Linux Audio

Check our new training course

Loading...
v3.15
   1/*
   2 *  linux/drivers/mmc/host/mmci.c - ARM PrimeCell MMCI PL180/1 driver
   3 *
   4 *  Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved.
   5 *  Copyright (C) 2010 ST-Ericsson SA
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License version 2 as
   9 * published by the Free Software Foundation.
  10 */
  11#include <linux/module.h>
  12#include <linux/moduleparam.h>
  13#include <linux/init.h>
  14#include <linux/ioport.h>
  15#include <linux/device.h>
 
  16#include <linux/interrupt.h>
  17#include <linux/kernel.h>
  18#include <linux/slab.h>
  19#include <linux/delay.h>
  20#include <linux/err.h>
  21#include <linux/highmem.h>
  22#include <linux/log2.h>
  23#include <linux/mmc/pm.h>
  24#include <linux/mmc/host.h>
  25#include <linux/mmc/card.h>
 
  26#include <linux/amba/bus.h>
  27#include <linux/clk.h>
  28#include <linux/scatterlist.h>
  29#include <linux/gpio.h>
  30#include <linux/of_gpio.h>
  31#include <linux/regulator/consumer.h>
  32#include <linux/dmaengine.h>
  33#include <linux/dma-mapping.h>
  34#include <linux/amba/mmci.h>
  35#include <linux/pm_runtime.h>
  36#include <linux/types.h>
  37#include <linux/pinctrl/consumer.h>
  38
  39#include <asm/div64.h>
  40#include <asm/io.h>
  41#include <asm/sizes.h>
  42
  43#include "mmci.h"
 
  44
  45#define DRIVER_NAME "mmci-pl18x"
  46
  47static unsigned int fmax = 515633;
  48
  49/**
  50 * struct variant_data - MMCI variant-specific quirks
  51 * @clkreg: default value for MCICLOCK register
  52 * @clkreg_enable: enable value for MMCICLOCK register
 
 
  53 * @datalength_bits: number of bits in the MMCIDATALENGTH register
  54 * @fifosize: number of bytes that can be written when MMCI_TXFIFOEMPTY
  55 *	      is asserted (likewise for RX)
  56 * @fifohalfsize: number of bytes that can be written when MCI_TXFIFOHALFEMPTY
  57 *		  is asserted (likewise for RX)
  58 * @sdio: variant supports SDIO
 
  59 * @st_clkdiv: true if using a ST-specific clock divider algorithm
 
  60 * @blksz_datactrl16: true if Block size is at b16..b30 position in datactrl register
 
 
 
  61 * @pwrreg_powerup: power up value for MMCIPOWER register
 
  62 * @signal_direction: input/out direction of bus signals can be indicated
  63 * @pwrreg_clkgate: MMCIPOWER register must be used to gate the clock
  64 * @busy_detect: true if busy detection on dat0 is supported
 
 
 
 
 
  65 * @pwrreg_nopower: bits in MMCIPOWER don't controls ext. power supply
 
 
 
 
 
 
 
 
  66 */
  67struct variant_data {
  68	unsigned int		clkreg;
  69	unsigned int		clkreg_enable;
 
 
  70	unsigned int		datalength_bits;
  71	unsigned int		fifosize;
  72	unsigned int		fifohalfsize;
  73	bool			sdio;
 
 
 
  74	bool			st_clkdiv;
  75	bool			blksz_datactrl16;
 
  76	u32			pwrreg_powerup;
 
  77	bool			signal_direction;
  78	bool			pwrreg_clkgate;
  79	bool			busy_detect;
 
 
 
  80	bool			pwrreg_nopower;
 
 
 
 
 
 
 
  81};
  82
  83static struct variant_data variant_arm = {
  84	.fifosize		= 16 * 4,
  85	.fifohalfsize		= 8 * 4,
  86	.datalength_bits	= 16,
  87	.pwrreg_powerup		= MCI_PWR_UP,
 
 
 
 
 
  88};
  89
  90static struct variant_data variant_arm_extended_fifo = {
  91	.fifosize		= 128 * 4,
  92	.fifohalfsize		= 64 * 4,
  93	.datalength_bits	= 16,
  94	.pwrreg_powerup		= MCI_PWR_UP,
 
 
 
 
  95};
  96
  97static struct variant_data variant_arm_extended_fifo_hwfc = {
  98	.fifosize		= 128 * 4,
  99	.fifohalfsize		= 64 * 4,
 100	.clkreg_enable		= MCI_ARM_HWFCEN,
 101	.datalength_bits	= 16,
 102	.pwrreg_powerup		= MCI_PWR_UP,
 
 
 
 
 103};
 104
 105static struct variant_data variant_u300 = {
 106	.fifosize		= 16 * 4,
 107	.fifohalfsize		= 8 * 4,
 108	.clkreg_enable		= MCI_ST_U300_HWFCEN,
 
 109	.datalength_bits	= 16,
 110	.sdio			= true,
 
 111	.pwrreg_powerup		= MCI_PWR_ON,
 
 112	.signal_direction	= true,
 113	.pwrreg_clkgate		= true,
 114	.pwrreg_nopower		= true,
 
 
 
 115};
 116
 117static struct variant_data variant_nomadik = {
 118	.fifosize		= 16 * 4,
 119	.fifohalfsize		= 8 * 4,
 120	.clkreg			= MCI_CLK_ENABLE,
 
 121	.datalength_bits	= 24,
 122	.sdio			= true,
 
 123	.st_clkdiv		= true,
 124	.pwrreg_powerup		= MCI_PWR_ON,
 
 125	.signal_direction	= true,
 126	.pwrreg_clkgate		= true,
 127	.pwrreg_nopower		= true,
 
 
 
 128};
 129
 130static struct variant_data variant_ux500 = {
 131	.fifosize		= 30 * 4,
 132	.fifohalfsize		= 8 * 4,
 133	.clkreg			= MCI_CLK_ENABLE,
 134	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
 
 
 135	.datalength_bits	= 24,
 136	.sdio			= true,
 
 137	.st_clkdiv		= true,
 138	.pwrreg_powerup		= MCI_PWR_ON,
 
 139	.signal_direction	= true,
 140	.pwrreg_clkgate		= true,
 141	.busy_detect		= true,
 
 
 
 142	.pwrreg_nopower		= true,
 
 
 
 143};
 144
 145static struct variant_data variant_ux500v2 = {
 146	.fifosize		= 30 * 4,
 147	.fifohalfsize		= 8 * 4,
 148	.clkreg			= MCI_CLK_ENABLE,
 149	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
 
 
 
 150	.datalength_bits	= 24,
 151	.sdio			= true,
 
 152	.st_clkdiv		= true,
 153	.blksz_datactrl16	= true,
 154	.pwrreg_powerup		= MCI_PWR_ON,
 
 155	.signal_direction	= true,
 156	.pwrreg_clkgate		= true,
 157	.busy_detect		= true,
 
 
 
 158	.pwrreg_nopower		= true,
 
 
 
 159};
 160
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 161static int mmci_card_busy(struct mmc_host *mmc)
 162{
 163	struct mmci_host *host = mmc_priv(mmc);
 164	unsigned long flags;
 165	int busy = 0;
 166
 167	pm_runtime_get_sync(mmc_dev(mmc));
 168
 169	spin_lock_irqsave(&host->lock, flags);
 170	if (readl(host->base + MMCISTATUS) & MCI_ST_CARDBUSY)
 171		busy = 1;
 172	spin_unlock_irqrestore(&host->lock, flags);
 173
 174	pm_runtime_mark_last_busy(mmc_dev(mmc));
 175	pm_runtime_put_autosuspend(mmc_dev(mmc));
 176
 177	return busy;
 178}
 179
 180/*
 181 * Validate mmc prerequisites
 182 */
 183static int mmci_validate_data(struct mmci_host *host,
 184			      struct mmc_data *data)
 185{
 186	if (!data)
 187		return 0;
 188
 189	if (!is_power_of_2(data->blksz)) {
 190		dev_err(mmc_dev(host->mmc),
 191			"unsupported block size (%d bytes)\n", data->blksz);
 192		return -EINVAL;
 193	}
 194
 195	return 0;
 196}
 197
 198static void mmci_reg_delay(struct mmci_host *host)
 199{
 200	/*
 201	 * According to the spec, at least three feedback clock cycles
 202	 * of max 52 MHz must pass between two writes to the MMCICLOCK reg.
 203	 * Three MCLK clock cycles must pass between two MMCIPOWER reg writes.
 204	 * Worst delay time during card init is at 100 kHz => 30 us.
 205	 * Worst delay time when up and running is at 25 MHz => 120 ns.
 206	 */
 207	if (host->cclk < 25000000)
 208		udelay(30);
 209	else
 210		ndelay(120);
 211}
 212
 213/*
 214 * This must be called with host->lock held
 215 */
 216static void mmci_write_clkreg(struct mmci_host *host, u32 clk)
 217{
 218	if (host->clk_reg != clk) {
 219		host->clk_reg = clk;
 220		writel(clk, host->base + MMCICLOCK);
 221	}
 222}
 223
 224/*
 225 * This must be called with host->lock held
 226 */
 227static void mmci_write_pwrreg(struct mmci_host *host, u32 pwr)
 228{
 229	if (host->pwr_reg != pwr) {
 230		host->pwr_reg = pwr;
 231		writel(pwr, host->base + MMCIPOWER);
 232	}
 233}
 234
 235/*
 236 * This must be called with host->lock held
 237 */
 238static void mmci_write_datactrlreg(struct mmci_host *host, u32 datactrl)
 239{
 240	/* Keep ST Micro busy mode if enabled */
 241	datactrl |= host->datactrl_reg & MCI_ST_DPSM_BUSYMODE;
 242
 243	if (host->datactrl_reg != datactrl) {
 244		host->datactrl_reg = datactrl;
 245		writel(datactrl, host->base + MMCIDATACTRL);
 246	}
 247}
 248
 249/*
 250 * This must be called with host->lock held
 251 */
 252static void mmci_set_clkreg(struct mmci_host *host, unsigned int desired)
 253{
 254	struct variant_data *variant = host->variant;
 255	u32 clk = variant->clkreg;
 256
 257	/* Make sure cclk reflects the current calculated clock */
 258	host->cclk = 0;
 259
 260	if (desired) {
 261		if (desired >= host->mclk) {
 
 
 262			clk = MCI_CLK_BYPASS;
 263			if (variant->st_clkdiv)
 264				clk |= MCI_ST_UX500_NEG_EDGE;
 265			host->cclk = host->mclk;
 266		} else if (variant->st_clkdiv) {
 267			/*
 268			 * DB8500 TRM says f = mclk / (clkdiv + 2)
 269			 * => clkdiv = (mclk / f) - 2
 270			 * Round the divider up so we don't exceed the max
 271			 * frequency
 272			 */
 273			clk = DIV_ROUND_UP(host->mclk, desired) - 2;
 274			if (clk >= 256)
 275				clk = 255;
 276			host->cclk = host->mclk / (clk + 2);
 277		} else {
 278			/*
 279			 * PL180 TRM says f = mclk / (2 * (clkdiv + 1))
 280			 * => clkdiv = mclk / (2 * f) - 1
 281			 */
 282			clk = host->mclk / (2 * desired) - 1;
 283			if (clk >= 256)
 284				clk = 255;
 285			host->cclk = host->mclk / (2 * (clk + 1));
 286		}
 287
 288		clk |= variant->clkreg_enable;
 289		clk |= MCI_CLK_ENABLE;
 290		/* This hasn't proven to be worthwhile */
 291		/* clk |= MCI_CLK_PWRSAVE; */
 292	}
 293
 294	/* Set actual clock for debug */
 295	host->mmc->actual_clock = host->cclk;
 296
 297	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4)
 298		clk |= MCI_4BIT_BUS;
 299	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8)
 300		clk |= MCI_ST_8BIT_BUS;
 301
 302	if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50)
 303		clk |= MCI_ST_UX500_NEG_EDGE;
 
 304
 305	mmci_write_clkreg(host, clk);
 306}
 307
 308static void
 309mmci_request_end(struct mmci_host *host, struct mmc_request *mrq)
 310{
 311	writel(0, host->base + MMCICOMMAND);
 312
 313	BUG_ON(host->data);
 314
 315	host->mrq = NULL;
 316	host->cmd = NULL;
 317
 318	mmc_request_done(host->mmc, mrq);
 319
 320	pm_runtime_mark_last_busy(mmc_dev(host->mmc));
 321	pm_runtime_put_autosuspend(mmc_dev(host->mmc));
 322}
 323
 324static void mmci_set_mask1(struct mmci_host *host, unsigned int mask)
 325{
 326	void __iomem *base = host->base;
 
 327
 328	if (host->singleirq) {
 329		unsigned int mask0 = readl(base + MMCIMASK0);
 330
 331		mask0 &= ~MCI_IRQ1MASK;
 332		mask0 |= mask;
 333
 334		writel(mask0, base + MMCIMASK0);
 335	}
 336
 337	writel(mask, base + MMCIMASK1);
 
 
 
 338}
 339
 340static void mmci_stop_data(struct mmci_host *host)
 341{
 342	mmci_write_datactrlreg(host, 0);
 343	mmci_set_mask1(host, 0);
 344	host->data = NULL;
 345}
 346
 347static void mmci_init_sg(struct mmci_host *host, struct mmc_data *data)
 348{
 349	unsigned int flags = SG_MITER_ATOMIC;
 350
 351	if (data->flags & MMC_DATA_READ)
 352		flags |= SG_MITER_TO_SG;
 353	else
 354		flags |= SG_MITER_FROM_SG;
 355
 356	sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
 357}
 358
 359/*
 360 * All the DMA operation mode stuff goes inside this ifdef.
 361 * This assumes that you have a generic DMA device interface,
 362 * no custom DMA interfaces are supported.
 363 */
 364#ifdef CONFIG_DMA_ENGINE
 365static void mmci_dma_setup(struct mmci_host *host)
 366{
 367	struct mmci_platform_data *plat = host->plat;
 368	const char *rxname, *txname;
 369	dma_cap_mask_t mask;
 370
 371	host->dma_rx_channel = dma_request_slave_channel(mmc_dev(host->mmc), "rx");
 372	host->dma_tx_channel = dma_request_slave_channel(mmc_dev(host->mmc), "tx");
 373
 374	/* initialize pre request cookie */
 375	host->next_data.cookie = 1;
 376
 377	/* Try to acquire a generic DMA engine slave channel */
 378	dma_cap_zero(mask);
 379	dma_cap_set(DMA_SLAVE, mask);
 380
 381	if (plat && plat->dma_filter) {
 382		if (!host->dma_rx_channel && plat->dma_rx_param) {
 383			host->dma_rx_channel = dma_request_channel(mask,
 384							   plat->dma_filter,
 385							   plat->dma_rx_param);
 386			/* E.g if no DMA hardware is present */
 387			if (!host->dma_rx_channel)
 388				dev_err(mmc_dev(host->mmc), "no RX DMA channel\n");
 389		}
 390
 391		if (!host->dma_tx_channel && plat->dma_tx_param) {
 392			host->dma_tx_channel = dma_request_channel(mask,
 393							   plat->dma_filter,
 394							   plat->dma_tx_param);
 395			if (!host->dma_tx_channel)
 396				dev_warn(mmc_dev(host->mmc), "no TX DMA channel\n");
 397		}
 398	}
 399
 400	/*
 401	 * If only an RX channel is specified, the driver will
 402	 * attempt to use it bidirectionally, however if it is
 403	 * is specified but cannot be located, DMA will be disabled.
 404	 */
 405	if (host->dma_rx_channel && !host->dma_tx_channel)
 406		host->dma_tx_channel = host->dma_rx_channel;
 407
 408	if (host->dma_rx_channel)
 409		rxname = dma_chan_name(host->dma_rx_channel);
 410	else
 411		rxname = "none";
 412
 413	if (host->dma_tx_channel)
 414		txname = dma_chan_name(host->dma_tx_channel);
 415	else
 416		txname = "none";
 417
 418	dev_info(mmc_dev(host->mmc), "DMA channels RX %s, TX %s\n",
 419		 rxname, txname);
 420
 421	/*
 422	 * Limit the maximum segment size in any SG entry according to
 423	 * the parameters of the DMA engine device.
 424	 */
 425	if (host->dma_tx_channel) {
 426		struct device *dev = host->dma_tx_channel->device->dev;
 427		unsigned int max_seg_size = dma_get_max_seg_size(dev);
 428
 429		if (max_seg_size < host->mmc->max_seg_size)
 430			host->mmc->max_seg_size = max_seg_size;
 431	}
 432	if (host->dma_rx_channel) {
 433		struct device *dev = host->dma_rx_channel->device->dev;
 434		unsigned int max_seg_size = dma_get_max_seg_size(dev);
 435
 436		if (max_seg_size < host->mmc->max_seg_size)
 437			host->mmc->max_seg_size = max_seg_size;
 438	}
 
 
 
 
 439}
 440
 441/*
 442 * This is used in or so inline it
 443 * so it can be discarded.
 444 */
 445static inline void mmci_dma_release(struct mmci_host *host)
 446{
 447	struct mmci_platform_data *plat = host->plat;
 448
 449	if (host->dma_rx_channel)
 450		dma_release_channel(host->dma_rx_channel);
 451	if (host->dma_tx_channel && plat->dma_tx_param)
 452		dma_release_channel(host->dma_tx_channel);
 453	host->dma_rx_channel = host->dma_tx_channel = NULL;
 454}
 455
 456static void mmci_dma_data_error(struct mmci_host *host)
 457{
 458	dev_err(mmc_dev(host->mmc), "error during DMA transfer!\n");
 459	dmaengine_terminate_all(host->dma_current);
 
 460	host->dma_current = NULL;
 461	host->dma_desc_current = NULL;
 462	host->data->host_cookie = 0;
 463}
 464
 465static void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
 466{
 467	struct dma_chan *chan;
 468	enum dma_data_direction dir;
 469
 470	if (data->flags & MMC_DATA_READ) {
 471		dir = DMA_FROM_DEVICE;
 472		chan = host->dma_rx_channel;
 473	} else {
 474		dir = DMA_TO_DEVICE;
 475		chan = host->dma_tx_channel;
 476	}
 477
 478	dma_unmap_sg(chan->device->dev, data->sg, data->sg_len, dir);
 
