Linux Audio

Check our new training course

Loading...
v3.15
  1/*
  2 * kernel/stop_machine.c
  3 *
  4 * Copyright (C) 2008, 2005	IBM Corporation.
  5 * Copyright (C) 2008, 2005	Rusty Russell rusty@rustcorp.com.au
  6 * Copyright (C) 2010		SUSE Linux Products GmbH
  7 * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
  8 *
  9 * This file is released under the GPLv2 and any later version.
 10 */
 11#include <linux/completion.h>
 12#include <linux/cpu.h>
 13#include <linux/init.h>
 14#include <linux/kthread.h>
 15#include <linux/export.h>
 16#include <linux/percpu.h>
 17#include <linux/sched.h>
 18#include <linux/stop_machine.h>
 19#include <linux/interrupt.h>
 20#include <linux/kallsyms.h>
 21#include <linux/smpboot.h>
 22#include <linux/atomic.h>
 23#include <linux/lglock.h>
 24
 25/*
 26 * Structure to determine completion condition and record errors.  May
 27 * be shared by works on different cpus.
 28 */
 29struct cpu_stop_done {
 30	atomic_t		nr_todo;	/* nr left to execute */
 31	bool			executed;	/* actually executed? */
 32	int			ret;		/* collected return value */
 33	struct completion	completion;	/* fired if nr_todo reaches 0 */
 34};
 35
 36/* the actual stopper, one per every possible cpu, enabled on online cpus */
 37struct cpu_stopper {
 38	spinlock_t		lock;
 39	bool			enabled;	/* is this stopper enabled? */
 40	struct list_head	works;		/* list of pending works */
 
 41};
 42
 43static DEFINE_PER_CPU(struct cpu_stopper, cpu_stopper);
 44static DEFINE_PER_CPU(struct task_struct *, cpu_stopper_task);
 45static bool stop_machine_initialized = false;
 46
 47/*
 48 * Avoids a race between stop_two_cpus and global stop_cpus, where
 49 * the stoppers could get queued up in reverse order, leading to
 50 * system deadlock. Using an lglock means stop_two_cpus remains
 51 * relatively cheap.
 52 */
 53DEFINE_STATIC_LGLOCK(stop_cpus_lock);
 54
 55static void cpu_stop_init_done(struct cpu_stop_done *done, unsigned int nr_todo)
 56{
 57	memset(done, 0, sizeof(*done));
 58	atomic_set(&done->nr_todo, nr_todo);
 59	init_completion(&done->completion);
 60}
 61
 62/* signal completion unless @done is NULL */
 63static void cpu_stop_signal_done(struct cpu_stop_done *done, bool executed)
 64{
 65	if (done) {
 66		if (executed)
 67			done->executed = true;
 68		if (atomic_dec_and_test(&done->nr_todo))
 69			complete(&done->completion);
 70	}
 71}
 72
 73/* queue @work to @stopper.  if offline, @work is completed immediately */
 74static void cpu_stop_queue_work(unsigned int cpu, struct cpu_stop_work *work)
 
