Loading...
1/*
2 * linux/drivers/mmc/host/mmci.c - ARM PrimeCell MMCI PL180/1 driver
3 *
4 * Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved.
5 * Copyright (C) 2010 ST-Ericsson SA
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11#include <linux/module.h>
12#include <linux/moduleparam.h>
13#include <linux/init.h>
14#include <linux/ioport.h>
15#include <linux/device.h>
16#include <linux/interrupt.h>
17#include <linux/kernel.h>
18#include <linux/slab.h>
19#include <linux/delay.h>
20#include <linux/err.h>
21#include <linux/highmem.h>
22#include <linux/log2.h>
23#include <linux/mmc/pm.h>
24#include <linux/mmc/host.h>
25#include <linux/mmc/card.h>
26#include <linux/amba/bus.h>
27#include <linux/clk.h>
28#include <linux/scatterlist.h>
29#include <linux/gpio.h>
30#include <linux/of_gpio.h>
31#include <linux/regulator/consumer.h>
32#include <linux/dmaengine.h>
33#include <linux/dma-mapping.h>
34#include <linux/amba/mmci.h>
35#include <linux/pm_runtime.h>
36#include <linux/types.h>
37#include <linux/pinctrl/consumer.h>
38
39#include <asm/div64.h>
40#include <asm/io.h>
41#include <asm/sizes.h>
42
43#include "mmci.h"
44
45#define DRIVER_NAME "mmci-pl18x"
46
47static unsigned int fmax = 515633;
48
49/**
50 * struct variant_data - MMCI variant-specific quirks
51 * @clkreg: default value for MCICLOCK register
52 * @clkreg_enable: enable value for MMCICLOCK register
53 * @datalength_bits: number of bits in the MMCIDATALENGTH register
54 * @fifosize: number of bytes that can be written when MMCI_TXFIFOEMPTY
55 * is asserted (likewise for RX)
56 * @fifohalfsize: number of bytes that can be written when MCI_TXFIFOHALFEMPTY
57 * is asserted (likewise for RX)
58 * @sdio: variant supports SDIO
59 * @st_clkdiv: true if using a ST-specific clock divider algorithm
60 * @blksz_datactrl16: true if Block size is at b16..b30 position in datactrl register
61 * @pwrreg_powerup: power up value for MMCIPOWER register
62 * @signal_direction: input/out direction of bus signals can be indicated
63 * @pwrreg_clkgate: MMCIPOWER register must be used to gate the clock
64 * @busy_detect: true if busy detection on dat0 is supported
65 * @pwrreg_nopower: bits in MMCIPOWER don't controls ext. power supply
66 */
67struct variant_data {
68 unsigned int clkreg;
69 unsigned int clkreg_enable;
70 unsigned int datalength_bits;
71 unsigned int fifosize;
72 unsigned int fifohalfsize;
73 bool sdio;
74 bool st_clkdiv;
75 bool blksz_datactrl16;
76 u32 pwrreg_powerup;
77 bool signal_direction;
78 bool pwrreg_clkgate;
79 bool busy_detect;
80 bool pwrreg_nopower;
81};
82
83static struct variant_data variant_arm = {
84 .fifosize = 16 * 4,
85 .fifohalfsize = 8 * 4,
86 .datalength_bits = 16,
87 .pwrreg_powerup = MCI_PWR_UP,
88};
89
90static struct variant_data variant_arm_extended_fifo = {
91 .fifosize = 128 * 4,
92 .fifohalfsize = 64 * 4,
93 .datalength_bits = 16,
94 .pwrreg_powerup = MCI_PWR_UP,
95};
96
97static struct variant_data variant_arm_extended_fifo_hwfc = {
98 .fifosize = 128 * 4,
99 .fifohalfsize = 64 * 4,
100 .clkreg_enable = MCI_ARM_HWFCEN,
101 .datalength_bits = 16,
102 .pwrreg_powerup = MCI_PWR_UP,
103};
104
105static struct variant_data variant_u300 = {
106 .fifosize = 16 * 4,
107 .fifohalfsize = 8 * 4,
108 .clkreg_enable = MCI_ST_U300_HWFCEN,
109 .datalength_bits = 16,
110 .sdio = true,
111 .pwrreg_powerup = MCI_PWR_ON,
112 .signal_direction = true,
113 .pwrreg_clkgate = true,
114 .pwrreg_nopower = true,
115};
116
117static struct variant_data variant_nomadik = {
118 .fifosize = 16 * 4,
119 .fifohalfsize = 8 * 4,
120 .clkreg = MCI_CLK_ENABLE,
121 .datalength_bits = 24,
122 .sdio = true,
123 .st_clkdiv = true,
124 .pwrreg_powerup = MCI_PWR_ON,
125 .signal_direction = true,
126 .pwrreg_clkgate = true,
127 .pwrreg_nopower = true,
128};
129
130static struct variant_data variant_ux500 = {
131 .fifosize = 30 * 4,
132 .fifohalfsize = 8 * 4,
133 .clkreg = MCI_CLK_ENABLE,
134 .clkreg_enable = MCI_ST_UX500_HWFCEN,
135 .datalength_bits = 24,
136 .sdio = true,
137 .st_clkdiv = true,
138 .pwrreg_powerup = MCI_PWR_ON,
139 .signal_direction = true,
140 .pwrreg_clkgate = true,
141 .busy_detect = true,
142 .pwrreg_nopower = true,
143};
144
145static struct variant_data variant_ux500v2 = {
146 .fifosize = 30 * 4,
147 .fifohalfsize = 8 * 4,
148 .clkreg = MCI_CLK_ENABLE,
149 .clkreg_enable = MCI_ST_UX500_HWFCEN,
150 .datalength_bits = 24,
151 .sdio = true,
152 .st_clkdiv = true,
153 .blksz_datactrl16 = true,
154 .pwrreg_powerup = MCI_PWR_ON,
155 .signal_direction = true,
156 .pwrreg_clkgate = true,
157 .busy_detect = true,
158 .pwrreg_nopower = true,
159};
160
161static int mmci_card_busy(struct mmc_host *mmc)
162{
163 struct mmci_host *host = mmc_priv(mmc);
164 unsigned long flags;
165 int busy = 0;
166
167 pm_runtime_get_sync(mmc_dev(mmc));
168
169 spin_lock_irqsave(&host->lock, flags);
170 if (readl(host->base + MMCISTATUS) & MCI_ST_CARDBUSY)
171 busy = 1;
172 spin_unlock_irqrestore(&host->lock, flags);
173
174 pm_runtime_mark_last_busy(mmc_dev(mmc));
175 pm_runtime_put_autosuspend(mmc_dev(mmc));
176
177 return busy;
178}
179
180/*
181 * Validate mmc prerequisites
182 */
183static int mmci_validate_data(struct mmci_host *host,
184 struct mmc_data *data)
185{
186 if (!data)
187 return 0;
188
189 if (!is_power_of_2(data->blksz)) {
190 dev_err(mmc_dev(host->mmc),
191 "unsupported block size (%d bytes)\n", data->blksz);
192 return -EINVAL;
193 }
194
195 return 0;
196}
197
198static void mmci_reg_delay(struct mmci_host *host)
199{
200 /*
201 * According to the spec, at least three feedback clock cycles
202 * of max 52 MHz must pass between two writes to the MMCICLOCK reg.
203 * Three MCLK clock cycles must pass between two MMCIPOWER reg writes.
204 * Worst delay time during card init is at 100 kHz => 30 us.
205 * Worst delay time when up and running is at 25 MHz => 120 ns.
206 */
207 if (host->cclk < 25000000)
208 udelay(30);
209 else
210 ndelay(120);
211}
212
213/*
214 * This must be called with host->lock held
215 */
216static void mmci_write_clkreg(struct mmci_host *host, u32 clk)
217{
218 if (host->clk_reg != clk) {
219 host->clk_reg = clk;
220 writel(clk, host->base + MMCICLOCK);
221 }
222}
223
224/*
225 * This must be called with host->lock held
226 */
227static void mmci_write_pwrreg(struct mmci_host *host, u32 pwr)
228{
229 if (host->pwr_reg != pwr) {
230 host->pwr_reg = pwr;
231 writel(pwr, host->base + MMCIPOWER);
232 }
233}
234
235/*
236 * This must be called with host->lock held
237 */
238static void mmci_write_datactrlreg(struct mmci_host *host, u32 datactrl)
239{
240 /* Keep ST Micro busy mode if enabled */
241 datactrl |= host->datactrl_reg & MCI_ST_DPSM_BUSYMODE;
242
243 if (host->datactrl_reg != datactrl) {
244 host->datactrl_reg = datactrl;
245 writel(datactrl, host->base + MMCIDATACTRL);
246 }
247}
248
249/*
250 * This must be called with host->lock held
251 */
252static void mmci_set_clkreg(struct mmci_host *host, unsigned int desired)
253{
254 struct variant_data *variant = host->variant;
255 u32 clk = variant->clkreg;
256
257 /* Make sure cclk reflects the current calculated clock */
258 host->cclk = 0;
259
260 if (desired) {
261 if (desired >= host->mclk) {
262 clk = MCI_CLK_BYPASS;
263 if (variant->st_clkdiv)
264 clk |= MCI_ST_UX500_NEG_EDGE;
265 host->cclk = host->mclk;
266 } else if (variant->st_clkdiv) {
267 /*
268 * DB8500 TRM says f = mclk / (clkdiv + 2)
269 * => clkdiv = (mclk / f) - 2
270 * Round the divider up so we don't exceed the max
271 * frequency
272 */
273 clk = DIV_ROUND_UP(host->mclk, desired) - 2;
274 if (clk >= 256)
275 clk = 255;
276 host->cclk = host->mclk / (clk + 2);
277 } else {
278 /*
279 * PL180 TRM says f = mclk / (2 * (clkdiv + 1))
280 * => clkdiv = mclk / (2 * f) - 1
281 */
282 clk = host->mclk / (2 * desired) - 1;
283 if (clk >= 256)
284 clk = 255;
285 host->cclk = host->mclk / (2 * (clk + 1));
286 }
287
288 clk |= variant->clkreg_enable;
289 clk |= MCI_CLK_ENABLE;
290 /* This hasn't proven to be worthwhile */
291 /* clk |= MCI_CLK_PWRSAVE; */
292 }
293
294 /* Set actual clock for debug */
295 host->mmc->actual_clock = host->cclk;
296
297 if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4)
298 clk |= MCI_4BIT_BUS;
299 if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8)
300 clk |= MCI_ST_8BIT_BUS;
301
302 if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50)
303 clk |= MCI_ST_UX500_NEG_EDGE;
304
305 mmci_write_clkreg(host, clk);
306}
307
308static void
309mmci_request_end(struct mmci_host *host, struct mmc_request *mrq)
310{
311 writel(0, host->base + MMCICOMMAND);
312
313 BUG_ON(host->data);
314
315 host->mrq = NULL;
316 host->cmd = NULL;
317
318 mmc_request_done(host->mmc, mrq);
319
320 pm_runtime_mark_last_busy(mmc_dev(host->mmc));
321 pm_runtime_put_autosuspend(mmc_dev(host->mmc));
322}
323
324static void mmci_set_mask1(struct mmci_host *host, unsigned int mask)
325{
326 void __iomem *base = host->base;
327
328 if (host->singleirq) {
329 unsigned int mask0 = readl(base + MMCIMASK0);
330
331 mask0 &= ~MCI_IRQ1MASK;
332 mask0 |= mask;
333
334 writel(mask0, base + MMCIMASK0);
335 }
336
337 writel(mask, base + MMCIMASK1);
338}
339
340static void mmci_stop_data(struct mmci_host *host)
341{
342 mmci_write_datactrlreg(host, 0);
343 mmci_set_mask1(host, 0);
344 host->data = NULL;
345}
346
347static void mmci_init_sg(struct mmci_host *host, struct mmc_data *data)
348{
349 unsigned int flags = SG_MITER_ATOMIC;
350
351 if (data->flags & MMC_DATA_READ)
352 flags |= SG_MITER_TO_SG;
353 else
354 flags |= SG_MITER_FROM_SG;
355
356 sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
357}
358
359/*
360 * All the DMA operation mode stuff goes inside this ifdef.
361 * This assumes that you have a generic DMA device interface,
362 * no custom DMA interfaces are supported.
363 */
364#ifdef CONFIG_DMA_ENGINE
365static void mmci_dma_setup(struct mmci_host *host)
366{
367 struct mmci_platform_data *plat = host->plat;
368 const char *rxname, *txname;
369 dma_cap_mask_t mask;
370
371 host->dma_rx_channel = dma_request_slave_channel(mmc_dev(host->mmc), "rx");
372 host->dma_tx_channel = dma_request_slave_channel(mmc_dev(host->mmc), "tx");
373
374 /* initialize pre request cookie */
375 host->next_data.cookie = 1;
376
377 /* Try to acquire a generic DMA engine slave channel */
378 dma_cap_zero(mask);
379 dma_cap_set(DMA_SLAVE, mask);
380
381 if (plat && plat->dma_filter) {
382 if (!host->dma_rx_channel && plat->dma_rx_param) {
383 host->dma_rx_channel = dma_request_channel(mask,
384 plat->dma_filter,
385 plat->dma_rx_param);
386 /* E.g if no DMA hardware is present */
387 if (!host->dma_rx_channel)
388 dev_err(mmc_dev(host->mmc), "no RX DMA channel\n");
389 }
390
391 if (!host->dma_tx_channel && plat->dma_tx_param) {
392 host->dma_tx_channel = dma_request_channel(mask,
393 plat->dma_filter,
394 plat->dma_tx_param);
395 if (!host->dma_tx_channel)
396 dev_warn(mmc_dev(host->mmc), "no TX DMA channel\n");
397 }
398 }
399
400 /*
401 * If only an RX channel is specified, the driver will
402 * attempt to use it bidirectionally, however if it is
403 * is specified but cannot be located, DMA will be disabled.
404 */
405 if (host->dma_rx_channel && !host->dma_tx_channel)
406 host->dma_tx_channel = host->dma_rx_channel;
407
408 if (host->dma_rx_channel)
409 rxname = dma_chan_name(host->dma_rx_channel);
410 else
411 rxname = "none";
412
413 if (host->dma_tx_channel)
414 txname = dma_chan_name(host->dma_tx_channel);
415 else
416 txname = "none";
417
418 dev_info(mmc_dev(host->mmc), "DMA channels RX %s, TX %s\n",
419 rxname, txname);
420
421 /*
422 * Limit the maximum segment size in any SG entry according to
423 * the parameters of the DMA engine device.
424 */
425 if (host->dma_tx_channel) {
426 struct device *dev = host->dma_tx_channel->device->dev;
427 unsigned int max_seg_size = dma_get_max_seg_size(dev);
428
429 if (max_seg_size < host->mmc->max_seg_size)
430 host->mmc->max_seg_size = max_seg_size;
431 }
432 if (host->dma_rx_channel) {
433 struct device *dev = host->dma_rx_channel->device->dev;
434 unsigned int max_seg_size = dma_get_max_seg_size(dev);
435
436 if (max_seg_size < host->mmc->max_seg_size)
437 host->mmc->max_seg_size = max_seg_size;
438 }
439}
440
441/*
442 * This is used in or so inline it
443 * so it can be discarded.
444 */
445static inline void mmci_dma_release(struct mmci_host *host)
446{
447 struct mmci_platform_data *plat = host->plat;
448
449 if (host->dma_rx_channel)
450 dma_release_channel(host->dma_rx_channel);
451 if (host->dma_tx_channel && plat->dma_tx_param)
452 dma_release_channel(host->dma_tx_channel);
453 host->dma_rx_channel = host->dma_tx_channel = NULL;
454}
455
456static void mmci_dma_data_error(struct mmci_host *host)
457{
458 dev_err(mmc_dev(host->mmc), "error during DMA transfer!\n");
459 dmaengine_terminate_all(host->dma_current);
460 host->dma_current = NULL;
461 host->dma_desc_current = NULL;
462 host->data->host_cookie = 0;
463}
464
465static void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
466{
467 struct dma_chan *chan;
468 enum dma_data_direction dir;
469
470 if (data->flags & MMC_DATA_READ) {
471 dir = DMA_FROM_DEVICE;
472 chan = host->dma_rx_channel;
473 } else {
474 dir = DMA_TO_DEVICE;
475 chan = host->dma_tx_channel;
476 }
477
478 dma_unmap_sg(chan->device->dev, data->sg, data->sg_len, dir);
479}
480
481static void mmci_dma_finalize(struct mmci_host *host, struct mmc_data *data)
482{
483 u32 status;
484 int i;
485
486 /* Wait up to 1ms for the DMA to complete */
487 for (i = 0; ; i++) {
488 status = readl(host->base + MMCISTATUS);
489 if (!(status & MCI_RXDATAAVLBLMASK) || i >= 100)
490 break;
491 udelay(10);
492 }
493
494 /*
495 * Check to see whether we still have some data left in the FIFO -
496 * this catches DMA controllers which are unable to monitor the
497 * DMALBREQ and DMALSREQ signals while allowing us to DMA to non-
498 * contiguous buffers. On TX, we'll get a FIFO underrun error.
499 */
500 if (status & MCI_RXDATAAVLBLMASK) {
501 mmci_dma_data_error(host);
502 if (!data->error)
503 data->error = -EIO;
504 }
505
506 if (!data->host_cookie)
507 mmci_dma_unmap(host, data);
508
509 /*
510 * Use of DMA with scatter-gather is impossible.
511 * Give up with DMA and switch back to PIO mode.