 479}
 480
 481static void mmci_dma_finalize(struct mmci_host *host, struct mmc_data *data)
 482{
 483	u32 status;
 484	int i;
 485
 486	/* Wait up to 1ms for the DMA to complete */
 487	for (i = 0; ; i++) {
 488		status = readl(host->base + MMCISTATUS);
 489		if (!(status & MCI_RXDATAAVLBLMASK) || i >= 100)
 490			break;
 491		udelay(10);
 492	}
 493
 494	/*
 495	 * Check to see whether we still have some data left in the FIFO -
 496	 * this catches DMA controllers which are unable to monitor the
 497	 * DMALBREQ and DMALSREQ signals while allowing us to DMA to non-
 498	 * contiguous buffers.  On TX, we'll get a FIFO underrun error.
 499	 */
 500	if (status & MCI_RXDATAAVLBLMASK) {
 501		mmci_dma_data_error(host);
 502		if (!data->error)
 503			data->error = -EIO;
 504	}
 505
 506	if (!data->host_cookie)
 507		mmci_dma_unmap(host, data);
 508
 509	/*
 510	 * Use of DMA with scatter-gather is impossible.
 511	 * Give up with DMA and switch back to PIO mode.
 512	 */
 513	if (status & MCI_RXDATAAVLBLMASK) {
 514		dev_err(mmc_dev(host->mmc), "buggy DMA detected. Taking evasive action.\n");
 515		mmci_dma_release(host);
 516	}
 517
 
 518	host->dma_current = NULL;
 519	host->dma_desc_current = NULL;
 520}
 521
 522/* prepares DMA channel and DMA descriptor, returns non-zero on failure */
 523static int __mmci_dma_prep_data(struct mmci_host *host, struct mmc_data *data,
 524				struct dma_chan **dma_chan,
 525				struct dma_async_tx_descriptor **dma_desc)
 526{
 527	struct variant_data *variant = host->variant;
 528	struct dma_slave_config conf = {
 529		.src_addr = host->phybase + MMCIFIFO,
 530		.dst_addr = host->phybase + MMCIFIFO,
 531		.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
 532		.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
 533		.src_maxburst = variant->fifohalfsize >> 2, /* # of words */
 534		.dst_maxburst = variant->fifohalfsize >> 2, /* # of words */
 535		.device_fc = false,
 536	};
 537	struct dma_chan *chan;
 538	struct dma_device *device;
 539	struct dma_async_tx_descriptor *desc;
 540	enum dma_data_direction buffer_dirn;
 541	int nr_sg;
 
 542
 543	if (data->flags & MMC_DATA_READ) {
 544		conf.direction = DMA_DEV_TO_MEM;
 545		buffer_dirn = DMA_FROM_DEVICE;
 546		chan = host->dma_rx_channel;
 547	} else {
 548		conf.direction = DMA_MEM_TO_DEV;
 549		buffer_dirn = DMA_TO_DEVICE;
 550		chan = host->dma_tx_channel;
 551	}
 552
 553	/* If there's no DMA channel, fall back to PIO */
 554	if (!chan)
 555		return -EINVAL;
 556
 557	/* If less than or equal to the fifo size, don't bother with DMA */
 558	if (data->blksz * data->blocks <= variant->fifosize)
 559		return -EINVAL;
 560
 561	device = chan->device;
 562	nr_sg = dma_map_sg(device->dev, data->sg, data->sg_len, buffer_dirn);
 
 563	if (nr_sg == 0)
 564		return -EINVAL;
 565
 
 
 
 566	dmaengine_slave_config(chan, &conf);
 567	desc = dmaengine_prep_slave_sg(chan, data->sg, nr_sg,
 568					    conf.direction, DMA_CTRL_ACK);
 569	if (!desc)
 570		goto unmap_exit;
 571
 572	*dma_chan = chan;
 573	*dma_desc = desc;
 574
 575	return 0;
 576
 577 unmap_exit:
 578	dma_unmap_sg(device->dev, data->sg, data->sg_len, buffer_dirn);
 
 579	return -ENOMEM;
 580}
 581
 582static inline int mmci_dma_prep_data(struct mmci_host *host,
 583				     struct mmc_data *data)
 584{
 585	/* Check if next job is already prepared. */
 586	if (host->dma_current && host->dma_desc_current)
 587		return 0;
 588
 589	/* No job were prepared thus do it now. */
 590	return __mmci_dma_prep_data(host, data, &host->dma_current,
 591				    &host->dma_desc_current);
 592}
 593
 594static inline int mmci_dma_prep_next(struct mmci_host *host,
 595				     struct mmc_data *data)
 596{
 597	struct mmci_host_next *nd = &host->next_data;
 598	return __mmci_dma_prep_data(host, data, &nd->dma_chan, &nd->dma_desc);
 599}
 600
 601static int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
 602{
 603	int ret;
 604	struct mmc_data *data = host->data;
 605
 606	ret = mmci_dma_prep_data(host, host->data);
 607	if (ret)
 608		return ret;
 609
 610	/* Okay, go for it. */
 611	dev_vdbg(mmc_dev(host->mmc),
 612		 "Submit MMCI DMA job, sglen %d blksz %04x blks %04x flags %08x\n",
 613		 data->sg_len, data->blksz, data->blocks, data->flags);
 
 614	dmaengine_submit(host->dma_desc_current);
 615	dma_async_issue_pending(host->dma_current);
 616
 
 
 
 617	datactrl |= MCI_DPSM_DMAENABLE;
 618
 619	/* Trigger the DMA transfer */
 620	mmci_write_datactrlreg(host, datactrl);
 621
 622	/*
 623	 * Let the MMCI say when the data is ended and it's time
 624	 * to fire next DMA request. When that happens, MMCI will
 625	 * call mmci_data_end()
 626	 */
 627	writel(readl(host->base + MMCIMASK0) | MCI_DATAENDMASK,
 628	       host->base + MMCIMASK0);
 629	return 0;
 630}
 631
 632static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
 633{
 634	struct mmci_host_next *next = &host->next_data;
 635
 636	WARN_ON(data->host_cookie && data->host_cookie != next->cookie);
 637	WARN_ON(!data->host_cookie && (next->dma_desc || next->dma_chan));
 638
 639	host->dma_desc_current = next->dma_desc;
 640	host->dma_current = next->dma_chan;
 641	next->dma_desc = NULL;
 642	next->dma_chan = NULL;
 643}
 644
 645static void mmci_pre_request(struct mmc_host *mmc, struct mmc_request *mrq,
 646			     bool is_first_req)
 647{
 648	struct mmci_host *host = mmc_priv(mmc);
 649	struct mmc_data *data = mrq->data;
 650	struct mmci_host_next *nd = &host->next_data;
 651
 652	if (!data)
 653		return;
 654
 655	BUG_ON(data->host_cookie);
 656
 657	if (mmci_validate_data(host, data))
 658		return;
 659
 660	if (!mmci_dma_prep_next(host, data))
 661		data->host_cookie = ++nd->cookie < 0 ? 1 : nd->cookie;
 662}
 663
 664static void mmci_post_request(struct mmc_host *mmc, struct mmc_request *mrq,
 665			      int err)
 666{
 667	struct mmci_host *host = mmc_priv(mmc);
 668	struct mmc_data *data = mrq->data;
 669
 670	if (!data || !data->host_cookie)
 671		return;
 672
 673	mmci_dma_unmap(host, data);
 674
 675	if (err) {
 676		struct mmci_host_next *next = &host->next_data;
 677		struct dma_chan *chan;
 678		if (data->flags & MMC_DATA_READ)
 679			chan = host->dma_rx_channel;
 680		else
 681			chan = host->dma_tx_channel;
 682		dmaengine_terminate_all(chan);
 683
 
 
 
 
 
 
 
 
 684		next->dma_desc = NULL;
 685		next->dma_chan = NULL;
 
 686	}
 687}
 688
 689#else
 690/* Blank functions if the DMA engine is not available */
 691static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
 692{
 693}
 694static inline void mmci_dma_setup(struct mmci_host *host)
 695{
 696}
 697
 698static inline void mmci_dma_release(struct mmci_host *host)
 699{
 700}
 701
 702static inline void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
 703{
 704}
 705
 706static inline void mmci_dma_finalize(struct mmci_host *host,
 707				     struct mmc_data *data)
 708{
 709}
 710
 711static inline void mmci_dma_data_error(struct mmci_host *host)
 712{
 713}
 714
 715static inline int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
 716{
 717	return -ENOSYS;
 718}
 719
 720#define mmci_pre_request NULL
 721#define mmci_post_request NULL
 722
 723#endif
 724
 725static void mmci_start_data(struct mmci_host *host, struct mmc_data *data)
 726{
 727	struct variant_data *variant = host->variant;
 728	unsigned int datactrl, timeout, irqmask;
 729	unsigned long long clks;
 730	void __iomem *base;
 731	int blksz_bits;
 732
 733	dev_dbg(mmc_dev(host->mmc), "blksz %04x blks %04x flags %08x\n",
 734		data->blksz, data->blocks, data->flags);
 735
 736	host->data = data;
 737	host->size = data->blksz * data->blocks;
 738	data->bytes_xfered = 0;
 739
 740	clks = (unsigned long long)data->timeout_ns * host->cclk;
 741	do_div(clks, 1000000000UL);
 742
 743	timeout = data->timeout_clks + (unsigned int)clks;
 744
 745	base = host->base;
 746	writel(timeout, base + MMCIDATATIMER);
 747	writel(host->size, base + MMCIDATALENGTH);
 748
 749	blksz_bits = ffs(data->blksz) - 1;
 750	BUG_ON(1 << blksz_bits != data->blksz);
 751
 752	if (variant->blksz_datactrl16)
 753		datactrl = MCI_DPSM_ENABLE | (data->blksz << 16);
 
 
 754	else
 755		datactrl = MCI_DPSM_ENABLE | blksz_bits << 4;
 756
 757	if (data->flags & MMC_DATA_READ)
 758		datactrl |= MCI_DPSM_DIRECTION;
 759
 760	/* The ST Micro variants has a special bit to enable SDIO */
 761	if (variant->sdio && host->mmc->card)
 762		if (mmc_card_sdio(host->mmc->card)) {
 763			/*
 764			 * The ST Micro variants has a special bit
 765			 * to enable SDIO.
 766			 */
 767			u32 clk;
 768
 769			datactrl |= MCI_ST_DPSM_SDIOEN;
 770
 771			/*
 772			 * The ST Micro variant for SDIO small write transfers
 773			 * needs to have clock H/W flow control disabled,
 774			 * otherwise the transfer will not start. The threshold
 775			 * depends on the rate of MCLK.
 776			 */
 777			if (data->flags & MMC_DATA_WRITE &&
 778			    (host->size < 8 ||
 779			     (host->size <= 8 && host->mclk > 50000000)))
 780				clk = host->clk_reg & ~variant->clkreg_enable;
 781			else
 782				clk = host->clk_reg | variant->clkreg_enable;
 783
 784			mmci_write_clkreg(host, clk);
 785		}
 786
 787	if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50)
 788		datactrl |= MCI_ST_DPSM_DDRMODE;
 
 789
 790	/*
 791	 * Attempt to use DMA operation mode, if this
 792	 * should fail, fall back to PIO mode
 793	 */
 794	if (!mmci_dma_start_data(host, datactrl))
 795		return;
 796
 797	/* IRQ mode, map the SG list for CPU reading/writing */
 798	mmci_init_sg(host, data);
 799
 800	if (data->flags & MMC_DATA_READ) {
 801		irqmask = MCI_RXFIFOHALFFULLMASK;
 802
 803		/*
 804		 * If we have less than the fifo 'half-full' threshold to
 805		 * transfer, trigger a PIO interrupt as soon as any data
 806		 * is available.
 807		 */
 808		if (host->size < variant->fifohalfsize)
 809			irqmask |= MCI_RXDATAAVLBLMASK;
 810	} else {
 811		/*
 812		 * We don't actually need to include "FIFO empty" here
 813		 * since its implicit in "FIFO half empty".
 814		 */
 815		irqmask = MCI_TXFIFOHALFEMPTYMASK;
 816	}
 817
 818	mmci_write_datactrlreg(host, datactrl);
 819	writel(readl(base + MMCIMASK0) & ~MCI_DATAENDMASK, base + MMCIMASK0);
 820	mmci_set_mask1(host, irqmask);
 821}
 822
 823static void
 824mmci_start_command(struct mmci_host *host, struct mmc_command *cmd, u32 c)
 825{
 826	void __iomem *base = host->base;
 827
 828	dev_dbg(mmc_dev(host->mmc), "op %02x arg %08x flags %08x\n",
 829	    cmd->opcode, cmd->arg, cmd->flags);
 830
 831	if (readl(base + MMCICOMMAND) & MCI_CPSM_ENABLE) {
 832		writel(0, base + MMCICOMMAND);
 833		udelay(1);
 834	}
 835
 836	c |= cmd->opcode | MCI_CPSM_ENABLE;
 837	if (cmd->flags & MMC_RSP_PRESENT) {
 838		if (cmd->flags & MMC_RSP_136)
 839			c |= MCI_CPSM_LONGRSP;
 840		c |= MCI_CPSM_RESPONSE;
 841	}
 842	if (/*interrupt*/0)
 843		c |= MCI_CPSM_INTERRUPT;
 844
 
 
 
 845	host->cmd = cmd;
 846
 847	writel(cmd->arg, base + MMCIARGUMENT);
 848	writel(c, base + MMCICOMMAND);
 849}
 850
 851static void
 852mmci_data_irq(struct mmci_host *host, struct mmc_data *data,
 853	      unsigned int status)
 854{
 
 
 
 
 855	/* First check for errors */
 856	if (status & (MCI_DATACRCFAIL|MCI_DATATIMEOUT|MCI_STARTBITERR|
 857		      MCI_TXUNDERRUN|MCI_RXOVERRUN)) {
 
 858		u32 remain, success;
 859
 860		/* Terminate the DMA transfer */
 861		if (dma_inprogress(host)) {
 862			mmci_dma_data_error(host);
 863			mmci_dma_unmap(host, data);
 864		}
 865
 866		/*
 867		 * Calculate how far we are into the transfer.  Note that
 868		 * the data counter gives the number of bytes transferred
 869		 * on the MMC bus, not on the host side.  On reads, this
 870		 * can be as much as a FIFO-worth of data ahead.  This
 871		 * matters for FIFO overruns only.
 872		 */
 873		remain = readl(host->base + MMCIDATACNT);
 874		success = data->blksz * data->blocks - remain;
 875
 876		dev_dbg(mmc_dev(host->mmc), "MCI ERROR IRQ, status 0x%08x at 0x%08x\n",
 877			status, success);
 878		if (status & MCI_DATACRCFAIL) {
 879			/* Last block was not successful */
 880			success -= 1;
 881			data->error = -EILSEQ;
 882		} else if (status & MCI_DATATIMEOUT) {
 883			data->error = -ETIMEDOUT;
 884		} else if (status & MCI_STARTBITERR) {
 885			data->error = -ECOMM;
 886		} else if (status & MCI_TXUNDERRUN) {
 887			data->error = -EIO;
 888		} else if (status & MCI_RXOVERRUN) {
 889			if (success > host->variant->fifosize)
 890				success -= host->variant->fifosize;
 891			else
 892				success = 0;
 893			data->error = -EIO;
 894		}
 895		data->bytes_xfered = round_down(success, data->blksz);
 896	}
 897
 898	if (status & MCI_DATABLOCKEND)
 899		dev_err(mmc_dev(host->mmc), "stray MCI_DATABLOCKEND interrupt\n");
 900
 901	if (status & MCI_DATAEND || data->error) {
 902		if (dma_inprogress(host))
 903			mmci_dma_finalize(host, data);
 904		mmci_stop_data(host);
 905
 906		if (!data->error)
 907			/* The error clause is handled above, success! */
 908			data->bytes_xfered = data->blksz * data->blocks;
 909
 910		if (!data->stop || host->mrq->sbc) {
 911			mmci_request_end(host, data->mrq);
 912		} else {
 913			mmci_start_command(host, data->stop, 0);
 914		}
 915	}
 916}
 917
 918static void
 919mmci_cmd_irq(struct mmci_host *host, struct mmc_command *cmd,
 920	     unsigned int status)
 921{
 922	void __iomem *base = host->base;
 923	bool sbc = (cmd == host->mrq->sbc);
 924	bool busy_resp = host->variant->busy_detect &&
 925			(cmd->flags & MMC_RSP_BUSY);
 926
 927	/* Check if we need to wait for busy completion. */
 928	if (host->busy_status && (status & MCI_ST_CARDBUSY))
 929		return;
 930
 931	/* Enable busy completion if needed and supported. */
 932	if (!host->busy_status && busy_resp &&
 933		!(status & (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT)) &&
 934		(readl(base + MMCISTATUS) & MCI_ST_CARDBUSY)) {
 935		writel(readl(base + MMCIMASK0) | MCI_ST_BUSYEND,
 936			base + MMCIMASK0);
 937		host->busy_status = status & (MCI_CMDSENT|MCI_CMDRESPEND);
 