 75{
 76	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
 77	struct task_struct *p = per_cpu(cpu_stopper_task, cpu);
 78
 79	unsigned long flags;
 80
 81	spin_lock_irqsave(&stopper->lock, flags);
 82
 83	if (stopper->enabled) {
 84		list_add_tail(&work->list, &stopper->works);
 85		wake_up_process(p);
 86	} else
 87		cpu_stop_signal_done(work->done, false);
 88
 89	spin_unlock_irqrestore(&stopper->lock, flags);
 90}
 91
 92/**
 93 * stop_one_cpu - stop a cpu
 94 * @cpu: cpu to stop
 95 * @fn: function to execute
 96 * @arg: argument to @fn
 97 *
 98 * Execute @fn(@arg) on @cpu.  @fn is run in a process context with
 99 * the highest priority preempting any task on the cpu and
100 * monopolizing it.  This function returns after the execution is
101 * complete.
102 *
103 * This function doesn't guarantee @cpu stays online till @fn
104 * completes.  If @cpu goes down in the middle, execution may happen
105 * partially or fully on different cpus.  @fn should either be ready
106 * for that or the caller should ensure that @cpu stays online until
107 * this function completes.
108 *
109 * CONTEXT:
110 * Might sleep.
111 *
112 * RETURNS:
113 * -ENOENT if @fn(@arg) was not executed because @cpu was offline;
114 * otherwise, the return value of @fn.
115 */
116int stop_one_cpu(unsigned int cpu, cpu_stop_fn_t fn, void *arg)
117{
118	struct cpu_stop_done done;
119	struct cpu_stop_work work = { .fn = fn, .arg = arg, .done = &done };
120
121	cpu_stop_init_done(&done, 1);
122	cpu_stop_queue_work(cpu, &work);
123	wait_for_completion(&done.completion);
124	return done.executed ? done.ret : -ENOENT;
125}
126
127/* This controls the threads on each CPU. */
128enum multi_stop_state {
129	/* Dummy starting state for thread. */
130	MULTI_STOP_NONE,
131	/* Awaiting everyone to be scheduled. */
132	MULTI_STOP_PREPARE,
133	/* Disable interrupts. */
134	MULTI_STOP_DISABLE_IRQ,
135	/* Run the function */
136	MULTI_STOP_RUN,
137	/* Exit */
138	MULTI_STOP_EXIT,
139};
140
141struct multi_stop_data {
142	int			(*fn)(void *);
143	void			*data;
144	/* Like num_online_cpus(), but hotplug cpu uses us, so we need this. */
145	unsigned int		num_threads;
146	const struct cpumask	*active_cpus;
147
148	enum multi_stop_state	state;
149	atomic_t		thread_ack;
150};
151
152static void set_state(struct multi_stop_data *msdata,
153		      enum multi_stop_state newstate)
154{
155	/* Reset ack counter. */
156	atomic_set(&msdata->thread_ack, msdata->num_threads);
157	smp_wmb();
158	msdata->state = newstate;
159}
160
161/* Last one to ack a state moves to the next state. */
162static void ack_state(struct multi_stop_data *msdata)
163{
164	if (atomic_dec_and_test(&msdata->thread_ack))
165		set_state(msdata, msdata->state + 1);
166}
167
168/* This is the cpu_stop function which stops the CPU. */
169static int multi_cpu_stop(void *data)
170{
171	struct multi_stop_data *msdata = data;
172	enum multi_stop_state curstate = MULTI_STOP_NONE;
173	int cpu = smp_processor_id(), err = 0;
174	unsigned long flags;
175	bool is_active;
176
177	/*
178	 * When called from stop_machine_from_inactive_cpu(), irq might
179	 * already be disabled.  Save the state and restore it on exit.
180	 */
181	local_save_flags(flags);
182
183	if (!msdata->active_cpus)
184		is_active = cpu == cpumask_first(cpu_online_mask);
185	else
186		is_active = cpumask_test_cpu(cpu, msdata->active_cpus);
187
188	/* Simple state machine */
189	do {
190		/* Chill out and ensure we re-read multi_stop_state. */
191		cpu_relax();
192		if (msdata->state != curstate) {
193			curstate = msdata->state;
194			switch (curstate) {
195			case MULTI_STOP_DISABLE_IRQ:
196				local_irq_disable();
197				hard_irq_disable();
198				break;
199			case MULTI_STOP_RUN:
200				if (is_active)
201					err = msdata->fn(msdata->data);
202				break;
203			default:
204				break;
205			}
206			ack_state(msdata);
207		}
208	} while (curstate != MULTI_STOP_EXIT);
209
210	local_irq_restore(flags);
211	return err;
212}
213
214struct irq_cpu_stop_queue_work_info {
215	int cpu1;
216	int cpu2;
217	struct cpu_stop_work *work1;
218	struct cpu_stop_work *work2;
219};
220
221/*
222 * This function is always run with irqs and preemption disabled.
223 * This guarantees that both work1 and work2 get queued, before
224 * our local migrate thread gets the chance to preempt us.
225 */
226static void irq_cpu_stop_queue_work(void *arg)
227{
228	struct irq_cpu_stop_queue_work_info *info = arg;
229	cpu_stop_queue_work(info->cpu1, info->work1);
230	cpu_stop_queue_work(info->cpu2, info->work2);
231}
232
233/**
234 * stop_two_cpus - stops two cpus
235 * @cpu1: the cpu to stop
236 * @cpu2: the other cpu to stop
237 * @fn: function to execute
238 * @arg: argument to @fn
239 *
240 * Stops both the current and specified CPU and runs @fn on one of them.
241 *
242 * returns when both are completed.
243 */
244int stop_two_cpus(unsigned int cpu1, unsigned int cpu2, cpu_stop_fn_t fn, void *arg)
245{
246	struct cpu_stop_done done;
247	struct cpu_stop_work work1, work2;
248	struct irq_cpu_stop_queue_work_info call_args;
249	struct multi_stop_data msdata;
250
251	preempt_disable();
252	msdata = (struct multi_stop_data){
253		.fn = fn,
254		.data = arg,
255		.num_threads = 2,
256		.active_cpus = cpumask_of(cpu1),
257	};
258
259	work1 = work2 = (struct cpu_stop_work){
260		.fn = multi_cpu_stop,
261		.arg = &msdata,
262		.done = &done
263	};
264
265	call_args = (struct irq_cpu_stop_queue_work_info){
266		.cpu1 = cpu1,
267		.cpu2 = cpu2,
268		.work1 = &work1,
269		.work2 = &work2,
270	};
271
272	cpu_stop_init_done(&done, 2);
273	set_state(&msdata, MULTI_STOP_PREPARE);
274
275	/*
276	 * If we observe both CPUs active we know _cpu_down() cannot yet have
277	 * queued its stop_machine works and therefore ours will get executed
278	 * first. Or its not either one of our CPUs that's getting unplugged,
279	 * in which case we don't care.
280	 *
281	 * This relies on the stopper workqueues to be FIFO.
282	 */
283	if (!cpu_active(cpu1) || !cpu_active(cpu2)) {
284		preempt_enable();
285		return -ENOENT;
286	}
287
288	lg_local_lock(&stop_cpus_lock);
289	/*
290	 * Queuing needs to be done by the lowest numbered CPU, to ensure
291	 * that works are always queued in the same order on every CPU.
292	 * This prevents deadlocks.
293	 */
294	smp_call_function_single(min(cpu1, cpu2),
295				 &irq_cpu_stop_queue_work,
296				 &call_args, 1);
297	lg_local_unlock(&stop_cpus_lock);
298	preempt_enable();
299
300	wait_for_completion(&done.completion);
301
302	return done.executed ? done.ret : -ENOENT;
303}
304
305/**
306 * stop_one_cpu_nowait - stop a cpu but don't wait for completion
307 * @cpu: cpu to stop
308 * @fn: function to execute
309 * @arg: argument to @fn
310 *
311 * Similar to stop_one_cpu() but doesn't wait for completion.  The
312 * caller is responsible for ensuring @work_buf is currently unused
313 * and will remain untouched until stopper starts executing @fn.
314 *
315 * CONTEXT:
316 * Don't care.
317 */
318void stop_one_cpu_nowait(unsigned int cpu, cpu_stop_fn_t fn, void *arg,
319			struct cpu_stop_work *work_buf)
320{
321	*work_buf = (struct cpu_stop_work){ .fn = fn, .arg = arg, };
322	cpu_stop_queue_work(cpu, work_buf);
323}
324
325/* static data for stop_cpus */
326static DEFINE_MUTEX(stop_cpus_mutex);
327static DEFINE_PER_CPU(struct cpu_stop_work, stop_cpus_work);
328
329static void queue_stop_cpus_work(const struct cpumask *cpumask,
330				 cpu_stop_fn_t fn, void *arg,
331				 struct cpu_stop_done *done)
332{
333	struct cpu_stop_work *work;
334	unsigned int cpu;
335
336	/* initialize works and done */
337	for_each_cpu(cpu, cpumask) {
338		work = &per_cpu(stop_cpus_work, cpu);
339		work->fn = fn;
340		work->arg = arg;
341		work->done = done;
342	}
343
344	/*
345	 * Disable preemption while queueing to avoid getting
346	 * preempted by a stopper which might wait for other stoppers
347	 * to enter @fn which can lead to deadlock.
348	 */
349	lg_global_lock(&stop_cpus_lock);
350	for_each_cpu(cpu, cpumask)
351		cpu_stop_queue_work(cpu, &per_cpu(stop_cpus_work, cpu));
352	lg_global_unlock(&stop_cpus_lock);
 