512 */
513 if (status & MCI_RXDATAAVLBLMASK) {
514 dev_err(mmc_dev(host->mmc), "buggy DMA detected. Taking evasive action.\n");
515 mmci_dma_release(host);
516 }
517
518 host->dma_current = NULL;
519 host->dma_desc_current = NULL;
520}
521
522/* prepares DMA channel and DMA descriptor, returns non-zero on failure */
523static int __mmci_dma_prep_data(struct mmci_host *host, struct mmc_data *data,
524 struct dma_chan **dma_chan,
525 struct dma_async_tx_descriptor **dma_desc)
526{
527 struct variant_data *variant = host->variant;
528 struct dma_slave_config conf = {
529 .src_addr = host->phybase + MMCIFIFO,
530 .dst_addr = host->phybase + MMCIFIFO,
531 .src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
532 .dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
533 .src_maxburst = variant->fifohalfsize >> 2, /* # of words */
534 .dst_maxburst = variant->fifohalfsize >> 2, /* # of words */
535 .device_fc = false,
536 };
537 struct dma_chan *chan;
538 struct dma_device *device;
539 struct dma_async_tx_descriptor *desc;
540 enum dma_data_direction buffer_dirn;
541 int nr_sg;
542
543 if (data->flags & MMC_DATA_READ) {
544 conf.direction = DMA_DEV_TO_MEM;
545 buffer_dirn = DMA_FROM_DEVICE;
546 chan = host->dma_rx_channel;
547 } else {
548 conf.direction = DMA_MEM_TO_DEV;
549 buffer_dirn = DMA_TO_DEVICE;
550 chan = host->dma_tx_channel;
551 }
552
553 /* If there's no DMA channel, fall back to PIO */
554 if (!chan)
555 return -EINVAL;
556
557 /* If less than or equal to the fifo size, don't bother with DMA */
558 if (data->blksz * data->blocks <= variant->fifosize)
559 return -EINVAL;
560
561 device = chan->device;
562 nr_sg = dma_map_sg(device->dev, data->sg, data->sg_len, buffer_dirn);
563 if (nr_sg == 0)
564 return -EINVAL;
565
566 dmaengine_slave_config(chan, &conf);
567 desc = dmaengine_prep_slave_sg(chan, data->sg, nr_sg,
568 conf.direction, DMA_CTRL_ACK);
569 if (!desc)
570 goto unmap_exit;
571
572 *dma_chan = chan;
573 *dma_desc = desc;
574
575 return 0;
576
577 unmap_exit:
578 dma_unmap_sg(device->dev, data->sg, data->sg_len, buffer_dirn);
579 return -ENOMEM;
580}
581
582static inline int mmci_dma_prep_data(struct mmci_host *host,
583 struct mmc_data *data)
584{
585 /* Check if next job is already prepared. */
586 if (host->dma_current && host->dma_desc_current)
587 return 0;
588
589 /* No job were prepared thus do it now. */
590 return __mmci_dma_prep_data(host, data, &host->dma_current,
591 &host->dma_desc_current);
592}
593
594static inline int mmci_dma_prep_next(struct mmci_host *host,
595 struct mmc_data *data)
596{
597 struct mmci_host_next *nd = &host->next_data;
598 return __mmci_dma_prep_data(host, data, &nd->dma_chan, &nd->dma_desc);
599}
600
601static int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
602{
603 int ret;
604 struct mmc_data *data = host->data;
605
606 ret = mmci_dma_prep_data(host, host->data);
607 if (ret)
608 return ret;
609
610 /* Okay, go for it. */
611 dev_vdbg(mmc_dev(host->mmc),
612 "Submit MMCI DMA job, sglen %d blksz %04x blks %04x flags %08x\n",
613 data->sg_len, data->blksz, data->blocks, data->flags);
614 dmaengine_submit(host->dma_desc_current);
615 dma_async_issue_pending(host->dma_current);
616
617 datactrl |= MCI_DPSM_DMAENABLE;
618
619 /* Trigger the DMA transfer */
620 mmci_write_datactrlreg(host, datactrl);
621
622 /*
623 * Let the MMCI say when the data is ended and it's time
624 * to fire next DMA request. When that happens, MMCI will
625 * call mmci_data_end()
626 */
627 writel(readl(host->base + MMCIMASK0) | MCI_DATAENDMASK,
628 host->base + MMCIMASK0);
629 return 0;
630}
631
632static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
633{
634 struct mmci_host_next *next = &host->next_data;
635
636 WARN_ON(data->host_cookie && data->host_cookie != next->cookie);
637 WARN_ON(!data->host_cookie && (next->dma_desc || next->dma_chan));
638
639 host->dma_desc_current = next->dma_desc;
640 host->dma_current = next->dma_chan;
641 next->dma_desc = NULL;
642 next->dma_chan = NULL;
643}
644
645static void mmci_pre_request(struct mmc_host *mmc, struct mmc_request *mrq,
646 bool is_first_req)
647{
648 struct mmci_host *host = mmc_priv(mmc);
649 struct mmc_data *data = mrq->data;
650 struct mmci_host_next *nd = &host->next_data;
651
652 if (!data)
653 return;
654
655 BUG_ON(data->host_cookie);
656
657 if (mmci_validate_data(host, data))
658 return;
659
660 if (!mmci_dma_prep_next(host, data))
661 data->host_cookie = ++nd->cookie < 0 ? 1 : nd->cookie;
662}
663
664static void mmci_post_request(struct mmc_host *mmc, struct mmc_request *mrq,
665 int err)
666{
667 struct mmci_host *host = mmc_priv(mmc);
668 struct mmc_data *data = mrq->data;
669
670 if (!data || !data->host_cookie)
671 return;
672
673 mmci_dma_unmap(host, data);
674
675 if (err) {
676 struct mmci_host_next *next = &host->next_data;
677 struct dma_chan *chan;
678 if (data->flags & MMC_DATA_READ)
679 chan = host->dma_rx_channel;
680 else
681 chan = host->dma_tx_channel;
682 dmaengine_terminate_all(chan);
683
684 next->dma_desc = NULL;
685 next->dma_chan = NULL;
686 }
687}
688
689#else
690/* Blank functions if the DMA engine is not available */
691static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
692{
693}
694static inline void mmci_dma_setup(struct mmci_host *host)
695{
696}
697
698static inline void mmci_dma_release(struct mmci_host *host)
699{
700}
701
702static inline void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
703{
704}
705
706static inline void mmci_dma_finalize(struct mmci_host *host,
707 struct mmc_data *data)
708{
709}
710
711static inline void mmci_dma_data_error(struct mmci_host *host)
712{
713}
714
715static inline int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
716{
717 return -ENOSYS;
718}
719
720#define mmci_pre_request NULL
721#define mmci_post_request NULL
722
723#endif
724
725static void mmci_start_data(struct mmci_host *host, struct mmc_data *data)
726{
727 struct variant_data *variant = host->variant;
728 unsigned int datactrl, timeout, irqmask;
729 unsigned long long clks;
730 void __iomem *base;
731 int blksz_bits;
732
733 dev_dbg(mmc_dev(host->mmc), "blksz %04x blks %04x flags %08x\n",
734 data->blksz, data->blocks, data->flags);
735
736 host->data = data;
737 host->size = data->blksz * data->blocks;
738 data->bytes_xfered = 0;
739
740 clks = (unsigned long long)data->timeout_ns * host->cclk;
741 do_div(clks, 1000000000UL);
742
743 timeout = data->timeout_clks + (unsigned int)clks;
744
745 base = host->base;
746 writel(timeout, base + MMCIDATATIMER);
747 writel(host->size, base + MMCIDATALENGTH);
748
749 blksz_bits = ffs(data->blksz) - 1;
750 BUG_ON(1 << blksz_bits != data->blksz);
751
752 if (variant->blksz_datactrl16)
753 datactrl = MCI_DPSM_ENABLE | (data->blksz << 16);
754 else
755 datactrl = MCI_DPSM_ENABLE | blksz_bits << 4;
756
757 if (data->flags & MMC_DATA_READ)
758 datactrl |= MCI_DPSM_DIRECTION;
759
760 /* The ST Micro variants has a special bit to enable SDIO */
761 if (variant->sdio && host->mmc->card)
762 if (mmc_card_sdio(host->mmc->card)) {
763 /*
764 * The ST Micro variants has a special bit
765 * to enable SDIO.
766 */
767 u32 clk;
768
769 datactrl |= MCI_ST_DPSM_SDIOEN;
770
771 /*
772 * The ST Micro variant for SDIO small write transfers
773 * needs to have clock H/W flow control disabled,
774 * otherwise the transfer will not start. The threshold
775 * depends on the rate of MCLK.
776 */
777 if (data->flags & MMC_DATA_WRITE &&
778 (host->size < 8 ||
779 (host->size <= 8 && host->mclk > 50000000)))
780 clk = host->clk_reg & ~variant->clkreg_enable;
781 else
782 clk = host->clk_reg | variant->clkreg_enable;
783
784 mmci_write_clkreg(host, clk);
785 }
786
787 if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50)
788 datactrl |= MCI_ST_DPSM_DDRMODE;
789
790 /*
791 * Attempt to use DMA operation mode, if this
792 * should fail, fall back to PIO mode
793 */
794 if (!mmci_dma_start_data(host, datactrl))
795 return;
796
797 /* IRQ mode, map the SG list for CPU reading/writing */
798 mmci_init_sg(host, data);
799
800 if (data->flags & MMC_DATA_READ) {
801 irqmask = MCI_RXFIFOHALFFULLMASK;
802
803 /*
804 * If we have less than the fifo 'half-full' threshold to
805 * transfer, trigger a PIO interrupt as soon as any data
806 * is available.
807 */
808 if (host->size < variant->fifohalfsize)
809 irqmask |= MCI_RXDATAAVLBLMASK;
810 } else {
811 /*
812 * We don't actually need to include "FIFO empty" here
813 * since its implicit in "FIFO half empty".
814 */
815 irqmask = MCI_TXFIFOHALFEMPTYMASK;
816 }
817
818 mmci_write_datactrlreg(host, datactrl);
819 writel(readl(base + MMCIMASK0) & ~MCI_DATAENDMASK, base + MMCIMASK0);
820 mmci_set_mask1(host, irqmask);
821}
822
823static void
824mmci_start_command(struct mmci_host *host, struct mmc_command *cmd, u32 c)
825{
826 void __iomem *base = host->base;
827
828 dev_dbg(mmc_dev(host->mmc), "op %02x arg %08x flags %08x\n",
829 cmd->opcode, cmd->arg, cmd->flags);
830
831 if (readl(base + MMCICOMMAND) & MCI_CPSM_ENABLE) {
832 writel(0, base + MMCICOMMAND);
833 udelay(1);
834 }
835
836 c |= cmd->opcode | MCI_CPSM_ENABLE;
837 if (cmd->flags & MMC_RSP_PRESENT) {
838 if (cmd->flags & MMC_RSP_136)
839 c |= MCI_CPSM_LONGRSP;
840 c |= MCI_CPSM_RESPONSE;
841 }
842 if (/*interrupt*/0)
843 c |= MCI_CPSM_INTERRUPT;
844
845 host->cmd = cmd;
846
847 writel(cmd->arg, base + MMCIARGUMENT);
848 writel(c, base + MMCICOMMAND);
849}
850
851static void
852mmci_data_irq(struct mmci_host *host, struct mmc_data *data,
853 unsigned int status)
854{
855 /* First check for errors */
856 if (status & (MCI_DATACRCFAIL|MCI_DATATIMEOUT|MCI_STARTBITERR|
857 MCI_TXUNDERRUN|MCI_RXOVERRUN)) {
858 u32 remain, success;
859
860 /* Terminate the DMA transfer */
861 if (dma_inprogress(host)) {
862 mmci_dma_data_error(host);
863 mmci_dma_unmap(host, data);
864 }
865
866 /*
867 * Calculate how far we are into the transfer. Note that
868 * the data counter gives the number of bytes transferred
869 * on the MMC bus, not on the host side. On reads, this
870 * can be as much as a FIFO-worth of data ahead. This
871 * matters for FIFO overruns only.
872 */
873 remain = readl(host->base + MMCIDATACNT);
874 success = data->blksz * data->blocks - remain;
875
876 dev_dbg(mmc_dev(host->mmc), "MCI ERROR IRQ, status 0x%08x at 0x%08x\n",
877 status, success);
878 if (status & MCI_DATACRCFAIL) {
879 /* Last block was not successful */
880 success -= 1;
881 data->error = -EILSEQ;
882 } else if (status & MCI_DATATIMEOUT) {
883 data->error = -ETIMEDOUT;
884 } else if (status & MCI_STARTBITERR) {
885 data->error = -ECOMM;
886 } else if (status & MCI_TXUNDERRUN) {
887 data->error = -EIO;
888 } else if (status & MCI_RXOVERRUN) {
889 if (success > host->variant->fifosize)
890 success -= host->variant->fifosize;
891 else
892 success = 0;
893 data->error = -EIO;
894 }
895 data->bytes_xfered = round_down(success, data->blksz);
896 }
897
898 if (status & MCI_DATABLOCKEND)
899 dev_err(mmc_dev(host->mmc), "stray MCI_DATABLOCKEND interrupt\n");
900
901 if (status & MCI_DATAEND || data->error) {
902 if (dma_inprogress(host))
903 mmci_dma_finalize(host, data);
904 mmci_stop_data(host);
905
906 if (!data->error)
907 /* The error clause is handled above, success! */
908 data->bytes_xfered = data->blksz * data->blocks;
909
910 if (!data->stop || host->mrq->sbc) {
911 mmci_request_end(host, data->mrq);
912 } else {
913 mmci_start_command(host, data->stop, 0);
914 }
915 }
916}
917
918static void
919mmci_cmd_irq(struct mmci_host *host, struct mmc_command *cmd,
920 unsigned int status)
921{
922 void __iomem *base = host->base;
923 bool sbc = (cmd == host->mrq->sbc);
924 bool busy_resp = host->variant->busy_detect &&
925 (cmd->flags & MMC_RSP_BUSY);
926
927 /* Check if we need to wait for busy completion. */
928 if (host->busy_status && (status & MCI_ST_CARDBUSY))
929 return;
930
931 /* Enable busy completion if needed and supported. */
932 if (!host->busy_status && busy_resp &&
933 !(status & (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT)) &&
934 (readl(base + MMCISTATUS) & MCI_ST_CARDBUSY)) {
935 writel(readl(base + MMCIMASK0) | MCI_ST_BUSYEND,
936 base + MMCIMASK0);
937 host->busy_status = status & (MCI_CMDSENT|MCI_CMDRESPEND);
938 return;
939 }
940
941 /* At busy completion, mask the IRQ and complete the request. */
942 if (host->busy_status) {
943 writel(readl(base + MMCIMASK0) & ~MCI_ST_BUSYEND,
944 base + MMCIMASK0);
945 host->busy_status = 0;
946 }
947
948 host->cmd = NULL;
949
950 if (status & MCI_CMDTIMEOUT) {
951 cmd->error = -ETIMEDOUT;
952 } else if (status & MCI_CMDCRCFAIL && cmd->flags & MMC_RSP_CRC) {
953 cmd->error = -EILSEQ;
954 } else {
955 cmd->resp[0] = readl(base + MMCIRESPONSE0);
956 cmd->resp[1] = readl(base + MMCIRESPONSE1);
957 cmd->resp[2] = readl(base + MMCIRESPONSE2);
958 cmd->resp[3] = readl(base + MMCIRESPONSE3);
959 }
960
961 if ((!sbc && !cmd->data) || cmd->error) {
962 if (host->data) {
963 /* Terminate the DMA transfer */
964 if (dma_inprogress(host)) {
965 mmci_dma_data_error(host);
966 mmci_dma_unmap(host, host->data);
967 }
968 mmci_stop_data(host);
969 }
970 mmci_request_end(host, host->mrq);
971 } else if (sbc) {
972 mmci_start_command(host, host->mrq->cmd, 0);
973 } else if (!(cmd->data->flags & MMC_DATA_READ)) {
974 mmci_start_data(host, cmd->data);
975 }
976}
977
978static int mmci_pio_read(struct mmci_host *host, char *buffer, unsigned int remain)
979{
980 void __iomem *base = host->base;
981 char *ptr = buffer;
982 u32 status;
983 int host_remain = host->size;
984
985 do {
986 int count = host_remain - (readl(base + MMCIFIFOCNT) << 2);
987
988 if (count > remain)
989 count = remain;
990
991 if (count <= 0)
992 break;
993
994 /*
995 * SDIO especially may want to send something that is
996 * not divisible by 4 (as opposed to card sectors
997 * etc). Therefore make sure to always read the last bytes
998 * while only doing full 32-bit reads towards the FIFO.
999 */
1000 if (unlikely(count & 0x3)) {
1001 if (count < 4) {
1002 unsigned char buf[4];
1003 ioread32_rep(base + MMCIFIFO, buf, 1);
1004 memcpy(ptr, buf, count);
1005 } else {
1006 ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1007 count &= ~0x3;
1008 }
1009 } else {
1010 ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1011 }
1012
1013 ptr += count;
1014 remain -= count;
1015 host_remain -= count;
1016
1017 if (remain == 0)
1018 break;
1019
1020 status = readl(base + MMCISTATUS);
1021 } while (status & MCI_RXDATAAVLBL);
1022
1023 return ptr - buffer;
1024}
1025
1026static int mmci_pio_write(struct mmci_host *host, char *buffer, unsigned int remain, u32 status)
1027{
1028 struct variant_data *variant = host->variant;
1029 void __iomem *base = host->base;
1030 char *ptr = buffer;
1031
1032 do {
1033 unsigned int count, maxcnt;
1034
1035 maxcnt = status & MCI_TXFIFOEMPTY ?
1036 variant->fifosize : variant->fifohalfsize;
1037 count = min(remain, maxcnt);
1038
1039 /*
1040 * SDIO especially may want to send something that is
1041 * not divisible by 4 (as opposed to card sectors
1042 * etc), and the FIFO only accept full 32-bit writes.
1043 * So compensate by adding +3 on the count, a single
1044 * byte become a 32bit write, 7 bytes will be two
1045 * 32bit writes etc.
1046 */
1047 iowrite32_rep(base + MMCIFIFO, ptr, (count + 3) >> 2);
1048
1049 ptr += count;
1050 remain -= count;
1051
1052 if (remain == 0)
1053 break;
1054
1055 status = readl(base + MMCISTATUS);
1056 } while (status & MCI_TXFIFOHALFEMPTY);
1057
1058 return ptr - buffer;
1059}
1060
1061/*
1062 * PIO data transfer IRQ handler.
1063 */
1064static irqreturn_t mmci_pio_irq(int irq, void *dev_id)
1065{
1066 struct mmci_host *host = dev_id;
1067 struct sg_mapping_iter *sg_miter = &host->sg_miter;
1068 struct variant_data *variant = host->variant;
1069 void __iomem *base = host->base;
1070 unsigned long flags;
1071 u32 status;
1072
1073 status = readl(base + MMCISTATUS);
1074
1075 dev_dbg(mmc_dev(host->mmc), "irq1 (pio) %08x\n", status);
1076
1077 local_irq_save(flags);
1078
1079 do {
1080 unsigned int remain, len;
1081 char *buffer;
1082
1083 /*
1084 * For write, we only need to test the half-empty flag
1085 * here - if the FIFO is completely empty, then by
1086 * definition it is more than half empty.
1087 *
1088 * For read, check for data available.