 
 938		return;
 939	}
 940
 941	/* At busy completion, mask the IRQ and complete the request. */
 942	if (host->busy_status) {
 943		writel(readl(base + MMCIMASK0) & ~MCI_ST_BUSYEND,
 944			base + MMCIMASK0);
 945		host->busy_status = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 946	}
 947
 948	host->cmd = NULL;
 949
 950	if (status & MCI_CMDTIMEOUT) {
 951		cmd->error = -ETIMEDOUT;
 952	} else if (status & MCI_CMDCRCFAIL && cmd->flags & MMC_RSP_CRC) {
 953		cmd->error = -EILSEQ;
 954	} else {
 955		cmd->resp[0] = readl(base + MMCIRESPONSE0);
 956		cmd->resp[1] = readl(base + MMCIRESPONSE1);
 957		cmd->resp[2] = readl(base + MMCIRESPONSE2);
 958		cmd->resp[3] = readl(base + MMCIRESPONSE3);
 959	}
 960
 961	if ((!sbc && !cmd->data) || cmd->error) {
 962		if (host->data) {
 963			/* Terminate the DMA transfer */
 964			if (dma_inprogress(host)) {
 965				mmci_dma_data_error(host);
 966				mmci_dma_unmap(host, host->data);
 967			}
 968			mmci_stop_data(host);
 969		}
 970		mmci_request_end(host, host->mrq);
 971	} else if (sbc) {
 972		mmci_start_command(host, host->mrq->cmd, 0);
 973	} else if (!(cmd->data->flags & MMC_DATA_READ)) {
 974		mmci_start_data(host, cmd->data);
 975	}
 976}
 977
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 978static int mmci_pio_read(struct mmci_host *host, char *buffer, unsigned int remain)
 979{
 980	void __iomem *base = host->base;
 981	char *ptr = buffer;
 982	u32 status;
 983	int host_remain = host->size;
 984
 985	do {
 986		int count = host_remain - (readl(base + MMCIFIFOCNT) << 2);
 987
 988		if (count > remain)
 989			count = remain;
 990
 991		if (count <= 0)
 992			break;
 993
 994		/*
 995		 * SDIO especially may want to send something that is
 996		 * not divisible by 4 (as opposed to card sectors
 997		 * etc). Therefore make sure to always read the last bytes
 998		 * while only doing full 32-bit reads towards the FIFO.
 999		 */
1000		if (unlikely(count & 0x3)) {
1001			if (count < 4) {
1002				unsigned char buf[4];
1003				ioread32_rep(base + MMCIFIFO, buf, 1);
1004				memcpy(ptr, buf, count);
1005			} else {
1006				ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1007				count &= ~0x3;
1008			}
1009		} else {
1010			ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1011		}
1012
1013		ptr += count;
1014		remain -= count;
1015		host_remain -= count;
1016
1017		if (remain == 0)
1018			break;
1019
1020		status = readl(base + MMCISTATUS);
1021	} while (status & MCI_RXDATAAVLBL);
1022
1023	return ptr - buffer;
1024}
1025
1026static int mmci_pio_write(struct mmci_host *host, char *buffer, unsigned int remain, u32 status)
1027{
1028	struct variant_data *variant = host->variant;
1029	void __iomem *base = host->base;
1030	char *ptr = buffer;
1031
1032	do {
1033		unsigned int count, maxcnt;
1034
1035		maxcnt = status & MCI_TXFIFOEMPTY ?
1036			 variant->fifosize : variant->fifohalfsize;
1037		count = min(remain, maxcnt);
1038
1039		/*
1040		 * SDIO especially may want to send something that is
1041		 * not divisible by 4 (as opposed to card sectors
1042		 * etc), and the FIFO only accept full 32-bit writes.
1043		 * So compensate by adding +3 on the count, a single
1044		 * byte become a 32bit write, 7 bytes will be two
1045		 * 32bit writes etc.
1046		 */
1047		iowrite32_rep(base + MMCIFIFO, ptr, (count + 3) >> 2);
1048
1049		ptr += count;
1050		remain -= count;
1051
1052		if (remain == 0)
1053			break;
1054
1055		status = readl(base + MMCISTATUS);
1056	} while (status & MCI_TXFIFOHALFEMPTY);
1057
1058	return ptr - buffer;
1059}
1060
1061/*
1062 * PIO data transfer IRQ handler.
1063 */
1064static irqreturn_t mmci_pio_irq(int irq, void *dev_id)
1065{
1066	struct mmci_host *host = dev_id;
1067	struct sg_mapping_iter *sg_miter = &host->sg_miter;
1068	struct variant_data *variant = host->variant;
1069	void __iomem *base = host->base;
1070	unsigned long flags;
1071	u32 status;
1072
1073	status = readl(base + MMCISTATUS);
1074
1075	dev_dbg(mmc_dev(host->mmc), "irq1 (pio) %08x\n", status);
1076
1077	local_irq_save(flags);
1078
1079	do {
1080		unsigned int remain, len;
1081		char *buffer;
1082
1083		/*
1084		 * For write, we only need to test the half-empty flag
1085		 * here - if the FIFO is completely empty, then by
1086		 * definition it is more than half empty.
1087		 *
1088		 * For read, check for data available.
1089		 */
1090		if (!(status & (MCI_TXFIFOHALFEMPTY|MCI_RXDATAAVLBL)))
1091			break;
1092
1093		if (!sg_miter_next(sg_miter))
1094			break;
1095
1096		buffer = sg_miter->addr;
1097		remain = sg_miter->length;
1098
1099		len = 0;
1100		if (status & MCI_RXACTIVE)
1101			len = mmci_pio_read(host, buffer, remain);
1102		if (status & MCI_TXACTIVE)
1103			len = mmci_pio_write(host, buffer, remain, status);
1104
1105		sg_miter->consumed = len;
1106
1107		host->size -= len;
1108		remain -= len;
1109
1110		if (remain)
1111			break;
1112
1113		status = readl(base + MMCISTATUS);
1114	} while (1);
1115
1116	sg_miter_stop(sg_miter);
1117
1118	local_irq_restore(flags);
1119
1120	/*
1121	 * If we have less than the fifo 'half-full' threshold to transfer,
1122	 * trigger a PIO interrupt as soon as any data is available.
1123	 */
1124	if (status & MCI_RXACTIVE && host->size < variant->fifohalfsize)
1125		mmci_set_mask1(host, MCI_RXDATAAVLBLMASK);
1126
1127	/*
1128	 * If we run out of data, disable the data IRQs; this
1129	 * prevents a race where the FIFO becomes empty before
1130	 * the chip itself has disabled the data path, and
1131	 * stops us racing with our data end IRQ.
1132	 */
1133	if (host->size == 0) {
1134		mmci_set_mask1(host, 0);
1135		writel(readl(base + MMCIMASK0) | MCI_DATAENDMASK, base + MMCIMASK0);
1136	}
1137
1138	return IRQ_HANDLED;
1139}
1140
1141/*
1142 * Handle completion of command and data transfers.
1143 */
1144static irqreturn_t mmci_irq(int irq, void *dev_id)
1145{
1146	struct mmci_host *host = dev_id;
1147	u32 status;
1148	int ret = 0;
1149
1150	spin_lock(&host->lock);
1151
1152	do {
1153		struct mmc_command *cmd;
1154		struct mmc_data *data;
1155
1156		status = readl(host->base + MMCISTATUS);
1157
1158		if (host->singleirq) {
1159			if (status & readl(host->base + MMCIMASK1))
1160				mmci_pio_irq(irq, dev_id);
1161
1162			status &= ~MCI_IRQ1MASK;
1163		}
1164
1165		/*
1166		 * We intentionally clear the MCI_ST_CARDBUSY IRQ here (if it's
1167		 * enabled) since the HW seems to be triggering the IRQ on both
1168		 * edges while monitoring DAT0 for busy completion.
 
 
 
 
 
1169		 */
1170		status &= readl(host->base + MMCIMASK0);
1171		writel(status, host->base + MMCICLEAR);
 
 
 
 
1172
1173		dev_dbg(mmc_dev(host->mmc), "irq0 (data+cmd) %08x\n", status);
1174
1175		cmd = host->cmd;
1176		if ((status|host->busy_status) & (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT|
1177			MCI_CMDSENT|MCI_CMDRESPEND) && cmd)
1178			mmci_cmd_irq(host, cmd, status);
1179
1180		data = host->data;
1181		if (status & (MCI_DATACRCFAIL|MCI_DATATIMEOUT|MCI_STARTBITERR|
1182			      MCI_TXUNDERRUN|MCI_RXOVERRUN|MCI_DATAEND|
1183			      MCI_DATABLOCKEND) && data)
1184			mmci_data_irq(host, data, status);
1185
1186		/* Don't poll for busy completion in irq context. */
1187		if (host->busy_status)
1188			status &= ~MCI_ST_CARDBUSY;
1189
1190		ret = 1;
1191	} while (status);
1192
1193	spin_unlock(&host->lock);
1194
1195	return IRQ_RETVAL(ret);
1196}
1197
1198static void mmci_request(struct mmc_host *mmc, struct mmc_request *mrq)
1199{
1200	struct mmci_host *host = mmc_priv(mmc);
1201	unsigned long flags;
1202
1203	WARN_ON(host->mrq != NULL);
1204
1205	mrq->cmd->error = mmci_validate_data(host, mrq->data);
1206	if (mrq->cmd->error) {
1207		mmc_request_done(mmc, mrq);
1208		return;
1209	}
1210
1211	pm_runtime_get_sync(mmc_dev(mmc));
1212
1213	spin_lock_irqsave(&host->lock, flags);
1214
1215	host->mrq = mrq;
1216
1217	if (mrq->data)
1218		mmci_get_next_data(host, mrq->data);
1219
1220	if (mrq->data && mrq->data->flags & MMC_DATA_READ)
1221		mmci_start_data(host, mrq->data);
1222
1223	if (mrq->sbc)
1224		mmci_start_command(host, mrq->sbc, 0);
1225	else
1226		mmci_start_command(host, mrq->cmd, 0);
1227
1228	spin_unlock_irqrestore(&host->lock, flags);
1229}
1230
1231static void mmci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1232{
1233	struct mmci_host *host = mmc_priv(mmc);
1234	struct variant_data *variant = host->variant;
1235	u32 pwr = 0;
1236	unsigned long flags;
1237	int ret;
1238
1239	pm_runtime_get_sync(mmc_dev(mmc));
1240
1241	if (host->plat->ios_handler &&
1242		host->plat->ios_handler(mmc_dev(mmc), ios))
1243			dev_err(mmc_dev(mmc), "platform ios_handler failed\n");
1244
1245	switch (ios->power_mode) {
1246	case MMC_POWER_OFF:
1247		if (!IS_ERR(mmc->supply.vmmc))
1248			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1249
1250		if (!IS_ERR(mmc->supply.vqmmc) && host->vqmmc_enabled) {
1251			regulator_disable(mmc->supply.vqmmc);
1252			host->vqmmc_enabled = false;
1253		}
1254
1255		break;
1256	case MMC_POWER_UP:
1257		if (!IS_ERR(mmc->supply.vmmc))
1258			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
1259
1260		/*
1261		 * The ST Micro variant doesn't have the PL180s MCI_PWR_UP
1262		 * and instead uses MCI_PWR_ON so apply whatever value is
1263		 * configured in the variant data.
1264		 */
1265		pwr |= variant->pwrreg_powerup;
1266
1267		break;
1268	case MMC_POWER_ON:
1269		if (!IS_ERR(mmc->supply.vqmmc) && !host->vqmmc_enabled) {
1270			ret = regulator_enable(mmc->supply.vqmmc);
1271			if (ret < 0)
1272				dev_err(mmc_dev(mmc),
1273					"failed to enable vqmmc regulator\n");
1274			else
1275				host->vqmmc_enabled = true;
1276		}
1277
1278		pwr |= MCI_PWR_ON;
1279		break;
1280	}
1281
1282	if (variant->signal_direction && ios->power_mode != MMC_POWER_OFF) {
1283		/*
1284		 * The ST Micro variant has some additional bits
1285		 * indicating signal direction for the signals in
1286		 * the SD/MMC bus and feedback-clock usage.
1287		 */
1288		pwr |= host->plat->sigdir;
1289
1290		if (ios->bus_width == MMC_BUS_WIDTH_4)
1291			pwr &= ~MCI_ST_DATA74DIREN;
1292		else if (ios->bus_width == MMC_BUS_WIDTH_1)
1293			pwr &= (~MCI_ST_DATA74DIREN &
1294				~MCI_ST_DATA31DIREN &
1295				~MCI_ST_DATA2DIREN);
1296	}
1297
1298	if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN) {
1299		if (host->hw_designer != AMBA_VENDOR_ST)
1300			pwr |= MCI_ROD;
1301		else {
1302			/*
1303			 * The ST Micro variant use the ROD bit for something
1304			 * else and only has OD (Open Drain).
1305			 */
1306			pwr |= MCI_OD;
1307		}
 
 
1308	}
1309
1310	/*
1311	 * If clock = 0 and the variant requires the MMCIPOWER to be used for
1312	 * gating the clock, the MCI_PWR_ON bit is cleared.
1313	 */
1314	if (!ios->clock && variant->pwrreg_clkgate)
1315		pwr &= ~MCI_PWR_ON;
1316
 
 
 
 
 
 
 
 
 
 
 
1317	spin_lock_irqsave(&host->lock, flags);
1318
1319	mmci_set_clkreg(host, ios->clock);
1320	mmci_write_pwrreg(host, pwr);
1321	mmci_reg_delay(host);
1322
1323	spin_unlock_irqrestore(&host->lock, flags);
1324
1325	pm_runtime_mark_last_busy(mmc_dev(mmc));
1326	pm_runtime_put_autosuspend(mmc_dev(mmc));
1327}
1328
1329static int mmci_get_ro(struct mmc_host *mmc)
1330{
1331	struct mmci_host *host = mmc_priv(mmc);
1332
1333	if (host->gpio_wp == -ENOSYS)
1334		return -ENOSYS;
1335
1336	return gpio_get_value_cansleep(host->gpio_wp);
1337}
1338
1339static int mmci_get_cd(struct mmc_host *mmc)
1340{
1341	struct mmci_host *host = mmc_priv(mmc);
1342	struct mmci_platform_data *plat = host->plat;
1343	unsigned int status;
1344
1345	if (host->gpio_cd == -ENOSYS) {
1346		if (!plat->status)
1347			return 1; /* Assume always present */
1348
1349		status = plat->status(mmc_dev(host->mmc));
1350	} else
1351		status = !!gpio_get_value_cansleep(host->gpio_cd)
1352			^ plat->cd_invert;
1353
1354	/*
1355	 * Use positive logic throughout - status is zero for no card,
1356	 * non-zero for card inserted.
1357	 */
1358	return status;
1359}
1360
1361static int mmci_sig_volt_switch(struct mmc_host *mmc, struct mmc_ios *ios)
1362{
1363	int ret = 0;
1364
1365	if (!IS_ERR(mmc->supply.vqmmc)) {
1366
1367		pm_runtime_get_sync(mmc_dev(mmc));
1368
1369		switch (ios->signal_voltage) {
1370		case MMC_SIGNAL_VOLTAGE_330:
1371			ret = regulator_set_voltage(mmc->supply.vqmmc,
1372						2700000, 3600000);
1373			break;
1374		case MMC_SIGNAL_VOLTAGE_180:
1375			ret = regulator_set_voltage(mmc->supply.vqmmc,
1376						1700000, 1950000);
1377			break;
1378		case MMC_SIGNAL_VOLTAGE_120:
1379			ret = regulator_set_voltage(mmc->supply.vqmmc,
1380						1100000, 1300000);
1381			break;
1382		}
1383
1384		if (ret)
1385			dev_warn(mmc_dev(mmc), "Voltage switch failed\n");
1386
1387		pm_runtime_mark_last_busy(mmc_dev(mmc));
1388		pm_runtime_put_autosuspend(mmc_dev(mmc));
1389	}
1390
1391	return ret;
1392}
1393
1394static irqreturn_t mmci_cd_irq(int irq, void *dev_id)
1395{
1396	struct mmci_host *host = dev_id;
1397
1398	mmc_detect_change(host->mmc, msecs_to_jiffies(500));
1399
1400	return IRQ_HANDLED;
1401}
1402
1403static struct mmc_host_ops mmci_ops = {
1404	.request	= mmci_request,
1405	.pre_req	= mmci_pre_request,
1406	.post_req	= mmci_post_request,
1407	.set_ios	= mmci_set_ios,
1408	.get_ro		= mmci_get_ro,
1409	.get_cd		= mmci_get_cd,
1410	.start_signal_voltage_switch = mmci_sig_volt_switch,
1411};
1412
1413#ifdef CONFIG_OF
1414static void mmci_dt_populate_generic_pdata(struct device_node *np,
1415					struct mmci_platform_data *pdata)
1416{
1417	int bus_width = 0;
1418
1419	pdata->gpio_wp = of_get_named_gpio(np, "wp-gpios", 0);
1420	pdata->gpio_cd = of_get_named_gpio(np, "cd-gpios", 0);
1421
1422	if (of_get_property(np, "cd-inverted", NULL))
1423		pdata->cd_invert = true;
1424	else
1425		pdata->cd_invert = false;
1426
1427	of_property_read_u32(np, "max-frequency", &pdata->f_max);
1428	if (!pdata->f_max)
1429		pr_warn("%s has no 'max-frequency' property\n", np->full_name);
 
 
 
 
 
 
 
 
 
1430
1431	if (of_get_property(np, "mmc-cap-mmc-highspeed", NULL))
1432		pdata->capabilities |= MMC_CAP_MMC_HIGHSPEED;
1433	if (of_get_property(np, "mmc-cap-sd-highspeed", NULL))
1434		pdata->capabilities |= MMC_CAP_SD_HIGHSPEED;
1435
1436	of_property_read_u32(np, "bus-width", &bus_width);
1437	switch (bus_width) {
1438	case 0 :
1439		/* No bus-width supplied. */
1440		break;
1441	case 4 :
1442		pdata->capabilities |= MMC_CAP_4_BIT_DATA;
1443		break;
1444	case 8 :
1445		pdata->capabilities |= MMC_CAP_8_BIT_DATA;
1446		break;
1447	default :
1448		pr_warn("%s: Unsupported bus width\n", np->full_name);
1449	}
1450}
1451#else
1452static void mmci_dt_populate_generic_pdata(struct device_node *np,
1453					struct mmci_platform_data *pdata)
1454{
1455	return;
1456}
1457#endif
1458
1459static int mmci_probe(struct amba_device *dev,
1460	const struct amba_id *id)
1461{
1462	struct mmci_platform_data *plat = dev->dev.platform_data;
1463	struct device_node *np = dev->dev.of_node;
1464	struct variant_data *variant = id->data;
1465	struct mmci_host *host;
1466	struct mmc_host *mmc;
1467	int ret;
1468
1469	/* Must have platform data or Device Tree. */
1470	if (!plat && !np) {
1471		dev_err(&dev->dev, "No plat data or DT found\n");
1472		return -EINVAL;
1473	}
1474
1475	if (!plat) {
1476		plat = devm_kzalloc(&dev->dev, sizeof(*plat), GFP_KERNEL);
1477		if (!plat)
1478			return -ENOMEM;
1479	}
1480
1481	if (np)
1482		mmci_dt_populate_generic_pdata(np, plat);
 
1483
1484	ret = amba_request_regions(dev, DRIVER_NAME);
1485	if (ret)
1486		goto out;
1487
1488	mmc = mmc_alloc_host(sizeof(struct mmci_host), &dev->dev);
1489	if (!mmc) {
1490		ret = -ENOMEM;
1491		goto rel_regions;
1492	}
1493
1494	host = mmc_priv(mmc);
1495	host->mmc = mmc;
1496
1497	host->gpio_wp = -ENOSYS;
1498	host->gpio_cd = -ENOSYS;
1499	host->gpio_cd_irq = -1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1500
1501	host->hw_designer = amba_manf(dev);
1502	host->hw_revision = amba_rev(dev);
1503	dev_dbg(mmc_dev(mmc), "designer ID = 0x%02x\n", host->hw_designer);
1504	dev_dbg(mmc_dev(mmc), "revision = 0x%01x\n", host->hw_revision);
1505
1506	host->clk = devm_clk_get(&dev->dev, NULL);
1507	if (IS_ERR(host->clk)) {
1508		ret = PTR_ERR(host->clk);
1509		goto host_free;
1510	}
1511
1512	ret = clk_prepare_enable(host->clk);
1513	if (ret)
1514		goto host_free;
1515
 
 
 
 
 
1516	host->plat = plat;
1517	host->variant = variant;
1518	host->mclk = clk_get_rate(host->clk);
1519	/*
1520	 * According to the spec, mclk is max 100 MHz,
1521	 * so we try to adjust the clock down to this,
1522	 * (if possible).
1523	 */
1524	if (host->mclk > 100000000) {
1525		ret = clk_set_rate(host->clk, 100000000);
1526		if (ret < 0)
1527			goto clk_disable;
1528		host->mclk = clk_get_rate(host->clk);
1529		dev_dbg(mmc_dev(mmc), "eventual mclk rate: %u Hz\n",
1530			host->mclk);
1531	}
 
1532	host->phybase = dev->res.start;
1533	host->base = ioremap(dev->res.start, resource_size(&dev->res));
1534	if (!host->base) {
1535		ret = -ENOMEM;
1536		goto clk_disable;
1537	}
1538
1539	/*
1540	 * The ARM and ST versions of the block have slightly different
1541	 * clock divider equations which means that the minimum divider
1542	 * differs too.
 
