Linux Audio

Check our new training course

Loading...
v3.15
 
   1/*
   2 *  linux/drivers/mmc/host/mmci.c - ARM PrimeCell MMCI PL180/1 driver
   3 *
   4 *  Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved.
   5 *  Copyright (C) 2010 ST-Ericsson SA
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License version 2 as
   9 * published by the Free Software Foundation.
  10 */
  11#include <linux/module.h>
  12#include <linux/moduleparam.h>
  13#include <linux/init.h>
  14#include <linux/ioport.h>
  15#include <linux/device.h>
 
  16#include <linux/interrupt.h>
  17#include <linux/kernel.h>
  18#include <linux/slab.h>
  19#include <linux/delay.h>
  20#include <linux/err.h>
  21#include <linux/highmem.h>
  22#include <linux/log2.h>
 
  23#include <linux/mmc/pm.h>
  24#include <linux/mmc/host.h>
  25#include <linux/mmc/card.h>
 
  26#include <linux/amba/bus.h>
  27#include <linux/clk.h>
  28#include <linux/scatterlist.h>
  29#include <linux/gpio.h>
  30#include <linux/of_gpio.h>
  31#include <linux/regulator/consumer.h>
  32#include <linux/dmaengine.h>
  33#include <linux/dma-mapping.h>
  34#include <linux/amba/mmci.h>
  35#include <linux/pm_runtime.h>
  36#include <linux/types.h>
  37#include <linux/pinctrl/consumer.h>
 
  38
  39#include <asm/div64.h>
  40#include <asm/io.h>
  41#include <asm/sizes.h>
  42
  43#include "mmci.h"
  44
  45#define DRIVER_NAME "mmci-pl18x"
  46
  47static unsigned int fmax = 515633;
 
  48
  49/**
  50 * struct variant_data - MMCI variant-specific quirks
  51 * @clkreg: default value for MCICLOCK register
  52 * @clkreg_enable: enable value for MMCICLOCK register
  53 * @datalength_bits: number of bits in the MMCIDATALENGTH register
  54 * @fifosize: number of bytes that can be written when MMCI_TXFIFOEMPTY
  55 *	      is asserted (likewise for RX)
  56 * @fifohalfsize: number of bytes that can be written when MCI_TXFIFOHALFEMPTY
  57 *		  is asserted (likewise for RX)
  58 * @sdio: variant supports SDIO
  59 * @st_clkdiv: true if using a ST-specific clock divider algorithm
  60 * @blksz_datactrl16: true if Block size is at b16..b30 position in datactrl register
  61 * @pwrreg_powerup: power up value for MMCIPOWER register
  62 * @signal_direction: input/out direction of bus signals can be indicated
  63 * @pwrreg_clkgate: MMCIPOWER register must be used to gate the clock
  64 * @busy_detect: true if busy detection on dat0 is supported
  65 * @pwrreg_nopower: bits in MMCIPOWER don't controls ext. power supply
  66 */
  67struct variant_data {
  68	unsigned int		clkreg;
  69	unsigned int		clkreg_enable;
  70	unsigned int		datalength_bits;
  71	unsigned int		fifosize;
  72	unsigned int		fifohalfsize;
  73	bool			sdio;
  74	bool			st_clkdiv;
  75	bool			blksz_datactrl16;
  76	u32			pwrreg_powerup;
  77	bool			signal_direction;
  78	bool			pwrreg_clkgate;
  79	bool			busy_detect;
  80	bool			pwrreg_nopower;
  81};
  82
  83static struct variant_data variant_arm = {
  84	.fifosize		= 16 * 4,
  85	.fifohalfsize		= 8 * 4,
 
 
 
 
  86	.datalength_bits	= 16,
 
  87	.pwrreg_powerup		= MCI_PWR_UP,
 
 
 
 
 
 
 
  88};
  89
  90static struct variant_data variant_arm_extended_fifo = {
  91	.fifosize		= 128 * 4,
  92	.fifohalfsize		= 64 * 4,
 
 
 
 
  93	.datalength_bits	= 16,
 
  94	.pwrreg_powerup		= MCI_PWR_UP,
 
 
 
 
 
 
  95};
  96
  97static struct variant_data variant_arm_extended_fifo_hwfc = {
  98	.fifosize		= 128 * 4,
  99	.fifohalfsize		= 64 * 4,
 100	.clkreg_enable		= MCI_ARM_HWFCEN,
 
 
 
 
 101	.datalength_bits	= 16,
 
 102	.pwrreg_powerup		= MCI_PWR_UP,
 
 
 
 
 
 
 103};
 104
 105static struct variant_data variant_u300 = {
 106	.fifosize		= 16 * 4,
 107	.fifohalfsize		= 8 * 4,
 108	.clkreg_enable		= MCI_ST_U300_HWFCEN,
 
 
 
 
 
 109	.datalength_bits	= 16,
 110	.sdio			= true,
 
 
 111	.pwrreg_powerup		= MCI_PWR_ON,
 
 112	.signal_direction	= true,
 113	.pwrreg_clkgate		= true,
 114	.pwrreg_nopower		= true,
 
 
 
 
 
 115};
 116
 117static struct variant_data variant_nomadik = {
 118	.fifosize		= 16 * 4,
 119	.fifohalfsize		= 8 * 4,
 120	.clkreg			= MCI_CLK_ENABLE,
 
 
 
 
 
 121	.datalength_bits	= 24,
 122	.sdio			= true,
 
 
 123	.st_clkdiv		= true,
 124	.pwrreg_powerup		= MCI_PWR_ON,
 
 125	.signal_direction	= true,
 126	.pwrreg_clkgate		= true,
 127	.pwrreg_nopower		= true,
 
 
 
 
 
 128};
 129
 130static struct variant_data variant_ux500 = {
 131	.fifosize		= 30 * 4,
 132	.fifohalfsize		= 8 * 4,
 133	.clkreg			= MCI_CLK_ENABLE,
 134	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
 
 
 
 
 
 
 135	.datalength_bits	= 24,
 136	.sdio			= true,
 
 
 137	.st_clkdiv		= true,
 138	.pwrreg_powerup		= MCI_PWR_ON,
 
 139	.signal_direction	= true,
 140	.pwrreg_clkgate		= true,
 141	.busy_detect		= true,
 
 
 
 142	.pwrreg_nopower		= true,
 
 
 
 
 
 143};
 144
 145static struct variant_data variant_ux500v2 = {
 146	.fifosize		= 30 * 4,
 147	.fifohalfsize		= 8 * 4,
 148	.clkreg			= MCI_CLK_ENABLE,
 149	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
 
 
 
 
 
 
 
 150	.datalength_bits	= 24,
 151	.sdio			= true,
 
 
 152	.st_clkdiv		= true,
 153	.blksz_datactrl16	= true,
 154	.pwrreg_powerup		= MCI_PWR_ON,
 
 155	.signal_direction	= true,
 156	.pwrreg_clkgate		= true,
 157	.busy_detect		= true,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 158	.pwrreg_nopower		= true,
 
 159};
 160
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 161static int mmci_card_busy(struct mmc_host *mmc)
 162{
 163	struct mmci_host *host = mmc_priv(mmc);
 164	unsigned long flags;
 165	int busy = 0;
 166
 167	pm_runtime_get_sync(mmc_dev(mmc));
 168
 169	spin_lock_irqsave(&host->lock, flags);
 170	if (readl(host->base + MMCISTATUS) & MCI_ST_CARDBUSY)
 171		busy = 1;
 172	spin_unlock_irqrestore(&host->lock, flags);
 173
 174	pm_runtime_mark_last_busy(mmc_dev(mmc));
 175	pm_runtime_put_autosuspend(mmc_dev(mmc));
 176
 177	return busy;
 178}
 179
 180/*
 181 * Validate mmc prerequisites
 182 */
 183static int mmci_validate_data(struct mmci_host *host,
 184			      struct mmc_data *data)
 185{
 186	if (!data)
 187		return 0;
 188
 189	if (!is_power_of_2(data->blksz)) {
 190		dev_err(mmc_dev(host->mmc),
 191			"unsupported block size (%d bytes)\n", data->blksz);
 192		return -EINVAL;
 193	}
 194
 195	return 0;
 196}
 197
 198static void mmci_reg_delay(struct mmci_host *host)
 199{
 200	/*
 201	 * According to the spec, at least three feedback clock cycles
 202	 * of max 52 MHz must pass between two writes to the MMCICLOCK reg.
 203	 * Three MCLK clock cycles must pass between two MMCIPOWER reg writes.
 204	 * Worst delay time during card init is at 100 kHz => 30 us.
 205	 * Worst delay time when up and running is at 25 MHz => 120 ns.
 206	 */
 207	if (host->cclk < 25000000)
 208		udelay(30);
 209	else
 210		ndelay(120);
 211}
 212
 213/*
 214 * This must be called with host->lock held
 215 */
 216static void mmci_write_clkreg(struct mmci_host *host, u32 clk)
 217{
 218	if (host->clk_reg != clk) {
 219		host->clk_reg = clk;
 220		writel(clk, host->base + MMCICLOCK);
 221	}
 222}
 223
 224/*
 225 * This must be called with host->lock held
 226 */
 227static void mmci_write_pwrreg(struct mmci_host *host, u32 pwr)
 228{
 229	if (host->pwr_reg != pwr) {
 230		host->pwr_reg = pwr;
 231		writel(pwr, host->base + MMCIPOWER);
 232	}
 233}
 234
 235/*
 236 * This must be called with host->lock held
 237 */
 238static void mmci_write_datactrlreg(struct mmci_host *host, u32 datactrl)
 239{
 240	/* Keep ST Micro busy mode if enabled */
 241	datactrl |= host->datactrl_reg & MCI_ST_DPSM_BUSYMODE;
 242
 243	if (host->datactrl_reg != datactrl) {
 244		host->datactrl_reg = datactrl;
 245		writel(datactrl, host->base + MMCIDATACTRL);
 246	}
 247}
 248
 249/*
 250 * This must be called with host->lock held
 251 */
 252static void mmci_set_clkreg(struct mmci_host *host, unsigned int desired)
 253{
 254	struct variant_data *variant = host->variant;
 255	u32 clk = variant->clkreg;
 256
 257	/* Make sure cclk reflects the current calculated clock */
 258	host->cclk = 0;
 259
 260	if (desired) {
 261		if (desired >= host->mclk) {
 
 
 262			clk = MCI_CLK_BYPASS;
 263			if (variant->st_clkdiv)
 264				clk |= MCI_ST_UX500_NEG_EDGE;
 265			host->cclk = host->mclk;
 266		} else if (variant->st_clkdiv) {
 267			/*
 268			 * DB8500 TRM says f = mclk / (clkdiv + 2)
 269			 * => clkdiv = (mclk / f) - 2
 270			 * Round the divider up so we don't exceed the max
 271			 * frequency
 272			 */
 273			clk = DIV_ROUND_UP(host->mclk, desired) - 2;
 274			if (clk >= 256)
 275				clk = 255;
 276			host->cclk = host->mclk / (clk + 2);
 277		} else {
 278			/*
 279			 * PL180 TRM says f = mclk / (2 * (clkdiv + 1))
 280			 * => clkdiv = mclk / (2 * f) - 1
 281			 */
 282			clk = host->mclk / (2 * desired) - 1;
 283			if (clk >= 256)
 284				clk = 255;
 285			host->cclk = host->mclk / (2 * (clk + 1));
 286		}
 287
 288		clk |= variant->clkreg_enable;
 289		clk |= MCI_CLK_ENABLE;
 290		/* This hasn't proven to be worthwhile */
 291		/* clk |= MCI_CLK_PWRSAVE; */
 292	}
 293
 294	/* Set actual clock for debug */
 295	host->mmc->actual_clock = host->cclk;
 296
 297	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4)
 298		clk |= MCI_4BIT_BUS;
 299	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8)
 300		clk |= MCI_ST_8BIT_BUS;
 301
 302	if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50)
 303		clk |= MCI_ST_UX500_NEG_EDGE;
 
 304
 305	mmci_write_clkreg(host, clk);
 306}
 307
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 308static void
 309mmci_request_end(struct mmci_host *host, struct mmc_request *mrq)
 310{
 311	writel(0, host->base + MMCICOMMAND);
 312
 313	BUG_ON(host->data);
 314
 315	host->mrq = NULL;
 316	host->cmd = NULL;
 317
 318	mmc_request_done(host->mmc, mrq);
 319
 320	pm_runtime_mark_last_busy(mmc_dev(host->mmc));
 321	pm_runtime_put_autosuspend(mmc_dev(host->mmc));
 322}
 323
 324static void mmci_set_mask1(struct mmci_host *host, unsigned int mask)
 325{
 326	void __iomem *base = host->base;
 
 327
 328	if (host->singleirq) {
 329		unsigned int mask0 = readl(base + MMCIMASK0);
 330
 331		mask0 &= ~MCI_IRQ1MASK;
 332		mask0 |= mask;
 333
 334		writel(mask0, base + MMCIMASK0);
 335	}
 336
 337	writel(mask, base + MMCIMASK1);
 
 
 
 338}
 339
 340static void mmci_stop_data(struct mmci_host *host)
 341{
 342	mmci_write_datactrlreg(host, 0);
 343	mmci_set_mask1(host, 0);
 344	host->data = NULL;
 345}
 346
 347static void mmci_init_sg(struct mmci_host *host, struct mmc_data *data)
 348{
 349	unsigned int flags = SG_MITER_ATOMIC;
 350
 351	if (data->flags & MMC_DATA_READ)
 352		flags |= SG_MITER_TO_SG;
 353	else
 354		flags |= SG_MITER_FROM_SG;
 355
 356	sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
 357}
 358
 
 
 
 
 
 
 
 
 
 
 359/*
 360 * All the DMA operation mode stuff goes inside this ifdef.
 361 * This assumes that you have a generic DMA device interface,
 362 * no custom DMA interfaces are supported.
 363 */
 364#ifdef CONFIG_DMA_ENGINE
 365static void mmci_dma_setup(struct mmci_host *host)
 366{
 367	struct mmci_platform_data *plat = host->plat;
 368	const char *rxname, *txname;
 369	dma_cap_mask_t mask;
 370
 371	host->dma_rx_channel = dma_request_slave_channel(mmc_dev(host->mmc), "rx");
 372	host->dma_tx_channel = dma_request_slave_channel(mmc_dev(host->mmc), "tx");
 373
 374	/* initialize pre request cookie */
 375	host->next_data.cookie = 1;
 
 
 
 
 
 376
 377	/* Try to acquire a generic DMA engine slave channel */
 378	dma_cap_zero(mask);
 379	dma_cap_set(DMA_SLAVE, mask);
 380
 381	if (plat && plat->dma_filter) {
 382		if (!host->dma_rx_channel && plat->dma_rx_param) {
 383			host->dma_rx_channel = dma_request_channel(mask,
 384							   plat->dma_filter,
 385							   plat->dma_rx_param);
 386			/* E.g if no DMA hardware is present */
 387			if (!host->dma_rx_channel)
 388				dev_err(mmc_dev(host->mmc), "no RX DMA channel\n");
 389		}
 390
 391		if (!host->dma_tx_channel && plat->dma_tx_param) {
 392			host->dma_tx_channel = dma_request_channel(mask,
 393							   plat->dma_filter,
 394							   plat->dma_tx_param);
 395			if (!host->dma_tx_channel)
 396				dev_warn(mmc_dev(host->mmc), "no TX DMA channel\n");
 397		}
 398	}
 
 
 399
 400	/*
 401	 * If only an RX channel is specified, the driver will
 402	 * attempt to use it bidirectionally, however if it is
 403	 * is specified but cannot be located, DMA will be disabled.
 404	 */
 405	if (host->dma_rx_channel && !host->dma_tx_channel)
 406		host->dma_tx_channel = host->dma_rx_channel;
 407
 408	if (host->dma_rx_channel)
 409		rxname = dma_chan_name(host->dma_rx_channel);
 410	else
 411		rxname = "none";
 412
 413	if (host->dma_tx_channel)
 414		txname = dma_chan_name(host->dma_tx_channel);
 415	else
 416		txname = "none";
 417
 418	dev_info(mmc_dev(host->mmc), "DMA channels RX %s, TX %s\n",
 419		 rxname, txname);
 420
 421	/*
 422	 * Limit the maximum segment size in any SG entry according to
 423	 * the parameters of the DMA engine device.
 424	 */
 425	if (host->dma_tx_channel) {
 426		struct device *dev = host->dma_tx_channel->device->dev;
 427		unsigned int max_seg_size = dma_get_max_seg_size(dev);
 428
 429		if (max_seg_size < host->mmc->max_seg_size)
 430			host->mmc->max_seg_size = max_seg_size;
 431	}
 432	if (host->dma_rx_channel) {
 433		struct device *dev = host->dma_rx_channel->device->dev;
 434		unsigned int max_seg_size = dma_get_max_seg_size(dev);
 435
 436		if (max_seg_size < host->mmc->max_seg_size)
 437			host->mmc->max_seg_size = max_seg_size;
 438	}
 
 
 
 
 
 
 
 439}
 440
 441/*
 442 * This is used in or so inline it
 443 * so it can be discarded.
 444 */
 445static inline void mmci_dma_release(struct mmci_host *host)
 446{
 447	struct mmci_platform_data *plat = host->plat;
 448
 449	if (host->dma_rx_channel)
 450		dma_release_channel(host->dma_rx_channel);
 451	if (host->dma_tx_channel && plat->dma_tx_param)
 452		dma_release_channel(host->dma_tx_channel);
 453	host->dma_rx_channel = host->dma_tx_channel = NULL;
 454}
 455
 456static void mmci_dma_data_error(struct mmci_host *host)
 457{
 458	dev_err(mmc_dev(host->mmc), "error during DMA transfer!\n");
 459	dmaengine_terminate_all(host->dma_current);
 460	host->dma_current = NULL;
 461	host->dma_desc_current = NULL;
 462	host->data->host_cookie = 0;
 
 
 
 
 
 463}
 464
 465static void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
 466{
 467	struct dma_chan *chan;
 468	enum dma_data_direction dir;
 469
 470	if (data->flags & MMC_DATA_READ) {
 471		dir = DMA_FROM_DEVICE;
 472		chan = host->dma_rx_channel;
 473	} else {
 474		dir = DMA_TO_DEVICE;
 475		chan = host->dma_tx_channel;
 476	}
 
 
 477
 478	dma_unmap_sg(chan->device->dev, data->sg, data->sg_len, dir);
 479}
 480
 481static void mmci_dma_finalize(struct mmci_host *host, struct mmc_data *data)
 482{
 
 483	u32 status;
 484	int i;
 485
 
 
 
 486	/* Wait up to 1ms for the DMA to complete */
 487	for (i = 0; ; i++) {
 488		status = readl(host->base + MMCISTATUS);
 489		if (!(status & MCI_RXDATAAVLBLMASK) || i >= 100)
 490			break;
 491		udelay(10);
 492	}
 493
 494	/*
 495	 * Check to see whether we still have some data left in the FIFO -
 496	 * this catches DMA controllers which are unable to monitor the
 497	 * DMALBREQ and DMALSREQ signals while allowing us to DMA to non-
 498	 * contiguous buffers.  On TX, we'll get a FIFO underrun error.
 499	 */
 500	if (status & MCI_RXDATAAVLBLMASK) {
 501		mmci_dma_data_error(host);
 502		if (!data->error)
 503			data->error = -EIO;
 504	}
 505
 506	if (!data->host_cookie)
 507		mmci_dma_unmap(host, data);
 