1089 */
1090 if (!(status & (MCI_TXFIFOHALFEMPTY|MCI_RXDATAAVLBL)))
1091 break;
1092
1093 if (!sg_miter_next(sg_miter))
1094 break;
1095
1096 buffer = sg_miter->addr;
1097 remain = sg_miter->length;
1098
1099 len = 0;
1100 if (status & MCI_RXACTIVE)
1101 len = mmci_pio_read(host, buffer, remain);
1102 if (status & MCI_TXACTIVE)
1103 len = mmci_pio_write(host, buffer, remain, status);
1104
1105 sg_miter->consumed = len;
1106
1107 host->size -= len;
1108 remain -= len;
1109
1110 if (remain)
1111 break;
1112
1113 status = readl(base + MMCISTATUS);
1114 } while (1);
1115
1116 sg_miter_stop(sg_miter);
1117
1118 local_irq_restore(flags);
1119
1120 /*
1121 * If we have less than the fifo 'half-full' threshold to transfer,
1122 * trigger a PIO interrupt as soon as any data is available.
1123 */
1124 if (status & MCI_RXACTIVE && host->size < variant->fifohalfsize)
1125 mmci_set_mask1(host, MCI_RXDATAAVLBLMASK);
1126
1127 /*
1128 * If we run out of data, disable the data IRQs; this
1129 * prevents a race where the FIFO becomes empty before
1130 * the chip itself has disabled the data path, and
1131 * stops us racing with our data end IRQ.
1132 */
1133 if (host->size == 0) {
1134 mmci_set_mask1(host, 0);
1135 writel(readl(base + MMCIMASK0) | MCI_DATAENDMASK, base + MMCIMASK0);
1136 }
1137
1138 return IRQ_HANDLED;
1139}
1140
1141/*
1142 * Handle completion of command and data transfers.
1143 */
1144static irqreturn_t mmci_irq(int irq, void *dev_id)
1145{
1146 struct mmci_host *host = dev_id;
1147 u32 status;
1148 int ret = 0;
1149
1150 spin_lock(&host->lock);
1151
1152 do {
1153 struct mmc_command *cmd;
1154 struct mmc_data *data;
1155
1156 status = readl(host->base + MMCISTATUS);
1157
1158 if (host->singleirq) {
1159 if (status & readl(host->base + MMCIMASK1))
1160 mmci_pio_irq(irq, dev_id);
1161
1162 status &= ~MCI_IRQ1MASK;
1163 }
1164
1165 /*
1166 * We intentionally clear the MCI_ST_CARDBUSY IRQ here (if it's
1167 * enabled) since the HW seems to be triggering the IRQ on both
1168 * edges while monitoring DAT0 for busy completion.
1169 */
1170 status &= readl(host->base + MMCIMASK0);
1171 writel(status, host->base + MMCICLEAR);
1172
1173 dev_dbg(mmc_dev(host->mmc), "irq0 (data+cmd) %08x\n", status);
1174
1175 cmd = host->cmd;
1176 if ((status|host->busy_status) & (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT|
1177 MCI_CMDSENT|MCI_CMDRESPEND) && cmd)
1178 mmci_cmd_irq(host, cmd, status);
1179
1180 data = host->data;
1181 if (status & (MCI_DATACRCFAIL|MCI_DATATIMEOUT|MCI_STARTBITERR|
1182 MCI_TXUNDERRUN|MCI_RXOVERRUN|MCI_DATAEND|
1183 MCI_DATABLOCKEND) && data)
1184 mmci_data_irq(host, data, status);
1185
1186 /* Don't poll for busy completion in irq context. */
1187 if (host->busy_status)
1188 status &= ~MCI_ST_CARDBUSY;
1189
1190 ret = 1;
1191 } while (status);
1192
1193 spin_unlock(&host->lock);
1194
1195 return IRQ_RETVAL(ret);
1196}
1197
1198static void mmci_request(struct mmc_host *mmc, struct mmc_request *mrq)
1199{
1200 struct mmci_host *host = mmc_priv(mmc);
1201 unsigned long flags;
1202
1203 WARN_ON(host->mrq != NULL);
1204
1205 mrq->cmd->error = mmci_validate_data(host, mrq->data);
1206 if (mrq->cmd->error) {
1207 mmc_request_done(mmc, mrq);
1208 return;
1209 }
1210
1211 pm_runtime_get_sync(mmc_dev(mmc));
1212
1213 spin_lock_irqsave(&host->lock, flags);
1214
1215 host->mrq = mrq;
1216
1217 if (mrq->data)
1218 mmci_get_next_data(host, mrq->data);
1219
1220 if (mrq->data && mrq->data->flags & MMC_DATA_READ)
1221 mmci_start_data(host, mrq->data);
1222
1223 if (mrq->sbc)
1224 mmci_start_command(host, mrq->sbc, 0);
1225 else
1226 mmci_start_command(host, mrq->cmd, 0);
1227
1228 spin_unlock_irqrestore(&host->lock, flags);
1229}
1230
1231static void mmci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1232{
1233 struct mmci_host *host = mmc_priv(mmc);
1234 struct variant_data *variant = host->variant;
1235 u32 pwr = 0;
1236 unsigned long flags;
1237 int ret;
1238
1239 pm_runtime_get_sync(mmc_dev(mmc));
1240
1241 if (host->plat->ios_handler &&
1242 host->plat->ios_handler(mmc_dev(mmc), ios))
1243 dev_err(mmc_dev(mmc), "platform ios_handler failed\n");
1244
1245 switch (ios->power_mode) {
1246 case MMC_POWER_OFF:
1247 if (!IS_ERR(mmc->supply.vmmc))
1248 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1249
1250 if (!IS_ERR(mmc->supply.vqmmc) && host->vqmmc_enabled) {
1251 regulator_disable(mmc->supply.vqmmc);
1252 host->vqmmc_enabled = false;
1253 }
1254
1255 break;
1256 case MMC_POWER_UP:
1257 if (!IS_ERR(mmc->supply.vmmc))
1258 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
1259
1260 /*
1261 * The ST Micro variant doesn't have the PL180s MCI_PWR_UP
1262 * and instead uses MCI_PWR_ON so apply whatever value is
1263 * configured in the variant data.
1264 */
1265 pwr |= variant->pwrreg_powerup;
1266
1267 break;
1268 case MMC_POWER_ON:
1269 if (!IS_ERR(mmc->supply.vqmmc) && !host->vqmmc_enabled) {
1270 ret = regulator_enable(mmc->supply.vqmmc);
1271 if (ret < 0)
1272 dev_err(mmc_dev(mmc),
1273 "failed to enable vqmmc regulator\n");
1274 else
1275 host->vqmmc_enabled = true;
1276 }
1277
1278 pwr |= MCI_PWR_ON;
1279 break;
1280 }
1281
1282 if (variant->signal_direction && ios->power_mode != MMC_POWER_OFF) {
1283 /*
1284 * The ST Micro variant has some additional bits
1285 * indicating signal direction for the signals in
1286 * the SD/MMC bus and feedback-clock usage.
1287 */
1288 pwr |= host->plat->sigdir;
1289
1290 if (ios->bus_width == MMC_BUS_WIDTH_4)
1291 pwr &= ~MCI_ST_DATA74DIREN;
1292 else if (ios->bus_width == MMC_BUS_WIDTH_1)
1293 pwr &= (~MCI_ST_DATA74DIREN &
1294 ~MCI_ST_DATA31DIREN &
1295 ~MCI_ST_DATA2DIREN);
1296 }
1297
1298 if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN) {
1299 if (host->hw_designer != AMBA_VENDOR_ST)
1300 pwr |= MCI_ROD;
1301 else {
1302 /*
1303 * The ST Micro variant use the ROD bit for something
1304 * else and only has OD (Open Drain).
1305 */
1306 pwr |= MCI_OD;
1307 }
1308 }
1309
1310 /*
1311 * If clock = 0 and the variant requires the MMCIPOWER to be used for
1312 * gating the clock, the MCI_PWR_ON bit is cleared.
1313 */
1314 if (!ios->clock && variant->pwrreg_clkgate)
1315 pwr &= ~MCI_PWR_ON;
1316
1317 spin_lock_irqsave(&host->lock, flags);
1318
1319 mmci_set_clkreg(host, ios->clock);
1320 mmci_write_pwrreg(host, pwr);
1321 mmci_reg_delay(host);
1322
1323 spin_unlock_irqrestore(&host->lock, flags);
1324
1325 pm_runtime_mark_last_busy(mmc_dev(mmc));
1326 pm_runtime_put_autosuspend(mmc_dev(mmc));
1327}
1328
1329static int mmci_get_ro(struct mmc_host *mmc)
1330{
1331 struct mmci_host *host = mmc_priv(mmc);
1332
1333 if (host->gpio_wp == -ENOSYS)
1334 return -ENOSYS;
1335
1336 return gpio_get_value_cansleep(host->gpio_wp);
1337}
1338
1339static int mmci_get_cd(struct mmc_host *mmc)
1340{
1341 struct mmci_host *host = mmc_priv(mmc);
1342 struct mmci_platform_data *plat = host->plat;
1343 unsigned int status;
1344
1345 if (host->gpio_cd == -ENOSYS) {
1346 if (!plat->status)
1347 return 1; /* Assume always present */
1348
1349 status = plat->status(mmc_dev(host->mmc));
1350 } else
1351 status = !!gpio_get_value_cansleep(host->gpio_cd)
1352 ^ plat->cd_invert;
1353
1354 /*
1355 * Use positive logic throughout - status is zero for no card,
1356 * non-zero for card inserted.
1357 */
1358 return status;
1359}
1360
1361static int mmci_sig_volt_switch(struct mmc_host *mmc, struct mmc_ios *ios)
1362{
1363 int ret = 0;
1364
1365 if (!IS_ERR(mmc->supply.vqmmc)) {
1366
1367 pm_runtime_get_sync(mmc_dev(mmc));
1368
1369 switch (ios->signal_voltage) {
1370 case MMC_SIGNAL_VOLTAGE_330:
1371 ret = regulator_set_voltage(mmc->supply.vqmmc,
1372 2700000, 3600000);
1373 break;
1374 case MMC_SIGNAL_VOLTAGE_180:
1375 ret = regulator_set_voltage(mmc->supply.vqmmc,
1376 1700000, 1950000);
1377 break;
1378 case MMC_SIGNAL_VOLTAGE_120:
1379 ret = regulator_set_voltage(mmc->supply.vqmmc,
1380 1100000, 1300000);
1381 break;
1382 }
1383
1384 if (ret)
1385 dev_warn(mmc_dev(mmc), "Voltage switch failed\n");
1386
1387 pm_runtime_mark_last_busy(mmc_dev(mmc));
1388 pm_runtime_put_autosuspend(mmc_dev(mmc));
1389 }
1390
1391 return ret;
1392}
1393
1394static irqreturn_t mmci_cd_irq(int irq, void *dev_id)
1395{
1396 struct mmci_host *host = dev_id;
1397
1398 mmc_detect_change(host->mmc, msecs_to_jiffies(500));
1399
1400 return IRQ_HANDLED;
1401}
1402
1403static struct mmc_host_ops mmci_ops = {
1404 .request = mmci_request,
1405 .pre_req = mmci_pre_request,
1406 .post_req = mmci_post_request,
1407 .set_ios = mmci_set_ios,
1408 .get_ro = mmci_get_ro,
1409 .get_cd = mmci_get_cd,
1410 .start_signal_voltage_switch = mmci_sig_volt_switch,
1411};
1412
1413#ifdef CONFIG_OF
1414static void mmci_dt_populate_generic_pdata(struct device_node *np,
1415 struct mmci_platform_data *pdata)
1416{
1417 int bus_width = 0;
1418
1419 pdata->gpio_wp = of_get_named_gpio(np, "wp-gpios", 0);
1420 pdata->gpio_cd = of_get_named_gpio(np, "cd-gpios", 0);
1421
1422 if (of_get_property(np, "cd-inverted", NULL))
1423 pdata->cd_invert = true;
1424 else
1425 pdata->cd_invert = false;
1426
1427 of_property_read_u32(np, "max-frequency", &pdata->f_max);
1428 if (!pdata->f_max)
1429 pr_warn("%s has no 'max-frequency' property\n", np->full_name);
1430
1431 if (of_get_property(np, "mmc-cap-mmc-highspeed", NULL))
1432 pdata->capabilities |= MMC_CAP_MMC_HIGHSPEED;
1433 if (of_get_property(np, "mmc-cap-sd-highspeed", NULL))
1434 pdata->capabilities |= MMC_CAP_SD_HIGHSPEED;
1435
1436 of_property_read_u32(np, "bus-width", &bus_width);
1437 switch (bus_width) {
1438 case 0 :
1439 /* No bus-width supplied. */
1440 break;
1441 case 4 :
1442 pdata->capabilities |= MMC_CAP_4_BIT_DATA;
1443 break;
1444 case 8 :
1445 pdata->capabilities |= MMC_CAP_8_BIT_DATA;
1446 break;
1447 default :
1448 pr_warn("%s: Unsupported bus width\n", np->full_name);
1449 }
1450}
1451#else
1452static void mmci_dt_populate_generic_pdata(struct device_node *np,
1453 struct mmci_platform_data *pdata)
1454{
1455 return;
1456}
1457#endif
1458
1459static int mmci_probe(struct amba_device *dev,
1460 const struct amba_id *id)
1461{
1462 struct mmci_platform_data *plat = dev->dev.platform_data;
1463 struct device_node *np = dev->dev.of_node;
1464 struct variant_data *variant = id->data;
1465 struct mmci_host *host;
1466 struct mmc_host *mmc;
1467 int ret;
1468
1469 /* Must have platform data or Device Tree. */
1470 if (!plat && !np) {
1471 dev_err(&dev->dev, "No plat data or DT found\n");
1472 return -EINVAL;
1473 }
1474
1475 if (!plat) {
1476 plat = devm_kzalloc(&dev->dev, sizeof(*plat), GFP_KERNEL);
1477 if (!plat)
1478 return -ENOMEM;
1479 }
1480
1481 if (np)
1482 mmci_dt_populate_generic_pdata(np, plat);
1483
1484 ret = amba_request_regions(dev, DRIVER_NAME);
1485 if (ret)
1486 goto out;
1487
1488 mmc = mmc_alloc_host(sizeof(struct mmci_host), &dev->dev);
1489 if (!mmc) {
1490 ret = -ENOMEM;
1491 goto rel_regions;
1492 }
1493
1494 host = mmc_priv(mmc);
1495 host->mmc = mmc;
1496
1497 host->gpio_wp = -ENOSYS;
1498 host->gpio_cd = -ENOSYS;
1499 host->gpio_cd_irq = -1;
1500
1501 host->hw_designer = amba_manf(dev);
1502 host->hw_revision = amba_rev(dev);
1503 dev_dbg(mmc_dev(mmc), "designer ID = 0x%02x\n", host->hw_designer);
1504 dev_dbg(mmc_dev(mmc), "revision = 0x%01x\n", host->hw_revision);
1505
1506 host->clk = devm_clk_get(&dev->dev, NULL);
1507 if (IS_ERR(host->clk)) {
1508 ret = PTR_ERR(host->clk);
1509 goto host_free;
1510 }
1511
1512 ret = clk_prepare_enable(host->clk);
1513 if (ret)
1514 goto host_free;
1515
1516 host->plat = plat;
1517 host->variant = variant;
1518 host->mclk = clk_get_rate(host->clk);
1519 /*
1520 * According to the spec, mclk is max 100 MHz,
1521 * so we try to adjust the clock down to this,
1522 * (if possible).
1523 */
1524 if (host->mclk > 100000000) {
1525 ret = clk_set_rate(host->clk, 100000000);
1526 if (ret < 0)
1527 goto clk_disable;
1528 host->mclk = clk_get_rate(host->clk);
1529 dev_dbg(mmc_dev(mmc), "eventual mclk rate: %u Hz\n",
1530 host->mclk);
1531 }
1532 host->phybase = dev->res.start;
1533 host->base = ioremap(dev->res.start, resource_size(&dev->res));
1534 if (!host->base) {
1535 ret = -ENOMEM;
1536 goto clk_disable;
1537 }
1538
1539 /*
1540 * The ARM and ST versions of the block have slightly different
1541 * clock divider equations which means that the minimum divider
1542 * differs too.
1543 */
1544 if (variant->st_clkdiv)
1545 mmc->f_min = DIV_ROUND_UP(host->mclk, 257);
1546 else
1547 mmc->f_min = DIV_ROUND_UP(host->mclk, 512);
1548 /*
1549 * If the platform data supplies a maximum operating
1550 * frequency, this takes precedence. Else, we fall back
1551 * to using the module parameter, which has a (low)
1552 * default value in case it is not specified. Either
1553 * value must not exceed the clock rate into the block,
1554 * of course.
1555 */
1556 if (plat->f_max)
1557 mmc->f_max = min(host->mclk, plat->f_max);
1558 else
1559 mmc->f_max = min(host->mclk, fmax);
1560 dev_dbg(mmc_dev(mmc), "clocking block at %u Hz\n", mmc->f_max);
1561
1562 /* Get regulators and the supported OCR mask */
1563 mmc_regulator_get_supply(mmc);
1564 if (!mmc->ocr_avail)
1565 mmc->ocr_avail = plat->ocr_mask;
1566 else if (plat->ocr_mask)
1567 dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
1568
1569 mmc->caps = plat->capabilities;
1570 mmc->caps2 = plat->capabilities2;
1571
1572 if (variant->busy_detect) {
1573 mmci_ops.card_busy = mmci_card_busy;
1574 mmci_write_datactrlreg(host, MCI_ST_DPSM_BUSYMODE);
1575 mmc->caps |= MMC_CAP_WAIT_WHILE_BUSY;
1576 mmc->max_busy_timeout = 0;
1577 }
1578
1579 mmc->ops = &mmci_ops;
1580
1581 /* We support these PM capabilities. */
1582 mmc->pm_caps = MMC_PM_KEEP_POWER;
1583
1584 /*
1585 * We can do SGIO
1586 */
1587 mmc->max_segs = NR_SG;
1588
1589 /*
1590 * Since only a certain number of bits are valid in the data length
1591 * register, we must ensure that we don't exceed 2^num-1 bytes in a
1592 * single request.
1593 */
1594 mmc->max_req_size = (1 << variant->datalength_bits) - 1;
1595
1596 /*
1597 * Set the maximum segment size. Since we aren't doing DMA
1598 * (yet) we are only limited by the data length register.
1599 */
1600 mmc->max_seg_size = mmc->max_req_size;
1601
1602 /*
1603 * Block size can be up to 2048 bytes, but must be a power of two.