1543	 */
1544	if (variant->st_clkdiv)
1545		mmc->f_min = DIV_ROUND_UP(host->mclk, 257);
 
 
1546	else
1547		mmc->f_min = DIV_ROUND_UP(host->mclk, 512);
1548	/*
1549	 * If the platform data supplies a maximum operating
1550	 * frequency, this takes precedence. Else, we fall back
1551	 * to using the module parameter, which has a (low)
1552	 * default value in case it is not specified. Either
1553	 * value must not exceed the clock rate into the block,
1554	 * of course.
1555	 */
1556	if (plat->f_max)
1557		mmc->f_max = min(host->mclk, plat->f_max);
 
 
1558	else
1559		mmc->f_max = min(host->mclk, fmax);
 
 
 
1560	dev_dbg(mmc_dev(mmc), "clocking block at %u Hz\n", mmc->f_max);
1561
1562	/* Get regulators and the supported OCR mask */
1563	mmc_regulator_get_supply(mmc);
 
 
 
1564	if (!mmc->ocr_avail)
1565		mmc->ocr_avail = plat->ocr_mask;
1566	else if (plat->ocr_mask)
1567		dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
1568
1569	mmc->caps = plat->capabilities;
1570	mmc->caps2 = plat->capabilities2;
 
 
 
 
 
 
 
1571
 
 
 
1572	if (variant->busy_detect) {
1573		mmci_ops.card_busy = mmci_card_busy;
1574		mmci_write_datactrlreg(host, MCI_ST_DPSM_BUSYMODE);
 
 
 
 
 
 
1575		mmc->caps |= MMC_CAP_WAIT_WHILE_BUSY;
1576		mmc->max_busy_timeout = 0;
1577	}
1578
1579	mmc->ops = &mmci_ops;
1580
1581	/* We support these PM capabilities. */
1582	mmc->pm_caps = MMC_PM_KEEP_POWER;
1583
1584	/*
1585	 * We can do SGIO
1586	 */
1587	mmc->max_segs = NR_SG;
1588
1589	/*
1590	 * Since only a certain number of bits are valid in the data length
1591	 * register, we must ensure that we don't exceed 2^num-1 bytes in a
1592	 * single request.
1593	 */
1594	mmc->max_req_size = (1 << variant->datalength_bits) - 1;
1595
1596	/*
1597	 * Set the maximum segment size.  Since we aren't doing DMA
1598	 * (yet) we are only limited by the data length register.
1599	 */
1600	mmc->max_seg_size = mmc->max_req_size;
1601
1602	/*
1603	 * Block size can be up to 2048 bytes, but must be a power of two.
1604	 */
1605	mmc->max_blk_size = 1 << 11;
1606
1607	/*
1608	 * Limit the number of blocks transferred so that we don't overflow
1609	 * the maximum request size.
1610	 */
1611	mmc->max_blk_count = mmc->max_req_size >> 11;
1612
1613	spin_lock_init(&host->lock);
1614
1615	writel(0, host->base + MMCIMASK0);
1616	writel(0, host->base + MMCIMASK1);
 
 
 
1617	writel(0xfff, host->base + MMCICLEAR);
1618
1619	if (plat->gpio_cd == -EPROBE_DEFER) {
1620		ret = -EPROBE_DEFER;
1621		goto err_gpio_cd;
1622	}
1623	if (gpio_is_valid(plat->gpio_cd)) {
1624		ret = gpio_request(plat->gpio_cd, DRIVER_NAME " (cd)");
1625		if (ret == 0)
1626			ret = gpio_direction_input(plat->gpio_cd);
1627		if (ret == 0)
1628			host->gpio_cd = plat->gpio_cd;
1629		else if (ret != -ENOSYS)
1630			goto err_gpio_cd;
 
 
 
 
 
 
1631
1632		/*
1633		 * A gpio pin that will detect cards when inserted and removed
1634		 * will most likely want to trigger on the edges if it is
1635		 * 0 when ejected and 1 when inserted (or mutatis mutandis
1636		 * for the inverted case) so we request triggers on both
1637		 * edges.
1638		 */
1639		ret = request_any_context_irq(gpio_to_irq(plat->gpio_cd),
1640				mmci_cd_irq,
1641				IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING,
1642				DRIVER_NAME " (cd)", host);
1643		if (ret >= 0)
1644			host->gpio_cd_irq = gpio_to_irq(plat->gpio_cd);
1645	}
1646	if (plat->gpio_wp == -EPROBE_DEFER) {
1647		ret = -EPROBE_DEFER;
1648		goto err_gpio_wp;
1649	}
1650	if (gpio_is_valid(plat->gpio_wp)) {
1651		ret = gpio_request(plat->gpio_wp, DRIVER_NAME " (wp)");
1652		if (ret == 0)
1653			ret = gpio_direction_input(plat->gpio_wp);
1654		if (ret == 0)
1655			host->gpio_wp = plat->gpio_wp;
1656		else if (ret != -ENOSYS)
1657			goto err_gpio_wp;
1658	}
1659
1660	if ((host->plat->status || host->gpio_cd != -ENOSYS)
1661	    && host->gpio_cd_irq < 0)
1662		mmc->caps |= MMC_CAP_NEEDS_POLL;
1663
1664	ret = request_irq(dev->irq[0], mmci_irq, IRQF_SHARED, DRIVER_NAME " (cmd)", host);
 
1665	if (ret)
1666		goto unmap;
1667
1668	if (!dev->irq[1])
1669		host->singleirq = true;
1670	else {
1671		ret = request_irq(dev->irq[1], mmci_pio_irq, IRQF_SHARED,
1672				  DRIVER_NAME " (pio)", host);
1673		if (ret)
1674			goto irq0_free;
1675	}
1676
1677	writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1678
1679	amba_set_drvdata(dev, mmc);
1680
1681	dev_info(&dev->dev, "%s: PL%03x manf %x rev%u at 0x%08llx irq %d,%d (pio)\n",
1682		 mmc_hostname(mmc), amba_part(dev), amba_manf(dev),
1683		 amba_rev(dev), (unsigned long long)dev->res.start,
1684		 dev->irq[0], dev->irq[1]);
1685
1686	mmci_dma_setup(host);
1687
1688	pm_runtime_set_autosuspend_delay(&dev->dev, 50);
1689	pm_runtime_use_autosuspend(&dev->dev);
1690	pm_runtime_put(&dev->dev);
1691
1692	mmc_add_host(mmc);
1693
 
1694	return 0;
1695
1696 irq0_free:
1697	free_irq(dev->irq[0], host);
1698 unmap:
1699	if (host->gpio_wp != -ENOSYS)
1700		gpio_free(host->gpio_wp);
1701 err_gpio_wp:
1702	if (host->gpio_cd_irq >= 0)
1703		free_irq(host->gpio_cd_irq, host);
1704	if (host->gpio_cd != -ENOSYS)
1705		gpio_free(host->gpio_cd);
1706 err_gpio_cd:
1707	iounmap(host->base);
1708 clk_disable:
1709	clk_disable_unprepare(host->clk);
1710 host_free:
1711	mmc_free_host(mmc);
1712 rel_regions:
1713	amba_release_regions(dev);
1714 out:
1715	return ret;
1716}
1717
1718static int mmci_remove(struct amba_device *dev)
1719{
1720	struct mmc_host *mmc = amba_get_drvdata(dev);
1721
1722	if (mmc) {
1723		struct mmci_host *host = mmc_priv(mmc);
 
1724
1725		/*
1726		 * Undo pm_runtime_put() in probe.  We use the _sync
1727		 * version here so that we can access the primecell.
1728		 */
1729		pm_runtime_get_sync(&dev->dev);
1730
1731		mmc_remove_host(mmc);
1732
1733		writel(0, host->base + MMCIMASK0);
1734		writel(0, host->base + MMCIMASK1);
 
 
1735
1736		writel(0, host->base + MMCICOMMAND);
1737		writel(0, host->base + MMCIDATACTRL);
1738
1739		mmci_dma_release(host);
1740		free_irq(dev->irq[0], host);
1741		if (!host->singleirq)
1742			free_irq(dev->irq[1], host);
1743
1744		if (host->gpio_wp != -ENOSYS)
1745			gpio_free(host->gpio_wp);
1746		if (host->gpio_cd_irq >= 0)
1747			free_irq(host->gpio_cd_irq, host);
1748		if (host->gpio_cd != -ENOSYS)
1749			gpio_free(host->gpio_cd);
1750
1751		iounmap(host->base);
1752		clk_disable_unprepare(host->clk);
1753
1754		mmc_free_host(mmc);
1755
1756		amba_release_regions(dev);
1757	}
1758
1759	return 0;
1760}
1761
1762#ifdef CONFIG_SUSPEND
1763static int mmci_suspend(struct device *dev)
1764{
1765	struct amba_device *adev = to_amba_device(dev);
1766	struct mmc_host *mmc = amba_get_drvdata(adev);
1767
1768	if (mmc) {
1769		struct mmci_host *host = mmc_priv(mmc);
1770		pm_runtime_get_sync(dev);
1771		writel(0, host->base + MMCIMASK0);
1772	}
1773
1774	return 0;
1775}
1776
1777static int mmci_resume(struct device *dev)
1778{
1779	struct amba_device *adev = to_amba_device(dev);
1780	struct mmc_host *mmc = amba_get_drvdata(adev);
1781
1782	if (mmc) {
1783		struct mmci_host *host = mmc_priv(mmc);
1784		writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1785		pm_runtime_put(dev);
1786	}
1787
1788	return 0;
1789}
1790#endif
1791
1792#ifdef CONFIG_PM_RUNTIME
1793static void mmci_save(struct mmci_host *host)
1794{
1795	unsigned long flags;
1796
1797	if (host->variant->pwrreg_nopower) {
1798		spin_lock_irqsave(&host->lock, flags);
1799
1800		writel(0, host->base + MMCIMASK0);
 
1801		writel(0, host->base + MMCIDATACTRL);
1802		writel(0, host->base + MMCIPOWER);
1803		writel(0, host->base + MMCICLOCK);
1804		mmci_reg_delay(host);
1805
1806		spin_unlock_irqrestore(&host->lock, flags);
1807	}
 
1808
 
1809}
1810
1811static void mmci_restore(struct mmci_host *host)
1812{
1813	unsigned long flags;
1814
1815	if (host->variant->pwrreg_nopower) {
1816		spin_lock_irqsave(&host->lock, flags);
1817
 
1818		writel(host->clk_reg, host->base + MMCICLOCK);
1819		writel(host->datactrl_reg, host->base + MMCIDATACTRL);
1820		writel(host->pwr_reg, host->base + MMCIPOWER);
1821		writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1822		mmci_reg_delay(host);
1823
1824		spin_unlock_irqrestore(&host->lock, flags);
1825	}
 
 
 
 
1826}
1827
1828static int mmci_runtime_suspend(struct device *dev)
1829{
1830	struct amba_device *adev = to_amba_device(dev);
1831	struct mmc_host *mmc = amba_get_drvdata(adev);
1832
1833	if (mmc) {
1834		struct mmci_host *host = mmc_priv(mmc);
1835		pinctrl_pm_select_sleep_state(dev);
1836		mmci_save(host);
1837		clk_disable_unprepare(host->clk);
1838	}
1839
1840	return 0;
1841}
1842
1843static int mmci_runtime_resume(struct device *dev)
1844{
1845	struct amba_device *adev = to_amba_device(dev);
1846	struct mmc_host *mmc = amba_get_drvdata(adev);
1847
1848	if (mmc) {
1849		struct mmci_host *host = mmc_priv(mmc);
1850		clk_prepare_enable(host->clk);
1851		mmci_restore(host);
1852		pinctrl_pm_select_default_state(dev);
1853	}
1854
1855	return 0;
1856}
1857#endif
1858
1859static const struct dev_pm_ops mmci_dev_pm_ops = {
1860	SET_SYSTEM_SLEEP_PM_OPS(mmci_suspend, mmci_resume)
 
1861	SET_RUNTIME_PM_OPS(mmci_runtime_suspend, mmci_runtime_resume, NULL)
1862};
1863
1864static struct amba_id mmci_ids[] = {
1865	{
1866		.id	= 0x00041180,
1867		.mask	= 0xff0fffff,
1868		.data	= &variant_arm,
1869	},
1870	{
1871		.id	= 0x01041180,
1872		.mask	= 0xff0fffff,
1873		.data	= &variant_arm_extended_fifo,
1874	},
1875	{
1876		.id	= 0x02041180,
1877		.mask	= 0xff0fffff,
1878		.data	= &variant_arm_extended_fifo_hwfc,
1879	},
1880	{
1881		.id	= 0x00041181,
1882		.mask	= 0x000fffff,
1883		.data	= &variant_arm,
1884	},
1885	/* ST Micro variants */
1886	{
1887		.id     = 0x00180180,
1888		.mask   = 0x00ffffff,
1889		.data	= &variant_u300,
1890	},
1891	{
1892		.id     = 0x10180180,
1893		.mask   = 0xf0ffffff,
1894		.data	= &variant_nomadik,
1895	},
1896	{
1897		.id     = 0x00280180,
1898		.mask   = 0x00ffffff,
1899		.data	= &variant_u300,
1900	},
1901	{
1902		.id     = 0x00480180,
1903		.mask   = 0xf0ffffff,
1904		.data	= &variant_ux500,
1905	},
1906	{
1907		.id     = 0x10480180,
1908		.mask   = 0xf0ffffff,
1909		.data	= &variant_ux500v2,
 
 
 
 
 
 
 
 
 
 
 
1910	},
1911	{ 0, 0 },
1912};
1913
1914MODULE_DEVICE_TABLE(amba, mmci_ids);
1915
1916static struct amba_driver mmci_driver = {
1917	.drv		= {
1918		.name	= DRIVER_NAME,
1919		.pm	= &mmci_dev_pm_ops,
1920	},
1921	.probe		= mmci_probe,
1922	.remove		= mmci_remove,
1923	.id_table	= mmci_ids,
1924};
1925
1926module_amba_driver(mmci_driver);
1927
1928module_param(fmax, uint, 0444);
1929
1930MODULE_DESCRIPTION("ARM PrimeCell PL180/181 Multimedia Card Interface driver");
1931MODULE_LICENSE("GPL");
v4.17
   1/*
   2 *  linux/drivers/mmc/host/mmci.c - ARM PrimeCell MMCI PL180/1 driver
   3 *
   4 *  Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved.
   5 *  Copyright (C) 2010 ST-Ericsson SA
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License version 2 as
   9 * published by the Free Software Foundation.
  10 */
  11#include <linux/module.h>
  12#include <linux/moduleparam.h>
  13#include <linux/init.h>
  14#include <linux/ioport.h>
  15#include <linux/device.h>
  16#include <linux/io.h>
  17#include <linux/interrupt.h>
  18#include <linux/kernel.h>
  19#include <linux/slab.h>
  20#include <linux/delay.h>
  21#include <linux/err.h>
  22#include <linux/highmem.h>
  23#include <linux/log2.h>
  24#include <linux/mmc/pm.h>
  25#include <linux/mmc/host.h>
  26#include <linux/mmc/card.h>
  27#include <linux/mmc/slot-gpio.h>
  28#include <linux/amba/bus.h>
  29#include <linux/clk.h>
  30#include <linux/scatterlist.h>
  31#include <linux/gpio.h>
  32#include <linux/of_gpio.h>
  33#include <linux/regulator/consumer.h>
  34#include <linux/dmaengine.h>
  35#include <linux/dma-mapping.h>
  36#include <linux/amba/mmci.h>
  37#include <linux/pm_runtime.h>
  38#include <linux/types.h>
  39#include <linux/pinctrl/consumer.h>
  40
  41#include <asm/div64.h>
  42#include <asm/io.h>
 
