Linux Audio

Check our new training course

Loading...
v3.15
   1/*
   2 *  linux/arch/arm/kernel/setup.c
   3 *
   4 *  Copyright (C) 1995-2001 Russell King
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License version 2 as
   8 * published by the Free Software Foundation.
   9 */
  10#include <linux/export.h>
  11#include <linux/kernel.h>
  12#include <linux/stddef.h>
  13#include <linux/ioport.h>
  14#include <linux/delay.h>
  15#include <linux/utsname.h>
  16#include <linux/initrd.h>
  17#include <linux/console.h>
  18#include <linux/bootmem.h>
  19#include <linux/seq_file.h>
  20#include <linux/screen_info.h>
  21#include <linux/of_platform.h>
  22#include <linux/init.h>
  23#include <linux/kexec.h>
  24#include <linux/of_fdt.h>
 
  25#include <linux/cpu.h>
  26#include <linux/interrupt.h>
  27#include <linux/smp.h>
 
  28#include <linux/proc_fs.h>
  29#include <linux/memblock.h>
  30#include <linux/bug.h>
  31#include <linux/compiler.h>
  32#include <linux/sort.h>
  33
  34#include <asm/unified.h>
  35#include <asm/cp15.h>
  36#include <asm/cpu.h>
  37#include <asm/cputype.h>
  38#include <asm/elf.h>
  39#include <asm/procinfo.h>
  40#include <asm/psci.h>
  41#include <asm/sections.h>
  42#include <asm/setup.h>
  43#include <asm/smp_plat.h>
  44#include <asm/mach-types.h>
  45#include <asm/cacheflush.h>
  46#include <asm/cachetype.h>
  47#include <asm/tlbflush.h>
  48
  49#include <asm/prom.h>
  50#include <asm/mach/arch.h>
  51#include <asm/mach/irq.h>
  52#include <asm/mach/time.h>
  53#include <asm/system_info.h>
  54#include <asm/system_misc.h>
  55#include <asm/traps.h>
  56#include <asm/unwind.h>
  57#include <asm/memblock.h>
  58#include <asm/virt.h>
  59
 
 
 
  60#include "atags.h"
 
  61
 
 
 
  62
  63#if defined(CONFIG_FPE_NWFPE) || defined(CONFIG_FPE_FASTFPE)
  64char fpe_type[8];
  65
  66static int __init fpe_setup(char *line)
  67{
  68	memcpy(fpe_type, line, 8);
  69	return 1;
  70}
  71
  72__setup("fpe=", fpe_setup);
  73#endif
  74
  75extern void paging_init(const struct machine_desc *desc);
  76extern void early_paging_init(const struct machine_desc *,
  77			      struct proc_info_list *);
  78extern void sanity_check_meminfo(void);
  79extern enum reboot_mode reboot_mode;
  80extern void setup_dma_zone(const struct machine_desc *desc);
  81
  82unsigned int processor_id;
  83EXPORT_SYMBOL(processor_id);
  84unsigned int __machine_arch_type __read_mostly;
  85EXPORT_SYMBOL(__machine_arch_type);
  86unsigned int cacheid __read_mostly;
  87EXPORT_SYMBOL(cacheid);
  88
  89unsigned int __atags_pointer __initdata;
  90
  91unsigned int system_rev;
  92EXPORT_SYMBOL(system_rev);
  93
  94unsigned int system_serial_low;
  95EXPORT_SYMBOL(system_serial_low);
  96
  97unsigned int system_serial_high;
  98EXPORT_SYMBOL(system_serial_high);
  99
 100unsigned int elf_hwcap __read_mostly;
 101EXPORT_SYMBOL(elf_hwcap);
 102
 103unsigned int elf_hwcap2 __read_mostly;
 104EXPORT_SYMBOL(elf_hwcap2);
 105
 106
 107#ifdef MULTI_CPU
 108struct processor processor __read_mostly;
 109#endif
 110#ifdef MULTI_TLB
 111struct cpu_tlb_fns cpu_tlb __read_mostly;
 112#endif
 113#ifdef MULTI_USER
 114struct cpu_user_fns cpu_user __read_mostly;
 115#endif
 116#ifdef MULTI_CACHE
 117struct cpu_cache_fns cpu_cache __read_mostly;
 118#endif
 119#ifdef CONFIG_OUTER_CACHE
 120struct outer_cache_fns outer_cache __read_mostly;
 121EXPORT_SYMBOL(outer_cache);
 122#endif
 123
 124/*
 125 * Cached cpu_architecture() result for use by assembler code.
 126 * C code should use the cpu_architecture() function instead of accessing this
 127 * variable directly.
 128 */
 129int __cpu_architecture __read_mostly = CPU_ARCH_UNKNOWN;
 130
 131struct stack {
 132	u32 irq[3];
 133	u32 abt[3];
 134	u32 und[3];
 135} ____cacheline_aligned;
 136
 137#ifndef CONFIG_CPU_V7M
 138static struct stack stacks[NR_CPUS];
 139#endif
 140
 141char elf_platform[ELF_PLATFORM_SIZE];
 142EXPORT_SYMBOL(elf_platform);
 143
 144static const char *cpu_name;
 145static const char *machine_name;
 146static char __initdata cmd_line[COMMAND_LINE_SIZE];
 147const struct machine_desc *machine_desc __initdata;
 148
 