353}
354
355static int __stop_cpus(const struct cpumask *cpumask,
356		       cpu_stop_fn_t fn, void *arg)
357{
358	struct cpu_stop_done done;
359
360	cpu_stop_init_done(&done, cpumask_weight(cpumask));
361	queue_stop_cpus_work(cpumask, fn, arg, &done);
362	wait_for_completion(&done.completion);
363	return done.executed ? done.ret : -ENOENT;
364}
365
366/**
367 * stop_cpus - stop multiple cpus
368 * @cpumask: cpus to stop
369 * @fn: function to execute
370 * @arg: argument to @fn
371 *
372 * Execute @fn(@arg) on online cpus in @cpumask.  On each target cpu,
373 * @fn is run in a process context with the highest priority
374 * preempting any task on the cpu and monopolizing it.  This function
375 * returns after all executions are complete.
376 *
377 * This function doesn't guarantee the cpus in @cpumask stay online
378 * till @fn completes.  If some cpus go down in the middle, execution
379 * on the cpu may happen partially or fully on different cpus.  @fn
380 * should either be ready for that or the caller should ensure that
381 * the cpus stay online until this function completes.
382 *
383 * All stop_cpus() calls are serialized making it safe for @fn to wait
384 * for all cpus to start executing it.
385 *
386 * CONTEXT:
387 * Might sleep.
388 *
389 * RETURNS:
390 * -ENOENT if @fn(@arg) was not executed at all because all cpus in
391 * @cpumask were offline; otherwise, 0 if all executions of @fn
392 * returned 0, any non zero return value if any returned non zero.
393 */
394int stop_cpus(const struct cpumask *cpumask, cpu_stop_fn_t fn, void *arg)
395{
396	int ret;
397
398	/* static works are used, process one request at a time */
399	mutex_lock(&stop_cpus_mutex);
400	ret = __stop_cpus(cpumask, fn, arg);
401	mutex_unlock(&stop_cpus_mutex);
402	return ret;
403}
404
405/**
406 * try_stop_cpus - try to stop multiple cpus
407 * @cpumask: cpus to stop
408 * @fn: function to execute
409 * @arg: argument to @fn
410 *
411 * Identical to stop_cpus() except that it fails with -EAGAIN if
412 * someone else is already using the facility.
413 *
414 * CONTEXT:
415 * Might sleep.
416 *
417 * RETURNS:
418 * -EAGAIN if someone else is already stopping cpus, -ENOENT if
419 * @fn(@arg) was not executed at all because all cpus in @cpumask were
420 * offline; otherwise, 0 if all executions of @fn returned 0, any non
421 * zero return value if any returned non zero.
422 */
423int try_stop_cpus(const struct cpumask *cpumask, cpu_stop_fn_t fn, void *arg)
424{
425	int ret;
426
427	/* static works are used, process one request at a time */
428	if (!mutex_trylock(&stop_cpus_mutex))
429		return -EAGAIN;
430	ret = __stop_cpus(cpumask, fn, arg);
431	mutex_unlock(&stop_cpus_mutex);
432	return ret;
433}
434
435static int cpu_stop_should_run(unsigned int cpu)
436{
437	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
438	unsigned long flags;
439	int run;
440
441	spin_lock_irqsave(&stopper->lock, flags);
442	run = !list_empty(&stopper->works);
443	spin_unlock_irqrestore(&stopper->lock, flags);
444	return run;
445}
446
447static void cpu_stopper_thread(unsigned int cpu)
448{
449	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
450	struct cpu_stop_work *work;
451	int ret;
452
453repeat:
 
 
 
 
 
 
 
