891	if (readl(base + MMCICOMMAND) & MCI_CPSM_ENABLE) {
 892		writel(0, base + MMCICOMMAND);
 893		mmci_reg_delay(host);
 894	}
 895
 896	c |= cmd->opcode | MCI_CPSM_ENABLE;
 897	if (cmd->flags & MMC_RSP_PRESENT) {
 898		if (cmd->flags & MMC_RSP_136)
 899			c |= MCI_CPSM_LONGRSP;
 900		c |= MCI_CPSM_RESPONSE;
 901	}
 902	if (/*interrupt*/0)
 903		c |= MCI_CPSM_INTERRUPT;
 904
 905	if (mmc_cmd_type(cmd) == MMC_CMD_ADTC)
 906		c |= host->variant->data_cmd_enable;
 907
 908	host->cmd = cmd;
 909
 910	writel(cmd->arg, base + MMCIARGUMENT);
 911	writel(c, base + MMCICOMMAND);
 912}
 913
 914static void
 915mmci_data_irq(struct mmci_host *host, struct mmc_data *data,
 916	      unsigned int status)
 917{
 918	/* Make sure we have data to handle */
 919	if (!data)
 920		return;
 921
 922	/* First check for errors */
 923	if (status & (MCI_DATACRCFAIL|MCI_DATATIMEOUT|MCI_STARTBITERR|
 924		      MCI_TXUNDERRUN|MCI_RXOVERRUN)) {
 925		u32 remain, success;
 926
 927		/* Terminate the DMA transfer */
 928		if (dma_inprogress(host)) {
 929			mmci_dma_data_error(host);
 930			mmci_dma_unmap(host, data);
 931		}
 932
 933		/*
 934		 * Calculate how far we are into the transfer.  Note that
 935		 * the data counter gives the number of bytes transferred
 936		 * on the MMC bus, not on the host side.  On reads, this
 937		 * can be as much as a FIFO-worth of data ahead.  This
 938		 * matters for FIFO overruns only.
 939		 */
 940		remain = readl(host->base + MMCIDATACNT);
 941		success = data->blksz * data->blocks - remain;
 942
 943		dev_dbg(mmc_dev(host->mmc), "MCI ERROR IRQ, status 0x%08x at 0x%08x\n",
 944			status, success);
 945		if (status & MCI_DATACRCFAIL) {
 946			/* Last block was not successful */
 947			success -= 1;
 948			data->error = -EILSEQ;
 949		} else if (status & MCI_DATATIMEOUT) {
 950			data->error = -ETIMEDOUT;
 951		} else if (status & MCI_STARTBITERR) {
 952			data->error = -ECOMM;
 953		} else if (status & MCI_TXUNDERRUN) {
 954			data->error = -EIO;
 955		} else if (status & MCI_RXOVERRUN) {
 956			if (success > host->variant->fifosize)
 957				success -= host->variant->fifosize;
 958			else
 959				success = 0;
 960			data->error = -EIO;
 961		}
 962		data->bytes_xfered = round_down(success, data->blksz);
 963	}
 964
 965	if (status & MCI_DATABLOCKEND)
 966		dev_err(mmc_dev(host->mmc), "stray MCI_DATABLOCKEND interrupt\n");
 967
 968	if (status & MCI_DATAEND || data->error) {
 969		if (dma_inprogress(host))
 970			mmci_dma_finalize(host, data);
 971		mmci_stop_data(host);
 972
 973		if (!data->error)
 974			/* The error clause is handled above, success! */
 975			data->bytes_xfered = data->blksz * data->blocks;
 976
 977		if (!data->stop || host->mrq->sbc) {
 978			mmci_request_end(host, data->mrq);
 979		} else {
 980			mmci_start_command(host, data->stop, 0);
 981		}
 982	}
 983}
 984
 985static void
 986mmci_cmd_irq(struct mmci_host *host, struct mmc_command *cmd,
 987	     unsigned int status)
 988{
 989	void __iomem *base = host->base;
 990	bool sbc;
 
 
 991
 992	if (!cmd)
 
 993		return;
 994
 995	sbc = (cmd == host->mrq->sbc);
 996
 997	/*
 998	 * We need to be one of these interrupts to be considered worth
 999	 * handling. Note that we tag on any latent IRQs postponed
1000	 * due to waiting for busy status.
1001	 */
1002	if (!((status|host->busy_status) &
1003	      (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT|MCI_CMDSENT|MCI_CMDRESPEND)))
1004		return;
 