 149static union { char c[4]; unsigned long l; } endian_test __initdata = { { 'l', '?', '?', 'b' } };
 150#define ENDIANNESS ((char)endian_test.l)
 151
 152DEFINE_PER_CPU(struct cpuinfo_arm, cpu_data);
 153
 154/*
 155 * Standard memory resources
 156 */
 157static struct resource mem_res[] = {
 158	{
 159		.name = "Video RAM",
 160		.start = 0,
 161		.end = 0,
 162		.flags = IORESOURCE_MEM
 163	},
 164	{
 165		.name = "Kernel code",
 166		.start = 0,
 167		.end = 0,
 168		.flags = IORESOURCE_MEM
 169	},
 170	{
 171		.name = "Kernel data",
 172		.start = 0,
 173		.end = 0,
 174		.flags = IORESOURCE_MEM
 175	}
 176};
 177
 178#define video_ram   mem_res[0]
 179#define kernel_code mem_res[1]
 180#define kernel_data mem_res[2]
 181
 182static struct resource io_res[] = {
 183	{
 184		.name = "reserved",
 185		.start = 0x3bc,
 186		.end = 0x3be,
 187		.flags = IORESOURCE_IO | IORESOURCE_BUSY
 188	},
 189	{
 190		.name = "reserved",
 191		.start = 0x378,
 192		.end = 0x37f,
 193		.flags = IORESOURCE_IO | IORESOURCE_BUSY
 194	},
 195	{
 196		.name = "reserved",
 197		.start = 0x278,
 198		.end = 0x27f,
 199		.flags = IORESOURCE_IO | IORESOURCE_BUSY
 200	}
 201};
 202
 203#define lp0 io_res[0]
 204#define lp1 io_res[1]
 205#define lp2 io_res[2]
 206
 207static const char *proc_arch[] = {
 208	"undefined/unknown",
 209	"3",
 210	"4",
 211	"4T",
 212	"5",
 213	"5T",
 214	"5TE",
 215	"5TEJ",
 216	"6TEJ",
 217	"7",
 218	"7M",
 219	"?(12)",
 220	"?(13)",
 221	"?(14)",
 222	"?(15)",
 223	"?(16)",
 224	"?(17)",
 225};
 226
 227#ifdef CONFIG_CPU_V7M
 228static int __get_cpu_architecture(void)
 229{
 230	return CPU_ARCH_ARMv7M;
 231}
 232#else
 233static int __get_cpu_architecture(void)
 234{
 235	int cpu_arch;
 236
 237	if ((read_cpuid_id() & 0x0008f000) == 0) {
 238		cpu_arch = CPU_ARCH_UNKNOWN;
 239	} else if ((read_cpuid_id() & 0x0008f000) == 0x00007000) {
 240		cpu_arch = (read_cpuid_id() & (1 << 23)) ? CPU_ARCH_ARMv4T : CPU_ARCH_ARMv3;
 241	} else if ((read_cpuid_id() & 0x00080000) == 0x00000000) {
 242		cpu_arch = (read_cpuid_id() >> 16) & 7;
 243		if (cpu_arch)
 244			cpu_arch += CPU_ARCH_ARMv3;
 245	} else if ((read_cpuid_id() & 0x000f0000) == 0x000f0000) {
 246		unsigned int mmfr0;
 247
 248		/* Revised CPUID format. Read the Memory Model Feature
 249		 * Register 0 and check for VMSAv7 or PMSAv7 */
 250		asm("mrc	p15, 0, %0, c0, c1, 4"
 251		    : "=r" (mmfr0));
 252		if ((mmfr0 & 0x0000000f) >= 0x00000003 ||
 253		    (mmfr0 & 0x000000f0) >= 0x00000030)
 254			cpu_arch = CPU_ARCH_ARMv7;
 255		else if ((mmfr0 & 0x0000000f) == 0x00000002 ||
 256			 (mmfr0 & 0x000000f0) == 0x00000020)
 257			cpu_arch = CPU_ARCH_ARMv6;
 258		else
 259			cpu_arch = CPU_ARCH_UNKNOWN;
 260	} else
 261		cpu_arch = CPU_ARCH_UNKNOWN;
 262
 263	return cpu_arch;
 264}
 265#endif
 266
 267int __pure cpu_architecture(void)
 268{
 269	BUG_ON(__cpu_architecture == CPU_ARCH_UNKNOWN);
 270
 271	return __cpu_architecture;
 272}
 273
 274static int cpu_has_aliasing_icache(unsigned int arch)
 275{
 276	int aliasing_icache;
 277	unsigned int id_reg, num_sets, line_size;
 278
 279	/* PIPT caches never alias. */
 280	if (icache_is_pipt())
 281		return 0;
 282
 283	/* arch specifies the register format */
 284	switch (arch) {
 285	case CPU_ARCH_ARMv7:
 286		asm("mcr	p15, 2, %0, c0, c0, 0 @ set CSSELR"
 287		    : /* No output operands */
 288		    : "r" (1));
 289		isb();
 290		asm("mrc	p15, 1, %0, c0, c0, 0 @ read CCSIDR"
 291		    : "=r" (id_reg));
 292		line_size = 4 << ((id_reg & 0x7) + 2);
 293		num_sets = ((id_reg >> 13) & 0x7fff) + 1;
 294		aliasing_icache = (line_size * num_sets) > PAGE_SIZE;
 295		break;
 296	case CPU_ARCH_ARMv6:
 297		aliasing_icache = read_cpuid_cachetype() & (1 << 11);
 298		break;
 299	default:
 300		/* I-cache aliases will be handled by D-cache aliasing code */
 301		aliasing_icache = 0;
 302	}
 303
 304	return aliasing_icache;
 305}
 306
 307static void __init cacheid_init(void)
 308{
 