1604 */
1605 mmc->max_blk_size = 1 << 11;
1606
1607 /*
1608 * Limit the number of blocks transferred so that we don't overflow
1609 * the maximum request size.
1610 */
1611 mmc->max_blk_count = mmc->max_req_size >> 11;
1612
1613 spin_lock_init(&host->lock);
1614
1615 writel(0, host->base + MMCIMASK0);
1616 writel(0, host->base + MMCIMASK1);
1617 writel(0xfff, host->base + MMCICLEAR);
1618
1619 if (plat->gpio_cd == -EPROBE_DEFER) {
1620 ret = -EPROBE_DEFER;
1621 goto err_gpio_cd;
1622 }
1623 if (gpio_is_valid(plat->gpio_cd)) {
1624 ret = gpio_request(plat->gpio_cd, DRIVER_NAME " (cd)");
1625 if (ret == 0)
1626 ret = gpio_direction_input(plat->gpio_cd);
1627 if (ret == 0)
1628 host->gpio_cd = plat->gpio_cd;
1629 else if (ret != -ENOSYS)
1630 goto err_gpio_cd;
1631
1632 /*
1633 * A gpio pin that will detect cards when inserted and removed
1634 * will most likely want to trigger on the edges if it is
1635 * 0 when ejected and 1 when inserted (or mutatis mutandis
1636 * for the inverted case) so we request triggers on both
1637 * edges.
1638 */
1639 ret = request_any_context_irq(gpio_to_irq(plat->gpio_cd),
1640 mmci_cd_irq,
1641 IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING,
1642 DRIVER_NAME " (cd)", host);
1643 if (ret >= 0)
1644 host->gpio_cd_irq = gpio_to_irq(plat->gpio_cd);
1645 }
1646 if (plat->gpio_wp == -EPROBE_DEFER) {
1647 ret = -EPROBE_DEFER;
1648 goto err_gpio_wp;
1649 }
1650 if (gpio_is_valid(plat->gpio_wp)) {
1651 ret = gpio_request(plat->gpio_wp, DRIVER_NAME " (wp)");
1652 if (ret == 0)
1653 ret = gpio_direction_input(plat->gpio_wp);
1654 if (ret == 0)
1655 host->gpio_wp = plat->gpio_wp;
1656 else if (ret != -ENOSYS)
1657 goto err_gpio_wp;
1658 }
1659
1660 if ((host->plat->status || host->gpio_cd != -ENOSYS)
1661 && host->gpio_cd_irq < 0)
1662 mmc->caps |= MMC_CAP_NEEDS_POLL;
1663
1664 ret = request_irq(dev->irq[0], mmci_irq, IRQF_SHARED, DRIVER_NAME " (cmd)", host);
1665 if (ret)
1666 goto unmap;
1667
1668 if (!dev->irq[1])
1669 host->singleirq = true;
1670 else {
1671 ret = request_irq(dev->irq[1], mmci_pio_irq, IRQF_SHARED,
1672 DRIVER_NAME " (pio)", host);
1673 if (ret)
1674 goto irq0_free;
1675 }
1676
1677 writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1678
1679 amba_set_drvdata(dev, mmc);
1680
1681 dev_info(&dev->dev, "%s: PL%03x manf %x rev%u at 0x%08llx irq %d,%d (pio)\n",
1682 mmc_hostname(mmc), amba_part(dev), amba_manf(dev),
1683 amba_rev(dev), (unsigned long long)dev->res.start,
1684 dev->irq[0], dev->irq[1]);
1685
1686 mmci_dma_setup(host);
1687
1688 pm_runtime_set_autosuspend_delay(&dev->dev, 50);
1689 pm_runtime_use_autosuspend(&dev->dev);
1690 pm_runtime_put(&dev->dev);
1691
1692 mmc_add_host(mmc);
1693
1694 return 0;
1695
1696 irq0_free:
1697 free_irq(dev->irq[0], host);
1698 unmap:
1699 if (host->gpio_wp != -ENOSYS)
1700 gpio_free(host->gpio_wp);
1701 err_gpio_wp:
1702 if (host->gpio_cd_irq >= 0)
1703 free_irq(host->gpio_cd_irq, host);
1704 if (host->gpio_cd != -ENOSYS)
1705 gpio_free(host->gpio_cd);
1706 err_gpio_cd:
1707 iounmap(host->base);
1708 clk_disable:
1709 clk_disable_unprepare(host->clk);
1710 host_free:
1711 mmc_free_host(mmc);
1712 rel_regions:
1713 amba_release_regions(dev);
1714 out:
1715 return ret;
1716}
1717
1718static int mmci_remove(struct amba_device *dev)
1719{
1720 struct mmc_host *mmc = amba_get_drvdata(dev);
1721
1722 if (mmc) {
1723 struct mmci_host *host = mmc_priv(mmc);
1724
1725 /*
1726 * Undo pm_runtime_put() in probe. We use the _sync
1727 * version here so that we can access the primecell.
1728 */
1729 pm_runtime_get_sync(&dev->dev);
1730
1731 mmc_remove_host(mmc);
1732
1733 writel(0, host->base + MMCIMASK0);
1734 writel(0, host->base + MMCIMASK1);
1735
1736 writel(0, host->base + MMCICOMMAND);
1737 writel(0, host->base + MMCIDATACTRL);
1738
1739 mmci_dma_release(host);
1740 free_irq(dev->irq[0], host);
1741 if (!host->singleirq)
1742 free_irq(dev->irq[1], host);
1743
1744 if (host->gpio_wp != -ENOSYS)
1745 gpio_free(host->gpio_wp);
1746 if (host->gpio_cd_irq >= 0)
1747 free_irq(host->gpio_cd_irq, host);
1748 if (host->gpio_cd != -ENOSYS)
1749 gpio_free(host->gpio_cd);
1750
1751 iounmap(host->base);
1752 clk_disable_unprepare(host->clk);
1753
1754 mmc_free_host(mmc);
1755
1756 amba_release_regions(dev);
1757 }
1758
1759 return 0;
1760}
1761
1762#ifdef CONFIG_SUSPEND
1763static int mmci_suspend(struct device *dev)
1764{
1765 struct amba_device *adev = to_amba_device(dev);
1766 struct mmc_host *mmc = amba_get_drvdata(adev);
1767
1768 if (mmc) {
1769 struct mmci_host *host = mmc_priv(mmc);
1770 pm_runtime_get_sync(dev);
1771 writel(0, host->base + MMCIMASK0);
1772 }
1773
1774 return 0;
1775}
1776
1777static int mmci_resume(struct device *dev)
1778{
1779 struct amba_device *adev = to_amba_device(dev);
1780 struct mmc_host *mmc = amba_get_drvdata(adev);
1781
1782 if (mmc) {
1783 struct mmci_host *host = mmc_priv(mmc);
1784 writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1785 pm_runtime_put(dev);
1786 }
1787
1788 return 0;
1789}
1790#endif
1791
1792#ifdef CONFIG_PM_RUNTIME
1793static void mmci_save(struct mmci_host *host)
1794{
1795 unsigned long flags;
1796
1797 if (host->variant->pwrreg_nopower) {
1798 spin_lock_irqsave(&host->lock, flags);
1799
1800 writel(0, host->base + MMCIMASK0);
1801 writel(0, host->base + MMCIDATACTRL);
1802 writel(0, host->base + MMCIPOWER);
1803 writel(0, host->base + MMCICLOCK);
1804 mmci_reg_delay(host);
1805
1806 spin_unlock_irqrestore(&host->lock, flags);
1807 }
1808
1809}
1810
1811static void mmci_restore(struct mmci_host *host)
1812{
1813 unsigned long flags;
1814
1815 if (host->variant->pwrreg_nopower) {
1816 spin_lock_irqsave(&host->lock, flags);
1817
1818 writel(host->clk_reg, host->base + MMCICLOCK);
1819 writel(host->datactrl_reg, host->base + MMCIDATACTRL);
1820 writel(host->pwr_reg, host->base + MMCIPOWER);
1821 writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1822 mmci_reg_delay(host);
1823
1824 spin_unlock_irqrestore(&host->lock, flags);
1825 }
1826}
1827
1828static int mmci_runtime_suspend(struct device *dev)
1829{
1830 struct amba_device *adev = to_amba_device(dev);
1831 struct mmc_host *mmc = amba_get_drvdata(adev);
1832
1833 if (mmc) {
1834 struct mmci_host *host = mmc_priv(mmc);
1835 pinctrl_pm_select_sleep_state(dev);
1836 mmci_save(host);
1837 clk_disable_unprepare(host->clk);
1838 }
1839
1840 return 0;
1841}
1842
1843static int mmci_runtime_resume(struct device *dev)
1844{
1845 struct amba_device *adev = to_amba_device(dev);
1846 struct mmc_host *mmc = amba_get_drvdata(adev);
1847
1848 if (mmc) {
1849 struct mmci_host *host = mmc_priv(mmc);
1850 clk_prepare_enable(host->clk);
1851 mmci_restore(host);
1852 pinctrl_pm_select_default_state(dev);
1853 }
1854
1855 return 0;
1856}
1857#endif
1858
1859static const struct dev_pm_ops mmci_dev_pm_ops = {
1860 SET_SYSTEM_SLEEP_PM_OPS(mmci_suspend, mmci_resume)
1861 SET_RUNTIME_PM_OPS(mmci_runtime_suspend, mmci_runtime_resume, NULL)
1862};
1863
1864static struct amba_id mmci_ids[] = {
1865 {
1866 .id = 0x00041180,
1867 .mask = 0xff0fffff,
1868 .data = &variant_arm,
1869 },
1870 {
1871 .id = 0x01041180,
1872 .mask = 0xff0fffff,
1873 .data = &variant_arm_extended_fifo,
1874 },
1875 {
1876 .id = 0x02041180,
1877 .mask = 0xff0fffff,
1878 .data = &variant_arm_extended_fifo_hwfc,
1879 },
1880 {
1881 .id = 0x00041181,
1882 .mask = 0x000fffff,
1883 .data = &variant_arm,
1884 },
1885 /* ST Micro variants */
1886 {
1887 .id = 0x00180180,
1888 .mask = 0x00ffffff,
1889 .data = &variant_u300,
1890 },
1891 {
1892 .id = 0x10180180,
1893 .mask = 0xf0ffffff,
1894 .data = &variant_nomadik,
1895 },
1896 {
1897 .id = 0x00280180,
1898 .mask = 0x00ffffff,
1899 .data = &variant_u300,
1900 },
1901 {
1902 .id = 0x00480180,
1903 .mask = 0xf0ffffff,
1904 .data = &variant_ux500,
1905 },
1906 {
1907 .id = 0x10480180,
1908 .mask = 0xf0ffffff,
1909 .data = &variant_ux500v2,
1910 },
1911 { 0, 0 },
1912};
1913
1914MODULE_DEVICE_TABLE(amba, mmci_ids);
1915
1916static struct amba_driver mmci_driver = {
1917 .drv = {
1918 .name = DRIVER_NAME,
1919 .pm = &mmci_dev_pm_ops,
1920 },
1921 .probe = mmci_probe,
1922 .remove = mmci_remove,
1923 .id_table = mmci_ids,
1924};
1925
1926module_amba_driver(mmci_driver);
1927
1928module_param(fmax, uint, 0444);
1929
1930MODULE_DESCRIPTION("ARM PrimeCell PL180/181 Multimedia Card Interface driver");
1931MODULE_LICENSE("GPL");
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/drivers/mmc/host/mmci.c - ARM PrimeCell MMCI PL180/1 driver
4 *
5 * Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved.
6 * Copyright (C) 2010 ST-Ericsson SA
7 */
8#include <linux/module.h>
9#include <linux/moduleparam.h>
10#include <linux/init.h>
11#include <linux/ioport.h>
12#include <linux/device.h>
13#include <linux/io.h>
14#include <linux/interrupt.h>
15#include <linux/kernel.h>
16#include <linux/slab.h>
17#include <linux/delay.h>
18#include <linux/err.h>
19#include <linux/highmem.h>
20#include <linux/log2.h>
21#include <linux/mmc/mmc.h>
22#include <linux/mmc/pm.h>
23#include <linux/mmc/host.h>
24#include <linux/mmc/card.h>
25#include <linux/mmc/slot-gpio.h>
26#include <linux/amba/bus.h>
27#include <linux/clk.h>
28#include <linux/scatterlist.h>
29#include <linux/of.h>
30#include <linux/regulator/consumer.h>
31#include <linux/dmaengine.h>
32#include <linux/dma-mapping.h>
33#include <linux/amba/mmci.h>
34#include <linux/pm_runtime.h>
35#include <linux/types.h>
36#include <linux/pinctrl/consumer.h>
37#include <linux/reset.h>
38
39#include <asm/div64.h>
40#include <asm/io.h>
41
42#include "mmci.h"
43
44#define DRIVER_NAME "mmci-pl18x"
45
46static void mmci_variant_init(struct mmci_host *host);
47static void ux500v2_variant_init(struct mmci_host *host);
48
49static unsigned int fmax = 515633;
50
51static struct variant_data variant_arm = {
52 .fifosize = 16 * 4,
53 .fifohalfsize = 8 * 4,
54 .cmdreg_cpsm_enable = MCI_CPSM_ENABLE,
55 .cmdreg_lrsp_crc = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
56 .cmdreg_srsp_crc = MCI_CPSM_RESPONSE,
57 .cmdreg_srsp = MCI_CPSM_RESPONSE,
58 .datalength_bits = 16,
59 .datactrl_blocksz = 11,
60 .pwrreg_powerup = MCI_PWR_UP,
61 .f_max = 100000000,
62 .reversed_irq_handling = true,
63 .mmcimask1 = true,
64 .irq_pio_mask = MCI_IRQ_PIO_MASK,
65 .start_err = MCI_STARTBITERR,
66 .opendrain = MCI_ROD,
67 .init = mmci_variant_init,
68};
69
70static struct variant_data variant_arm_extended_fifo = {
71 .fifosize = 128 * 4,
72 .fifohalfsize = 64 * 4,
73 .cmdreg_cpsm_enable = MCI_CPSM_ENABLE,
74 .cmdreg_lrsp_crc = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
75 .cmdreg_srsp_crc = MCI_CPSM_RESPONSE,
76 .cmdreg_srsp = MCI_CPSM_RESPONSE,
77 .datalength_bits = 16,
78 .datactrl_blocksz = 11,
79 .pwrreg_powerup = MCI_PWR_UP,
80 .f_max = 100000000,
81 .mmcimask1 = true,
82 .irq_pio_mask = MCI_IRQ_PIO_MASK,
83 .start_err = MCI_STARTBITERR,
84 .opendrain = MCI_ROD,
85 .init = mmci_variant_init,
86};
87
88static struct variant_data variant_arm_extended_fifo_hwfc = {
89 .fifosize = 128 * 4,
90 .fifohalfsize = 64 * 4,
91 .clkreg_enable = MCI_ARM_HWFCEN,
92 .cmdreg_cpsm_enable = MCI_CPSM_ENABLE,
93 .cmdreg_lrsp_crc = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
94 .cmdreg_srsp_crc = MCI_CPSM_RESPONSE,
95 .cmdreg_srsp = MCI_CPSM_RESPONSE,
96 .datalength_bits = 16,
97 .datactrl_blocksz = 11,
98 .pwrreg_powerup = MCI_PWR_UP,
99 .f_max = 100000000,
100 .mmcimask1 = true,
101 .irq_pio_mask = MCI_IRQ_PIO_MASK,
102 .start_err = MCI_STARTBITERR,
103 .opendrain = MCI_ROD,
104 .init = mmci_variant_init,
105};
106
107static struct variant_data variant_u300 = {
108 .fifosize = 16 * 4,
109 .fifohalfsize = 8 * 4,
110 .clkreg_enable = MCI_ST_U300_HWFCEN,
111 .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
112 .cmdreg_cpsm_enable = MCI_CPSM_ENABLE,
113 .cmdreg_lrsp_crc = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
114 .cmdreg_srsp_crc = MCI_CPSM_RESPONSE,
115 .cmdreg_srsp = MCI_CPSM_RESPONSE,
116 .datalength_bits = 16,
117 .datactrl_blocksz = 11,
118 .datactrl_mask_sdio = MCI_DPSM_ST_SDIOEN,
119 .st_sdio = true,
120 .pwrreg_powerup = MCI_PWR_ON,
121 .f_max = 100000000,
122 .signal_direction = true,
123 .pwrreg_clkgate = true,
124 .pwrreg_nopower = true,
125 .mmcimask1 = true,
126 .irq_pio_mask = MCI_IRQ_PIO_MASK,
127 .start_err = MCI_STARTBITERR,
128 .opendrain = MCI_OD,
129 .init = mmci_variant_init,
130};
131
132static struct variant_data variant_nomadik = {
133 .fifosize = 16 * 4,
134 .fifohalfsize = 8 * 4,
135 .clkreg = MCI_CLK_ENABLE,
136 .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
137 .cmdreg_cpsm_enable = MCI_CPSM_ENABLE,
138 .cmdreg_lrsp_crc = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
139 .cmdreg_srsp_crc = MCI_CPSM_RESPONSE,
140 .cmdreg_srsp = MCI_CPSM_RESPONSE,
141 .datalength_bits = 24,
142 .datactrl_blocksz = 11,
143 .datactrl_mask_sdio = MCI_DPSM_ST_SDIOEN,
144 .st_sdio = true,
145 .st_clkdiv = true,
146 .pwrreg_powerup = MCI_PWR_ON,
147 .f_max = 100000000,
148 .signal_direction = true,
149 .pwrreg_clkgate = true,
150 .pwrreg_nopower = true,
151 .mmcimask1 = true,
152 .irq_pio_mask = MCI_IRQ_PIO_MASK,
153 .start_err = MCI_STARTBITERR,
154 .opendrain = MCI_OD,
155 .init = mmci_variant_init,
156};
157
158static struct variant_data variant_ux500 = {
159 .fifosize = 30 * 4,
160 .fifohalfsize = 8 * 4,
161 .clkreg = MCI_CLK_ENABLE,
162 .clkreg_enable = MCI_ST_UX500_HWFCEN,
163 .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
164 .clkreg_neg_edge_enable = MCI_ST_UX500_NEG_EDGE,
165 .cmdreg_cpsm_enable = MCI_CPSM_ENABLE,
166 .cmdreg_lrsp_crc = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
167 .cmdreg_srsp_crc = MCI_CPSM_RESPONSE,
168 .cmdreg_srsp = MCI_CPSM_RESPONSE,
169 .datalength_bits = 24,
170 .datactrl_blocksz = 11,
171 .datactrl_mask_sdio = MCI_DPSM_ST_SDIOEN,
172 .st_sdio = true,
173 .st_clkdiv = true,
174 .pwrreg_powerup = MCI_PWR_ON,
175 .f_max = 100000000,
176 .signal_direction = true,
177 .pwrreg_clkgate = true,
178 .busy_detect = true,
179 .busy_dpsm_flag = MCI_DPSM_ST_BUSYMODE,
180 .busy_detect_flag = MCI_ST_CARDBUSY,
181 .busy_detect_mask = MCI_ST_BUSYENDMASK,
182 .pwrreg_nopower = true,