1005
1006	/*
1007	 * ST Micro variant: handle busy detection.
1008	 */
1009	if (host->variant->busy_detect) {
1010		bool busy_resp = !!(cmd->flags & MMC_RSP_BUSY);
1011
1012		/* We are busy with a command, return */
1013		if (host->busy_status &&
1014		    (status & host->variant->busy_detect_flag))
1015			return;
1016
1017		/*
1018		 * We were not busy, but we now got a busy response on
1019		 * something that was not an error, and we double-check
1020		 * that the special busy status bit is still set before
1021		 * proceeding.
1022		 */
1023		if (!host->busy_status && busy_resp &&
1024		    !(status & (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT)) &&
1025		    (readl(base + MMCISTATUS) & host->variant->busy_detect_flag)) {
1026
1027			/* Clear the busy start IRQ */
1028			writel(host->variant->busy_detect_mask,
1029			       host->base + MMCICLEAR);
1030
1031			/* Unmask the busy end IRQ */
1032			writel(readl(base + MMCIMASK0) |
1033			       host->variant->busy_detect_mask,
1034			       base + MMCIMASK0);
1035			/*
1036			 * Now cache the last response status code (until
1037			 * the busy bit goes low), and return.
1038			 */
1039			host->busy_status =
1040				status & (MCI_CMDSENT|MCI_CMDRESPEND);
1041			return;
1042		}
1043
1044		/*
1045		 * At this point we are not busy with a command, we have
1046		 * not received a new busy request, clear and mask the busy
1047		 * end IRQ and fall through to process the IRQ.
1048		 */
1049		if (host->busy_status) {
1050
1051			writel(host->variant->busy_detect_mask,
1052			       host->base + MMCICLEAR);
1053
1054			writel(readl(base + MMCIMASK0) &
1055			       ~host->variant->busy_detect_mask,
1056			       base + MMCIMASK0);
1057			host->busy_status = 0;
1058		}
1059	}
1060
1061	host->cmd = NULL;
1062
1063	if (status & MCI_CMDTIMEOUT) {
1064		cmd->error = -ETIMEDOUT;
1065	} else if (status & MCI_CMDCRCFAIL && cmd->flags & MMC_RSP_CRC) {
1066		cmd->error = -EILSEQ;
1067	} else {
1068		cmd->resp[0] = readl(base + MMCIRESPONSE0);
1069		cmd->resp[1] = readl(base + MMCIRESPONSE1);
1070		cmd->resp[2] = readl(base + MMCIRESPONSE2);
1071		cmd->resp[3] = readl(base + MMCIRESPONSE3);
1072	}
1073
1074	if ((!sbc && !cmd->data) || cmd->error) {
1075		if (host->data) {
1076			/* Terminate the DMA transfer */
1077			if (dma_inprogress(host)) {
1078				mmci_dma_data_error(host);
1079				mmci_dma_unmap(host, host->data);
1080			}
1081			mmci_stop_data(host);
1082		}
1083		mmci_request_end(host, host->mrq);
1084	} else if (sbc) {
1085		mmci_start_command(host, host->mrq->cmd, 0);
1086	} else if (!(cmd->data->flags & MMC_DATA_READ)) {
1087		mmci_start_data(host, cmd->data);
1088	}
1089}
1090
1091static int mmci_get_rx_fifocnt(struct mmci_host *host, u32 status, int remain)
1092{
1093	return remain - (readl(host->base + MMCIFIFOCNT) << 2);
1094}
1095
1096static int mmci_qcom_get_rx_fifocnt(struct mmci_host *host, u32 status, int r)
1097{
1098	/*
1099	 * on qcom SDCC4 only 8 words are used in each burst so only 8 addresses
1100	 * from the fifo range should be used
1101	 */
1102	if (status & MCI_RXFIFOHALFFULL)
1103		return host->variant->fifohalfsize;
1104	else if (status & MCI_RXDATAAVLBL)
1105		return 4;
1106
1107	return 0;
1108}
1109
1110static int mmci_pio_read(struct mmci_host *host, char *buffer, unsigned int remain)
1111{
1112	void __iomem *base = host->base;
1113	char *ptr = buffer;
1114	u32 status = readl(host->base + MMCISTATUS);
1115	int host_remain = host->size;
1116
1117	do {
1118		int count = host->get_rx_fifocnt(host, status, host_remain);
1119
1120		if (count > remain)
1121			count = remain;
1122
1123		if (count <= 0)
1124			break;
1125
1126		/*
1127		 * SDIO especially may want to send something that is
1128		 * not divisible by 4 (as opposed to card sectors
1129		 * etc). Therefore make sure to always read the last bytes
1130		 * while only doing full 32-bit reads towards the FIFO.
1131		 */
1132		if (unlikely(count & 0x3)) {
1133			if (count < 4) {
1134				unsigned char buf[4];
1135				ioread32_rep(base + MMCIFIFO, buf, 1);
1136				memcpy(ptr, buf, count);
1137			} else {
1138				ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1139				count &= ~0x3;
1140			}
1141		} else {
1142			ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1143		}
1144
1145		ptr += count;
1146		remain -= count;
1147		host_remain -= count;
1148
1149		if (remain == 0)
1150			break;
1151
1152		status = readl(base + MMCISTATUS);
1153	} while (status & MCI_RXDATAAVLBL);
1154
1155	return ptr - buffer;
1156}
1157
1158static int mmci_pio_write(struct mmci_host *host, char *buffer, unsigned int remain, u32 status)
1159{
1160	struct variant_data *variant = host->variant;
1161	void __iomem *base = host->base;
1162	char *ptr = buffer;
1163
1164	do {
1165		unsigned int count, maxcnt;
1166
1167		maxcnt = status & MCI_TXFIFOEMPTY ?
1168			 variant->fifosize : variant->fifohalfsize;
1169		count = min(remain, maxcnt);
1170
1171		/*
1172		 * SDIO especially may want to send something that is
1173		 * not divisible by 4 (as opposed to card sectors
1174		 * etc), and the FIFO only accept full 32-bit writes.
1175		 * So compensate by adding +3 on the count, a single
1176		 * byte become a 32bit write, 7 bytes will be two
1177		 * 32bit writes etc.
1178		 */
1179		iowrite32_rep(base + MMCIFIFO, ptr, (count + 3) >> 2);
1180
1181		ptr += count;
1182		remain -= count;
1183
1184		if (remain == 0)
1185			break;
1186
1187		status = readl(base + MMCISTATUS);
1188	} while (status & MCI_TXFIFOHALFEMPTY);
1189
1190	return ptr - buffer;
1191}
1192
1193/*
1194 * PIO data transfer IRQ handler.
1195 */
1196static irqreturn_t mmci_pio_irq(int irq, void *dev_id)
1197{
1198	struct mmci_host *host = dev_id;
1199	struct sg_mapping_iter *sg_miter = &host->sg_miter;
1200	struct variant_data *variant = host->variant;
1201	void __iomem *base = host->base;
1202	unsigned long flags;
1203	u32 status;
1204
1205	status = readl(base + MMCISTATUS);
1206
1207	dev_dbg(mmc_dev(host->mmc), "irq1 (pio) %08x\n", status);
1208
1209	local_irq_save(flags);
1210
1211	do {
1212		unsigned int remain, len;
1213		char *buffer;
1214
1215		/*
1216		 * For write, we only need to test the half-empty flag
1217		 * here - if the FIFO is completely empty, then by
1218		 * definition it is more than half empty.
1219		 *
1220		 * For read, check for data available.
1221		 */
1222		if (!(status & (MCI_TXFIFOHALFEMPTY|MCI_RXDATAAVLBL)))
1223			break;
1224
1225		if (!sg_miter_next(sg_miter))
1226			break;
1227
1228		buffer = sg_miter->addr;
1229		remain = sg_miter->length;
1230
1231		len = 0;
1232		if (status & MCI_RXACTIVE)
1233			len = mmci_pio_read(host, buffer, remain);
1234		if (status & MCI_TXACTIVE)
1235			len = mmci_pio_write(host, buffer, remain, status);
1236
1237		sg_miter->consumed = len;
1238
1239		host->size -= len;
1240		remain -= len;
1241
1242		if (remain)
1243			break;
1244
1245		status = readl(base + MMCISTATUS);
1246	} while (1);
1247
1248	sg_miter_stop(sg_miter);
1249
1250	local_irq_restore(flags);
1251
1252	/*
1253	 * If we have less than the fifo 'half-full' threshold to transfer,
1254	 * trigger a PIO interrupt as soon as any data is available.
1255	 */
1256	if (status & MCI_RXACTIVE && host->size < variant->fifohalfsize)
1257		mmci_set_mask1(host, MCI_RXDATAAVLBLMASK);
1258
1259	/*
1260	 * If we run out of data, disable the data IRQs; this
1261	 * prevents a race where the FIFO becomes empty before
1262	 * the chip itself has disabled the data path, and
1263	 * stops us racing with our data end IRQ.
1264	 */
1265	if (host->size == 0) {
1266		mmci_set_mask1(host, 0);
1267		writel(readl(base + MMCIMASK0) | MCI_DATAENDMASK, base + MMCIMASK0);
1268	}
1269
1270	return IRQ_HANDLED;
1271}
1272
1273/*
1274 * Handle completion of command and data transfers.
1275 */
1276static irqreturn_t mmci_irq(int irq, void *dev_id)
1277{
1278	struct mmci_host *host = dev_id;
1279	u32 status;
1280	int ret = 0;
1281
1282	spin_lock(&host->lock);
1283
1284	do {
 