454	work = NULL;
455	spin_lock_irq(&stopper->lock);
456	if (!list_empty(&stopper->works)) {
457		work = list_first_entry(&stopper->works,
458					struct cpu_stop_work, list);
459		list_del_init(&work->list);
460	}
461	spin_unlock_irq(&stopper->lock);
462
463	if (work) {
464		cpu_stop_fn_t fn = work->fn;
465		void *arg = work->arg;
466		struct cpu_stop_done *done = work->done;
467		char ksym_buf[KSYM_NAME_LEN] __maybe_unused;
468
 
 
469		/* cpu stop callbacks are not allowed to sleep */
470		preempt_disable();
471
472		ret = fn(arg);
473		if (ret)
474			done->ret = ret;
475
476		/* restore preemption and check it's still balanced */
477		preempt_enable();
478		WARN_ONCE(preempt_count(),
479			  "cpu_stop: %s(%p) leaked preempt count\n",
480			  kallsyms_lookup((unsigned long)fn, NULL, NULL, NULL,
481					  ksym_buf), arg);
482
483		cpu_stop_signal_done(done, true);
484		goto repeat;
485	}
 
 
486}
487
488extern void sched_set_stop_task(int cpu, struct task_struct *stop);
489
490static void cpu_stop_create(unsigned int cpu)
491{
492	sched_set_stop_task(cpu, per_cpu(cpu_stopper_task, cpu));
493}
494
495static void cpu_stop_park(unsigned int cpu)
496{
 
497	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
498	struct cpu_stop_work *work;
499	unsigned long flags;
500
501	/* drain remaining works */
502	spin_lock_irqsave(&stopper->lock, flags);
503	list_for_each_entry(work, &stopper->works, list)
504		cpu_stop_signal_done(work->done, false);
505	stopper->enabled = false;
506	spin_unlock_irqrestore(&stopper->lock, flags);
507}
508
509static void cpu_stop_unpark(unsigned int cpu)
510{
511	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
512
513	spin_lock_irq(&stopper->lock);
514	stopper->enabled = true;
515	spin_unlock_irq(&stopper->lock);
516}
517
518static struct smp_hotplug_thread cpu_stop_threads = {
519	.store			= &cpu_stopper_task,
520	.thread_should_run	= cpu_stop_should_run,
521	.thread_fn		= cpu_stopper_thread,
522	.thread_comm		= "migration/%u",
523	.create			= cpu_stop_create,
524	.setup			= cpu_stop_unpark,
525	.park			= cpu_stop_park,
526	.pre_unpark		= cpu_stop_unpark,
527	.selfparking		= true,
528};
529
530static int __init cpu_stop_init(void)
531{
 
532	unsigned int cpu;
 
533
534	for_each_possible_cpu(cpu) {
535		struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
536
537		spin_lock_init(&stopper->lock);
538		INIT_LIST_HEAD(&stopper->works);
539	}
540
541	BUG_ON(smpboot_register_percpu_thread(&cpu_stop_threads));
 
 
 
 
 
 
542	stop_machine_initialized = true;
 
543	return 0;
544}
545early_initcall(cpu_stop_init);
546
547#ifdef CONFIG_STOP_MACHINE
548
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
549int __stop_machine(int (*fn)(void *), void *data, const struct cpumask *cpus)
550{
551	struct multi_stop_data msdata = {
552		.fn = fn,
553		.data = data,
554		.num_threads = num_online_cpus(),
555		.active_cpus = cpus,
556	};
557
558	if (!stop_machine_initialized) {
559		/*
560		 * Handle the case where stop_machine() is called
561		 * early in boot before stop_machine() has been
562		 * initialized.
563		 */
564		unsigned long flags;
565		int ret;
566
567		WARN_ON_ONCE(msdata.num_threads != 1);
568
569		local_irq_save(flags);
570		hard_irq_disable();
571		ret = (*fn)(data);
572		local_irq_restore(flags);
573
574		return ret;
575	}
576
577	/* Set the initial state and stop all online cpus. */
578	set_state(&msdata, MULTI_STOP_PREPARE);
579	return stop_cpus(cpu_online_mask, multi_cpu_stop, &msdata);
580}
581
582int stop_machine(int (*fn)(void *), void *data, const struct cpumask *cpus)
583{
584	int ret;
585
586	/* No CPUs can come up or down during this. */
587	get_online_cpus();
588	ret = __stop_machine(fn, data, cpus);
589	put_online_cpus();
590	return ret;
591}
592EXPORT_SYMBOL_GPL(stop_machine);
593
594/**
595 * stop_machine_from_inactive_cpu - stop_machine() from inactive CPU
596 * @fn: the function to run
597 * @data: the data ptr for the @fn()
598 * @cpus: the cpus to run the @fn() on (NULL = any online cpu)
599 *
600 * This is identical to stop_machine() but can be called from a CPU which
601 * is not active.  The local CPU is in the process of hotplug (so no other
602 * CPU hotplug can start) and not marked active and doesn't have enough
603 * context to sleep.
604 *
605 * This function provides stop_machine() functionality for such state by
606 * using busy-wait for synchronization and executing @fn directly for local
607 * CPU.
608 *
609 * CONTEXT:
610 * Local CPU is inactive.  Temporarily stops all active CPUs.
611 *
612 * RETURNS:
613 * 0 if all executions of @fn returned 0, any non zero return value if any
614 * returned non zero.
615 */
616int stop_machine_from_inactive_cpu(int (*fn)(void *), void *data,
617				  const struct cpumask *cpus)
618{
619	struct multi_stop_data msdata = { .fn = fn, .data = data,
620					    .active_cpus = cpus };
621	struct cpu_stop_done done;
622	int ret;
623
624	/* Local CPU must be inactive and CPU hotplug in progress. */
625	BUG_ON(cpu_active(raw_smp_processor_id()));
626	msdata.num_threads = num_active_cpus() + 1;	/* +1 for local */
627
628	/* No proper task established and can't sleep - busy wait for lock. */
629	while (!mutex_trylock(&stop_cpus_mutex))
630		cpu_relax();
631
632	/* Schedule work on other CPUs and execute directly for local CPU */
633	set_state(&msdata, MULTI_STOP_PREPARE);
634	cpu_stop_init_done(&done, num_active_cpus());
635	queue_stop_cpus_work(cpu_active_mask, multi_cpu_stop, &msdata,
636			     &done);
637	ret = multi_cpu_stop(&msdata);
638
639	/* Busy wait for completion. */
640	while (!completion_done(&done.completion))
641		cpu_relax();
642
643	mutex_unlock(&stop_cpus_mutex);
644	return ret ?: done.ret;
645}
646
647#endif	/* CONFIG_STOP_MACHINE */
v3.5.6
  1/*
  2 * kernel/stop_machine.c
  3 *
  4 * Copyright (C) 2008, 2005	IBM Corporation.
  5 * Copyright (C) 2008, 2005	Rusty Russell rusty@rustcorp.com.au
  6 * Copyright (C) 2010		SUSE Linux Products GmbH
  7 * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
  8 *
  9 * This file is released under the GPLv2 and any later version.
 10 */
 11#include <linux/completion.h>
 12#include <linux/cpu.h>
 13#include <linux/init.h>
 14#include <linux/kthread.h>
 15#include <linux/export.h>
 16#include <linux/percpu.h>
 17#include <linux/sched.h>
 18#include <linux/stop_machine.h>
 19#include <linux/interrupt.h>
 20#include <linux/kallsyms.h>
 21
 22#include <linux/atomic.h>
 