 309	unsigned int arch = cpu_architecture();
 310
 311	if (arch == CPU_ARCH_ARMv7M) {
 312		cacheid = 0;
 313	} else if (arch >= CPU_ARCH_ARMv6) {
 314		unsigned int cachetype = read_cpuid_cachetype();
 315		if ((cachetype & (7 << 29)) == 4 << 29) {
 316			/* ARMv7 register format */
 317			arch = CPU_ARCH_ARMv7;
 318			cacheid = CACHEID_VIPT_NONALIASING;
 319			switch (cachetype & (3 << 14)) {
 320			case (1 << 14):
 321				cacheid |= CACHEID_ASID_TAGGED;
 322				break;
 323			case (3 << 14):
 324				cacheid |= CACHEID_PIPT;
 325				break;
 326			}
 327		} else {
 328			arch = CPU_ARCH_ARMv6;
 329			if (cachetype & (1 << 23))
 330				cacheid = CACHEID_VIPT_ALIASING;
 331			else
 332				cacheid = CACHEID_VIPT_NONALIASING;
 333		}
 334		if (cpu_has_aliasing_icache(arch))
 335			cacheid |= CACHEID_VIPT_I_ALIASING;
 336	} else {
 337		cacheid = CACHEID_VIVT;
 338	}
 339
 340	pr_info("CPU: %s data cache, %s instruction cache\n",
 341		cache_is_vivt() ? "VIVT" :
 342		cache_is_vipt_aliasing() ? "VIPT aliasing" :
 343		cache_is_vipt_nonaliasing() ? "PIPT / VIPT nonaliasing" : "unknown",
 344		cache_is_vivt() ? "VIVT" :
 345		icache_is_vivt_asid_tagged() ? "VIVT ASID tagged" :
 346		icache_is_vipt_aliasing() ? "VIPT aliasing" :
 347		icache_is_pipt() ? "PIPT" :
 348		cache_is_vipt_nonaliasing() ? "VIPT nonaliasing" : "unknown");
 349}
 350
 351/*
 352 * These functions re-use the assembly code in head.S, which
 353 * already provide the required functionality.
 354 */
 355extern struct proc_info_list *lookup_processor_type(unsigned int);
 356
 357void __init early_print(const char *str, ...)
 358{
 359	extern void printascii(const char *);
 360	char buf[256];
 361	va_list ap;
 362
 363	va_start(ap, str);
 364	vsnprintf(buf, sizeof(buf), str, ap);
 365	va_end(ap);
 366
 367#ifdef CONFIG_DEBUG_LL
 368	printascii(buf);
 369#endif
 370	printk("%s", buf);
 371}
 372
 373static void __init cpuid_init_hwcaps(void)
 374{
 375	unsigned int divide_instrs, vmsa;
 376
 377	if (cpu_architecture() < CPU_ARCH_ARMv7)
 378		return;
 379
 380	divide_instrs = (read_cpuid_ext(CPUID_EXT_ISAR0) & 0x0f000000) >> 24;
 381
 382	switch (divide_instrs) {
 383	case 2:
 384		elf_hwcap |= HWCAP_IDIVA;
 385	case 1:
 386		elf_hwcap |= HWCAP_IDIVT;
 387	}
 388
 389	/* LPAE implies atomic ldrd/strd instructions */
 390	vmsa = (read_cpuid_ext(CPUID_EXT_MMFR0) & 0xf) >> 0;
 391	if (vmsa >= 5)
 392		elf_hwcap |= HWCAP_LPAE;
 393}
 394
 395static void __init feat_v6_fixup(void)
 396{
 397	int id = read_cpuid_id();
 398
 399	if ((id & 0xff0f0000) != 0x41070000)
 400		return;
 401
 402	/*
 403	 * HWCAP_TLS is available only on 1136 r1p0 and later,
 404	 * see also kuser_get_tls_init.
 405	 */
 406	if ((((id >> 4) & 0xfff) == 0xb36) && (((id >> 20) & 3) == 0))
 407		elf_hwcap &= ~HWCAP_TLS;
 408}
 409
 410/*
 411 * cpu_init - initialise one CPU.
 412 *
 413 * cpu_init sets up the per-CPU stacks.
 414 */
 415void notrace cpu_init(void)
 416{
 417#ifndef CONFIG_CPU_V7M
 418	unsigned int cpu = smp_processor_id();
 419	struct stack *stk = &stacks[cpu];
 420
 421	if (cpu >= NR_CPUS) {
 422		pr_crit("CPU%u: bad primary CPU number\n", cpu);
 423		BUG();
 424	}
 425
 426	/*
 427	 * This only works on resume and secondary cores. For booting on the
 428	 * boot cpu, smp_prepare_boot_cpu is called after percpu area setup.
 429	 */
 430	set_my_cpu_offset(per_cpu_offset(cpu));
 431
 432	cpu_proc_init();
 433
 434	/*
 435	 * Define the placement constraint for the inline asm directive below.
 436	 * In Thumb-2, msr with an immediate value is not allowed.
 437	 */
 438#ifdef CONFIG_THUMB2_KERNEL
 439#define PLC	"r"
 440#else
 441#define PLC	"I"
 442#endif
 443
 444	/*
 445	 * setup stacks for re-entrant exception handlers
 446	 */
 447	__asm__ (
 448	"msr	cpsr_c, %1\n\t"
 449	"add	r14, %0, %2\n\t"
 450	"mov	sp, r14\n\t"
 451	"msr	cpsr_c, %3\n\t"
 452	"add	r14, %0, %4\n\t"
 453	"mov	sp, r14\n\t"
 454	"msr	cpsr_c, %5\n\t"
 455	"add	r14, %0, %6\n\t"
 456	"mov	sp, r14\n\t"
 457	"msr	cpsr_c, %7"
 458	    :
 459	    : "r" (stk),
 460	      PLC (PSR_F_BIT | PSR_I_BIT | IRQ_MODE),
 461	      "I" (offsetof(struct stack, irq[0])),
 462	      PLC (PSR_F_BIT | PSR_I_BIT | ABT_MODE),
 463	      "I" (offsetof(struct stack, abt[0])),
 464	      PLC (PSR_F_BIT | PSR_I_BIT | UND_MODE),
 465	      "I" (offsetof(struct stack, und[0])),
 466	      PLC (PSR_F_BIT | PSR_I_BIT | SVC_MODE)
 467	    : "r14");
 468#endif
 469}
 470
 471u32 __cpu_logical_map[NR_CPUS] = { [0 ... NR_CPUS-1] = MPIDR_INVALID };
 472
 473void __init smp_setup_processor_id(void)
 474{
 475	int i;
 476	u32 mpidr = is_smp() ? read_cpuid_mpidr() & MPIDR_HWID_BITMASK : 0;
 477	u32 cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0);
 478
 479	cpu_logical_map(0) = cpu;
 480	for (i = 1; i < nr_cpu_ids; ++i)
 481		cpu_logical_map(i) = i == cpu ? 0 : i;
 482
 483	/*
 484	 * clear __my_cpu_offset on boot CPU to avoid hang caused by
 485	 * using percpu variable early, for example, lockdep will
 486	 * access percpu variable inside lock_release
 487	 */
 488	set_my_cpu_offset(0);
 489
 490	pr_info("Booting Linux on physical CPU 0x%x\n", mpidr);
 491}
 492
 493struct mpidr_hash mpidr_hash;
 494#ifdef CONFIG_SMP
 495/**
 496 * smp_build_mpidr_hash - Pre-compute shifts required at each affinity
 497 *			  level in order to build a linear index from an
 498 *			  MPIDR value. Resulting algorithm is a collision
 499 *			  free hash carried out through shifting and ORing
 500 */
 501static void __init smp_build_mpidr_hash(void)
 502{
 503	u32 i, affinity;
 504	u32 fs[3], bits[3], ls, mask = 0;
 505	/*
 506	 * Pre-scan the list of MPIDRS and filter out bits that do
 507	 * not contribute to affinity levels, ie they never toggle.
 508	 */
 509	for_each_possible_cpu(i)
 510		mask |= (cpu_logical_map(i) ^ cpu_logical_map(0));
 511	pr_debug("mask of set bits 0x%x\n", mask);
 512	/*
 513	 * Find and stash the last and first bit set at all affinity levels to
 514	 * check how many bits are required to represent them.
 515	 */
 516	for (i = 0; i < 3; i++) {
 517		affinity = MPIDR_AFFINITY_LEVEL(mask, i);
 518		/*
 519		 * Find the MSB bit and LSB bits position
 520		 * to determine how many bits are required
 521		 * to express the affinity level.
 522		 */
 523		ls = fls(affinity);
 524		fs[i] = affinity ? ffs(affinity) - 1 : 0;
 525		bits[i] = ls - fs[i];
 526	}
 527	/*
 528	 * An index can be created from the MPIDR by isolating the
 529	 * significant bits at each affinity level and by shifting
 530	 * them in order to compress the 24 bits values space to a
 531	 * compressed set of values. This is equivalent to hashing
 532	 * the MPIDR through shifting and ORing. It is a collision free
 533	 * hash though not minimal since some levels might contain a number
 534	 * of CPUs that is not an exact power of 2 and their bit
 535	 * representation might contain holes, eg MPIDR[7:0] = {0x2, 0x80}.
 536	 */
 537	mpidr_hash.shift_aff[0] = fs[0];
 538	mpidr_hash.shift_aff[1] = MPIDR_LEVEL_BITS + fs[1] - bits[0];
 539	mpidr_hash.shift_aff[2] = 2*MPIDR_LEVEL_BITS + fs[2] -
 540						(bits[1] + bits[0]);
 541	mpidr_hash.mask = mask;
 542	mpidr_hash.bits = bits[2] + bits[1] + bits[0];
 543	pr_debug("MPIDR hash: aff0[%u] aff1[%u] aff2[%u] mask[0x%x] bits[%u]\n",
 544				mpidr_hash.shift_aff[0],
 545				mpidr_hash.shift_aff[1],
 546				mpidr_hash.shift_aff[2],
 547				mpidr_hash.mask,
 548				mpidr_hash.bits);
 549	/*
 550	 * 4x is an arbitrary value used to warn on a hash table much bigger
 551	 * than expected on most systems.
 552	 */
 553	if (mpidr_hash_size() > 4 * num_possible_cpus())
 554		pr_warn("Large number of MPIDR hash buckets detected\n");
 555	sync_cache_w(&mpidr_hash);
 556}
 557#endif
 558
 559static void __init setup_processor(void)
 560{
 561	struct proc_info_list *list;
 562
 563	/*
 564	 * locate processor in the list of supported processor
 565	 * types.  The linker builds this table for us from the
 566	 * entries in arch/arm/mm/proc-*.S
 567	 */
 568	list = lookup_processor_type(read_cpuid_id());
 569	if (!list) {
 570		pr_err("CPU configuration botched (ID %08x), unable to continue.\n",
 571		       read_cpuid_id());
 572		while (1);
 573	}
 574
 575	cpu_name = list->cpu_name;
 576	__cpu_architecture = __get_cpu_architecture();
 577
 578#ifdef MULTI_CPU
 579	processor = *list->proc;
 580#endif
 581#ifdef MULTI_TLB
 582	cpu_tlb = *list->tlb;
 583#endif
 584#ifdef MULTI_USER
 585	cpu_user = *list->user;
 586#endif
 587#ifdef MULTI_CACHE
 588	cpu_cache = *list->cache;
 589#endif
 590
 591	pr_info("CPU: %s [%08x] revision %d (ARMv%s), cr=%08lx\n",
 592		cpu_name, read_cpuid_id(), read_cpuid_id() & 15,
 593		proc_arch[cpu_architecture()], cr_alignment);
 594
 595	snprintf(init_utsname()->machine, __NEW_UTS_LEN + 1, "%s%c",
 596		 list->arch_name, ENDIANNESS);
 597	snprintf(elf_platform, ELF_PLATFORM_SIZE, "%s%c",
 598		 list->elf_name, ENDIANNESS);
 599	elf_hwcap = list->elf_hwcap;
 600
 601	cpuid_init_hwcaps();
 602
 603#ifndef CONFIG_ARM_THUMB
 604	elf_hwcap &= ~(HWCAP_THUMB | HWCAP_IDIVT);
 605#endif
 606
 607	erratum_a15_798181_init();
 608
 609	feat_v6_fixup();
 610
 611	cacheid_init();
 612	cpu_init();
 613}
 614
 615void __init dump_machine_table(void)
 616{
 617	const struct machine_desc *p;
 618
 619	early_print("Available machine support:\n\nID (hex)\tNAME\n");
 620	for_each_machine_desc(p)
 621		early_print("%08x\t%s\n", p->nr, p->name);
 622
 623	early_print("\nPlease check your kernel config and/or bootloader.\n");
 624
 625	while (true)
 626		/* can't use cpu_relax() here as it may require MMU setup */;
 627}
 628
 629int __init arm_add_memory(u64 start, u64 size)
 630{
 631	struct membank *bank = &meminfo.bank[meminfo.nr_banks];
 632	u64 aligned_start;
 633
 634	if (meminfo.nr_banks >= NR_BANKS) {
 635		pr_crit("NR_BANKS too low, ignoring memory at 0x%08llx\n",
 636			(long long)start);
 637		return -EINVAL;
 638	}
 639
 640	/*
 641	 * Ensure that start/size are aligned to a page boundary.
 642	 * Size is appropriately rounded down, start is rounded up.
 643	 */
 644	size -= start & ~PAGE_MASK;
 645	aligned_start = PAGE_ALIGN(start);
 646
 647#ifndef CONFIG_ARCH_PHYS_ADDR_T_64BIT
 648	if (aligned_start > ULONG_MAX) {
 649		pr_crit("Ignoring memory at 0x%08llx outside 32-bit physical address space\n",
 650			(long long)start);
 651		return -EINVAL;
 652	}
 653
 654	if (aligned_start + size > ULONG_MAX) {
 655		pr_crit("Truncating memory at 0x%08llx to fit in 32-bit physical address space\n",
 656			(long long)start);
 