 
 
1285		status = readl(host->base + MMCISTATUS);
1286
1287		if (host->singleirq) {
1288			if (status & readl(host->base + MMCIMASK1))
1289				mmci_pio_irq(irq, dev_id);
1290
1291			status &= ~MCI_IRQ1MASK;
1292		}
1293
1294		/*
1295		 * We intentionally clear the MCI_ST_CARDBUSY IRQ (if it's
1296		 * enabled) in mmci_cmd_irq() function where ST Micro busy
1297		 * detection variant is handled. Considering the HW seems to be
1298		 * triggering the IRQ on both edges while monitoring DAT0 for
1299		 * busy completion and that same status bit is used to monitor
1300		 * start and end of busy detection, special care must be taken
1301		 * to make sure that both start and end interrupts are always
1302		 * cleared one after the other.
1303		 */
1304		status &= readl(host->base + MMCIMASK0);
1305		if (host->variant->busy_detect)
1306			writel(status & ~host->variant->busy_detect_mask,
1307			       host->base + MMCICLEAR);
1308		else
1309			writel(status, host->base + MMCICLEAR);
1310
1311		dev_dbg(mmc_dev(host->mmc), "irq0 (data+cmd) %08x\n", status);
1312
1313		if (host->variant->reversed_irq_handling) {
1314			mmci_data_irq(host, host->data, status);
1315			mmci_cmd_irq(host, host->cmd, status);
1316		} else {
1317			mmci_cmd_irq(host, host->cmd, status);
1318			mmci_data_irq(host, host->data, status);
1319		}
1320
1321		/*
1322		 * Don't poll for busy completion in irq context.
1323		 */
1324		if (host->variant->busy_detect && host->busy_status)
1325			status &= ~host->variant->busy_detect_flag;
 