 508
 509	/*
 510	 * Use of DMA with scatter-gather is impossible.
 511	 * Give up with DMA and switch back to PIO mode.
 512	 */
 513	if (status & MCI_RXDATAAVLBLMASK) {
 514		dev_err(mmc_dev(host->mmc), "buggy DMA detected. Taking evasive action.\n");
 515		mmci_dma_release(host);
 516	}
 517
 518	host->dma_current = NULL;
 519	host->dma_desc_current = NULL;
 
 520}
 521
 522/* prepares DMA channel and DMA descriptor, returns non-zero on failure */
 523static int __mmci_dma_prep_data(struct mmci_host *host, struct mmc_data *data,
 524				struct dma_chan **dma_chan,
 525				struct dma_async_tx_descriptor **dma_desc)
 526{
 
 527	struct variant_data *variant = host->variant;
 528	struct dma_slave_config conf = {
 529		.src_addr = host->phybase + MMCIFIFO,
 530		.dst_addr = host->phybase + MMCIFIFO,
 531		.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
 532		.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
 533		.src_maxburst = variant->fifohalfsize >> 2, /* # of words */
 534		.dst_maxburst = variant->fifohalfsize >> 2, /* # of words */
 535		.device_fc = false,
 536	};
 537	struct dma_chan *chan;
 538	struct dma_device *device;
 539	struct dma_async_tx_descriptor *desc;
 540	enum dma_data_direction buffer_dirn;
 541	int nr_sg;
 
 542
 543	if (data->flags & MMC_DATA_READ) {
 544		conf.direction = DMA_DEV_TO_MEM;
 545		buffer_dirn = DMA_FROM_DEVICE;
 546		chan = host->dma_rx_channel;
 547	} else {
 548		conf.direction = DMA_MEM_TO_DEV;
 549		buffer_dirn = DMA_TO_DEVICE;
 550		chan = host->dma_tx_channel;
 551	}
 552
 553	/* If there's no DMA channel, fall back to PIO */
 554	if (!chan)
 555		return -EINVAL;
 556
 557	/* If less than or equal to the fifo size, don't bother with DMA */
 558	if (data->blksz * data->blocks <= variant->fifosize)
 559		return -EINVAL;
 560
 561	device = chan->device;
 562	nr_sg = dma_map_sg(device->dev, data->sg, data->sg_len, buffer_dirn);
 
 563	if (nr_sg == 0)
 564		return -EINVAL;
 565
 
 
 
 566	dmaengine_slave_config(chan, &conf);
 567	desc = dmaengine_prep_slave_sg(chan, data->sg, nr_sg,
 568					    conf.direction, DMA_CTRL_ACK);
 569	if (!desc)
 570		goto unmap_exit;
 571
 572	*dma_chan = chan;
 573	*dma_desc = desc;
 574
 575	return 0;
 576
 577 unmap_exit:
 578	dma_unmap_sg(device->dev, data->sg, data->sg_len, buffer_dirn);
 
 579	return -ENOMEM;
 580}
 581
 582static inline int mmci_dma_prep_data(struct mmci_host *host,
 583				     struct mmc_data *data)
 
 584{
 
 
 
 
 
 
 
 
 585	/* Check if next job is already prepared. */
 586	if (host->dma_current && host->dma_desc_current)
 587		return 0;
 588
 589	/* No job were prepared thus do it now. */
 590	return __mmci_dma_prep_data(host, data, &host->dma_current,
 591				    &host->dma_desc_current);
 592}
 593
 594static inline int mmci_dma_prep_next(struct mmci_host *host,
 595				     struct mmc_data *data)
 596{
 597	struct mmci_host_next *nd = &host->next_data;
 598	return __mmci_dma_prep_data(host, data, &nd->dma_chan, &nd->dma_desc);
 599}
 600
 601static int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
 602{
 603	int ret;
 604	struct mmc_data *data = host->data;
 605
 606	ret = mmci_dma_prep_data(host, host->data);
 607	if (ret)
 608		return ret;
 609
 610	/* Okay, go for it. */
 611	dev_vdbg(mmc_dev(host->mmc),
 612		 "Submit MMCI DMA job, sglen %d blksz %04x blks %04x flags %08x\n",
 613		 data->sg_len, data->blksz, data->blocks, data->flags);
 614	dmaengine_submit(host->dma_desc_current);
 615	dma_async_issue_pending(host->dma_current);
 616
 617	datactrl |= MCI_DPSM_DMAENABLE;
 
 
 618
 619	/* Trigger the DMA transfer */
 620	mmci_write_datactrlreg(host, datactrl);
 621
 622	/*
 623	 * Let the MMCI say when the data is ended and it's time
 624	 * to fire next DMA request. When that happens, MMCI will
 625	 * call mmci_data_end()
 626	 */
 627	writel(readl(host->base + MMCIMASK0) | MCI_DATAENDMASK,
 628	       host->base + MMCIMASK0);
 629	return 0;
 630}
 631
 632static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
 633{
 634	struct mmci_host_next *next = &host->next_data;
 635
 636	WARN_ON(data->host_cookie && data->host_cookie != next->cookie);
 637	WARN_ON(!data->host_cookie && (next->dma_desc || next->dma_chan));
 638
 639	host->dma_desc_current = next->dma_desc;
 640	host->dma_current = next->dma_chan;
 641	next->dma_desc = NULL;
 642	next->dma_chan = NULL;
 643}
 644
 645static void mmci_pre_request(struct mmc_host *mmc, struct mmc_request *mrq,
 646			     bool is_first_req)
 647{
 648	struct mmci_host *host = mmc_priv(mmc);
 649	struct mmc_data *data = mrq->data;
 650	struct mmci_host_next *nd = &host->next_data;
 651
 652	if (!data)
 653		return;
 654
 655	BUG_ON(data->host_cookie);
 656
 657	if (mmci_validate_data(host, data))
 658		return;
 659
 660	if (!mmci_dma_prep_next(host, data))
 661		data->host_cookie = ++nd->cookie < 0 ? 1 : nd->cookie;
 662}
 663
 664static void mmci_post_request(struct mmc_host *mmc, struct mmc_request *mrq,
 665			      int err)
 
 666{
 667	struct mmci_host *host = mmc_priv(mmc);
 668	struct mmc_data *data = mrq->data;
 669
 670	if (!data || !data->host_cookie)
 671		return;
 672
 673	mmci_dma_unmap(host, data);
 674
 675	if (err) {
 676		struct mmci_host_next *next = &host->next_data;
 677		struct dma_chan *chan;
 678		if (data->flags & MMC_DATA_READ)
 679			chan = host->dma_rx_channel;
 680		else
 681			chan = host->dma_tx_channel;
 682		dmaengine_terminate_all(chan);
 683
 684		next->dma_desc = NULL;
 685		next->dma_chan = NULL;
 
 
 
 
 
 
 
 
 686	}
 687}
 688
 
 
 
 
 
 
 
 
 
 
 
 689#else
 690/* Blank functions if the DMA engine is not available */
 691static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
 692{
 693}
 694static inline void mmci_dma_setup(struct mmci_host *host)
 695{
 696}
 697
 698static inline void mmci_dma_release(struct mmci_host *host)
 699{
 
 700}
 701
 702static inline void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
 703{
 
 
 704}
 705
 706static inline void mmci_dma_finalize(struct mmci_host *host,
 707				     struct mmc_data *data)
 708{
 709}
 
 710
 711static inline void mmci_dma_data_error(struct mmci_host *host)
 712{
 
 
 
 
 
 
 
 713}
 714
 715static inline int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
 
 716{
 717	return -ENOSYS;
 718}
 719
 720#define mmci_pre_request NULL
 721#define mmci_post_request NULL
 722
 723#endif
 
 724
 725static void mmci_start_data(struct mmci_host *host, struct mmc_data *data)
 726{
 727	struct variant_data *variant = host->variant;
 728	unsigned int datactrl, timeout, irqmask;
 729	unsigned long long clks;
 730	void __iomem *base;
 731	int blksz_bits;
 732
 733	dev_dbg(mmc_dev(host->mmc), "blksz %04x blks %04x flags %08x\n",
 734		data->blksz, data->blocks, data->flags);
 735
 736	host->data = data;
 737	host->size = data->blksz * data->blocks;
 738	data->bytes_xfered = 0;
 739
 740	clks = (unsigned long long)data->timeout_ns * host->cclk;
 741	do_div(clks, 1000000000UL);
 742
 743	timeout = data->timeout_clks + (unsigned int)clks;
 744
 745	base = host->base;
 746	writel(timeout, base + MMCIDATATIMER);
 747	writel(host->size, base + MMCIDATALENGTH);
 748
 749	blksz_bits = ffs(data->blksz) - 1;
 750	BUG_ON(1 << blksz_bits != data->blksz);
 751
 752	if (variant->blksz_datactrl16)
 753		datactrl = MCI_DPSM_ENABLE | (data->blksz << 16);
 754	else
 755		datactrl = MCI_DPSM_ENABLE | blksz_bits << 4;
 756
 757	if (data->flags & MMC_DATA_READ)
 758		datactrl |= MCI_DPSM_DIRECTION;
 759
 760	/* The ST Micro variants has a special bit to enable SDIO */
 761	if (variant->sdio && host->mmc->card)
 762		if (mmc_card_sdio(host->mmc->card)) {
 763			/*
 764			 * The ST Micro variants has a special bit
 765			 * to enable SDIO.
 766			 */
 767			u32 clk;
 768
 769			datactrl |= MCI_ST_DPSM_SDIOEN;
 770
 771			/*
 772			 * The ST Micro variant for SDIO small write transfers
 773			 * needs to have clock H/W flow control disabled,
 774			 * otherwise the transfer will not start. The threshold
 775			 * depends on the rate of MCLK.
 776			 */
 777			if (data->flags & MMC_DATA_WRITE &&
 778			    (host->size < 8 ||
 779			     (host->size <= 8 && host->mclk > 50000000)))
 780				clk = host->clk_reg & ~variant->clkreg_enable;
 781			else
 782				clk = host->clk_reg | variant->clkreg_enable;
 783
 784			mmci_write_clkreg(host, clk);
 785		}
 786
 787	if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50)
 788		datactrl |= MCI_ST_DPSM_DDRMODE;
 
 789
 790	/*
 791	 * Attempt to use DMA operation mode, if this
 792	 * should fail, fall back to PIO mode
 793	 */
 794	if (!mmci_dma_start_data(host, datactrl))
 795		return;
 796
 797	/* IRQ mode, map the SG list for CPU reading/writing */
 798	mmci_init_sg(host, data);
 799
 800	if (data->flags & MMC_DATA_READ) {
 801		irqmask = MCI_RXFIFOHALFFULLMASK;
 802
 803		/*
 804		 * If we have less than the fifo 'half-full' threshold to
 805		 * transfer, trigger a PIO interrupt as soon as any data
 806		 * is available.
 807		 */
 808		if (host->size < variant->fifohalfsize)
 809			irqmask |= MCI_RXDATAAVLBLMASK;
 810	} else {
 811		/*
 812		 * We don't actually need to include "FIFO empty" here
 813		 * since its implicit in "FIFO half empty".
 814		 */
 815		irqmask = MCI_TXFIFOHALFEMPTYMASK;
 816	}
 817
 818	mmci_write_datactrlreg(host, datactrl);
 819	writel(readl(base + MMCIMASK0) & ~MCI_DATAENDMASK, base + MMCIMASK0);
 820	mmci_set_mask1(host, irqmask);
 821}
 822
 823static void
 824mmci_start_command(struct mmci_host *host, struct mmc_command *cmd, u32 c)
 825{
 826	void __iomem *base = host->base;
 827
 828	dev_dbg(mmc_dev(host->mmc), "op %02x arg %08x flags %08x\n",
 829	    cmd->opcode, cmd->arg, cmd->flags);
 830
 831	if (readl(base + MMCICOMMAND) & MCI_CPSM_ENABLE) {
 832		writel(0, base + MMCICOMMAND);
 833		udelay(1);
 834	}
 835
 836	c |= cmd->opcode | MCI_CPSM_ENABLE;
 
 
 
 
 837	if (cmd->flags & MMC_RSP_PRESENT) {
 838		if (cmd->flags & MMC_RSP_136)
 839			c |= MCI_CPSM_LONGRSP;
 840		c |= MCI_CPSM_RESPONSE;
 
 
 
 841	}
 842	if (/*interrupt*/0)
 843		c |= MCI_CPSM_INTERRUPT;
 844
 
 
 
 845	host->cmd = cmd;
 846
 847	writel(cmd->arg, base + MMCIARGUMENT);
 848	writel(c, base + MMCICOMMAND);
 849}
 850
 
 
 
 
 
 
 851static void
 852mmci_data_irq(struct mmci_host *host, struct mmc_data *data,
 853	      unsigned int status)
 854{
 
 
 
 
 
 
 855	/* First check for errors */
 856	if (status & (MCI_DATACRCFAIL|MCI_DATATIMEOUT|MCI_STARTBITERR|
 857		      MCI_TXUNDERRUN|MCI_RXOVERRUN)) {
 
 
 
 858		u32 remain, success;
 859
 860		/* Terminate the DMA transfer */
 861		if (dma_inprogress(host)) {
 862			mmci_dma_data_error(host);
 863			mmci_dma_unmap(host, data);
 864		}
 865
 866		/*
 867		 * Calculate how far we are into the transfer.  Note that
 868		 * the data counter gives the number of bytes transferred
 869		 * on the MMC bus, not on the host side.  On reads, this
 870		 * can be as much as a FIFO-worth of data ahead.  This
 871		 * matters for FIFO overruns only.
 872		 */
 873		remain = readl(host->base + MMCIDATACNT);
 874		success = data->blksz * data->blocks - remain;
 
 
 
 
 875
 876		dev_dbg(mmc_dev(host->mmc), "MCI ERROR IRQ, status 0x%08x at 0x%08x\n",
 877			status, success);
 878		if (status & MCI_DATACRCFAIL) {
 879			/* Last block was not successful */
 880			success -= 1;
 881			data->error = -EILSEQ;
 882		} else if (status & MCI_DATATIMEOUT) {
 883			data->error = -ETIMEDOUT;
 884		} else if (status & MCI_STARTBITERR) {
 885			data->error = -ECOMM;
 886		} else if (status & MCI_TXUNDERRUN) {
 887			data->error = -EIO;
 888		} else if (status & MCI_RXOVERRUN) {
 889			if (success > host->variant->fifosize)
 890				success -= host->variant->fifosize;
 891			else
 892				success = 0;
 893			data->error = -EIO;
 894		}
 895		data->bytes_xfered = round_down(success, data->blksz);
 896	}
 897
 898	if (status & MCI_DATABLOCKEND)
 899		dev_err(mmc_dev(host->mmc), "stray MCI_DATABLOCKEND interrupt\n");
 900
 901	if (status & MCI_DATAEND || data->error) {
 902		if (dma_inprogress(host))
 903			mmci_dma_finalize(host, data);
 904		mmci_stop_data(host);
 905
 906		if (!data->error)
 907			/* The error clause is handled above, success! */
 908			data->bytes_xfered = data->blksz * data->blocks;
 909
 910		if (!data->stop || host->mrq->sbc) {
 
 
 
 
 
 911			mmci_request_end(host, data->mrq);
 912		} else {
 913			mmci_start_command(host, data->stop, 0);
 914		}
 915	}
 916}
 917
 918static void
 919mmci_cmd_irq(struct mmci_host *host, struct mmc_command *cmd,
 920	     unsigned int status)
 921{
 922	void __iomem *base = host->base;
 923	bool sbc = (cmd == host->mrq->sbc);
 924	bool busy_resp = host->variant->busy_detect &&
 925			(cmd->flags & MMC_RSP_BUSY);
 926
 927	/* Check if we need to wait for busy completion. */
 928	if (host->busy_status && (status & MCI_ST_CARDBUSY))
 929		return;
 930
 931	/* Enable busy completion if needed and supported. */
 932	if (!host->busy_status && busy_resp &&
 933		!(status & (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT)) &&
 934		(readl(base + MMCISTATUS) & MCI_ST_CARDBUSY)) {
 935		writel(readl(base + MMCIMASK0) | MCI_ST_BUSYEND,
 936			base + MMCIMASK0);
 937		host->busy_status = status & (MCI_CMDSENT|MCI_CMDRESPEND);
 
 
 
 938		return;
 939	}
 940
 941	/* At busy completion, mask the IRQ and complete the request. */
 942	if (host->busy_status) {
 943		writel(readl(base + MMCIMASK0) & ~MCI_ST_BUSYEND,
 944			base + MMCIMASK0);
 945		host->busy_status = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 946	}
 947
 948	host->cmd = NULL;
 949
 950	if (status & MCI_CMDTIMEOUT) {
 951		cmd->error = -ETIMEDOUT;
 952	} else if (status & MCI_CMDCRCFAIL && cmd->flags & MMC_RSP_CRC) {
 953		cmd->error = -EILSEQ;
 954	} else {
 955		cmd->resp[0] = readl(base + MMCIRESPONSE0);
 956		cmd->resp[1] = readl(base + MMCIRESPONSE1);
 957		cmd->resp[2] = readl(base + MMCIRESPONSE2);
 958		cmd->resp[3] = readl(base + MMCIRESPONSE3);
 959	}
 960
 961	if ((!sbc && !cmd->data) || cmd->error) {
 962		if (host->data) {
 963			/* Terminate the DMA transfer */
 964			if (dma_inprogress(host)) {
 965				mmci_dma_data_error(host);
 966				mmci_dma_unmap(host, host->data);
 967			}
 968			mmci_stop_data(host);
 
 
 
 
 969		}
 970		mmci_request_end(host, host->mrq);
 971	} else if (sbc) {
 972		mmci_start_command(host, host->mrq->cmd, 0);
 973	} else if (!(cmd->data->flags & MMC_DATA_READ)) {
 
