Loading...
1/*
2 * linux/drivers/mmc/host/mmci.c - ARM PrimeCell MMCI PL180/1 driver
3 *
4 * Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved.
5 * Copyright (C) 2010 ST-Ericsson SA
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11#include <linux/module.h>
12#include <linux/moduleparam.h>
13#include <linux/init.h>
14#include <linux/ioport.h>
15#include <linux/device.h>
16#include <linux/interrupt.h>
17#include <linux/kernel.h>
18#include <linux/slab.h>
19#include <linux/delay.h>
20#include <linux/err.h>
21#include <linux/highmem.h>
22#include <linux/log2.h>
23#include <linux/mmc/pm.h>
24#include <linux/mmc/host.h>
25#include <linux/mmc/card.h>
26#include <linux/amba/bus.h>
27#include <linux/clk.h>
28#include <linux/scatterlist.h>
29#include <linux/gpio.h>
30#include <linux/of_gpio.h>
31#include <linux/regulator/consumer.h>
32#include <linux/dmaengine.h>
33#include <linux/dma-mapping.h>
34#include <linux/amba/mmci.h>
35#include <linux/pm_runtime.h>
36#include <linux/types.h>
37#include <linux/pinctrl/consumer.h>
38
39#include <asm/div64.h>
40#include <asm/io.h>
41#include <asm/sizes.h>
42
43#include "mmci.h"
44
45#define DRIVER_NAME "mmci-pl18x"
46
47static unsigned int fmax = 515633;
48
49/**
50 * struct variant_data - MMCI variant-specific quirks
51 * @clkreg: default value for MCICLOCK register
52 * @clkreg_enable: enable value for MMCICLOCK register
53 * @datalength_bits: number of bits in the MMCIDATALENGTH register
54 * @fifosize: number of bytes that can be written when MMCI_TXFIFOEMPTY
55 * is asserted (likewise for RX)
56 * @fifohalfsize: number of bytes that can be written when MCI_TXFIFOHALFEMPTY
57 * is asserted (likewise for RX)
58 * @sdio: variant supports SDIO
59 * @st_clkdiv: true if using a ST-specific clock divider algorithm
60 * @blksz_datactrl16: true if Block size is at b16..b30 position in datactrl register
61 * @pwrreg_powerup: power up value for MMCIPOWER register
62 * @signal_direction: input/out direction of bus signals can be indicated
63 * @pwrreg_clkgate: MMCIPOWER register must be used to gate the clock
64 * @busy_detect: true if busy detection on dat0 is supported
65 * @pwrreg_nopower: bits in MMCIPOWER don't controls ext. power supply
66 */
67struct variant_data {
68 unsigned int clkreg;
69 unsigned int clkreg_enable;
70 unsigned int datalength_bits;
71 unsigned int fifosize;
72 unsigned int fifohalfsize;
73 bool sdio;
74 bool st_clkdiv;
75 bool blksz_datactrl16;
76 u32 pwrreg_powerup;
77 bool signal_direction;
78 bool pwrreg_clkgate;
79 bool busy_detect;
80 bool pwrreg_nopower;
81};
82
83static struct variant_data variant_arm = {
84 .fifosize = 16 * 4,
85 .fifohalfsize = 8 * 4,
86 .datalength_bits = 16,
87 .pwrreg_powerup = MCI_PWR_UP,
88};
89
90static struct variant_data variant_arm_extended_fifo = {
91 .fifosize = 128 * 4,
92 .fifohalfsize = 64 * 4,
93 .datalength_bits = 16,
94 .pwrreg_powerup = MCI_PWR_UP,
95};
96
97static struct variant_data variant_arm_extended_fifo_hwfc = {
98 .fifosize = 128 * 4,
99 .fifohalfsize = 64 * 4,
100 .clkreg_enable = MCI_ARM_HWFCEN,
101 .datalength_bits = 16,
102 .pwrreg_powerup = MCI_PWR_UP,
103};
104
105static struct variant_data variant_u300 = {
106 .fifosize = 16 * 4,
107 .fifohalfsize = 8 * 4,
108 .clkreg_enable = MCI_ST_U300_HWFCEN,
109 .datalength_bits = 16,
110 .sdio = true,
111 .pwrreg_powerup = MCI_PWR_ON,
112 .signal_direction = true,
113 .pwrreg_clkgate = true,
114 .pwrreg_nopower = true,
115};
116
117static struct variant_data variant_nomadik = {
118 .fifosize = 16 * 4,
119 .fifohalfsize = 8 * 4,
120 .clkreg = MCI_CLK_ENABLE,
121 .datalength_bits = 24,
122 .sdio = true,
123 .st_clkdiv = true,
124 .pwrreg_powerup = MCI_PWR_ON,
125 .signal_direction = true,
126 .pwrreg_clkgate = true,
127 .pwrreg_nopower = true,
128};
129
130static struct variant_data variant_ux500 = {
131 .fifosize = 30 * 4,
132 .fifohalfsize = 8 * 4,
133 .clkreg = MCI_CLK_ENABLE,
134 .clkreg_enable = MCI_ST_UX500_HWFCEN,
135 .datalength_bits = 24,
136 .sdio = true,
137 .st_clkdiv = true,
138 .pwrreg_powerup = MCI_PWR_ON,
139 .signal_direction = true,
140 .pwrreg_clkgate = true,
141 .busy_detect = true,
142 .pwrreg_nopower = true,
143};
144
145static struct variant_data variant_ux500v2 = {
146 .fifosize = 30 * 4,
147 .fifohalfsize = 8 * 4,
148 .clkreg = MCI_CLK_ENABLE,
149 .clkreg_enable = MCI_ST_UX500_HWFCEN,
150 .datalength_bits = 24,
151 .sdio = true,
152 .st_clkdiv = true,
153 .blksz_datactrl16 = true,
154 .pwrreg_powerup = MCI_PWR_ON,
155 .signal_direction = true,
156 .pwrreg_clkgate = true,
157 .busy_detect = true,
158 .pwrreg_nopower = true,
159};
160
161static int mmci_card_busy(struct mmc_host *mmc)
162{
163 struct mmci_host *host = mmc_priv(mmc);
164 unsigned long flags;
165 int busy = 0;
166
167 pm_runtime_get_sync(mmc_dev(mmc));
168
169 spin_lock_irqsave(&host->lock, flags);
170 if (readl(host->base + MMCISTATUS) & MCI_ST_CARDBUSY)
171 busy = 1;
172 spin_unlock_irqrestore(&host->lock, flags);
173
174 pm_runtime_mark_last_busy(mmc_dev(mmc));
175 pm_runtime_put_autosuspend(mmc_dev(mmc));
176
177 return busy;
178}
179
180/*
181 * Validate mmc prerequisites
182 */
183static int mmci_validate_data(struct mmci_host *host,
184 struct mmc_data *data)
185{
186 if (!data)
187 return 0;
188
189 if (!is_power_of_2(data->blksz)) {
190 dev_err(mmc_dev(host->mmc),
191 "unsupported block size (%d bytes)\n", data->blksz);
192 return -EINVAL;
193 }
194
195 return 0;
196}
197
198static void mmci_reg_delay(struct mmci_host *host)
199{
200 /*
201 * According to the spec, at least three feedback clock cycles
202 * of max 52 MHz must pass between two writes to the MMCICLOCK reg.
203 * Three MCLK clock cycles must pass between two MMCIPOWER reg writes.
204 * Worst delay time during card init is at 100 kHz => 30 us.
205 * Worst delay time when up and running is at 25 MHz => 120 ns.
206 */
207 if (host->cclk < 25000000)
208 udelay(30);
209 else
210 ndelay(120);
211}
212
213/*
214 * This must be called with host->lock held
215 */
216static void mmci_write_clkreg(struct mmci_host *host, u32 clk)
217{
218 if (host->clk_reg != clk) {
219 host->clk_reg = clk;
220 writel(clk, host->base + MMCICLOCK);
221 }
222}
223
224/*
225 * This must be called with host->lock held
226 */
227static void mmci_write_pwrreg(struct mmci_host *host, u32 pwr)
228{
229 if (host->pwr_reg != pwr) {
230 host->pwr_reg = pwr;
231 writel(pwr, host->base + MMCIPOWER);
232 }
233}
234
235/*
236 * This must be called with host->lock held
237 */
238static void mmci_write_datactrlreg(struct mmci_host *host, u32 datactrl)
239{
240 /* Keep ST Micro busy mode if enabled */
241 datactrl |= host->datactrl_reg & MCI_ST_DPSM_BUSYMODE;
242
243 if (host->datactrl_reg != datactrl) {
244 host->datactrl_reg = datactrl;
245 writel(datactrl, host->base + MMCIDATACTRL);
246 }
247}
248
249/*
250 * This must be called with host->lock held
251 */
252static void mmci_set_clkreg(struct mmci_host *host, unsigned int desired)
253{
254 struct variant_data *variant = host->variant;
255 u32 clk = variant->clkreg;
256
257 /* Make sure cclk reflects the current calculated clock */
258 host->cclk = 0;
259
260 if (desired) {
261 if (desired >= host->mclk) {
262 clk = MCI_CLK_BYPASS;
263 if (variant->st_clkdiv)
264 clk |= MCI_ST_UX500_NEG_EDGE;
265 host->cclk = host->mclk;
266 } else if (variant->st_clkdiv) {
267 /*
268 * DB8500 TRM says f = mclk / (clkdiv + 2)
269 * => clkdiv = (mclk / f) - 2
270 * Round the divider up so we don't exceed the max
271 * frequency
272 */
273 clk = DIV_ROUND_UP(host->mclk, desired) - 2;
274 if (clk >= 256)
275 clk = 255;
276 host->cclk = host->mclk / (clk + 2);
277 } else {
278 /*
279 * PL180 TRM says f = mclk / (2 * (clkdiv + 1))
280 * => clkdiv = mclk / (2 * f) - 1
281 */
282 clk = host->mclk / (2 * desired) - 1;
283 if (clk >= 256)
284 clk = 255;
285 host->cclk = host->mclk / (2 * (clk + 1));
286 }
287
288 clk |= variant->clkreg_enable;
289 clk |= MCI_CLK_ENABLE;
290 /* This hasn't proven to be worthwhile */
291 /* clk |= MCI_CLK_PWRSAVE; */
292 }
293
294 /* Set actual clock for debug */
295 host->mmc->actual_clock = host->cclk;
296
297 if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4)
298 clk |= MCI_4BIT_BUS;
299 if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8)
300 clk |= MCI_ST_8BIT_BUS;
301
302 if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50)
303 clk |= MCI_ST_UX500_NEG_EDGE;
304
305 mmci_write_clkreg(host, clk);
306}
307
308static void
309mmci_request_end(struct mmci_host *host, struct mmc_request *mrq)
310{
311 writel(0, host->base + MMCICOMMAND);
312
313 BUG_ON(host->data);
314
315 host->mrq = NULL;
316 host->cmd = NULL;
317
318 mmc_request_done(host->mmc, mrq);
319
320 pm_runtime_mark_last_busy(mmc_dev(host->mmc));
321 pm_runtime_put_autosuspend(mmc_dev(host->mmc));
322}
323
324static void mmci_set_mask1(struct mmci_host *host, unsigned int mask)
325{
326 void __iomem *base = host->base;
327
328 if (host->singleirq) {
329 unsigned int mask0 = readl(base + MMCIMASK0);
330
331 mask0 &= ~MCI_IRQ1MASK;
332 mask0 |= mask;
333
334 writel(mask0, base + MMCIMASK0);
335 }
336
337 writel(mask, base + MMCIMASK1);
338}
339
340static void mmci_stop_data(struct mmci_host *host)
341{
342 mmci_write_datactrlreg(host, 0);
343 mmci_set_mask1(host, 0);
344 host->data = NULL;
345}
346
347static void mmci_init_sg(struct mmci_host *host, struct mmc_data *data)
348{
349 unsigned int flags = SG_MITER_ATOMIC;
350
351 if (data->flags & MMC_DATA_READ)
352 flags |= SG_MITER_TO_SG;
353 else
354 flags |= SG_MITER_FROM_SG;
355
356 sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
357}
358
359/*
360 * All the DMA operation mode stuff goes inside this ifdef.
361 * This assumes that you have a generic DMA device interface,
362 * no custom DMA interfaces are supported.
363 */
364#ifdef CONFIG_DMA_ENGINE
365static void mmci_dma_setup(struct mmci_host *host)
366{
367 struct mmci_platform_data *plat = host->plat;
368 const char *rxname, *txname;
369 dma_cap_mask_t mask;
370
371 host->dma_rx_channel = dma_request_slave_channel(mmc_dev(host->mmc), "rx");
372 host->dma_tx_channel = dma_request_slave_channel(mmc_dev(host->mmc), "tx");
373
374 /* initialize pre request cookie */
375 host->next_data.cookie = 1;
376
377 /* Try to acquire a generic DMA engine slave channel */
378 dma_cap_zero(mask);
379 dma_cap_set(DMA_SLAVE, mask);
380
381 if (plat && plat->dma_filter) {
382 if (!host->dma_rx_channel && plat->dma_rx_param) {
383 host->dma_rx_channel = dma_request_channel(mask,
384 plat->dma_filter,
385 plat->dma_rx_param);
386 /* E.g if no DMA hardware is present */
387 if (!host->dma_rx_channel)
388 dev_err(mmc_dev(host->mmc), "no RX DMA channel\n");
389 }
390
391 if (!host->dma_tx_channel && plat->dma_tx_param) {
392 host->dma_tx_channel = dma_request_channel(mask,
393 plat->dma_filter,
394 plat->dma_tx_param);
395 if (!host->dma_tx_channel)
396 dev_warn(mmc_dev(host->mmc), "no TX DMA channel\n");
397 }
398 }
399
400 /*
401 * If only an RX channel is specified, the driver will
402 * attempt to use it bidirectionally, however if it is
403 * is specified but cannot be located, DMA will be disabled.
404 */
405 if (host->dma_rx_channel && !host->dma_tx_channel)
406 host->dma_tx_channel = host->dma_rx_channel;
407
408 if (host->dma_rx_channel)
409 rxname = dma_chan_name(host->dma_rx_channel);
410 else
411 rxname = "none";
412
413 if (host->dma_tx_channel)
414 txname = dma_chan_name(host->dma_tx_channel);
415 else
416 txname = "none";
417
418 dev_info(mmc_dev(host->mmc), "DMA channels RX %s, TX %s\n",
419 rxname, txname);
420
421 /*
422 * Limit the maximum segment size in any SG entry according to
423 * the parameters of the DMA engine device.
424 */
425 if (host->dma_tx_channel) {
426 struct device *dev = host->dma_tx_channel->device->dev;
427 unsigned int max_seg_size = dma_get_max_seg_size(dev);
428
429 if (max_seg_size < host->mmc->max_seg_size)
430 host->mmc->max_seg_size = max_seg_size;
431 }
432 if (host->dma_rx_channel) {
433 struct device *dev = host->dma_rx_channel->device->dev;
434 unsigned int max_seg_size = dma_get_max_seg_size(dev);
435
436 if (max_seg_size < host->mmc->max_seg_size)
437 host->mmc->max_seg_size = max_seg_size;
438 }
439}
440
441/*
442 * This is used in or so inline it
443 * so it can be discarded.
444 */
445static inline void mmci_dma_release(struct mmci_host *host)
446{
447 struct mmci_platform_data *plat = host->plat;
448
449 if (host->dma_rx_channel)
450 dma_release_channel(host->dma_rx_channel);
451 if (host->dma_tx_channel && plat->dma_tx_param)
452 dma_release_channel(host->dma_tx_channel);
453 host->dma_rx_channel = host->dma_tx_channel = NULL;
454}
455
456static void mmci_dma_data_error(struct mmci_host *host)
457{
458 dev_err(mmc_dev(host->mmc), "error during DMA transfer!\n");
459 dmaengine_terminate_all(host->dma_current);
460 host->dma_current = NULL;
461 host->dma_desc_current = NULL;
462 host->data->host_cookie = 0;
463}
464
465static void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
466{
467 struct dma_chan *chan;
468 enum dma_data_direction dir;
469
470 if (data->flags & MMC_DATA_READ) {
471 dir = DMA_FROM_DEVICE;
472 chan = host->dma_rx_channel;
473 } else {
474 dir = DMA_TO_DEVICE;
475 chan = host->dma_tx_channel;
476 }
477
478 dma_unmap_sg(chan->device->dev, data->sg, data->sg_len, dir);
479}
480
481static void mmci_dma_finalize(struct mmci_host *host, struct mmc_data *data)
482{
483 u32 status;
484 int i;
485
486 /* Wait up to 1ms for the DMA to complete */
487 for (i = 0; ; i++) {
488 status = readl(host->base + MMCISTATUS);
489 if (!(status & MCI_RXDATAAVLBLMASK) || i >= 100)
490 break;
491 udelay(10);
492 }
493
494 /*
495 * Check to see whether we still have some data left in the FIFO -
496 * this catches DMA controllers which are unable to monitor the
497 * DMALBREQ and DMALSREQ signals while allowing us to DMA to non-
498 * contiguous buffers. On TX, we'll get a FIFO underrun error.
499 */
500 if (status & MCI_RXDATAAVLBLMASK) {
501 mmci_dma_data_error(host);
502 if (!data->error)
503 data->error = -EIO;
504 }
505
506 if (!data->host_cookie)
507 mmci_dma_unmap(host, data);
508
509 /*
510 * Use of DMA with scatter-gather is impossible.
511 * Give up with DMA and switch back to PIO mode.