 657		/*
 658		 * To ensure bank->start + bank->size is representable in
 659		 * 32 bits, we use ULONG_MAX as the upper limit rather than 4GB.
 660		 * This means we lose a page after masking.
 661		 */
 662		size = ULONG_MAX - aligned_start;
 663	}
 664#endif
 665
 666	if (aligned_start < PHYS_OFFSET) {
 667		if (aligned_start + size <= PHYS_OFFSET) {
 668			pr_info("Ignoring memory below PHYS_OFFSET: 0x%08llx-0x%08llx\n",
 669				aligned_start, aligned_start + size);
 670			return -EINVAL;
 671		}
 672
 673		pr_info("Ignoring memory below PHYS_OFFSET: 0x%08llx-0x%08llx\n",
 674			aligned_start, (u64)PHYS_OFFSET);
 675
 676		size -= PHYS_OFFSET - aligned_start;
 677		aligned_start = PHYS_OFFSET;
 678	}
 679
 680	bank->start = aligned_start;
 681	bank->size = size & ~(phys_addr_t)(PAGE_SIZE - 1);
 682
 683	/*
 684	 * Check whether this memory region has non-zero size or
 685	 * invalid node number.
 686	 */
 687	if (bank->size == 0)
 688		return -EINVAL;
 689
 690	meminfo.nr_banks++;
 691	return 0;
 692}
 693
 694/*
 695 * Pick out the memory size.  We look for mem=size@start,
 696 * where start and size are "size[KkMm]"
 697 */
 698static int __init early_mem(char *p)
 699{
 700	static int usermem __initdata = 0;
 701	u64 size;
 702	u64 start;
 703	char *endp;
 704
 705	/*
 706	 * If the user specifies memory size, we
 707	 * blow away any automatically generated
 708	 * size.
 709	 */
 710	if (usermem == 0) {
 711		usermem = 1;
 712		meminfo.nr_banks = 0;
 713	}
 714
 715	start = PHYS_OFFSET;
 716	size  = memparse(p, &endp);
 717	if (*endp == '@')
 718		start = memparse(endp + 1, NULL);
 719
 720	arm_add_memory(start, size);
 721
 722	return 0;
 723}
 724early_param("mem", early_mem);
 725
 726static void __init request_standard_resources(const struct machine_desc *mdesc)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 727{
 728	struct memblock_region *region;
 729	struct resource *res;
 730
 731	kernel_code.start   = virt_to_phys(_text);
 732	kernel_code.end     = virt_to_phys(_etext - 1);
 733	kernel_data.start   = virt_to_phys(_sdata);
 734	kernel_data.end     = virt_to_phys(_end - 1);
 735
 736	for_each_memblock(memory, region) {
 737		res = memblock_virt_alloc(sizeof(*res), 0);
 738		res->name  = "System RAM";
 739		res->start = __pfn_to_phys(memblock_region_memory_base_pfn(region));
 740		res->end = __pfn_to_phys(memblock_region_memory_end_pfn(region)) - 1;
 741		res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
 742
 743		request_resource(&iomem_resource, res);
 744
 745		if (kernel_code.start >= res->start &&
 746		    kernel_code.end <= res->end)
 747			request_resource(res, &kernel_code);
 748		if (kernel_data.start >= res->start &&
 749		    kernel_data.end <= res->end)
 750			request_resource(res, &kernel_data);
 751	}
 752
 753	if (mdesc->video_start) {
 754		video_ram.start = mdesc->video_start;
 755		video_ram.end   = mdesc->video_end;
 756		request_resource(&iomem_resource, &video_ram);
 757	}
 758
 759	/*
 760	 * Some machines don't have the possibility of ever
 761	 * possessing lp0, lp1 or lp2
 762	 */
 763	if (mdesc->reserve_lp0)
 764		request_resource(&ioport_resource, &lp0);
 765	if (mdesc->reserve_lp1)
 766		request_resource(&ioport_resource, &lp1);
 767	if (mdesc->reserve_lp2)
 768		request_resource(&ioport_resource, &lp2);
 769}
 770
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 771#if defined(CONFIG_VGA_CONSOLE) || defined(CONFIG_DUMMY_CONSOLE)
 772struct screen_info screen_info = {
 773 .orig_video_lines	= 30,
 774 .orig_video_cols	= 80,
 775 .orig_video_mode	= 0,
 776 .orig_video_ega_bx	= 0,
 777 .orig_video_isVGA	= 1,
 778 .orig_video_points	= 8
 779};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 780#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 781
 782static int __init customize_machine(void)
 783{
 784	/*
 785	 * customizes platform devices, or adds new ones
 786	 * On DT based machines, we fall back to populating the
 787	 * machine from the device tree, if no callback is provided,
 788	 * otherwise we would always need an init_machine callback.
 789	 */
 790	if (machine_desc->init_machine)
 791		machine_desc->init_machine();
 792#ifdef CONFIG_OF
 793	else
 794		of_platform_populate(NULL, of_default_bus_match_table,
 795					NULL, NULL);
 796#endif
 797	return 0;
 798}
 799arch_initcall(customize_machine);
 800
 801static int __init init_machine_late(void)
 802{
 803	if (machine_desc->init_late)
 804		machine_desc->init_late();
 805	return 0;
 806}
 807late_initcall(init_machine_late);
 808
 809#ifdef CONFIG_KEXEC
 810static inline unsigned long long get_total_mem(void)
 811{
 812	unsigned long total;
 813
 814	total = max_low_pfn - min_low_pfn;
 815	return total << PAGE_SHIFT;
 816}
 817
 818/**
 819 * reserve_crashkernel() - reserves memory are for crash kernel
 820 *
 821 * This function reserves memory area given in "crashkernel=" kernel command
 822 * line parameter. The memory reserved is used by a dump capture kernel when
 823 * primary kernel is crashing.
 824 */
 825static void __init reserve_crashkernel(void)
 826{
 827	unsigned long long crash_size, crash_base;
 828	unsigned long long total_mem;
 829	int ret;
 830
 831	total_mem = get_total_mem();
 832	ret = parse_crashkernel(boot_command_line, total_mem,
 833				&crash_size, &crash_base);
 834	if (ret)
 835		return;
 836
 837	ret = memblock_reserve(crash_base, crash_size);
 838	if (ret < 0) {
 839		pr_warn("crashkernel reservation failed - memory is in use (0x%lx)\n",
 840			(unsigned long)crash_base);
 841		return;
 842	}
 843
 844	pr_info("Reserving %ldMB of memory at %ldMB for crashkernel (System RAM: %ldMB)\n",
 845		(unsigned long)(crash_size >> 20),
 846		(unsigned long)(crash_base >> 20),
 847		(unsigned long)(total_mem >> 20));
 