 974		mmci_start_data(host, cmd->data);
 975	}
 976}
 977
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 978static int mmci_pio_read(struct mmci_host *host, char *buffer, unsigned int remain)
 979{
 980	void __iomem *base = host->base;
 981	char *ptr = buffer;
 982	u32 status;
 983	int host_remain = host->size;
 984
 985	do {
 986		int count = host_remain - (readl(base + MMCIFIFOCNT) << 2);
 987
 988		if (count > remain)
 989			count = remain;
 990
 991		if (count <= 0)
 992			break;
 993
 994		/*
 995		 * SDIO especially may want to send something that is
 996		 * not divisible by 4 (as opposed to card sectors
 997		 * etc). Therefore make sure to always read the last bytes
 998		 * while only doing full 32-bit reads towards the FIFO.
 999		 */
1000		if (unlikely(count & 0x3)) {
1001			if (count < 4) {
1002				unsigned char buf[4];
1003				ioread32_rep(base + MMCIFIFO, buf, 1);
1004				memcpy(ptr, buf, count);
1005			} else {
1006				ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1007				count &= ~0x3;
1008			}
1009		} else {
1010			ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1011		}
1012
1013		ptr += count;
1014		remain -= count;
1015		host_remain -= count;
1016
1017		if (remain == 0)
1018			break;
1019
1020		status = readl(base + MMCISTATUS);
1021	} while (status & MCI_RXDATAAVLBL);
1022
1023	return ptr - buffer;
1024}
1025
1026static int mmci_pio_write(struct mmci_host *host, char *buffer, unsigned int remain, u32 status)
1027{
1028	struct variant_data *variant = host->variant;
1029	void __iomem *base = host->base;
1030	char *ptr = buffer;
1031
1032	do {
1033		unsigned int count, maxcnt;
1034
1035		maxcnt = status & MCI_TXFIFOEMPTY ?
1036			 variant->fifosize : variant->fifohalfsize;
1037		count = min(remain, maxcnt);
1038
1039		/*
1040		 * SDIO especially may want to send something that is
1041		 * not divisible by 4 (as opposed to card sectors
1042		 * etc), and the FIFO only accept full 32-bit writes.
1043		 * So compensate by adding +3 on the count, a single
1044		 * byte become a 32bit write, 7 bytes will be two
1045		 * 32bit writes etc.
1046		 */
1047		iowrite32_rep(base + MMCIFIFO, ptr, (count + 3) >> 2);
1048
1049		ptr += count;
1050		remain -= count;
1051
1052		if (remain == 0)
1053			break;
1054
1055		status = readl(base + MMCISTATUS);
1056	} while (status & MCI_TXFIFOHALFEMPTY);
1057
1058	return ptr - buffer;
1059}
1060
1061/*
1062 * PIO data transfer IRQ handler.
1063 */
1064static irqreturn_t mmci_pio_irq(int irq, void *dev_id)
1065{
1066	struct mmci_host *host = dev_id;
1067	struct sg_mapping_iter *sg_miter = &host->sg_miter;
1068	struct variant_data *variant = host->variant;
1069	void __iomem *base = host->base;
1070	unsigned long flags;
1071	u32 status;
1072
1073	status = readl(base + MMCISTATUS);
1074
1075	dev_dbg(mmc_dev(host->mmc), "irq1 (pio) %08x\n", status);
1076
1077	local_irq_save(flags);
1078
1079	do {
1080		unsigned int remain, len;
1081		char *buffer;
1082
1083		/*
1084		 * For write, we only need to test the half-empty flag
1085		 * here - if the FIFO is completely empty, then by
1086		 * definition it is more than half empty.
1087		 *
1088		 * For read, check for data available.
1089		 */
1090		if (!(status & (MCI_TXFIFOHALFEMPTY|MCI_RXDATAAVLBL)))
1091			break;
1092
1093		if (!sg_miter_next(sg_miter))
1094			break;
1095
1096		buffer = sg_miter->addr;
1097		remain = sg_miter->length;
1098
1099		len = 0;
1100		if (status & MCI_RXACTIVE)
1101			len = mmci_pio_read(host, buffer, remain);
1102		if (status & MCI_TXACTIVE)
1103			len = mmci_pio_write(host, buffer, remain, status);
1104
1105		sg_miter->consumed = len;
1106
1107		host->size -= len;
1108		remain -= len;
1109
1110		if (remain)
1111			break;
1112
1113		status = readl(base + MMCISTATUS);
1114	} while (1);
1115
1116	sg_miter_stop(sg_miter);
1117
1118	local_irq_restore(flags);
1119
1120	/*
1121	 * If we have less than the fifo 'half-full' threshold to transfer,
1122	 * trigger a PIO interrupt as soon as any data is available.
1123	 */
1124	if (status & MCI_RXACTIVE && host->size < variant->fifohalfsize)
1125		mmci_set_mask1(host, MCI_RXDATAAVLBLMASK);
1126
1127	/*
1128	 * If we run out of data, disable the data IRQs; this
1129	 * prevents a race where the FIFO becomes empty before
1130	 * the chip itself has disabled the data path, and
1131	 * stops us racing with our data end IRQ.
1132	 */
1133	if (host->size == 0) {
1134		mmci_set_mask1(host, 0);
1135		writel(readl(base + MMCIMASK0) | MCI_DATAENDMASK, base + MMCIMASK0);
1136	}
1137
1138	return IRQ_HANDLED;
1139}
1140
1141/*
1142 * Handle completion of command and data transfers.
1143 */
1144static irqreturn_t mmci_irq(int irq, void *dev_id)
1145{
1146	struct mmci_host *host = dev_id;
1147	u32 status;
1148	int ret = 0;
1149
1150	spin_lock(&host->lock);
1151
1152	do {
1153		struct mmc_command *cmd;
1154		struct mmc_data *data;
1155
1156		status = readl(host->base + MMCISTATUS);
1157
1158		if (host->singleirq) {
1159			if (status & readl(host->base + MMCIMASK1))
1160				mmci_pio_irq(irq, dev_id);
1161
1162			status &= ~MCI_IRQ1MASK;
1163		}
1164
1165		/*
1166		 * We intentionally clear the MCI_ST_CARDBUSY IRQ here (if it's
1167		 * enabled) since the HW seems to be triggering the IRQ on both
1168		 * edges while monitoring DAT0 for busy completion.
1169		 */
1170		status &= readl(host->base + MMCIMASK0);
1171		writel(status, host->base + MMCICLEAR);
 
 
 
 
1172
1173		dev_dbg(mmc_dev(host->mmc), "irq0 (data+cmd) %08x\n", status);
1174
1175		cmd = host->cmd;
1176		if ((status|host->busy_status) & (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT|
1177			MCI_CMDSENT|MCI_CMDRESPEND) && cmd)
1178			mmci_cmd_irq(host, cmd, status);
1179
1180		data = host->data;
1181		if (status & (MCI_DATACRCFAIL|MCI_DATATIMEOUT|MCI_STARTBITERR|
1182			      MCI_TXUNDERRUN|MCI_RXOVERRUN|MCI_DATAEND|
1183			      MCI_DATABLOCKEND) && data)
1184			mmci_data_irq(host, data, status);
1185
1186		/* Don't poll for busy completion in irq context. */
1187		if (host->busy_status)
1188			status &= ~MCI_ST_CARDBUSY;
1189
1190		ret = 1;
1191	} while (status);
1192
1193	spin_unlock(&host->lock);
1194
1195	return IRQ_RETVAL(ret);
1196}
1197
1198static void mmci_request(struct mmc_host *mmc, struct mmc_request *mrq)
1199{
1200	struct mmci_host *host = mmc_priv(mmc);
1201	unsigned long flags;
1202
1203	WARN_ON(host->mrq != NULL);
1204
1205	mrq->cmd->error = mmci_validate_data(host, mrq->data);
1206	if (mrq->cmd->error) {
1207		mmc_request_done(mmc, mrq);
1208		return;
1209	}
1210
1211	pm_runtime_get_sync(mmc_dev(mmc));
1212
1213	spin_lock_irqsave(&host->lock, flags);
1214
1215	host->mrq = mrq;
1216
1217	if (mrq->data)
1218		mmci_get_next_data(host, mrq->data);
1219
1220	if (mrq->data && mrq->data->flags & MMC_DATA_READ)
 
1221		mmci_start_data(host, mrq->data);
1222
1223	if (mrq->sbc)
1224		mmci_start_command(host, mrq->sbc, 0);
1225	else
1226		mmci_start_command(host, mrq->cmd, 0);
1227
1228	spin_unlock_irqrestore(&host->lock, flags);
1229}
1230
1231static void mmci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1232{
1233	struct mmci_host *host = mmc_priv(mmc);
1234	struct variant_data *variant = host->variant;
1235	u32 pwr = 0;
1236	unsigned long flags;
1237	int ret;
1238
1239	pm_runtime_get_sync(mmc_dev(mmc));
1240
1241	if (host->plat->ios_handler &&
1242		host->plat->ios_handler(mmc_dev(mmc), ios))
1243			dev_err(mmc_dev(mmc), "platform ios_handler failed\n");
1244
1245	switch (ios->power_mode) {
1246	case MMC_POWER_OFF:
1247		if (!IS_ERR(mmc->supply.vmmc))
1248			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1249
1250		if (!IS_ERR(mmc->supply.vqmmc) && host->vqmmc_enabled) {
1251			regulator_disable(mmc->supply.vqmmc);
1252			host->vqmmc_enabled = false;
1253		}
1254
1255		break;
1256	case MMC_POWER_UP:
1257		if (!IS_ERR(mmc->supply.vmmc))
1258			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
1259
1260		/*
1261		 * The ST Micro variant doesn't have the PL180s MCI_PWR_UP
1262		 * and instead uses MCI_PWR_ON so apply whatever value is
1263		 * configured in the variant data.
1264		 */
1265		pwr |= variant->pwrreg_powerup;
1266
1267		break;
1268	case MMC_POWER_ON:
1269		if (!IS_ERR(mmc->supply.vqmmc) && !host->vqmmc_enabled) {
1270			ret = regulator_enable(mmc->supply.vqmmc);
1271			if (ret < 0)
1272				dev_err(mmc_dev(mmc),
1273					"failed to enable vqmmc regulator\n");
1274			else
1275				host->vqmmc_enabled = true;
1276		}
1277
1278		pwr |= MCI_PWR_ON;
1279		break;
1280	}
1281
1282	if (variant->signal_direction && ios->power_mode != MMC_POWER_OFF) {
1283		/*
1284		 * The ST Micro variant has some additional bits
1285		 * indicating signal direction for the signals in
1286		 * the SD/MMC bus and feedback-clock usage.
1287		 */
1288		pwr |= host->plat->sigdir;
1289
1290		if (ios->bus_width == MMC_BUS_WIDTH_4)
1291			pwr &= ~MCI_ST_DATA74DIREN;
1292		else if (ios->bus_width == MMC_BUS_WIDTH_1)
1293			pwr &= (~MCI_ST_DATA74DIREN &
1294				~MCI_ST_DATA31DIREN &
1295				~MCI_ST_DATA2DIREN);
1296	}
1297
1298	if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN) {
1299		if (host->hw_designer != AMBA_VENDOR_ST)
1300			pwr |= MCI_ROD;
1301		else {
1302			/*
1303			 * The ST Micro variant use the ROD bit for something
1304			 * else and only has OD (Open Drain).
1305			 */
1306			pwr |= MCI_OD;
1307		}
 
 
1308	}
1309
1310	/*
1311	 * If clock = 0 and the variant requires the MMCIPOWER to be used for
1312	 * gating the clock, the MCI_PWR_ON bit is cleared.
1313	 */
1314	if (!ios->clock && variant->pwrreg_clkgate)
1315		pwr &= ~MCI_PWR_ON;
1316
1317	spin_lock_irqsave(&host->lock, flags);
1318
1319	mmci_set_clkreg(host, ios->clock);
1320	mmci_write_pwrreg(host, pwr);
1321	mmci_reg_delay(host);
 
 
 
 
 
1322
1323	spin_unlock_irqrestore(&host->lock, flags);
1324
1325	pm_runtime_mark_last_busy(mmc_dev(mmc));
1326	pm_runtime_put_autosuspend(mmc_dev(mmc));
1327}
 
1328
1329static int mmci_get_ro(struct mmc_host *mmc)
1330{
1331	struct mmci_host *host = mmc_priv(mmc);
 
1332
1333	if (host->gpio_wp == -ENOSYS)
1334		return -ENOSYS;
1335
1336	return gpio_get_value_cansleep(host->gpio_wp);
1337}
1338
1339static int mmci_get_cd(struct mmc_host *mmc)
1340{
1341	struct mmci_host *host = mmc_priv(mmc);
1342	struct mmci_platform_data *plat = host->plat;
1343	unsigned int status;
1344
1345	if (host->gpio_cd == -ENOSYS) {
1346		if (!plat->status)
1347			return 1; /* Assume always present */
1348
1349		status = plat->status(mmc_dev(host->mmc));
1350	} else
1351		status = !!gpio_get_value_cansleep(host->gpio_cd)
1352			^ plat->cd_invert;
1353
1354	/*
1355	 * Use positive logic throughout - status is zero for no card,
1356	 * non-zero for card inserted.
1357	 */
1358	return status;
1359}
1360
1361static int mmci_sig_volt_switch(struct mmc_host *mmc, struct mmc_ios *ios)
1362{
1363	int ret = 0;
1364
1365	if (!IS_ERR(mmc->supply.vqmmc)) {
1366
1367		pm_runtime_get_sync(mmc_dev(mmc));
1368
1369		switch (ios->signal_voltage) {
1370		case MMC_SIGNAL_VOLTAGE_330:
1371			ret = regulator_set_voltage(mmc->supply.vqmmc,
1372						2700000, 3600000);
1373			break;
1374		case MMC_SIGNAL_VOLTAGE_180:
1375			ret = regulator_set_voltage(mmc->supply.vqmmc,
1376						1700000, 1950000);
1377			break;
1378		case MMC_SIGNAL_VOLTAGE_120:
1379			ret = regulator_set_voltage(mmc->supply.vqmmc,
1380						1100000, 1300000);
1381			break;
1382		}
1383
1384		if (ret)
1385			dev_warn(mmc_dev(mmc), "Voltage switch failed\n");
1386
1387		pm_runtime_mark_last_busy(mmc_dev(mmc));
1388		pm_runtime_put_autosuspend(mmc_dev(mmc));
1389	}
1390
1391	return ret;
1392}
1393
1394static irqreturn_t mmci_cd_irq(int irq, void *dev_id)
1395{
1396	struct mmci_host *host = dev_id;
1397
1398	mmc_detect_change(host->mmc, msecs_to_jiffies(500));
1399
1400	return IRQ_HANDLED;
1401}
1402
1403static struct mmc_host_ops mmci_ops = {
1404	.request	= mmci_request,
1405	.pre_req	= mmci_pre_request,
1406	.post_req	= mmci_post_request,
1407	.set_ios	= mmci_set_ios,
1408	.get_ro		= mmci_get_ro,
1409	.get_cd		= mmci_get_cd,
1410	.start_signal_voltage_switch = mmci_sig_volt_switch,
1411};
1412
1413#ifdef CONFIG_OF
1414static void mmci_dt_populate_generic_pdata(struct device_node *np,
1415					struct mmci_platform_data *pdata)
1416{
1417	int bus_width = 0;
1418
1419	pdata->gpio_wp = of_get_named_gpio(np, "wp-gpios", 0);
1420	pdata->gpio_cd = of_get_named_gpio(np, "cd-gpios", 0);
1421
1422	if (of_get_property(np, "cd-inverted", NULL))
1423		pdata->cd_invert = true;
1424	else
1425		pdata->cd_invert = false;
1426
1427	of_property_read_u32(np, "max-frequency", &pdata->f_max);
1428	if (!pdata->f_max)
1429		pr_warn("%s has no 'max-frequency' property\n", np->full_name);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1430
1431	if (of_get_property(np, "mmc-cap-mmc-highspeed", NULL))
1432		pdata->capabilities |= MMC_CAP_MMC_HIGHSPEED;
1433	if (of_get_property(np, "mmc-cap-sd-highspeed", NULL))
1434		pdata->capabilities |= MMC_CAP_SD_HIGHSPEED;
1435
1436	of_property_read_u32(np, "bus-width", &bus_width);
1437	switch (bus_width) {
1438	case 0 :
1439		/* No bus-width supplied. */
1440		break;
1441	case 4 :
1442		pdata->capabilities |= MMC_CAP_4_BIT_DATA;
1443		break;
1444	case 8 :
1445		pdata->capabilities |= MMC_CAP_8_BIT_DATA;
1446		break;
1447	default :
1448		pr_warn("%s: Unsupported bus width\n", np->full_name);
1449	}
1450}
1451#else
1452static void mmci_dt_populate_generic_pdata(struct device_node *np,
1453					struct mmci_platform_data *pdata)
1454{
1455	return;
1456}
1457#endif
1458
1459static int mmci_probe(struct amba_device *dev,
1460	const struct amba_id *id)
1461{
1462	struct mmci_platform_data *plat = dev->dev.platform_data;
1463	struct device_node *np = dev->dev.of_node;
1464	struct variant_data *variant = id->data;
1465	struct mmci_host *host;
1466	struct mmc_host *mmc;
1467	int ret;
1468
1469	/* Must have platform data or Device Tree. */
1470	if (!plat && !np) {
1471		dev_err(&dev->dev, "No plat data or DT found\n");
1472		return -EINVAL;
1473	}
1474
1475	if (!plat) {
1476		plat = devm_kzalloc(&dev->dev, sizeof(*plat), GFP_KERNEL);
1477		if (!plat)
1478			return -ENOMEM;
1479	}
1480
1481	if (np)
1482		mmci_dt_populate_generic_pdata(np, plat);
 
1483
1484	ret = amba_request_regions(dev, DRIVER_NAME);
1485	if (ret)
1486		goto out;
1487
1488	mmc = mmc_alloc_host(sizeof(struct mmci_host), &dev->dev);
1489	if (!mmc) {
1490		ret = -ENOMEM;
1491		goto rel_regions;
1492	}
1493
1494	host = mmc_priv(mmc);
1495	host->mmc = mmc;
1496
1497	host->gpio_wp = -ENOSYS;
1498	host->gpio_cd = -ENOSYS;
1499	host->gpio_cd_irq = -1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1500
1501	host->hw_designer = amba_manf(dev);
1502	host->hw_revision = amba_rev(dev);
1503	dev_dbg(mmc_dev(mmc), "designer ID = 0x%02x\n", host->hw_designer);
1504	dev_dbg(mmc_dev(mmc), "revision = 0x%01x\n", host->hw_revision);
1505
1506	host->clk = devm_clk_get(&dev->dev, NULL);
1507	if (IS_ERR(host->clk)) {
1508		ret = PTR_ERR(host->clk);
1509		goto host_free;
1510	}
1511
1512	ret = clk_prepare_enable(host->clk);
1513	if (ret)
1514		goto host_free;
1515
 
 
 
 
 
1516	host->plat = plat;
1517	host->variant = variant;
1518	host->mclk = clk_get_rate(host->clk);
1519	/*
1520	 * According to the spec, mclk is max 100 MHz,
1521	 * so we try to adjust the clock down to this,
1522	 * (if possible).
1523	 */
1524	if (host->mclk > 100000000) {
1525		ret = clk_set_rate(host->clk, 100000000);
1526		if (ret < 0)
1527			goto clk_disable;
1528		host->mclk = clk_get_rate(host->clk);
1529		dev_dbg(mmc_dev(mmc), "eventual mclk rate: %u Hz\n",
1530			host->mclk);
1531	}
 
1532	host->phybase = dev->res.start;
1533	host->base = ioremap(dev->res.start, resource_size(&dev->res));
1534	if (!host->base) {
1535		ret = -ENOMEM;
1536		goto clk_disable;
1537	}
1538
 
 
 
1539	/*
1540	 * The ARM and ST versions of the block have slightly different
1541	 * clock divider equations which means that the minimum divider
1542	 * differs too.
 