512 */
513 if (status & MCI_RXDATAAVLBLMASK) {
514 dev_err(mmc_dev(host->mmc), "buggy DMA detected. Taking evasive action.\n");
515 mmci_dma_release(host);
516 }
517
518 host->dma_current = NULL;
519 host->dma_desc_current = NULL;
520}
521
522/* prepares DMA channel and DMA descriptor, returns non-zero on failure */
523static int __mmci_dma_prep_data(struct mmci_host *host, struct mmc_data *data,
524 struct dma_chan **dma_chan,
525 struct dma_async_tx_descriptor **dma_desc)
526{
527 struct variant_data *variant = host->variant;
528 struct dma_slave_config conf = {
529 .src_addr = host->phybase + MMCIFIFO,
530 .dst_addr = host->phybase + MMCIFIFO,
531 .src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
532 .dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
533 .src_maxburst = variant->fifohalfsize >> 2, /* # of words */
534 .dst_maxburst = variant->fifohalfsize >> 2, /* # of words */
535 .device_fc = false,
536 };
537 struct dma_chan *chan;
538 struct dma_device *device;
539 struct dma_async_tx_descriptor *desc;
540 enum dma_data_direction buffer_dirn;
541 int nr_sg;
542
543 if (data->flags & MMC_DATA_READ) {
544 conf.direction = DMA_DEV_TO_MEM;
545 buffer_dirn = DMA_FROM_DEVICE;
546 chan = host->dma_rx_channel;
547 } else {
548 conf.direction = DMA_MEM_TO_DEV;
549 buffer_dirn = DMA_TO_DEVICE;
550 chan = host->dma_tx_channel;
551 }
552
553 /* If there's no DMA channel, fall back to PIO */
554 if (!chan)
555 return -EINVAL;
556
557 /* If less than or equal to the fifo size, don't bother with DMA */
558 if (data->blksz * data->blocks <= variant->fifosize)
559 return -EINVAL;
560
561 device = chan->device;
562 nr_sg = dma_map_sg(device->dev, data->sg, data->sg_len, buffer_dirn);
563 if (nr_sg == 0)
564 return -EINVAL;
565
566 dmaengine_slave_config(chan, &conf);
567 desc = dmaengine_prep_slave_sg(chan, data->sg, nr_sg,
568 conf.direction, DMA_CTRL_ACK);
569 if (!desc)
570 goto unmap_exit;
571
572 *dma_chan = chan;
573 *dma_desc = desc;
574
575 return 0;
576
577 unmap_exit:
578 dma_unmap_sg(device->dev, data->sg, data->sg_len, buffer_dirn);
579 return -ENOMEM;
580}
581
582static inline int mmci_dma_prep_data(struct mmci_host *host,
583 struct mmc_data *data)
584{
585 /* Check if next job is already prepared. */
586 if (host->dma_current && host->dma_desc_current)
587 return 0;
588
589 /* No job were prepared thus do it now. */
590 return __mmci_dma_prep_data(host, data, &host->dma_current,
591 &host->dma_desc_current);
592}
593
594static inline int mmci_dma_prep_next(struct mmci_host *host,
595 struct mmc_data *data)
596{
597 struct mmci_host_next *nd = &host->next_data;
598 return __mmci_dma_prep_data(host, data, &nd->dma_chan, &nd->dma_desc);
599}
600
601static int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
602{
603 int ret;
604 struct mmc_data *data = host->data;
605
606 ret = mmci_dma_prep_data(host, host->data);
607 if (ret)
608 return ret;
609
610 /* Okay, go for it. */
611 dev_vdbg(mmc_dev(host->mmc),
612 "Submit MMCI DMA job, sglen %d blksz %04x blks %04x flags %08x\n",
613 data->sg_len, data->blksz, data->blocks, data->flags);
614 dmaengine_submit(host->dma_desc_current);
615 dma_async_issue_pending(host->dma_current);
616
617 datactrl |= MCI_DPSM_DMAENABLE;
618
619 /* Trigger the DMA transfer */
620 mmci_write_datactrlreg(host, datactrl);
621
622 /*
623 * Let the MMCI say when the data is ended and it's time
624 * to fire next DMA request. When that happens, MMCI will
625 * call mmci_data_end()
626 */
627 writel(readl(host->base + MMCIMASK0) | MCI_DATAENDMASK,
628 host->base + MMCIMASK0);
629 return 0;
630}
631
632static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
633{
634 struct mmci_host_next *next = &host->next_data;
635
636 WARN_ON(data->host_cookie && data->host_cookie != next->cookie);
637 WARN_ON(!data->host_cookie && (next->dma_desc || next->dma_chan));
638
639 host->dma_desc_current = next->dma_desc;
640 host->dma_current = next->dma_chan;
641 next->dma_desc = NULL;
642 next->dma_chan = NULL;
643}
644
645static void mmci_pre_request(struct mmc_host *mmc, struct mmc_request *mrq,
646 bool is_first_req)
647{
648 struct mmci_host *host = mmc_priv(mmc);
649 struct mmc_data *data = mrq->data;
650 struct mmci_host_next *nd = &host->next_data;
651
652 if (!data)
653 return;
654
655 BUG_ON(data->host_cookie);
656
657 if (mmci_validate_data(host, data))
658 return;
659
660 if (!mmci_dma_prep_next(host, data))
661 data->host_cookie = ++nd->cookie < 0 ? 1 : nd->cookie;
662}
663
664static void mmci_post_request(struct mmc_host *mmc, struct mmc_request *mrq,
665 int err)
666{
667 struct mmci_host *host = mmc_priv(mmc);
668 struct mmc_data *data = mrq->data;
669
670 if (!data || !data->host_cookie)
671 return;
672
673 mmci_dma_unmap(host, data);
674
675 if (err) {
676 struct mmci_host_next *next = &host->next_data;
677 struct dma_chan *chan;
678 if (data->flags & MMC_DATA_READ)
679 chan = host->dma_rx_channel;
680 else
681 chan = host->dma_tx_channel;
682 dmaengine_terminate_all(chan);
683
684 next->dma_desc = NULL;
685 next->dma_chan = NULL;
686 }
687}
688
689#else
690/* Blank functions if the DMA engine is not available */
691static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
692{
693}
694static inline void mmci_dma_setup(struct mmci_host *host)
695{
696}
697
698static inline void mmci_dma_release(struct mmci_host *host)
699{
700}
701
702static inline void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
703{
704}
705
706static inline void mmci_dma_finalize(struct mmci_host *host,
707 struct mmc_data *data)
708{
709}
710
711static inline void mmci_dma_data_error(struct mmci_host *host)
712{
713}
714
715static inline int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
716{
717 return -ENOSYS;
718}
719
720#define mmci_pre_request NULL
721#define mmci_post_request NULL
722
723#endif
724
725static void mmci_start_data(struct mmci_host *host, struct mmc_data *data)
726{
727 struct variant_data *variant = host->variant;
728 unsigned int datactrl, timeout, irqmask;
729 unsigned long long clks;
730 void __iomem *base;
731 int blksz_bits;
732
733 dev_dbg(mmc_dev(host->mmc), "blksz %04x blks %04x flags %08x\n",
734 data->blksz, data->blocks, data->flags);
735
736 host->data = data;
737 host->size = data->blksz * data->blocks;
738 data->bytes_xfered = 0;
739
740 clks = (unsigned long long)data->timeout_ns * host->cclk;
741 do_div(clks, 1000000000UL);
742
743 timeout = data->timeout_clks + (unsigned int)clks;
744
745 base = host->base;
746 writel(timeout, base + MMCIDATATIMER);
747 writel(host->size, base + MMCIDATALENGTH);
748
749 blksz_bits = ffs(data->blksz) - 1;
750 BUG_ON(1 << blksz_bits != data->blksz);
751
752 if (variant->blksz_datactrl16)
753 datactrl = MCI_DPSM_ENABLE | (data->blksz << 16);
754 else
755 datactrl = MCI_DPSM_ENABLE | blksz_bits << 4;
756
757 if (data->flags & MMC_DATA_READ)
758 datactrl |= MCI_DPSM_DIRECTION;
759
760 /* The ST Micro variants has a special bit to enable SDIO */
761 if (variant->sdio && host->mmc->card)
762 if (mmc_card_sdio(host->mmc->card)) {
763 /*
764 * The ST Micro variants has a special bit
765 * to enable SDIO.
766 */
767 u32 clk;
768
769 datactrl |= MCI_ST_DPSM_SDIOEN;
770
771 /*
772 * The ST Micro variant for SDIO small write transfers
773 * needs to have clock H/W flow control disabled,
774 * otherwise the transfer will not start. The threshold
775 * depends on the rate of MCLK.
776 */
777 if (data->flags & MMC_DATA_WRITE &&
778 (host->size < 8 ||
779 (host->size <= 8 && host->mclk > 50000000)))
780 clk = host->clk_reg & ~variant->clkreg_enable;
781 else
782 clk = host->clk_reg | variant->clkreg_enable;
783
784 mmci_write_clkreg(host, clk);
785 }
786
787 if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50)
788 datactrl |= MCI_ST_DPSM_DDRMODE;
789
790 /*
791 * Attempt to use DMA operation mode, if this
792 * should fail, fall back to PIO mode
793 */
794 if (!mmci_dma_start_data(host, datactrl))
795 return;
796
797 /* IRQ mode, map the SG list for CPU reading/writing */
798 mmci_init_sg(host, data);
799
800 if (data->flags & MMC_DATA_READ) {
801 irqmask = MCI_RXFIFOHALFFULLMASK;
802
803 /*
804 * If we have less than the fifo 'half-full' threshold to
805 * transfer, trigger a PIO interrupt as soon as any data
806 * is available.
807 */
808 if (host->size < variant->fifohalfsize)
809 irqmask |= MCI_RXDATAAVLBLMASK;
810 } else {
811 /*
812 * We don't actually need to include "FIFO empty" here
813 * since its implicit in "FIFO half empty".
814 */
815 irqmask = MCI_TXFIFOHALFEMPTYMASK;
816 }
817
818 mmci_write_datactrlreg(host, datactrl);
819 writel(readl(base + MMCIMASK0) & ~MCI_DATAENDMASK, base + MMCIMASK0);
820 mmci_set_mask1(host, irqmask);
821}
822
823static void
824mmci_start_command(struct mmci_host *host, struct mmc_command *cmd, u32 c)
825{
826 void __iomem *base = host->base;
827
828 dev_dbg(mmc_dev(host->mmc), "op %02x arg %08x flags %08x\n",
829 cmd->opcode, cmd->arg, cmd->flags);
830
831 if (readl(base + MMCICOMMAND) & MCI_CPSM_ENABLE) {
832 writel(0, base + MMCICOMMAND);
833 udelay(1);
834 }
835
836 c |= cmd->opcode | MCI_CPSM_ENABLE;
837 if (cmd->flags & MMC_RSP_PRESENT) {
838 if (cmd->flags & MMC_RSP_136)
839 c |= MCI_CPSM_LONGRSP;
840 c |= MCI_CPSM_RESPONSE;
841 }
842 if (/*interrupt*/0)
843 c |= MCI_CPSM_INTERRUPT;
844
845 host->cmd = cmd;
846
847 writel(cmd->arg, base + MMCIARGUMENT);
848 writel(c, base + MMCICOMMAND);
849}
850
851static void
852mmci_data_irq(struct mmci_host *host, struct mmc_data *data,
853 unsigned int status)
854{
855 /* First check for errors */
856 if (status & (MCI_DATACRCFAIL|MCI_DATATIMEOUT|MCI_STARTBITERR|
857 MCI_TXUNDERRUN|MCI_RXOVERRUN)) {
858 u32 remain, success;
859
860 /* Terminate the DMA transfer */
861 if (dma_inprogress(host)) {
862 mmci_dma_data_error(host);
863 mmci_dma_unmap(host, data);
864 }
865
866 /*
867 * Calculate how far we are into the transfer. Note that
868 * the data counter gives the number of bytes transferred
869 * on the MMC bus, not on the host side. On reads, this
870 * can be as much as a FIFO-worth of data ahead. This
871 * matters for FIFO overruns only.
872 */
873 remain = readl(host->base + MMCIDATACNT);
874 success = data->blksz * data->blocks - remain;
875
876 dev_dbg(mmc_dev(host->mmc), "MCI ERROR IRQ, status 0x%08x at 0x%08x\n",
877 status, success);
878 if (status & MCI_DATACRCFAIL) {
879 /* Last block was not successful */
880 success -= 1;
881 data->error = -EILSEQ;
882 } else if (status & MCI_DATATIMEOUT) {
883 data->error = -ETIMEDOUT;
884 } else if (status & MCI_STARTBITERR) {
885 data->error = -ECOMM;
886 } else if (status & MCI_TXUNDERRUN) {
887 data->error = -EIO;
888 } else if (status & MCI_RXOVERRUN) {
889 if (success > host->variant->fifosize)
890 success -= host->variant->fifosize;
891 else
892 success = 0;
893 data->error = -EIO;
894 }
895 data->bytes_xfered = round_down(success, data->blksz);
896 }
897
898 if (status & MCI_DATABLOCKEND)
899 dev_err(mmc_dev(host->mmc), "stray MCI_DATABLOCKEND interrupt\n");
900
901 if (status & MCI_DATAEND || data->error) {
902 if (dma_inprogress(host))
903 mmci_dma_finalize(host, data);
904 mmci_stop_data(host);
905
906 if (!data->error)
907 /* The error clause is handled above, success! */
908 data->bytes_xfered = data->blksz * data->blocks;
909
910 if (!data->stop || host->mrq->sbc) {
911 mmci_request_end(host, data->mrq);
912 } else {
913 mmci_start_command(host, data->stop, 0);
914 }
915 }
916}
917
918static void
919mmci_cmd_irq(struct mmci_host *host, struct mmc_command *cmd,
920 unsigned int status)
921{
922 void __iomem *base = host->base;
923 bool sbc = (cmd == host->mrq->sbc);
924 bool busy_resp = host->variant->busy_detect &&
925 (cmd->flags & MMC_RSP_BUSY);
926
927 /* Check if we need to wait for busy completion. */
928 if (host->busy_status && (status & MCI_ST_CARDBUSY))
929 return;
930
931 /* Enable busy completion if needed and supported. */
932 if (!host->busy_status && busy_resp &&
933 !(status & (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT)) &&
934 (readl(base + MMCISTATUS) & MCI_ST_CARDBUSY)) {
935 writel(readl(base + MMCIMASK0) | MCI_ST_BUSYEND,
936 base + MMCIMASK0);
937 host->busy_status = status & (MCI_CMDSENT|MCI_CMDRESPEND);
938 return;
939 }
940
941 /* At busy completion, mask the IRQ and complete the request. */
942 if (host->busy_status) {
943 writel(readl(base + MMCIMASK0) & ~MCI_ST_BUSYEND,
944 base + MMCIMASK0);
945 host->busy_status = 0;
946 }
947
948 host->cmd = NULL;
949
950 if (status & MCI_CMDTIMEOUT) {
951 cmd->error = -ETIMEDOUT;
952 } else if (status & MCI_CMDCRCFAIL && cmd->flags & MMC_RSP_CRC) {
953 cmd->error = -EILSEQ;
954 } else {
955 cmd->resp[0] = readl(base + MMCIRESPONSE0);
956 cmd->resp[1] = readl(base + MMCIRESPONSE1);
957 cmd->resp[2] = readl(base + MMCIRESPONSE2);
958 cmd->resp[3] = readl(base + MMCIRESPONSE3);
959 }
960
961 if ((!sbc && !cmd->data) || cmd->error) {
962 if (host->data) {
963 /* Terminate the DMA transfer */
964 if (dma_inprogress(host)) {
965 mmci_dma_data_error(host);
966 mmci_dma_unmap(host, host->data);
967 }
968 mmci_stop_data(host);
969 }
970 mmci_request_end(host, host->mrq);
971 } else if (sbc) {
972 mmci_start_command(host, host->mrq->cmd, 0);
973 } else if (!(cmd->data->flags & MMC_DATA_READ)) {
974 mmci_start_data(host, cmd->data);
975 }
976}
977
978static int mmci_pio_read(struct mmci_host *host, char *buffer, unsigned int remain)
979{
980 void __iomem *base = host->base;
981 char *ptr = buffer;
982 u32 status;
983 int host_remain = host->size;
984
985 do {
986 int count = host_remain - (readl(base + MMCIFIFOCNT) << 2);
987
988 if (count > remain)
989 count = remain;
990
991 if (count <= 0)
992 break;
993
994 /*
995 * SDIO especially may want to send something that is
996 * not divisible by 4 (as opposed to card sectors
997 * etc). Therefore make sure to always read the last bytes
998 * while only doing full 32-bit reads towards the FIFO.
999 */
1000 if (unlikely(count & 0x3)) {
1001 if (count < 4) {
1002 unsigned char buf[4];
1003 ioread32_rep(base + MMCIFIFO, buf, 1);
1004 memcpy(ptr, buf, count);
1005 } else {
1006 ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1007 count &= ~0x3;
1008 }
1009 } else {
1010 ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1011 }
1012
1013 ptr += count;
1014 remain -= count;
1015 host_remain -= count;
1016
1017 if (remain == 0)
1018 break;
1019
1020 status = readl(base + MMCISTATUS);
1021 } while (status & MCI_RXDATAAVLBL);
1022
1023 return ptr - buffer;
1024}
1025
1026static int mmci_pio_write(struct mmci_host *host, char *buffer, unsigned int remain, u32 status)
1027{
1028 struct variant_data *variant = host->variant;
1029 void __iomem *base = host->base;
1030 char *ptr = buffer;
1031
1032 do {
1033 unsigned int count, maxcnt;
1034
1035 maxcnt = status & MCI_TXFIFOEMPTY ?