 848
 849	crashk_res.start = crash_base;
 850	crashk_res.end = crash_base + crash_size - 1;
 851	insert_resource(&iomem_resource, &crashk_res);
 852}
 853#else
 854static inline void reserve_crashkernel(void) {}
 855#endif /* CONFIG_KEXEC */
 856
 857static int __init meminfo_cmp(const void *_a, const void *_b)
 858{
 859	const struct membank *a = _a, *b = _b;
 860	long cmp = bank_pfn_start(a) - bank_pfn_start(b);
 861	return cmp < 0 ? -1 : cmp > 0 ? 1 : 0;
 862}
 863
 864void __init hyp_mode_check(void)
 865{
 866#ifdef CONFIG_ARM_VIRT_EXT
 867	sync_boot_mode();
 
 868
 869	if (is_hyp_mode_available()) {
 870		pr_info("CPU: All CPU(s) started in HYP mode.\n");
 871		pr_info("CPU: Virtualization extensions available.\n");
 872	} else if (is_hyp_mode_mismatched()) {
 873		pr_warn("CPU: WARNING: CPU(s) started in wrong/inconsistent modes (primary CPU mode 0x%x)\n",
 874			__boot_cpu_mode & MODE_MASK);
 875		pr_warn("CPU: This may indicate a broken bootloader or firmware.\n");
 876	} else
 877		pr_info("CPU: All CPU(s) started in SVC mode.\n");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 878#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 879}
 880
 881void __init setup_arch(char **cmdline_p)
 882{
 883	const struct machine_desc *mdesc;
 884
 885	setup_processor();
 886	mdesc = setup_machine_fdt(__atags_pointer);
 887	if (!mdesc)
 888		mdesc = setup_machine_tags(__atags_pointer, __machine_arch_type);
 889	machine_desc = mdesc;
 890	machine_name = mdesc->name;
 891
 892	if (mdesc->reboot_mode != REBOOT_HARD)
 893		reboot_mode = mdesc->reboot_mode;
 
 
 894
 895	init_mm.start_code = (unsigned long) _text;
 896	init_mm.end_code   = (unsigned long) _etext;
 897	init_mm.end_data   = (unsigned long) _edata;
 898	init_mm.brk	   = (unsigned long) _end;
 899
 900	/* populate cmd_line too for later use, preserving boot_command_line */
 901	strlcpy(cmd_line, boot_command_line, COMMAND_LINE_SIZE);
 902	*cmdline_p = cmd_line;
 903
 904	parse_early_param();
 905
 906	sort(&meminfo.bank, meminfo.nr_banks, sizeof(meminfo.bank[0]), meminfo_cmp, NULL);
 907
 908	early_paging_init(mdesc, lookup_processor_type(read_cpuid_id()));
 909	setup_dma_zone(mdesc);
 910	sanity_check_meminfo();
 911	arm_memblock_init(&meminfo, mdesc);
 912
 913	paging_init(mdesc);
 914	request_standard_resources(mdesc);
 915
 916	if (mdesc->restart)
 917		arm_pm_restart = mdesc->restart;
 918
 919	unflatten_device_tree();
 920
 921	arm_dt_init_cpu_maps();
 922	psci_init();
 923#ifdef CONFIG_SMP
 924	if (is_smp()) {
 925		if (!mdesc->smp_init || !mdesc->smp_init()) {
 926			if (psci_smp_available())
 927				smp_set_ops(&psci_smp_ops);
 928			else if (mdesc->smp)
 929				smp_set_ops(mdesc->smp);
 930		}
 931		smp_init_cpus();
 932		smp_build_mpidr_hash();
 933	}
 934#endif
 935
 936	if (!is_smp())
 937		hyp_mode_check();
 938
 939	reserve_crashkernel();
 940
 
 
 941#ifdef CONFIG_MULTI_IRQ_HANDLER
 942	handle_arch_irq = mdesc->handle_irq;
 943#endif
 944
 945#ifdef CONFIG_VT
 946#if defined(CONFIG_VGA_CONSOLE)
 947	conswitchp = &vga_con;
 948#elif defined(CONFIG_DUMMY_CONSOLE)
 949	conswitchp = &dummy_con;
 950#endif
 951#endif
 952
 953	if (mdesc->init_early)
 954		mdesc->init_early();
 955}
 956
 957
 958static int __init topology_init(void)
 959{
 960	int cpu;
 961
 962	for_each_possible_cpu(cpu) {
 963		struct cpuinfo_arm *cpuinfo = &per_cpu(cpu_data, cpu);
 964		cpuinfo->cpu.hotpluggable = 1;
 965		register_cpu(&cpuinfo->cpu, cpu);
 966	}
 967
 968	return 0;
 969}
 970subsys_initcall(topology_init);
 971
 972#ifdef CONFIG_HAVE_PROC_CPU
 973static int __init proc_cpu_init(void)
 974{
 975	struct proc_dir_entry *res;
 976
 977	res = proc_mkdir("cpu", NULL);
 978	if (!res)
 979		return -ENOMEM;
 980	return 0;
 981}
 982fs_initcall(proc_cpu_init);
 983#endif
 984
 985static const char *hwcap_str[] = {
 986	"swp",
 987	"half",
 988	"thumb",
 989	"26bit",
 990	"fastmult",
 991	"fpa",
 992	"vfp",
 993	"edsp",
 994	"java",
 995	"iwmmxt",
 996	"crunch",
 997	"thumbee",
 998	"neon",
 999	"vfpv3",
1000	"vfpv3d16",
1001	"tls",
1002	"vfpv4",
1003	"idiva",
1004	"idivt",
1005	"vfpd32",
1006	"lpae",
1007	"evtstrm",
1008	NULL
1009};
1010
1011static const char *hwcap2_str[] = {
1012	"aes",
1013	"pmull",
1014	"sha1",
1015	"sha2",
1016	"crc32",
1017	NULL
1018};
1019
1020static int c_show(struct seq_file *m, void *v)
1021{
1022	int i, j;
1023	u32 cpuid;
 
 
1024
 
1025	for_each_online_cpu(i) {
1026		/*
1027		 * glibc reads /proc/cpuinfo to determine the number of
1028		 * online processors, looking for lines beginning with
1029		 * "processor".  Give glibc what it expects.
1030		 */
1031		seq_printf(m, "processor\t: %d\n", i);
1032		cpuid = is_smp() ? per_cpu(cpu_data, i).cpuid : read_cpuid_id();
1033		seq_printf(m, "model name\t: %s rev %d (%s)\n",
1034			   cpu_name, cpuid & 15, elf_platform);
1035
1036		/* dump out the processor features */
1037		seq_puts(m, "Features\t: ");
1038
1039		for (j = 0; hwcap_str[j]; j++)
1040			if (elf_hwcap & (1 << j))
1041				seq_printf(m, "%s ", hwcap_str[j]);
1042
1043		for (j = 0; hwcap2_str[j]; j++)
1044			if (elf_hwcap2 & (1 << j))
1045				seq_printf(m, "%s ", hwcap2_str[j]);
1046
1047		seq_printf(m, "\nCPU implementer\t: 0x%02x\n", cpuid >> 24);
1048		seq_printf(m, "CPU architecture: %s\n",
1049			   proc_arch[cpu_architecture()]);
1050
1051		if ((cpuid & 0x0008f000) == 0x00000000) {
1052			/* pre-ARM7 */
1053			seq_printf(m, "CPU part\t: %07x\n", cpuid >> 4);
 
 
 
 
 