183 .mmcimask1 = true,
184 .irq_pio_mask = MCI_IRQ_PIO_MASK,
185 .start_err = MCI_STARTBITERR,
186 .opendrain = MCI_OD,
187 .init = mmci_variant_init,
188};
189
190static struct variant_data variant_ux500v2 = {
191 .fifosize = 30 * 4,
192 .fifohalfsize = 8 * 4,
193 .clkreg = MCI_CLK_ENABLE,
194 .clkreg_enable = MCI_ST_UX500_HWFCEN,
195 .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
196 .clkreg_neg_edge_enable = MCI_ST_UX500_NEG_EDGE,
197 .cmdreg_cpsm_enable = MCI_CPSM_ENABLE,
198 .cmdreg_lrsp_crc = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
199 .cmdreg_srsp_crc = MCI_CPSM_RESPONSE,
200 .cmdreg_srsp = MCI_CPSM_RESPONSE,
201 .datactrl_mask_ddrmode = MCI_DPSM_ST_DDRMODE,
202 .datalength_bits = 24,
203 .datactrl_blocksz = 11,
204 .datactrl_mask_sdio = MCI_DPSM_ST_SDIOEN,
205 .st_sdio = true,
206 .st_clkdiv = true,
207 .pwrreg_powerup = MCI_PWR_ON,
208 .f_max = 100000000,
209 .signal_direction = true,
210 .pwrreg_clkgate = true,
211 .busy_detect = true,
212 .busy_dpsm_flag = MCI_DPSM_ST_BUSYMODE,
213 .busy_detect_flag = MCI_ST_CARDBUSY,
214 .busy_detect_mask = MCI_ST_BUSYENDMASK,
215 .pwrreg_nopower = true,
216 .mmcimask1 = true,
217 .irq_pio_mask = MCI_IRQ_PIO_MASK,
218 .start_err = MCI_STARTBITERR,
219 .opendrain = MCI_OD,
220 .init = ux500v2_variant_init,
221};
222
223static struct variant_data variant_stm32 = {
224 .fifosize = 32 * 4,
225 .fifohalfsize = 8 * 4,
226 .clkreg = MCI_CLK_ENABLE,
227 .clkreg_enable = MCI_ST_UX500_HWFCEN,
228 .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
229 .clkreg_neg_edge_enable = MCI_ST_UX500_NEG_EDGE,
230 .cmdreg_cpsm_enable = MCI_CPSM_ENABLE,
231 .cmdreg_lrsp_crc = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
232 .cmdreg_srsp_crc = MCI_CPSM_RESPONSE,
233 .cmdreg_srsp = MCI_CPSM_RESPONSE,
234 .irq_pio_mask = MCI_IRQ_PIO_MASK,
235 .datalength_bits = 24,
236 .datactrl_blocksz = 11,
237 .datactrl_mask_sdio = MCI_DPSM_ST_SDIOEN,
238 .st_sdio = true,
239 .st_clkdiv = true,
240 .pwrreg_powerup = MCI_PWR_ON,
241 .f_max = 48000000,
242 .pwrreg_clkgate = true,
243 .pwrreg_nopower = true,
244 .init = mmci_variant_init,
245};
246
247static struct variant_data variant_stm32_sdmmc = {
248 .fifosize = 16 * 4,
249 .fifohalfsize = 8 * 4,
250 .f_max = 208000000,
251 .stm32_clkdiv = true,
252 .cmdreg_cpsm_enable = MCI_CPSM_STM32_ENABLE,
253 .cmdreg_lrsp_crc = MCI_CPSM_STM32_LRSP_CRC,
254 .cmdreg_srsp_crc = MCI_CPSM_STM32_SRSP_CRC,
255 .cmdreg_srsp = MCI_CPSM_STM32_SRSP,
256 .cmdreg_stop = MCI_CPSM_STM32_CMDSTOP,
257 .data_cmd_enable = MCI_CPSM_STM32_CMDTRANS,
258 .irq_pio_mask = MCI_IRQ_PIO_STM32_MASK,
259 .datactrl_first = true,
260 .datacnt_useless = true,
261 .datalength_bits = 25,
262 .datactrl_blocksz = 14,
263 .stm32_idmabsize_mask = GENMASK(12, 5),
264 .init = sdmmc_variant_init,
265};
266
267static struct variant_data variant_qcom = {
268 .fifosize = 16 * 4,
269 .fifohalfsize = 8 * 4,
270 .clkreg = MCI_CLK_ENABLE,
271 .clkreg_enable = MCI_QCOM_CLK_FLOWENA |
272 MCI_QCOM_CLK_SELECT_IN_FBCLK,
273 .clkreg_8bit_bus_enable = MCI_QCOM_CLK_WIDEBUS_8,
274 .datactrl_mask_ddrmode = MCI_QCOM_CLK_SELECT_IN_DDR_MODE,
275 .cmdreg_cpsm_enable = MCI_CPSM_ENABLE,
276 .cmdreg_lrsp_crc = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
277 .cmdreg_srsp_crc = MCI_CPSM_RESPONSE,
278 .cmdreg_srsp = MCI_CPSM_RESPONSE,
279 .data_cmd_enable = MCI_CPSM_QCOM_DATCMD,
280 .datalength_bits = 24,
281 .datactrl_blocksz = 11,
282 .pwrreg_powerup = MCI_PWR_UP,
283 .f_max = 208000000,
284 .explicit_mclk_control = true,
285 .qcom_fifo = true,
286 .qcom_dml = true,
287 .mmcimask1 = true,
288 .irq_pio_mask = MCI_IRQ_PIO_MASK,
289 .start_err = MCI_STARTBITERR,
290 .opendrain = MCI_ROD,
291 .init = qcom_variant_init,
292};
293
294/* Busy detection for the ST Micro variant */
295static int mmci_card_busy(struct mmc_host *mmc)
296{
297 struct mmci_host *host = mmc_priv(mmc);
298 unsigned long flags;
299 int busy = 0;
300
301 spin_lock_irqsave(&host->lock, flags);
302 if (readl(host->base + MMCISTATUS) & host->variant->busy_detect_flag)
303 busy = 1;
304 spin_unlock_irqrestore(&host->lock, flags);
305
306 return busy;
307}
308
309static void mmci_reg_delay(struct mmci_host *host)
310{
311 /*
312 * According to the spec, at least three feedback clock cycles
313 * of max 52 MHz must pass between two writes to the MMCICLOCK reg.
314 * Three MCLK clock cycles must pass between two MMCIPOWER reg writes.
315 * Worst delay time during card init is at 100 kHz => 30 us.
316 * Worst delay time when up and running is at 25 MHz => 120 ns.
317 */
318 if (host->cclk < 25000000)
319 udelay(30);
320 else
321 ndelay(120);
322}
323
324/*
325 * This must be called with host->lock held
326 */
327void mmci_write_clkreg(struct mmci_host *host, u32 clk)
328{
329 if (host->clk_reg != clk) {
330 host->clk_reg = clk;
331 writel(clk, host->base + MMCICLOCK);
332 }
333}
334
335/*
336 * This must be called with host->lock held
337 */
338void mmci_write_pwrreg(struct mmci_host *host, u32 pwr)
339{
340 if (host->pwr_reg != pwr) {
341 host->pwr_reg = pwr;
342 writel(pwr, host->base + MMCIPOWER);
343 }
344}
345
346/*
347 * This must be called with host->lock held
348 */
349static void mmci_write_datactrlreg(struct mmci_host *host, u32 datactrl)
350{
351 /* Keep busy mode in DPSM if enabled */
352 datactrl |= host->datactrl_reg & host->variant->busy_dpsm_flag;
353
354 if (host->datactrl_reg != datactrl) {
355 host->datactrl_reg = datactrl;
356 writel(datactrl, host->base + MMCIDATACTRL);
357 }
358}
359
360/*
361 * This must be called with host->lock held
362 */
363static void mmci_set_clkreg(struct mmci_host *host, unsigned int desired)
364{
365 struct variant_data *variant = host->variant;
366 u32 clk = variant->clkreg;
367
368 /* Make sure cclk reflects the current calculated clock */
369 host->cclk = 0;
370
371 if (desired) {
372 if (variant->explicit_mclk_control) {
373 host->cclk = host->mclk;
374 } else if (desired >= host->mclk) {
375 clk = MCI_CLK_BYPASS;
376 if (variant->st_clkdiv)
377 clk |= MCI_ST_UX500_NEG_EDGE;
378 host->cclk = host->mclk;
379 } else if (variant->st_clkdiv) {
380 /*
381 * DB8500 TRM says f = mclk / (clkdiv + 2)
382 * => clkdiv = (mclk / f) - 2
383 * Round the divider up so we don't exceed the max
384 * frequency
385 */
386 clk = DIV_ROUND_UP(host->mclk, desired) - 2;
387 if (clk >= 256)
388 clk = 255;
389 host->cclk = host->mclk / (clk + 2);
390 } else {
391 /*
392 * PL180 TRM says f = mclk / (2 * (clkdiv + 1))
393 * => clkdiv = mclk / (2 * f) - 1
394 */
395 clk = host->mclk / (2 * desired) - 1;
396 if (clk >= 256)
397 clk = 255;
398 host->cclk = host->mclk / (2 * (clk + 1));
399 }
400
401 clk |= variant->clkreg_enable;
402 clk |= MCI_CLK_ENABLE;
403 /* This hasn't proven to be worthwhile */
404 /* clk |= MCI_CLK_PWRSAVE; */
405 }
406
407 /* Set actual clock for debug */
408 host->mmc->actual_clock = host->cclk;
409
410 if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4)
411 clk |= MCI_4BIT_BUS;
412 if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8)
413 clk |= variant->clkreg_8bit_bus_enable;
414
415 if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
416 host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
417 clk |= variant->clkreg_neg_edge_enable;
418
419 mmci_write_clkreg(host, clk);
420}
421
422void mmci_dma_release(struct mmci_host *host)
423{
424 if (host->ops && host->ops->dma_release)
425 host->ops->dma_release(host);
426
427 host->use_dma = false;
428}
429
430void mmci_dma_setup(struct mmci_host *host)
431{
432 if (!host->ops || !host->ops->dma_setup)
433 return;
434
435 if (host->ops->dma_setup(host))
436 return;
437
438 /* initialize pre request cookie */
439 host->next_cookie = 1;
440
441 host->use_dma = true;
442}
443
444/*
445 * Validate mmc prerequisites
446 */
447static int mmci_validate_data(struct mmci_host *host,
448 struct mmc_data *data)
449{
450 if (!data)
451 return 0;
452
453 if (!is_power_of_2(data->blksz)) {
454 dev_err(mmc_dev(host->mmc),
455 "unsupported block size (%d bytes)\n", data->blksz);
456 return -EINVAL;
457 }
458
459 if (host->ops && host->ops->validate_data)
460 return host->ops->validate_data(host, data);
461
462 return 0;
463}
464
465int mmci_prep_data(struct mmci_host *host, struct mmc_data *data, bool next)
466{
467 int err;
468
469 if (!host->ops || !host->ops->prep_data)
470 return 0;
471
472 err = host->ops->prep_data(host, data, next);
473
474 if (next && !err)
475 data->host_cookie = ++host->next_cookie < 0 ?
476 1 : host->next_cookie;
477
478 return err;
479}
480
481void mmci_unprep_data(struct mmci_host *host, struct mmc_data *data,
482 int err)
483{
484 if (host->ops && host->ops->unprep_data)
485 host->ops->unprep_data(host, data, err);
486
487 data->host_cookie = 0;
488}
489
490void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
491{
492 WARN_ON(data->host_cookie && data->host_cookie != host->next_cookie);
493
494 if (host->ops && host->ops->get_next_data)
495 host->ops->get_next_data(host, data);
496}
497
498int mmci_dma_start(struct mmci_host *host, unsigned int datactrl)
499{
500 struct mmc_data *data = host->data;
501 int ret;
502
503 if (!host->use_dma)
504 return -EINVAL;
505
506 ret = mmci_prep_data(host, data, false);
507 if (ret)
508 return ret;
509
510 if (!host->ops || !host->ops->dma_start)
511 return -EINVAL;
512
513 /* Okay, go for it. */
514 dev_vdbg(mmc_dev(host->mmc),
515 "Submit MMCI DMA job, sglen %d blksz %04x blks %04x flags %08x\n",
516 data->sg_len, data->blksz, data->blocks, data->flags);
517
518 host->ops->dma_start(host, &datactrl);
519
520 /* Trigger the DMA transfer */
521 mmci_write_datactrlreg(host, datactrl);
522
523 /*
524 * Let the MMCI say when the data is ended and it's time
525 * to fire next DMA request. When that happens, MMCI will
526 * call mmci_data_end()
527 */
528 writel(readl(host->base + MMCIMASK0) | MCI_DATAENDMASK,
529 host->base + MMCIMASK0);
530 return 0;
531}
532
533void mmci_dma_finalize(struct mmci_host *host, struct mmc_data *data)
534{
535 if (!host->use_dma)
536 return;
537
538 if (host->ops && host->ops->dma_finalize)
539 host->ops->dma_finalize(host, data);
540}
541
542void mmci_dma_error(struct mmci_host *host)
543{
544 if (!host->use_dma)
545 return;
546
547 if (host->ops && host->ops->dma_error)
548 host->ops->dma_error(host);
549}
550
551static void
552mmci_request_end(struct mmci_host *host, struct mmc_request *mrq)
553{
554 writel(0, host->base + MMCICOMMAND);
555
556 BUG_ON(host->data);
557
558 host->mrq = NULL;
559 host->cmd = NULL;
560
561 mmc_request_done(host->mmc, mrq);
562}
563
564static void mmci_set_mask1(struct mmci_host *host, unsigned int mask)
565{
566 void __iomem *base = host->base;
567 struct variant_data *variant = host->variant;
568
569 if (host->singleirq) {
570 unsigned int mask0 = readl(base + MMCIMASK0);
571
572 mask0 &= ~variant->irq_pio_mask;
573 mask0 |= mask;
574
575 writel(mask0, base + MMCIMASK0);
576 }
577
578 if (variant->mmcimask1)
579 writel(mask, base + MMCIMASK1);
580
581 host->mask1_reg = mask;
582}
583
584static void mmci_stop_data(struct mmci_host *host)
585{
586 mmci_write_datactrlreg(host, 0);
587 mmci_set_mask1(host, 0);
588 host->data = NULL;
589}
590
591static void mmci_init_sg(struct mmci_host *host, struct mmc_data *data)
592{
593 unsigned int flags = SG_MITER_ATOMIC;
594
595 if (data->flags & MMC_DATA_READ)
596 flags |= SG_MITER_TO_SG;
597 else
598 flags |= SG_MITER_FROM_SG;
599
600 sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
601}
602
603static u32 mmci_get_dctrl_cfg(struct mmci_host *host)
604{
605 return MCI_DPSM_ENABLE | mmci_dctrl_blksz(host);
606}
607
608static u32 ux500v2_get_dctrl_cfg(struct mmci_host *host)
609{
610 return MCI_DPSM_ENABLE | (host->data->blksz << 16);
611}
612
613/*
614 * All the DMA operation mode stuff goes inside this ifdef.
615 * This assumes that you have a generic DMA device interface,
616 * no custom DMA interfaces are supported.
617 */
618#ifdef CONFIG_DMA_ENGINE
619struct mmci_dmae_next {
620 struct dma_async_tx_descriptor *desc;
621 struct dma_chan *chan;
622};
623
624struct mmci_dmae_priv {
625 struct dma_chan *cur;
626 struct dma_chan *rx_channel;
627 struct dma_chan *tx_channel;
628 struct dma_async_tx_descriptor *desc_current;
629 struct mmci_dmae_next next_data;
630};
631
632int mmci_dmae_setup(struct mmci_host *host)
633{
634 const char *rxname, *txname;
635 struct mmci_dmae_priv *dmae;
636
637 dmae = devm_kzalloc(mmc_dev(host->mmc), sizeof(*dmae), GFP_KERNEL);
638 if (!dmae)
639 return -ENOMEM;
640
641 host->dma_priv = dmae;
642
643 dmae->rx_channel = dma_request_slave_channel(mmc_dev(host->mmc),
644 "rx");
645 dmae->tx_channel = dma_request_slave_channel(mmc_dev(host->mmc),
646 "tx");
647
648 /*
649 * If only an RX channel is specified, the driver will
650 * attempt to use it bidirectionally, however if it is
651 * is specified but cannot be located, DMA will be disabled.
652 */
653 if (dmae->rx_channel && !dmae->tx_channel)
654 dmae->tx_channel = dmae->rx_channel;
655
656 if (dmae->rx_channel)
657 rxname = dma_chan_name(dmae->rx_channel);
658 else
659 rxname = "none";
660
661 if (dmae->tx_channel)
662 txname = dma_chan_name(dmae->tx_channel);
663 else
664 txname = "none";
665
666 dev_info(mmc_dev(host->mmc), "DMA channels RX %s, TX %s\n",
667 rxname, txname);
668
669 /*
670 * Limit the maximum segment size in any SG entry according to
671 * the parameters of the DMA engine device.
672 */
673 if (dmae->tx_channel) {
674 struct device *dev = dmae->tx_channel->device->dev;
675 unsigned int max_seg_size = dma_get_max_seg_size(dev);
676
677 if (max_seg_size < host->mmc->max_seg_size)
678 host->mmc->max_seg_size = max_seg_size;
679 }
680 if (dmae->rx_channel) {
681 struct device *dev = dmae->rx_channel->device->dev;
682 unsigned int max_seg_size = dma_get_max_seg_size(dev);
683
684 if (max_seg_size < host->mmc->max_seg_size)
685 host->mmc->max_seg_size = max_seg_size;
686 }
687
688 if (!dmae->tx_channel || !dmae->rx_channel) {
689 mmci_dmae_release(host);
690 return -EINVAL;
691 }
692
693 return 0;
694}
695
696/*
697 * This is used in or so inline it
698 * so it can be discarded.