1036 variant->fifosize : variant->fifohalfsize;
1037 count = min(remain, maxcnt);
1038
1039 /*
1040 * SDIO especially may want to send something that is
1041 * not divisible by 4 (as opposed to card sectors
1042 * etc), and the FIFO only accept full 32-bit writes.
1043 * So compensate by adding +3 on the count, a single
1044 * byte become a 32bit write, 7 bytes will be two
1045 * 32bit writes etc.
1046 */
1047 iowrite32_rep(base + MMCIFIFO, ptr, (count + 3) >> 2);
1048
1049 ptr += count;
1050 remain -= count;
1051
1052 if (remain == 0)
1053 break;
1054
1055 status = readl(base + MMCISTATUS);
1056 } while (status & MCI_TXFIFOHALFEMPTY);
1057
1058 return ptr - buffer;
1059}
1060
1061/*
1062 * PIO data transfer IRQ handler.
1063 */
1064static irqreturn_t mmci_pio_irq(int irq, void *dev_id)
1065{
1066 struct mmci_host *host = dev_id;
1067 struct sg_mapping_iter *sg_miter = &host->sg_miter;
1068 struct variant_data *variant = host->variant;
1069 void __iomem *base = host->base;
1070 unsigned long flags;
1071 u32 status;
1072
1073 status = readl(base + MMCISTATUS);
1074
1075 dev_dbg(mmc_dev(host->mmc), "irq1 (pio) %08x\n", status);
1076
1077 local_irq_save(flags);
1078
1079 do {
1080 unsigned int remain, len;
1081 char *buffer;
1082
1083 /*
1084 * For write, we only need to test the half-empty flag
1085 * here - if the FIFO is completely empty, then by
1086 * definition it is more than half empty.
1087 *
1088 * For read, check for data available.
1089 */
1090 if (!(status & (MCI_TXFIFOHALFEMPTY|MCI_RXDATAAVLBL)))
1091 break;
1092
1093 if (!sg_miter_next(sg_miter))
1094 break;
1095
1096 buffer = sg_miter->addr;
1097 remain = sg_miter->length;
1098
1099 len = 0;
1100 if (status & MCI_RXACTIVE)
1101 len = mmci_pio_read(host, buffer, remain);
1102 if (status & MCI_TXACTIVE)
1103 len = mmci_pio_write(host, buffer, remain, status);
1104
1105 sg_miter->consumed = len;
1106
1107 host->size -= len;
1108 remain -= len;
1109
1110 if (remain)
1111 break;
1112
1113 status = readl(base + MMCISTATUS);
1114 } while (1);
1115
1116 sg_miter_stop(sg_miter);
1117
1118 local_irq_restore(flags);
1119
1120 /*
1121 * If we have less than the fifo 'half-full' threshold to transfer,
1122 * trigger a PIO interrupt as soon as any data is available.
1123 */
1124 if (status & MCI_RXACTIVE && host->size < variant->fifohalfsize)
1125 mmci_set_mask1(host, MCI_RXDATAAVLBLMASK);
1126
1127 /*
1128 * If we run out of data, disable the data IRQs; this
1129 * prevents a race where the FIFO becomes empty before
1130 * the chip itself has disabled the data path, and
1131 * stops us racing with our data end IRQ.
1132 */
1133 if (host->size == 0) {
1134 mmci_set_mask1(host, 0);
1135 writel(readl(base + MMCIMASK0) | MCI_DATAENDMASK, base + MMCIMASK0);
1136 }
1137
1138 return IRQ_HANDLED;
1139}
1140
1141/*
1142 * Handle completion of command and data transfers.
1143 */
1144static irqreturn_t mmci_irq(int irq, void *dev_id)
1145{
1146 struct mmci_host *host = dev_id;
1147 u32 status;
1148 int ret = 0;
1149
1150 spin_lock(&host->lock);
1151
1152 do {
1153 struct mmc_command *cmd;
1154 struct mmc_data *data;
1155
1156 status = readl(host->base + MMCISTATUS);
1157
1158 if (host->singleirq) {
1159 if (status & readl(host->base + MMCIMASK1))
1160 mmci_pio_irq(irq, dev_id);
1161
1162 status &= ~MCI_IRQ1MASK;
1163 }
1164
1165 /*
1166 * We intentionally clear the MCI_ST_CARDBUSY IRQ here (if it's
1167 * enabled) since the HW seems to be triggering the IRQ on both
1168 * edges while monitoring DAT0 for busy completion.
1169 */
1170 status &= readl(host->base + MMCIMASK0);
1171 writel(status, host->base + MMCICLEAR);
1172
1173 dev_dbg(mmc_dev(host->mmc), "irq0 (data+cmd) %08x\n", status);
1174
1175 cmd = host->cmd;
1176 if ((status|host->busy_status) & (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT|
1177 MCI_CMDSENT|MCI_CMDRESPEND) && cmd)
1178 mmci_cmd_irq(host, cmd, status);
1179
1180 data = host->data;
1181 if (status & (MCI_DATACRCFAIL|MCI_DATATIMEOUT|MCI_STARTBITERR|
1182 MCI_TXUNDERRUN|MCI_RXOVERRUN|MCI_DATAEND|
1183 MCI_DATABLOCKEND) && data)
1184 mmci_data_irq(host, data, status);
1185
1186 /* Don't poll for busy completion in irq context. */
1187 if (host->busy_status)
1188 status &= ~MCI_ST_CARDBUSY;
1189
1190 ret = 1;
1191 } while (status);
1192
1193 spin_unlock(&host->lock);
1194
1195 return IRQ_RETVAL(ret);
1196}
1197
1198static void mmci_request(struct mmc_host *mmc, struct mmc_request *mrq)
1199{
1200 struct mmci_host *host = mmc_priv(mmc);
1201 unsigned long flags;
1202
1203 WARN_ON(host->mrq != NULL);
1204
1205 mrq->cmd->error = mmci_validate_data(host, mrq->data);
1206 if (mrq->cmd->error) {
1207 mmc_request_done(mmc, mrq);
1208 return;
1209 }
1210
1211 pm_runtime_get_sync(mmc_dev(mmc));
1212
1213 spin_lock_irqsave(&host->lock, flags);
1214
1215 host->mrq = mrq;
1216
1217 if (mrq->data)
1218 mmci_get_next_data(host, mrq->data);
1219
1220 if (mrq->data && mrq->data->flags & MMC_DATA_READ)
1221 mmci_start_data(host, mrq->data);
1222
1223 if (mrq->sbc)
1224 mmci_start_command(host, mrq->sbc, 0);
1225 else
1226 mmci_start_command(host, mrq->cmd, 0);
1227
1228 spin_unlock_irqrestore(&host->lock, flags);
1229}
1230
1231static void mmci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1232{
1233 struct mmci_host *host = mmc_priv(mmc);
1234 struct variant_data *variant = host->variant;
1235 u32 pwr = 0;
1236 unsigned long flags;
1237 int ret;
1238
1239 pm_runtime_get_sync(mmc_dev(mmc));
1240
1241 if (host->plat->ios_handler &&
1242 host->plat->ios_handler(mmc_dev(mmc), ios))
1243 dev_err(mmc_dev(mmc), "platform ios_handler failed\n");
1244
1245 switch (ios->power_mode) {
1246 case MMC_POWER_OFF:
1247 if (!IS_ERR(mmc->supply.vmmc))
1248 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1249
1250 if (!IS_ERR(mmc->supply.vqmmc) && host->vqmmc_enabled) {
1251 regulator_disable(mmc->supply.vqmmc);
1252 host->vqmmc_enabled = false;
1253 }
1254
1255 break;
1256 case MMC_POWER_UP:
1257 if (!IS_ERR(mmc->supply.vmmc))
1258 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
1259
1260 /*
1261 * The ST Micro variant doesn't have the PL180s MCI_PWR_UP
1262 * and instead uses MCI_PWR_ON so apply whatever value is
1263 * configured in the variant data.
1264 */
1265 pwr |= variant->pwrreg_powerup;
1266
1267 break;
1268 case MMC_POWER_ON:
1269 if (!IS_ERR(mmc->supply.vqmmc) && !host->vqmmc_enabled) {
1270 ret = regulator_enable(mmc->supply.vqmmc);
1271 if (ret < 0)
1272 dev_err(mmc_dev(mmc),
1273 "failed to enable vqmmc regulator\n");
1274 else
1275 host->vqmmc_enabled = true;
1276 }
1277
1278 pwr |= MCI_PWR_ON;
1279 break;
1280 }
1281
1282 if (variant->signal_direction && ios->power_mode != MMC_POWER_OFF) {
1283 /*
1284 * The ST Micro variant has some additional bits
1285 * indicating signal direction for the signals in
1286 * the SD/MMC bus and feedback-clock usage.
1287 */
1288 pwr |= host->plat->sigdir;
1289
1290 if (ios->bus_width == MMC_BUS_WIDTH_4)
1291 pwr &= ~MCI_ST_DATA74DIREN;
1292 else if (ios->bus_width == MMC_BUS_WIDTH_1)
1293 pwr &= (~MCI_ST_DATA74DIREN &
1294 ~MCI_ST_DATA31DIREN &
1295 ~MCI_ST_DATA2DIREN);
1296 }
1297
1298 if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN) {
1299 if (host->hw_designer != AMBA_VENDOR_ST)
1300 pwr |= MCI_ROD;
1301 else {
1302 /*
1303 * The ST Micro variant use the ROD bit for something
1304 * else and only has OD (Open Drain).
1305 */
1306 pwr |= MCI_OD;
1307 }
1308 }
1309
1310 /*
1311 * If clock = 0 and the variant requires the MMCIPOWER to be used for
1312 * gating the clock, the MCI_PWR_ON bit is cleared.
1313 */
1314 if (!ios->clock && variant->pwrreg_clkgate)
1315 pwr &= ~MCI_PWR_ON;
1316
1317 spin_lock_irqsave(&host->lock, flags);
1318
1319 mmci_set_clkreg(host, ios->clock);
1320 mmci_write_pwrreg(host, pwr);
1321 mmci_reg_delay(host);
1322
1323 spin_unlock_irqrestore(&host->lock, flags);
1324
1325 pm_runtime_mark_last_busy(mmc_dev(mmc));
1326 pm_runtime_put_autosuspend(mmc_dev(mmc));
1327}
1328
1329static int mmci_get_ro(struct mmc_host *mmc)
1330{
1331 struct mmci_host *host = mmc_priv(mmc);
1332
1333 if (host->gpio_wp == -ENOSYS)
1334 return -ENOSYS;
1335
1336 return gpio_get_value_cansleep(host->gpio_wp);
1337}
1338
1339static int mmci_get_cd(struct mmc_host *mmc)
1340{
1341 struct mmci_host *host = mmc_priv(mmc);
1342 struct mmci_platform_data *plat = host->plat;
1343 unsigned int status;
1344
1345 if (host->gpio_cd == -ENOSYS) {
1346 if (!plat->status)
1347 return 1; /* Assume always present */
1348
1349 status = plat->status(mmc_dev(host->mmc));
1350 } else
1351 status = !!gpio_get_value_cansleep(host->gpio_cd)
1352 ^ plat->cd_invert;
1353
1354 /*
1355 * Use positive logic throughout - status is zero for no card,
1356 * non-zero for card inserted.
1357 */
1358 return status;
1359}
1360
1361static int mmci_sig_volt_switch(struct mmc_host *mmc, struct mmc_ios *ios)
1362{
1363 int ret = 0;
1364
1365 if (!IS_ERR(mmc->supply.vqmmc)) {
1366
1367 pm_runtime_get_sync(mmc_dev(mmc));
1368
1369 switch (ios->signal_voltage) {
1370 case MMC_SIGNAL_VOLTAGE_330:
1371 ret = regulator_set_voltage(mmc->supply.vqmmc,
1372 2700000, 3600000);
1373 break;
1374 case MMC_SIGNAL_VOLTAGE_180:
1375 ret = regulator_set_voltage(mmc->supply.vqmmc,
1376 1700000, 1950000);
1377 break;
1378 case MMC_SIGNAL_VOLTAGE_120:
1379 ret = regulator_set_voltage(mmc->supply.vqmmc,
1380 1100000, 1300000);
1381 break;
1382 }
1383
1384 if (ret)
1385 dev_warn(mmc_dev(mmc), "Voltage switch failed\n");
1386
1387 pm_runtime_mark_last_busy(mmc_dev(mmc));
1388 pm_runtime_put_autosuspend(mmc_dev(mmc));
1389 }
1390
1391 return ret;
1392}
1393
1394static irqreturn_t mmci_cd_irq(int irq, void *dev_id)
1395{
1396 struct mmci_host *host = dev_id;
1397
1398 mmc_detect_change(host->mmc, msecs_to_jiffies(500));
1399
1400 return IRQ_HANDLED;
1401}
1402
1403static struct mmc_host_ops mmci_ops = {
1404 .request = mmci_request,
1405 .pre_req = mmci_pre_request,
1406 .post_req = mmci_post_request,
1407 .set_ios = mmci_set_ios,
1408 .get_ro = mmci_get_ro,
1409 .get_cd = mmci_get_cd,
1410 .start_signal_voltage_switch = mmci_sig_volt_switch,
1411};
1412
1413#ifdef CONFIG_OF
1414static void mmci_dt_populate_generic_pdata(struct device_node *np,
1415 struct mmci_platform_data *pdata)
1416{
1417 int bus_width = 0;
1418
1419 pdata->gpio_wp = of_get_named_gpio(np, "wp-gpios", 0);
1420 pdata->gpio_cd = of_get_named_gpio(np, "cd-gpios", 0);
1421
1422 if (of_get_property(np, "cd-inverted", NULL))
1423 pdata->cd_invert = true;
1424 else
1425 pdata->cd_invert = false;
1426
1427 of_property_read_u32(np, "max-frequency", &pdata->f_max);
1428 if (!pdata->f_max)
1429 pr_warn("%s has no 'max-frequency' property\n", np->full_name);
1430
1431 if (of_get_property(np, "mmc-cap-mmc-highspeed", NULL))
1432 pdata->capabilities |= MMC_CAP_MMC_HIGHSPEED;
1433 if (of_get_property(np, "mmc-cap-sd-highspeed", NULL))
1434 pdata->capabilities |= MMC_CAP_SD_HIGHSPEED;
1435
1436 of_property_read_u32(np, "bus-width", &bus_width);
1437 switch (bus_width) {
1438 case 0 :
1439 /* No bus-width supplied. */
1440 break;
1441 case 4 :
1442 pdata->capabilities |= MMC_CAP_4_BIT_DATA;
1443 break;
1444 case 8 :
1445 pdata->capabilities |= MMC_CAP_8_BIT_DATA;
1446 break;
1447 default :
1448 pr_warn("%s: Unsupported bus width\n", np->full_name);
1449 }
1450}
1451#else
1452static void mmci_dt_populate_generic_pdata(struct device_node *np,
1453 struct mmci_platform_data *pdata)
1454{
1455 return;
1456}
1457#endif
1458
1459static int mmci_probe(struct amba_device *dev,
1460 const struct amba_id *id)
1461{
1462 struct mmci_platform_data *plat = dev->dev.platform_data;
1463 struct device_node *np = dev->dev.of_node;
1464 struct variant_data *variant = id->data;
1465 struct mmci_host *host;
1466 struct mmc_host *mmc;
1467 int ret;
1468
1469 /* Must have platform data or Device Tree. */
1470 if (!plat && !np) {
1471 dev_err(&dev->dev, "No plat data or DT found\n");
1472 return -EINVAL;
1473 }
1474
1475 if (!plat) {
1476 plat = devm_kzalloc(&dev->dev, sizeof(*plat), GFP_KERNEL);
1477 if (!plat)
1478 return -ENOMEM;
1479 }
1480
1481 if (np)
1482 mmci_dt_populate_generic_pdata(np, plat);
1483
1484 ret = amba_request_regions(dev, DRIVER_NAME);
1485 if (ret)
1486 goto out;
1487
1488 mmc = mmc_alloc_host(sizeof(struct mmci_host), &dev->dev);
1489 if (!mmc) {
1490 ret = -ENOMEM;
1491 goto rel_regions;
1492 }
1493
1494 host = mmc_priv(mmc);
1495 host->mmc = mmc;
1496
1497 host->gpio_wp = -ENOSYS;
1498 host->gpio_cd = -ENOSYS;
1499 host->gpio_cd_irq = -1;
1500
1501 host->hw_designer = amba_manf(dev);
1502 host->hw_revision = amba_rev(dev);
1503 dev_dbg(mmc_dev(mmc), "designer ID = 0x%02x\n", host->hw_designer);
1504 dev_dbg(mmc_dev(mmc), "revision = 0x%01x\n", host->hw_revision);
1505
1506 host->clk = devm_clk_get(&dev->dev, NULL);
1507 if (IS_ERR(host->clk)) {
1508 ret = PTR_ERR(host->clk);
1509 goto host_free;
1510 }
1511
1512 ret = clk_prepare_enable(host->clk);
1513 if (ret)
1514 goto host_free;
1515
1516 host->plat = plat;
1517 host->variant = variant;
1518 host->mclk = clk_get_rate(host->clk);
1519 /*
1520 * According to the spec, mclk is max 100 MHz,
1521 * so we try to adjust the clock down to this,
1522 * (if possible).