 23
 24/*
 25 * Structure to determine completion condition and record errors.  May
 26 * be shared by works on different cpus.
 27 */
 28struct cpu_stop_done {
 29	atomic_t		nr_todo;	/* nr left to execute */
 30	bool			executed;	/* actually executed? */
 31	int			ret;		/* collected return value */
 32	struct completion	completion;	/* fired if nr_todo reaches 0 */
 33};
 34
 35/* the actual stopper, one per every possible cpu, enabled on online cpus */
 36struct cpu_stopper {
 37	spinlock_t		lock;
 38	bool			enabled;	/* is this stopper enabled? */
 39	struct list_head	works;		/* list of pending works */
 40	struct task_struct	*thread;	/* stopper thread */
 41};
 42
 43static DEFINE_PER_CPU(struct cpu_stopper, cpu_stopper);
 
 44static bool stop_machine_initialized = false;
 45
 
 
 
 
 
 
 
 
 46static void cpu_stop_init_done(struct cpu_stop_done *done, unsigned int nr_todo)
 47{
 48	memset(done, 0, sizeof(*done));
 49	atomic_set(&done->nr_todo, nr_todo);
 50	init_completion(&done->completion);
 51}
 52
 53/* signal completion unless @done is NULL */
 54static void cpu_stop_signal_done(struct cpu_stop_done *done, bool executed)
 55{
 56	if (done) {
 57		if (executed)
 58			done->executed = true;
 59		if (atomic_dec_and_test(&done->nr_todo))
 60			complete(&done->completion);
 61	}
 62}
 63
 64/* queue @work to @stopper.  if offline, @work is completed immediately */
 65static void cpu_stop_queue_work(struct cpu_stopper *stopper,
 66				struct cpu_stop_work *work)
 67{
 
 
 
 68	unsigned long flags;
 69
 70	spin_lock_irqsave(&stopper->lock, flags);
 71
 72	if (stopper->enabled) {
 73		list_add_tail(&work->list, &stopper->works);
 74		wake_up_process(stopper->thread);
 75	} else
 76		cpu_stop_signal_done(work->done, false);
 77
 78	spin_unlock_irqrestore(&stopper->lock, flags);
 79}
 80
 81/**
 82 * stop_one_cpu - stop a cpu
 83 * @cpu: cpu to stop
 84 * @fn: function to execute
 85 * @arg: argument to @fn
 86 *
 87 * Execute @fn(@arg) on @cpu.  @fn is run in a process context with
 88 * the highest priority preempting any task on the cpu and
 89 * monopolizing it.  This function returns after the execution is
 90 * complete.
 91 *
 92 * This function doesn't guarantee @cpu stays online till @fn
 93 * completes.  If @cpu goes down in the middle, execution may happen
 94 * partially or fully on different cpus.  @fn should either be ready
 95 * for that or the caller should ensure that @cpu stays online until
 96 * this function completes.
 97 *
 98 * CONTEXT:
 99 * Might sleep.
100 *
101 * RETURNS:
102 * -ENOENT if @fn(@arg) was not executed because @cpu was offline;
103 * otherwise, the return value of @fn.
104 */
105int stop_one_cpu(unsigned int cpu, cpu_stop_fn_t fn, void *arg)
106{
107	struct cpu_stop_done done;
108	struct cpu_stop_work work = { .fn = fn, .arg = arg, .done = &done };
109
110	cpu_stop_init_done(&done, 1);
111	cpu_stop_queue_work(&per_cpu(cpu_stopper, cpu), &work);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
112	wait_for_completion(&done.completion);
 