699 */
700void mmci_dmae_release(struct mmci_host *host)
701{
702 struct mmci_dmae_priv *dmae = host->dma_priv;
703
704 if (dmae->rx_channel)
705 dma_release_channel(dmae->rx_channel);
706 if (dmae->tx_channel)
707 dma_release_channel(dmae->tx_channel);
708 dmae->rx_channel = dmae->tx_channel = NULL;
709}
710
711static void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
712{
713 struct mmci_dmae_priv *dmae = host->dma_priv;
714 struct dma_chan *chan;
715
716 if (data->flags & MMC_DATA_READ)
717 chan = dmae->rx_channel;
718 else
719 chan = dmae->tx_channel;
720
721 dma_unmap_sg(chan->device->dev, data->sg, data->sg_len,
722 mmc_get_dma_dir(data));
723}
724
725void mmci_dmae_error(struct mmci_host *host)
726{
727 struct mmci_dmae_priv *dmae = host->dma_priv;
728
729 if (!dma_inprogress(host))
730 return;
731
732 dev_err(mmc_dev(host->mmc), "error during DMA transfer!\n");
733 dmaengine_terminate_all(dmae->cur);
734 host->dma_in_progress = false;
735 dmae->cur = NULL;
736 dmae->desc_current = NULL;
737 host->data->host_cookie = 0;
738
739 mmci_dma_unmap(host, host->data);
740}
741
742void mmci_dmae_finalize(struct mmci_host *host, struct mmc_data *data)
743{
744 struct mmci_dmae_priv *dmae = host->dma_priv;
745 u32 status;
746 int i;
747
748 if (!dma_inprogress(host))
749 return;
750
751 /* Wait up to 1ms for the DMA to complete */
752 for (i = 0; ; i++) {
753 status = readl(host->base + MMCISTATUS);
754 if (!(status & MCI_RXDATAAVLBLMASK) || i >= 100)
755 break;
756 udelay(10);
757 }
758
759 /*
760 * Check to see whether we still have some data left in the FIFO -
761 * this catches DMA controllers which are unable to monitor the
762 * DMALBREQ and DMALSREQ signals while allowing us to DMA to non-
763 * contiguous buffers. On TX, we'll get a FIFO underrun error.
764 */
765 if (status & MCI_RXDATAAVLBLMASK) {
766 mmci_dma_error(host);
767 if (!data->error)
768 data->error = -EIO;
769 } else if (!data->host_cookie) {
770 mmci_dma_unmap(host, data);
771 }
772
773 /*
774 * Use of DMA with scatter-gather is impossible.
775 * Give up with DMA and switch back to PIO mode.
776 */
777 if (status & MCI_RXDATAAVLBLMASK) {
778 dev_err(mmc_dev(host->mmc), "buggy DMA detected. Taking evasive action.\n");
779 mmci_dma_release(host);
780 }
781
782 host->dma_in_progress = false;
783 dmae->cur = NULL;
784 dmae->desc_current = NULL;
785}
786
787/* prepares DMA channel and DMA descriptor, returns non-zero on failure */
788static int _mmci_dmae_prep_data(struct mmci_host *host, struct mmc_data *data,
789 struct dma_chan **dma_chan,
790 struct dma_async_tx_descriptor **dma_desc)
791{
792 struct mmci_dmae_priv *dmae = host->dma_priv;
793 struct variant_data *variant = host->variant;
794 struct dma_slave_config conf = {
795 .src_addr = host->phybase + MMCIFIFO,
796 .dst_addr = host->phybase + MMCIFIFO,
797 .src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
798 .dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
799 .src_maxburst = variant->fifohalfsize >> 2, /* # of words */
800 .dst_maxburst = variant->fifohalfsize >> 2, /* # of words */
801 .device_fc = false,
802 };
803 struct dma_chan *chan;
804 struct dma_device *device;
805 struct dma_async_tx_descriptor *desc;
806 int nr_sg;
807 unsigned long flags = DMA_CTRL_ACK;
808
809 if (data->flags & MMC_DATA_READ) {
810 conf.direction = DMA_DEV_TO_MEM;
811 chan = dmae->rx_channel;
812 } else {
813 conf.direction = DMA_MEM_TO_DEV;
814 chan = dmae->tx_channel;
815 }
816
817 /* If there's no DMA channel, fall back to PIO */
818 if (!chan)
819 return -EINVAL;
820
821 /* If less than or equal to the fifo size, don't bother with DMA */
822 if (data->blksz * data->blocks <= variant->fifosize)
823 return -EINVAL;
824
825 device = chan->device;
826 nr_sg = dma_map_sg(device->dev, data->sg, data->sg_len,
827 mmc_get_dma_dir(data));
828 if (nr_sg == 0)
829 return -EINVAL;
830
831 if (host->variant->qcom_dml)
832 flags |= DMA_PREP_INTERRUPT;
833
834 dmaengine_slave_config(chan, &conf);
835 desc = dmaengine_prep_slave_sg(chan, data->sg, nr_sg,
836 conf.direction, flags);
837 if (!desc)
838 goto unmap_exit;
839
840 *dma_chan = chan;
841 *dma_desc = desc;
842
843 return 0;
844
845 unmap_exit:
846 dma_unmap_sg(device->dev, data->sg, data->sg_len,
847 mmc_get_dma_dir(data));
848 return -ENOMEM;
849}
850
851int mmci_dmae_prep_data(struct mmci_host *host,
852 struct mmc_data *data,
853 bool next)
854{
855 struct mmci_dmae_priv *dmae = host->dma_priv;
856 struct mmci_dmae_next *nd = &dmae->next_data;
857
858 if (!host->use_dma)
859 return -EINVAL;
860
861 if (next)
862 return _mmci_dmae_prep_data(host, data, &nd->chan, &nd->desc);
863 /* Check if next job is already prepared. */
864 if (dmae->cur && dmae->desc_current)
865 return 0;
866
867 /* No job were prepared thus do it now. */
868 return _mmci_dmae_prep_data(host, data, &dmae->cur,
869 &dmae->desc_current);
870}
871
872int mmci_dmae_start(struct mmci_host *host, unsigned int *datactrl)
873{
874 struct mmci_dmae_priv *dmae = host->dma_priv;
875
876 host->dma_in_progress = true;
877 dmaengine_submit(dmae->desc_current);
878 dma_async_issue_pending(dmae->cur);
879
880 *datactrl |= MCI_DPSM_DMAENABLE;
881
882 return 0;
883}
884
885void mmci_dmae_get_next_data(struct mmci_host *host, struct mmc_data *data)
886{
887 struct mmci_dmae_priv *dmae = host->dma_priv;
888 struct mmci_dmae_next *next = &dmae->next_data;
889
890 if (!host->use_dma)
891 return;
892
893 WARN_ON(!data->host_cookie && (next->desc || next->chan));
894
895 dmae->desc_current = next->desc;
896 dmae->cur = next->chan;
897 next->desc = NULL;
898 next->chan = NULL;
899}
900
901void mmci_dmae_unprep_data(struct mmci_host *host,
902 struct mmc_data *data, int err)
903
904{
905 struct mmci_dmae_priv *dmae = host->dma_priv;
906
907 if (!host->use_dma)
908 return;
909
910 mmci_dma_unmap(host, data);
911
912 if (err) {
913 struct mmci_dmae_next *next = &dmae->next_data;
914 struct dma_chan *chan;
915 if (data->flags & MMC_DATA_READ)
916 chan = dmae->rx_channel;
917 else
918 chan = dmae->tx_channel;
919 dmaengine_terminate_all(chan);
920
921 if (dmae->desc_current == next->desc)
922 dmae->desc_current = NULL;
923
924 if (dmae->cur == next->chan) {
925 host->dma_in_progress = false;
926 dmae->cur = NULL;
927 }
928
929 next->desc = NULL;
930 next->chan = NULL;
931 }
932}
933
934static struct mmci_host_ops mmci_variant_ops = {
935 .prep_data = mmci_dmae_prep_data,
936 .unprep_data = mmci_dmae_unprep_data,
937 .get_datactrl_cfg = mmci_get_dctrl_cfg,
938 .get_next_data = mmci_dmae_get_next_data,
939 .dma_setup = mmci_dmae_setup,
940 .dma_release = mmci_dmae_release,
941 .dma_start = mmci_dmae_start,
942 .dma_finalize = mmci_dmae_finalize,
943 .dma_error = mmci_dmae_error,
944};
945#else
946static struct mmci_host_ops mmci_variant_ops = {
947 .get_datactrl_cfg = mmci_get_dctrl_cfg,
948};
949#endif
950
951void mmci_variant_init(struct mmci_host *host)
952{
953 host->ops = &mmci_variant_ops;
954}
955
956void ux500v2_variant_init(struct mmci_host *host)
957{
958 host->ops = &mmci_variant_ops;
959 host->ops->get_datactrl_cfg = ux500v2_get_dctrl_cfg;
960}
961
962static void mmci_pre_request(struct mmc_host *mmc, struct mmc_request *mrq)
963{
964 struct mmci_host *host = mmc_priv(mmc);
965 struct mmc_data *data = mrq->data;
966
967 if (!data)
968 return;
969
970 WARN_ON(data->host_cookie);
971
972 if (mmci_validate_data(host, data))
973 return;
974
975 mmci_prep_data(host, data, true);
976}
977
978static void mmci_post_request(struct mmc_host *mmc, struct mmc_request *mrq,
979 int err)
980{
981 struct mmci_host *host = mmc_priv(mmc);
982 struct mmc_data *data = mrq->data;
983
984 if (!data || !data->host_cookie)
985 return;
986
987 mmci_unprep_data(host, data, err);
988}
989
990static void mmci_start_data(struct mmci_host *host, struct mmc_data *data)
991{
992 struct variant_data *variant = host->variant;
993 unsigned int datactrl, timeout, irqmask;
994 unsigned long long clks;
995 void __iomem *base;
996
997 dev_dbg(mmc_dev(host->mmc), "blksz %04x blks %04x flags %08x\n",
998 data->blksz, data->blocks, data->flags);
999
1000 host->data = data;
1001 host->size = data->blksz * data->blocks;
1002 data->bytes_xfered = 0;
1003
1004 clks = (unsigned long long)data->timeout_ns * host->cclk;
1005 do_div(clks, NSEC_PER_SEC);
1006
1007 timeout = data->timeout_clks + (unsigned int)clks;
1008
1009 base = host->base;
1010 writel(timeout, base + MMCIDATATIMER);
1011 writel(host->size, base + MMCIDATALENGTH);
1012
1013 datactrl = host->ops->get_datactrl_cfg(host);
1014 datactrl |= host->data->flags & MMC_DATA_READ ? MCI_DPSM_DIRECTION : 0;
1015
1016 if (host->mmc->card && mmc_card_sdio(host->mmc->card)) {
1017 u32 clk;
1018
1019 datactrl |= variant->datactrl_mask_sdio;
1020
1021 /*
1022 * The ST Micro variant for SDIO small write transfers
1023 * needs to have clock H/W flow control disabled,
1024 * otherwise the transfer will not start. The threshold
1025 * depends on the rate of MCLK.
1026 */
1027 if (variant->st_sdio && data->flags & MMC_DATA_WRITE &&
1028 (host->size < 8 ||
1029 (host->size <= 8 && host->mclk > 50000000)))
1030 clk = host->clk_reg & ~variant->clkreg_enable;
1031 else
1032 clk = host->clk_reg | variant->clkreg_enable;
1033
1034 mmci_write_clkreg(host, clk);
1035 }
1036
1037 if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
1038 host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
1039 datactrl |= variant->datactrl_mask_ddrmode;
1040
1041 /*
1042 * Attempt to use DMA operation mode, if this
1043 * should fail, fall back to PIO mode
1044 */
1045 if (!mmci_dma_start(host, datactrl))
1046 return;
1047
1048 /* IRQ mode, map the SG list for CPU reading/writing */
1049 mmci_init_sg(host, data);
1050
1051 if (data->flags & MMC_DATA_READ) {
1052 irqmask = MCI_RXFIFOHALFFULLMASK;
1053
1054 /*
1055 * If we have less than the fifo 'half-full' threshold to
1056 * transfer, trigger a PIO interrupt as soon as any data
1057 * is available.
1058 */
1059 if (host->size < variant->fifohalfsize)
1060 irqmask |= MCI_RXDATAAVLBLMASK;
1061 } else {
1062 /*
1063 * We don't actually need to include "FIFO empty" here
1064 * since its implicit in "FIFO half empty".
1065 */
1066 irqmask = MCI_TXFIFOHALFEMPTYMASK;
1067 }
1068
1069 mmci_write_datactrlreg(host, datactrl);
1070 writel(readl(base + MMCIMASK0) & ~MCI_DATAENDMASK, base + MMCIMASK0);
1071 mmci_set_mask1(host, irqmask);
1072}
1073
1074static void
1075mmci_start_command(struct mmci_host *host, struct mmc_command *cmd, u32 c)
1076{
1077 void __iomem *base = host->base;
1078
1079 dev_dbg(mmc_dev(host->mmc), "op %02x arg %08x flags %08x\n",
1080 cmd->opcode, cmd->arg, cmd->flags);
1081
1082 if (readl(base + MMCICOMMAND) & host->variant->cmdreg_cpsm_enable) {
1083 writel(0, base + MMCICOMMAND);
1084 mmci_reg_delay(host);
1085 }
1086
1087 if (host->variant->cmdreg_stop &&
1088 cmd->opcode == MMC_STOP_TRANSMISSION)
1089 c |= host->variant->cmdreg_stop;
1090
1091 c |= cmd->opcode | host->variant->cmdreg_cpsm_enable;
1092 if (cmd->flags & MMC_RSP_PRESENT) {
1093 if (cmd->flags & MMC_RSP_136)
1094 c |= host->variant->cmdreg_lrsp_crc;
1095 else if (cmd->flags & MMC_RSP_CRC)
1096 c |= host->variant->cmdreg_srsp_crc;
1097 else
1098 c |= host->variant->cmdreg_srsp;
1099 }
1100 if (/*interrupt*/0)
1101 c |= MCI_CPSM_INTERRUPT;
1102
1103 if (mmc_cmd_type(cmd) == MMC_CMD_ADTC)
1104 c |= host->variant->data_cmd_enable;
1105
1106 host->cmd = cmd;
1107
1108 writel(cmd->arg, base + MMCIARGUMENT);
1109 writel(c, base + MMCICOMMAND);
1110}
1111
1112static void mmci_stop_command(struct mmci_host *host)
1113{
1114 host->stop_abort.error = 0;
1115 mmci_start_command(host, &host->stop_abort, 0);
1116}
1117
1118static void
1119mmci_data_irq(struct mmci_host *host, struct mmc_data *data,
1120 unsigned int status)
1121{
1122 unsigned int status_err;
1123
1124 /* Make sure we have data to handle */
1125 if (!data)
1126 return;
1127
1128 /* First check for errors */
1129 status_err = status & (host->variant->start_err |
1130 MCI_DATACRCFAIL | MCI_DATATIMEOUT |
1131 MCI_TXUNDERRUN | MCI_RXOVERRUN);
1132
1133 if (status_err) {
1134 u32 remain, success;
1135
1136 /* Terminate the DMA transfer */
1137 mmci_dma_error(host);
1138
1139 /*
1140 * Calculate how far we are into the transfer. Note that
1141 * the data counter gives the number of bytes transferred
1142 * on the MMC bus, not on the host side. On reads, this
1143 * can be as much as a FIFO-worth of data ahead. This
1144 * matters for FIFO overruns only.
1145 */
1146 if (!host->variant->datacnt_useless) {
1147 remain = readl(host->base + MMCIDATACNT);
1148 success = data->blksz * data->blocks - remain;
1149 } else {
1150 success = 0;
1151 }
1152
1153 dev_dbg(mmc_dev(host->mmc), "MCI ERROR IRQ, status 0x%08x at 0x%08x\n",
1154 status_err, success);
1155 if (status_err & MCI_DATACRCFAIL) {
1156 /* Last block was not successful */
1157 success -= 1;
1158 data->error = -EILSEQ;
1159 } else if (status_err & MCI_DATATIMEOUT) {
1160 data->error = -ETIMEDOUT;
1161 } else if (status_err & MCI_STARTBITERR) {
1162 data->error = -ECOMM;
1163 } else if (status_err & MCI_TXUNDERRUN) {
1164 data->error = -EIO;
1165 } else if (status_err & MCI_RXOVERRUN) {
1166 if (success > host->variant->fifosize)
1167 success -= host->variant->fifosize;
1168 else
1169 success = 0;
1170 data->error = -EIO;
1171 }
1172 data->bytes_xfered = round_down(success, data->blksz);
1173 }
1174
1175 if (status & MCI_DATABLOCKEND)
1176 dev_err(mmc_dev(host->mmc), "stray MCI_DATABLOCKEND interrupt\n");
1177
1178 if (status & MCI_DATAEND || data->error) {
1179 mmci_dma_finalize(host, data);
1180
1181 mmci_stop_data(host);
1182
1183 if (!data->error)
1184 /* The error clause is handled above, success! */
1185 data->bytes_xfered = data->blksz * data->blocks;
1186
1187 if (!data->stop) {
1188 if (host->variant->cmdreg_stop && data->error)
1189 mmci_stop_command(host);
1190 else
1191 mmci_request_end(host, data->mrq);
1192 } else if (host->mrq->sbc && !data->error) {
1193 mmci_request_end(host, data->mrq);
1194 } else {
1195 mmci_start_command(host, data->stop, 0);
1196 }
1197 }
1198}
1199
1200static void
1201mmci_cmd_irq(struct mmci_host *host, struct mmc_command *cmd,
1202 unsigned int status)
1203{
1204 void __iomem *base = host->base;
1205 bool sbc, busy_resp;
1206
1207 if (!cmd)
1208 return;
1209
1210 sbc = (cmd == host->mrq->sbc);
1211 busy_resp = !!(cmd->flags & MMC_RSP_BUSY);
1212
1213 /*
1214 * We need to be one of these interrupts to be considered worth
1215 * handling. Note that we tag on any latent IRQs postponed
1216 * due to waiting for busy status.
1217 */
1218 if (!((status|host->busy_status) &
1219 (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT|MCI_CMDSENT|MCI_CMDRESPEND)))
1220 return;
1221
1222 /* Handle busy detection on DAT0 if the variant supports it. */
1223 if (busy_resp && host->variant->busy_detect) {
1224
1225 /*
1226 * Before unmasking for the busy end IRQ, confirm that the
1227 * command was sent successfully. To keep track of having a
1228 * command in-progress, waiting for busy signaling to end,
1229 * store the status in host->busy_status.