1523 */
1524 if (host->mclk > 100000000) {
1525 ret = clk_set_rate(host->clk, 100000000);
1526 if (ret < 0)
1527 goto clk_disable;
1528 host->mclk = clk_get_rate(host->clk);
1529 dev_dbg(mmc_dev(mmc), "eventual mclk rate: %u Hz\n",
1530 host->mclk);
1531 }
1532 host->phybase = dev->res.start;
1533 host->base = ioremap(dev->res.start, resource_size(&dev->res));
1534 if (!host->base) {
1535 ret = -ENOMEM;
1536 goto clk_disable;
1537 }
1538
1539 /*
1540 * The ARM and ST versions of the block have slightly different
1541 * clock divider equations which means that the minimum divider
1542 * differs too.
1543 */
1544 if (variant->st_clkdiv)
1545 mmc->f_min = DIV_ROUND_UP(host->mclk, 257);
1546 else
1547 mmc->f_min = DIV_ROUND_UP(host->mclk, 512);
1548 /*
1549 * If the platform data supplies a maximum operating
1550 * frequency, this takes precedence. Else, we fall back
1551 * to using the module parameter, which has a (low)
1552 * default value in case it is not specified. Either
1553 * value must not exceed the clock rate into the block,
1554 * of course.
1555 */
1556 if (plat->f_max)
1557 mmc->f_max = min(host->mclk, plat->f_max);
1558 else
1559 mmc->f_max = min(host->mclk, fmax);
1560 dev_dbg(mmc_dev(mmc), "clocking block at %u Hz\n", mmc->f_max);
1561
1562 /* Get regulators and the supported OCR mask */
1563 mmc_regulator_get_supply(mmc);
1564 if (!mmc->ocr_avail)
1565 mmc->ocr_avail = plat->ocr_mask;
1566 else if (plat->ocr_mask)
1567 dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
1568
1569 mmc->caps = plat->capabilities;
1570 mmc->caps2 = plat->capabilities2;
1571
1572 if (variant->busy_detect) {
1573 mmci_ops.card_busy = mmci_card_busy;
1574 mmci_write_datactrlreg(host, MCI_ST_DPSM_BUSYMODE);
1575 mmc->caps |= MMC_CAP_WAIT_WHILE_BUSY;
1576 mmc->max_busy_timeout = 0;
1577 }
1578
1579 mmc->ops = &mmci_ops;
1580
1581 /* We support these PM capabilities. */
1582 mmc->pm_caps = MMC_PM_KEEP_POWER;
1583
1584 /*
1585 * We can do SGIO
1586 */
1587 mmc->max_segs = NR_SG;
1588
1589 /*
1590 * Since only a certain number of bits are valid in the data length
1591 * register, we must ensure that we don't exceed 2^num-1 bytes in a
1592 * single request.
1593 */
1594 mmc->max_req_size = (1 << variant->datalength_bits) - 1;
1595
1596 /*
1597 * Set the maximum segment size. Since we aren't doing DMA
1598 * (yet) we are only limited by the data length register.
1599 */
1600 mmc->max_seg_size = mmc->max_req_size;
1601
1602 /*
1603 * Block size can be up to 2048 bytes, but must be a power of two.
1604 */
1605 mmc->max_blk_size = 1 << 11;
1606
1607 /*
1608 * Limit the number of blocks transferred so that we don't overflow
1609 * the maximum request size.
1610 */
1611 mmc->max_blk_count = mmc->max_req_size >> 11;
1612
1613 spin_lock_init(&host->lock);
1614
1615 writel(0, host->base + MMCIMASK0);
1616 writel(0, host->base + MMCIMASK1);
1617 writel(0xfff, host->base + MMCICLEAR);
1618
1619 if (plat->gpio_cd == -EPROBE_DEFER) {
1620 ret = -EPROBE_DEFER;
1621 goto err_gpio_cd;
1622 }
1623 if (gpio_is_valid(plat->gpio_cd)) {
1624 ret = gpio_request(plat->gpio_cd, DRIVER_NAME " (cd)");
1625 if (ret == 0)
1626 ret = gpio_direction_input(plat->gpio_cd);
1627 if (ret == 0)
1628 host->gpio_cd = plat->gpio_cd;
1629 else if (ret != -ENOSYS)
1630 goto err_gpio_cd;
1631
1632 /*
1633 * A gpio pin that will detect cards when inserted and removed
1634 * will most likely want to trigger on the edges if it is
1635 * 0 when ejected and 1 when inserted (or mutatis mutandis
1636 * for the inverted case) so we request triggers on both
1637 * edges.
1638 */
1639 ret = request_any_context_irq(gpio_to_irq(plat->gpio_cd),
1640 mmci_cd_irq,
1641 IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING,
1642 DRIVER_NAME " (cd)", host);
1643 if (ret >= 0)
1644 host->gpio_cd_irq = gpio_to_irq(plat->gpio_cd);
1645 }
1646 if (plat->gpio_wp == -EPROBE_DEFER) {
1647 ret = -EPROBE_DEFER;
1648 goto err_gpio_wp;
1649 }
1650 if (gpio_is_valid(plat->gpio_wp)) {
1651 ret = gpio_request(plat->gpio_wp, DRIVER_NAME " (wp)");
1652 if (ret == 0)
1653 ret = gpio_direction_input(plat->gpio_wp);
1654 if (ret == 0)
1655 host->gpio_wp = plat->gpio_wp;
1656 else if (ret != -ENOSYS)
1657 goto err_gpio_wp;
1658 }
1659
1660 if ((host->plat->status || host->gpio_cd != -ENOSYS)
1661 && host->gpio_cd_irq < 0)
1662 mmc->caps |= MMC_CAP_NEEDS_POLL;
1663
1664 ret = request_irq(dev->irq[0], mmci_irq, IRQF_SHARED, DRIVER_NAME " (cmd)", host);
1665 if (ret)
1666 goto unmap;
1667
1668 if (!dev->irq[1])
1669 host->singleirq = true;
1670 else {
1671 ret = request_irq(dev->irq[1], mmci_pio_irq, IRQF_SHARED,
1672 DRIVER_NAME " (pio)", host);
1673 if (ret)
1674 goto irq0_free;
1675 }
1676
1677 writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1678
1679 amba_set_drvdata(dev, mmc);
1680
1681 dev_info(&dev->dev, "%s: PL%03x manf %x rev%u at 0x%08llx irq %d,%d (pio)\n",
1682 mmc_hostname(mmc), amba_part(dev), amba_manf(dev),
1683 amba_rev(dev), (unsigned long long)dev->res.start,
1684 dev->irq[0], dev->irq[1]);
1685
1686 mmci_dma_setup(host);
1687
1688 pm_runtime_set_autosuspend_delay(&dev->dev, 50);
1689 pm_runtime_use_autosuspend(&dev->dev);
1690 pm_runtime_put(&dev->dev);
1691
1692 mmc_add_host(mmc);
1693
1694 return 0;
1695
1696 irq0_free:
1697 free_irq(dev->irq[0], host);
1698 unmap:
1699 if (host->gpio_wp != -ENOSYS)
1700 gpio_free(host->gpio_wp);
1701 err_gpio_wp:
1702 if (host->gpio_cd_irq >= 0)
1703 free_irq(host->gpio_cd_irq, host);
1704 if (host->gpio_cd != -ENOSYS)
1705 gpio_free(host->gpio_cd);
1706 err_gpio_cd:
1707 iounmap(host->base);
1708 clk_disable:
1709 clk_disable_unprepare(host->clk);
1710 host_free:
1711 mmc_free_host(mmc);
1712 rel_regions:
1713 amba_release_regions(dev);
1714 out:
1715 return ret;
1716}
1717
1718static int mmci_remove(struct amba_device *dev)
1719{
1720 struct mmc_host *mmc = amba_get_drvdata(dev);
1721
1722 if (mmc) {
1723 struct mmci_host *host = mmc_priv(mmc);
1724
1725 /*
1726 * Undo pm_runtime_put() in probe. We use the _sync
1727 * version here so that we can access the primecell.
1728 */
1729 pm_runtime_get_sync(&dev->dev);
1730
1731 mmc_remove_host(mmc);
1732
1733 writel(0, host->base + MMCIMASK0);
1734 writel(0, host->base + MMCIMASK1);
1735
1736 writel(0, host->base + MMCICOMMAND);
1737 writel(0, host->base + MMCIDATACTRL);
1738
1739 mmci_dma_release(host);
1740 free_irq(dev->irq[0], host);
1741 if (!host->singleirq)
1742 free_irq(dev->irq[1], host);
1743
1744 if (host->gpio_wp != -ENOSYS)
1745 gpio_free(host->gpio_wp);
1746 if (host->gpio_cd_irq >= 0)
1747 free_irq(host->gpio_cd_irq, host);
1748 if (host->gpio_cd != -ENOSYS)
1749 gpio_free(host->gpio_cd);
1750
1751 iounmap(host->base);
1752 clk_disable_unprepare(host->clk);
1753
1754 mmc_free_host(mmc);
1755
1756 amba_release_regions(dev);
1757 }
1758
1759 return 0;
1760}
1761
1762#ifdef CONFIG_SUSPEND
1763static int mmci_suspend(struct device *dev)
1764{
1765 struct amba_device *adev = to_amba_device(dev);
1766 struct mmc_host *mmc = amba_get_drvdata(adev);
1767
1768 if (mmc) {
1769 struct mmci_host *host = mmc_priv(mmc);
1770 pm_runtime_get_sync(dev);
1771 writel(0, host->base + MMCIMASK0);
1772 }
1773
1774 return 0;
1775}
1776
1777static int mmci_resume(struct device *dev)
1778{
1779 struct amba_device *adev = to_amba_device(dev);
1780 struct mmc_host *mmc = amba_get_drvdata(adev);
1781
1782 if (mmc) {
1783 struct mmci_host *host = mmc_priv(mmc);
1784 writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1785 pm_runtime_put(dev);
1786 }
1787
1788 return 0;
1789}
1790#endif
1791
1792#ifdef CONFIG_PM_RUNTIME
1793static void mmci_save(struct mmci_host *host)
1794{
1795 unsigned long flags;
1796
1797 if (host->variant->pwrreg_nopower) {
1798 spin_lock_irqsave(&host->lock, flags);
1799
1800 writel(0, host->base + MMCIMASK0);
1801 writel(0, host->base + MMCIDATACTRL);
1802 writel(0, host->base + MMCIPOWER);
1803 writel(0, host->base + MMCICLOCK);
1804 mmci_reg_delay(host);
1805
1806 spin_unlock_irqrestore(&host->lock, flags);
1807 }
1808
1809}
1810
1811static void mmci_restore(struct mmci_host *host)
1812{
1813 unsigned long flags;
1814
1815 if (host->variant->pwrreg_nopower) {
1816 spin_lock_irqsave(&host->lock, flags);
1817
1818 writel(host->clk_reg, host->base + MMCICLOCK);
1819 writel(host->datactrl_reg, host->base + MMCIDATACTRL);
1820 writel(host->pwr_reg, host->base + MMCIPOWER);
1821 writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1822 mmci_reg_delay(host);
1823
1824 spin_unlock_irqrestore(&host->lock, flags);
1825 }
1826}
1827
1828static int mmci_runtime_suspend(struct device *dev)
1829{
1830 struct amba_device *adev = to_amba_device(dev);
1831 struct mmc_host *mmc = amba_get_drvdata(adev);
1832
1833 if (mmc) {
1834 struct mmci_host *host = mmc_priv(mmc);
1835 pinctrl_pm_select_sleep_state(dev);
1836 mmci_save(host);
1837 clk_disable_unprepare(host->clk);
1838 }
1839
1840 return 0;
1841}
1842
1843static int mmci_runtime_resume(struct device *dev)
1844{
1845 struct amba_device *adev = to_amba_device(dev);
1846 struct mmc_host *mmc = amba_get_drvdata(adev);
1847
1848 if (mmc) {
1849 struct mmci_host *host = mmc_priv(mmc);
1850 clk_prepare_enable(host->clk);
1851 mmci_restore(host);
1852 pinctrl_pm_select_default_state(dev);
1853 }
1854
1855 return 0;
1856}
1857#endif
1858
1859static const struct dev_pm_ops mmci_dev_pm_ops = {
1860 SET_SYSTEM_SLEEP_PM_OPS(mmci_suspend, mmci_resume)
1861 SET_RUNTIME_PM_OPS(mmci_runtime_suspend, mmci_runtime_resume, NULL)
1862};
1863
1864static struct amba_id mmci_ids[] = {
1865 {
1866 .id = 0x00041180,
1867 .mask = 0xff0fffff,
1868 .data = &variant_arm,
1869 },
1870 {
1871 .id = 0x01041180,
1872 .mask = 0xff0fffff,
1873 .data = &variant_arm_extended_fifo,
1874 },
1875 {
1876 .id = 0x02041180,
1877 .mask = 0xff0fffff,
1878 .data = &variant_arm_extended_fifo_hwfc,
1879 },
1880 {
1881 .id = 0x00041181,
1882 .mask = 0x000fffff,
1883 .data = &variant_arm,
1884 },
1885 /* ST Micro variants */
1886 {
1887 .id = 0x00180180,
1888 .mask = 0x00ffffff,
1889 .data = &variant_u300,
1890 },
1891 {
1892 .id = 0x10180180,
1893 .mask = 0xf0ffffff,
1894 .data = &variant_nomadik,
1895 },
1896 {
1897 .id = 0x00280180,
1898 .mask = 0x00ffffff,
1899 .data = &variant_u300,
1900 },
1901 {
1902 .id = 0x00480180,
1903 .mask = 0xf0ffffff,
1904 .data = &variant_ux500,
1905 },
1906 {
1907 .id = 0x10480180,
1908 .mask = 0xf0ffffff,
1909 .data = &variant_ux500v2,
1910 },
1911 { 0, 0 },
1912};
1913
1914MODULE_DEVICE_TABLE(amba, mmci_ids);
1915
1916static struct amba_driver mmci_driver = {
1917 .drv = {
1918 .name = DRIVER_NAME,
1919 .pm = &mmci_dev_pm_ops,
1920 },
1921 .probe = mmci_probe,
1922 .remove = mmci_remove,
1923 .id_table = mmci_ids,
1924};
1925
1926module_amba_driver(mmci_driver);
1927
1928module_param(fmax, uint, 0444);
1929
1930MODULE_DESCRIPTION("ARM PrimeCell PL180/181 Multimedia Card Interface driver");
1931MODULE_LICENSE("GPL");
1/*
2 * linux/drivers/mmc/host/mmci.c - ARM PrimeCell MMCI PL180/1 driver
3 *
4 * Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved.
5 * Copyright (C) 2010 ST-Ericsson SA
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11#include <linux/module.h>
12#include <linux/moduleparam.h>
13#include <linux/init.h>
14#include <linux/ioport.h>
15#include <linux/device.h>
16#include <linux/io.h>
17#include <linux/interrupt.h>
18#include <linux/kernel.h>
19#include <linux/slab.h>
20#include <linux/delay.h>
21#include <linux/err.h>
22#include <linux/highmem.h>
23#include <linux/log2.h>
24#include <linux/mmc/pm.h>
25#include <linux/mmc/host.h>
26#include <linux/mmc/card.h>
27#include <linux/mmc/slot-gpio.h>
28#include <linux/amba/bus.h>
29#include <linux/clk.h>
30#include <linux/scatterlist.h>
31#include <linux/gpio.h>
32#include <linux/of_gpio.h>
33#include <linux/regulator/consumer.h>
34#include <linux/dmaengine.h>
35#include <linux/dma-mapping.h>
36#include <linux/amba/mmci.h>
37#include <linux/pm_runtime.h>
38#include <linux/types.h>
39#include <linux/pinctrl/consumer.h>
40
41#include <asm/div64.h>
42#include <asm/io.h>
43
44#include "mmci.h"
45#include "mmci_qcom_dml.h"
46
47#define DRIVER_NAME "mmci-pl18x"
48
49static unsigned int fmax = 515633;
50
51/**
52 * struct variant_data - MMCI variant-specific quirks
53 * @clkreg: default value for MCICLOCK register
54 * @clkreg_enable: enable value for MMCICLOCK register
55 * @clkreg_8bit_bus_enable: enable value for 8 bit bus
56 * @clkreg_neg_edge_enable: enable value for inverted data/cmd output
57 * @datalength_bits: number of bits in the MMCIDATALENGTH register
58 * @fifosize: number of bytes that can be written when MMCI_TXFIFOEMPTY
59 * is asserted (likewise for RX)
60 * @fifohalfsize: number of bytes that can be written when MCI_TXFIFOHALFEMPTY
61 * is asserted (likewise for RX)
62 * @data_cmd_enable: enable value for data commands.
63 * @st_sdio: enable ST specific SDIO logic
64 * @st_clkdiv: true if using a ST-specific clock divider algorithm
65 * @datactrl_mask_ddrmode: ddr mode mask in datactrl register.
66 * @blksz_datactrl16: true if Block size is at b16..b30 position in datactrl register
67 * @blksz_datactrl4: true if Block size is at b4..b16 position in datactrl
68 * register
69 * @datactrl_mask_sdio: SDIO enable mask in datactrl register
70 * @pwrreg_powerup: power up value for MMCIPOWER register
71 * @f_max: maximum clk frequency supported by the controller.
72 * @signal_direction: input/out direction of bus signals can be indicated
73 * @pwrreg_clkgate: MMCIPOWER register must be used to gate the clock
74 * @busy_detect: true if the variant supports busy detection on DAT0.
75 * @busy_dpsm_flag: bitmask enabling busy detection in the DPSM
76 * @busy_detect_flag: bitmask identifying the bit in the MMCISTATUS register
77 * indicating that the card is busy
78 * @busy_detect_mask: bitmask identifying the bit in the MMCIMASK0 to mask for
79 * getting busy end detection interrupts
80 * @pwrreg_nopower: bits in MMCIPOWER don't controls ext. power supply
81 * @explicit_mclk_control: enable explicit mclk control in driver.