1543	 */
1544	if (variant->st_clkdiv)
1545		mmc->f_min = DIV_ROUND_UP(host->mclk, 257);
 
 
 
 
1546	else
1547		mmc->f_min = DIV_ROUND_UP(host->mclk, 512);
1548	/*
1549	 * If the platform data supplies a maximum operating
1550	 * frequency, this takes precedence. Else, we fall back
1551	 * to using the module parameter, which has a (low)
1552	 * default value in case it is not specified. Either
1553	 * value must not exceed the clock rate into the block,
1554	 * of course.
1555	 */
1556	if (plat->f_max)
1557		mmc->f_max = min(host->mclk, plat->f_max);
 
 
1558	else
1559		mmc->f_max = min(host->mclk, fmax);
 
 
 
1560	dev_dbg(mmc_dev(mmc), "clocking block at %u Hz\n", mmc->f_max);
1561
 
 
 
 
 
 
1562	/* Get regulators and the supported OCR mask */
1563	mmc_regulator_get_supply(mmc);
 
 
 
1564	if (!mmc->ocr_avail)
1565		mmc->ocr_avail = plat->ocr_mask;
1566	else if (plat->ocr_mask)
1567		dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
1568
1569	mmc->caps = plat->capabilities;
1570	mmc->caps2 = plat->capabilities2;
1571
 
 
 
1572	if (variant->busy_detect) {
1573		mmci_ops.card_busy = mmci_card_busy;
1574		mmci_write_datactrlreg(host, MCI_ST_DPSM_BUSYMODE);
 
 
 
 
 
 
1575		mmc->caps |= MMC_CAP_WAIT_WHILE_BUSY;
1576		mmc->max_busy_timeout = 0;
1577	}
1578
 
 
 
 
 
1579	mmc->ops = &mmci_ops;
1580
1581	/* We support these PM capabilities. */
1582	mmc->pm_caps = MMC_PM_KEEP_POWER;
1583
1584	/*
1585	 * We can do SGIO
1586	 */
1587	mmc->max_segs = NR_SG;
1588
1589	/*
1590	 * Since only a certain number of bits are valid in the data length
1591	 * register, we must ensure that we don't exceed 2^num-1 bytes in a
1592	 * single request.
1593	 */
1594	mmc->max_req_size = (1 << variant->datalength_bits) - 1;
1595
1596	/*
1597	 * Set the maximum segment size.  Since we aren't doing DMA
1598	 * (yet) we are only limited by the data length register.
1599	 */
1600	mmc->max_seg_size = mmc->max_req_size;
1601
1602	/*
1603	 * Block size can be up to 2048 bytes, but must be a power of two.
1604	 */
1605	mmc->max_blk_size = 1 << 11;
1606
1607	/*
1608	 * Limit the number of blocks transferred so that we don't overflow
1609	 * the maximum request size.
1610	 */
1611	mmc->max_blk_count = mmc->max_req_size >> 11;
1612
1613	spin_lock_init(&host->lock);
1614
1615	writel(0, host->base + MMCIMASK0);
1616	writel(0, host->base + MMCIMASK1);
 
 
 
1617	writel(0xfff, host->base + MMCICLEAR);
1618
1619	if (plat->gpio_cd == -EPROBE_DEFER) {
1620		ret = -EPROBE_DEFER;
1621		goto err_gpio_cd;
1622	}
1623	if (gpio_is_valid(plat->gpio_cd)) {
1624		ret = gpio_request(plat->gpio_cd, DRIVER_NAME " (cd)");
1625		if (ret == 0)
1626			ret = gpio_direction_input(plat->gpio_cd);
1627		if (ret == 0)
1628			host->gpio_cd = plat->gpio_cd;
1629		else if (ret != -ENOSYS)
1630			goto err_gpio_cd;
1631
1632		/*
1633		 * A gpio pin that will detect cards when inserted and removed
1634		 * will most likely want to trigger on the edges if it is
1635		 * 0 when ejected and 1 when inserted (or mutatis mutandis
1636		 * for the inverted case) so we request triggers on both
1637		 * edges.
1638		 */
1639		ret = request_any_context_irq(gpio_to_irq(plat->gpio_cd),
1640				mmci_cd_irq,
1641				IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING,
1642				DRIVER_NAME " (cd)", host);
1643		if (ret >= 0)
1644			host->gpio_cd_irq = gpio_to_irq(plat->gpio_cd);
1645	}
1646	if (plat->gpio_wp == -EPROBE_DEFER) {
1647		ret = -EPROBE_DEFER;
1648		goto err_gpio_wp;
1649	}
1650	if (gpio_is_valid(plat->gpio_wp)) {
1651		ret = gpio_request(plat->gpio_wp, DRIVER_NAME " (wp)");
1652		if (ret == 0)
1653			ret = gpio_direction_input(plat->gpio_wp);
1654		if (ret == 0)
1655			host->gpio_wp = plat->gpio_wp;
1656		else if (ret != -ENOSYS)
1657			goto err_gpio_wp;
1658	}
1659
1660	if ((host->plat->status || host->gpio_cd != -ENOSYS)
1661	    && host->gpio_cd_irq < 0)
1662		mmc->caps |= MMC_CAP_NEEDS_POLL;
1663
1664	ret = request_irq(dev->irq[0], mmci_irq, IRQF_SHARED, DRIVER_NAME " (cmd)", host);
 
1665	if (ret)
1666		goto unmap;
1667
1668	if (!dev->irq[1])
1669		host->singleirq = true;
1670	else {
1671		ret = request_irq(dev->irq[1], mmci_pio_irq, IRQF_SHARED,
1672				  DRIVER_NAME " (pio)", host);
1673		if (ret)
1674			goto irq0_free;
1675	}
1676
1677	writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1678
1679	amba_set_drvdata(dev, mmc);
1680
1681	dev_info(&dev->dev, "%s: PL%03x manf %x rev%u at 0x%08llx irq %d,%d (pio)\n",
1682		 mmc_hostname(mmc), amba_part(dev), amba_manf(dev),
1683		 amba_rev(dev), (unsigned long long)dev->res.start,
1684		 dev->irq[0], dev->irq[1]);
1685
1686	mmci_dma_setup(host);
1687
1688	pm_runtime_set_autosuspend_delay(&dev->dev, 50);
1689	pm_runtime_use_autosuspend(&dev->dev);
1690	pm_runtime_put(&dev->dev);
1691
1692	mmc_add_host(mmc);
1693
 
1694	return 0;
1695
1696 irq0_free:
1697	free_irq(dev->irq[0], host);
1698 unmap:
1699	if (host->gpio_wp != -ENOSYS)
1700		gpio_free(host->gpio_wp);
1701 err_gpio_wp:
1702	if (host->gpio_cd_irq >= 0)
1703		free_irq(host->gpio_cd_irq, host);
1704	if (host->gpio_cd != -ENOSYS)
1705		gpio_free(host->gpio_cd);
1706 err_gpio_cd:
1707	iounmap(host->base);
1708 clk_disable:
1709	clk_disable_unprepare(host->clk);
1710 host_free:
1711	mmc_free_host(mmc);
1712 rel_regions:
1713	amba_release_regions(dev);
1714 out:
1715	return ret;
1716}
1717
1718static int mmci_remove(struct amba_device *dev)
1719{
1720	struct mmc_host *mmc = amba_get_drvdata(dev);
1721
1722	if (mmc) {
1723		struct mmci_host *host = mmc_priv(mmc);
 
1724
1725		/*
1726		 * Undo pm_runtime_put() in probe.  We use the _sync
1727		 * version here so that we can access the primecell.
1728		 */
1729		pm_runtime_get_sync(&dev->dev);
1730
1731		mmc_remove_host(mmc);
1732
1733		writel(0, host->base + MMCIMASK0);
1734		writel(0, host->base + MMCIMASK1);
 
 
1735
1736		writel(0, host->base + MMCICOMMAND);
1737		writel(0, host->base + MMCIDATACTRL);
1738
1739		mmci_dma_release(host);
1740		free_irq(dev->irq[0], host);
1741		if (!host->singleirq)
1742			free_irq(dev->irq[1], host);
1743
1744		if (host->gpio_wp != -ENOSYS)
1745			gpio_free(host->gpio_wp);
1746		if (host->gpio_cd_irq >= 0)
1747			free_irq(host->gpio_cd_irq, host);
1748		if (host->gpio_cd != -ENOSYS)
1749			gpio_free(host->gpio_cd);
1750
1751		iounmap(host->base);
1752		clk_disable_unprepare(host->clk);
1753
1754		mmc_free_host(mmc);
1755
1756		amba_release_regions(dev);
1757	}
1758
1759	return 0;
1760}
1761
1762#ifdef CONFIG_SUSPEND
1763static int mmci_suspend(struct device *dev)
1764{
1765	struct amba_device *adev = to_amba_device(dev);
1766	struct mmc_host *mmc = amba_get_drvdata(adev);
1767
1768	if (mmc) {
1769		struct mmci_host *host = mmc_priv(mmc);
1770		pm_runtime_get_sync(dev);
1771		writel(0, host->base + MMCIMASK0);
1772	}
1773
1774	return 0;
1775}
1776
1777static int mmci_resume(struct device *dev)
1778{
1779	struct amba_device *adev = to_amba_device(dev);
1780	struct mmc_host *mmc = amba_get_drvdata(adev);
1781
1782	if (mmc) {
1783		struct mmci_host *host = mmc_priv(mmc);
1784		writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1785		pm_runtime_put(dev);
1786	}
1787
1788	return 0;
1789}
1790#endif
1791
1792#ifdef CONFIG_PM_RUNTIME
1793static void mmci_save(struct mmci_host *host)
1794{
1795	unsigned long flags;
1796
1797	if (host->variant->pwrreg_nopower) {
1798		spin_lock_irqsave(&host->lock, flags);
1799
1800		writel(0, host->base + MMCIMASK0);
 
1801		writel(0, host->base + MMCIDATACTRL);
1802		writel(0, host->base + MMCIPOWER);
1803		writel(0, host->base + MMCICLOCK);
1804		mmci_reg_delay(host);
1805
1806		spin_unlock_irqrestore(&host->lock, flags);
1807	}
 
1808
 
1809}
1810
1811static void mmci_restore(struct mmci_host *host)
1812{
1813	unsigned long flags;
1814
1815	if (host->variant->pwrreg_nopower) {
1816		spin_lock_irqsave(&host->lock, flags);
1817
 
1818		writel(host->clk_reg, host->base + MMCICLOCK);
1819		writel(host->datactrl_reg, host->base + MMCIDATACTRL);
1820		writel(host->pwr_reg, host->base + MMCIPOWER);
1821		writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1822		mmci_reg_delay(host);
1823
1824		spin_unlock_irqrestore(&host->lock, flags);
1825	}
 
 
 
 
 
1826}
1827
1828static int mmci_runtime_suspend(struct device *dev)
1829{
1830	struct amba_device *adev = to_amba_device(dev);
1831	struct mmc_host *mmc = amba_get_drvdata(adev);
1832
1833	if (mmc) {
1834		struct mmci_host *host = mmc_priv(mmc);
1835		pinctrl_pm_select_sleep_state(dev);
1836		mmci_save(host);
1837		clk_disable_unprepare(host->clk);
1838	}
1839
1840	return 0;
1841}
1842
1843static int mmci_runtime_resume(struct device *dev)
1844{
1845	struct amba_device *adev = to_amba_device(dev);
1846	struct mmc_host *mmc = amba_get_drvdata(adev);
1847
1848	if (mmc) {
1849		struct mmci_host *host = mmc_priv(mmc);
1850		clk_prepare_enable(host->clk);
1851		mmci_restore(host);
1852		pinctrl_pm_select_default_state(dev);
1853	}
1854
1855	return 0;
1856}
1857#endif
1858
1859static const struct dev_pm_ops mmci_dev_pm_ops = {
1860	SET_SYSTEM_SLEEP_PM_OPS(mmci_suspend, mmci_resume)
 
1861	SET_RUNTIME_PM_OPS(mmci_runtime_suspend, mmci_runtime_resume, NULL)
1862};
1863
1864static struct amba_id mmci_ids[] = {
1865	{
1866		.id	= 0x00041180,
1867		.mask	= 0xff0fffff,
1868		.data	= &variant_arm,
1869	},
1870	{
1871		.id	= 0x01041180,
1872		.mask	= 0xff0fffff,
1873		.data	= &variant_arm_extended_fifo,
1874	},
1875	{
1876		.id	= 0x02041180,
1877		.mask	= 0xff0fffff,
1878		.data	= &variant_arm_extended_fifo_hwfc,
1879	},
1880	{
1881		.id	= 0x00041181,
1882		.mask	= 0x000fffff,
1883		.data	= &variant_arm,
1884	},
1885	/* ST Micro variants */
1886	{
1887		.id     = 0x00180180,
1888		.mask   = 0x00ffffff,
1889		.data	= &variant_u300,
1890	},
1891	{
1892		.id     = 0x10180180,
1893		.mask   = 0xf0ffffff,
1894		.data	= &variant_nomadik,
1895	},
1896	{
1897		.id     = 0x00280180,
1898		.mask   = 0x00ffffff,
1899		.data	= &variant_u300,
1900	},
1901	{
1902		.id     = 0x00480180,
1903		.mask   = 0xf0ffffff,
1904		.data	= &variant_ux500,
1905	},
1906	{
1907		.id     = 0x10480180,
1908		.mask   = 0xf0ffffff,
1909		.data	= &variant_ux500v2,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1910	},
1911	{ 0, 0 },
1912};
1913
1914MODULE_DEVICE_TABLE(amba, mmci_ids);
1915
1916static struct amba_driver mmci_driver = {
1917	.drv		= {
1918		.name	= DRIVER_NAME,
1919		.pm	= &mmci_dev_pm_ops,
1920	},
1921	.probe		= mmci_probe,
1922	.remove		= mmci_remove,
1923	.id_table	= mmci_ids,
1924};
1925
1926module_amba_driver(mmci_driver);
1927
1928module_param(fmax, uint, 0444);
1929
1930MODULE_DESCRIPTION("ARM PrimeCell PL180/181 Multimedia Card Interface driver");
1931MODULE_LICENSE("GPL");
v5.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/drivers/mmc/host/mmci.c - ARM PrimeCell MMCI PL180/1 driver
   4 *
   5 *  Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved.
   6 *  Copyright (C) 2010 ST-Ericsson SA
 
 
 
 
   7 */
   8#include <linux/module.h>
   9#include <linux/moduleparam.h>
  10#include <linux/init.h>
  11#include <linux/ioport.h>
  12#include <linux/device.h>
  13#include <linux/io.h>
  14#include <linux/interrupt.h>
  15#include <linux/kernel.h>
  16#include <linux/slab.h>
  17#include <linux/delay.h>
  18#include <linux/err.h>
  19#include <linux/highmem.h>
  20#include <linux/log2.h>
  21#include <linux/mmc/mmc.h>
  22#include <linux/mmc/pm.h>
  23#include <linux/mmc/host.h>
  24#include <linux/mmc/card.h>
  25#include <linux/mmc/slot-gpio.h>
  26#include <linux/amba/bus.h>
  27#include <linux/clk.h>
  28#include <linux/scatterlist.h>
  29#include <linux/of.h>
 
  30#include <linux/regulator/consumer.h>
  31#include <linux/dmaengine.h>
  32#include <linux/dma-mapping.h>
  33#include <linux/amba/mmci.h>
  34#include <linux/pm_runtime.h>
  35#include <linux/types.h>
  36#include <linux/pinctrl/consumer.h>
  37#include <linux/reset.h>
  38
  39#include <asm/div64.h>
  40#include <asm/io.h>
 
  41
  42#include "mmci.h"
  43
  44#define DRIVER_NAME "mmci-pl18x"
  45
  46static void mmci_variant_init(struct mmci_host *host);
  47static void ux500v2_variant_init(struct mmci_host *host);
  48
  49static unsigned int fmax = 515633;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  50
  51static struct variant_data variant_arm = {
  52	.fifosize		= 16 * 4,
  53	.fifohalfsize		= 8 * 4,
  54	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
  55	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
  56	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
  57	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
  58	.datalength_bits	= 16,
  59	.datactrl_blocksz	= 11,
  60	.pwrreg_powerup		= MCI_PWR_UP,
  61	.f_max			= 100000000,
  62	.reversed_irq_handling	= true,
  63	.mmcimask1		= true,
  64	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
  65	.start_err		= MCI_STARTBITERR,
  66	.opendrain		= MCI_ROD,
  67	.init			= mmci_variant_init,
  68};
  69
  70static struct variant_data variant_arm_extended_fifo = {
  71	.fifosize		= 128 * 4,
  72	.fifohalfsize		= 64 * 4,
  73	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
  74	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
  75	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
  76	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
  77	.datalength_bits	= 16,
  78	.datactrl_blocksz	= 11,
  79	.pwrreg_powerup		= MCI_PWR_UP,
  80	.f_max			= 100000000,
  81	.mmcimask1		= true,
  82	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
  83	.start_err		= MCI_STARTBITERR,
  84	.opendrain		= MCI_ROD,
  85	.init			= mmci_variant_init,
  86};
  87
  88static struct variant_data variant_arm_extended_fifo_hwfc = {
  89	.fifosize		= 128 * 4,
  90	.fifohalfsize		= 64 * 4,
  91	.clkreg_enable		= MCI_ARM_HWFCEN,
  92	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
  93	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
  94	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
  95	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
  96	.datalength_bits	= 16,
  97	.datactrl_blocksz	= 11,
  98	.pwrreg_powerup		= MCI_PWR_UP,
  99	.f_max			= 100000000,
 100	.mmcimask1		= true,
 101	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
 102	.start_err		= MCI_STARTBITERR,
 103	.opendrain		= MCI_ROD,
 104	.init			= mmci_variant_init,
 105};
 106
 107static struct variant_data variant_u300 = {
 108	.fifosize		= 16 * 4,
 109	.fifohalfsize		= 8 * 4,
 110	.clkreg_enable		= MCI_ST_U300_HWFCEN,
 111	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
 112	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
 113	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
 114	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
 115	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
 116	.datalength_bits	= 16,
 117	.datactrl_blocksz	= 11,
 118	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
 119	.st_sdio			= true,
 120	.pwrreg_powerup		= MCI_PWR_ON,
 121	.f_max			= 100000000,
 122	.signal_direction	= true,
 123	.pwrreg_clkgate		= true,
 124	.pwrreg_nopower		= true,
 125	.mmcimask1		= true,
 126	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
 127	.start_err		= MCI_STARTBITERR,
 128	.opendrain		= MCI_OD,
 129	.init			= mmci_variant_init,
 130};
 131
 132static struct variant_data variant_nomadik = {
 133	.fifosize		= 16 * 4,
 134	.fifohalfsize		= 8 * 4,
 135	.clkreg			= MCI_CLK_ENABLE,
 136	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
 137	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
 138	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
 139	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
 140	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
 141	.datalength_bits	= 24,
 142	.datactrl_blocksz	= 11,
 143	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
 144	.st_sdio		= true,
 145	.st_clkdiv		= true,
 146	.pwrreg_powerup		= MCI_PWR_ON,
 147	.f_max			= 100000000,
 148	.signal_direction	= true,
 149	.pwrreg_clkgate		= true,
 150	.pwrreg_nopower		= true,
 151	.mmcimask1		= true,
 152	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
 153	.start_err		= MCI_STARTBITERR,
 154	.opendrain		= MCI_OD,
 155	.init			= mmci_variant_init,
 156};
 157
 158static struct variant_data variant_ux500 = {
 159	.fifosize		= 30 * 4,
 160	.fifohalfsize		= 8 * 4,
 161	.clkreg			= MCI_CLK_ENABLE,
 162	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
 163	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
 164	.clkreg_neg_edge_enable	= MCI_ST_UX500_NEG_EDGE,
 165	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
 166	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
 167	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
 168	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
 169	.datalength_bits	= 24,
 170	.datactrl_blocksz	= 11,
 171	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
 172	.st_sdio		= true,
 173	.st_clkdiv		= true,
 174	.pwrreg_powerup		= MCI_PWR_ON,
 175	.f_max			= 100000000,
 176	.signal_direction	= true,
 177	.pwrreg_clkgate		= true,
 178	.busy_detect		= true,
 179	.busy_dpsm_flag		= MCI_DPSM_ST_BUSYMODE,
 180	.busy_detect_flag	= MCI_ST_CARDBUSY,
 181	.busy_detect_mask	= MCI_ST_BUSYENDMASK,
 182	.pwrreg_nopower		= true,
 183	.mmcimask1		= true,
 184	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
 185	.start_err		= MCI_STARTBITERR,
 186	.opendrain		= MCI_OD,
 187	.init			= mmci_variant_init,
 188};
 189
 190static struct variant_data variant_ux500v2 = {
 191	.fifosize		= 30 * 4,
 192	.fifohalfsize		= 8 * 4,
 193	.clkreg			= MCI_CLK_ENABLE,
 194	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
 195	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
 196	.clkreg_neg_edge_enable	= MCI_ST_UX500_NEG_EDGE,
 197	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
 198	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
 199	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
 200	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
 201	.datactrl_mask_ddrmode	= MCI_DPSM_ST_DDRMODE,
 202	.datalength_bits	= 24,
 203	.datactrl_blocksz	= 11,
 204	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
 205	.st_sdio		= true,
 206	.st_clkdiv		= true,
 