1230 *
1231 * Note that, the card may need a couple of clock cycles before
1232 * it starts signaling busy on DAT0, hence re-read the
1233 * MMCISTATUS register here, to allow the busy bit to be set.
1234 * Potentially we may even need to poll the register for a
1235 * while, to allow it to be set, but tests indicates that it
1236 * isn't needed.
1237 */
1238 if (!host->busy_status &&
1239 !(status & (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT)) &&
1240 (readl(base + MMCISTATUS) & host->variant->busy_detect_flag)) {
1241
1242 writel(readl(base + MMCIMASK0) |
1243 host->variant->busy_detect_mask,
1244 base + MMCIMASK0);
1245
1246 host->busy_status =
1247 status & (MCI_CMDSENT|MCI_CMDRESPEND);
1248 return;
1249 }
1250
1251 /*
1252 * If there is a command in-progress that has been successfully
1253 * sent, then bail out if busy status is set and wait for the
1254 * busy end IRQ.
1255 *
1256 * Note that, the HW triggers an IRQ on both edges while
1257 * monitoring DAT0 for busy completion, but there is only one
1258 * status bit in MMCISTATUS for the busy state. Therefore
1259 * both the start and the end interrupts needs to be cleared,
1260 * one after the other. So, clear the busy start IRQ here.
1261 */
1262 if (host->busy_status &&
1263 (status & host->variant->busy_detect_flag)) {
1264 writel(host->variant->busy_detect_mask,
1265 host->base + MMCICLEAR);
1266 return;
1267 }
1268
1269 /*
1270 * If there is a command in-progress that has been successfully
1271 * sent and the busy bit isn't set, it means we have received
1272 * the busy end IRQ. Clear and mask the IRQ, then continue to
1273 * process the command.
1274 */
1275 if (host->busy_status) {
1276
1277 writel(host->variant->busy_detect_mask,
1278 host->base + MMCICLEAR);
1279
1280 writel(readl(base + MMCIMASK0) &
1281 ~host->variant->busy_detect_mask,
1282 base + MMCIMASK0);
1283 host->busy_status = 0;
1284 }
1285 }
1286
1287 host->cmd = NULL;
1288
1289 if (status & MCI_CMDTIMEOUT) {
1290 cmd->error = -ETIMEDOUT;
1291 } else if (status & MCI_CMDCRCFAIL && cmd->flags & MMC_RSP_CRC) {
1292 cmd->error = -EILSEQ;
1293 } else {
1294 cmd->resp[0] = readl(base + MMCIRESPONSE0);
1295 cmd->resp[1] = readl(base + MMCIRESPONSE1);
1296 cmd->resp[2] = readl(base + MMCIRESPONSE2);
1297 cmd->resp[3] = readl(base + MMCIRESPONSE3);
1298 }
1299
1300 if ((!sbc && !cmd->data) || cmd->error) {
1301 if (host->data) {
1302 /* Terminate the DMA transfer */
1303 mmci_dma_error(host);
1304
1305 mmci_stop_data(host);
1306 if (host->variant->cmdreg_stop && cmd->error) {
1307 mmci_stop_command(host);
1308 return;
1309 }
1310 }
1311 mmci_request_end(host, host->mrq);
1312 } else if (sbc) {
1313 mmci_start_command(host, host->mrq->cmd, 0);
1314 } else if (!host->variant->datactrl_first &&
1315 !(cmd->data->flags & MMC_DATA_READ)) {
1316 mmci_start_data(host, cmd->data);
1317 }
1318}
1319
1320static int mmci_get_rx_fifocnt(struct mmci_host *host, u32 status, int remain)
1321{
1322 return remain - (readl(host->base + MMCIFIFOCNT) << 2);
1323}
1324
1325static int mmci_qcom_get_rx_fifocnt(struct mmci_host *host, u32 status, int r)
1326{
1327 /*
1328 * on qcom SDCC4 only 8 words are used in each burst so only 8 addresses
1329 * from the fifo range should be used
1330 */
1331 if (status & MCI_RXFIFOHALFFULL)
1332 return host->variant->fifohalfsize;
1333 else if (status & MCI_RXDATAAVLBL)
1334 return 4;
1335
1336 return 0;
1337}
1338
1339static int mmci_pio_read(struct mmci_host *host, char *buffer, unsigned int remain)
1340{
1341 void __iomem *base = host->base;
1342 char *ptr = buffer;
1343 u32 status = readl(host->base + MMCISTATUS);
1344 int host_remain = host->size;
1345
1346 do {
1347 int count = host->get_rx_fifocnt(host, status, host_remain);
1348
1349 if (count > remain)
1350 count = remain;
1351
1352 if (count <= 0)
1353 break;
1354
1355 /*
1356 * SDIO especially may want to send something that is
1357 * not divisible by 4 (as opposed to card sectors
1358 * etc). Therefore make sure to always read the last bytes
1359 * while only doing full 32-bit reads towards the FIFO.
1360 */
1361 if (unlikely(count & 0x3)) {
1362 if (count < 4) {
1363 unsigned char buf[4];
1364 ioread32_rep(base + MMCIFIFO, buf, 1);
1365 memcpy(ptr, buf, count);
1366 } else {
1367 ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1368 count &= ~0x3;
1369 }
1370 } else {
1371 ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1372 }
1373
1374 ptr += count;
1375 remain -= count;
1376 host_remain -= count;
1377
1378 if (remain == 0)
1379 break;
1380
1381 status = readl(base + MMCISTATUS);
1382 } while (status & MCI_RXDATAAVLBL);
1383
1384 return ptr - buffer;
1385}
1386
1387static int mmci_pio_write(struct mmci_host *host, char *buffer, unsigned int remain, u32 status)
1388{
1389 struct variant_data *variant = host->variant;
1390 void __iomem *base = host->base;
1391 char *ptr = buffer;
1392
1393 do {
1394 unsigned int count, maxcnt;
1395
1396 maxcnt = status & MCI_TXFIFOEMPTY ?
1397 variant->fifosize : variant->fifohalfsize;
1398 count = min(remain, maxcnt);
1399
1400 /*
1401 * SDIO especially may want to send something that is
1402 * not divisible by 4 (as opposed to card sectors
1403 * etc), and the FIFO only accept full 32-bit writes.
1404 * So compensate by adding +3 on the count, a single
1405 * byte become a 32bit write, 7 bytes will be two
1406 * 32bit writes etc.
1407 */
1408 iowrite32_rep(base + MMCIFIFO, ptr, (count + 3) >> 2);
1409
1410 ptr += count;
1411 remain -= count;
1412
1413 if (remain == 0)
1414 break;
1415
1416 status = readl(base + MMCISTATUS);
1417 } while (status & MCI_TXFIFOHALFEMPTY);
1418
1419 return ptr - buffer;
1420}
1421
1422/*
1423 * PIO data transfer IRQ handler.
1424 */
1425static irqreturn_t mmci_pio_irq(int irq, void *dev_id)
1426{
1427 struct mmci_host *host = dev_id;
1428 struct sg_mapping_iter *sg_miter = &host->sg_miter;
1429 struct variant_data *variant = host->variant;
1430 void __iomem *base = host->base;
1431 u32 status;
1432
1433 status = readl(base + MMCISTATUS);
1434
1435 dev_dbg(mmc_dev(host->mmc), "irq1 (pio) %08x\n", status);
1436
1437 do {
1438 unsigned int remain, len;
1439 char *buffer;
1440
1441 /*
1442 * For write, we only need to test the half-empty flag
1443 * here - if the FIFO is completely empty, then by
1444 * definition it is more than half empty.
1445 *
1446 * For read, check for data available.
1447 */
1448 if (!(status & (MCI_TXFIFOHALFEMPTY|MCI_RXDATAAVLBL)))
1449 break;
1450
1451 if (!sg_miter_next(sg_miter))
1452 break;
1453
1454 buffer = sg_miter->addr;
1455 remain = sg_miter->length;
1456
1457 len = 0;
1458 if (status & MCI_RXACTIVE)
1459 len = mmci_pio_read(host, buffer, remain);
1460 if (status & MCI_TXACTIVE)
1461 len = mmci_pio_write(host, buffer, remain, status);
1462
1463 sg_miter->consumed = len;
1464
1465 host->size -= len;
1466 remain -= len;
1467
1468 if (remain)
1469 break;
1470
1471 status = readl(base + MMCISTATUS);
1472 } while (1);
1473
1474 sg_miter_stop(sg_miter);
1475
1476 /*
1477 * If we have less than the fifo 'half-full' threshold to transfer,
1478 * trigger a PIO interrupt as soon as any data is available.
1479 */
1480 if (status & MCI_RXACTIVE && host->size < variant->fifohalfsize)
1481 mmci_set_mask1(host, MCI_RXDATAAVLBLMASK);
1482
1483 /*
1484 * If we run out of data, disable the data IRQs; this
1485 * prevents a race where the FIFO becomes empty before
1486 * the chip itself has disabled the data path, and
1487 * stops us racing with our data end IRQ.
1488 */
1489 if (host->size == 0) {
1490 mmci_set_mask1(host, 0);
1491 writel(readl(base + MMCIMASK0) | MCI_DATAENDMASK, base + MMCIMASK0);
1492 }
1493
1494 return IRQ_HANDLED;
1495}
1496
1497/*
1498 * Handle completion of command and data transfers.
1499 */
1500static irqreturn_t mmci_irq(int irq, void *dev_id)
1501{
1502 struct mmci_host *host = dev_id;
1503 u32 status;
1504 int ret = 0;
1505
1506 spin_lock(&host->lock);
1507
1508 do {
1509 status = readl(host->base + MMCISTATUS);
1510
1511 if (host->singleirq) {
1512 if (status & host->mask1_reg)
1513 mmci_pio_irq(irq, dev_id);
1514
1515 status &= ~host->variant->irq_pio_mask;
1516 }
1517
1518 /*
1519 * Busy detection is managed by mmci_cmd_irq(), including to
1520 * clear the corresponding IRQ.
1521 */
1522 status &= readl(host->base + MMCIMASK0);
1523 if (host->variant->busy_detect)
1524 writel(status & ~host->variant->busy_detect_mask,
1525 host->base + MMCICLEAR);
1526 else
1527 writel(status, host->base + MMCICLEAR);
1528
1529 dev_dbg(mmc_dev(host->mmc), "irq0 (data+cmd) %08x\n", status);
1530
1531 if (host->variant->reversed_irq_handling) {
1532 mmci_data_irq(host, host->data, status);
1533 mmci_cmd_irq(host, host->cmd, status);
1534 } else {
1535 mmci_cmd_irq(host, host->cmd, status);
1536 mmci_data_irq(host, host->data, status);
1537 }
1538
1539 /*
1540 * Busy detection has been handled by mmci_cmd_irq() above.
1541 * Clear the status bit to prevent polling in IRQ context.
1542 */
1543 if (host->variant->busy_detect_flag)
1544 status &= ~host->variant->busy_detect_flag;
1545
1546 ret = 1;
1547 } while (status);
1548
1549 spin_unlock(&host->lock);
1550
1551 return IRQ_RETVAL(ret);
1552}
1553
1554static void mmci_request(struct mmc_host *mmc, struct mmc_request *mrq)
1555{
1556 struct mmci_host *host = mmc_priv(mmc);
1557 unsigned long flags;
1558
1559 WARN_ON(host->mrq != NULL);
1560
1561 mrq->cmd->error = mmci_validate_data(host, mrq->data);
1562 if (mrq->cmd->error) {
1563 mmc_request_done(mmc, mrq);
1564 return;
1565 }
1566
1567 spin_lock_irqsave(&host->lock, flags);
1568
1569 host->mrq = mrq;
1570
1571 if (mrq->data)
1572 mmci_get_next_data(host, mrq->data);
1573
1574 if (mrq->data &&
1575 (host->variant->datactrl_first || mrq->data->flags & MMC_DATA_READ))
1576 mmci_start_data(host, mrq->data);
1577
1578 if (mrq->sbc)
1579 mmci_start_command(host, mrq->sbc, 0);
1580 else
1581 mmci_start_command(host, mrq->cmd, 0);
1582
1583 spin_unlock_irqrestore(&host->lock, flags);
1584}
1585
1586static void mmci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1587{
1588 struct mmci_host *host = mmc_priv(mmc);
1589 struct variant_data *variant = host->variant;
1590 u32 pwr = 0;
1591 unsigned long flags;
1592 int ret;
1593
1594 if (host->plat->ios_handler &&
1595 host->plat->ios_handler(mmc_dev(mmc), ios))
1596 dev_err(mmc_dev(mmc), "platform ios_handler failed\n");
1597
1598 switch (ios->power_mode) {
1599 case MMC_POWER_OFF:
1600 if (!IS_ERR(mmc->supply.vmmc))
1601 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1602
1603 if (!IS_ERR(mmc->supply.vqmmc) && host->vqmmc_enabled) {
1604 regulator_disable(mmc->supply.vqmmc);
1605 host->vqmmc_enabled = false;
1606 }
1607
1608 break;
1609 case MMC_POWER_UP:
1610 if (!IS_ERR(mmc->supply.vmmc))
1611 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
1612
1613 /*
1614 * The ST Micro variant doesn't have the PL180s MCI_PWR_UP
1615 * and instead uses MCI_PWR_ON so apply whatever value is
1616 * configured in the variant data.
1617 */
1618 pwr |= variant->pwrreg_powerup;
1619
1620 break;
1621 case MMC_POWER_ON:
1622 if (!IS_ERR(mmc->supply.vqmmc) && !host->vqmmc_enabled) {
1623 ret = regulator_enable(mmc->supply.vqmmc);
1624 if (ret < 0)
1625 dev_err(mmc_dev(mmc),
1626 "failed to enable vqmmc regulator\n");
1627 else
1628 host->vqmmc_enabled = true;
1629 }
1630
1631 pwr |= MCI_PWR_ON;
1632 break;
1633 }
1634
1635 if (variant->signal_direction && ios->power_mode != MMC_POWER_OFF) {
1636 /*
1637 * The ST Micro variant has some additional bits
1638 * indicating signal direction for the signals in
1639 * the SD/MMC bus and feedback-clock usage.
1640 */
1641 pwr |= host->pwr_reg_add;
1642
1643 if (ios->bus_width == MMC_BUS_WIDTH_4)
1644 pwr &= ~MCI_ST_DATA74DIREN;
1645 else if (ios->bus_width == MMC_BUS_WIDTH_1)
1646 pwr &= (~MCI_ST_DATA74DIREN &
1647 ~MCI_ST_DATA31DIREN &
1648 ~MCI_ST_DATA2DIREN);
1649 }
1650
1651 if (variant->opendrain) {
1652 if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN)
1653 pwr |= variant->opendrain;
1654 } else {
1655 /*
1656 * If the variant cannot configure the pads by its own, then we
1657 * expect the pinctrl to be able to do that for us
1658 */
1659 if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN)
1660 pinctrl_select_state(host->pinctrl, host->pins_opendrain);
1661 else
1662 pinctrl_select_state(host->pinctrl, host->pins_default);
1663 }
1664
1665 /*
1666 * If clock = 0 and the variant requires the MMCIPOWER to be used for
1667 * gating the clock, the MCI_PWR_ON bit is cleared.