1326
1327		ret = 1;
1328	} while (status);
1329
1330	spin_unlock(&host->lock);
1331
1332	return IRQ_RETVAL(ret);
1333}
1334
1335static void mmci_request(struct mmc_host *mmc, struct mmc_request *mrq)
1336{
1337	struct mmci_host *host = mmc_priv(mmc);
1338	unsigned long flags;
1339
1340	WARN_ON(host->mrq != NULL);
1341
1342	mrq->cmd->error = mmci_validate_data(host, mrq->data);
1343	if (mrq->cmd->error) {
1344		mmc_request_done(mmc, mrq);
1345		return;
1346	}
1347
 
 
1348	spin_lock_irqsave(&host->lock, flags);
1349
1350	host->mrq = mrq;
1351
1352	if (mrq->data)
1353		mmci_get_next_data(host, mrq->data);
1354
1355	if (mrq->data && mrq->data->flags & MMC_DATA_READ)
1356		mmci_start_data(host, mrq->data);
1357
1358	if (mrq->sbc)
1359		mmci_start_command(host, mrq->sbc, 0);
1360	else
1361		mmci_start_command(host, mrq->cmd, 0);
1362
1363	spin_unlock_irqrestore(&host->lock, flags);
1364}
1365
1366static void mmci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1367{
1368	struct mmci_host *host = mmc_priv(mmc);
1369	struct variant_data *variant = host->variant;
1370	u32 pwr = 0;
1371	unsigned long flags;
1372	int ret;
1373
 
 
1374	if (host->plat->ios_handler &&
1375		host->plat->ios_handler(mmc_dev(mmc), ios))
1376			dev_err(mmc_dev(mmc), "platform ios_handler failed\n");
1377
1378	switch (ios->power_mode) {
1379	case MMC_POWER_OFF:
1380		if (!IS_ERR(mmc->supply.vmmc))
1381			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1382
1383		if (!IS_ERR(mmc->supply.vqmmc) && host->vqmmc_enabled) {
1384			regulator_disable(mmc->supply.vqmmc);
1385			host->vqmmc_enabled = false;
1386		}
1387
1388		break;
1389	case MMC_POWER_UP:
1390		if (!IS_ERR(mmc->supply.vmmc))
1391			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
1392
1393		/*
1394		 * The ST Micro variant doesn't have the PL180s MCI_PWR_UP
1395		 * and instead uses MCI_PWR_ON so apply whatever value is
1396		 * configured in the variant data.
1397		 */
1398		pwr |= variant->pwrreg_powerup;
1399
1400		break;
1401	case MMC_POWER_ON:
1402		if (!IS_ERR(mmc->supply.vqmmc) && !host->vqmmc_enabled) {
1403			ret = regulator_enable(mmc->supply.vqmmc);
1404			if (ret < 0)
1405				dev_err(mmc_dev(mmc),
1406					"failed to enable vqmmc regulator\n");
1407			else
1408				host->vqmmc_enabled = true;
1409		}
1410
1411		pwr |= MCI_PWR_ON;
1412		break;
1413	}
1414
1415	if (variant->signal_direction && ios->power_mode != MMC_POWER_OFF) {
1416		/*
1417		 * The ST Micro variant has some additional bits
1418		 * indicating signal direction for the signals in
1419		 * the SD/MMC bus and feedback-clock usage.
1420		 */
1421		pwr |= host->pwr_reg_add;
1422
1423		if (ios->bus_width == MMC_BUS_WIDTH_4)
1424			pwr &= ~MCI_ST_DATA74DIREN;
1425		else if (ios->bus_width == MMC_BUS_WIDTH_1)
1426			pwr &= (~MCI_ST_DATA74DIREN &
1427				~MCI_ST_DATA31DIREN &
1428				~MCI_ST_DATA2DIREN);
1429	}
1430
1431	if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN) {
1432		if (host->hw_designer != AMBA_VENDOR_ST)
1433			pwr |= MCI_ROD;
1434		else {
1435			/*
1436			 * The ST Micro variant use the ROD bit for something
1437			 * else and only has OD (Open Drain).
1438			 */
1439			pwr |= MCI_OD;
1440		}
1441	}
1442
1443	/*
1444	 * If clock = 0 and the variant requires the MMCIPOWER to be used for
1445	 * gating the clock, the MCI_PWR_ON bit is cleared.
1446	 */
1447	if (!ios->clock && variant->pwrreg_clkgate)
1448		pwr &= ~MCI_PWR_ON;
1449
1450	if (host->variant->explicit_mclk_control &&
1451	    ios->clock != host->clock_cache) {
1452		ret = clk_set_rate(host->clk, ios->clock);
1453		if (ret < 0)
1454			dev_err(mmc_dev(host->mmc),
1455				"Error setting clock rate (%d)\n", ret);
1456		else
1457			host->mclk = clk_get_rate(host->clk);
1458	}
1459	host->clock_cache = ios->clock;
1460
1461	spin_lock_irqsave(&host->lock, flags);
1462
1463	mmci_set_clkreg(host, ios->clock);
1464	mmci_write_pwrreg(host, pwr);
1465	mmci_reg_delay(host);
1466
1467	spin_unlock_irqrestore(&host->lock, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
1468}
1469
1470static int mmci_get_cd(struct mmc_host *mmc)
1471{
1472	struct mmci_host *host = mmc_priv(mmc);
1473	struct mmci_platform_data *plat = host->plat;
1474	unsigned int status = mmc_gpio_get_cd(mmc);
1475
1476	if (status == -ENOSYS) {
1477		if (!plat->status)
1478			return 1; /* Assume always present */
1479
1480		status = plat->status(mmc_dev(host->mmc));
1481	}
 