 207	.pwrreg_powerup		= MCI_PWR_ON,
 208	.f_max			= 100000000,
 209	.signal_direction	= true,
 210	.pwrreg_clkgate		= true,
 211	.busy_detect		= true,
 212	.busy_dpsm_flag		= MCI_DPSM_ST_BUSYMODE,
 213	.busy_detect_flag	= MCI_ST_CARDBUSY,
 214	.busy_detect_mask	= MCI_ST_BUSYENDMASK,
 215	.pwrreg_nopower		= true,
 216	.mmcimask1		= true,
 217	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
 218	.start_err		= MCI_STARTBITERR,
 219	.opendrain		= MCI_OD,
 220	.init			= ux500v2_variant_init,
 221};
 222
 223static struct variant_data variant_stm32 = {
 224	.fifosize		= 32 * 4,
 225	.fifohalfsize		= 8 * 4,
 226	.clkreg			= MCI_CLK_ENABLE,
 227	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
 228	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
 229	.clkreg_neg_edge_enable	= MCI_ST_UX500_NEG_EDGE,
 230	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
 231	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
 232	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
 233	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
 234	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
 235	.datalength_bits	= 24,
 236	.datactrl_blocksz	= 11,
 237	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
 238	.st_sdio		= true,
 239	.st_clkdiv		= true,
 240	.pwrreg_powerup		= MCI_PWR_ON,
 241	.f_max			= 48000000,
 242	.pwrreg_clkgate		= true,
 243	.pwrreg_nopower		= true,
 244	.init			= mmci_variant_init,
 245};
 246
 247static struct variant_data variant_stm32_sdmmc = {
 248	.fifosize		= 16 * 4,
 249	.fifohalfsize		= 8 * 4,
 250	.f_max			= 208000000,
 251	.stm32_clkdiv		= true,
 252	.cmdreg_cpsm_enable	= MCI_CPSM_STM32_ENABLE,
 253	.cmdreg_lrsp_crc	= MCI_CPSM_STM32_LRSP_CRC,
 254	.cmdreg_srsp_crc	= MCI_CPSM_STM32_SRSP_CRC,
 255	.cmdreg_srsp		= MCI_CPSM_STM32_SRSP,
 256	.cmdreg_stop		= MCI_CPSM_STM32_CMDSTOP,
 257	.data_cmd_enable	= MCI_CPSM_STM32_CMDTRANS,
 258	.irq_pio_mask		= MCI_IRQ_PIO_STM32_MASK,
 259	.datactrl_first		= true,
 260	.datacnt_useless	= true,
 261	.datalength_bits	= 25,
 262	.datactrl_blocksz	= 14,
 263	.stm32_idmabsize_mask	= GENMASK(12, 5),
 264	.init			= sdmmc_variant_init,
 265};
 266
 267static struct variant_data variant_qcom = {
 268	.fifosize		= 16 * 4,
 269	.fifohalfsize		= 8 * 4,
 270	.clkreg			= MCI_CLK_ENABLE,
 271	.clkreg_enable		= MCI_QCOM_CLK_FLOWENA |
 272				  MCI_QCOM_CLK_SELECT_IN_FBCLK,
 273	.clkreg_8bit_bus_enable = MCI_QCOM_CLK_WIDEBUS_8,
 274	.datactrl_mask_ddrmode	= MCI_QCOM_CLK_SELECT_IN_DDR_MODE,
 275	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
 276	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
 277	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
 278	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
 279	.data_cmd_enable	= MCI_CPSM_QCOM_DATCMD,
 280	.datalength_bits	= 24,
 281	.datactrl_blocksz	= 11,
 282	.pwrreg_powerup		= MCI_PWR_UP,
 283	.f_max			= 208000000,
 284	.explicit_mclk_control	= true,
 285	.qcom_fifo		= true,
 286	.qcom_dml		= true,
 287	.mmcimask1		= true,
 288	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
 289	.start_err		= MCI_STARTBITERR,
 290	.opendrain		= MCI_ROD,
 291	.init			= qcom_variant_init,
 292};
 293
 294/* Busy detection for the ST Micro variant */
 295static int mmci_card_busy(struct mmc_host *mmc)
 296{
 297	struct mmci_host *host = mmc_priv(mmc);
 298	unsigned long flags;
 299	int busy = 0;
 300
 
 
 301	spin_lock_irqsave(&host->lock, flags);
 302	if (readl(host->base + MMCISTATUS) & host->variant->busy_detect_flag)
 303		busy = 1;
 304	spin_unlock_irqrestore(&host->lock, flags);
 305
 
 
 
 306	return busy;
 307}
 308
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 309static void mmci_reg_delay(struct mmci_host *host)
 310{
 311	/*
 312	 * According to the spec, at least three feedback clock cycles
 313	 * of max 52 MHz must pass between two writes to the MMCICLOCK reg.
 314	 * Three MCLK clock cycles must pass between two MMCIPOWER reg writes.
 315	 * Worst delay time during card init is at 100 kHz => 30 us.
 316	 * Worst delay time when up and running is at 25 MHz => 120 ns.
 317	 */
 318	if (host->cclk < 25000000)
 319		udelay(30);
 320	else
 321		ndelay(120);
 322}
 323
 324/*
 325 * This must be called with host->lock held
 326 */
 327void mmci_write_clkreg(struct mmci_host *host, u32 clk)
 328{
 329	if (host->clk_reg != clk) {
 330		host->clk_reg = clk;
 331		writel(clk, host->base + MMCICLOCK);
 332	}
 333}
 334
 335/*
 336 * This must be called with host->lock held
 337 */
 338void mmci_write_pwrreg(struct mmci_host *host, u32 pwr)
 339{
 340	if (host->pwr_reg != pwr) {
 341		host->pwr_reg = pwr;
 342		writel(pwr, host->base + MMCIPOWER);
 343	}
 344}
 345
 346/*
 347 * This must be called with host->lock held
 348 */
 349static void mmci_write_datactrlreg(struct mmci_host *host, u32 datactrl)
 350{
 351	/* Keep busy mode in DPSM if enabled */
 352	datactrl |= host->datactrl_reg & host->variant->busy_dpsm_flag;
 353
 354	if (host->datactrl_reg != datactrl) {
 355		host->datactrl_reg = datactrl;
 356		writel(datactrl, host->base + MMCIDATACTRL);
 357	}
 358}
 359
 360/*
 361 * This must be called with host->lock held
 362 */
 363static void mmci_set_clkreg(struct mmci_host *host, unsigned int desired)
 364{
 365	struct variant_data *variant = host->variant;
 366	u32 clk = variant->clkreg;
 367
 368	/* Make sure cclk reflects the current calculated clock */
 369	host->cclk = 0;
 370
 371	if (desired) {
 372		if (variant->explicit_mclk_control) {
 373			host->cclk = host->mclk;
 374		} else if (desired >= host->mclk) {
 375			clk = MCI_CLK_BYPASS;
 376			if (variant->st_clkdiv)
 377				clk |= MCI_ST_UX500_NEG_EDGE;
 378			host->cclk = host->mclk;
 379		} else if (variant->st_clkdiv) {
 380			/*
 381			 * DB8500 TRM says f = mclk / (clkdiv + 2)
 382			 * => clkdiv = (mclk / f) - 2
 383			 * Round the divider up so we don't exceed the max
 384			 * frequency
 385			 */
 386			clk = DIV_ROUND_UP(host->mclk, desired) - 2;
 387			if (clk >= 256)
 388				clk = 255;
 389			host->cclk = host->mclk / (clk + 2);
 390		} else {
 391			/*
 392			 * PL180 TRM says f = mclk / (2 * (clkdiv + 1))
 393			 * => clkdiv = mclk / (2 * f) - 1
 394			 */
 395			clk = host->mclk / (2 * desired) - 1;
 396			if (clk >= 256)
 397				clk = 255;
 398			host->cclk = host->mclk / (2 * (clk + 1));
 399		}
 400
 401		clk |= variant->clkreg_enable;
 402		clk |= MCI_CLK_ENABLE;
 403		/* This hasn't proven to be worthwhile */
 404		/* clk |= MCI_CLK_PWRSAVE; */
 405	}
 406
 407	/* Set actual clock for debug */
 408	host->mmc->actual_clock = host->cclk;
 409
 410	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4)
 411		clk |= MCI_4BIT_BUS;
 412	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8)
 413		clk |= variant->clkreg_8bit_bus_enable;
 414
 415	if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
 416	    host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
 417		clk |= variant->clkreg_neg_edge_enable;
 418
 419	mmci_write_clkreg(host, clk);
 420}
 421
 422void mmci_dma_release(struct mmci_host *host)
 423{
 424	if (host->ops && host->ops->dma_release)
 425		host->ops->dma_release(host);
 426
 427	host->use_dma = false;
 428}
 429
 430void mmci_dma_setup(struct mmci_host *host)
 431{
 432	if (!host->ops || !host->ops->dma_setup)
 433		return;
 434
 435	if (host->ops->dma_setup(host))
 436		return;
 437
 438	/* initialize pre request cookie */
 439	host->next_cookie = 1;
 440
 441	host->use_dma = true;
 442}
 443
 444/*
 445 * Validate mmc prerequisites
 446 */
 447static int mmci_validate_data(struct mmci_host *host,
 448			      struct mmc_data *data)
 449{
 450	if (!data)
 451		return 0;
 452
 453	if (!is_power_of_2(data->blksz)) {
 454		dev_err(mmc_dev(host->mmc),
 455			"unsupported block size (%d bytes)\n", data->blksz);
 456		return -EINVAL;
 457	}
 458
 459	if (host->ops && host->ops->validate_data)
 460		return host->ops->validate_data(host, data);
 461
 462	return 0;
 463}
 464
 465int mmci_prep_data(struct mmci_host *host, struct mmc_data *data, bool next)
 466{
 467	int err;
 468
 469	if (!host->ops || !host->ops->prep_data)
 470		return 0;
 471
 472	err = host->ops->prep_data(host, data, next);
 473
 474	if (next && !err)
 475		data->host_cookie = ++host->next_cookie < 0 ?
 476			1 : host->next_cookie;
 477
 478	return err;
 479}
 480
 481void mmci_unprep_data(struct mmci_host *host, struct mmc_data *data,
 482		      int err)
 483{
 484	if (host->ops && host->ops->unprep_data)
 485		host->ops->unprep_data(host, data, err);
 486
 487	data->host_cookie = 0;
 488}
 489
 490void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
 491{
 492	WARN_ON(data->host_cookie && data->host_cookie != host->next_cookie);
 493
 494	if (host->ops && host->ops->get_next_data)
 495		host->ops->get_next_data(host, data);
 496}
 497
 498int mmci_dma_start(struct mmci_host *host, unsigned int datactrl)
 499{
 500	struct mmc_data *data = host->data;
 501	int ret;
 502
 503	if (!host->use_dma)
 504		return -EINVAL;
 505
 506	ret = mmci_prep_data(host, data, false);
 507	if (ret)
 508		return ret;
 509
 510	if (!host->ops || !host->ops->dma_start)
 511		return -EINVAL;
 512
 513	/* Okay, go for it. */
 514	dev_vdbg(mmc_dev(host->mmc),
 515		 "Submit MMCI DMA job, sglen %d blksz %04x blks %04x flags %08x\n",
 516		 data->sg_len, data->blksz, data->blocks, data->flags);
 517
 518	host->ops->dma_start(host, &datactrl);
 519
 520	/* Trigger the DMA transfer */
 521	mmci_write_datactrlreg(host, datactrl);
 522
 523	/*
 524	 * Let the MMCI say when the data is ended and it's time
 525	 * to fire next DMA request. When that happens, MMCI will
 526	 * call mmci_data_end()
 527	 */
 528	writel(readl(host->base + MMCIMASK0) | MCI_DATAENDMASK,
 529	       host->base + MMCIMASK0);
 530	return 0;
 531}
 532
 533void mmci_dma_finalize(struct mmci_host *host, struct mmc_data *data)
 534{
 535	if (!host->use_dma)
 536		return;
 537
 538	if (host->ops && host->ops->dma_finalize)
 539		host->ops->dma_finalize(host, data);
 540}
 541
 542void mmci_dma_error(struct mmci_host *host)
 543{
 544	if (!host->use_dma)
 545		return;
 546
 547	if (host->ops && host->ops->dma_error)
 548		host->ops->dma_error(host);
 549}
 550
 551static void
 552mmci_request_end(struct mmci_host *host, struct mmc_request *mrq)
 553{
 554	writel(0, host->base + MMCICOMMAND);
 555
 556	BUG_ON(host->data);
 557
 558	host->mrq = NULL;
 559	host->cmd = NULL;
 560
 561	mmc_request_done(host->mmc, mrq);
 
 
 
 562}
 563
 564static void mmci_set_mask1(struct mmci_host *host, unsigned int mask)
 565{
 566	void __iomem *base = host->base;
 567	struct variant_data *variant = host->variant;
 568
 569	if (host->singleirq) {
 570		unsigned int mask0 = readl(base + MMCIMASK0);
 571
 572		mask0 &= ~variant->irq_pio_mask;
 573		mask0 |= mask;
 574
 575		writel(mask0, base + MMCIMASK0);
 576	}
 577
 578	if (variant->mmcimask1)
 579		writel(mask, base + MMCIMASK1);
 580
 581	host->mask1_reg = mask;
 582}
 583
 584static void mmci_stop_data(struct mmci_host *host)
 585{
 586	mmci_write_datactrlreg(host, 0);
 587	mmci_set_mask1(host, 0);
 588	host->data = NULL;
 589}
 590
 591static void mmci_init_sg(struct mmci_host *host, struct mmc_data *data)
 592{
 593	unsigned int flags = SG_MITER_ATOMIC;
 594
 595	if (data->flags & MMC_DATA_READ)
 596		flags |= SG_MITER_TO_SG;
 597	else
 598		flags |= SG_MITER_FROM_SG;
 599
 600	sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
 601}
 602
 603static u32 mmci_get_dctrl_cfg(struct mmci_host *host)
 604{
 605	return MCI_DPSM_ENABLE | mmci_dctrl_blksz(host);
 606}
 607
 608static u32 ux500v2_get_dctrl_cfg(struct mmci_host *host)
 609{
 610	return MCI_DPSM_ENABLE | (host->data->blksz << 16);
 611}
 612
 613/*
 614 * All the DMA operation mode stuff goes inside this ifdef.
 615 * This assumes that you have a generic DMA device interface,
 616 * no custom DMA interfaces are supported.
 617 */
 618#ifdef CONFIG_DMA_ENGINE
 619struct mmci_dmae_next {
 620	struct dma_async_tx_descriptor *desc;
 621	struct dma_chan	*chan;
 622};
 
 
 
 
 623
 624struct mmci_dmae_priv {
 625	struct dma_chan	*cur;
 626	struct dma_chan	*rx_channel;
 627	struct dma_chan	*tx_channel;
 628	struct dma_async_tx_descriptor	*desc_current;
 629	struct mmci_dmae_next next_data;
 630};
 631
 632int mmci_dmae_setup(struct mmci_host *host)
 633{
 634	const char *rxname, *txname;
 635	struct mmci_dmae_priv *dmae;
 
 
 
 
 
 
 
 
 
 636
 637	dmae = devm_kzalloc(mmc_dev(host->mmc), sizeof(*dmae), GFP_KERNEL);
 638	if (!dmae)
 639		return -ENOMEM;
 640
 641	host->dma_priv = dmae;
 642
 643	dmae->rx_channel = dma_request_slave_channel(mmc_dev(host->mmc),
 644						     "rx");
 645	dmae->tx_channel = dma_request_slave_channel(mmc_dev(host->mmc),
 646						     "tx");
 647
 648	/*
 649	 * If only an RX channel is specified, the driver will
 650	 * attempt to use it bidirectionally, however if it is
 651	 * is specified but cannot be located, DMA will be disabled.
 652	 */
 653	if (dmae->rx_channel && !dmae->tx_channel)
 654		dmae->tx_channel = dmae->rx_channel;
 655
 656	if (dmae->rx_channel)
 657		rxname = dma_chan_name(dmae->rx_channel);
 658	else
 659		rxname = "none";
 660
 661	if (dmae->tx_channel)
 662		txname = dma_chan_name(dmae->tx_channel);
 663	else
 664		txname = "none";
 665
 666	dev_info(mmc_dev(host->mmc), "DMA channels RX %s, TX %s\n",
 667		 rxname, txname);
 668
 669	/*
 670	 * Limit the maximum segment size in any SG entry according to
 671	 * the parameters of the DMA engine device.
 672	 */
 673	if (dmae->tx_channel) {
 674		struct device *dev = dmae->tx_channel->device->dev;
 675		unsigned int max_seg_size = dma_get_max_seg_size(dev);
 676
 677		if (max_seg_size < host->mmc->max_seg_size)
 678			host->mmc->max_seg_size = max_seg_size;
 679	}
 680	if (dmae->rx_channel) {
 681		struct device *dev = dmae->rx_channel->device->dev;
 682		unsigned int max_seg_size = dma_get_max_seg_size(dev);
 683
 684		if (max_seg_size < host->mmc->max_seg_size)
 685			host->mmc->max_seg_size = max_seg_size;
 686	}
 687
 688	if (!dmae->tx_channel || !dmae->rx_channel) {
 689		mmci_dmae_release(host);
 690		return -EINVAL;
 691	}
 692
 693	return 0;
 694}
 695
 696/*
 697 * This is used in or so inline it
 698 * so it can be discarded.
 699 */
 700void mmci_dmae_release(struct mmci_host *host)
 701{
 702	struct mmci_dmae_priv *dmae = host->dma_priv;
 703
 704	if (dmae->rx_channel)
 705		dma_release_channel(dmae->rx_channel);
 706	if (dmae->tx_channel)
 707		dma_release_channel(dmae->tx_channel);
 708	dmae->rx_channel = dmae->tx_channel = NULL;
 709}
 710
 711static void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
 712{
 713	struct mmci_dmae_priv *dmae = host->dma_priv;
 714	struct dma_chan *chan;
 715
 716	if (data->flags & MMC_DATA_READ)
 717		chan = dmae->rx_channel;
 718	else
 719		chan = dmae->tx_channel;
 720
 721	dma_unmap_sg(chan->device->dev, data->sg, data->sg_len,
 722		     mmc_get_dma_dir(data));
 723}
 724
 725void mmci_dmae_error(struct mmci_host *host)
 726{
 727	struct mmci_dmae_priv *dmae = host->dma_priv;
 