82 * @qcom_fifo: enables qcom specific fifo pio read logic.
83 * @qcom_dml: enables qcom specific dma glue for dma transfers.
84 * @reversed_irq_handling: handle data irq before cmd irq.
85 * @mmcimask1: true if variant have a MMCIMASK1 register.
86 * @start_err: bitmask identifying the STARTBITERR bit inside MMCISTATUS
87 * register.
88 * @opendrain: bitmask identifying the OPENDRAIN bit inside MMCIPOWER register
89 */
90struct variant_data {
91 unsigned int clkreg;
92 unsigned int clkreg_enable;
93 unsigned int clkreg_8bit_bus_enable;
94 unsigned int clkreg_neg_edge_enable;
95 unsigned int datalength_bits;
96 unsigned int fifosize;
97 unsigned int fifohalfsize;
98 unsigned int data_cmd_enable;
99 unsigned int datactrl_mask_ddrmode;
100 unsigned int datactrl_mask_sdio;
101 bool st_sdio;
102 bool st_clkdiv;
103 bool blksz_datactrl16;
104 bool blksz_datactrl4;
105 u32 pwrreg_powerup;
106 u32 f_max;
107 bool signal_direction;
108 bool pwrreg_clkgate;
109 bool busy_detect;
110 u32 busy_dpsm_flag;
111 u32 busy_detect_flag;
112 u32 busy_detect_mask;
113 bool pwrreg_nopower;
114 bool explicit_mclk_control;
115 bool qcom_fifo;
116 bool qcom_dml;
117 bool reversed_irq_handling;
118 bool mmcimask1;
119 u32 start_err;
120 u32 opendrain;
121};
122
123static struct variant_data variant_arm = {
124 .fifosize = 16 * 4,
125 .fifohalfsize = 8 * 4,
126 .datalength_bits = 16,
127 .pwrreg_powerup = MCI_PWR_UP,
128 .f_max = 100000000,
129 .reversed_irq_handling = true,
130 .mmcimask1 = true,
131 .start_err = MCI_STARTBITERR,
132 .opendrain = MCI_ROD,
133};
134
135static struct variant_data variant_arm_extended_fifo = {
136 .fifosize = 128 * 4,
137 .fifohalfsize = 64 * 4,
138 .datalength_bits = 16,
139 .pwrreg_powerup = MCI_PWR_UP,
140 .f_max = 100000000,
141 .mmcimask1 = true,
142 .start_err = MCI_STARTBITERR,
143 .opendrain = MCI_ROD,
144};
145
146static struct variant_data variant_arm_extended_fifo_hwfc = {
147 .fifosize = 128 * 4,
148 .fifohalfsize = 64 * 4,
149 .clkreg_enable = MCI_ARM_HWFCEN,
150 .datalength_bits = 16,
151 .pwrreg_powerup = MCI_PWR_UP,
152 .f_max = 100000000,
153 .mmcimask1 = true,
154 .start_err = MCI_STARTBITERR,
155 .opendrain = MCI_ROD,
156};
157
158static struct variant_data variant_u300 = {
159 .fifosize = 16 * 4,
160 .fifohalfsize = 8 * 4,
161 .clkreg_enable = MCI_ST_U300_HWFCEN,
162 .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
163 .datalength_bits = 16,
164 .datactrl_mask_sdio = MCI_DPSM_ST_SDIOEN,
165 .st_sdio = true,
166 .pwrreg_powerup = MCI_PWR_ON,
167 .f_max = 100000000,
168 .signal_direction = true,
169 .pwrreg_clkgate = true,
170 .pwrreg_nopower = true,
171 .mmcimask1 = true,
172 .start_err = MCI_STARTBITERR,
173 .opendrain = MCI_OD,
174};
175
176static struct variant_data variant_nomadik = {
177 .fifosize = 16 * 4,
178 .fifohalfsize = 8 * 4,
179 .clkreg = MCI_CLK_ENABLE,
180 .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
181 .datalength_bits = 24,
182 .datactrl_mask_sdio = MCI_DPSM_ST_SDIOEN,
183 .st_sdio = true,
184 .st_clkdiv = true,
185 .pwrreg_powerup = MCI_PWR_ON,
186 .f_max = 100000000,
187 .signal_direction = true,
188 .pwrreg_clkgate = true,
189 .pwrreg_nopower = true,
190 .mmcimask1 = true,
191 .start_err = MCI_STARTBITERR,
192 .opendrain = MCI_OD,
193};
194
195static struct variant_data variant_ux500 = {
196 .fifosize = 30 * 4,
197 .fifohalfsize = 8 * 4,
198 .clkreg = MCI_CLK_ENABLE,
199 .clkreg_enable = MCI_ST_UX500_HWFCEN,
200 .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
201 .clkreg_neg_edge_enable = MCI_ST_UX500_NEG_EDGE,
202 .datalength_bits = 24,
203 .datactrl_mask_sdio = MCI_DPSM_ST_SDIOEN,
204 .st_sdio = true,
205 .st_clkdiv = true,
206 .pwrreg_powerup = MCI_PWR_ON,
207 .f_max = 100000000,
208 .signal_direction = true,
209 .pwrreg_clkgate = true,
210 .busy_detect = true,
211 .busy_dpsm_flag = MCI_DPSM_ST_BUSYMODE,
212 .busy_detect_flag = MCI_ST_CARDBUSY,
213 .busy_detect_mask = MCI_ST_BUSYENDMASK,
214 .pwrreg_nopower = true,
215 .mmcimask1 = true,
216 .start_err = MCI_STARTBITERR,
217 .opendrain = MCI_OD,
218};
219
220static struct variant_data variant_ux500v2 = {
221 .fifosize = 30 * 4,
222 .fifohalfsize = 8 * 4,
223 .clkreg = MCI_CLK_ENABLE,
224 .clkreg_enable = MCI_ST_UX500_HWFCEN,
225 .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
226 .clkreg_neg_edge_enable = MCI_ST_UX500_NEG_EDGE,
227 .datactrl_mask_ddrmode = MCI_DPSM_ST_DDRMODE,
228 .datalength_bits = 24,
229 .datactrl_mask_sdio = MCI_DPSM_ST_SDIOEN,
230 .st_sdio = true,
231 .st_clkdiv = true,
232 .blksz_datactrl16 = true,
233 .pwrreg_powerup = MCI_PWR_ON,
234 .f_max = 100000000,
235 .signal_direction = true,
236 .pwrreg_clkgate = true,
237 .busy_detect = true,
238 .busy_dpsm_flag = MCI_DPSM_ST_BUSYMODE,
239 .busy_detect_flag = MCI_ST_CARDBUSY,
240 .busy_detect_mask = MCI_ST_BUSYENDMASK,
241 .pwrreg_nopower = true,
242 .mmcimask1 = true,
243 .start_err = MCI_STARTBITERR,
244 .opendrain = MCI_OD,
245};
246
247static struct variant_data variant_stm32 = {
248 .fifosize = 32 * 4,
249 .fifohalfsize = 8 * 4,
250 .clkreg = MCI_CLK_ENABLE,
251 .clkreg_enable = MCI_ST_UX500_HWFCEN,
252 .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
253 .clkreg_neg_edge_enable = MCI_ST_UX500_NEG_EDGE,
254 .datalength_bits = 24,
255 .datactrl_mask_sdio = MCI_DPSM_ST_SDIOEN,
256 .st_sdio = true,
257 .st_clkdiv = true,
258 .pwrreg_powerup = MCI_PWR_ON,
259 .f_max = 48000000,
260 .pwrreg_clkgate = true,
261 .pwrreg_nopower = true,
262};
263
264static struct variant_data variant_qcom = {
265 .fifosize = 16 * 4,
266 .fifohalfsize = 8 * 4,
267 .clkreg = MCI_CLK_ENABLE,
268 .clkreg_enable = MCI_QCOM_CLK_FLOWENA |
269 MCI_QCOM_CLK_SELECT_IN_FBCLK,
270 .clkreg_8bit_bus_enable = MCI_QCOM_CLK_WIDEBUS_8,
271 .datactrl_mask_ddrmode = MCI_QCOM_CLK_SELECT_IN_DDR_MODE,
272 .data_cmd_enable = MCI_CPSM_QCOM_DATCMD,
273 .blksz_datactrl4 = true,
274 .datalength_bits = 24,
275 .pwrreg_powerup = MCI_PWR_UP,
276 .f_max = 208000000,
277 .explicit_mclk_control = true,
278 .qcom_fifo = true,
279 .qcom_dml = true,
280 .mmcimask1 = true,
281 .start_err = MCI_STARTBITERR,
282 .opendrain = MCI_ROD,
283};
284
285/* Busy detection for the ST Micro variant */
286static int mmci_card_busy(struct mmc_host *mmc)
287{
288 struct mmci_host *host = mmc_priv(mmc);
289 unsigned long flags;
290 int busy = 0;
291
292 spin_lock_irqsave(&host->lock, flags);
293 if (readl(host->base + MMCISTATUS) & host->variant->busy_detect_flag)
294 busy = 1;
295 spin_unlock_irqrestore(&host->lock, flags);
296
297 return busy;
298}
299
300/*
301 * Validate mmc prerequisites
302 */
303static int mmci_validate_data(struct mmci_host *host,
304 struct mmc_data *data)
305{
306 if (!data)
307 return 0;
308
309 if (!is_power_of_2(data->blksz)) {
310 dev_err(mmc_dev(host->mmc),
311 "unsupported block size (%d bytes)\n", data->blksz);
312 return -EINVAL;
313 }
314
315 return 0;
316}
317
318static void mmci_reg_delay(struct mmci_host *host)
319{
320 /*
321 * According to the spec, at least three feedback clock cycles
322 * of max 52 MHz must pass between two writes to the MMCICLOCK reg.
323 * Three MCLK clock cycles must pass between two MMCIPOWER reg writes.
324 * Worst delay time during card init is at 100 kHz => 30 us.
325 * Worst delay time when up and running is at 25 MHz => 120 ns.
326 */
327 if (host->cclk < 25000000)
328 udelay(30);
329 else
330 ndelay(120);
331}
332
333/*
334 * This must be called with host->lock held
335 */
336static void mmci_write_clkreg(struct mmci_host *host, u32 clk)
337{
338 if (host->clk_reg != clk) {
339 host->clk_reg = clk;
340 writel(clk, host->base + MMCICLOCK);
341 }
342}
343
344/*
345 * This must be called with host->lock held
346 */
347static void mmci_write_pwrreg(struct mmci_host *host, u32 pwr)
348{
349 if (host->pwr_reg != pwr) {
350 host->pwr_reg = pwr;
351 writel(pwr, host->base + MMCIPOWER);
352 }
353}
354
355/*
356 * This must be called with host->lock held
357 */
358static void mmci_write_datactrlreg(struct mmci_host *host, u32 datactrl)
359{
360 /* Keep busy mode in DPSM if enabled */
361 datactrl |= host->datactrl_reg & host->variant->busy_dpsm_flag;
362
363 if (host->datactrl_reg != datactrl) {
364 host->datactrl_reg = datactrl;
365 writel(datactrl, host->base + MMCIDATACTRL);
366 }
367}
368
369/*
370 * This must be called with host->lock held
371 */
372static void mmci_set_clkreg(struct mmci_host *host, unsigned int desired)
373{
374 struct variant_data *variant = host->variant;
375 u32 clk = variant->clkreg;
376
377 /* Make sure cclk reflects the current calculated clock */
378 host->cclk = 0;
379
380 if (desired) {
381 if (variant->explicit_mclk_control) {
382 host->cclk = host->mclk;
383 } else if (desired >= host->mclk) {
384 clk = MCI_CLK_BYPASS;
385 if (variant->st_clkdiv)
386 clk |= MCI_ST_UX500_NEG_EDGE;
387 host->cclk = host->mclk;
388 } else if (variant->st_clkdiv) {
389 /*
390 * DB8500 TRM says f = mclk / (clkdiv + 2)
391 * => clkdiv = (mclk / f) - 2
392 * Round the divider up so we don't exceed the max
393 * frequency
394 */
395 clk = DIV_ROUND_UP(host->mclk, desired) - 2;
396 if (clk >= 256)
397 clk = 255;
398 host->cclk = host->mclk / (clk + 2);
399 } else {
400 /*
401 * PL180 TRM says f = mclk / (2 * (clkdiv + 1))
402 * => clkdiv = mclk / (2 * f) - 1
403 */
404 clk = host->mclk / (2 * desired) - 1;
405 if (clk >= 256)
406 clk = 255;
407 host->cclk = host->mclk / (2 * (clk + 1));
408 }
409
410 clk |= variant->clkreg_enable;
411 clk |= MCI_CLK_ENABLE;
412 /* This hasn't proven to be worthwhile */
413 /* clk |= MCI_CLK_PWRSAVE; */
414 }
415
416 /* Set actual clock for debug */
417 host->mmc->actual_clock = host->cclk;
418
419 if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4)
420 clk |= MCI_4BIT_BUS;
421 if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8)
422 clk |= variant->clkreg_8bit_bus_enable;
423
424 if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
425 host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
426 clk |= variant->clkreg_neg_edge_enable;
427
428 mmci_write_clkreg(host, clk);
429}
430
431static void
432mmci_request_end(struct mmci_host *host, struct mmc_request *mrq)
433{
434 writel(0, host->base + MMCICOMMAND);
435
436 BUG_ON(host->data);
437
438 host->mrq = NULL;
439 host->cmd = NULL;
440
441 mmc_request_done(host->mmc, mrq);
442}
443
444static void mmci_set_mask1(struct mmci_host *host, unsigned int mask)
445{
446 void __iomem *base = host->base;
447 struct variant_data *variant = host->variant;
448
449 if (host->singleirq) {
450 unsigned int mask0 = readl(base + MMCIMASK0);
451
452 mask0 &= ~MCI_IRQ1MASK;
453 mask0 |= mask;
454
455 writel(mask0, base + MMCIMASK0);
456 }
457
458 if (variant->mmcimask1)
459 writel(mask, base + MMCIMASK1);
460
461 host->mask1_reg = mask;
462}
463
464static void mmci_stop_data(struct mmci_host *host)
465{
466 mmci_write_datactrlreg(host, 0);
467 mmci_set_mask1(host, 0);
468 host->data = NULL;
469}
470
471static void mmci_init_sg(struct mmci_host *host, struct mmc_data *data)
472{
473 unsigned int flags = SG_MITER_ATOMIC;
474
475 if (data->flags & MMC_DATA_READ)
476 flags |= SG_MITER_TO_SG;
477 else
478 flags |= SG_MITER_FROM_SG;
479
480 sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
481}
482
483/*
484 * All the DMA operation mode stuff goes inside this ifdef.
485 * This assumes that you have a generic DMA device interface,
486 * no custom DMA interfaces are supported.
487 */
488#ifdef CONFIG_DMA_ENGINE
489static void mmci_dma_setup(struct mmci_host *host)
490{
491 const char *rxname, *txname;
492 struct variant_data *variant = host->variant;
493
494 host->dma_rx_channel = dma_request_slave_channel(mmc_dev(host->mmc), "rx");
495 host->dma_tx_channel = dma_request_slave_channel(mmc_dev(host->mmc), "tx");
496
497 /* initialize pre request cookie */
498 host->next_data.cookie = 1;
499
500 /*
501 * If only an RX channel is specified, the driver will
502 * attempt to use it bidirectionally, however if it is
503 * is specified but cannot be located, DMA will be disabled.
504 */
505 if (host->dma_rx_channel && !host->dma_tx_channel)
506 host->dma_tx_channel = host->dma_rx_channel;
507
508 if (host->dma_rx_channel)
509 rxname = dma_chan_name(host->dma_rx_channel);
510 else
511 rxname = "none";
512
513 if (host->dma_tx_channel)
514 txname = dma_chan_name(host->dma_tx_channel);
515 else
516 txname = "none";
517
518 dev_info(mmc_dev(host->mmc), "DMA channels RX %s, TX %s\n",
519 rxname, txname);
520
521 /*
522 * Limit the maximum segment size in any SG entry according to
523 * the parameters of the DMA engine device.
524 */
525 if (host->dma_tx_channel) {
526 struct device *dev = host->dma_tx_channel->device->dev;
527 unsigned int max_seg_size = dma_get_max_seg_size(dev);
528
529 if (max_seg_size < host->mmc->max_seg_size)
530 host->mmc->max_seg_size = max_seg_size;
531 }
532 if (host->dma_rx_channel) {
533 struct device *dev = host->dma_rx_channel->device->dev;
534 unsigned int max_seg_size = dma_get_max_seg_size(dev);
535
536 if (max_seg_size < host->mmc->max_seg_size)
537 host->mmc->max_seg_size = max_seg_size;
538 }
539
540 if (variant->qcom_dml && host->dma_rx_channel && host->dma_tx_channel)
541 if (dml_hw_init(host, host->mmc->parent->of_node))
542 variant->qcom_dml = false;
543}
544
545/*
546 * This is used in or so inline it
547 * so it can be discarded.