 
 
 
 
 
 
1482	return status;
1483}
1484
1485static int mmci_sig_volt_switch(struct mmc_host *mmc, struct mmc_ios *ios)
1486{
1487	int ret = 0;
1488
1489	if (!IS_ERR(mmc->supply.vqmmc)) {
1490
 
 
1491		switch (ios->signal_voltage) {
1492		case MMC_SIGNAL_VOLTAGE_330:
1493			ret = regulator_set_voltage(mmc->supply.vqmmc,
1494						2700000, 3600000);
1495			break;
1496		case MMC_SIGNAL_VOLTAGE_180:
1497			ret = regulator_set_voltage(mmc->supply.vqmmc,
1498						1700000, 1950000);
1499			break;
1500		case MMC_SIGNAL_VOLTAGE_120:
1501			ret = regulator_set_voltage(mmc->supply.vqmmc,
1502						1100000, 1300000);
1503			break;
1504		}
1505
1506		if (ret)
1507			dev_warn(mmc_dev(mmc), "Voltage switch failed\n");
 
 
 
1508	}
1509
1510	return ret;
1511}
1512
 
 
 
 
 
 
 
 
 
1513static struct mmc_host_ops mmci_ops = {
1514	.request	= mmci_request,
1515	.pre_req	= mmci_pre_request,
1516	.post_req	= mmci_post_request,
1517	.set_ios	= mmci_set_ios,
1518	.get_ro		= mmc_gpio_get_ro,
1519	.get_cd		= mmci_get_cd,
1520	.start_signal_voltage_switch = mmci_sig_volt_switch,
1521};
1522
1523static int mmci_of_parse(struct device_node *np, struct mmc_host *mmc)
 
 
1524{
1525	struct mmci_host *host = mmc_priv(mmc);
1526	int ret = mmc_of_parse(mmc);
 
 
1527
1528	if (ret)
1529		return ret;
 
 
1530
1531	if (of_get_property(np, "st,sig-dir-dat0", NULL))
1532		host->pwr_reg_add |= MCI_ST_DATA0DIREN;
1533	if (of_get_property(np, "st,sig-dir-dat2", NULL))
1534		host->pwr_reg_add |= MCI_ST_DATA2DIREN;
1535	if (of_get_property(np, "st,sig-dir-dat31", NULL))
1536		host->pwr_reg_add |= MCI_ST_DATA31DIREN;
1537	if (of_get_property(np, "st,sig-dir-dat74", NULL))
1538		host->pwr_reg_add |= MCI_ST_DATA74DIREN;
1539	if (of_get_property(np, "st,sig-dir-cmd", NULL))
1540		host->pwr_reg_add |= MCI_ST_CMDDIREN;
1541	if (of_get_property(np, "st,sig-pin-fbclk", NULL))
1542		host->pwr_reg_add |= MCI_ST_FBCLKEN;
1543
1544	if (of_get_property(np, "mmc-cap-mmc-highspeed", NULL))
1545		mmc->caps |= MMC_CAP_MMC_HIGHSPEED;
1546	if (of_get_property(np, "mmc-cap-sd-highspeed", NULL))
1547		mmc->caps |= MMC_CAP_SD_HIGHSPEED;
1548
1549	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1550}
 
1551
1552static int mmci_probe(struct amba_device *dev,
1553	const struct amba_id *id)
1554{
1555	struct mmci_platform_data *plat = dev->dev.platform_data;
1556	struct device_node *np = dev->dev.of_node;
1557	struct variant_data *variant = id->data;
1558	struct mmci_host *host;
1559	struct mmc_host *mmc;
1560	int ret;
1561
1562	/* Must have platform data or Device Tree. */
1563	if (!plat && !np) {
1564		dev_err(&dev->dev, "No plat data or DT found\n");
1565		return -EINVAL;
1566	}
1567
1568	if (!plat) {
1569		plat = devm_kzalloc(&dev->dev, sizeof(*plat), GFP_KERNEL);
1570		if (!plat)
1571			return -ENOMEM;
1572	}
1573
1574	mmc = mmc_alloc_host(sizeof(struct mmci_host), &dev->dev);
1575	if (!mmc)
1576		return -ENOMEM;
1577
1578	ret = mmci_of_parse(np, mmc);
1579	if (ret)
1580		goto host_free;
 