 
1054		} else {
1055			if ((cpuid & 0x0008f000) == 0x00007000) {
1056				/* ARM7 */
1057				seq_printf(m, "CPU variant\t: 0x%02x\n",
1058					   (cpuid >> 16) & 127);
1059			} else {
1060				/* post-ARM7 */
1061				seq_printf(m, "CPU variant\t: 0x%x\n",
1062					   (cpuid >> 20) & 15);
1063			}
1064			seq_printf(m, "CPU part\t: 0x%03x\n",
1065				   (cpuid >> 4) & 0xfff);
1066		}
1067		seq_printf(m, "CPU revision\t: %d\n\n", cpuid & 15);
 
1068	}
 
 
 
1069
1070	seq_printf(m, "Hardware\t: %s\n", machine_name);
1071	seq_printf(m, "Revision\t: %04x\n", system_rev);
1072	seq_printf(m, "Serial\t\t: %08x%08x\n",
1073		   system_serial_high, system_serial_low);
1074
1075	return 0;
1076}
1077
1078static void *c_start(struct seq_file *m, loff_t *pos)
1079{
1080	return *pos < 1 ? (void *)1 : NULL;
1081}
1082
1083static void *c_next(struct seq_file *m, void *v, loff_t *pos)
1084{
1085	++*pos;
1086	return NULL;
1087}
1088
1089static void c_stop(struct seq_file *m, void *v)
1090{
1091}
1092
1093const struct seq_operations cpuinfo_op = {
1094	.start	= c_start,
1095	.next	= c_next,
1096	.stop	= c_stop,
1097	.show	= c_show
1098};
v3.5.6
   1/*
   2 *  linux/arch/arm/kernel/setup.c
   3 *
   4 *  Copyright (C) 1995-2001 Russell King
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License version 2 as
   8 * published by the Free Software Foundation.
   9 */
  10#include <linux/export.h>
  11#include <linux/kernel.h>
  12#include <linux/stddef.h>
  13#include <linux/ioport.h>
  14#include <linux/delay.h>
  15#include <linux/utsname.h>
  16#include <linux/initrd.h>
  17#include <linux/console.h>
  18#include <linux/bootmem.h>
  19#include <linux/seq_file.h>
  20#include <linux/screen_info.h>
 
  21#include <linux/init.h>
  22#include <linux/kexec.h>
  23#include <linux/of_fdt.h>
  24#include <linux/root_dev.h>
  25#include <linux/cpu.h>
  26#include <linux/interrupt.h>
  27#include <linux/smp.h>
  28#include <linux/fs.h>
  29#include <linux/proc_fs.h>
  30#include <linux/memblock.h>
  31#include <linux/bug.h>
  32#include <linux/compiler.h>
  33#include <linux/sort.h>
  34
  35#include <asm/unified.h>
  36#include <asm/cp15.h>
  37#include <asm/cpu.h>
  38#include <asm/cputype.h>
  39#include <asm/elf.h>
  40#include <asm/procinfo.h>
 
  41#include <asm/sections.h>
  42#include <asm/setup.h>
  43#include <asm/smp_plat.h>
  44#include <asm/mach-types.h>
  45#include <asm/cacheflush.h>
  46#include <asm/cachetype.h>
  47#include <asm/tlbflush.h>
  48
  49#include <asm/prom.h>
  50#include <asm/mach/arch.h>
  51#include <asm/mach/irq.h>
  52#include <asm/mach/time.h>
  53#include <asm/system_info.h>
  54#include <asm/system_misc.h>
  55#include <asm/traps.h>
  56#include <asm/unwind.h>
  57#include <asm/memblock.h>
 
  58
  59#if defined(CONFIG_DEPRECATED_PARAM_STRUCT)
  60#include "compat.h"
  61#endif
  62#include "atags.h"
  63#include "tcm.h"
  64
  65#ifndef MEM_SIZE
  66#define MEM_SIZE	(16*1024*1024)
  67#endif
  68
  69#if defined(CONFIG_FPE_NWFPE) || defined(CONFIG_FPE_FASTFPE)
  70char fpe_type[8];
  71
  72static int __init fpe_setup(char *line)
  73{
  74	memcpy(fpe_type, line, 8);
  75	return 1;
  76}
  77
  78__setup("fpe=", fpe_setup);
  79#endif
  80
  81extern void paging_init(struct machine_desc *desc);
 
 
  82extern void sanity_check_meminfo(void);
  83extern void reboot_setup(char *str);
  84extern void setup_dma_zone(struct machine_desc *desc);
  85
  86unsigned int processor_id;
  87EXPORT_SYMBOL(processor_id);
  88unsigned int __machine_arch_type __read_mostly;
  89EXPORT_SYMBOL(__machine_arch_type);
  90unsigned int cacheid __read_mostly;
  91EXPORT_SYMBOL(cacheid);
  92
  93unsigned int __atags_pointer __initdata;
  94
  95unsigned int system_rev;
  96EXPORT_SYMBOL(system_rev);
  97
  98unsigned int system_serial_low;
  99EXPORT_SYMBOL(system_serial_low);
 100
 101unsigned int system_serial_high;
 102EXPORT_SYMBOL(system_serial_high);
 103
 104unsigned int elf_hwcap __read_mostly;
 105EXPORT_SYMBOL(elf_hwcap);
 106
 
 
 
 107
 108#ifdef MULTI_CPU
 109struct processor processor __read_mostly;
 110#endif
 111#ifdef MULTI_TLB
 112struct cpu_tlb_fns cpu_tlb __read_mostly;
 113#endif
 114#ifdef MULTI_USER
 115struct cpu_user_fns cpu_user __read_mostly;
 116#endif
 117#ifdef MULTI_CACHE
 118struct cpu_cache_fns cpu_cache __read_mostly;
 119#endif
 120#ifdef CONFIG_OUTER_CACHE
 121struct outer_cache_fns outer_cache __read_mostly;
 122EXPORT_SYMBOL(outer_cache);
 123#endif
 124
 125/*
 126 * Cached cpu_architecture() result for use by assembler code.
 127 * C code should use the cpu_architecture() function instead of accessing this
 128 * variable directly.
 129 */
 130int __cpu_architecture __read_mostly = CPU_ARCH_UNKNOWN;
 131
 132struct stack {
 133	u32 irq[3];
 134	u32 abt[3];
 135	u32 und[3];
 136} ____cacheline_aligned;
 137
 
 138static struct stack stacks[NR_CPUS];
 
 139
 140char elf_platform[ELF_PLATFORM_SIZE];
 141EXPORT_SYMBOL(elf_platform);
 142
 143static const char *cpu_name;
 144static const char *machine_name;
 145static char __initdata cmd_line[COMMAND_LINE_SIZE];
 146struct machine_desc *machine_desc __initdata;
 147
 148static char default_command_line[COMMAND_LINE_SIZE] __initdata = CONFIG_CMDLINE;
 149static union { char c[4]; unsigned long l; } endian_test __initdata = { { 'l', '?', '?', 'b' } };
 150#define ENDIANNESS ((char)endian_test.l)
 151
 152DEFINE_PER_CPU(struct cpuinfo_arm, cpu_data);
 153
 154/*
 155 * Standard memory resources
 156 */
 157static struct resource mem_res[] = {
 158	{
 159		.name = "Video RAM",
 160		.start = 0,
 161		.end = 0,
 162		.flags = IORESOURCE_MEM
 163	},
 164	{
 165		.name = "Kernel code",
 166		.start = 0,
 167		.end = 0,
 168		.flags = IORESOURCE_MEM
 169	},
 170	{
 171		.name = "Kernel data",
 172		.start = 0,
 173		.end = 0,
 174		.flags = IORESOURCE_MEM
 175	}
 176};
 177
 178#define video_ram   mem_res[0]
 179#define kernel_code mem_res[1]
 180#define kernel_data mem_res[2]
 181
 182static struct resource io_res[] = {
 183	{
 184		.name = "reserved",
 185		.start = 0x3bc,
 186		.end = 0x3be,
 187		.flags = IORESOURCE_IO | IORESOURCE_BUSY
 188	},
 189	{
 190		.name = "reserved",
 191		.start = 0x378,
 192		.end = 0x37f,
 193		.flags = IORESOURCE_IO | IORESOURCE_BUSY
 194	},
 195	{
 196		.name = "reserved",
 197		.start = 0x278,
 198		.end = 0x27f,
 199		.flags = IORESOURCE_IO | IORESOURCE_BUSY
 200	}
 201};
 202
 203#define lp0 io_res[0]
 204#define lp1 io_res[1]
 205#define lp2 io_res[2]
 206
 207static const char *proc_arch[] = {
 208	"undefined/unknown",
 209	"3",
 210	"4",
 211	"4T",
 212	"5",
 213	"5T",
 214	"5TE",
 215	"5TEJ",
 216	"6TEJ",
 217	"7",
 218	"?(11)",
 219	"?(12)",
 220	"?(13)",
 221	"?(14)",
 222	"?(15)",
 223	"?(16)",
 224	"?(17)",
 225};
 226
 