548 */
549static inline void mmci_dma_release(struct mmci_host *host)
550{
551 if (host->dma_rx_channel)
552 dma_release_channel(host->dma_rx_channel);
553 if (host->dma_tx_channel)
554 dma_release_channel(host->dma_tx_channel);
555 host->dma_rx_channel = host->dma_tx_channel = NULL;
556}
557
558static void mmci_dma_data_error(struct mmci_host *host)
559{
560 dev_err(mmc_dev(host->mmc), "error during DMA transfer!\n");
561 dmaengine_terminate_all(host->dma_current);
562 host->dma_in_progress = false;
563 host->dma_current = NULL;
564 host->dma_desc_current = NULL;
565 host->data->host_cookie = 0;
566}
567
568static void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
569{
570 struct dma_chan *chan;
571
572 if (data->flags & MMC_DATA_READ)
573 chan = host->dma_rx_channel;
574 else
575 chan = host->dma_tx_channel;
576
577 dma_unmap_sg(chan->device->dev, data->sg, data->sg_len,
578 mmc_get_dma_dir(data));
579}
580
581static void mmci_dma_finalize(struct mmci_host *host, struct mmc_data *data)
582{
583 u32 status;
584 int i;
585
586 /* Wait up to 1ms for the DMA to complete */
587 for (i = 0; ; i++) {
588 status = readl(host->base + MMCISTATUS);
589 if (!(status & MCI_RXDATAAVLBLMASK) || i >= 100)
590 break;
591 udelay(10);
592 }
593
594 /*
595 * Check to see whether we still have some data left in the FIFO -
596 * this catches DMA controllers which are unable to monitor the
597 * DMALBREQ and DMALSREQ signals while allowing us to DMA to non-
598 * contiguous buffers. On TX, we'll get a FIFO underrun error.
599 */
600 if (status & MCI_RXDATAAVLBLMASK) {
601 mmci_dma_data_error(host);
602 if (!data->error)
603 data->error = -EIO;
604 }
605
606 if (!data->host_cookie)
607 mmci_dma_unmap(host, data);
608
609 /*
610 * Use of DMA with scatter-gather is impossible.
611 * Give up with DMA and switch back to PIO mode.
612 */
613 if (status & MCI_RXDATAAVLBLMASK) {
614 dev_err(mmc_dev(host->mmc), "buggy DMA detected. Taking evasive action.\n");
615 mmci_dma_release(host);
616 }
617
618 host->dma_in_progress = false;
619 host->dma_current = NULL;
620 host->dma_desc_current = NULL;
621}
622
623/* prepares DMA channel and DMA descriptor, returns non-zero on failure */
624static int __mmci_dma_prep_data(struct mmci_host *host, struct mmc_data *data,
625 struct dma_chan **dma_chan,
626 struct dma_async_tx_descriptor **dma_desc)
627{
628 struct variant_data *variant = host->variant;
629 struct dma_slave_config conf = {
630 .src_addr = host->phybase + MMCIFIFO,
631 .dst_addr = host->phybase + MMCIFIFO,
632 .src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
633 .dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
634 .src_maxburst = variant->fifohalfsize >> 2, /* # of words */
635 .dst_maxburst = variant->fifohalfsize >> 2, /* # of words */
636 .device_fc = false,
637 };
638 struct dma_chan *chan;
639 struct dma_device *device;
640 struct dma_async_tx_descriptor *desc;
641 int nr_sg;
642 unsigned long flags = DMA_CTRL_ACK;
643
644 if (data->flags & MMC_DATA_READ) {
645 conf.direction = DMA_DEV_TO_MEM;
646 chan = host->dma_rx_channel;
647 } else {
648 conf.direction = DMA_MEM_TO_DEV;
649 chan = host->dma_tx_channel;
650 }
651
652 /* If there's no DMA channel, fall back to PIO */
653 if (!chan)
654 return -EINVAL;
655
656 /* If less than or equal to the fifo size, don't bother with DMA */
657 if (data->blksz * data->blocks <= variant->fifosize)
658 return -EINVAL;
659
660 device = chan->device;
661 nr_sg = dma_map_sg(device->dev, data->sg, data->sg_len,
662 mmc_get_dma_dir(data));
663 if (nr_sg == 0)
664 return -EINVAL;
665
666 if (host->variant->qcom_dml)
667 flags |= DMA_PREP_INTERRUPT;
668
669 dmaengine_slave_config(chan, &conf);
670 desc = dmaengine_prep_slave_sg(chan, data->sg, nr_sg,
671 conf.direction, flags);
672 if (!desc)
673 goto unmap_exit;
674
675 *dma_chan = chan;
676 *dma_desc = desc;
677
678 return 0;
679
680 unmap_exit:
681 dma_unmap_sg(device->dev, data->sg, data->sg_len,
682 mmc_get_dma_dir(data));
683 return -ENOMEM;
684}
685
686static inline int mmci_dma_prep_data(struct mmci_host *host,
687 struct mmc_data *data)
688{
689 /* Check if next job is already prepared. */
690 if (host->dma_current && host->dma_desc_current)
691 return 0;
692
693 /* No job were prepared thus do it now. */
694 return __mmci_dma_prep_data(host, data, &host->dma_current,
695 &host->dma_desc_current);
696}
697
698static inline int mmci_dma_prep_next(struct mmci_host *host,
699 struct mmc_data *data)
700{
701 struct mmci_host_next *nd = &host->next_data;
702 return __mmci_dma_prep_data(host, data, &nd->dma_chan, &nd->dma_desc);
703}
704
705static int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
706{
707 int ret;
708 struct mmc_data *data = host->data;
709
710 ret = mmci_dma_prep_data(host, host->data);
711 if (ret)
712 return ret;
713
714 /* Okay, go for it. */
715 dev_vdbg(mmc_dev(host->mmc),
716 "Submit MMCI DMA job, sglen %d blksz %04x blks %04x flags %08x\n",
717 data->sg_len, data->blksz, data->blocks, data->flags);
718 host->dma_in_progress = true;
719 dmaengine_submit(host->dma_desc_current);
720 dma_async_issue_pending(host->dma_current);
721
722 if (host->variant->qcom_dml)
723 dml_start_xfer(host, data);
724
725 datactrl |= MCI_DPSM_DMAENABLE;
726
727 /* Trigger the DMA transfer */
728 mmci_write_datactrlreg(host, datactrl);
729
730 /*
731 * Let the MMCI say when the data is ended and it's time
732 * to fire next DMA request. When that happens, MMCI will
733 * call mmci_data_end()
734 */
735 writel(readl(host->base + MMCIMASK0) | MCI_DATAENDMASK,
736 host->base + MMCIMASK0);
737 return 0;
738}
739
740static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
741{
742 struct mmci_host_next *next = &host->next_data;
743
744 WARN_ON(data->host_cookie && data->host_cookie != next->cookie);
745 WARN_ON(!data->host_cookie && (next->dma_desc || next->dma_chan));
746
747 host->dma_desc_current = next->dma_desc;
748 host->dma_current = next->dma_chan;
749 next->dma_desc = NULL;
750 next->dma_chan = NULL;
751}
752
753static void mmci_pre_request(struct mmc_host *mmc, struct mmc_request *mrq)
754{
755 struct mmci_host *host = mmc_priv(mmc);
756 struct mmc_data *data = mrq->data;
757 struct mmci_host_next *nd = &host->next_data;
758
759 if (!data)
760 return;
761
762 BUG_ON(data->host_cookie);
763
764 if (mmci_validate_data(host, data))
765 return;
766
767 if (!mmci_dma_prep_next(host, data))
768 data->host_cookie = ++nd->cookie < 0 ? 1 : nd->cookie;
769}
770
771static void mmci_post_request(struct mmc_host *mmc, struct mmc_request *mrq,
772 int err)
773{
774 struct mmci_host *host = mmc_priv(mmc);
775 struct mmc_data *data = mrq->data;
776
777 if (!data || !data->host_cookie)
778 return;
779
780 mmci_dma_unmap(host, data);
781
782 if (err) {
783 struct mmci_host_next *next = &host->next_data;
784 struct dma_chan *chan;
785 if (data->flags & MMC_DATA_READ)
786 chan = host->dma_rx_channel;
787 else
788 chan = host->dma_tx_channel;
789 dmaengine_terminate_all(chan);
790
791 if (host->dma_desc_current == next->dma_desc)
792 host->dma_desc_current = NULL;
793
794 if (host->dma_current == next->dma_chan) {
795 host->dma_in_progress = false;
796 host->dma_current = NULL;
797 }
798
799 next->dma_desc = NULL;
800 next->dma_chan = NULL;
801 data->host_cookie = 0;
802 }
803}
804
805#else
806/* Blank functions if the DMA engine is not available */
807static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
808{
809}
810static inline void mmci_dma_setup(struct mmci_host *host)
811{
812}
813
814static inline void mmci_dma_release(struct mmci_host *host)
815{
816}
817
818static inline void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
819{
820}
821
822static inline void mmci_dma_finalize(struct mmci_host *host,
823 struct mmc_data *data)
824{
825}
826
827static inline void mmci_dma_data_error(struct mmci_host *host)
828{
829}
830
831static inline int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
832{
833 return -ENOSYS;
834}
835
836#define mmci_pre_request NULL
837#define mmci_post_request NULL
838
839#endif
840
841static void mmci_start_data(struct mmci_host *host, struct mmc_data *data)
842{
843 struct variant_data *variant = host->variant;
844 unsigned int datactrl, timeout, irqmask;
845 unsigned long long clks;
846 void __iomem *base;
847 int blksz_bits;
848
849 dev_dbg(mmc_dev(host->mmc), "blksz %04x blks %04x flags %08x\n",
850 data->blksz, data->blocks, data->flags);
851
852 host->data = data;
853 host->size = data->blksz * data->blocks;
854 data->bytes_xfered = 0;
855
856 clks = (unsigned long long)data->timeout_ns * host->cclk;
857 do_div(clks, NSEC_PER_SEC);
858
859 timeout = data->timeout_clks + (unsigned int)clks;
860
861 base = host->base;
862 writel(timeout, base + MMCIDATATIMER);
863 writel(host->size, base + MMCIDATALENGTH);
864
865 blksz_bits = ffs(data->blksz) - 1;
866 BUG_ON(1 << blksz_bits != data->blksz);
867
868 if (variant->blksz_datactrl16)
869 datactrl = MCI_DPSM_ENABLE | (data->blksz << 16);
870 else if (variant->blksz_datactrl4)
871 datactrl = MCI_DPSM_ENABLE | (data->blksz << 4);
872 else
873 datactrl = MCI_DPSM_ENABLE | blksz_bits << 4;
874
875 if (data->flags & MMC_DATA_READ)
876 datactrl |= MCI_DPSM_DIRECTION;
877
878 if (host->mmc->card && mmc_card_sdio(host->mmc->card)) {
879 u32 clk;
880
881 datactrl |= variant->datactrl_mask_sdio;
882
883 /*
884 * The ST Micro variant for SDIO small write transfers
885 * needs to have clock H/W flow control disabled,
886 * otherwise the transfer will not start. The threshold
887 * depends on the rate of MCLK.
888 */
889 if (variant->st_sdio && data->flags & MMC_DATA_WRITE &&
890 (host->size < 8 ||
891 (host->size <= 8 && host->mclk > 50000000)))
892 clk = host->clk_reg & ~variant->clkreg_enable;
893 else
894 clk = host->clk_reg | variant->clkreg_enable;
895
896 mmci_write_clkreg(host, clk);
897 }
898
899 if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
900 host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
901 datactrl |= variant->datactrl_mask_ddrmode;
902
903 /*
904 * Attempt to use DMA operation mode, if this
905 * should fail, fall back to PIO mode
906 */
907 if (!mmci_dma_start_data(host, datactrl))
908 return;
909
910 /* IRQ mode, map the SG list for CPU reading/writing */
911 mmci_init_sg(host, data);
912
913 if (data->flags & MMC_DATA_READ) {
914 irqmask = MCI_RXFIFOHALFFULLMASK;
915
916 /*
917 * If we have less than the fifo 'half-full' threshold to
918 * transfer, trigger a PIO interrupt as soon as any data
919 * is available.
920 */
921 if (host->size < variant->fifohalfsize)
922 irqmask |= MCI_RXDATAAVLBLMASK;
923 } else {
924 /*
925 * We don't actually need to include "FIFO empty" here
926 * since its implicit in "FIFO half empty".
927 */
928 irqmask = MCI_TXFIFOHALFEMPTYMASK;
929 }
930
931 mmci_write_datactrlreg(host, datactrl);
932 writel(readl(base + MMCIMASK0) & ~MCI_DATAENDMASK, base + MMCIMASK0);
933 mmci_set_mask1(host, irqmask);
934}
935
936static void
937mmci_start_command(struct mmci_host *host, struct mmc_command *cmd, u32 c)
938{
939 void __iomem *base = host->base;
940
941 dev_dbg(mmc_dev(host->mmc), "op %02x arg %08x flags %08x\n",
942 cmd->opcode, cmd->arg, cmd->flags);
943
944 if (readl(base + MMCICOMMAND) & MCI_CPSM_ENABLE) {
945 writel(0, base + MMCICOMMAND);
946 mmci_reg_delay(host);
947 }
948
949 c |= cmd->opcode | MCI_CPSM_ENABLE;
950 if (cmd->flags & MMC_RSP_PRESENT) {
951 if (cmd->flags & MMC_RSP_136)
952 c |= MCI_CPSM_LONGRSP;
953 c |= MCI_CPSM_RESPONSE;
954 }
955 if (/*interrupt*/0)
956 c |= MCI_CPSM_INTERRUPT;
957
958 if (mmc_cmd_type(cmd) == MMC_CMD_ADTC)
959 c |= host->variant->data_cmd_enable;
960
961 host->cmd = cmd;
962
963 writel(cmd->arg, base + MMCIARGUMENT);
964 writel(c, base + MMCICOMMAND);
965}
966
967static void
968mmci_data_irq(struct mmci_host *host, struct mmc_data *data,
969 unsigned int status)
970{
971 /* Make sure we have data to handle */
972 if (!data)
973 return;
974
975 /* First check for errors */
976 if (status & (MCI_DATACRCFAIL | MCI_DATATIMEOUT |
977 host->variant->start_err |
978 MCI_TXUNDERRUN | MCI_RXOVERRUN)) {
979 u32 remain, success;
980
981 /* Terminate the DMA transfer */
982 if (dma_inprogress(host)) {
983 mmci_dma_data_error(host);
984 mmci_dma_unmap(host, data);
985 }
986
987 /*
988 * Calculate how far we are into the transfer. Note that
989 * the data counter gives the number of bytes transferred
990 * on the MMC bus, not on the host side. On reads, this
991 * can be as much as a FIFO-worth of data ahead. This
992 * matters for FIFO overruns only.
993 */
994 remain = readl(host->base + MMCIDATACNT);
995 success = data->blksz * data->blocks - remain;
996
997 dev_dbg(mmc_dev(host->mmc), "MCI ERROR IRQ, status 0x%08x at 0x%08x\n",
998 status, success);
999 if (status & MCI_DATACRCFAIL) {
1000 /* Last block was not successful */
1001 success -= 1;
1002 data->error = -EILSEQ;
1003 } else if (status & MCI_DATATIMEOUT) {
1004 data->error = -ETIMEDOUT;
1005 } else if (status & MCI_STARTBITERR) {
1006 data->error = -ECOMM;
1007 } else if (status & MCI_TXUNDERRUN) {
1008 data->error = -EIO;
1009 } else if (status & MCI_RXOVERRUN) {
1010 if (success > host->variant->fifosize)
1011 success -= host->variant->fifosize;
1012 else
1013 success = 0;
1014 data->error = -EIO;
1015 }
1016 data->bytes_xfered = round_down(success, data->blksz);
1017 }
1018
1019 if (status & MCI_DATABLOCKEND)
1020 dev_err(mmc_dev(host->mmc), "stray MCI_DATABLOCKEND interrupt\n");
1021
1022 if (status & MCI_DATAEND || data->error) {
1023 if (dma_inprogress(host))
1024 mmci_dma_finalize(host, data);
1025 mmci_stop_data(host);
1026
1027 if (!data->error)
1028 /* The error clause is handled above, success! */
1029 data->bytes_xfered = data->blksz * data->blocks;
1030
1031 if (!data->stop || host->mrq->sbc) {
1032 mmci_request_end(host, data->mrq);
1033 } else {
1034 mmci_start_command(host, data->stop, 0);
1035 }
1036 }
1037}
1038
1039static void
1040mmci_cmd_irq(struct mmci_host *host, struct mmc_command *cmd,
1041 unsigned int status)
1042{
1043 void __iomem *base = host->base;
1044 bool sbc;
1045
1046 if (!cmd)
1047 return;
1048
1049 sbc = (cmd == host->mrq->sbc);
1050
1051 /*
1052 * We need to be one of these interrupts to be considered worth
1053 * handling. Note that we tag on any latent IRQs postponed
1054 * due to waiting for busy status.
1055 */
1056 if (!((status|host->busy_status) &
1057 (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT|MCI_CMDSENT|MCI_CMDRESPEND)))
1058 return;
1059
1060 /*
1061 * ST Micro variant: handle busy detection.
1062 */
1063 if (host->variant->busy_detect) {
1064 bool busy_resp = !!(cmd->flags & MMC_RSP_BUSY);
1065
1066 /* We are busy with a command, return */
1067 if (host->busy_status &&
1068 (status & host->variant->busy_detect_flag))
1069 return;
1070
1071 /*
1072 * We were not busy, but we now got a busy response on
1073 * something that was not an error, and we double-check
1074 * that the special busy status bit is still set before
1075 * proceeding.
1076 */
1077 if (!host->busy_status && busy_resp &&
1078 !(status & (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT)) &&
1079 (readl(base + MMCISTATUS) & host->variant->busy_detect_flag)) {
1080
1081 /* Clear the busy start IRQ */
1082 writel(host->variant->busy_detect_mask,
1083 host->base + MMCICLEAR);
1084
1085 /* Unmask the busy end IRQ */
1086 writel(readl(base + MMCIMASK0) |
1087 host->variant->busy_detect_mask,
1088 base + MMCIMASK0);
1089 /*
1090 * Now cache the last response status code (until
1091 * the busy bit goes low), and return.