 
 
 
 
 
1581
1582	host = mmc_priv(mmc);
1583	host->mmc = mmc;
1584
 
 
 
 
1585	host->hw_designer = amba_manf(dev);
1586	host->hw_revision = amba_rev(dev);
1587	dev_dbg(mmc_dev(mmc), "designer ID = 0x%02x\n", host->hw_designer);
1588	dev_dbg(mmc_dev(mmc), "revision = 0x%01x\n", host->hw_revision);
1589
1590	host->clk = devm_clk_get(&dev->dev, NULL);
1591	if (IS_ERR(host->clk)) {
1592		ret = PTR_ERR(host->clk);
1593		goto host_free;
1594	}
1595
1596	ret = clk_prepare_enable(host->clk);
1597	if (ret)
1598		goto host_free;
1599
1600	if (variant->qcom_fifo)
1601		host->get_rx_fifocnt = mmci_qcom_get_rx_fifocnt;
1602	else
1603		host->get_rx_fifocnt = mmci_get_rx_fifocnt;
1604
1605	host->plat = plat;
1606	host->variant = variant;
1607	host->mclk = clk_get_rate(host->clk);
1608	/*
1609	 * According to the spec, mclk is max 100 MHz,
1610	 * so we try to adjust the clock down to this,
1611	 * (if possible).
1612	 */
1613	if (host->mclk > variant->f_max) {
1614		ret = clk_set_rate(host->clk, variant->f_max);
1615		if (ret < 0)
1616			goto clk_disable;
1617		host->mclk = clk_get_rate(host->clk);
1618		dev_dbg(mmc_dev(mmc), "eventual mclk rate: %u Hz\n",
1619			host->mclk);
1620	}
1621
1622	host->phybase = dev->res.start;
1623	host->base = devm_ioremap_resource(&dev->dev, &dev->res);
1624	if (IS_ERR(host->base)) {
1625		ret = PTR_ERR(host->base);
1626		goto clk_disable;
1627	}
1628
1629	/*
1630	 * The ARM and ST versions of the block have slightly different
1631	 * clock divider equations which means that the minimum divider
1632	 * differs too.
1633	 * on Qualcomm like controllers get the nearest minimum clock to 100Khz
1634	 */
1635	if (variant->st_clkdiv)
1636		mmc->f_min = DIV_ROUND_UP(host->mclk, 257);
1637	else if (variant->explicit_mclk_control)
1638		mmc->f_min = clk_round_rate(host->clk, 100000);
1639	else
1640		mmc->f_min = DIV_ROUND_UP(host->mclk, 512);
1641	/*
1642	 * If no maximum operating frequency is supplied, fall back to use
1643	 * the module parameter, which has a (low) default value in case it
1644	 * is not specified. Either value must not exceed the clock rate into
1645	 * the block, of course.
 