  43
  44#include "mmci.h"
  45#include "mmci_qcom_dml.h"
  46
  47#define DRIVER_NAME "mmci-pl18x"
  48
  49static unsigned int fmax = 515633;
  50
  51/**
  52 * struct variant_data - MMCI variant-specific quirks
  53 * @clkreg: default value for MCICLOCK register
  54 * @clkreg_enable: enable value for MMCICLOCK register
  55 * @clkreg_8bit_bus_enable: enable value for 8 bit bus
  56 * @clkreg_neg_edge_enable: enable value for inverted data/cmd output
  57 * @datalength_bits: number of bits in the MMCIDATALENGTH register
  58 * @fifosize: number of bytes that can be written when MMCI_TXFIFOEMPTY
  59 *	      is asserted (likewise for RX)
  60 * @fifohalfsize: number of bytes that can be written when MCI_TXFIFOHALFEMPTY
  61 *		  is asserted (likewise for RX)
  62 * @data_cmd_enable: enable value for data commands.
  63 * @st_sdio: enable ST specific SDIO logic
  64 * @st_clkdiv: true if using a ST-specific clock divider algorithm
  65 * @datactrl_mask_ddrmode: ddr mode mask in datactrl register.
  66 * @blksz_datactrl16: true if Block size is at b16..b30 position in datactrl register
  67 * @blksz_datactrl4: true if Block size is at b4..b16 position in datactrl
  68 *		     register
  69 * @datactrl_mask_sdio: SDIO enable mask in datactrl register
  70 * @pwrreg_powerup: power up value for MMCIPOWER register
  71 * @f_max: maximum clk frequency supported by the controller.
  72 * @signal_direction: input/out direction of bus signals can be indicated
  73 * @pwrreg_clkgate: MMCIPOWER register must be used to gate the clock
  74 * @busy_detect: true if the variant supports busy detection on DAT0.
  75 * @busy_dpsm_flag: bitmask enabling busy detection in the DPSM
  76 * @busy_detect_flag: bitmask identifying the bit in the MMCISTATUS register
  77 *		      indicating that the card is busy
  78 * @busy_detect_mask: bitmask identifying the bit in the MMCIMASK0 to mask for
  79 *		      getting busy end detection interrupts
  80 * @pwrreg_nopower: bits in MMCIPOWER don't controls ext. power supply
  81 * @explicit_mclk_control: enable explicit mclk control in driver.
  82 * @qcom_fifo: enables qcom specific fifo pio read logic.
  83 * @qcom_dml: enables qcom specific dma glue for dma transfers.
  84 * @reversed_irq_handling: handle data irq before cmd irq.
  85 * @mmcimask1: true if variant have a MMCIMASK1 register.
  86 * @start_err: bitmask identifying the STARTBITERR bit inside MMCISTATUS
  87 *	       register.
  88 * @opendrain: bitmask identifying the OPENDRAIN bit inside MMCIPOWER register
  89 */
  90struct variant_data {
  91	unsigned int		clkreg;
  92	unsigned int		clkreg_enable;
  93	unsigned int		clkreg_8bit_bus_enable;
  94	unsigned int		clkreg_neg_edge_enable;
  95	unsigned int		datalength_bits;
  96	unsigned int		fifosize;
  97	unsigned int		fifohalfsize;
  98	unsigned int		data_cmd_enable;
  99	unsigned int		datactrl_mask_ddrmode;
 100	unsigned int		datactrl_mask_sdio;
 101	bool			st_sdio;
 102	bool			st_clkdiv;
 103	bool			blksz_datactrl16;
 104	bool			blksz_datactrl4;
 105	u32			pwrreg_powerup;
 106	u32			f_max;
 107	bool			signal_direction;
 108	bool			pwrreg_clkgate;
 109	bool			busy_detect;
 110	u32			busy_dpsm_flag;
 111	u32			busy_detect_flag;
 112	u32			busy_detect_mask;
 113	bool			pwrreg_nopower;
 114	bool			explicit_mclk_control;
 115	bool			qcom_fifo;
 116	bool			qcom_dml;
 117	bool			reversed_irq_handling;
 118	bool			mmcimask1;
 119	u32			start_err;
 120	u32			opendrain;
 121};
 122
 123static struct variant_data variant_arm = {
 124	.fifosize		= 16 * 4,
 125	.fifohalfsize		= 8 * 4,
 126	.datalength_bits	= 16,
 127	.pwrreg_powerup		= MCI_PWR_UP,
 128	.f_max			= 100000000,
 129	.reversed_irq_handling	= true,
 130	.mmcimask1		= true,
 131	.start_err		= MCI_STARTBITERR,
 132	.opendrain		= MCI_ROD,
 133};
 134
 135static struct variant_data variant_arm_extended_fifo = {
 136	.fifosize		= 128 * 4,
 137	.fifohalfsize		= 64 * 4,
 138	.datalength_bits	= 16,
 139	.pwrreg_powerup		= MCI_PWR_UP,
 140	.f_max			= 100000000,
 141	.mmcimask1		= true,
 142	.start_err		= MCI_STARTBITERR,
 143	.opendrain		= MCI_ROD,
 144};
 145
 146static struct variant_data variant_arm_extended_fifo_hwfc = {
 147	.fifosize		= 128 * 4,
 148	.fifohalfsize		= 64 * 4,
 149	.clkreg_enable		= MCI_ARM_HWFCEN,
 150	.datalength_bits	= 16,
 151	.pwrreg_powerup		= MCI_PWR_UP,
 152	.f_max			= 100000000,
 153	.mmcimask1		= true,
 154	.start_err		= MCI_STARTBITERR,
 155	.opendrain		= MCI_ROD,
 156};
 157
 158static struct variant_data variant_u300 = {
 159	.fifosize		= 16 * 4,
 160	.fifohalfsize		= 8 * 4,
 161	.clkreg_enable		= MCI_ST_U300_HWFCEN,
 162	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
 163	.datalength_bits	= 16,
 164	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
 165	.st_sdio			= true,
 166	.pwrreg_powerup		= MCI_PWR_ON,
 167	.f_max			= 100000000,
 168	.signal_direction	= true,
 169	.pwrreg_clkgate		= true,
 170	.pwrreg_nopower		= true,
 171	.mmcimask1		= true,
 172	.start_err		= MCI_STARTBITERR,
 173	.opendrain		= MCI_OD,
 174};
 175
 176static struct variant_data variant_nomadik = {
 177	.fifosize		= 16 * 4,
 178	.fifohalfsize		= 8 * 4,
 179	.clkreg			= MCI_CLK_ENABLE,
 180	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
 181	.datalength_bits	= 24,
 182	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
 183	.st_sdio		= true,
 184	.st_clkdiv		= true,
 185	.pwrreg_powerup		= MCI_PWR_ON,
 186	.f_max			= 100000000,
 187	.signal_direction	= true,
 188	.pwrreg_clkgate		= true,
 189	.pwrreg_nopower		= true,
 190	.mmcimask1		= true,
 191	.start_err		= MCI_STARTBITERR,
 192	.opendrain		= MCI_OD,
 193};
 194
 195static struct variant_data variant_ux500 = {
 196	.fifosize		= 30 * 4,
 197	.fifohalfsize		= 8 * 4,
 198	.clkreg			= MCI_CLK_ENABLE,
 199	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
 200	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
 201	.clkreg_neg_edge_enable	= MCI_ST_UX500_NEG_EDGE,
 202	.datalength_bits	= 24,
 203	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
 204	.st_sdio		= true,
 205	.st_clkdiv		= true,
 206	.pwrreg_powerup		= MCI_PWR_ON,
 207	.f_max			= 100000000,
 208	.signal_direction	= true,
 209	.pwrreg_clkgate		= true,
 210	.busy_detect		= true,
 211	.busy_dpsm_flag		= MCI_DPSM_ST_BUSYMODE,
 212	.busy_detect_flag	= MCI_ST_CARDBUSY,
 213	.busy_detect_mask	= MCI_ST_BUSYENDMASK,
 214	.pwrreg_nopower		= true,
 215	.mmcimask1		= true,
 216	.start_err		= MCI_STARTBITERR,
 217	.opendrain		= MCI_OD,
 218};
 219
 220static struct variant_data variant_ux500v2 = {
 221	.fifosize		= 30 * 4,
 222	.fifohalfsize		= 8 * 4,
 223	.clkreg			= MCI_CLK_ENABLE,
 224	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
 225	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
 226	.clkreg_neg_edge_enable	= MCI_ST_UX500_NEG_EDGE,
 227	.datactrl_mask_ddrmode	= MCI_DPSM_ST_DDRMODE,
 228	.datalength_bits	= 24,
 229	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
 230	.st_sdio		= true,
 231	.st_clkdiv		= true,
 232	.blksz_datactrl16	= true,
 233	.pwrreg_powerup		= MCI_PWR_ON,
 234	.f_max			= 100000000,
 235	.signal_direction	= true,
 236	.pwrreg_clkgate		= true,
 237	.busy_detect		= true,
 238	.busy_dpsm_flag		= MCI_DPSM_ST_BUSYMODE,
 239	.busy_detect_flag	= MCI_ST_CARDBUSY,
 240	.busy_detect_mask	= MCI_ST_BUSYENDMASK,
 241	.pwrreg_nopower		= true,
 242	.mmcimask1		= true,
 243	.start_err		= MCI_STARTBITERR,
 244	.opendrain		= MCI_OD,
 245};
 246
 247static struct variant_data variant_stm32 = {
 248	.fifosize		= 32 * 4,
 249	.fifohalfsize		= 8 * 4,
 250	.clkreg			= MCI_CLK_ENABLE,
 251	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
 252	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
 253	.clkreg_neg_edge_enable	= MCI_ST_UX500_NEG_EDGE,
 254	.datalength_bits	= 24,
 255	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
 256	.st_sdio		= true,
 257	.st_clkdiv		= true,
 258	.pwrreg_powerup		= MCI_PWR_ON,
 259	.f_max			= 48000000,
 260	.pwrreg_clkgate		= true,
 261	.pwrreg_nopower		= true,
 262};
 263
 264static struct variant_data variant_qcom = {
 265	.fifosize		= 16 * 4,
 266	.fifohalfsize		= 8 * 4,
 267	.clkreg			= MCI_CLK_ENABLE,
 268	.clkreg_enable		= MCI_QCOM_CLK_FLOWENA |
 269				  MCI_QCOM_CLK_SELECT_IN_FBCLK,
 270	.clkreg_8bit_bus_enable = MCI_QCOM_CLK_WIDEBUS_8,
 271	.datactrl_mask_ddrmode	= MCI_QCOM_CLK_SELECT_IN_DDR_MODE,
 272	.data_cmd_enable	= MCI_CPSM_QCOM_DATCMD,
 273	.blksz_datactrl4	= true,
 274	.datalength_bits	= 24,
 275	.pwrreg_powerup		= MCI_PWR_UP,
 276	.f_max			= 208000000,
 277	.explicit_mclk_control	= true,
 278	.qcom_fifo		= true,
 279	.qcom_dml		= true,
 280	.mmcimask1		= true,
 281	.start_err		= MCI_STARTBITERR,
 282	.opendrain		= MCI_ROD,
 283};
 284
 285/* Busy detection for the ST Micro variant */
 286static int mmci_card_busy(struct mmc_host *mmc)
 287{
 288	struct mmci_host *host = mmc_priv(mmc);
 289	unsigned long flags;
 290	int busy = 0;
 291
 
 
 292	spin_lock_irqsave(&host->lock, flags);
 293	if (readl(host->base + MMCISTATUS) & host->variant->busy_detect_flag)
 294		busy = 1;
 295	spin_unlock_irqrestore(&host->lock, flags);
 296
 
 
 
 297	return busy;
 298}
 299
 300/*
 301 * Validate mmc prerequisites
 302 */
 303static int mmci_validate_data(struct mmci_host *host,
 304			      struct mmc_data *data)
 305{
 306	if (!data)
 307		return 0;
 308
 309	if (!is_power_of_2(data->blksz)) {
 310		dev_err(mmc_dev(host->mmc),
 311			"unsupported block size (%d bytes)\n", data->blksz);
 312		return -EINVAL;
 313	}
 314
 315	return 0;
 316}
 317
 318static void mmci_reg_delay(struct mmci_host *host)
 319{
 320	/*
 321	 * According to the spec, at least three feedback clock cycles
 322	 * of max 52 MHz must pass between two writes to the MMCICLOCK reg.
 323	 * Three MCLK clock cycles must pass between two MMCIPOWER reg writes.
 324	 * Worst delay time during card init is at 100 kHz => 30 us.
 325	 * Worst delay time when up and running is at 25 MHz => 120 ns.
 326	 */
 327	if (host->cclk < 25000000)
 328		udelay(30);
 329	else
 330		ndelay(120);
 331}
 332
 333/*
 334 * This must be called with host->lock held
 335 */
 336static void mmci_write_clkreg(struct mmci_host *host, u32 clk)
 337{
 338	if (host->clk_reg != clk) {
 339		host->clk_reg = clk;
 340		writel(clk, host->base + MMCICLOCK);
 341	}
 342}
 343
 344/*
 345 * This must be called with host->lock held
 346 */
 347static void mmci_write_pwrreg(struct mmci_host *host, u32 pwr)
 348{
 349	if (host->pwr_reg != pwr) {
 350		host->pwr_reg = pwr;
 351		writel(pwr, host->base + MMCIPOWER);
 352	}
 353}
 354
 355/*
 356 * This must be called with host->lock held
 357 */
 358static void mmci_write_datactrlreg(struct mmci_host *host, u32 datactrl)
 359{
 360	/* Keep busy mode in DPSM if enabled */
 361	datactrl |= host->datactrl_reg & host->variant->busy_dpsm_flag;
 362
 363	if (host->datactrl_reg != datactrl) {
 364		host->datactrl_reg = datactrl;
 365		writel(datactrl, host->base + MMCIDATACTRL);
 366	}
 367}
 368
 369/*
 370 * This must be called with host->lock held
 371 */
 372static void mmci_set_clkreg(struct mmci_host *host, unsigned int desired)
 373{
 374	struct variant_data *variant = host->variant;
 375	u32 clk = variant->clkreg;
 376
 377	/* Make sure cclk reflects the current calculated clock */
 378	host->cclk = 0;
 379
 380	if (desired) {
 381		if (variant->explicit_mclk_control) {
 382			host->cclk = host->mclk;
 383		} else if (desired >= host->mclk) {
 384			clk = MCI_CLK_BYPASS;
 385			if (variant->st_clkdiv)
 386				clk |= MCI_ST_UX500_NEG_EDGE;
 387			host->cclk = host->mclk;
 388		} else if (variant->st_clkdiv) {
 389			/*
 390			 * DB8500 TRM says f = mclk / (clkdiv + 2)
 391			 * => clkdiv = (mclk / f) - 2
 392			 * Round the divider up so we don't exceed the max
 393			 * frequency
 394			 */
 395			clk = DIV_ROUND_UP(host->mclk, desired) - 2;
 396			if (clk >= 256)
 397				clk = 255;
 398			host->cclk = host->mclk / (clk + 2);
 399		} else {
 400			/*
 401			 * PL180 TRM says f = mclk / (2 * (clkdiv + 1))
 402			 * => clkdiv = mclk / (2 * f) - 1
 403			 */
 404			clk = host->mclk / (2 * desired) - 1;
 405			if (clk >= 256)
 406				clk = 255;
 407			host->cclk = host->mclk / (2 * (clk + 1));
 408		}
 409
 410		clk |= variant->clkreg_enable;
 411		clk |= MCI_CLK_ENABLE;
 412		/* This hasn't proven to be worthwhile */
 413		/* clk |= MCI_CLK_PWRSAVE; */
 414	}
 415
 416	/* Set actual clock for debug */
 417	host->mmc->actual_clock = host->cclk;
 418
 419	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4)
 420		clk |= MCI_4BIT_BUS;
 421	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8)
 422		clk |= variant->clkreg_8bit_bus_enable;
 423
 424	if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
 425	    host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
 426		clk |= variant->clkreg_neg_edge_enable;
 427
 428	mmci_write_clkreg(host, clk);
 429}
 430
 431static void
 432mmci_request_end(struct mmci_host *host, struct mmc_request *mrq)
 433{
 434	writel(0, host->base + MMCICOMMAND);
 435
 436	BUG_ON(host->data);
 437
 438	host->mrq = NULL;
 439	host->cmd = NULL;
 440
 441	mmc_request_done(host->mmc, mrq);
 
 
 
 442}
 443
 444static void mmci_set_mask1(struct mmci_host *host, unsigned int mask)
 445{
 446	void __iomem *base = host->base;
 447	struct variant_data *variant = host->variant;
 448
 449	if (host->singleirq) {
 450		unsigned int mask0 = readl(base + MMCIMASK0);
 451
 452		mask0 &= ~MCI_IRQ1MASK;
 453		mask0 |= mask;
 454
 455		writel(mask0, base + MMCIMASK0);
 456	}
 457
 458	if (variant->mmcimask1)
 459		writel(mask, base + MMCIMASK1);
 460
 461	host->mask1_reg = mask;
 462}
 463
 464static void mmci_stop_data(struct mmci_host *host)
 465{
 466	mmci_write_datactrlreg(host, 0);
 467	mmci_set_mask1(host, 0);
 468	host->data = NULL;
 469}
 470
 471static void mmci_init_sg(struct mmci_host *host, struct mmc_data *data)
 472{
 473	unsigned int flags = SG_MITER_ATOMIC;
 474
 475	if (data->flags & MMC_DATA_READ)
 476		flags |= SG_MITER_TO_SG;
 477	else
 478		flags |= SG_MITER_FROM_SG;
 479
 480	sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
 481}
 482
 483/*
 484 * All the DMA operation mode stuff goes inside this ifdef.
 485 * This assumes that you have a generic DMA device interface,
 486 * no custom DMA interfaces are supported.
 487 */
 488#ifdef CONFIG_DMA_ENGINE
 489static void mmci_dma_setup(struct mmci_host *host)
 490{
 
 491	const char *rxname, *txname;
 492	struct variant_data *variant = host->variant;
 493
 494	host->dma_rx_channel = dma_request_slave_channel(mmc_dev(host->mmc), "rx");
 495	host->dma_tx_channel = dma_request_slave_channel(mmc_dev(host->mmc), "tx");
 496
 497	/* initialize pre request cookie */
 498	host->next_data.cookie = 1;
 499
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 500	/*
 501	 * If only an RX channel is specified, the driver will
 502	 * attempt to use it bidirectionally, however if it is
 503	 * is specified but cannot be located, DMA will be disabled.
 504	 */
 505	if (host->dma_rx_channel && !host->dma_tx_channel)
 506		host->dma_tx_channel = host->dma_rx_channel;
 507
 508	if (host->dma_rx_channel)
 509		rxname = dma_chan_name(host->dma_rx_channel);
 510	else
 511		rxname = "none";
 512
 513	if (host->dma_tx_channel)
 514		txname = dma_chan_name(host->dma_tx_channel);
 515	else
 516		txname = "none";
 517
 518	dev_info(mmc_dev(host->mmc), "DMA channels RX %s, TX %s\n",
 519		 rxname, txname);
 520
 521	/*
 522	 * Limit the maximum segment size in any SG entry according to
 523	 * the parameters of the DMA engine device.
 524	 */
 525	if (host->dma_tx_channel) {
 526		struct device *dev = host->dma_tx_channel->device->dev;
 527		unsigned int max_seg_size = dma_get_max_seg_size(dev);
 528
 529		if (max_seg_size < host->mmc->max_seg_size)
 530			host->mmc->max_seg_size = max_seg_size;
 531	}
 532	if (host->dma_rx_channel) {
 533		struct device *dev = host->dma_rx_channel->device->dev;
 534		unsigned int max_seg_size = dma_get_max_seg_size(dev);
 535
 536		if (max_seg_size < host->mmc->max_seg_size)
 537			host->mmc->max_seg_size = max_seg_size;
 538	}
 539
 540	if (variant->qcom_dml && host->dma_rx_channel && host->dma_tx_channel)
 541		if (dml_hw_init(host, host->mmc->parent->of_node))
 542			variant->qcom_dml = false;
 543}
 544
 545/*
 546 * This is used in or so inline it
 547 * so it can be discarded.
 548 */
 549static inline void mmci_dma_release(struct mmci_host *host)
 550{
 