1092 */
1093 host->busy_status =
1094 status & (MCI_CMDSENT|MCI_CMDRESPEND);
1095 return;
1096 }
1097
1098 /*
1099 * At this point we are not busy with a command, we have
1100 * not received a new busy request, clear and mask the busy
1101 * end IRQ and fall through to process the IRQ.
1102 */
1103 if (host->busy_status) {
1104
1105 writel(host->variant->busy_detect_mask,
1106 host->base + MMCICLEAR);
1107
1108 writel(readl(base + MMCIMASK0) &
1109 ~host->variant->busy_detect_mask,
1110 base + MMCIMASK0);
1111 host->busy_status = 0;
1112 }
1113 }
1114
1115 host->cmd = NULL;
1116
1117 if (status & MCI_CMDTIMEOUT) {
1118 cmd->error = -ETIMEDOUT;
1119 } else if (status & MCI_CMDCRCFAIL && cmd->flags & MMC_RSP_CRC) {
1120 cmd->error = -EILSEQ;
1121 } else {
1122 cmd->resp[0] = readl(base + MMCIRESPONSE0);
1123 cmd->resp[1] = readl(base + MMCIRESPONSE1);
1124 cmd->resp[2] = readl(base + MMCIRESPONSE2);
1125 cmd->resp[3] = readl(base + MMCIRESPONSE3);
1126 }
1127
1128 if ((!sbc && !cmd->data) || cmd->error) {
1129 if (host->data) {
1130 /* Terminate the DMA transfer */
1131 if (dma_inprogress(host)) {
1132 mmci_dma_data_error(host);
1133 mmci_dma_unmap(host, host->data);
1134 }
1135 mmci_stop_data(host);
1136 }
1137 mmci_request_end(host, host->mrq);
1138 } else if (sbc) {
1139 mmci_start_command(host, host->mrq->cmd, 0);
1140 } else if (!(cmd->data->flags & MMC_DATA_READ)) {
1141 mmci_start_data(host, cmd->data);
1142 }
1143}
1144
1145static int mmci_get_rx_fifocnt(struct mmci_host *host, u32 status, int remain)
1146{
1147 return remain - (readl(host->base + MMCIFIFOCNT) << 2);
1148}
1149
1150static int mmci_qcom_get_rx_fifocnt(struct mmci_host *host, u32 status, int r)
1151{
1152 /*
1153 * on qcom SDCC4 only 8 words are used in each burst so only 8 addresses
1154 * from the fifo range should be used
1155 */
1156 if (status & MCI_RXFIFOHALFFULL)
1157 return host->variant->fifohalfsize;
1158 else if (status & MCI_RXDATAAVLBL)
1159 return 4;
1160
1161 return 0;
1162}
1163
1164static int mmci_pio_read(struct mmci_host *host, char *buffer, unsigned int remain)
1165{
1166 void __iomem *base = host->base;
1167 char *ptr = buffer;
1168 u32 status = readl(host->base + MMCISTATUS);
1169 int host_remain = host->size;
1170
1171 do {
1172 int count = host->get_rx_fifocnt(host, status, host_remain);
1173
1174 if (count > remain)
1175 count = remain;
1176
1177 if (count <= 0)
1178 break;
1179
1180 /*
1181 * SDIO especially may want to send something that is
1182 * not divisible by 4 (as opposed to card sectors
1183 * etc). Therefore make sure to always read the last bytes
1184 * while only doing full 32-bit reads towards the FIFO.
1185 */
1186 if (unlikely(count & 0x3)) {
1187 if (count < 4) {
1188 unsigned char buf[4];
1189 ioread32_rep(base + MMCIFIFO, buf, 1);
1190 memcpy(ptr, buf, count);
1191 } else {
1192 ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1193 count &= ~0x3;
1194 }
1195 } else {
1196 ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1197 }
1198
1199 ptr += count;
1200 remain -= count;
1201 host_remain -= count;
1202
1203 if (remain == 0)
1204 break;
1205
1206 status = readl(base + MMCISTATUS);
1207 } while (status & MCI_RXDATAAVLBL);
1208
1209 return ptr - buffer;
1210}
1211
1212static int mmci_pio_write(struct mmci_host *host, char *buffer, unsigned int remain, u32 status)
1213{
1214 struct variant_data *variant = host->variant;
1215 void __iomem *base = host->base;
1216 char *ptr = buffer;
1217
1218 do {
1219 unsigned int count, maxcnt;
1220
1221 maxcnt = status & MCI_TXFIFOEMPTY ?
1222 variant->fifosize : variant->fifohalfsize;
1223 count = min(remain, maxcnt);
1224
1225 /*
1226 * SDIO especially may want to send something that is
1227 * not divisible by 4 (as opposed to card sectors
1228 * etc), and the FIFO only accept full 32-bit writes.
1229 * So compensate by adding +3 on the count, a single
1230 * byte become a 32bit write, 7 bytes will be two
1231 * 32bit writes etc.
1232 */
1233 iowrite32_rep(base + MMCIFIFO, ptr, (count + 3) >> 2);
1234
1235 ptr += count;
1236 remain -= count;
1237
1238 if (remain == 0)
1239 break;
1240
1241 status = readl(base + MMCISTATUS);
1242 } while (status & MCI_TXFIFOHALFEMPTY);
1243
1244 return ptr - buffer;
1245}
1246
1247/*
1248 * PIO data transfer IRQ handler.
1249 */
1250static irqreturn_t mmci_pio_irq(int irq, void *dev_id)
1251{
1252 struct mmci_host *host = dev_id;
1253 struct sg_mapping_iter *sg_miter = &host->sg_miter;
1254 struct variant_data *variant = host->variant;
1255 void __iomem *base = host->base;
1256 unsigned long flags;
1257 u32 status;
1258
1259 status = readl(base + MMCISTATUS);
1260
1261 dev_dbg(mmc_dev(host->mmc), "irq1 (pio) %08x\n", status);
1262
1263 local_irq_save(flags);
1264
1265 do {
1266 unsigned int remain, len;
1267 char *buffer;
1268
1269 /*
1270 * For write, we only need to test the half-empty flag
1271 * here - if the FIFO is completely empty, then by
1272 * definition it is more than half empty.
1273 *
1274 * For read, check for data available.
1275 */
1276 if (!(status & (MCI_TXFIFOHALFEMPTY|MCI_RXDATAAVLBL)))
1277 break;
1278
1279 if (!sg_miter_next(sg_miter))
1280 break;
1281
1282 buffer = sg_miter->addr;
1283 remain = sg_miter->length;
1284
1285 len = 0;
1286 if (status & MCI_RXACTIVE)
1287 len = mmci_pio_read(host, buffer, remain);
1288 if (status & MCI_TXACTIVE)
1289 len = mmci_pio_write(host, buffer, remain, status);
1290
1291 sg_miter->consumed = len;
1292
1293 host->size -= len;
1294 remain -= len;
1295
1296 if (remain)
1297 break;
1298
1299 status = readl(base + MMCISTATUS);
1300 } while (1);
1301
1302 sg_miter_stop(sg_miter);
1303
1304 local_irq_restore(flags);
1305
1306 /*
1307 * If we have less than the fifo 'half-full' threshold to transfer,
1308 * trigger a PIO interrupt as soon as any data is available.
1309 */
1310 if (status & MCI_RXACTIVE && host->size < variant->fifohalfsize)
1311 mmci_set_mask1(host, MCI_RXDATAAVLBLMASK);
1312
1313 /*
1314 * If we run out of data, disable the data IRQs; this
1315 * prevents a race where the FIFO becomes empty before
1316 * the chip itself has disabled the data path, and
1317 * stops us racing with our data end IRQ.
1318 */
1319 if (host->size == 0) {
1320 mmci_set_mask1(host, 0);
1321 writel(readl(base + MMCIMASK0) | MCI_DATAENDMASK, base + MMCIMASK0);
1322 }
1323
1324 return IRQ_HANDLED;
1325}
1326
1327/*
1328 * Handle completion of command and data transfers.
1329 */
1330static irqreturn_t mmci_irq(int irq, void *dev_id)
1331{
1332 struct mmci_host *host = dev_id;
1333 u32 status;
1334 int ret = 0;
1335
1336 spin_lock(&host->lock);
1337
1338 do {
1339 status = readl(host->base + MMCISTATUS);
1340
1341 if (host->singleirq) {
1342 if (status & host->mask1_reg)
1343 mmci_pio_irq(irq, dev_id);
1344
1345 status &= ~MCI_IRQ1MASK;
1346 }
1347
1348 /*
1349 * We intentionally clear the MCI_ST_CARDBUSY IRQ (if it's
1350 * enabled) in mmci_cmd_irq() function where ST Micro busy
1351 * detection variant is handled. Considering the HW seems to be
1352 * triggering the IRQ on both edges while monitoring DAT0 for
1353 * busy completion and that same status bit is used to monitor
1354 * start and end of busy detection, special care must be taken
1355 * to make sure that both start and end interrupts are always
1356 * cleared one after the other.
1357 */
1358 status &= readl(host->base + MMCIMASK0);
1359 if (host->variant->busy_detect)
1360 writel(status & ~host->variant->busy_detect_mask,
1361 host->base + MMCICLEAR);
1362 else
1363 writel(status, host->base + MMCICLEAR);
1364
1365 dev_dbg(mmc_dev(host->mmc), "irq0 (data+cmd) %08x\n", status);
1366
1367 if (host->variant->reversed_irq_handling) {
1368 mmci_data_irq(host, host->data, status);
1369 mmci_cmd_irq(host, host->cmd, status);
1370 } else {
1371 mmci_cmd_irq(host, host->cmd, status);
1372 mmci_data_irq(host, host->data, status);
1373 }
1374
1375 /*
1376 * Don't poll for busy completion in irq context.
1377 */
1378 if (host->variant->busy_detect && host->busy_status)
1379 status &= ~host->variant->busy_detect_flag;
1380
1381 ret = 1;
1382 } while (status);
1383
1384 spin_unlock(&host->lock);
1385
1386 return IRQ_RETVAL(ret);
1387}
1388
1389static void mmci_request(struct mmc_host *mmc, struct mmc_request *mrq)
1390{
1391 struct mmci_host *host = mmc_priv(mmc);
1392 unsigned long flags;
1393
1394 WARN_ON(host->mrq != NULL);
1395
1396 mrq->cmd->error = mmci_validate_data(host, mrq->data);
1397 if (mrq->cmd->error) {
1398 mmc_request_done(mmc, mrq);
1399 return;
1400 }
1401
1402 spin_lock_irqsave(&host->lock, flags);
1403
1404 host->mrq = mrq;
1405
1406 if (mrq->data)
1407 mmci_get_next_data(host, mrq->data);
1408
1409 if (mrq->data && mrq->data->flags & MMC_DATA_READ)
1410 mmci_start_data(host, mrq->data);
1411
1412 if (mrq->sbc)
1413 mmci_start_command(host, mrq->sbc, 0);
1414 else
1415 mmci_start_command(host, mrq->cmd, 0);
1416
1417 spin_unlock_irqrestore(&host->lock, flags);
1418}
1419
1420static void mmci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1421{
1422 struct mmci_host *host = mmc_priv(mmc);
1423 struct variant_data *variant = host->variant;
1424 u32 pwr = 0;
1425 unsigned long flags;
1426 int ret;
1427
1428 if (host->plat->ios_handler &&
1429 host->plat->ios_handler(mmc_dev(mmc), ios))
1430 dev_err(mmc_dev(mmc), "platform ios_handler failed\n");
1431
1432 switch (ios->power_mode) {
1433 case MMC_POWER_OFF:
1434 if (!IS_ERR(mmc->supply.vmmc))
1435 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1436
1437 if (!IS_ERR(mmc->supply.vqmmc) && host->vqmmc_enabled) {
1438 regulator_disable(mmc->supply.vqmmc);
1439 host->vqmmc_enabled = false;
1440 }
1441
1442 break;
1443 case MMC_POWER_UP:
1444 if (!IS_ERR(mmc->supply.vmmc))
1445 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
1446
1447 /*
1448 * The ST Micro variant doesn't have the PL180s MCI_PWR_UP
1449 * and instead uses MCI_PWR_ON so apply whatever value is
1450 * configured in the variant data.
1451 */
1452 pwr |= variant->pwrreg_powerup;
1453
1454 break;
1455 case MMC_POWER_ON:
1456 if (!IS_ERR(mmc->supply.vqmmc) && !host->vqmmc_enabled) {
1457 ret = regulator_enable(mmc->supply.vqmmc);
1458 if (ret < 0)
1459 dev_err(mmc_dev(mmc),
1460 "failed to enable vqmmc regulator\n");
1461 else
1462 host->vqmmc_enabled = true;
1463 }
1464
1465 pwr |= MCI_PWR_ON;
1466 break;
1467 }
1468
1469 if (variant->signal_direction && ios->power_mode != MMC_POWER_OFF) {
1470 /*
1471 * The ST Micro variant has some additional bits
1472 * indicating signal direction for the signals in
1473 * the SD/MMC bus and feedback-clock usage.
1474 */
1475 pwr |= host->pwr_reg_add;
1476
1477 if (ios->bus_width == MMC_BUS_WIDTH_4)
1478 pwr &= ~MCI_ST_DATA74DIREN;
1479 else if (ios->bus_width == MMC_BUS_WIDTH_1)
1480 pwr &= (~MCI_ST_DATA74DIREN &
1481 ~MCI_ST_DATA31DIREN &
1482 ~MCI_ST_DATA2DIREN);
1483 }
1484
1485 if (variant->opendrain) {
1486 if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN)
1487 pwr |= variant->opendrain;
1488 } else {
1489 /*
1490 * If the variant cannot configure the pads by its own, then we
1491 * expect the pinctrl to be able to do that for us
1492 */
1493 if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN)
1494 pinctrl_select_state(host->pinctrl, host->pins_opendrain);
1495 else
1496 pinctrl_select_state(host->pinctrl, host->pins_default);
1497 }
1498
1499 /*
1500 * If clock = 0 and the variant requires the MMCIPOWER to be used for
1501 * gating the clock, the MCI_PWR_ON bit is cleared.