113	return done.executed ? done.ret : -ENOENT;
114}
115
116/**
117 * stop_one_cpu_nowait - stop a cpu but don't wait for completion
118 * @cpu: cpu to stop
119 * @fn: function to execute
120 * @arg: argument to @fn
121 *
122 * Similar to stop_one_cpu() but doesn't wait for completion.  The
123 * caller is responsible for ensuring @work_buf is currently unused
124 * and will remain untouched until stopper starts executing @fn.
125 *
126 * CONTEXT:
127 * Don't care.
128 */
129void stop_one_cpu_nowait(unsigned int cpu, cpu_stop_fn_t fn, void *arg,
130			struct cpu_stop_work *work_buf)
131{
132	*work_buf = (struct cpu_stop_work){ .fn = fn, .arg = arg, };
133	cpu_stop_queue_work(&per_cpu(cpu_stopper, cpu), work_buf);
134}
135
136/* static data for stop_cpus */
137static DEFINE_MUTEX(stop_cpus_mutex);
138static DEFINE_PER_CPU(struct cpu_stop_work, stop_cpus_work);
139
140static void queue_stop_cpus_work(const struct cpumask *cpumask,
141				 cpu_stop_fn_t fn, void *arg,
142				 struct cpu_stop_done *done)
143{
144	struct cpu_stop_work *work;
145	unsigned int cpu;
146
147	/* initialize works and done */
148	for_each_cpu(cpu, cpumask) {
149		work = &per_cpu(stop_cpus_work, cpu);
150		work->fn = fn;
151		work->arg = arg;
152		work->done = done;
153	}
154
155	/*
156	 * Disable preemption while queueing to avoid getting
157	 * preempted by a stopper which might wait for other stoppers
158	 * to enter @fn which can lead to deadlock.
159	 */
160	preempt_disable();
161	for_each_cpu(cpu, cpumask)
162		cpu_stop_queue_work(&per_cpu(cpu_stopper, cpu),
163				    &per_cpu(stop_cpus_work, cpu));
164	preempt_enable();
165}
166
167static int __stop_cpus(const struct cpumask *cpumask,
168		       cpu_stop_fn_t fn, void *arg)
169{
170	struct cpu_stop_done done;
171
172	cpu_stop_init_done(&done, cpumask_weight(cpumask));
173	queue_stop_cpus_work(cpumask, fn, arg, &done);
174	wait_for_completion(&done.completion);
175	return done.executed ? done.ret : -ENOENT;
176}
177
178/**
179 * stop_cpus - stop multiple cpus
180 * @cpumask: cpus to stop
181 * @fn: function to execute
182 * @arg: argument to @fn
183 *
184 * Execute @fn(@arg) on online cpus in @cpumask.  On each target cpu,
185 * @fn is run in a process context with the highest priority
186 * preempting any task on the cpu and monopolizing it.  This function
187 * returns after all executions are complete.
188 *
189 * This function doesn't guarantee the cpus in @cpumask stay online
190 * till @fn completes.  If some cpus go down in the middle, execution
191 * on the cpu may happen partially or fully on different cpus.  @fn
192 * should either be ready for that or the caller should ensure that
193 * the cpus stay online until this function completes.
194 *
195 * All stop_cpus() calls are serialized making it safe for @fn to wait
196 * for all cpus to start executing it.
197 *
198 * CONTEXT:
199 * Might sleep.
200 *
201 * RETURNS:
202 * -ENOENT if @fn(@arg) was not executed at all because all cpus in
203 * @cpumask were offline; otherwise, 0 if all executions of @fn
204 * returned 0, any non zero return value if any returned non zero.
205 */
206int stop_cpus(const struct cpumask *cpumask, cpu_stop_fn_t fn, void *arg)
207{
208	int ret;
209
210	/* static works are used, process one request at a time */
211	mutex_lock(&stop_cpus_mutex);
212	ret = __stop_cpus(cpumask, fn, arg);
213	mutex_unlock(&stop_cpus_mutex);
214	return ret;
215}
216
217/**
218 * try_stop_cpus - try to stop multiple cpus
219 * @cpumask: cpus to stop
220 * @fn: function to execute
221 * @arg: argument to @fn
222 *
223 * Identical to stop_cpus() except that it fails with -EAGAIN if
224 * someone else is already using the facility.
225 *
226 * CONTEXT:
227 * Might sleep.
228 *
229 * RETURNS:
230 * -EAGAIN if someone else is already stopping cpus, -ENOENT if
231 * @fn(@arg) was not executed at all because all cpus in @cpumask were
232 * offline; otherwise, 0 if all executions of @fn returned 0, any non
233 * zero return value if any returned non zero.
234 */
235int try_stop_cpus(const struct cpumask *cpumask, cpu_stop_fn_t fn, void *arg)
236{
237	int ret;
238
239	/* static works are used, process one request at a time */
240	if (!mutex_trylock(&stop_cpus_mutex))
241		return -EAGAIN;
242	ret = __stop_cpus(cpumask, fn, arg);
243	mutex_unlock(&stop_cpus_mutex);
244	return ret;
245}
246
247static int cpu_stopper_thread(void *data)
248{
249	struct cpu_stopper *stopper = data;
 
 
 
 
 
 
 
 
 
 
 