 728
 729	if (!dma_inprogress(host))
 730		return;
 731
 732	dev_err(mmc_dev(host->mmc), "error during DMA transfer!\n");
 733	dmaengine_terminate_all(dmae->cur);
 734	host->dma_in_progress = false;
 735	dmae->cur = NULL;
 736	dmae->desc_current = NULL;
 737	host->data->host_cookie = 0;
 738
 739	mmci_dma_unmap(host, host->data);
 740}
 741
 742void mmci_dmae_finalize(struct mmci_host *host, struct mmc_data *data)
 743{
 744	struct mmci_dmae_priv *dmae = host->dma_priv;
 745	u32 status;
 746	int i;
 747
 748	if (!dma_inprogress(host))
 749		return;
 750
 751	/* Wait up to 1ms for the DMA to complete */
 752	for (i = 0; ; i++) {
 753		status = readl(host->base + MMCISTATUS);
 754		if (!(status & MCI_RXDATAAVLBLMASK) || i >= 100)
 755			break;
 756		udelay(10);
 757	}
 758
 759	/*
 760	 * Check to see whether we still have some data left in the FIFO -
 761	 * this catches DMA controllers which are unable to monitor the
 762	 * DMALBREQ and DMALSREQ signals while allowing us to DMA to non-
 763	 * contiguous buffers.  On TX, we'll get a FIFO underrun error.
 764	 */
 765	if (status & MCI_RXDATAAVLBLMASK) {
 766		mmci_dma_error(host);
 767		if (!data->error)
 768			data->error = -EIO;
 769	} else if (!data->host_cookie) {
 
 
 770		mmci_dma_unmap(host, data);
 771	}
 772
 773	/*
 774	 * Use of DMA with scatter-gather is impossible.
 775	 * Give up with DMA and switch back to PIO mode.
 776	 */
 777	if (status & MCI_RXDATAAVLBLMASK) {
 778		dev_err(mmc_dev(host->mmc), "buggy DMA detected. Taking evasive action.\n");
 779		mmci_dma_release(host);
 780	}
 781
 782	host->dma_in_progress = false;
 783	dmae->cur = NULL;
 784	dmae->desc_current = NULL;
 785}
 786
 787/* prepares DMA channel and DMA descriptor, returns non-zero on failure */
 788static int _mmci_dmae_prep_data(struct mmci_host *host, struct mmc_data *data,
 789				struct dma_chan **dma_chan,
 790				struct dma_async_tx_descriptor **dma_desc)
 791{
 792	struct mmci_dmae_priv *dmae = host->dma_priv;
 793	struct variant_data *variant = host->variant;
 794	struct dma_slave_config conf = {
 795		.src_addr = host->phybase + MMCIFIFO,
 796		.dst_addr = host->phybase + MMCIFIFO,
 797		.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
 798		.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
 799		.src_maxburst = variant->fifohalfsize >> 2, /* # of words */
 800		.dst_maxburst = variant->fifohalfsize >> 2, /* # of words */
 801		.device_fc = false,
 802	};
 803	struct dma_chan *chan;
 804	struct dma_device *device;
 805	struct dma_async_tx_descriptor *desc;
 
 806	int nr_sg;
 807	unsigned long flags = DMA_CTRL_ACK;
 808
 809	if (data->flags & MMC_DATA_READ) {
 810		conf.direction = DMA_DEV_TO_MEM;
 811		chan = dmae->rx_channel;
 
 812	} else {
 813		conf.direction = DMA_MEM_TO_DEV;
 814		chan = dmae->tx_channel;
 
 815	}
 816
 817	/* If there's no DMA channel, fall back to PIO */
 818	if (!chan)
 819		return -EINVAL;
 820
 821	/* If less than or equal to the fifo size, don't bother with DMA */
 822	if (data->blksz * data->blocks <= variant->fifosize)
 823		return -EINVAL;
 824
 825	device = chan->device;
 826	nr_sg = dma_map_sg(device->dev, data->sg, data->sg_len,
 827			   mmc_get_dma_dir(data));
 828	if (nr_sg == 0)
 829		return -EINVAL;
 830
 831	if (host->variant->qcom_dml)
 832		flags |= DMA_PREP_INTERRUPT;
 833
 834	dmaengine_slave_config(chan, &conf);
 835	desc = dmaengine_prep_slave_sg(chan, data->sg, nr_sg,
 836					    conf.direction, flags);
 837	if (!desc)
 838		goto unmap_exit;
 839
 840	*dma_chan = chan;
 841	*dma_desc = desc;
 842
 843	return 0;
 844
 845 unmap_exit:
 846	dma_unmap_sg(device->dev, data->sg, data->sg_len,
 847		     mmc_get_dma_dir(data));
 848	return -ENOMEM;
 849}
 850
 851int mmci_dmae_prep_data(struct mmci_host *host,
 852			struct mmc_data *data,
 853			bool next)
 854{
 855	struct mmci_dmae_priv *dmae = host->dma_priv;
 856	struct mmci_dmae_next *nd = &dmae->next_data;
 857
 858	if (!host->use_dma)
 859		return -EINVAL;
 860
 861	if (next)
 862		return _mmci_dmae_prep_data(host, data, &nd->chan, &nd->desc);
 863	/* Check if next job is already prepared. */
 864	if (dmae->cur && dmae->desc_current)
 865		return 0;
 866
 867	/* No job were prepared thus do it now. */
 868	return _mmci_dmae_prep_data(host, data, &dmae->cur,
 869				    &dmae->desc_current);
 870}
 871
 872int mmci_dmae_start(struct mmci_host *host, unsigned int *datactrl)
 
 873{
 874	struct mmci_dmae_priv *dmae = host->dma_priv;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 875
 876	host->dma_in_progress = true;
 877	dmaengine_submit(dmae->desc_current);
 878	dma_async_issue_pending(dmae->cur);
 879
 880	*datactrl |= MCI_DPSM_DMAENABLE;
 
 881
 
 
 
 
 
 
 
 882	return 0;
 883}
 884
 885void mmci_dmae_get_next_data(struct mmci_host *host, struct mmc_data *data)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 886{
 887	struct mmci_dmae_priv *dmae = host->dma_priv;
 888	struct mmci_dmae_next *next = &dmae->next_data;
 
 889
 890	if (!host->use_dma)
 891		return;
 892
 893	WARN_ON(!data->host_cookie && (next->desc || next->chan));
 894
 895	dmae->desc_current = next->desc;
 896	dmae->cur = next->chan;
 897	next->desc = NULL;
 898	next->chan = NULL;
 
 899}
 900
 901void mmci_dmae_unprep_data(struct mmci_host *host,
 902			   struct mmc_data *data, int err)
 903
 904{
 905	struct mmci_dmae_priv *dmae = host->dma_priv;
 
 906
 907	if (!host->use_dma)
 908		return;
 909
 910	mmci_dma_unmap(host, data);
 911
 912	if (err) {
 913		struct mmci_dmae_next *next = &dmae->next_data;
 914		struct dma_chan *chan;
 915		if (data->flags & MMC_DATA_READ)
 916			chan = dmae->rx_channel;
 917		else
 918			chan = dmae->tx_channel;
 919		dmaengine_terminate_all(chan);
 920
 921		if (dmae->desc_current == next->desc)
 922			dmae->desc_current = NULL;
 923
 924		if (dmae->cur == next->chan) {
 925			host->dma_in_progress = false;
 926			dmae->cur = NULL;
 927		}
 928
 929		next->desc = NULL;
 930		next->chan = NULL;
 931	}
 932}
 933
 934static struct mmci_host_ops mmci_variant_ops = {
 935	.prep_data = mmci_dmae_prep_data,
 936	.unprep_data = mmci_dmae_unprep_data,
 937	.get_datactrl_cfg = mmci_get_dctrl_cfg,
 938	.get_next_data = mmci_dmae_get_next_data,
 939	.dma_setup = mmci_dmae_setup,
 940	.dma_release = mmci_dmae_release,
 941	.dma_start = mmci_dmae_start,
 942	.dma_finalize = mmci_dmae_finalize,
 943	.dma_error = mmci_dmae_error,
 944};
 945#else
 946static struct mmci_host_ops mmci_variant_ops = {
 947	.get_datactrl_cfg = mmci_get_dctrl_cfg,
 948};
 949#endif
 
 
 
 950
 951void mmci_variant_init(struct mmci_host *host)
 952{
 953	host->ops = &mmci_variant_ops;
 954}
 955
 956void ux500v2_variant_init(struct mmci_host *host)
 957{
 958	host->ops = &mmci_variant_ops;
 959	host->ops->get_datactrl_cfg = ux500v2_get_dctrl_cfg;
 960}
 961
 962static void mmci_pre_request(struct mmc_host *mmc, struct mmc_request *mrq)
 
 963{
 964	struct mmci_host *host = mmc_priv(mmc);
 965	struct mmc_data *data = mrq->data;
 966
 967	if (!data)
 968		return;
 969
 970	WARN_ON(data->host_cookie);
 971
 972	if (mmci_validate_data(host, data))
 973		return;
 974
 975	mmci_prep_data(host, data, true);
 976}
 977
 978static void mmci_post_request(struct mmc_host *mmc, struct mmc_request *mrq,
 979			      int err)
 980{
 981	struct mmci_host *host = mmc_priv(mmc);
 982	struct mmc_data *data = mrq->data;
 983
 984	if (!data || !data->host_cookie)
 985		return;
 986
 987	mmci_unprep_data(host, data, err);
 988}
 989
 990static void mmci_start_data(struct mmci_host *host, struct mmc_data *data)
 991{
 992	struct variant_data *variant = host->variant;
 993	unsigned int datactrl, timeout, irqmask;
 994	unsigned long long clks;
 995	void __iomem *base;
 
 996
 997	dev_dbg(mmc_dev(host->mmc), "blksz %04x blks %04x flags %08x\n",
 998		data->blksz, data->blocks, data->flags);
 999
1000	host->data = data;
1001	host->size = data->blksz * data->blocks;
1002	data->bytes_xfered = 0;
1003
1004	clks = (unsigned long long)data->timeout_ns * host->cclk;
1005	do_div(clks, NSEC_PER_SEC);
1006
1007	timeout = data->timeout_clks + (unsigned int)clks;
1008
1009	base = host->base;
1010	writel(timeout, base + MMCIDATATIMER);
1011	writel(host->size, base + MMCIDATALENGTH);
1012
1013	datactrl = host->ops->get_datactrl_cfg(host);
1014	datactrl |= host->data->flags & MMC_DATA_READ ? MCI_DPSM_DIRECTION : 0;
1015
1016	if (host->mmc->card && mmc_card_sdio(host->mmc->card)) {
1017		u32 clk;
 
 
1018
1019		datactrl |= variant->datactrl_mask_sdio;
 
 
 
 
 
 
 
 
 
 
1020
1021		/*
1022		 * The ST Micro variant for SDIO small write transfers
1023		 * needs to have clock H/W flow control disabled,
1024		 * otherwise the transfer will not start. The threshold
1025		 * depends on the rate of MCLK.
1026		 */
1027		if (variant->st_sdio && data->flags & MMC_DATA_WRITE &&
1028		    (host->size < 8 ||
1029		     (host->size <= 8 && host->mclk > 50000000)))
1030			clk = host->clk_reg & ~variant->clkreg_enable;
1031		else
1032			clk = host->clk_reg | variant->clkreg_enable;
 
 
1033
1034		mmci_write_clkreg(host, clk);
1035	}
1036
1037	if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
1038	    host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
1039		datactrl |= variant->datactrl_mask_ddrmode;
1040
1041	/*
1042	 * Attempt to use DMA operation mode, if this
1043	 * should fail, fall back to PIO mode
1044	 */
1045	if (!mmci_dma_start(host, datactrl))
1046		return;
1047
1048	/* IRQ mode, map the SG list for CPU reading/writing */
1049	mmci_init_sg(host, data);
1050
1051	if (data->flags & MMC_DATA_READ) {
1052		irqmask = MCI_RXFIFOHALFFULLMASK;
1053
1054		/*
1055		 * If we have less than the fifo 'half-full' threshold to
1056		 * transfer, trigger a PIO interrupt as soon as any data
1057		 * is available.
1058		 */
1059		if (host->size < variant->fifohalfsize)
1060			irqmask |= MCI_RXDATAAVLBLMASK;
1061	} else {
1062		/*
1063		 * We don't actually need to include "FIFO empty" here
1064		 * since its implicit in "FIFO half empty".
1065		 */
1066		irqmask = MCI_TXFIFOHALFEMPTYMASK;
1067	}
1068
1069	mmci_write_datactrlreg(host, datactrl);
1070	writel(readl(base + MMCIMASK0) & ~MCI_DATAENDMASK, base + MMCIMASK0);
1071	mmci_set_mask1(host, irqmask);
1072}
1073
1074static void
1075mmci_start_command(struct mmci_host *host, struct mmc_command *cmd, u32 c)
1076{
1077	void __iomem *base = host->base;
1078
1079	dev_dbg(mmc_dev(host->mmc), "op %02x arg %08x flags %08x\n",
1080	    cmd->opcode, cmd->arg, cmd->flags);
1081
1082	if (readl(base + MMCICOMMAND) & host->variant->cmdreg_cpsm_enable) {
1083		writel(0, base + MMCICOMMAND);
1084		mmci_reg_delay(host);
1085	}
1086
1087	if (host->variant->cmdreg_stop &&
1088	    cmd->opcode == MMC_STOP_TRANSMISSION)
1089		c |= host->variant->cmdreg_stop;
1090
1091	c |= cmd->opcode | host->variant->cmdreg_cpsm_enable;
1092	if (cmd->flags & MMC_RSP_PRESENT) {
1093		if (cmd->flags & MMC_RSP_136)
1094			c |= host->variant->cmdreg_lrsp_crc;
1095		else if (cmd->flags & MMC_RSP_CRC)
1096			c |= host->variant->cmdreg_srsp_crc;
1097		else
1098			c |= host->variant->cmdreg_srsp;
1099	}
1100	if (/*interrupt*/0)
1101		c |= MCI_CPSM_INTERRUPT;
1102
1103	if (mmc_cmd_type(cmd) == MMC_CMD_ADTC)
1104		c |= host->variant->data_cmd_enable;
1105
1106	host->cmd = cmd;
1107
1108	writel(cmd->arg, base + MMCIARGUMENT);
1109	writel(c, base + MMCICOMMAND);
1110}
1111
1112static void mmci_stop_command(struct mmci_host *host)
1113{
1114	host->stop_abort.error = 0;
1115	mmci_start_command(host, &host->stop_abort, 0);
1116}
1117
1118static void
1119mmci_data_irq(struct mmci_host *host, struct mmc_data *data,
1120	      unsigned int status)
1121{
1122	unsigned int status_err;
1123
1124	/* Make sure we have data to handle */
1125	if (!data)
1126		return;
1127
1128	/* First check for errors */
1129	status_err = status & (host->variant->start_err |
1130			       MCI_DATACRCFAIL | MCI_DATATIMEOUT |
1131			       MCI_TXUNDERRUN | MCI_RXOVERRUN);
1132
1133	if (status_err) {
1134		u32 remain, success;
1135
1136		/* Terminate the DMA transfer */
1137		mmci_dma_error(host);
 
 
 
1138
1139		/*
1140		 * Calculate how far we are into the transfer.  Note that
1141		 * the data counter gives the number of bytes transferred
1142		 * on the MMC bus, not on the host side.  On reads, this
1143		 * can be as much as a FIFO-worth of data ahead.  This
1144		 * matters for FIFO overruns only.
1145		 */
1146		if (!host->variant->datacnt_useless) {
1147			remain = readl(host->base + MMCIDATACNT);
1148			success = data->blksz * data->blocks - remain;
1149		} else {
1150			success = 0;
1151		}
1152
1153		dev_dbg(mmc_dev(host->mmc), "MCI ERROR IRQ, status 0x%08x at 0x%08x\n",
1154			status_err, success);
1155		if (status_err & MCI_DATACRCFAIL) {
1156			/* Last block was not successful */
1157			success -= 1;
1158			data->error = -EILSEQ;
1159		} else if (status_err & MCI_DATATIMEOUT) {
1160			data->error = -ETIMEDOUT;
1161		} else if (status_err & MCI_STARTBITERR) {
1162			data->error = -ECOMM;
1163		} else if (status_err & MCI_TXUNDERRUN) {
1164			data->error = -EIO;
1165		} else if (status_err & MCI_RXOVERRUN) {
1166			if (success > host->variant->fifosize)
1167				success -= host->variant->fifosize;
1168			else
1169				success = 0;
1170			data->error = -EIO;
1171		}
1172		data->bytes_xfered = round_down(success, data->blksz);
1173	}
1174
1175	if (status & MCI_DATABLOCKEND)
1176		dev_err(mmc_dev(host->mmc), "stray MCI_DATABLOCKEND interrupt\n");
1177
1178	if (status & MCI_DATAEND || data->error) {
1179		mmci_dma_finalize(host, data);
1180
1181		mmci_stop_data(host);
1182
1183		if (!data->error)
1184			/* The error clause is handled above, success! */
1185			data->bytes_xfered = data->blksz * data->blocks;
1186
1187		if (!data->stop) {
1188			if (host->variant->cmdreg_stop && data->error)
1189				mmci_stop_command(host);
1190			else
1191				mmci_request_end(host, data->mrq);
1192		} else if (host->mrq->sbc && !data->error) {
1193			mmci_request_end(host, data->mrq);
1194		} else {
1195			mmci_start_command(host, data->stop, 0);
1196		}
1197	}
1198}
1199
1200static void
1201mmci_cmd_irq(struct mmci_host *host, struct mmc_command *cmd,
1202	     unsigned int status)
1203{
1204	void __iomem *base = host->base;
1205	bool sbc, busy_resp;
 
 
1206
1207	if (!cmd)
 
1208		return;
1209
1210	sbc = (cmd == host->mrq->sbc);
1211	busy_resp = !!(cmd->flags & MMC_RSP_BUSY);
1212
1213	/*
1214	 * We need to be one of these interrupts to be considered worth
1215	 * handling. Note that we tag on any latent IRQs postponed
1216	 * due to waiting for busy status.
1217	 */
1218	if (!((status|host->busy_status) &
1219	      (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT|MCI_CMDSENT|MCI_CMDRESPEND)))
1220		return;
 