1502 */
1503 if (!ios->clock && variant->pwrreg_clkgate)
1504 pwr &= ~MCI_PWR_ON;
1505
1506 if (host->variant->explicit_mclk_control &&
1507 ios->clock != host->clock_cache) {
1508 ret = clk_set_rate(host->clk, ios->clock);
1509 if (ret < 0)
1510 dev_err(mmc_dev(host->mmc),
1511 "Error setting clock rate (%d)\n", ret);
1512 else
1513 host->mclk = clk_get_rate(host->clk);
1514 }
1515 host->clock_cache = ios->clock;
1516
1517 spin_lock_irqsave(&host->lock, flags);
1518
1519 mmci_set_clkreg(host, ios->clock);
1520 mmci_write_pwrreg(host, pwr);
1521 mmci_reg_delay(host);
1522
1523 spin_unlock_irqrestore(&host->lock, flags);
1524}
1525
1526static int mmci_get_cd(struct mmc_host *mmc)
1527{
1528 struct mmci_host *host = mmc_priv(mmc);
1529 struct mmci_platform_data *plat = host->plat;
1530 unsigned int status = mmc_gpio_get_cd(mmc);
1531
1532 if (status == -ENOSYS) {
1533 if (!plat->status)
1534 return 1; /* Assume always present */
1535
1536 status = plat->status(mmc_dev(host->mmc));
1537 }
1538 return status;
1539}
1540
1541static int mmci_sig_volt_switch(struct mmc_host *mmc, struct mmc_ios *ios)
1542{
1543 int ret = 0;
1544
1545 if (!IS_ERR(mmc->supply.vqmmc)) {
1546
1547 switch (ios->signal_voltage) {
1548 case MMC_SIGNAL_VOLTAGE_330:
1549 ret = regulator_set_voltage(mmc->supply.vqmmc,
1550 2700000, 3600000);
1551 break;
1552 case MMC_SIGNAL_VOLTAGE_180:
1553 ret = regulator_set_voltage(mmc->supply.vqmmc,
1554 1700000, 1950000);
1555 break;
1556 case MMC_SIGNAL_VOLTAGE_120:
1557 ret = regulator_set_voltage(mmc->supply.vqmmc,
1558 1100000, 1300000);
1559 break;
1560 }
1561
1562 if (ret)
1563 dev_warn(mmc_dev(mmc), "Voltage switch failed\n");
1564 }
1565
1566 return ret;
1567}
1568
1569static struct mmc_host_ops mmci_ops = {
1570 .request = mmci_request,
1571 .pre_req = mmci_pre_request,
1572 .post_req = mmci_post_request,
1573 .set_ios = mmci_set_ios,
1574 .get_ro = mmc_gpio_get_ro,
1575 .get_cd = mmci_get_cd,
1576 .start_signal_voltage_switch = mmci_sig_volt_switch,
1577};
1578
1579static int mmci_of_parse(struct device_node *np, struct mmc_host *mmc)
1580{
1581 struct mmci_host *host = mmc_priv(mmc);
1582 int ret = mmc_of_parse(mmc);
1583
1584 if (ret)
1585 return ret;
1586
1587 if (of_get_property(np, "st,sig-dir-dat0", NULL))
1588 host->pwr_reg_add |= MCI_ST_DATA0DIREN;
1589 if (of_get_property(np, "st,sig-dir-dat2", NULL))
1590 host->pwr_reg_add |= MCI_ST_DATA2DIREN;
1591 if (of_get_property(np, "st,sig-dir-dat31", NULL))
1592 host->pwr_reg_add |= MCI_ST_DATA31DIREN;
1593 if (of_get_property(np, "st,sig-dir-dat74", NULL))
1594 host->pwr_reg_add |= MCI_ST_DATA74DIREN;
1595 if (of_get_property(np, "st,sig-dir-cmd", NULL))
1596 host->pwr_reg_add |= MCI_ST_CMDDIREN;
1597 if (of_get_property(np, "st,sig-pin-fbclk", NULL))
1598 host->pwr_reg_add |= MCI_ST_FBCLKEN;
1599
1600 if (of_get_property(np, "mmc-cap-mmc-highspeed", NULL))
1601 mmc->caps |= MMC_CAP_MMC_HIGHSPEED;
1602 if (of_get_property(np, "mmc-cap-sd-highspeed", NULL))
1603 mmc->caps |= MMC_CAP_SD_HIGHSPEED;
1604
1605 return 0;
1606}
1607
1608static int mmci_probe(struct amba_device *dev,
1609 const struct amba_id *id)
1610{
1611 struct mmci_platform_data *plat = dev->dev.platform_data;
1612 struct device_node *np = dev->dev.of_node;
1613 struct variant_data *variant = id->data;
1614 struct mmci_host *host;
1615 struct mmc_host *mmc;
1616 int ret;
1617
1618 /* Must have platform data or Device Tree. */
1619 if (!plat && !np) {
1620 dev_err(&dev->dev, "No plat data or DT found\n");
1621 return -EINVAL;
1622 }
1623
1624 if (!plat) {
1625 plat = devm_kzalloc(&dev->dev, sizeof(*plat), GFP_KERNEL);
1626 if (!plat)
1627 return -ENOMEM;
1628 }
1629
1630 mmc = mmc_alloc_host(sizeof(struct mmci_host), &dev->dev);
1631 if (!mmc)
1632 return -ENOMEM;
1633
1634 ret = mmci_of_parse(np, mmc);
1635 if (ret)
1636 goto host_free;
1637
1638 host = mmc_priv(mmc);
1639 host->mmc = mmc;
1640
1641 /*
1642 * Some variant (STM32) doesn't have opendrain bit, nevertheless
1643 * pins can be set accordingly using pinctrl
1644 */
1645 if (!variant->opendrain) {
1646 host->pinctrl = devm_pinctrl_get(&dev->dev);
1647 if (IS_ERR(host->pinctrl)) {
1648 dev_err(&dev->dev, "failed to get pinctrl");
1649 ret = PTR_ERR(host->pinctrl);
1650 goto host_free;
1651 }
1652
1653 host->pins_default = pinctrl_lookup_state(host->pinctrl,
1654 PINCTRL_STATE_DEFAULT);
1655 if (IS_ERR(host->pins_default)) {
1656 dev_err(mmc_dev(mmc), "Can't select default pins\n");
1657 ret = PTR_ERR(host->pins_default);
1658 goto host_free;
1659 }
1660
1661 host->pins_opendrain = pinctrl_lookup_state(host->pinctrl,
1662 MMCI_PINCTRL_STATE_OPENDRAIN);
1663 if (IS_ERR(host->pins_opendrain)) {
1664 dev_err(mmc_dev(mmc), "Can't select opendrain pins\n");
1665 ret = PTR_ERR(host->pins_opendrain);
1666 goto host_free;
1667 }
1668 }
1669
1670 host->hw_designer = amba_manf(dev);
1671 host->hw_revision = amba_rev(dev);
1672 dev_dbg(mmc_dev(mmc), "designer ID = 0x%02x\n", host->hw_designer);
1673 dev_dbg(mmc_dev(mmc), "revision = 0x%01x\n", host->hw_revision);
1674
1675 host->clk = devm_clk_get(&dev->dev, NULL);
1676 if (IS_ERR(host->clk)) {
1677 ret = PTR_ERR(host->clk);
1678 goto host_free;
1679 }
1680
1681 ret = clk_prepare_enable(host->clk);
1682 if (ret)
1683 goto host_free;
1684
1685 if (variant->qcom_fifo)
1686 host->get_rx_fifocnt = mmci_qcom_get_rx_fifocnt;
1687 else
1688 host->get_rx_fifocnt = mmci_get_rx_fifocnt;
1689
1690 host->plat = plat;
1691 host->variant = variant;
1692 host->mclk = clk_get_rate(host->clk);
1693 /*
1694 * According to the spec, mclk is max 100 MHz,
1695 * so we try to adjust the clock down to this,
1696 * (if possible).
1697 */
1698 if (host->mclk > variant->f_max) {
1699 ret = clk_set_rate(host->clk, variant->f_max);
1700 if (ret < 0)
1701 goto clk_disable;
1702 host->mclk = clk_get_rate(host->clk);
1703 dev_dbg(mmc_dev(mmc), "eventual mclk rate: %u Hz\n",
1704 host->mclk);
1705 }
1706
1707 host->phybase = dev->res.start;
1708 host->base = devm_ioremap_resource(&dev->dev, &dev->res);
1709 if (IS_ERR(host->base)) {
1710 ret = PTR_ERR(host->base);
1711 goto clk_disable;
1712 }
1713
1714 /*
1715 * The ARM and ST versions of the block have slightly different
1716 * clock divider equations which means that the minimum divider
1717 * differs too.
1718 * on Qualcomm like controllers get the nearest minimum clock to 100Khz
1719 */
1720 if (variant->st_clkdiv)
1721 mmc->f_min = DIV_ROUND_UP(host->mclk, 257);
1722 else if (variant->explicit_mclk_control)
1723 mmc->f_min = clk_round_rate(host->clk, 100000);
1724 else
1725 mmc->f_min = DIV_ROUND_UP(host->mclk, 512);
1726 /*
1727 * If no maximum operating frequency is supplied, fall back to use
1728 * the module parameter, which has a (low) default value in case it
1729 * is not specified. Either value must not exceed the clock rate into
1730 * the block, of course.
1731 */
1732 if (mmc->f_max)
1733 mmc->f_max = variant->explicit_mclk_control ?
1734 min(variant->f_max, mmc->f_max) :
1735 min(host->mclk, mmc->f_max);
1736 else
1737 mmc->f_max = variant->explicit_mclk_control ?
1738 fmax : min(host->mclk, fmax);
1739
1740
1741 dev_dbg(mmc_dev(mmc), "clocking block at %u Hz\n", mmc->f_max);
1742
1743 /* Get regulators and the supported OCR mask */
1744 ret = mmc_regulator_get_supply(mmc);
1745 if (ret)
1746 goto clk_disable;
1747
1748 if (!mmc->ocr_avail)
1749 mmc->ocr_avail = plat->ocr_mask;
1750 else if (plat->ocr_mask)
1751 dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
1752
1753 /* DT takes precedence over platform data. */
1754 if (!np) {
1755 if (!plat->cd_invert)
1756 mmc->caps2 |= MMC_CAP2_CD_ACTIVE_HIGH;
1757 mmc->caps2 |= MMC_CAP2_RO_ACTIVE_HIGH;
1758 }
1759
1760 /* We support these capabilities. */
1761 mmc->caps |= MMC_CAP_CMD23;
1762
1763 /*
1764 * Enable busy detection.
1765 */
1766 if (variant->busy_detect) {
1767 mmci_ops.card_busy = mmci_card_busy;
1768 /*
1769 * Not all variants have a flag to enable busy detection
1770 * in the DPSM, but if they do, set it here.
1771 */
1772 if (variant->busy_dpsm_flag)
1773 mmci_write_datactrlreg(host,
1774 host->variant->busy_dpsm_flag);
1775 mmc->caps |= MMC_CAP_WAIT_WHILE_BUSY;
1776 mmc->max_busy_timeout = 0;
1777 }
1778
1779 mmc->ops = &mmci_ops;
1780
1781 /* We support these PM capabilities. */
1782 mmc->pm_caps |= MMC_PM_KEEP_POWER;
1783
1784 /*
1785 * We can do SGIO
1786 */
1787 mmc->max_segs = NR_SG;
1788
1789 /*
1790 * Since only a certain number of bits are valid in the data length
1791 * register, we must ensure that we don't exceed 2^num-1 bytes in a
1792 * single request.
1793 */
1794 mmc->max_req_size = (1 << variant->datalength_bits) - 1;
1795
1796 /*
1797 * Set the maximum segment size. Since we aren't doing DMA
1798 * (yet) we are only limited by the data length register.
1799 */
1800 mmc->max_seg_size = mmc->max_req_size;
1801
1802 /*
1803 * Block size can be up to 2048 bytes, but must be a power of two.
1804 */
1805 mmc->max_blk_size = 1 << 11;
1806
1807 /*
1808 * Limit the number of blocks transferred so that we don't overflow
1809 * the maximum request size.
1810 */
1811 mmc->max_blk_count = mmc->max_req_size >> 11;
1812
1813 spin_lock_init(&host->lock);
1814
1815 writel(0, host->base + MMCIMASK0);
1816
1817 if (variant->mmcimask1)
1818 writel(0, host->base + MMCIMASK1);
1819
1820 writel(0xfff, host->base + MMCICLEAR);
1821
1822 /*
1823 * If:
1824 * - not using DT but using a descriptor table, or
1825 * - using a table of descriptors ALONGSIDE DT, or
1826 * look up these descriptors named "cd" and "wp" right here, fail
1827 * silently of these do not exist and proceed to try platform data
1828 */
1829 if (!np) {
1830 ret = mmc_gpiod_request_cd(mmc, "cd", 0, false, 0, NULL);
1831 if (ret < 0) {
1832 if (ret == -EPROBE_DEFER)
1833 goto clk_disable;
1834 else if (gpio_is_valid(plat->gpio_cd)) {
1835 ret = mmc_gpio_request_cd(mmc, plat->gpio_cd, 0);
1836 if (ret)
1837 goto clk_disable;
1838 }
1839 }
1840
1841 ret = mmc_gpiod_request_ro(mmc, "wp", 0, false, 0, NULL);
1842 if (ret < 0) {
1843 if (ret == -EPROBE_DEFER)
1844 goto clk_disable;
1845 else if (gpio_is_valid(plat->gpio_wp)) {
1846 ret = mmc_gpio_request_ro(mmc, plat->gpio_wp);
1847 if (ret)
1848 goto clk_disable;
1849 }
1850 }
1851 }
1852
1853 ret = devm_request_irq(&dev->dev, dev->irq[0], mmci_irq, IRQF_SHARED,
1854 DRIVER_NAME " (cmd)", host);
1855 if (ret)
1856 goto clk_disable;
1857
1858 if (!dev->irq[1])
1859 host->singleirq = true;
1860 else {
1861 ret = devm_request_irq(&dev->dev, dev->irq[1], mmci_pio_irq,
1862 IRQF_SHARED, DRIVER_NAME " (pio)", host);
1863 if (ret)
1864 goto clk_disable;
1865 }
1866
1867 writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1868
1869 amba_set_drvdata(dev, mmc);
1870
1871 dev_info(&dev->dev, "%s: PL%03x manf %x rev%u at 0x%08llx irq %d,%d (pio)\n",
1872 mmc_hostname(mmc), amba_part(dev), amba_manf(dev),
1873 amba_rev(dev), (unsigned long long)dev->res.start,
1874 dev->irq[0], dev->irq[1]);
1875
1876 mmci_dma_setup(host);
1877
1878 pm_runtime_set_autosuspend_delay(&dev->dev, 50);
1879 pm_runtime_use_autosuspend(&dev->dev);
1880
1881 mmc_add_host(mmc);
1882
1883 pm_runtime_put(&dev->dev);
1884 return 0;
1885
1886 clk_disable:
1887 clk_disable_unprepare(host->clk);
1888 host_free:
1889 mmc_free_host(mmc);
1890 return ret;
1891}
1892
1893static int mmci_remove(struct amba_device *dev)
1894{
1895 struct mmc_host *mmc = amba_get_drvdata(dev);
1896
1897 if (mmc) {
1898 struct mmci_host *host = mmc_priv(mmc);
1899 struct variant_data *variant = host->variant;
1900
1901 /*
1902 * Undo pm_runtime_put() in probe. We use the _sync
1903 * version here so that we can access the primecell.
1904 */
1905 pm_runtime_get_sync(&dev->dev);
1906
1907 mmc_remove_host(mmc);
1908
1909 writel(0, host->base + MMCIMASK0);
1910
1911 if (variant->mmcimask1)
1912 writel(0, host->base + MMCIMASK1);
1913
1914 writel(0, host->base + MMCICOMMAND);
1915 writel(0, host->base + MMCIDATACTRL);
1916
1917 mmci_dma_release(host);
1918 clk_disable_unprepare(host->clk);
1919 mmc_free_host(mmc);
1920 }
1921
1922 return 0;
1923}
1924
1925#ifdef CONFIG_PM
1926static void mmci_save(struct mmci_host *host)
1927{
1928 unsigned long flags;
1929
1930 spin_lock_irqsave(&host->lock, flags);
1931
1932 writel(0, host->base + MMCIMASK0);
1933 if (host->variant->pwrreg_nopower) {
1934 writel(0, host->base + MMCIDATACTRL);
1935 writel(0, host->base + MMCIPOWER);
1936 writel(0, host->base + MMCICLOCK);
1937 }
1938 mmci_reg_delay(host);
1939
1940 spin_unlock_irqrestore(&host->lock, flags);
1941}
1942
1943static void mmci_restore(struct mmci_host *host)
1944{
1945 unsigned long flags;
1946
1947 spin_lock_irqsave(&host->lock, flags);
1948
1949 if (host->variant->pwrreg_nopower) {
1950 writel(host->clk_reg, host->base + MMCICLOCK);
1951 writel(host->datactrl_reg, host->base + MMCIDATACTRL);
1952 writel(host->pwr_reg, host->base + MMCIPOWER);
1953 }
1954 writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1955 mmci_reg_delay(host);
1956
1957 spin_unlock_irqrestore(&host->lock, flags);
1958}
1959
1960static int mmci_runtime_suspend(struct device *dev)
1961{
1962 struct amba_device *adev = to_amba_device(dev);
1963 struct mmc_host *mmc = amba_get_drvdata(adev);
1964
1965 if (mmc) {
1966 struct mmci_host *host = mmc_priv(mmc);
1967 pinctrl_pm_select_sleep_state(dev);
1968 mmci_save(host);
1969 clk_disable_unprepare(host->clk);
1970 }
1971
1972 return 0;
1973}
1974
1975static int mmci_runtime_resume(struct device *dev)
1976{
1977 struct amba_device *adev = to_amba_device(dev);
1978 struct mmc_host *mmc = amba_get_drvdata(adev);
1979
1980 if (mmc) {
1981 struct mmci_host *host = mmc_priv(mmc);
1982 clk_prepare_enable(host->clk);
1983 mmci_restore(host);
1984 pinctrl_pm_select_default_state(dev);
1985 }
1986
1987 return 0;
1988}
1989#endif
1990
1991static const struct dev_pm_ops mmci_dev_pm_ops = {
1992 SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
1993 pm_runtime_force_resume)
1994 SET_RUNTIME_PM_OPS(mmci_runtime_suspend, mmci_runtime_resume, NULL)
1995};
1996
1997static const struct amba_id mmci_ids[] = {
1998 {
1999 .id = 0x00041180,
2000 .mask = 0xff0fffff,
2001 .data = &variant_arm,
2002 },
2003 {
2004 .id = 0x01041180,
2005 .mask = 0xff0fffff,
2006 .data = &variant_arm_extended_fifo,
2007 },
2008 {
2009 .id = 0x02041180,
2010 .mask = 0xff0fffff,
2011 .data = &variant_arm_extended_fifo_hwfc,
2012 },
2013 {
2014 .id = 0x00041181,
2015 .mask = 0x000fffff,
2016 .data = &variant_arm,
2017 },
2018 /* ST Micro variants */
2019 {
2020 .id = 0x00180180,
2021 .mask = 0x00ffffff,
2022 .data = &variant_u300,
2023 },
2024 {
2025 .id = 0x10180180,
2026 .mask = 0xf0ffffff,
2027 .data = &variant_nomadik,
2028 },
2029 {
2030 .id = 0x00280180,
2031 .mask = 0x00ffffff,
2032 .data = &variant_nomadik,
2033 },
2034 {
2035 .id = 0x00480180,
2036 .mask = 0xf0ffffff,
2037 .data = &variant_ux500,
2038 },
2039 {
2040 .id = 0x10480180,
2041 .mask = 0xf0ffffff,
2042 .data = &variant_ux500v2,
2043 },
2044 {
2045 .id = 0x00880180,
2046 .mask = 0x00ffffff,
2047 .data = &variant_stm32,
2048 },
2049 /* Qualcomm variants */
2050 {
2051 .id = 0x00051180,
2052 .mask = 0x000fffff,
2053 .data = &variant_qcom,
2054 },
2055 { 0, 0 },
2056};
2057
2058MODULE_DEVICE_TABLE(amba, mmci_ids);
2059
2060static struct amba_driver mmci_driver = {
2061 .drv = {
2062 .name = DRIVER_NAME,
2063 .pm = &mmci_dev_pm_ops,
2064 },
2065 .probe = mmci_probe,
2066 .remove = mmci_remove,
2067 .id_table = mmci_ids,
2068};
2069
2070module_amba_driver(mmci_driver);
2071
2072module_param(fmax, uint, 0444);
2073
2074MODULE_DESCRIPTION("ARM PrimeCell PL180/181 Multimedia Card Interface driver");
2075MODULE_LICENSE("GPL");