 
 551	if (host->dma_rx_channel)
 552		dma_release_channel(host->dma_rx_channel);
 553	if (host->dma_tx_channel)
 554		dma_release_channel(host->dma_tx_channel);
 555	host->dma_rx_channel = host->dma_tx_channel = NULL;
 556}
 557
 558static void mmci_dma_data_error(struct mmci_host *host)
 559{
 560	dev_err(mmc_dev(host->mmc), "error during DMA transfer!\n");
 561	dmaengine_terminate_all(host->dma_current);
 562	host->dma_in_progress = false;
 563	host->dma_current = NULL;
 564	host->dma_desc_current = NULL;
 565	host->data->host_cookie = 0;
 566}
 567
 568static void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
 569{
 570	struct dma_chan *chan;
 
 571
 572	if (data->flags & MMC_DATA_READ)
 
 573		chan = host->dma_rx_channel;
 574	else
 
 575		chan = host->dma_tx_channel;
 
 576
 577	dma_unmap_sg(chan->device->dev, data->sg, data->sg_len,
 578		     mmc_get_dma_dir(data));
 579}
 580
 581static void mmci_dma_finalize(struct mmci_host *host, struct mmc_data *data)
 582{
 583	u32 status;
 584	int i;
 585
 586	/* Wait up to 1ms for the DMA to complete */
 587	for (i = 0; ; i++) {
 588		status = readl(host->base + MMCISTATUS);
 589		if (!(status & MCI_RXDATAAVLBLMASK) || i >= 100)
 590			break;
 591		udelay(10);
 592	}
 593
 594	/*
 595	 * Check to see whether we still have some data left in the FIFO -
 596	 * this catches DMA controllers which are unable to monitor the
 597	 * DMALBREQ and DMALSREQ signals while allowing us to DMA to non-
 598	 * contiguous buffers.  On TX, we'll get a FIFO underrun error.
 599	 */
 600	if (status & MCI_RXDATAAVLBLMASK) {
 601		mmci_dma_data_error(host);
 602		if (!data->error)
 603			data->error = -EIO;
 604	}
 605
 606	if (!data->host_cookie)
 607		mmci_dma_unmap(host, data);
 608
 609	/*
 610	 * Use of DMA with scatter-gather is impossible.
 611	 * Give up with DMA and switch back to PIO mode.
 612	 */
 613	if (status & MCI_RXDATAAVLBLMASK) {
 614		dev_err(mmc_dev(host->mmc), "buggy DMA detected. Taking evasive action.\n");
 615		mmci_dma_release(host);
 616	}
 617
 618	host->dma_in_progress = false;
 619	host->dma_current = NULL;
 620	host->dma_desc_current = NULL;
 621}
 622
 623/* prepares DMA channel and DMA descriptor, returns non-zero on failure */
 624static int __mmci_dma_prep_data(struct mmci_host *host, struct mmc_data *data,
 625				struct dma_chan **dma_chan,
 626				struct dma_async_tx_descriptor **dma_desc)
 627{
 628	struct variant_data *variant = host->variant;
 629	struct dma_slave_config conf = {
 630		.src_addr = host->phybase + MMCIFIFO,
 631		.dst_addr = host->phybase + MMCIFIFO,
 632		.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
 633		.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
 634		.src_maxburst = variant->fifohalfsize >> 2, /* # of words */
 635		.dst_maxburst = variant->fifohalfsize >> 2, /* # of words */
 636		.device_fc = false,
 637	};
 638	struct dma_chan *chan;
 639	struct dma_device *device;
 640	struct dma_async_tx_descriptor *desc;
 
 641	int nr_sg;
 642	unsigned long flags = DMA_CTRL_ACK;
 643
 644	if (data->flags & MMC_DATA_READ) {
 645		conf.direction = DMA_DEV_TO_MEM;
 
 646		chan = host->dma_rx_channel;
 647	} else {
 648		conf.direction = DMA_MEM_TO_DEV;
 
 649		chan = host->dma_tx_channel;
 650	}
 651
 652	/* If there's no DMA channel, fall back to PIO */
 653	if (!chan)
 654		return -EINVAL;
 655
 656	/* If less than or equal to the fifo size, don't bother with DMA */
 657	if (data->blksz * data->blocks <= variant->fifosize)
 658		return -EINVAL;
 659
 660	device = chan->device;
 661	nr_sg = dma_map_sg(device->dev, data->sg, data->sg_len,
 662			   mmc_get_dma_dir(data));
 663	if (nr_sg == 0)
 664		return -EINVAL;
 665
 666	if (host->variant->qcom_dml)
 667		flags |= DMA_PREP_INTERRUPT;
 668
 669	dmaengine_slave_config(chan, &conf);
 670	desc = dmaengine_prep_slave_sg(chan, data->sg, nr_sg,
 671					    conf.direction, flags);
 672	if (!desc)
 673		goto unmap_exit;
 674
 675	*dma_chan = chan;
 676	*dma_desc = desc;
 677
 678	return 0;
 679
 680 unmap_exit:
 681	dma_unmap_sg(device->dev, data->sg, data->sg_len,
 682		     mmc_get_dma_dir(data));
 683	return -ENOMEM;
 684}
 685
 686static inline int mmci_dma_prep_data(struct mmci_host *host,
 687				     struct mmc_data *data)
 688{
 689	/* Check if next job is already prepared. */
 690	if (host->dma_current && host->dma_desc_current)
 691		return 0;
 692
 693	/* No job were prepared thus do it now. */
 694	return __mmci_dma_prep_data(host, data, &host->dma_current,
 695				    &host->dma_desc_current);
 696}
 697
 698static inline int mmci_dma_prep_next(struct mmci_host *host,
 699				     struct mmc_data *data)
 700{
 701	struct mmci_host_next *nd = &host->next_data;
 702	return __mmci_dma_prep_data(host, data, &nd->dma_chan, &nd->dma_desc);
 703}
 704
 705static int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
 706{
 707	int ret;
 708	struct mmc_data *data = host->data;
 709
 710	ret = mmci_dma_prep_data(host, host->data);
 711	if (ret)
 712		return ret;
 713
 714	/* Okay, go for it. */
 715	dev_vdbg(mmc_dev(host->mmc),
 716		 "Submit MMCI DMA job, sglen %d blksz %04x blks %04x flags %08x\n",
 717		 data->sg_len, data->blksz, data->blocks, data->flags);
 718	host->dma_in_progress = true;
 719	dmaengine_submit(host->dma_desc_current);
 720	dma_async_issue_pending(host->dma_current);
 721
 722	if (host->variant->qcom_dml)
 723		dml_start_xfer(host, data);
 724
 725	datactrl |= MCI_DPSM_DMAENABLE;
 726
 727	/* Trigger the DMA transfer */
 728	mmci_write_datactrlreg(host, datactrl);
 729
 730	/*
 731	 * Let the MMCI say when the data is ended and it's time
 732	 * to fire next DMA request. When that happens, MMCI will
 733	 * call mmci_data_end()
 734	 */
 735	writel(readl(host->base + MMCIMASK0) | MCI_DATAENDMASK,
 736	       host->base + MMCIMASK0);
 737	return 0;
 738}
 739
 740static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
 741{
 742	struct mmci_host_next *next = &host->next_data;
 743
 744	WARN_ON(data->host_cookie && data->host_cookie != next->cookie);
 745	WARN_ON(!data->host_cookie && (next->dma_desc || next->dma_chan));
 746
 747	host->dma_desc_current = next->dma_desc;
 748	host->dma_current = next->dma_chan;
 749	next->dma_desc = NULL;
 750	next->dma_chan = NULL;
 751}
 752
 753static void mmci_pre_request(struct mmc_host *mmc, struct mmc_request *mrq)
 
 754{
 755	struct mmci_host *host = mmc_priv(mmc);
 756	struct mmc_data *data = mrq->data;
 757	struct mmci_host_next *nd = &host->next_data;
 758
 759	if (!data)
 760		return;
 761
 762	BUG_ON(data->host_cookie);
 763
 764	if (mmci_validate_data(host, data))
 765		return;
 766
 767	if (!mmci_dma_prep_next(host, data))
 768		data->host_cookie = ++nd->cookie < 0 ? 1 : nd->cookie;
 769}
 770
 771static void mmci_post_request(struct mmc_host *mmc, struct mmc_request *mrq,
 772			      int err)
 773{
 774	struct mmci_host *host = mmc_priv(mmc);
 775	struct mmc_data *data = mrq->data;
 776
 777	if (!data || !data->host_cookie)
 778		return;
 779
 780	mmci_dma_unmap(host, data);
 781
 782	if (err) {
 783		struct mmci_host_next *next = &host->next_data;
 784		struct dma_chan *chan;
 785		if (data->flags & MMC_DATA_READ)
 786			chan = host->dma_rx_channel;
 787		else
 788			chan = host->dma_tx_channel;
 789		dmaengine_terminate_all(chan);
 790
 791		if (host->dma_desc_current == next->dma_desc)
 792			host->dma_desc_current = NULL;
 793
 794		if (host->dma_current == next->dma_chan) {
 795			host->dma_in_progress = false;
 796			host->dma_current = NULL;
 797		}
 798
 799		next->dma_desc = NULL;
 800		next->dma_chan = NULL;
 801		data->host_cookie = 0;
 802	}
 803}
 804
 805#else
 806/* Blank functions if the DMA engine is not available */
 807static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
 808{
 809}
 810static inline void mmci_dma_setup(struct mmci_host *host)
 811{
 812}
 813
 814static inline void mmci_dma_release(struct mmci_host *host)
 815{
 816}
 817
 818static inline void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
 819{
 820}
 821
 822static inline void mmci_dma_finalize(struct mmci_host *host,
 823				     struct mmc_data *data)
 824{
 825}
 826
 827static inline void mmci_dma_data_error(struct mmci_host *host)
 828{
 829}
 830
 831static inline int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
 832{
 833	return -ENOSYS;
 834}
 835
 836#define mmci_pre_request NULL
 837#define mmci_post_request NULL
 838
 839#endif
 840
 841static void mmci_start_data(struct mmci_host *host, struct mmc_data *data)
 842{
 843	struct variant_data *variant = host->variant;
 844	unsigned int datactrl, timeout, irqmask;
 845	unsigned long long clks;
 846	void __iomem *base;
 847	int blksz_bits;
 848
 849	dev_dbg(mmc_dev(host->mmc), "blksz %04x blks %04x flags %08x\n",
 850		data->blksz, data->blocks, data->flags);
 851
 852	host->data = data;
 853	host->size = data->blksz * data->blocks;
 854	data->bytes_xfered = 0;
 855
 856	clks = (unsigned long long)data->timeout_ns * host->cclk;
 857	do_div(clks, NSEC_PER_SEC);
 858
 859	timeout = data->timeout_clks + (unsigned int)clks;
 860
 861	base = host->base;
 862	writel(timeout, base + MMCIDATATIMER);
 863	writel(host->size, base + MMCIDATALENGTH);
 864
 865	blksz_bits = ffs(data->blksz) - 1;
 866	BUG_ON(1 << blksz_bits != data->blksz);
 867
 868	if (variant->blksz_datactrl16)
 869		datactrl = MCI_DPSM_ENABLE | (data->blksz << 16);
 870	else if (variant->blksz_datactrl4)
 871		datactrl = MCI_DPSM_ENABLE | (data->blksz << 4);
 872	else
 873		datactrl = MCI_DPSM_ENABLE | blksz_bits << 4;
 874
 875	if (data->flags & MMC_DATA_READ)
 876		datactrl |= MCI_DPSM_DIRECTION;
 877
 878	if (host->mmc->card && mmc_card_sdio(host->mmc->card)) {
 879		u32 clk;
 
 
 
 
 
 
 880
 881		datactrl |= variant->datactrl_mask_sdio;
 882
 883		/*
 884		 * The ST Micro variant for SDIO small write transfers
 885		 * needs to have clock H/W flow control disabled,
 886		 * otherwise the transfer will not start. The threshold
 887		 * depends on the rate of MCLK.
 888		 */
 889		if (variant->st_sdio && data->flags & MMC_DATA_WRITE &&
 890		    (host->size < 8 ||
 891		     (host->size <= 8 && host->mclk > 50000000)))
 892			clk = host->clk_reg & ~variant->clkreg_enable;
 893		else
 894			clk = host->clk_reg | variant->clkreg_enable;
 895
 896		mmci_write_clkreg(host, clk);
 897	}
 898
 899	if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
 900	    host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
 901		datactrl |= variant->datactrl_mask_ddrmode;
 902
 903	/*
 904	 * Attempt to use DMA operation mode, if this
 905	 * should fail, fall back to PIO mode
 906	 */
 907	if (!mmci_dma_start_data(host, datactrl))
 908		return;
 909
 910	/* IRQ mode, map the SG list for CPU reading/writing */
 911	mmci_init_sg(host, data);
 912
 913	if (data->flags & MMC_DATA_READ) {
 914		irqmask = MCI_RXFIFOHALFFULLMASK;
 915
 916		/*
 917		 * If we have less than the fifo 'half-full' threshold to
 918		 * transfer, trigger a PIO interrupt as soon as any data
 919		 * is available.
 920		 */
 921		if (host->size < variant->fifohalfsize)
 922			irqmask |= MCI_RXDATAAVLBLMASK;
 923	} else {
 924		/*
 925		 * We don't actually need to include "FIFO empty" here
 926		 * since its implicit in "FIFO half empty".
 927		 */
 928		irqmask = MCI_TXFIFOHALFEMPTYMASK;
 929	}
 930
 931	mmci_write_datactrlreg(host, datactrl);
 932	writel(readl(base + MMCIMASK0) & ~MCI_DATAENDMASK, base + MMCIMASK0);
 933	mmci_set_mask1(host, irqmask);
 934}
 935
 936static void
 937mmci_start_command(struct mmci_host *host, struct mmc_command *cmd, u32 c)
 938{
 939	void __iomem *base = host->base;
 940
 941	dev_dbg(mmc_dev(host->mmc), "op %02x arg %08x flags %08x\n",
 942	    cmd->opcode, cmd->arg, cmd->flags);
 943
 944	if (readl(base + MMCICOMMAND) & MCI_CPSM_ENABLE) {
 945		writel(0, base + MMCICOMMAND);
 946		mmci_reg_delay(host);
 947	}
 948
 949	c |= cmd->opcode | MCI_CPSM_ENABLE;
 950	if (cmd->flags & MMC_RSP_PRESENT) {
 951		if (cmd->flags & MMC_RSP_136)
 952			c |= MCI_CPSM_LONGRSP;
 953		c |= MCI_CPSM_RESPONSE;
 954	}
 955	if (/*interrupt*/0)
 956		c |= MCI_CPSM_INTERRUPT;
 957
 958	if (mmc_cmd_type(cmd) == MMC_CMD_ADTC)
 959		c |= host->variant->data_cmd_enable;
 960
 961	host->cmd = cmd;
 962
 963	writel(cmd->arg, base + MMCIARGUMENT);
 964	writel(c, base + MMCICOMMAND);
 965}
 966
 967static void
 968mmci_data_irq(struct mmci_host *host, struct mmc_data *data,
 969	      unsigned int status)
 970{
 971	/* Make sure we have data to handle */
 972	if (!data)
 973		return;
 974
 975	/* First check for errors */
 976	if (status & (MCI_DATACRCFAIL | MCI_DATATIMEOUT |
 977		      host->variant->start_err |
 978		      MCI_TXUNDERRUN | MCI_RXOVERRUN)) {
 979		u32 remain, success;
 980
 981		/* Terminate the DMA transfer */
 982		if (dma_inprogress(host)) {
 983			mmci_dma_data_error(host);
 984			mmci_dma_unmap(host, data);
 985		}
 986
 987		/*
 988		 * Calculate how far we are into the transfer.  Note that
 989		 * the data counter gives the number of bytes transferred
 990		 * on the MMC bus, not on the host side.  On reads, this
 991		 * can be as much as a FIFO-worth of data ahead.  This
 992		 * matters for FIFO overruns only.
 993		 */
 994		remain = readl(host->base + MMCIDATACNT);
 995		success = data->blksz * data->blocks - remain;
 996
 997		dev_dbg(mmc_dev(host->mmc), "MCI ERROR IRQ, status 0x%08x at 0x%08x\n",
 998			status, success);
 999		if (status & MCI_DATACRCFAIL) {
1000			/* Last block was not successful */
1001			success -= 1;
1002			data->error = -EILSEQ;
1003		} else if (status & MCI_DATATIMEOUT) {
1004			data->error = -ETIMEDOUT;
1005		} else if (status & MCI_STARTBITERR) {
1006			data->error = -ECOMM;
1007		} else if (status & MCI_TXUNDERRUN) {
1008			data->error = -EIO;
1009		} else if (status & MCI_RXOVERRUN) {
1010			if (success > host->variant->fifosize)
1011				success -= host->variant->fifosize;
1012			else
1013				success = 0;
1014			data->error = -EIO;
1015		}
1016		data->bytes_xfered = round_down(success, data->blksz);
1017	}
1018
1019	if (status & MCI_DATABLOCKEND)
1020		dev_err(mmc_dev(host->mmc), "stray MCI_DATABLOCKEND interrupt\n");
1021
1022	if (status & MCI_DATAEND || data->error) {
1023		if (dma_inprogress(host))
1024			mmci_dma_finalize(host, data);
1025		mmci_stop_data(host);
1026
1027		if (!data->error)
1028			/* The error clause is handled above, success! */
1029			data->bytes_xfered = data->blksz * data->blocks;
1030
1031		if (!data->stop || host->mrq->sbc) {
1032			mmci_request_end(host, data->mrq);
1033		} else {
1034			mmci_start_command(host, data->stop, 0);
1035		}
1036	}
1037}
1038
1039static void
1040mmci_cmd_irq(struct mmci_host *host, struct mmc_command *cmd,
1041	     unsigned int status)
1042{
1043	void __iomem *base = host->base;
1044	bool sbc;
 
 
1045
1046	if (!cmd)
 
1047		return;
1048
1049	sbc = (cmd == host->mrq->sbc);
1050
1051	/*
1052	 * We need to be one of these interrupts to be considered worth
1053	 * handling. Note that we tag on any latent IRQs postponed
1054	 * due to waiting for busy status.
1055	 */
1056	if (!((status|host->busy_status) &
1057	      (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT|MCI_CMDSENT|MCI_CMDRESPEND)))
1058		return;
 