1221
1222	/* Handle busy detection on DAT0 if the variant supports it. */
1223	if (busy_resp && host->variant->busy_detect) {
1224
1225		/*
1226		 * Before unmasking for the busy end IRQ, confirm that the
1227		 * command was sent successfully. To keep track of having a
1228		 * command in-progress, waiting for busy signaling to end,
1229		 * store the status in host->busy_status.
1230		 *
1231		 * Note that, the card may need a couple of clock cycles before
1232		 * it starts signaling busy on DAT0, hence re-read the
1233		 * MMCISTATUS register here, to allow the busy bit to be set.
1234		 * Potentially we may even need to poll the register for a
1235		 * while, to allow it to be set, but tests indicates that it
1236		 * isn't needed.
1237		 */
1238		if (!host->busy_status &&
1239		    !(status & (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT)) &&
1240		    (readl(base + MMCISTATUS) & host->variant->busy_detect_flag)) {
1241
1242			writel(readl(base + MMCIMASK0) |
1243			       host->variant->busy_detect_mask,
1244			       base + MMCIMASK0);
1245
1246			host->busy_status =
1247				status & (MCI_CMDSENT|MCI_CMDRESPEND);
1248			return;
1249		}
1250
1251		/*
1252		 * If there is a command in-progress that has been successfully
1253		 * sent, then bail out if busy status is set and wait for the
1254		 * busy end IRQ.
1255		 *
1256		 * Note that, the HW triggers an IRQ on both edges while
1257		 * monitoring DAT0 for busy completion, but there is only one
1258		 * status bit in MMCISTATUS for the busy state. Therefore
1259		 * both the start and the end interrupts needs to be cleared,
1260		 * one after the other. So, clear the busy start IRQ here.
1261		 */
1262		if (host->busy_status &&
1263		    (status & host->variant->busy_detect_flag)) {
1264			writel(host->variant->busy_detect_mask,
1265			       host->base + MMCICLEAR);
1266			return;
1267		}
1268
1269		/*
1270		 * If there is a command in-progress that has been successfully
1271		 * sent and the busy bit isn't set, it means we have received
1272		 * the busy end IRQ. Clear and mask the IRQ, then continue to
1273		 * process the command.
1274		 */
1275		if (host->busy_status) {
1276
1277			writel(host->variant->busy_detect_mask,
1278			       host->base + MMCICLEAR);
1279
1280			writel(readl(base + MMCIMASK0) &
1281			       ~host->variant->busy_detect_mask,
1282			       base + MMCIMASK0);
1283			host->busy_status = 0;
1284		}
1285	}
1286
1287	host->cmd = NULL;
1288
1289	if (status & MCI_CMDTIMEOUT) {
1290		cmd->error = -ETIMEDOUT;
1291	} else if (status & MCI_CMDCRCFAIL && cmd->flags & MMC_RSP_CRC) {
1292		cmd->error = -EILSEQ;
1293	} else {
1294		cmd->resp[0] = readl(base + MMCIRESPONSE0);
1295		cmd->resp[1] = readl(base + MMCIRESPONSE1);
1296		cmd->resp[2] = readl(base + MMCIRESPONSE2);
1297		cmd->resp[3] = readl(base + MMCIRESPONSE3);
1298	}
1299
1300	if ((!sbc && !cmd->data) || cmd->error) {
1301		if (host->data) {
1302			/* Terminate the DMA transfer */
1303			mmci_dma_error(host);
1304
 
 
1305			mmci_stop_data(host);
1306			if (host->variant->cmdreg_stop && cmd->error) {
1307				mmci_stop_command(host);
1308				return;
1309			}
1310		}
1311		mmci_request_end(host, host->mrq);
1312	} else if (sbc) {
1313		mmci_start_command(host, host->mrq->cmd, 0);
1314	} else if (!host->variant->datactrl_first &&
1315		   !(cmd->data->flags & MMC_DATA_READ)) {
1316		mmci_start_data(host, cmd->data);
1317	}
1318}
1319
1320static int mmci_get_rx_fifocnt(struct mmci_host *host, u32 status, int remain)
1321{
1322	return remain - (readl(host->base + MMCIFIFOCNT) << 2);
1323}
1324
1325static int mmci_qcom_get_rx_fifocnt(struct mmci_host *host, u32 status, int r)
1326{
1327	/*
1328	 * on qcom SDCC4 only 8 words are used in each burst so only 8 addresses
1329	 * from the fifo range should be used
1330	 */
1331	if (status & MCI_RXFIFOHALFFULL)
1332		return host->variant->fifohalfsize;
1333	else if (status & MCI_RXDATAAVLBL)
1334		return 4;
1335
1336	return 0;
1337}
1338
1339static int mmci_pio_read(struct mmci_host *host, char *buffer, unsigned int remain)
1340{
1341	void __iomem *base = host->base;
1342	char *ptr = buffer;
1343	u32 status = readl(host->base + MMCISTATUS);
1344	int host_remain = host->size;
1345
1346	do {
1347		int count = host->get_rx_fifocnt(host, status, host_remain);
1348
1349		if (count > remain)
1350			count = remain;
1351
1352		if (count <= 0)
1353			break;
1354
1355		/*
1356		 * SDIO especially may want to send something that is
1357		 * not divisible by 4 (as opposed to card sectors
1358		 * etc). Therefore make sure to always read the last bytes
1359		 * while only doing full 32-bit reads towards the FIFO.
1360		 */
1361		if (unlikely(count & 0x3)) {
1362			if (count < 4) {
1363				unsigned char buf[4];
1364				ioread32_rep(base + MMCIFIFO, buf, 1);
1365				memcpy(ptr, buf, count);
1366			} else {
1367				ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1368				count &= ~0x3;
1369			}
1370		} else {
1371			ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1372		}
1373
1374		ptr += count;
1375		remain -= count;
1376		host_remain -= count;
1377
1378		if (remain == 0)
1379			break;
1380
1381		status = readl(base + MMCISTATUS);
1382	} while (status & MCI_RXDATAAVLBL);
1383
1384	return ptr - buffer;
1385}
1386
1387static int mmci_pio_write(struct mmci_host *host, char *buffer, unsigned int remain, u32 status)
1388{
1389	struct variant_data *variant = host->variant;
1390	void __iomem *base = host->base;
1391	char *ptr = buffer;
1392
1393	do {
1394		unsigned int count, maxcnt;
1395
1396		maxcnt = status & MCI_TXFIFOEMPTY ?
1397			 variant->fifosize : variant->fifohalfsize;
1398		count = min(remain, maxcnt);
1399
1400		/*
1401		 * SDIO especially may want to send something that is
1402		 * not divisible by 4 (as opposed to card sectors
1403		 * etc), and the FIFO only accept full 32-bit writes.
1404		 * So compensate by adding +3 on the count, a single
1405		 * byte become a 32bit write, 7 bytes will be two
1406		 * 32bit writes etc.
1407		 */
1408		iowrite32_rep(base + MMCIFIFO, ptr, (count + 3) >> 2);
1409
1410		ptr += count;
1411		remain -= count;
1412
1413		if (remain == 0)
1414			break;
1415
1416		status = readl(base + MMCISTATUS);
1417	} while (status & MCI_TXFIFOHALFEMPTY);
1418
1419	return ptr - buffer;
1420}
1421
1422/*
1423 * PIO data transfer IRQ handler.
1424 */
1425static irqreturn_t mmci_pio_irq(int irq, void *dev_id)
1426{
1427	struct mmci_host *host = dev_id;
1428	struct sg_mapping_iter *sg_miter = &host->sg_miter;
1429	struct variant_data *variant = host->variant;
1430	void __iomem *base = host->base;
 
1431	u32 status;
1432
1433	status = readl(base + MMCISTATUS);
1434
1435	dev_dbg(mmc_dev(host->mmc), "irq1 (pio) %08x\n", status);
1436
 
 
1437	do {
1438		unsigned int remain, len;
1439		char *buffer;
1440
1441		/*
1442		 * For write, we only need to test the half-empty flag
1443		 * here - if the FIFO is completely empty, then by
1444		 * definition it is more than half empty.
1445		 *
1446		 * For read, check for data available.
1447		 */
1448		if (!(status & (MCI_TXFIFOHALFEMPTY|MCI_RXDATAAVLBL)))
1449			break;
1450
1451		if (!sg_miter_next(sg_miter))
1452			break;
1453
1454		buffer = sg_miter->addr;
1455		remain = sg_miter->length;
1456
1457		len = 0;
1458		if (status & MCI_RXACTIVE)
1459			len = mmci_pio_read(host, buffer, remain);
1460		if (status & MCI_TXACTIVE)
1461			len = mmci_pio_write(host, buffer, remain, status);
1462
1463		sg_miter->consumed = len;
1464
1465		host->size -= len;
1466		remain -= len;
1467
1468		if (remain)
1469			break;
1470
1471		status = readl(base + MMCISTATUS);
1472	} while (1);
1473
1474	sg_miter_stop(sg_miter);
1475
 
 
1476	/*
1477	 * If we have less than the fifo 'half-full' threshold to transfer,
1478	 * trigger a PIO interrupt as soon as any data is available.
1479	 */
1480	if (status & MCI_RXACTIVE && host->size < variant->fifohalfsize)
1481		mmci_set_mask1(host, MCI_RXDATAAVLBLMASK);
1482
1483	/*
1484	 * If we run out of data, disable the data IRQs; this
1485	 * prevents a race where the FIFO becomes empty before
1486	 * the chip itself has disabled the data path, and
1487	 * stops us racing with our data end IRQ.
1488	 */
1489	if (host->size == 0) {
1490		mmci_set_mask1(host, 0);
1491		writel(readl(base + MMCIMASK0) | MCI_DATAENDMASK, base + MMCIMASK0);
1492	}
1493
1494	return IRQ_HANDLED;
1495}
1496
1497/*
1498 * Handle completion of command and data transfers.
1499 */
1500static irqreturn_t mmci_irq(int irq, void *dev_id)
1501{
1502	struct mmci_host *host = dev_id;
1503	u32 status;
1504	int ret = 0;
1505
1506	spin_lock(&host->lock);
1507
1508	do {
 
 
 
1509		status = readl(host->base + MMCISTATUS);
1510
1511		if (host->singleirq) {
1512			if (status & host->mask1_reg)
1513				mmci_pio_irq(irq, dev_id);
1514
1515			status &= ~host->variant->irq_pio_mask;
1516		}
1517
1518		/*
1519		 * Busy detection is managed by mmci_cmd_irq(), including to
1520		 * clear the corresponding IRQ.
 
1521		 */
1522		status &= readl(host->base + MMCIMASK0);
1523		if (host->variant->busy_detect)
1524			writel(status & ~host->variant->busy_detect_mask,
1525			       host->base + MMCICLEAR);
1526		else
1527			writel(status, host->base + MMCICLEAR);
1528
1529		dev_dbg(mmc_dev(host->mmc), "irq0 (data+cmd) %08x\n", status);
1530
1531		if (host->variant->reversed_irq_handling) {
1532			mmci_data_irq(host, host->data, status);
1533			mmci_cmd_irq(host, host->cmd, status);
1534		} else {
1535			mmci_cmd_irq(host, host->cmd, status);
1536			mmci_data_irq(host, host->data, status);
1537		}
1538
1539		/*
1540		 * Busy detection has been handled by mmci_cmd_irq() above.
1541		 * Clear the status bit to prevent polling in IRQ context.
1542		 */
1543		if (host->variant->busy_detect_flag)
1544			status &= ~host->variant->busy_detect_flag;
1545
1546		ret = 1;
1547	} while (status);
1548
1549	spin_unlock(&host->lock);
1550
1551	return IRQ_RETVAL(ret);
1552}
1553
1554static void mmci_request(struct mmc_host *mmc, struct mmc_request *mrq)
1555{
1556	struct mmci_host *host = mmc_priv(mmc);
1557	unsigned long flags;
1558
1559	WARN_ON(host->mrq != NULL);
1560
1561	mrq->cmd->error = mmci_validate_data(host, mrq->data);
1562	if (mrq->cmd->error) {
1563		mmc_request_done(mmc, mrq);
1564		return;
1565	}
1566
 
 
1567	spin_lock_irqsave(&host->lock, flags);
1568
1569	host->mrq = mrq;
1570
1571	if (mrq->data)
1572		mmci_get_next_data(host, mrq->data);
1573
1574	if (mrq->data &&
1575	    (host->variant->datactrl_first || mrq->data->flags & MMC_DATA_READ))
1576		mmci_start_data(host, mrq->data);
1577
1578	if (mrq->sbc)
1579		mmci_start_command(host, mrq->sbc, 0);
1580	else
1581		mmci_start_command(host, mrq->cmd, 0);
1582
1583	spin_unlock_irqrestore(&host->lock, flags);
1584}
1585
1586static void mmci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1587{
1588	struct mmci_host *host = mmc_priv(mmc);
1589	struct variant_data *variant = host->variant;
1590	u32 pwr = 0;
1591	unsigned long flags;
1592	int ret;
1593
 
 
1594	if (host->plat->ios_handler &&
1595		host->plat->ios_handler(mmc_dev(mmc), ios))
1596			dev_err(mmc_dev(mmc), "platform ios_handler failed\n");
1597
1598	switch (ios->power_mode) {
1599	case MMC_POWER_OFF:
1600		if (!IS_ERR(mmc->supply.vmmc))
1601			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1602
1603		if (!IS_ERR(mmc->supply.vqmmc) && host->vqmmc_enabled) {
1604			regulator_disable(mmc->supply.vqmmc);
1605			host->vqmmc_enabled = false;
1606		}
1607
1608		break;
1609	case MMC_POWER_UP:
1610		if (!IS_ERR(mmc->supply.vmmc))
1611			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
1612
1613		/*
1614		 * The ST Micro variant doesn't have the PL180s MCI_PWR_UP
1615		 * and instead uses MCI_PWR_ON so apply whatever value is
1616		 * configured in the variant data.
1617		 */
1618		pwr |= variant->pwrreg_powerup;
1619
1620		break;
1621	case MMC_POWER_ON:
1622		if (!IS_ERR(mmc->supply.vqmmc) && !host->vqmmc_enabled) {
1623			ret = regulator_enable(mmc->supply.vqmmc);
1624			if (ret < 0)
1625				dev_err(mmc_dev(mmc),
1626					"failed to enable vqmmc regulator\n");
1627			else
1628				host->vqmmc_enabled = true;
1629		}
1630
1631		pwr |= MCI_PWR_ON;
1632		break;
1633	}
1634
1635	if (variant->signal_direction && ios->power_mode != MMC_POWER_OFF) {
1636		/*
1637		 * The ST Micro variant has some additional bits
1638		 * indicating signal direction for the signals in
1639		 * the SD/MMC bus and feedback-clock usage.
1640		 */
1641		pwr |= host->pwr_reg_add;
1642
1643		if (ios->bus_width == MMC_BUS_WIDTH_4)
1644			pwr &= ~MCI_ST_DATA74DIREN;
1645		else if (ios->bus_width == MMC_BUS_WIDTH_1)
1646			pwr &= (~MCI_ST_DATA74DIREN &
1647				~MCI_ST_DATA31DIREN &
1648				~MCI_ST_DATA2DIREN);
1649	}
1650
1651	if (variant->opendrain) {
1652		if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN)
1653			pwr |= variant->opendrain;
1654	} else {
1655		/*
1656		 * If the variant cannot configure the pads by its own, then we
1657		 * expect the pinctrl to be able to do that for us
1658		 */
1659		if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN)
1660			pinctrl_select_state(host->pinctrl, host->pins_opendrain);
1661		else
1662			pinctrl_select_state(host->pinctrl, host->pins_default);
1663	}
1664
1665	/*
1666	 * If clock = 0 and the variant requires the MMCIPOWER to be used for
1667	 * gating the clock, the MCI_PWR_ON bit is cleared.
1668	 */
1669	if (!ios->clock && variant->pwrreg_clkgate)
1670		pwr &= ~MCI_PWR_ON;
1671
1672	if (host->variant->explicit_mclk_control &&
1673	    ios->clock != host->clock_cache) {
1674		ret = clk_set_rate(host->clk, ios->clock);
1675		if (ret < 0)
1676			dev_err(mmc_dev(host->mmc),
1677				"Error setting clock rate (%d)\n", ret);
1678		else
1679			host->mclk = clk_get_rate(host->clk);
1680	}
1681	host->clock_cache = ios->clock;
1682
1683	spin_lock_irqsave(&host->lock, flags);
1684
1685	if (host->ops && host->ops->set_clkreg)
1686		host->ops->set_clkreg(host, ios->clock);
1687	else
1688		mmci_set_clkreg(host, ios->clock);
1689
1690	if (host->ops && host->ops->set_pwrreg)
1691		host->ops->set_pwrreg(host, pwr);
1692	else
1693		mmci_write_pwrreg(host, pwr);
1694
1695	mmci_reg_delay(host);
 
1696
1697	spin_unlock_irqrestore(&host->lock, flags);
1698}
1699
1700static int mmci_get_cd(struct mmc_host *mmc)
1701{
1702	struct mmci_host *host = mmc_priv(mmc);
1703	struct mmci_platform_data *plat = host->plat;
1704	unsigned int status = mmc_gpio_get_cd(mmc);
1705
1706	if (status == -ENOSYS) {
1707		if (!plat->status)
1708			return 1; /* Assume always present */
1709
1710		status = plat->status(mmc_dev(host->mmc));
1711	}
 
 
 
 
 
 
 
1712	return status;
1713}
1714
1715static int mmci_sig_volt_switch(struct mmc_host *mmc, struct mmc_ios *ios)
1716{
1717	int ret = 0;
1718
1719	if (!IS_ERR(mmc->supply.vqmmc)) {
1720
 
 
1721		switch (ios->signal_voltage) {
1722		case MMC_SIGNAL_VOLTAGE_330:
1723			ret = regulator_set_voltage(mmc->supply.vqmmc,
1724						2700000, 3600000);
1725			break;
1726		case MMC_SIGNAL_VOLTAGE_180:
1727			ret = regulator_set_voltage(mmc->supply.vqmmc,
1728						1700000, 1950000);
1729			break;
1730		case MMC_SIGNAL_VOLTAGE_120:
1731			ret = regulator_set_voltage(mmc->supply.vqmmc,
1732						1100000, 1300000);
1733			break;
1734		}
1735
1736		if (ret)
1737			dev_warn(mmc_dev(mmc), "Voltage switch failed\n");
 
 
 
1738	}
1739
1740	return ret;
1741}
1742
 
 
 
 
 
 
 
 
 
1743static struct mmc_host_ops mmci_ops = {
1744	.request	= mmci_request,
1745	.pre_req	= mmci_pre_request,
1746	.post_req	= mmci_post_request,
1747	.set_ios	= mmci_set_ios,
1748	.get_ro		= mmc_gpio_get_ro,
1749	.get_cd		= mmci_get_cd,
1750	.start_signal_voltage_switch = mmci_sig_volt_switch,
1751};
1752
1753static int mmci_of_parse(struct device_node *np, struct mmc_host *mmc)
 