 
 
 
 
 
 227static int __get_cpu_architecture(void)
 228{
 229	int cpu_arch;
 230
 231	if ((read_cpuid_id() & 0x0008f000) == 0) {
 232		cpu_arch = CPU_ARCH_UNKNOWN;
 233	} else if ((read_cpuid_id() & 0x0008f000) == 0x00007000) {
 234		cpu_arch = (read_cpuid_id() & (1 << 23)) ? CPU_ARCH_ARMv4T : CPU_ARCH_ARMv3;
 235	} else if ((read_cpuid_id() & 0x00080000) == 0x00000000) {
 236		cpu_arch = (read_cpuid_id() >> 16) & 7;
 237		if (cpu_arch)
 238			cpu_arch += CPU_ARCH_ARMv3;
 239	} else if ((read_cpuid_id() & 0x000f0000) == 0x000f0000) {
 240		unsigned int mmfr0;
 241
 242		/* Revised CPUID format. Read the Memory Model Feature
 243		 * Register 0 and check for VMSAv7 or PMSAv7 */
 244		asm("mrc	p15, 0, %0, c0, c1, 4"
 245		    : "=r" (mmfr0));
 246		if ((mmfr0 & 0x0000000f) >= 0x00000003 ||
 247		    (mmfr0 & 0x000000f0) >= 0x00000030)
 248			cpu_arch = CPU_ARCH_ARMv7;
 249		else if ((mmfr0 & 0x0000000f) == 0x00000002 ||
 250			 (mmfr0 & 0x000000f0) == 0x00000020)
 251			cpu_arch = CPU_ARCH_ARMv6;
 252		else
 253			cpu_arch = CPU_ARCH_UNKNOWN;
 254	} else
 255		cpu_arch = CPU_ARCH_UNKNOWN;
 256
 257	return cpu_arch;
 258}
 
 259
 260int __pure cpu_architecture(void)
 261{
 262	BUG_ON(__cpu_architecture == CPU_ARCH_UNKNOWN);
 263
 264	return __cpu_architecture;
 265}
 266
 267static int cpu_has_aliasing_icache(unsigned int arch)
 268{
 269	int aliasing_icache;
 270	unsigned int id_reg, num_sets, line_size;
 271
 272	/* PIPT caches never alias. */
 273	if (icache_is_pipt())
 274		return 0;
 275
 276	/* arch specifies the register format */
 277	switch (arch) {
 278	case CPU_ARCH_ARMv7:
 279		asm("mcr	p15, 2, %0, c0, c0, 0 @ set CSSELR"
 280		    : /* No output operands */
 281		    : "r" (1));
 282		isb();
 283		asm("mrc	p15, 1, %0, c0, c0, 0 @ read CCSIDR"
 284		    : "=r" (id_reg));
 285		line_size = 4 << ((id_reg & 0x7) + 2);
 286		num_sets = ((id_reg >> 13) & 0x7fff) + 1;
 287		aliasing_icache = (line_size * num_sets) > PAGE_SIZE;
 288		break;
 289	case CPU_ARCH_ARMv6:
 290		aliasing_icache = read_cpuid_cachetype() & (1 << 11);
 291		break;
 292	default:
 293		/* I-cache aliases will be handled by D-cache aliasing code */
 294		aliasing_icache = 0;
 295	}
 296
 297	return aliasing_icache;
 298}
 299
 300static void __init cacheid_init(void)
 301{
 302	unsigned int cachetype = read_cpuid_cachetype();
 303	unsigned int arch = cpu_architecture();
 304
 305	if (arch >= CPU_ARCH_ARMv6) {
 
 
 
 306		if ((cachetype & (7 << 29)) == 4 << 29) {
 307			/* ARMv7 register format */
 308			arch = CPU_ARCH_ARMv7;
 309			cacheid = CACHEID_VIPT_NONALIASING;
 310			switch (cachetype & (3 << 14)) {
 311			case (1 << 14):
 312				cacheid |= CACHEID_ASID_TAGGED;
 313				break;
 314			case (3 << 14):
 315				cacheid |= CACHEID_PIPT;
 316				break;
 317			}
 318		} else {
 319			arch = CPU_ARCH_ARMv6;
 320			if (cachetype & (1 << 23))
 321				cacheid = CACHEID_VIPT_ALIASING;
 322			else
 323				cacheid = CACHEID_VIPT_NONALIASING;
 324		}
 325		if (cpu_has_aliasing_icache(arch))
 326			cacheid |= CACHEID_VIPT_I_ALIASING;
 327	} else {
 328		cacheid = CACHEID_VIVT;
 329	}
 330
 331	printk("CPU: %s data cache, %s instruction cache\n",
 332		cache_is_vivt() ? "VIVT" :
 333		cache_is_vipt_aliasing() ? "VIPT aliasing" :
 334		cache_is_vipt_nonaliasing() ? "PIPT / VIPT nonaliasing" : "unknown",
 335		cache_is_vivt() ? "VIVT" :
 336		icache_is_vivt_asid_tagged() ? "VIVT ASID tagged" :
 337		icache_is_vipt_aliasing() ? "VIPT aliasing" :
 338		icache_is_pipt() ? "PIPT" :
 339		cache_is_vipt_nonaliasing() ? "VIPT nonaliasing" : "unknown");
 340}
 341
 342/*
 343 * These functions re-use the assembly code in head.S, which
 344 * already provide the required functionality.
 345 */
 346extern struct proc_info_list *lookup_processor_type(unsigned int);
 347
 348void __init early_print(const char *str, ...)
 349{
 350	extern void printascii(const char *);
 351	char buf[256];
 352	va_list ap;
 353
 354	va_start(ap, str);
 355	vsnprintf(buf, sizeof(buf), str, ap);
 356	va_end(ap);
 357
 358#ifdef CONFIG_DEBUG_LL
 359	printascii(buf);
 360#endif
 361	printk("%s", buf);
 362}
 363
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 364static void __init feat_v6_fixup(void)
 365{
 366	int id = read_cpuid_id();
 367
 368	if ((id & 0xff0f0000) != 0x41070000)
 369		return;
 370
 371	/*
 372	 * HWCAP_TLS is available only on 1136 r1p0 and later,
 373	 * see also kuser_get_tls_init.
 374	 */
 375	if ((((id >> 4) & 0xfff) == 0xb36) && (((id >> 20) & 3) == 0))
 376		elf_hwcap &= ~HWCAP_TLS;
 377}
 378
 379/*
 380 * cpu_init - initialise one CPU.
 381 *
 382 * cpu_init sets up the per-CPU stacks.
 383 */
 384void cpu_init(void)
 385{
 