1059
1060	/*
1061	 * ST Micro variant: handle busy detection.
1062	 */
1063	if (host->variant->busy_detect) {
1064		bool busy_resp = !!(cmd->flags & MMC_RSP_BUSY);
1065
1066		/* We are busy with a command, return */
1067		if (host->busy_status &&
1068		    (status & host->variant->busy_detect_flag))
1069			return;
1070
1071		/*
1072		 * We were not busy, but we now got a busy response on
1073		 * something that was not an error, and we double-check
1074		 * that the special busy status bit is still set before
1075		 * proceeding.
1076		 */
1077		if (!host->busy_status && busy_resp &&
1078		    !(status & (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT)) &&
1079		    (readl(base + MMCISTATUS) & host->variant->busy_detect_flag)) {
1080
1081			/* Clear the busy start IRQ */
1082			writel(host->variant->busy_detect_mask,
1083			       host->base + MMCICLEAR);
1084
1085			/* Unmask the busy end IRQ */
1086			writel(readl(base + MMCIMASK0) |
1087			       host->variant->busy_detect_mask,
1088			       base + MMCIMASK0);
1089			/*
1090			 * Now cache the last response status code (until
1091			 * the busy bit goes low), and return.
1092			 */
1093			host->busy_status =
1094				status & (MCI_CMDSENT|MCI_CMDRESPEND);
1095			return;
1096		}
1097
1098		/*
1099		 * At this point we are not busy with a command, we have
1100		 * not received a new busy request, clear and mask the busy
1101		 * end IRQ and fall through to process the IRQ.
1102		 */
1103		if (host->busy_status) {
1104
1105			writel(host->variant->busy_detect_mask,
1106			       host->base + MMCICLEAR);
1107
1108			writel(readl(base + MMCIMASK0) &
1109			       ~host->variant->busy_detect_mask,
1110			       base + MMCIMASK0);
1111			host->busy_status = 0;
1112		}
1113	}
1114
1115	host->cmd = NULL;
1116
1117	if (status & MCI_CMDTIMEOUT) {
1118		cmd->error = -ETIMEDOUT;
1119	} else if (status & MCI_CMDCRCFAIL && cmd->flags & MMC_RSP_CRC) {
1120		cmd->error = -EILSEQ;
1121	} else {
1122		cmd->resp[0] = readl(base + MMCIRESPONSE0);
1123		cmd->resp[1] = readl(base + MMCIRESPONSE1);
1124		cmd->resp[2] = readl(base + MMCIRESPONSE2);
1125		cmd->resp[3] = readl(base + MMCIRESPONSE3);
1126	}
1127
1128	if ((!sbc && !cmd->data) || cmd->error) {
1129		if (host->data) {
1130			/* Terminate the DMA transfer */
1131			if (dma_inprogress(host)) {
1132				mmci_dma_data_error(host);
1133				mmci_dma_unmap(host, host->data);
1134			}
1135			mmci_stop_data(host);
1136		}
1137		mmci_request_end(host, host->mrq);
1138	} else if (sbc) {
1139		mmci_start_command(host, host->mrq->cmd, 0);
1140	} else if (!(cmd->data->flags & MMC_DATA_READ)) {
1141		mmci_start_data(host, cmd->data);
1142	}
1143}
1144
1145static int mmci_get_rx_fifocnt(struct mmci_host *host, u32 status, int remain)
1146{
1147	return remain - (readl(host->base + MMCIFIFOCNT) << 2);
1148}
1149
1150static int mmci_qcom_get_rx_fifocnt(struct mmci_host *host, u32 status, int r)
1151{
1152	/*
1153	 * on qcom SDCC4 only 8 words are used in each burst so only 8 addresses
1154	 * from the fifo range should be used
1155	 */
1156	if (status & MCI_RXFIFOHALFFULL)
1157		return host->variant->fifohalfsize;
1158	else if (status & MCI_RXDATAAVLBL)
1159		return 4;
1160
1161	return 0;
1162}
1163
1164static int mmci_pio_read(struct mmci_host *host, char *buffer, unsigned int remain)
1165{
1166	void __iomem *base = host->base;
1167	char *ptr = buffer;
1168	u32 status = readl(host->base + MMCISTATUS);
1169	int host_remain = host->size;
1170
1171	do {
1172		int count = host->get_rx_fifocnt(host, status, host_remain);
1173
1174		if (count > remain)
1175			count = remain;
1176
1177		if (count <= 0)
1178			break;
1179
1180		/*
1181		 * SDIO especially may want to send something that is
1182		 * not divisible by 4 (as opposed to card sectors
1183		 * etc). Therefore make sure to always read the last bytes
1184		 * while only doing full 32-bit reads towards the FIFO.
1185		 */
1186		if (unlikely(count & 0x3)) {
1187			if (count < 4) {
1188				unsigned char buf[4];
1189				ioread32_rep(base + MMCIFIFO, buf, 1);
1190				memcpy(ptr, buf, count);
1191			} else {
1192				ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1193				count &= ~0x3;
1194			}
1195		} else {
1196			ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1197		}
1198
1199		ptr += count;
1200		remain -= count;
1201		host_remain -= count;
1202
1203		if (remain == 0)
1204			break;
1205
1206		status = readl(base + MMCISTATUS);
1207	} while (status & MCI_RXDATAAVLBL);
1208
1209	return ptr - buffer;
1210}
1211
1212static int mmci_pio_write(struct mmci_host *host, char *buffer, unsigned int remain, u32 status)
1213{
1214	struct variant_data *variant = host->variant;
1215	void __iomem *base = host->base;
1216	char *ptr = buffer;
1217
1218	do {
1219		unsigned int count, maxcnt;
1220
1221		maxcnt = status & MCI_TXFIFOEMPTY ?
1222			 variant->fifosize : variant->fifohalfsize;
1223		count = min(remain, maxcnt);
1224
1225		/*
1226		 * SDIO especially may want to send something that is
1227		 * not divisible by 4 (as opposed to card sectors
1228		 * etc), and the FIFO only accept full 32-bit writes.
1229		 * So compensate by adding +3 on the count, a single
1230		 * byte become a 32bit write, 7 bytes will be two
1231		 * 32bit writes etc.
1232		 */
1233		iowrite32_rep(base + MMCIFIFO, ptr, (count + 3) >> 2);
1234
1235		ptr += count;
1236		remain -= count;
1237
1238		if (remain == 0)
1239			break;
1240
1241		status = readl(base + MMCISTATUS);
1242	} while (status & MCI_TXFIFOHALFEMPTY);
1243
1244	return ptr - buffer;
1245}
1246
1247/*
1248 * PIO data transfer IRQ handler.
1249 */
1250static irqreturn_t mmci_pio_irq(int irq, void *dev_id)
1251{
1252	struct mmci_host *host = dev_id;
1253	struct sg_mapping_iter *sg_miter = &host->sg_miter;
1254	struct variant_data *variant = host->variant;
1255	void __iomem *base = host->base;
1256	unsigned long flags;
1257	u32 status;
1258
1259	status = readl(base + MMCISTATUS);
1260
1261	dev_dbg(mmc_dev(host->mmc), "irq1 (pio) %08x\n", status);
1262
1263	local_irq_save(flags);
1264
1265	do {
1266		unsigned int remain, len;
1267		char *buffer;
1268
1269		/*
1270		 * For write, we only need to test the half-empty flag
1271		 * here - if the FIFO is completely empty, then by
1272		 * definition it is more than half empty.
1273		 *
1274		 * For read, check for data available.
1275		 */
1276		if (!(status & (MCI_TXFIFOHALFEMPTY|MCI_RXDATAAVLBL)))
1277			break;
1278
1279		if (!sg_miter_next(sg_miter))
1280			break;
1281
1282		buffer = sg_miter->addr;
1283		remain = sg_miter->length;
1284
1285		len = 0;
1286		if (status & MCI_RXACTIVE)
1287			len = mmci_pio_read(host, buffer, remain);
1288		if (status & MCI_TXACTIVE)
1289			len = mmci_pio_write(host, buffer, remain, status);
1290
1291		sg_miter->consumed = len;
1292
1293		host->size -= len;
1294		remain -= len;
1295
1296		if (remain)
1297			break;
1298
1299		status = readl(base + MMCISTATUS);
1300	} while (1);
1301
1302	sg_miter_stop(sg_miter);
1303
1304	local_irq_restore(flags);
1305
1306	/*
1307	 * If we have less than the fifo 'half-full' threshold to transfer,
1308	 * trigger a PIO interrupt as soon as any data is available.
1309	 */
1310	if (status & MCI_RXACTIVE && host->size < variant->fifohalfsize)
1311		mmci_set_mask1(host, MCI_RXDATAAVLBLMASK);
1312
1313	/*
1314	 * If we run out of data, disable the data IRQs; this
1315	 * prevents a race where the FIFO becomes empty before
1316	 * the chip itself has disabled the data path, and
1317	 * stops us racing with our data end IRQ.
1318	 */
1319	if (host->size == 0) {
1320		mmci_set_mask1(host, 0);
1321		writel(readl(base + MMCIMASK0) | MCI_DATAENDMASK, base + MMCIMASK0);
1322	}
1323
1324	return IRQ_HANDLED;
1325}
1326
1327/*
1328 * Handle completion of command and data transfers.
1329 */
1330static irqreturn_t mmci_irq(int irq, void *dev_id)
1331{
1332	struct mmci_host *host = dev_id;
1333	u32 status;
1334	int ret = 0;
1335
1336	spin_lock(&host->lock);
1337
1338	do {
 
 
 
1339		status = readl(host->base + MMCISTATUS);
1340
1341		if (host->singleirq) {
1342			if (status & host->mask1_reg)
1343				mmci_pio_irq(irq, dev_id);
1344
1345			status &= ~MCI_IRQ1MASK;
1346		}
1347
1348		/*
1349		 * We intentionally clear the MCI_ST_CARDBUSY IRQ (if it's
1350		 * enabled) in mmci_cmd_irq() function where ST Micro busy
1351		 * detection variant is handled. Considering the HW seems to be
1352		 * triggering the IRQ on both edges while monitoring DAT0 for
1353		 * busy completion and that same status bit is used to monitor
1354		 * start and end of busy detection, special care must be taken
1355		 * to make sure that both start and end interrupts are always
1356		 * cleared one after the other.
1357		 */
1358		status &= readl(host->base + MMCIMASK0);
1359		if (host->variant->busy_detect)
1360			writel(status & ~host->variant->busy_detect_mask,
1361			       host->base + MMCICLEAR);
1362		else
1363			writel(status, host->base + MMCICLEAR);
1364
1365		dev_dbg(mmc_dev(host->mmc), "irq0 (data+cmd) %08x\n", status);
1366
1367		if (host->variant->reversed_irq_handling) {
1368			mmci_data_irq(host, host->data, status);
1369			mmci_cmd_irq(host, host->cmd, status);
1370		} else {
1371			mmci_cmd_irq(host, host->cmd, status);
1372			mmci_data_irq(host, host->data, status);
1373		}
1374
1375		/*
1376		 * Don't poll for busy completion in irq context.
1377		 */
1378		if (host->variant->busy_detect && host->busy_status)
1379			status &= ~host->variant->busy_detect_flag;
 
1380
1381		ret = 1;
1382	} while (status);
1383
1384	spin_unlock(&host->lock);
1385
1386	return IRQ_RETVAL(ret);
1387}
1388
1389static void mmci_request(struct mmc_host *mmc, struct mmc_request *mrq)
1390{
1391	struct mmci_host *host = mmc_priv(mmc);
1392	unsigned long flags;
1393
1394	WARN_ON(host->mrq != NULL);
1395
1396	mrq->cmd->error = mmci_validate_data(host, mrq->data);
1397	if (mrq->cmd->error) {
1398		mmc_request_done(mmc, mrq);
1399		return;
1400	}
1401
 
 
1402	spin_lock_irqsave(&host->lock, flags);
1403
1404	host->mrq = mrq;
1405
1406	if (mrq->data)
1407		mmci_get_next_data(host, mrq->data);
1408
1409	if (mrq->data && mrq->data->flags & MMC_DATA_READ)
1410		mmci_start_data(host, mrq->data);
1411
1412	if (mrq->sbc)
1413		mmci_start_command(host, mrq->sbc, 0);
1414	else
1415		mmci_start_command(host, mrq->cmd, 0);
1416
1417	spin_unlock_irqrestore(&host->lock, flags);
1418}
1419
1420static void mmci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1421{
1422	struct mmci_host *host = mmc_priv(mmc);
1423	struct variant_data *variant = host->variant;
1424	u32 pwr = 0;
1425	unsigned long flags;
1426	int ret;
1427
 
 
1428	if (host->plat->ios_handler &&
1429		host->plat->ios_handler(mmc_dev(mmc), ios))
1430			dev_err(mmc_dev(mmc), "platform ios_handler failed\n");
1431
1432	switch (ios->power_mode) {
1433	case MMC_POWER_OFF:
1434		if (!IS_ERR(mmc->supply.vmmc))
1435			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1436
1437		if (!IS_ERR(mmc->supply.vqmmc) && host->vqmmc_enabled) {
1438			regulator_disable(mmc->supply.vqmmc);
1439			host->vqmmc_enabled = false;
1440		}
1441
1442		break;
1443	case MMC_POWER_UP:
1444		if (!IS_ERR(mmc->supply.vmmc))
1445			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
1446
1447		/*
1448		 * The ST Micro variant doesn't have the PL180s MCI_PWR_UP
1449		 * and instead uses MCI_PWR_ON so apply whatever value is
1450		 * configured in the variant data.
1451		 */
1452		pwr |= variant->pwrreg_powerup;
1453
1454		break;
1455	case MMC_POWER_ON:
1456		if (!IS_ERR(mmc->supply.vqmmc) && !host->vqmmc_enabled) {
1457			ret = regulator_enable(mmc->supply.vqmmc);
1458			if (ret < 0)
1459				dev_err(mmc_dev(mmc),
1460					"failed to enable vqmmc regulator\n");
1461			else
1462				host->vqmmc_enabled = true;
1463		}
1464
1465		pwr |= MCI_PWR_ON;
1466		break;
1467	}
1468
1469	if (variant->signal_direction && ios->power_mode != MMC_POWER_OFF) {
1470		/*
1471		 * The ST Micro variant has some additional bits
1472		 * indicating signal direction for the signals in
1473		 * the SD/MMC bus and feedback-clock usage.
1474		 */
1475		pwr |= host->pwr_reg_add;
1476
1477		if (ios->bus_width == MMC_BUS_WIDTH_4)
1478			pwr &= ~MCI_ST_DATA74DIREN;
1479		else if (ios->bus_width == MMC_BUS_WIDTH_1)
1480			pwr &= (~MCI_ST_DATA74DIREN &
1481				~MCI_ST_DATA31DIREN &
1482				~MCI_ST_DATA2DIREN);
1483	}
1484
1485	if (variant->opendrain) {
1486		if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN)
1487			pwr |= variant->opendrain;
1488	} else {
1489		/*
1490		 * If the variant cannot configure the pads by its own, then we
1491		 * expect the pinctrl to be able to do that for us
1492		 */
1493		if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN)
1494			pinctrl_select_state(host->pinctrl, host->pins_opendrain);
1495		else
1496			pinctrl_select_state(host->pinctrl, host->pins_default);
1497	}
1498
1499	/*
1500	 * If clock = 0 and the variant requires the MMCIPOWER to be used for
1501	 * gating the clock, the MCI_PWR_ON bit is cleared.
1502	 */
1503	if (!ios->clock && variant->pwrreg_clkgate)
1504		pwr &= ~MCI_PWR_ON;
1505
1506	if (host->variant->explicit_mclk_control &&
1507	    ios->clock != host->clock_cache) {
1508		ret = clk_set_rate(host->clk, ios->clock);
1509		if (ret < 0)
1510			dev_err(mmc_dev(host->mmc),
1511				"Error setting clock rate (%d)\n", ret);
1512		else
1513			host->mclk = clk_get_rate(host->clk);
1514	}
1515	host->clock_cache = ios->clock;
1516
1517	spin_lock_irqsave(&host->lock, flags);
1518
1519	mmci_set_clkreg(host, ios->clock);
1520	mmci_write_pwrreg(host, pwr);
1521	mmci_reg_delay(host);
1522
1523	spin_unlock_irqrestore(&host->lock, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
1524}
1525
1526static int mmci_get_cd(struct mmc_host *mmc)
1527{
1528	struct mmci_host *host = mmc_priv(mmc);
1529	struct mmci_platform_data *plat = host->plat;
1530	unsigned int status = mmc_gpio_get_cd(mmc);
1531
1532	if (status == -ENOSYS) {
1533		if (!plat->status)
1534			return 1; /* Assume always present */
1535
1536		status = plat->status(mmc_dev(host->mmc));
1537	}
 
 
 
 
 
 
 
1538	return status;
1539}
1540
1541static int mmci_sig_volt_switch(struct mmc_host *mmc, struct mmc_ios *ios)
1542{
1543	int ret = 0;
1544
1545	if (!IS_ERR(mmc->supply.vqmmc)) {
1546
 
 
1547		switch (ios->signal_voltage) {
1548		case MMC_SIGNAL_VOLTAGE_330:
1549			ret = regulator_set_voltage(mmc->supply.vqmmc,
1550						2700000, 3600000);
1551			break;
1552		case MMC_SIGNAL_VOLTAGE_180:
1553			ret = regulator_set_voltage(mmc->supply.vqmmc,
1554						1700000, 1950000);
1555			break;
1556		case MMC_SIGNAL_VOLTAGE_120:
1557			ret = regulator_set_voltage(mmc->supply.vqmmc,
1558						1100000, 1300000);
1559			break;
1560		}
1561
1562		if (ret)
1563			dev_warn(mmc_dev(mmc), "Voltage switch failed\n");
 
 
 
1564	}
1565
1566	return ret;
1567}
1568
 
 
 
 
 
 
 
 
 
1569static struct mmc_host_ops mmci_ops = {
1570	.request	= mmci_request,
1571	.pre_req	= mmci_pre_request,
1572	.post_req	= mmci_post_request,
1573	.set_ios	= mmci_set_ios,
1574	.get_ro		= mmc_gpio_get_ro,
1575	.get_cd		= mmci_get_cd,
1576	.start_signal_voltage_switch = mmci_sig_volt_switch,
1577};
1578
1579static int mmci_of_parse(struct device_node *np, struct mmc_host *mmc)
 