 
1646	 */
1647	if (mmc->f_max)
1648		mmc->f_max = variant->explicit_mclk_control ?
1649				min(variant->f_max, mmc->f_max) :
1650				min(host->mclk, mmc->f_max);
1651	else
1652		mmc->f_max = variant->explicit_mclk_control ?
1653				fmax : min(host->mclk, fmax);
1654
1655
1656	dev_dbg(mmc_dev(mmc), "clocking block at %u Hz\n", mmc->f_max);
1657
1658	/* Get regulators and the supported OCR mask */
1659	ret = mmc_regulator_get_supply(mmc);
1660	if (ret == -EPROBE_DEFER)
1661		goto clk_disable;
1662
1663	if (!mmc->ocr_avail)
1664		mmc->ocr_avail = plat->ocr_mask;
1665	else if (plat->ocr_mask)
1666		dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
1667
1668	/* DT takes precedence over platform data. */
1669	if (!np) {
1670		if (!plat->cd_invert)
1671			mmc->caps2 |= MMC_CAP2_CD_ACTIVE_HIGH;
1672		mmc->caps2 |= MMC_CAP2_RO_ACTIVE_HIGH;
1673	}
1674
1675	/* We support these capabilities. */
1676	mmc->caps |= MMC_CAP_CMD23;
1677
1678	/*
1679	 * Enable busy detection.
1680	 */
1681	if (variant->busy_detect) {
1682		mmci_ops.card_busy = mmci_card_busy;
1683		/*
1684		 * Not all variants have a flag to enable busy detection
1685		 * in the DPSM, but if they do, set it here.
1686		 */
1687		if (variant->busy_dpsm_flag)
1688			mmci_write_datactrlreg(host,
1689					       host->variant->busy_dpsm_flag);
1690		mmc->caps |= MMC_CAP_WAIT_WHILE_BUSY;
1691		mmc->max_busy_timeout = 0;
1692	}
1693
1694	mmc->ops = &mmci_ops;
1695
1696	/* We support these PM capabilities. */
1697	mmc->pm_caps |= MMC_PM_KEEP_POWER;
1698
1699	/*
1700	 * We can do SGIO
1701	 */
1702	mmc->max_segs = NR_SG;
1703
1704	/*
1705	 * Since only a certain number of bits are valid in the data length
1706	 * register, we must ensure that we don't exceed 2^num-1 bytes in a
1707	 * single request.
1708	 */
1709	mmc->max_req_size = (1 << variant->datalength_bits) - 1;
1710
1711	/*
1712	 * Set the maximum segment size.  Since we aren't doing DMA
1713	 * (yet) we are only limited by the data length register.
1714	 */
1715	mmc->max_seg_size = mmc->max_req_size;
1716
1717	/*
1718	 * Block size can be up to 2048 bytes, but must be a power of two.
1719	 */
1720	mmc->max_blk_size = 1 << 11;
1721
1722	/*
1723	 * Limit the number of blocks transferred so that we don't overflow
1724	 * the maximum request size.
1725	 */
1726	mmc->max_blk_count = mmc->max_req_size >> 11;
1727
1728	spin_lock_init(&host->lock);
1729
1730	writel(0, host->base + MMCIMASK0);
1731	writel(0, host->base + MMCIMASK1);
1732	writel(0xfff, host->base + MMCICLEAR);
1733
1734	/*
1735	 * If:
1736	 * - not using DT but using a descriptor table, or
1737	 * - using a table of descriptors ALONGSIDE DT, or
1738	 * look up these descriptors named "cd" and "wp" right here, fail
1739	 * silently of these do not exist and proceed to try platform data
1740	 */
1741	if (!np) {
1742		ret = mmc_gpiod_request_cd(mmc, "cd", 0, false, 0, NULL);
1743		if (ret < 0) {
1744			if (ret == -EPROBE_DEFER)
1745				goto clk_disable;
1746			else if (gpio_is_valid(plat->gpio_cd)) {
1747				ret = mmc_gpio_request_cd(mmc, plat->gpio_cd, 0);
1748				if (ret)
1749					goto clk_disable;
1750			}
1751		}
1752
1753		ret = mmc_gpiod_request_ro(mmc, "wp", 0, false, 0, NULL);
1754		if (ret < 0) {
1755			if (ret == -EPROBE_DEFER)
1756				goto clk_disable;
1757			else if (gpio_is_valid(plat->gpio_wp)) {
1758				ret = mmc_gpio_request_ro(mmc, plat->gpio_wp);
1759				if (ret)
1760					goto clk_disable;
1761			}
1762		}
1763	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1764
1765	ret = devm_request_irq(&dev->dev, dev->irq[0], mmci_irq, IRQF_SHARED,
1766			DRIVER_NAME " (cmd)", host);
1767	if (ret)
1768		goto clk_disable;
1769
1770	if (!dev->irq[1])
1771		host->singleirq = true;
1772	else {
1773		ret = devm_request_irq(&dev->dev, dev->irq[1], mmci_pio_irq,
1774				IRQF_SHARED, DRIVER_NAME " (pio)", host);
1775		if (ret)
1776			goto clk_disable;
1777	}
1778
1779	writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1780
1781	amba_set_drvdata(dev, mmc);
1782
1783	dev_info(&dev->dev, "%s: PL%03x manf %x rev%u at 0x%08llx irq %d,%d (pio)\n",
1784		 mmc_hostname(mmc), amba_part(dev), amba_manf(dev),
1785		 amba_rev(dev), (unsigned long long)dev->res.start,
1786		 dev->irq[0], dev->irq[1]);
1787
1788	mmci_dma_setup(host);
1789
1790	pm_runtime_set_autosuspend_delay(&dev->dev, 50);
1791	pm_runtime_use_autosuspend(&dev->dev);
 
1792
1793	mmc_add_host(mmc);
1794
1795	pm_runtime_put(&dev->dev);
1796	return 0;
1797
 
 
 
 
 
 
 
 
 
 
 
 
1798 clk_disable:
1799	clk_disable_unprepare(host->clk);
1800 host_free:
1801	mmc_free_host(mmc);
 
 
 
1802	return ret;
1803}
1804
1805static int mmci_remove(struct amba_device *dev)
1806{
1807	struct mmc_host *mmc = amba_get_drvdata(dev);
1808
1809	if (mmc) {
1810		struct mmci_host *host = mmc_priv(mmc);
1811
1812		/*
1813		 * Undo pm_runtime_put() in probe.  We use the _sync
1814		 * version here so that we can access the primecell.
1815		 */
1816		pm_runtime_get_sync(&dev->dev);
1817
1818		mmc_remove_host(mmc);
1819
1820		writel(0, host->base + MMCIMASK0);
1821		writel(0, host->base + MMCIMASK1);
1822
1823		writel(0, host->base + MMCICOMMAND);
1824		writel(0, host->base + MMCIDATACTRL);
1825
1826		mmci_dma_release(host);
 
 
 
 
 
 
 
 
 