 
250	struct cpu_stop_work *work;
251	int ret;
252
253repeat:
254	set_current_state(TASK_INTERRUPTIBLE);	/* mb paired w/ kthread_stop */
255
256	if (kthread_should_stop()) {
257		__set_current_state(TASK_RUNNING);
258		return 0;
259	}
260
261	work = NULL;
262	spin_lock_irq(&stopper->lock);
263	if (!list_empty(&stopper->works)) {
264		work = list_first_entry(&stopper->works,
265					struct cpu_stop_work, list);
266		list_del_init(&work->list);
267	}
268	spin_unlock_irq(&stopper->lock);
269
270	if (work) {
271		cpu_stop_fn_t fn = work->fn;
272		void *arg = work->arg;
273		struct cpu_stop_done *done = work->done;
274		char ksym_buf[KSYM_NAME_LEN] __maybe_unused;
275
276		__set_current_state(TASK_RUNNING);
277
278		/* cpu stop callbacks are not allowed to sleep */
279		preempt_disable();
280
281		ret = fn(arg);
282		if (ret)
283			done->ret = ret;
284
285		/* restore preemption and check it's still balanced */
286		preempt_enable();
287		WARN_ONCE(preempt_count(),
288			  "cpu_stop: %s(%p) leaked preempt count\n",
289			  kallsyms_lookup((unsigned long)fn, NULL, NULL, NULL,
290					  ksym_buf), arg);
291
292		cpu_stop_signal_done(done, true);
293	} else
294		schedule();
295
296	goto repeat;
297}
298
299extern void sched_set_stop_task(int cpu, struct task_struct *stop);
300
301/* manage stopper for a cpu, mostly lifted from sched migration thread mgmt */
302static int __cpuinit cpu_stop_cpu_callback(struct notifier_block *nfb,
303					   unsigned long action, void *hcpu)
 
 
 
304{
305	unsigned int cpu = (unsigned long)hcpu;
306	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
307	struct task_struct *p;
 
308
309	switch (action & ~CPU_TASKS_FROZEN) {
310	case CPU_UP_PREPARE:
311		BUG_ON(stopper->thread || stopper->enabled ||
312		       !list_empty(&stopper->works));
313		p = kthread_create_on_node(cpu_stopper_thread,
314					   stopper,
315					   cpu_to_node(cpu),
316					   "migration/%d", cpu);
317		if (IS_ERR(p))
318			return notifier_from_errno(PTR_ERR(p));
319		get_task_struct(p);
320		kthread_bind(p, cpu);
321		sched_set_stop_task(cpu, p);
322		stopper->thread = p;
323		break;
324
325	case CPU_ONLINE:
326		/* strictly unnecessary, as first user will wake it */
327		wake_up_process(stopper->thread);
328		/* mark enabled */
329		spin_lock_irq(&stopper->lock);
330		stopper->enabled = true;
331		spin_unlock_irq(&stopper->lock);
332		break;
333
334#ifdef CONFIG_HOTPLUG_CPU
335	case CPU_UP_CANCELED:
336	case CPU_POST_DEAD:
337	{
338		struct cpu_stop_work *work;
339
340		sched_set_stop_task(cpu, NULL);
341		/* kill the stopper */
342		kthread_stop(stopper->thread);
343		/* drain remaining works */
344		spin_lock_irq(&stopper->lock);
345		list_for_each_entry(work, &stopper->works, list)
346			cpu_stop_signal_done(work->done, false);
347		stopper->enabled = false;
348		spin_unlock_irq(&stopper->lock);
349		/* release the stopper */
350		put_task_struct(stopper->thread);
351		stopper->thread = NULL;
352		break;
353	}
354#endif
355	}
356
357	return NOTIFY_OK;
 
 
358}
359
360/*
361 * Give it a higher priority so that cpu stopper is available to other
362 * cpu notifiers.  It currently shares the same priority as sched
363 * migration_notifier.
364 */
365static struct notifier_block __cpuinitdata cpu_stop_cpu_notifier = {
366	.notifier_call	= cpu_stop_cpu_callback,
367	.priority	= 10,
 