 
1580{
1581	struct mmci_host *host = mmc_priv(mmc);
1582	int ret = mmc_of_parse(mmc);
 
 
1583
1584	if (ret)
1585		return ret;
 
 
1586
1587	if (of_get_property(np, "st,sig-dir-dat0", NULL))
1588		host->pwr_reg_add |= MCI_ST_DATA0DIREN;
1589	if (of_get_property(np, "st,sig-dir-dat2", NULL))
1590		host->pwr_reg_add |= MCI_ST_DATA2DIREN;
1591	if (of_get_property(np, "st,sig-dir-dat31", NULL))
1592		host->pwr_reg_add |= MCI_ST_DATA31DIREN;
1593	if (of_get_property(np, "st,sig-dir-dat74", NULL))
1594		host->pwr_reg_add |= MCI_ST_DATA74DIREN;
1595	if (of_get_property(np, "st,sig-dir-cmd", NULL))
1596		host->pwr_reg_add |= MCI_ST_CMDDIREN;
1597	if (of_get_property(np, "st,sig-pin-fbclk", NULL))
1598		host->pwr_reg_add |= MCI_ST_FBCLKEN;
1599
1600	if (of_get_property(np, "mmc-cap-mmc-highspeed", NULL))
1601		mmc->caps |= MMC_CAP_MMC_HIGHSPEED;
1602	if (of_get_property(np, "mmc-cap-sd-highspeed", NULL))
1603		mmc->caps |= MMC_CAP_SD_HIGHSPEED;
1604
1605	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1606}
 
1607
1608static int mmci_probe(struct amba_device *dev,
1609	const struct amba_id *id)
1610{
1611	struct mmci_platform_data *plat = dev->dev.platform_data;
1612	struct device_node *np = dev->dev.of_node;
1613	struct variant_data *variant = id->data;
1614	struct mmci_host *host;
1615	struct mmc_host *mmc;
1616	int ret;
1617
1618	/* Must have platform data or Device Tree. */
1619	if (!plat && !np) {
1620		dev_err(&dev->dev, "No plat data or DT found\n");
1621		return -EINVAL;
1622	}
1623
1624	if (!plat) {
1625		plat = devm_kzalloc(&dev->dev, sizeof(*plat), GFP_KERNEL);
1626		if (!plat)
1627			return -ENOMEM;
1628	}
1629
1630	mmc = mmc_alloc_host(sizeof(struct mmci_host), &dev->dev);
1631	if (!mmc)
1632		return -ENOMEM;
1633
1634	ret = mmci_of_parse(np, mmc);
1635	if (ret)
1636		goto host_free;
 
 
 
 
 
 
1637
1638	host = mmc_priv(mmc);
1639	host->mmc = mmc;
1640
1641	/*
1642	 * Some variant (STM32) doesn't have opendrain bit, nevertheless
1643	 * pins can be set accordingly using pinctrl
1644	 */
1645	if (!variant->opendrain) {
1646		host->pinctrl = devm_pinctrl_get(&dev->dev);
1647		if (IS_ERR(host->pinctrl)) {
1648			dev_err(&dev->dev, "failed to get pinctrl");
1649			ret = PTR_ERR(host->pinctrl);
1650			goto host_free;
1651		}
1652
1653		host->pins_default = pinctrl_lookup_state(host->pinctrl,
1654							  PINCTRL_STATE_DEFAULT);
1655		if (IS_ERR(host->pins_default)) {
1656			dev_err(mmc_dev(mmc), "Can't select default pins\n");
1657			ret = PTR_ERR(host->pins_default);
1658			goto host_free;
1659		}
1660
1661		host->pins_opendrain = pinctrl_lookup_state(host->pinctrl,
1662							    MMCI_PINCTRL_STATE_OPENDRAIN);
1663		if (IS_ERR(host->pins_opendrain)) {
1664			dev_err(mmc_dev(mmc), "Can't select opendrain pins\n");
1665			ret = PTR_ERR(host->pins_opendrain);
1666			goto host_free;
1667		}
1668	}
1669
1670	host->hw_designer = amba_manf(dev);
1671	host->hw_revision = amba_rev(dev);
1672	dev_dbg(mmc_dev(mmc), "designer ID = 0x%02x\n", host->hw_designer);
1673	dev_dbg(mmc_dev(mmc), "revision = 0x%01x\n", host->hw_revision);
1674
1675	host->clk = devm_clk_get(&dev->dev, NULL);
1676	if (IS_ERR(host->clk)) {
1677		ret = PTR_ERR(host->clk);
1678		goto host_free;
1679	}
1680
1681	ret = clk_prepare_enable(host->clk);
1682	if (ret)
1683		goto host_free;
1684
1685	if (variant->qcom_fifo)
1686		host->get_rx_fifocnt = mmci_qcom_get_rx_fifocnt;
1687	else
1688		host->get_rx_fifocnt = mmci_get_rx_fifocnt;
1689
1690	host->plat = plat;
1691	host->variant = variant;
1692	host->mclk = clk_get_rate(host->clk);
1693	/*
1694	 * According to the spec, mclk is max 100 MHz,
1695	 * so we try to adjust the clock down to this,
1696	 * (if possible).
1697	 */
1698	if (host->mclk > variant->f_max) {
1699		ret = clk_set_rate(host->clk, variant->f_max);
1700		if (ret < 0)
1701			goto clk_disable;
1702		host->mclk = clk_get_rate(host->clk);
1703		dev_dbg(mmc_dev(mmc), "eventual mclk rate: %u Hz\n",
1704			host->mclk);
1705	}
1706
1707	host->phybase = dev->res.start;
1708	host->base = devm_ioremap_resource(&dev->dev, &dev->res);
1709	if (IS_ERR(host->base)) {
1710		ret = PTR_ERR(host->base);
1711		goto clk_disable;
1712	}
1713
1714	/*
1715	 * The ARM and ST versions of the block have slightly different
1716	 * clock divider equations which means that the minimum divider
1717	 * differs too.
1718	 * on Qualcomm like controllers get the nearest minimum clock to 100Khz
1719	 */
1720	if (variant->st_clkdiv)
1721		mmc->f_min = DIV_ROUND_UP(host->mclk, 257);
1722	else if (variant->explicit_mclk_control)
1723		mmc->f_min = clk_round_rate(host->clk, 100000);
1724	else
1725		mmc->f_min = DIV_ROUND_UP(host->mclk, 512);
1726	/*
1727	 * If no maximum operating frequency is supplied, fall back to use
1728	 * the module parameter, which has a (low) default value in case it
1729	 * is not specified. Either value must not exceed the clock rate into
1730	 * the block, of course.
 
 
1731	 */
1732	if (mmc->f_max)
1733		mmc->f_max = variant->explicit_mclk_control ?
1734				min(variant->f_max, mmc->f_max) :
1735				min(host->mclk, mmc->f_max);
1736	else
1737		mmc->f_max = variant->explicit_mclk_control ?
1738				fmax : min(host->mclk, fmax);
1739
1740
1741	dev_dbg(mmc_dev(mmc), "clocking block at %u Hz\n", mmc->f_max);
1742
1743	/* Get regulators and the supported OCR mask */
1744	ret = mmc_regulator_get_supply(mmc);
1745	if (ret)
1746		goto clk_disable;
1747
1748	if (!mmc->ocr_avail)
1749		mmc->ocr_avail = plat->ocr_mask;
1750	else if (plat->ocr_mask)
1751		dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
1752
1753	/* DT takes precedence over platform data. */
1754	if (!np) {
1755		if (!plat->cd_invert)
1756			mmc->caps2 |= MMC_CAP2_CD_ACTIVE_HIGH;
1757		mmc->caps2 |= MMC_CAP2_RO_ACTIVE_HIGH;
1758	}
1759
1760	/* We support these capabilities. */
1761	mmc->caps |= MMC_CAP_CMD23;
1762
1763	/*
1764	 * Enable busy detection.
1765	 */
1766	if (variant->busy_detect) {
1767		mmci_ops.card_busy = mmci_card_busy;
1768		/*
1769		 * Not all variants have a flag to enable busy detection
1770		 * in the DPSM, but if they do, set it here.
1771		 */
1772		if (variant->busy_dpsm_flag)
1773			mmci_write_datactrlreg(host,
1774					       host->variant->busy_dpsm_flag);
1775		mmc->caps |= MMC_CAP_WAIT_WHILE_BUSY;
1776		mmc->max_busy_timeout = 0;
1777	}
1778
1779	mmc->ops = &mmci_ops;
1780
1781	/* We support these PM capabilities. */
1782	mmc->pm_caps |= MMC_PM_KEEP_POWER;
1783
1784	/*
1785	 * We can do SGIO
1786	 */
1787	mmc->max_segs = NR_SG;
1788
1789	/*
1790	 * Since only a certain number of bits are valid in the data length
1791	 * register, we must ensure that we don't exceed 2^num-1 bytes in a
1792	 * single request.
1793	 */
1794	mmc->max_req_size = (1 << variant->datalength_bits) - 1;
1795
1796	/*
1797	 * Set the maximum segment size.  Since we aren't doing DMA
1798	 * (yet) we are only limited by the data length register.
1799	 */
1800	mmc->max_seg_size = mmc->max_req_size;
1801
1802	/*
1803	 * Block size can be up to 2048 bytes, but must be a power of two.
1804	 */
1805	mmc->max_blk_size = 1 << 11;
1806
1807	/*
1808	 * Limit the number of blocks transferred so that we don't overflow
1809	 * the maximum request size.
1810	 */
1811	mmc->max_blk_count = mmc->max_req_size >> 11;
1812
1813	spin_lock_init(&host->lock);
1814
1815	writel(0, host->base + MMCIMASK0);
1816
1817	if (variant->mmcimask1)
1818		writel(0, host->base + MMCIMASK1);
1819
1820	writel(0xfff, host->base + MMCICLEAR);
1821
1822	/*
1823	 * If:
1824	 * - not using DT but using a descriptor table, or
1825	 * - using a table of descriptors ALONGSIDE DT, or
1826	 * look up these descriptors named "cd" and "wp" right here, fail
1827	 * silently of these do not exist and proceed to try platform data
1828	 */
1829	if (!np) {
1830		ret = mmc_gpiod_request_cd(mmc, "cd", 0, false, 0, NULL);
1831		if (ret < 0) {
1832			if (ret == -EPROBE_DEFER)
1833				goto clk_disable;
1834			else if (gpio_is_valid(plat->gpio_cd)) {
1835				ret = mmc_gpio_request_cd(mmc, plat->gpio_cd, 0);
1836				if (ret)
1837					goto clk_disable;
1838			}
1839		}
1840
1841		ret = mmc_gpiod_request_ro(mmc, "wp", 0, false, 0, NULL);
1842		if (ret < 0) {
1843			if (ret == -EPROBE_DEFER)
1844				goto clk_disable;
1845			else if (gpio_is_valid(plat->gpio_wp)) {
1846				ret = mmc_gpio_request_ro(mmc, plat->gpio_wp);
1847				if (ret)
1848					goto clk_disable;
1849			}
1850		}
1851	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1852
1853	ret = devm_request_irq(&dev->dev, dev->irq[0], mmci_irq, IRQF_SHARED,
1854			DRIVER_NAME " (cmd)", host);
1855	if (ret)
1856		goto clk_disable;
1857
1858	if (!dev->irq[1])
1859		host->singleirq = true;
1860	else {
1861		ret = devm_request_irq(&dev->dev, dev->irq[1], mmci_pio_irq,
1862				IRQF_SHARED, DRIVER_NAME " (pio)", host);
1863		if (ret)
1864			goto clk_disable;
1865	}
1866
1867	writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1868
1869	amba_set_drvdata(dev, mmc);
1870
1871	dev_info(&dev->dev, "%s: PL%03x manf %x rev%u at 0x%08llx irq %d,%d (pio)\n",
1872		 mmc_hostname(mmc), amba_part(dev), amba_manf(dev),
1873		 amba_rev(dev), (unsigned long long)dev->res.start,
1874		 dev->irq[0], dev->irq[1]);
1875
1876	mmci_dma_setup(host);
1877
1878	pm_runtime_set_autosuspend_delay(&dev->dev, 50);
1879	pm_runtime_use_autosuspend(&dev->dev);
 
1880
1881	mmc_add_host(mmc);
1882
1883	pm_runtime_put(&dev->dev);
1884	return 0;
1885
 
 
 
 
 
 
 
 
 
 
 
 
1886 clk_disable:
1887	clk_disable_unprepare(host->clk);
1888 host_free:
1889	mmc_free_host(mmc);
 
 
 
1890	return ret;
1891}
1892
1893static int mmci_remove(struct amba_device *dev)
1894{
1895	struct mmc_host *mmc = amba_get_drvdata(dev);
1896
1897	if (mmc) {
1898		struct mmci_host *host = mmc_priv(mmc);
1899		struct variant_data *variant = host->variant;
1900
1901		/*
1902		 * Undo pm_runtime_put() in probe.  We use the _sync
1903		 * version here so that we can access the primecell.
1904		 */
1905		pm_runtime_get_sync(&dev->dev);
1906
1907		mmc_remove_host(mmc);
1908
1909		writel(0, host->base + MMCIMASK0);
1910
1911		if (variant->mmcimask1)
1912			writel(0, host->base + MMCIMASK1);
1913
1914		writel(0, host->base + MMCICOMMAND);
1915		writel(0, host->base + MMCIDATACTRL);
1916
1917		mmci_dma_release(host);
 
 
 
 
 
 
 
 
 
 
 
 
1918		clk_disable_unprepare(host->clk);
 
1919		mmc_free_host(mmc);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1920	}
1921
1922	return 0;
1923}
 
1924
1925#ifdef CONFIG_PM
1926static void mmci_save(struct mmci_host *host)
1927{
1928	unsigned long flags;
1929
1930	spin_lock_irqsave(&host->lock, flags);
 
1931
1932	writel(0, host->base + MMCIMASK0);
1933	if (host->variant->pwrreg_nopower) {
1934		writel(0, host->base + MMCIDATACTRL);
1935		writel(0, host->base + MMCIPOWER);
1936		writel(0, host->base + MMCICLOCK);
 
 
 
1937	}
1938	mmci_reg_delay(host);
1939
1940	spin_unlock_irqrestore(&host->lock, flags);
1941}
1942
1943static void mmci_restore(struct mmci_host *host)
1944{
1945	unsigned long flags;
1946
1947	spin_lock_irqsave(&host->lock, flags);
 
1948
1949	if (host->variant->pwrreg_nopower) {
1950		writel(host->clk_reg, host->base + MMCICLOCK);
1951		writel(host->datactrl_reg, host->base + MMCIDATACTRL);
1952		writel(host->pwr_reg, host->base + MMCIPOWER);
 
 
 
 
1953	}
1954	writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1955	mmci_reg_delay(host);
1956
1957	spin_unlock_irqrestore(&host->lock, flags);
1958}
1959
1960static int mmci_runtime_suspend(struct device *dev)
1961{
1962	struct amba_device *adev = to_amba_device(dev);
1963	struct mmc_host *mmc = amba_get_drvdata(adev);
1964
1965	if (mmc) {
1966		struct mmci_host *host = mmc_priv(mmc);
1967		pinctrl_pm_select_sleep_state(dev);
1968		mmci_save(host);
1969		clk_disable_unprepare(host->clk);
1970	}
1971
1972	return 0;
1973}
1974
1975static int mmci_runtime_resume(struct device *dev)
1976{
1977	struct amba_device *adev = to_amba_device(dev);
1978	struct mmc_host *mmc = amba_get_drvdata(adev);
1979
1980	if (mmc) {
1981		struct mmci_host *host = mmc_priv(mmc);
1982		clk_prepare_enable(host->clk);
1983		mmci_restore(host);
1984		pinctrl_pm_select_default_state(dev);
1985	}
1986
1987	return 0;
1988}
1989#endif
1990
1991static const struct dev_pm_ops mmci_dev_pm_ops = {
1992	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
1993				pm_runtime_force_resume)
1994	SET_RUNTIME_PM_OPS(mmci_runtime_suspend, mmci_runtime_resume, NULL)
1995};
1996
1997static const struct amba_id mmci_ids[] = {
1998	{
1999		.id	= 0x00041180,
2000		.mask	= 0xff0fffff,
2001		.data	= &variant_arm,
2002	},
2003	{
2004		.id	= 0x01041180,
2005		.mask	= 0xff0fffff,
2006		.data	= &variant_arm_extended_fifo,
2007	},
2008	{
2009		.id	= 0x02041180,
2010		.mask	= 0xff0fffff,
2011		.data	= &variant_arm_extended_fifo_hwfc,
2012	},
2013	{
2014		.id	= 0x00041181,
2015		.mask	= 0x000fffff,
2016		.data	= &variant_arm,
2017	},
2018	/* ST Micro variants */
2019	{
2020		.id     = 0x00180180,
2021		.mask   = 0x00ffffff,
2022		.data	= &variant_u300,
2023	},
2024	{
2025		.id     = 0x10180180,
2026		.mask   = 0xf0ffffff,
2027		.data	= &variant_nomadik,
2028	},
2029	{
2030		.id     = 0x00280180,
2031		.mask   = 0x00ffffff,
2032		.data	= &variant_nomadik,
2033	},
2034	{
2035		.id     = 0x00480180,
2036		.mask   = 0xf0ffffff,
2037		.data	= &variant_ux500,
2038	},
2039	{
2040		.id     = 0x10480180,
2041		.mask   = 0xf0ffffff,
2042		.data	= &variant_ux500v2,
2043	},
2044	{
2045		.id     = 0x00880180,
2046		.mask   = 0x00ffffff,
2047		.data	= &variant_stm32,
2048	},
2049	/* Qualcomm variants */
2050	{
2051		.id     = 0x00051180,
2052		.mask	= 0x000fffff,
2053		.data	= &variant_qcom,
2054	},
2055	{ 0, 0 },
2056};
2057
2058MODULE_DEVICE_TABLE(amba, mmci_ids);
2059
2060static struct amba_driver mmci_driver = {
2061	.drv		= {
2062		.name	= DRIVER_NAME,
2063		.pm	= &mmci_dev_pm_ops,
2064	},
2065	.probe		= mmci_probe,
2066	.remove		= mmci_remove,
2067	.id_table	= mmci_ids,
2068};
2069
2070module_amba_driver(mmci_driver);
2071
2072module_param(fmax, uint, 0444);
2073
2074MODULE_DESCRIPTION("ARM PrimeCell PL180/181 Multimedia Card Interface driver");
2075MODULE_LICENSE("GPL");