1668 */
1669 if (!ios->clock && variant->pwrreg_clkgate)
1670 pwr &= ~MCI_PWR_ON;
1671
1672 if (host->variant->explicit_mclk_control &&
1673 ios->clock != host->clock_cache) {
1674 ret = clk_set_rate(host->clk, ios->clock);
1675 if (ret < 0)
1676 dev_err(mmc_dev(host->mmc),
1677 "Error setting clock rate (%d)\n", ret);
1678 else
1679 host->mclk = clk_get_rate(host->clk);
1680 }
1681 host->clock_cache = ios->clock;
1682
1683 spin_lock_irqsave(&host->lock, flags);
1684
1685 if (host->ops && host->ops->set_clkreg)
1686 host->ops->set_clkreg(host, ios->clock);
1687 else
1688 mmci_set_clkreg(host, ios->clock);
1689
1690 if (host->ops && host->ops->set_pwrreg)
1691 host->ops->set_pwrreg(host, pwr);
1692 else
1693 mmci_write_pwrreg(host, pwr);
1694
1695 mmci_reg_delay(host);
1696
1697 spin_unlock_irqrestore(&host->lock, flags);
1698}
1699
1700static int mmci_get_cd(struct mmc_host *mmc)
1701{
1702 struct mmci_host *host = mmc_priv(mmc);
1703 struct mmci_platform_data *plat = host->plat;
1704 unsigned int status = mmc_gpio_get_cd(mmc);
1705
1706 if (status == -ENOSYS) {
1707 if (!plat->status)
1708 return 1; /* Assume always present */
1709
1710 status = plat->status(mmc_dev(host->mmc));
1711 }
1712 return status;
1713}
1714
1715static int mmci_sig_volt_switch(struct mmc_host *mmc, struct mmc_ios *ios)
1716{
1717 int ret = 0;
1718
1719 if (!IS_ERR(mmc->supply.vqmmc)) {
1720
1721 switch (ios->signal_voltage) {
1722 case MMC_SIGNAL_VOLTAGE_330:
1723 ret = regulator_set_voltage(mmc->supply.vqmmc,
1724 2700000, 3600000);
1725 break;
1726 case MMC_SIGNAL_VOLTAGE_180:
1727 ret = regulator_set_voltage(mmc->supply.vqmmc,
1728 1700000, 1950000);
1729 break;
1730 case MMC_SIGNAL_VOLTAGE_120:
1731 ret = regulator_set_voltage(mmc->supply.vqmmc,
1732 1100000, 1300000);
1733 break;
1734 }
1735
1736 if (ret)
1737 dev_warn(mmc_dev(mmc), "Voltage switch failed\n");
1738 }
1739
1740 return ret;
1741}
1742
1743static struct mmc_host_ops mmci_ops = {
1744 .request = mmci_request,
1745 .pre_req = mmci_pre_request,
1746 .post_req = mmci_post_request,
1747 .set_ios = mmci_set_ios,
1748 .get_ro = mmc_gpio_get_ro,
1749 .get_cd = mmci_get_cd,
1750 .start_signal_voltage_switch = mmci_sig_volt_switch,
1751};
1752
1753static int mmci_of_parse(struct device_node *np, struct mmc_host *mmc)
1754{
1755 struct mmci_host *host = mmc_priv(mmc);
1756 int ret = mmc_of_parse(mmc);
1757
1758 if (ret)
1759 return ret;
1760
1761 if (of_get_property(np, "st,sig-dir-dat0", NULL))
1762 host->pwr_reg_add |= MCI_ST_DATA0DIREN;
1763 if (of_get_property(np, "st,sig-dir-dat2", NULL))
1764 host->pwr_reg_add |= MCI_ST_DATA2DIREN;
1765 if (of_get_property(np, "st,sig-dir-dat31", NULL))
1766 host->pwr_reg_add |= MCI_ST_DATA31DIREN;
1767 if (of_get_property(np, "st,sig-dir-dat74", NULL))
1768 host->pwr_reg_add |= MCI_ST_DATA74DIREN;
1769 if (of_get_property(np, "st,sig-dir-cmd", NULL))
1770 host->pwr_reg_add |= MCI_ST_CMDDIREN;
1771 if (of_get_property(np, "st,sig-pin-fbclk", NULL))
1772 host->pwr_reg_add |= MCI_ST_FBCLKEN;
1773 if (of_get_property(np, "st,sig-dir", NULL))
1774 host->pwr_reg_add |= MCI_STM32_DIRPOL;
1775 if (of_get_property(np, "st,neg-edge", NULL))
1776 host->clk_reg_add |= MCI_STM32_CLK_NEGEDGE;
1777 if (of_get_property(np, "st,use-ckin", NULL))
1778 host->clk_reg_add |= MCI_STM32_CLK_SELCKIN;
1779
1780 if (of_get_property(np, "mmc-cap-mmc-highspeed", NULL))
1781 mmc->caps |= MMC_CAP_MMC_HIGHSPEED;
1782 if (of_get_property(np, "mmc-cap-sd-highspeed", NULL))
1783 mmc->caps |= MMC_CAP_SD_HIGHSPEED;
1784
1785 return 0;
1786}
1787
1788static int mmci_probe(struct amba_device *dev,
1789 const struct amba_id *id)
1790{
1791 struct mmci_platform_data *plat = dev->dev.platform_data;
1792 struct device_node *np = dev->dev.of_node;
1793 struct variant_data *variant = id->data;
1794 struct mmci_host *host;
1795 struct mmc_host *mmc;
1796 int ret;
1797
1798 /* Must have platform data or Device Tree. */
1799 if (!plat && !np) {
1800 dev_err(&dev->dev, "No plat data or DT found\n");
1801 return -EINVAL;
1802 }
1803
1804 if (!plat) {
1805 plat = devm_kzalloc(&dev->dev, sizeof(*plat), GFP_KERNEL);
1806 if (!plat)
1807 return -ENOMEM;
1808 }
1809
1810 mmc = mmc_alloc_host(sizeof(struct mmci_host), &dev->dev);
1811 if (!mmc)
1812 return -ENOMEM;
1813
1814 ret = mmci_of_parse(np, mmc);
1815 if (ret)
1816 goto host_free;
1817
1818 host = mmc_priv(mmc);
1819 host->mmc = mmc;
1820
1821 /*
1822 * Some variant (STM32) doesn't have opendrain bit, nevertheless
1823 * pins can be set accordingly using pinctrl
1824 */
1825 if (!variant->opendrain) {
1826 host->pinctrl = devm_pinctrl_get(&dev->dev);
1827 if (IS_ERR(host->pinctrl)) {
1828 dev_err(&dev->dev, "failed to get pinctrl");
1829 ret = PTR_ERR(host->pinctrl);
1830 goto host_free;
1831 }
1832
1833 host->pins_default = pinctrl_lookup_state(host->pinctrl,
1834 PINCTRL_STATE_DEFAULT);
1835 if (IS_ERR(host->pins_default)) {
1836 dev_err(mmc_dev(mmc), "Can't select default pins\n");
1837 ret = PTR_ERR(host->pins_default);
1838 goto host_free;
1839 }
1840
1841 host->pins_opendrain = pinctrl_lookup_state(host->pinctrl,
1842 MMCI_PINCTRL_STATE_OPENDRAIN);
1843 if (IS_ERR(host->pins_opendrain)) {
1844 dev_err(mmc_dev(mmc), "Can't select opendrain pins\n");
1845 ret = PTR_ERR(host->pins_opendrain);
1846 goto host_free;
1847 }
1848 }
1849
1850 host->hw_designer = amba_manf(dev);
1851 host->hw_revision = amba_rev(dev);
1852 dev_dbg(mmc_dev(mmc), "designer ID = 0x%02x\n", host->hw_designer);
1853 dev_dbg(mmc_dev(mmc), "revision = 0x%01x\n", host->hw_revision);
1854
1855 host->clk = devm_clk_get(&dev->dev, NULL);
1856 if (IS_ERR(host->clk)) {
1857 ret = PTR_ERR(host->clk);
1858 goto host_free;
1859 }
1860
1861 ret = clk_prepare_enable(host->clk);
1862 if (ret)
1863 goto host_free;
1864
1865 if (variant->qcom_fifo)
1866 host->get_rx_fifocnt = mmci_qcom_get_rx_fifocnt;
1867 else
1868 host->get_rx_fifocnt = mmci_get_rx_fifocnt;
1869
1870 host->plat = plat;
1871 host->variant = variant;
1872 host->mclk = clk_get_rate(host->clk);
1873 /*
1874 * According to the spec, mclk is max 100 MHz,
1875 * so we try to adjust the clock down to this,
1876 * (if possible).
1877 */
1878 if (host->mclk > variant->f_max) {
1879 ret = clk_set_rate(host->clk, variant->f_max);
1880 if (ret < 0)
1881 goto clk_disable;
1882 host->mclk = clk_get_rate(host->clk);
1883 dev_dbg(mmc_dev(mmc), "eventual mclk rate: %u Hz\n",
1884 host->mclk);
1885 }
1886
1887 host->phybase = dev->res.start;
1888 host->base = devm_ioremap_resource(&dev->dev, &dev->res);
1889 if (IS_ERR(host->base)) {
1890 ret = PTR_ERR(host->base);
1891 goto clk_disable;
1892 }
1893
1894 if (variant->init)
1895 variant->init(host);
1896
1897 /*
1898 * The ARM and ST versions of the block have slightly different
1899 * clock divider equations which means that the minimum divider
1900 * differs too.
1901 * on Qualcomm like controllers get the nearest minimum clock to 100Khz
1902 */
1903 if (variant->st_clkdiv)
1904 mmc->f_min = DIV_ROUND_UP(host->mclk, 257);
1905 else if (variant->stm32_clkdiv)
1906 mmc->f_min = DIV_ROUND_UP(host->mclk, 2046);
1907 else if (variant->explicit_mclk_control)
1908 mmc->f_min = clk_round_rate(host->clk, 100000);
1909 else
1910 mmc->f_min = DIV_ROUND_UP(host->mclk, 512);
1911 /*
1912 * If no maximum operating frequency is supplied, fall back to use
1913 * the module parameter, which has a (low) default value in case it
1914 * is not specified. Either value must not exceed the clock rate into
1915 * the block, of course.
1916 */
1917 if (mmc->f_max)
1918 mmc->f_max = variant->explicit_mclk_control ?
1919 min(variant->f_max, mmc->f_max) :
1920 min(host->mclk, mmc->f_max);
1921 else
1922 mmc->f_max = variant->explicit_mclk_control ?
1923 fmax : min(host->mclk, fmax);
1924
1925
1926 dev_dbg(mmc_dev(mmc), "clocking block at %u Hz\n", mmc->f_max);
1927
1928 host->rst = devm_reset_control_get_optional_exclusive(&dev->dev, NULL);
1929 if (IS_ERR(host->rst)) {
1930 ret = PTR_ERR(host->rst);
1931 goto clk_disable;
1932 }
1933
1934 /* Get regulators and the supported OCR mask */
1935 ret = mmc_regulator_get_supply(mmc);
1936 if (ret)
1937 goto clk_disable;
1938
1939 if (!mmc->ocr_avail)
1940 mmc->ocr_avail = plat->ocr_mask;
1941 else if (plat->ocr_mask)
1942 dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
1943
1944 /* We support these capabilities. */
1945 mmc->caps |= MMC_CAP_CMD23;
1946
1947 /*
1948 * Enable busy detection.
1949 */
1950 if (variant->busy_detect) {
1951 mmci_ops.card_busy = mmci_card_busy;
1952 /*
1953 * Not all variants have a flag to enable busy detection
1954 * in the DPSM, but if they do, set it here.
1955 */
1956 if (variant->busy_dpsm_flag)
1957 mmci_write_datactrlreg(host,
1958 host->variant->busy_dpsm_flag);
1959 mmc->caps |= MMC_CAP_WAIT_WHILE_BUSY;
1960 mmc->max_busy_timeout = 0;
1961 }
1962
1963 /* Prepare a CMD12 - needed to clear the DPSM on some variants. */
1964 host->stop_abort.opcode = MMC_STOP_TRANSMISSION;
1965 host->stop_abort.arg = 0;
1966 host->stop_abort.flags = MMC_RSP_R1B | MMC_CMD_AC;
1967
1968 mmc->ops = &mmci_ops;
1969
1970 /* We support these PM capabilities. */
1971 mmc->pm_caps |= MMC_PM_KEEP_POWER;
1972
1973 /*
1974 * We can do SGIO
1975 */
1976 mmc->max_segs = NR_SG;
1977
1978 /*
1979 * Since only a certain number of bits are valid in the data length
1980 * register, we must ensure that we don't exceed 2^num-1 bytes in a
1981 * single request.
1982 */
1983 mmc->max_req_size = (1 << variant->datalength_bits) - 1;
1984
1985 /*
1986 * Set the maximum segment size. Since we aren't doing DMA
1987 * (yet) we are only limited by the data length register.
1988 */
1989 mmc->max_seg_size = mmc->max_req_size;
1990
1991 /*
1992 * Block size can be up to 2048 bytes, but must be a power of two.
1993 */
1994 mmc->max_blk_size = 1 << variant->datactrl_blocksz;
1995
1996 /*
1997 * Limit the number of blocks transferred so that we don't overflow
1998 * the maximum request size.
1999 */
2000 mmc->max_blk_count = mmc->max_req_size >> variant->datactrl_blocksz;
2001
2002 spin_lock_init(&host->lock);
2003
2004 writel(0, host->base + MMCIMASK0);
2005
2006 if (variant->mmcimask1)
2007 writel(0, host->base + MMCIMASK1);
2008
2009 writel(0xfff, host->base + MMCICLEAR);
2010
2011 /*
2012 * If:
2013 * - not using DT but using a descriptor table, or
2014 * - using a table of descriptors ALONGSIDE DT, or
2015 * look up these descriptors named "cd" and "wp" right here, fail
2016 * silently of these do not exist
2017 */
2018 if (!np) {
2019 ret = mmc_gpiod_request_cd(mmc, "cd", 0, false, 0, NULL);
2020 if (ret == -EPROBE_DEFER)
2021 goto clk_disable;
2022
2023 ret = mmc_gpiod_request_ro(mmc, "wp", 0, 0, NULL);
2024 if (ret == -EPROBE_DEFER)
2025 goto clk_disable;
2026 }
2027
2028 ret = devm_request_irq(&dev->dev, dev->irq[0], mmci_irq, IRQF_SHARED,
2029 DRIVER_NAME " (cmd)", host);
2030 if (ret)
2031 goto clk_disable;
2032
2033 if (!dev->irq[1])
2034 host->singleirq = true;
2035 else {
2036 ret = devm_request_irq(&dev->dev, dev->irq[1], mmci_pio_irq,
2037 IRQF_SHARED, DRIVER_NAME " (pio)", host);
2038 if (ret)
2039 goto clk_disable;
2040 }
2041
2042 writel(MCI_IRQENABLE | variant->start_err, host->base + MMCIMASK0);
2043
2044 amba_set_drvdata(dev, mmc);
2045
2046 dev_info(&dev->dev, "%s: PL%03x manf %x rev%u at 0x%08llx irq %d,%d (pio)\n",
2047 mmc_hostname(mmc), amba_part(dev), amba_manf(dev),
2048 amba_rev(dev), (unsigned long long)dev->res.start,
2049 dev->irq[0], dev->irq[1]);
2050
2051 mmci_dma_setup(host);
2052
2053 pm_runtime_set_autosuspend_delay(&dev->dev, 50);
2054 pm_runtime_use_autosuspend(&dev->dev);
2055
2056 mmc_add_host(mmc);
2057
2058 pm_runtime_put(&dev->dev);
2059 return 0;
2060
2061 clk_disable:
2062 clk_disable_unprepare(host->clk);
2063 host_free:
2064 mmc_free_host(mmc);
2065 return ret;
2066}
2067
2068static int mmci_remove(struct amba_device *dev)
2069{
2070 struct mmc_host *mmc = amba_get_drvdata(dev);
2071
2072 if (mmc) {
2073 struct mmci_host *host = mmc_priv(mmc);
2074 struct variant_data *variant = host->variant;
2075
2076 /*
2077 * Undo pm_runtime_put() in probe. We use the _sync
2078 * version here so that we can access the primecell.
2079 */
2080 pm_runtime_get_sync(&dev->dev);
2081
2082 mmc_remove_host(mmc);
2083
2084 writel(0, host->base + MMCIMASK0);
2085
2086 if (variant->mmcimask1)
2087 writel(0, host->base + MMCIMASK1);
2088
2089 writel(0, host->base + MMCICOMMAND);
2090 writel(0, host->base + MMCIDATACTRL);
2091
2092 mmci_dma_release(host);
2093 clk_disable_unprepare(host->clk);
2094 mmc_free_host(mmc);
2095 }
2096
2097 return 0;
2098}
2099
2100#ifdef CONFIG_PM
2101static void mmci_save(struct mmci_host *host)
2102{
2103 unsigned long flags;
2104
2105 spin_lock_irqsave(&host->lock, flags);
2106
2107 writel(0, host->base + MMCIMASK0);
2108 if (host->variant->pwrreg_nopower) {
2109 writel(0, host->base + MMCIDATACTRL);
2110 writel(0, host->base + MMCIPOWER);
2111 writel(0, host->base + MMCICLOCK);
2112 }
2113 mmci_reg_delay(host);
2114
2115 spin_unlock_irqrestore(&host->lock, flags);
2116}
2117
2118static void mmci_restore(struct mmci_host *host)
2119{
2120 unsigned long flags;
2121
2122 spin_lock_irqsave(&host->lock, flags);
2123
2124 if (host->variant->pwrreg_nopower) {
2125 writel(host->clk_reg, host->base + MMCICLOCK);
2126 writel(host->datactrl_reg, host->base + MMCIDATACTRL);
2127 writel(host->pwr_reg, host->base + MMCIPOWER);
2128 }
2129 writel(MCI_IRQENABLE | host->variant->start_err,
2130 host->base + MMCIMASK0);
2131 mmci_reg_delay(host);
2132
2133 spin_unlock_irqrestore(&host->lock, flags);
2134}
2135
2136static int mmci_runtime_suspend(struct device *dev)
2137{
2138 struct amba_device *adev = to_amba_device(dev);
2139 struct mmc_host *mmc = amba_get_drvdata(adev);
2140
2141 if (mmc) {
2142 struct mmci_host *host = mmc_priv(mmc);
2143 pinctrl_pm_select_sleep_state(dev);
2144 mmci_save(host);
2145 clk_disable_unprepare(host->clk);
2146 }
2147
2148 return 0;
2149}
2150
2151static int mmci_runtime_resume(struct device *dev)
2152{
2153 struct amba_device *adev = to_amba_device(dev);
2154 struct mmc_host *mmc = amba_get_drvdata(adev);
2155
2156 if (mmc) {
2157 struct mmci_host *host = mmc_priv(mmc);
2158 clk_prepare_enable(host->clk);
2159 mmci_restore(host);
2160 pinctrl_pm_select_default_state(dev);
2161 }
2162
2163 return 0;
2164}
2165#endif
2166
2167static const struct dev_pm_ops mmci_dev_pm_ops = {
2168 SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
2169 pm_runtime_force_resume)
2170 SET_RUNTIME_PM_OPS(mmci_runtime_suspend, mmci_runtime_resume, NULL)
2171};
2172
2173static const struct amba_id mmci_ids[] = {
2174 {
2175 .id = 0x00041180,
2176 .mask = 0xff0fffff,
2177 .data = &variant_arm,
2178 },
2179 {
2180 .id = 0x01041180,
2181 .mask = 0xff0fffff,
2182 .data = &variant_arm_extended_fifo,
2183 },
2184 {
2185 .id = 0x02041180,
2186 .mask = 0xff0fffff,
2187 .data = &variant_arm_extended_fifo_hwfc,
2188 },
2189 {
2190 .id = 0x00041181,
2191 .mask = 0x000fffff,
2192 .data = &variant_arm,
2193 },
2194 /* ST Micro variants */
2195 {
2196 .id = 0x00180180,
2197 .mask = 0x00ffffff,
2198 .data = &variant_u300,
2199 },
2200 {
2201 .id = 0x10180180,
2202 .mask = 0xf0ffffff,
2203 .data = &variant_nomadik,
2204 },
2205 {
2206 .id = 0x00280180,
2207 .mask = 0x00ffffff,
2208 .data = &variant_nomadik,
2209 },
2210 {
2211 .id = 0x00480180,
2212 .mask = 0xf0ffffff,
2213 .data = &variant_ux500,
2214 },
2215 {
2216 .id = 0x10480180,
2217 .mask = 0xf0ffffff,
2218 .data = &variant_ux500v2,
2219 },
2220 {
2221 .id = 0x00880180,
2222 .mask = 0x00ffffff,
2223 .data = &variant_stm32,
2224 },
2225 {
2226 .id = 0x10153180,
2227 .mask = 0xf0ffffff,
2228 .data = &variant_stm32_sdmmc,
2229 },
2230 /* Qualcomm variants */
2231 {
2232 .id = 0x00051180,
2233 .mask = 0x000fffff,
2234 .data = &variant_qcom,
2235 },
2236 { 0, 0 },
2237};
2238
2239MODULE_DEVICE_TABLE(amba, mmci_ids);
2240
2241static struct amba_driver mmci_driver = {
2242 .drv = {
2243 .name = DRIVER_NAME,
2244 .pm = &mmci_dev_pm_ops,
2245 },
2246 .probe = mmci_probe,
2247 .remove = mmci_remove,
2248 .id_table = mmci_ids,
2249};
2250
2251module_amba_driver(mmci_driver);
2252
2253module_param(fmax, uint, 0444);
2254
2255MODULE_DESCRIPTION("ARM PrimeCell PL180/181 Multimedia Card Interface driver");
2256MODULE_LICENSE("GPL");