 
368};
369
370static int __init cpu_stop_init(void)
371{
372	void *bcpu = (void *)(long)smp_processor_id();
373	unsigned int cpu;
374	int err;
375
376	for_each_possible_cpu(cpu) {
377		struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
378
379		spin_lock_init(&stopper->lock);
380		INIT_LIST_HEAD(&stopper->works);
381	}
382
383	/* start one for the boot cpu */
384	err = cpu_stop_cpu_callback(&cpu_stop_cpu_notifier, CPU_UP_PREPARE,
385				    bcpu);
386	BUG_ON(err != NOTIFY_OK);
387	cpu_stop_cpu_callback(&cpu_stop_cpu_notifier, CPU_ONLINE, bcpu);
388	register_cpu_notifier(&cpu_stop_cpu_notifier);
389
390	stop_machine_initialized = true;
391
392	return 0;
393}
394early_initcall(cpu_stop_init);
395
396#ifdef CONFIG_STOP_MACHINE
397
398/* This controls the threads on each CPU. */
399enum stopmachine_state {
400	/* Dummy starting state for thread. */
401	STOPMACHINE_NONE,
402	/* Awaiting everyone to be scheduled. */
403	STOPMACHINE_PREPARE,
404	/* Disable interrupts. */
405	STOPMACHINE_DISABLE_IRQ,
406	/* Run the function */
407	STOPMACHINE_RUN,
408	/* Exit */
409	STOPMACHINE_EXIT,
410};
411
412struct stop_machine_data {
413	int			(*fn)(void *);
414	void			*data;
415	/* Like num_online_cpus(), but hotplug cpu uses us, so we need this. */
416	unsigned int		num_threads;
417	const struct cpumask	*active_cpus;
418
419	enum stopmachine_state	state;
420	atomic_t		thread_ack;
421};
422
423static void set_state(struct stop_machine_data *smdata,
424		      enum stopmachine_state newstate)
425{
426	/* Reset ack counter. */
427	atomic_set(&smdata->thread_ack, smdata->num_threads);
428	smp_wmb();
429	smdata->state = newstate;
430}
431
432/* Last one to ack a state moves to the next state. */
433static void ack_state(struct stop_machine_data *smdata)
434{
435	if (atomic_dec_and_test(&smdata->thread_ack))
436		set_state(smdata, smdata->state + 1);
437}
438
439/* This is the cpu_stop function which stops the CPU. */
440static int stop_machine_cpu_stop(void *data)
441{
442	struct stop_machine_data *smdata = data;
443	enum stopmachine_state curstate = STOPMACHINE_NONE;
444	int cpu = smp_processor_id(), err = 0;
445	unsigned long flags;
446	bool is_active;
447
448	/*
449	 * When called from stop_machine_from_inactive_cpu(), irq might
450	 * already be disabled.  Save the state and restore it on exit.
451	 */
452	local_save_flags(flags);
453
454	if (!smdata->active_cpus)
455		is_active = cpu == cpumask_first(cpu_online_mask);
456	else
457		is_active = cpumask_test_cpu(cpu, smdata->active_cpus);
458
459	/* Simple state machine */
460	do {
461		/* Chill out and ensure we re-read stopmachine_state. */
462		cpu_relax();
463		if (smdata->state != curstate) {
464			curstate = smdata->state;
465			switch (curstate) {
466			case STOPMACHINE_DISABLE_IRQ:
467				local_irq_disable();
468				hard_irq_disable();
469				break;
470			case STOPMACHINE_RUN:
471				if (is_active)
472					err = smdata->fn(smdata->data);
473				break;
474			default:
475				break;
476			}
477			ack_state(smdata);
478		}
479	} while (curstate != STOPMACHINE_EXIT);
480
481	local_irq_restore(flags);
482	return err;
483}
484
485int __stop_machine(int (*fn)(void *), void *data, const struct cpumask *cpus)
486{
487	struct stop_machine_data smdata = { .fn = fn, .data = data,
488					    .num_threads = num_online_cpus(),
489					    .active_cpus = cpus };
 
 
 
490
491	if (!stop_machine_initialized) {
492		/*
493		 * Handle the case where stop_machine() is called
494		 * early in boot before stop_machine() has been
495		 * initialized.
496		 */
497		unsigned long flags;
498		int ret;
499
500		WARN_ON_ONCE(smdata.num_threads != 1);
501
502		local_irq_save(flags);
503		hard_irq_disable();
504		ret = (*fn)(data);
505		local_irq_restore(flags);
506
507		return ret;
508	}
509
510	/* Set the initial state and stop all online cpus. */
511	set_state(&smdata, STOPMACHINE_PREPARE);
512	return stop_cpus(cpu_online_mask, stop_machine_cpu_stop, &smdata);
513}
514
515int stop_machine(int (*fn)(void *), void *data, const struct cpumask *cpus)
516{
517	int ret;
518
519	/* No CPUs can come up or down during this. */
520	get_online_cpus();
521	ret = __stop_machine(fn, data, cpus);
522	put_online_cpus();
523	return ret;
524}
525EXPORT_SYMBOL_GPL(stop_machine);
526
527/**
528 * stop_machine_from_inactive_cpu - stop_machine() from inactive CPU
529 * @fn: the function to run
530 * @data: the data ptr for the @fn()
531 * @cpus: the cpus to run the @fn() on (NULL = any online cpu)
532 *
533 * This is identical to stop_machine() but can be called from a CPU which
534 * is not active.  The local CPU is in the process of hotplug (so no other
535 * CPU hotplug can start) and not marked active and doesn't have enough
536 * context to sleep.
537 *
538 * This function provides stop_machine() functionality for such state by
539 * using busy-wait for synchronization and executing @fn directly for local
540 * CPU.
541 *
542 * CONTEXT:
543 * Local CPU is inactive.  Temporarily stops all active CPUs.
544 *
545 * RETURNS:
546 * 0 if all executions of @fn returned 0, any non zero return value if any
547 * returned non zero.
548 */
549int stop_machine_from_inactive_cpu(int (*fn)(void *), void *data,
550				  const struct cpumask *cpus)
551{
552	struct stop_machine_data smdata = { .fn = fn, .data = data,
553					    .active_cpus = cpus };
554	struct cpu_stop_done done;
555	int ret;
556
557	/* Local CPU must be inactive and CPU hotplug in progress. */
558	BUG_ON(cpu_active(raw_smp_processor_id()));
559	smdata.num_threads = num_active_cpus() + 1;	/* +1 for local */
560
561	/* No proper task established and can't sleep - busy wait for lock. */
562	while (!mutex_trylock(&stop_cpus_mutex))
563		cpu_relax();
564
565	/* Schedule work on other CPUs and execute directly for local CPU */
566	set_state(&smdata, STOPMACHINE_PREPARE);
567	cpu_stop_init_done(&done, num_active_cpus());
568	queue_stop_cpus_work(cpu_active_mask, stop_machine_cpu_stop, &smdata,
569			     &done);
570	ret = stop_machine_cpu_stop(&smdata);
571
572	/* Busy wait for completion. */
573	while (!completion_done(&done.completion))
574		cpu_relax();
575
576	mutex_unlock(&stop_cpus_mutex);
577	return ret ?: done.ret;
578}
579
580#endif	/* CONFIG_STOP_MACHINE */