 
1754{
1755	struct mmci_host *host = mmc_priv(mmc);
1756	int ret = mmc_of_parse(mmc);
 
 
1757
1758	if (ret)
1759		return ret;
 
 
1760
1761	if (of_get_property(np, "st,sig-dir-dat0", NULL))
1762		host->pwr_reg_add |= MCI_ST_DATA0DIREN;
1763	if (of_get_property(np, "st,sig-dir-dat2", NULL))
1764		host->pwr_reg_add |= MCI_ST_DATA2DIREN;
1765	if (of_get_property(np, "st,sig-dir-dat31", NULL))
1766		host->pwr_reg_add |= MCI_ST_DATA31DIREN;
1767	if (of_get_property(np, "st,sig-dir-dat74", NULL))
1768		host->pwr_reg_add |= MCI_ST_DATA74DIREN;
1769	if (of_get_property(np, "st,sig-dir-cmd", NULL))
1770		host->pwr_reg_add |= MCI_ST_CMDDIREN;
1771	if (of_get_property(np, "st,sig-pin-fbclk", NULL))
1772		host->pwr_reg_add |= MCI_ST_FBCLKEN;
1773	if (of_get_property(np, "st,sig-dir", NULL))
1774		host->pwr_reg_add |= MCI_STM32_DIRPOL;
1775	if (of_get_property(np, "st,neg-edge", NULL))
1776		host->clk_reg_add |= MCI_STM32_CLK_NEGEDGE;
1777	if (of_get_property(np, "st,use-ckin", NULL))
1778		host->clk_reg_add |= MCI_STM32_CLK_SELCKIN;
1779
1780	if (of_get_property(np, "mmc-cap-mmc-highspeed", NULL))
1781		mmc->caps |= MMC_CAP_MMC_HIGHSPEED;
1782	if (of_get_property(np, "mmc-cap-sd-highspeed", NULL))
1783		mmc->caps |= MMC_CAP_SD_HIGHSPEED;
1784
1785	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1786}
 
1787
1788static int mmci_probe(struct amba_device *dev,
1789	const struct amba_id *id)
1790{
1791	struct mmci_platform_data *plat = dev->dev.platform_data;
1792	struct device_node *np = dev->dev.of_node;
1793	struct variant_data *variant = id->data;
1794	struct mmci_host *host;
1795	struct mmc_host *mmc;
1796	int ret;
1797
1798	/* Must have platform data or Device Tree. */
1799	if (!plat && !np) {
1800		dev_err(&dev->dev, "No plat data or DT found\n");
1801		return -EINVAL;
1802	}
1803
1804	if (!plat) {
1805		plat = devm_kzalloc(&dev->dev, sizeof(*plat), GFP_KERNEL);
1806		if (!plat)
1807			return -ENOMEM;
1808	}
1809
1810	mmc = mmc_alloc_host(sizeof(struct mmci_host), &dev->dev);
1811	if (!mmc)
1812		return -ENOMEM;
1813
1814	ret = mmci_of_parse(np, mmc);
1815	if (ret)
1816		goto host_free;
 
 
 
 
 
 
1817
1818	host = mmc_priv(mmc);
1819	host->mmc = mmc;
1820
1821	/*
1822	 * Some variant (STM32) doesn't have opendrain bit, nevertheless
1823	 * pins can be set accordingly using pinctrl
1824	 */
1825	if (!variant->opendrain) {
1826		host->pinctrl = devm_pinctrl_get(&dev->dev);
1827		if (IS_ERR(host->pinctrl)) {
1828			dev_err(&dev->dev, "failed to get pinctrl");
1829			ret = PTR_ERR(host->pinctrl);
1830			goto host_free;
1831		}
1832
1833		host->pins_default = pinctrl_lookup_state(host->pinctrl,
1834							  PINCTRL_STATE_DEFAULT);
1835		if (IS_ERR(host->pins_default)) {
1836			dev_err(mmc_dev(mmc), "Can't select default pins\n");
1837			ret = PTR_ERR(host->pins_default);
1838			goto host_free;
1839		}
1840
1841		host->pins_opendrain = pinctrl_lookup_state(host->pinctrl,
1842							    MMCI_PINCTRL_STATE_OPENDRAIN);
1843		if (IS_ERR(host->pins_opendrain)) {
1844			dev_err(mmc_dev(mmc), "Can't select opendrain pins\n");
1845			ret = PTR_ERR(host->pins_opendrain);
1846			goto host_free;
1847		}
1848	}
1849
1850	host->hw_designer = amba_manf(dev);
1851	host->hw_revision = amba_rev(dev);
1852	dev_dbg(mmc_dev(mmc), "designer ID = 0x%02x\n", host->hw_designer);
1853	dev_dbg(mmc_dev(mmc), "revision = 0x%01x\n", host->hw_revision);
1854
1855	host->clk = devm_clk_get(&dev->dev, NULL);
1856	if (IS_ERR(host->clk)) {
1857		ret = PTR_ERR(host->clk);
1858		goto host_free;
1859	}
1860
1861	ret = clk_prepare_enable(host->clk);
1862	if (ret)
1863		goto host_free;
1864
1865	if (variant->qcom_fifo)
1866		host->get_rx_fifocnt = mmci_qcom_get_rx_fifocnt;
1867	else
1868		host->get_rx_fifocnt = mmci_get_rx_fifocnt;
1869
1870	host->plat = plat;
1871	host->variant = variant;
1872	host->mclk = clk_get_rate(host->clk);
1873	/*
1874	 * According to the spec, mclk is max 100 MHz,
1875	 * so we try to adjust the clock down to this,
1876	 * (if possible).
1877	 */
1878	if (host->mclk > variant->f_max) {
1879		ret = clk_set_rate(host->clk, variant->f_max);
1880		if (ret < 0)
1881			goto clk_disable;
1882		host->mclk = clk_get_rate(host->clk);
1883		dev_dbg(mmc_dev(mmc), "eventual mclk rate: %u Hz\n",
1884			host->mclk);
1885	}
1886
1887	host->phybase = dev->res.start;
1888	host->base = devm_ioremap_resource(&dev->dev, &dev->res);
1889	if (IS_ERR(host->base)) {
1890		ret = PTR_ERR(host->base);
1891		goto clk_disable;
1892	}
1893
1894	if (variant->init)
1895		variant->init(host);
1896
1897	/*
1898	 * The ARM and ST versions of the block have slightly different
1899	 * clock divider equations which means that the minimum divider
1900	 * differs too.
1901	 * on Qualcomm like controllers get the nearest minimum clock to 100Khz
1902	 */
1903	if (variant->st_clkdiv)
1904		mmc->f_min = DIV_ROUND_UP(host->mclk, 257);
1905	else if (variant->stm32_clkdiv)
1906		mmc->f_min = DIV_ROUND_UP(host->mclk, 2046);
1907	else if (variant->explicit_mclk_control)
1908		mmc->f_min = clk_round_rate(host->clk, 100000);
1909	else
1910		mmc->f_min = DIV_ROUND_UP(host->mclk, 512);
1911	/*
1912	 * If no maximum operating frequency is supplied, fall back to use
1913	 * the module parameter, which has a (low) default value in case it
1914	 * is not specified. Either value must not exceed the clock rate into
1915	 * the block, of course.
 
 
1916	 */
1917	if (mmc->f_max)
1918		mmc->f_max = variant->explicit_mclk_control ?
1919				min(variant->f_max, mmc->f_max) :
1920				min(host->mclk, mmc->f_max);
1921	else
1922		mmc->f_max = variant->explicit_mclk_control ?
1923				fmax : min(host->mclk, fmax);
1924
1925
1926	dev_dbg(mmc_dev(mmc), "clocking block at %u Hz\n", mmc->f_max);
1927
1928	host->rst = devm_reset_control_get_optional_exclusive(&dev->dev, NULL);
1929	if (IS_ERR(host->rst)) {
1930		ret = PTR_ERR(host->rst);
1931		goto clk_disable;
1932	}
1933
1934	/* Get regulators and the supported OCR mask */
1935	ret = mmc_regulator_get_supply(mmc);
1936	if (ret)
1937		goto clk_disable;
1938
1939	if (!mmc->ocr_avail)
1940		mmc->ocr_avail = plat->ocr_mask;
1941	else if (plat->ocr_mask)
1942		dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
1943
1944	/* We support these capabilities. */
1945	mmc->caps |= MMC_CAP_CMD23;
1946
1947	/*
1948	 * Enable busy detection.
1949	 */
1950	if (variant->busy_detect) {
1951		mmci_ops.card_busy = mmci_card_busy;
1952		/*
1953		 * Not all variants have a flag to enable busy detection
1954		 * in the DPSM, but if they do, set it here.
1955		 */
1956		if (variant->busy_dpsm_flag)
1957			mmci_write_datactrlreg(host,
1958					       host->variant->busy_dpsm_flag);
1959		mmc->caps |= MMC_CAP_WAIT_WHILE_BUSY;
1960		mmc->max_busy_timeout = 0;
1961	}
1962
1963	/* Prepare a CMD12 - needed to clear the DPSM on some variants. */
1964	host->stop_abort.opcode = MMC_STOP_TRANSMISSION;
1965	host->stop_abort.arg = 0;
1966	host->stop_abort.flags = MMC_RSP_R1B | MMC_CMD_AC;
1967
1968	mmc->ops = &mmci_ops;
1969
1970	/* We support these PM capabilities. */
1971	mmc->pm_caps |= MMC_PM_KEEP_POWER;
1972
1973	/*
1974	 * We can do SGIO
1975	 */
1976	mmc->max_segs = NR_SG;
1977
1978	/*
1979	 * Since only a certain number of bits are valid in the data length
1980	 * register, we must ensure that we don't exceed 2^num-1 bytes in a
1981	 * single request.
1982	 */
1983	mmc->max_req_size = (1 << variant->datalength_bits) - 1;
1984
1985	/*
1986	 * Set the maximum segment size.  Since we aren't doing DMA
1987	 * (yet) we are only limited by the data length register.
1988	 */
1989	mmc->max_seg_size = mmc->max_req_size;
1990
1991	/*
1992	 * Block size can be up to 2048 bytes, but must be a power of two.
1993	 */
1994	mmc->max_blk_size = 1 << variant->datactrl_blocksz;
1995
1996	/*
1997	 * Limit the number of blocks transferred so that we don't overflow
1998	 * the maximum request size.
1999	 */
2000	mmc->max_blk_count = mmc->max_req_size >> variant->datactrl_blocksz;
2001
2002	spin_lock_init(&host->lock);
2003
2004	writel(0, host->base + MMCIMASK0);
2005
2006	if (variant->mmcimask1)
2007		writel(0, host->base + MMCIMASK1);
2008
2009	writel(0xfff, host->base + MMCICLEAR);
2010
2011	/*
2012	 * If:
2013	 * - not using DT but using a descriptor table, or
2014	 * - using a table of descriptors ALONGSIDE DT, or
2015	 * look up these descriptors named "cd" and "wp" right here, fail
2016	 * silently of these do not exist
2017	 */
2018	if (!np) {
2019		ret = mmc_gpiod_request_cd(mmc, "cd", 0, false, 0, NULL);
2020		if (ret == -EPROBE_DEFER)
2021			goto clk_disable;
 
2022
2023		ret = mmc_gpiod_request_ro(mmc, "wp", 0, 0, NULL);
2024		if (ret == -EPROBE_DEFER)
2025			goto clk_disable;
2026	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2027
2028	ret = devm_request_irq(&dev->dev, dev->irq[0], mmci_irq, IRQF_SHARED,
2029			DRIVER_NAME " (cmd)", host);
2030	if (ret)
2031		goto clk_disable;
2032
2033	if (!dev->irq[1])
2034		host->singleirq = true;
2035	else {
2036		ret = devm_request_irq(&dev->dev, dev->irq[1], mmci_pio_irq,
2037				IRQF_SHARED, DRIVER_NAME " (pio)", host);
2038		if (ret)
2039			goto clk_disable;
2040	}
2041
2042	writel(MCI_IRQENABLE | variant->start_err, host->base + MMCIMASK0);
2043
2044	amba_set_drvdata(dev, mmc);
2045
2046	dev_info(&dev->dev, "%s: PL%03x manf %x rev%u at 0x%08llx irq %d,%d (pio)\n",
2047		 mmc_hostname(mmc), amba_part(dev), amba_manf(dev),
2048		 amba_rev(dev), (unsigned long long)dev->res.start,
2049		 dev->irq[0], dev->irq[1]);
2050
2051	mmci_dma_setup(host);
2052
2053	pm_runtime_set_autosuspend_delay(&dev->dev, 50);
2054	pm_runtime_use_autosuspend(&dev->dev);
 
2055
2056	mmc_add_host(mmc);
2057
2058	pm_runtime_put(&dev->dev);
2059	return 0;
2060
 
 
 
 
 
 
 
 
 
 
 
 
2061 clk_disable:
2062	clk_disable_unprepare(host->clk);
2063 host_free:
2064	mmc_free_host(mmc);
 
 
 
2065	return ret;
2066}
2067
2068static int mmci_remove(struct amba_device *dev)
2069{
2070	struct mmc_host *mmc = amba_get_drvdata(dev);
2071
2072	if (mmc) {
2073		struct mmci_host *host = mmc_priv(mmc);
2074		struct variant_data *variant = host->variant;
2075
2076		/*
2077		 * Undo pm_runtime_put() in probe.  We use the _sync
2078		 * version here so that we can access the primecell.
2079		 */
2080		pm_runtime_get_sync(&dev->dev);
2081
2082		mmc_remove_host(mmc);
2083
2084		writel(0, host->base + MMCIMASK0);
2085
2086		if (variant->mmcimask1)
2087			writel(0, host->base + MMCIMASK1);
2088
2089		writel(0, host->base + MMCICOMMAND);
2090		writel(0, host->base + MMCIDATACTRL);
2091
2092		mmci_dma_release(host);
 
 
 
 
 
 
 
 
 
 
 
 
2093		clk_disable_unprepare(host->clk);
 
2094		mmc_free_host(mmc);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2095	}
2096
2097	return 0;
2098}
 
2099
2100#ifdef CONFIG_PM
2101static void mmci_save(struct mmci_host *host)
2102{
2103	unsigned long flags;
2104
2105	spin_lock_irqsave(&host->lock, flags);
 
2106
2107	writel(0, host->base + MMCIMASK0);
2108	if (host->variant->pwrreg_nopower) {
2109		writel(0, host->base + MMCIDATACTRL);
2110		writel(0, host->base + MMCIPOWER);
2111		writel(0, host->base + MMCICLOCK);
 
 
 
2112	}
2113	mmci_reg_delay(host);
2114
2115	spin_unlock_irqrestore(&host->lock, flags);
2116}
2117
2118static void mmci_restore(struct mmci_host *host)
2119{
2120	unsigned long flags;
2121
2122	spin_lock_irqsave(&host->lock, flags);
 
2123
2124	if (host->variant->pwrreg_nopower) {
2125		writel(host->clk_reg, host->base + MMCICLOCK);
2126		writel(host->datactrl_reg, host->base + MMCIDATACTRL);
2127		writel(host->pwr_reg, host->base + MMCIPOWER);
 
 
 
 
2128	}
2129	writel(MCI_IRQENABLE | host->variant->start_err,
2130	       host->base + MMCIMASK0);
2131	mmci_reg_delay(host);
2132
2133	spin_unlock_irqrestore(&host->lock, flags);
2134}
2135
2136static int mmci_runtime_suspend(struct device *dev)
2137{
2138	struct amba_device *adev = to_amba_device(dev);
2139	struct mmc_host *mmc = amba_get_drvdata(adev);
2140
2141	if (mmc) {
2142		struct mmci_host *host = mmc_priv(mmc);
2143		pinctrl_pm_select_sleep_state(dev);
2144		mmci_save(host);
2145		clk_disable_unprepare(host->clk);
2146	}
2147
2148	return 0;
2149}
2150
2151static int mmci_runtime_resume(struct device *dev)
2152{
2153	struct amba_device *adev = to_amba_device(dev);
2154	struct mmc_host *mmc = amba_get_drvdata(adev);
2155
2156	if (mmc) {
2157		struct mmci_host *host = mmc_priv(mmc);
2158		clk_prepare_enable(host->clk);
2159		mmci_restore(host);
2160		pinctrl_pm_select_default_state(dev);
2161	}
2162
2163	return 0;
2164}
2165#endif
2166
2167static const struct dev_pm_ops mmci_dev_pm_ops = {
2168	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
2169				pm_runtime_force_resume)
2170	SET_RUNTIME_PM_OPS(mmci_runtime_suspend, mmci_runtime_resume, NULL)
2171};
2172
2173static const struct amba_id mmci_ids[] = {
2174	{
2175		.id	= 0x00041180,
2176		.mask	= 0xff0fffff,
2177		.data	= &variant_arm,
2178	},
2179	{
2180		.id	= 0x01041180,
2181		.mask	= 0xff0fffff,
2182		.data	= &variant_arm_extended_fifo,
2183	},
2184	{
2185		.id	= 0x02041180,
2186		.mask	= 0xff0fffff,
2187		.data	= &variant_arm_extended_fifo_hwfc,
2188	},
2189	{
2190		.id	= 0x00041181,
2191		.mask	= 0x000fffff,
2192		.data	= &variant_arm,
2193	},
2194	/* ST Micro variants */
2195	{
2196		.id     = 0x00180180,
2197		.mask   = 0x00ffffff,
2198		.data	= &variant_u300,
2199	},
2200	{
2201		.id     = 0x10180180,
2202		.mask   = 0xf0ffffff,
2203		.data	= &variant_nomadik,
2204	},
2205	{
2206		.id     = 0x00280180,
2207		.mask   = 0x00ffffff,
2208		.data	= &variant_nomadik,
2209	},
2210	{
2211		.id     = 0x00480180,
2212		.mask   = 0xf0ffffff,
2213		.data	= &variant_ux500,
2214	},
2215	{
2216		.id     = 0x10480180,
2217		.mask   = 0xf0ffffff,
2218		.data	= &variant_ux500v2,
2219	},
2220	{
2221		.id     = 0x00880180,
2222		.mask   = 0x00ffffff,
2223		.data	= &variant_stm32,
2224	},
2225	{
2226		.id     = 0x10153180,
2227		.mask	= 0xf0ffffff,
2228		.data	= &variant_stm32_sdmmc,
2229	},
2230	/* Qualcomm variants */
2231	{
2232		.id     = 0x00051180,
2233		.mask	= 0x000fffff,
2234		.data	= &variant_qcom,
2235	},
2236	{ 0, 0 },
2237};
2238
2239MODULE_DEVICE_TABLE(amba, mmci_ids);
2240
2241static struct amba_driver mmci_driver = {
2242	.drv		= {
2243		.name	= DRIVER_NAME,
2244		.pm	= &mmci_dev_pm_ops,
2245	},
2246	.probe		= mmci_probe,
2247	.remove		= mmci_remove,
2248	.id_table	= mmci_ids,
2249};
2250
2251module_amba_driver(mmci_driver);
2252
2253module_param(fmax, uint, 0444);
2254
2255MODULE_DESCRIPTION("ARM PrimeCell PL180/181 Multimedia Card Interface driver");
2256MODULE_LICENSE("GPL");