 
 
 
1827		clk_disable_unprepare(host->clk);
 
1828		mmc_free_host(mmc);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1829	}
1830
1831	return 0;
1832}
 
1833
1834#ifdef CONFIG_PM
1835static void mmci_save(struct mmci_host *host)
1836{
1837	unsigned long flags;
1838
1839	spin_lock_irqsave(&host->lock, flags);
 
1840
1841	writel(0, host->base + MMCIMASK0);
1842	if (host->variant->pwrreg_nopower) {
1843		writel(0, host->base + MMCIDATACTRL);
1844		writel(0, host->base + MMCIPOWER);
1845		writel(0, host->base + MMCICLOCK);
 
 
 
1846	}
1847	mmci_reg_delay(host);
1848
1849	spin_unlock_irqrestore(&host->lock, flags);
1850}
1851
1852static void mmci_restore(struct mmci_host *host)
1853{
1854	unsigned long flags;
1855
1856	spin_lock_irqsave(&host->lock, flags);
 
1857
1858	if (host->variant->pwrreg_nopower) {
1859		writel(host->clk_reg, host->base + MMCICLOCK);
1860		writel(host->datactrl_reg, host->base + MMCIDATACTRL);
1861		writel(host->pwr_reg, host->base + MMCIPOWER);
 
 
 
 
1862	}
1863	writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1864	mmci_reg_delay(host);
1865
1866	spin_unlock_irqrestore(&host->lock, flags);
1867}
1868
1869static int mmci_runtime_suspend(struct device *dev)
1870{
1871	struct amba_device *adev = to_amba_device(dev);
1872	struct mmc_host *mmc = amba_get_drvdata(adev);
1873
1874	if (mmc) {
1875		struct mmci_host *host = mmc_priv(mmc);
1876		pinctrl_pm_select_sleep_state(dev);
1877		mmci_save(host);
1878		clk_disable_unprepare(host->clk);
1879	}
1880
1881	return 0;
1882}
1883
1884static int mmci_runtime_resume(struct device *dev)
1885{
1886	struct amba_device *adev = to_amba_device(dev);
1887	struct mmc_host *mmc = amba_get_drvdata(adev);
1888
1889	if (mmc) {
1890		struct mmci_host *host = mmc_priv(mmc);
1891		clk_prepare_enable(host->clk);
1892		mmci_restore(host);
1893		pinctrl_pm_select_default_state(dev);
1894	}
1895
1896	return 0;
1897}
1898#endif
1899
1900static const struct dev_pm_ops mmci_dev_pm_ops = {
1901	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
1902				pm_runtime_force_resume)
1903	SET_RUNTIME_PM_OPS(mmci_runtime_suspend, mmci_runtime_resume, NULL)
1904};
1905
1906static struct amba_id mmci_ids[] = {
1907	{
1908		.id	= 0x00041180,
1909		.mask	= 0xff0fffff,
1910		.data	= &variant_arm,
1911	},
1912	{
1913		.id	= 0x01041180,
1914		.mask	= 0xff0fffff,
1915		.data	= &variant_arm_extended_fifo,
1916	},
1917	{
1918		.id	= 0x02041180,
1919		.mask	= 0xff0fffff,
1920		.data	= &variant_arm_extended_fifo_hwfc,
1921	},
1922	{
1923		.id	= 0x00041181,
1924		.mask	= 0x000fffff,
1925		.data	= &variant_arm,
1926	},
1927	/* ST Micro variants */
1928	{
1929		.id     = 0x00180180,
1930		.mask   = 0x00ffffff,
1931		.data	= &variant_u300,
1932	},
1933	{
1934		.id     = 0x10180180,
1935		.mask   = 0xf0ffffff,
1936		.data	= &variant_nomadik,
1937	},
1938	{
1939		.id     = 0x00280180,
1940		.mask   = 0x00ffffff,
1941		.data	= &variant_nomadik,
1942	},
1943	{
1944		.id     = 0x00480180,
1945		.mask   = 0xf0ffffff,
1946		.data	= &variant_ux500,
1947	},
1948	{
1949		.id     = 0x10480180,
1950		.mask   = 0xf0ffffff,
1951		.data	= &variant_ux500v2,
1952	},
1953	/* Qualcomm variants */
1954	{
1955		.id     = 0x00051180,
1956		.mask	= 0x000fffff,
1957		.data	= &variant_qcom,
1958	},
1959	{ 0, 0 },
1960};
1961
1962MODULE_DEVICE_TABLE(amba, mmci_ids);
1963
1964static struct amba_driver mmci_driver = {
1965	.drv		= {
1966		.name	= DRIVER_NAME,
1967		.pm	= &mmci_dev_pm_ops,
1968	},
1969	.probe		= mmci_probe,
1970	.remove		= mmci_remove,
1971	.id_table	= mmci_ids,
1972};
1973
1974module_amba_driver(mmci_driver);
1975
1976module_param(fmax, uint, 0444);
1977
1978MODULE_DESCRIPTION("ARM PrimeCell PL180/181 Multimedia Card Interface driver");
1979MODULE_LICENSE("GPL");