 386	unsigned int cpu = smp_processor_id();
 387	struct stack *stk = &stacks[cpu];
 388
 389	if (cpu >= NR_CPUS) {
 390		printk(KERN_CRIT "CPU%u: bad primary CPU number\n", cpu);
 391		BUG();
 392	}
 393
 
 
 
 
 
 
 394	cpu_proc_init();
 395
 396	/*
 397	 * Define the placement constraint for the inline asm directive below.
 398	 * In Thumb-2, msr with an immediate value is not allowed.
 399	 */
 400#ifdef CONFIG_THUMB2_KERNEL
 401#define PLC	"r"
 402#else
 403#define PLC	"I"
 404#endif
 405
 406	/*
 407	 * setup stacks for re-entrant exception handlers
 408	 */
 409	__asm__ (
 410	"msr	cpsr_c, %1\n\t"
 411	"add	r14, %0, %2\n\t"
 412	"mov	sp, r14\n\t"
 413	"msr	cpsr_c, %3\n\t"
 414	"add	r14, %0, %4\n\t"
 415	"mov	sp, r14\n\t"
 416	"msr	cpsr_c, %5\n\t"
 417	"add	r14, %0, %6\n\t"
 418	"mov	sp, r14\n\t"
 419	"msr	cpsr_c, %7"
 420	    :
 421	    : "r" (stk),
 422	      PLC (PSR_F_BIT | PSR_I_BIT | IRQ_MODE),
 423	      "I" (offsetof(struct stack, irq[0])),
 424	      PLC (PSR_F_BIT | PSR_I_BIT | ABT_MODE),
 425	      "I" (offsetof(struct stack, abt[0])),
 426	      PLC (PSR_F_BIT | PSR_I_BIT | UND_MODE),
 427	      "I" (offsetof(struct stack, und[0])),
 428	      PLC (PSR_F_BIT | PSR_I_BIT | SVC_MODE)
 429	    : "r14");
 
 430}
 431
 432int __cpu_logical_map[NR_CPUS];
 433
 434void __init smp_setup_processor_id(void)
 435{
 436	int i;
 437	u32 cpu = is_smp() ? read_cpuid_mpidr() & 0xff : 0;
 
 438
 439	cpu_logical_map(0) = cpu;
 440	for (i = 1; i < NR_CPUS; ++i)
 441		cpu_logical_map(i) = i == cpu ? 0 : i;
 442
 443	printk(KERN_INFO "Booting Linux on physical CPU %d\n", cpu);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 444}
 
 445
 446static void __init setup_processor(void)
 447{
 448	struct proc_info_list *list;
 449
 450	/*
 451	 * locate processor in the list of supported processor
 452	 * types.  The linker builds this table for us from the
 453	 * entries in arch/arm/mm/proc-*.S
 454	 */
 455	list = lookup_processor_type(read_cpuid_id());
 456	if (!list) {
 457		printk("CPU configuration botched (ID %08x), unable "
 458		       "to continue.\n", read_cpuid_id());
 459		while (1);
 460	}
 461
 462	cpu_name = list->cpu_name;
 463	__cpu_architecture = __get_cpu_architecture();
 464
 465#ifdef MULTI_CPU
 466	processor = *list->proc;
 467#endif
 468#ifdef MULTI_TLB
 469	cpu_tlb = *list->tlb;
 470#endif
 471#ifdef MULTI_USER
 472	cpu_user = *list->user;
 473#endif
 474#ifdef MULTI_CACHE
 475	cpu_cache = *list->cache;
 476#endif
 477
 478	printk("CPU: %s [%08x] revision %d (ARMv%s), cr=%08lx\n",
 479	       cpu_name, read_cpuid_id(), read_cpuid_id() & 15,
 480	       proc_arch[cpu_architecture()], cr_alignment);
 481
 482	snprintf(init_utsname()->machine, __NEW_UTS_LEN + 1, "%s%c",
 483		 list->arch_name, ENDIANNESS);
 484	snprintf(elf_platform, ELF_PLATFORM_SIZE, "%s%c",
 485		 list->elf_name, ENDIANNESS);
 486	elf_hwcap = list->elf_hwcap;
 
 
 
 487#ifndef CONFIG_ARM_THUMB
 488	elf_hwcap &= ~HWCAP_THUMB;
 489#endif
 490
 
 
 491	feat_v6_fixup();
 492
 493	cacheid_init();
 494	cpu_init();
 495}
 496
 497void __init dump_machine_table(void)
 498{
 499	struct machine_desc *p;
 500
 501	early_print("Available machine support:\n\nID (hex)\tNAME\n");
 502	for_each_machine_desc(p)
 503		early_print("%08x\t%s\n", p->nr, p->name);
 504
 505	early_print("\nPlease check your kernel config and/or bootloader.\n");
 506
 507	while (true)
 508		/* can't use cpu_relax() here as it may require MMU setup */;
 509}
 510
 511int __init arm_add_memory(phys_addr_t start, unsigned long size)
 512{
 513	struct membank *bank = &meminfo.bank[meminfo.nr_banks];
 
 514
 515	if (meminfo.nr_banks >= NR_BANKS) {
 516		printk(KERN_CRIT "NR_BANKS too low, "
 517			"ignoring memory at 0x%08llx\n", (long long)start);
 518		return -EINVAL;
 519	}
 520
 521	/*
 522	 * Ensure that start/size are aligned to a page boundary.
 523	 * Size is appropriately rounded down, start is rounded up.
 524	 */
 525	size -= start & ~PAGE_MASK;
 526	bank->start = PAGE_ALIGN(start);
 
 
 
 
 
 
 
 527
 528#ifndef CONFIG_LPAE
 529	if (bank->start + size < bank->start) {
 530		printk(KERN_CRIT "Truncating memory at 0x%08llx to fit in "
 531			"32-bit physical address space\n", (long long)start);
 532		/*
 533		 * To ensure bank->start + bank->size is representable in
 534		 * 32 bits, we use ULONG_MAX as the upper limit rather than 4GB.
 535		 * This means we lose a page after masking.
 536		 */
 537		size = ULONG_MAX - bank->start;
 538	}
 539#endif
 540
 541	bank->size = size & PAGE_MASK;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 542
 543	/*
 544	 * Check whether this memory region has non-zero size or
 545	 * invalid node number.
 546	 */
 547	if (bank->size == 0)
 548		return -EINVAL;
 549
 550	meminfo.nr_banks++;
 551	return 0;
 552}
 553
 554/*
 555 * Pick out the memory size.  We look for mem=size@start,
 556 * where start and size are "size[KkMm]"
 557 */
 558static int __init early_mem(char *p)
 559{
 560	static int usermem __initdata = 0;
 561	unsigned long size;
 562	phys_addr_t start;
 563	char *endp;
 564
 565	/*
 566	 * If the user specifies memory size, we
 567	 * blow away any automatically generated
 568	 * size.
 569	 */
 570	if (usermem == 0) {
 571		usermem = 1;
 572		meminfo.nr_banks = 0;
 573	}
 574
 575	start = PHYS_OFFSET;
 576	size  = memparse(p, &endp);
 577	if (*endp == '@')
 578		start = memparse(endp + 1, NULL);
 579
 580	arm_add_memory(start, size);
 581
 582	return 0;
 583}
 584early_param("mem", early_mem);
 585
 586static void __init
 587setup_ramdisk(int doload, int prompt, int image_start, unsigned int rd_sz)
 588{
 589#ifdef CONFIG_BLK_DEV_RAM
 590	extern int rd_size, rd_image_start, rd_prompt, rd_doload;
 591
 592	rd_image_start = image_start;
 593	rd_prompt = prompt;
 594	rd_doload = doload;
 595
 596	if (rd_sz)
 597		rd_size = rd_sz;
 598#endif
 599}
 600
 601static void __init request_standard_resources(struct machine_desc *mdesc)
 602{
 603	struct memblock_region *region;
 604	struct resource *res;
 605
 606	kernel_code.start   = virt_to_phys(_text);
 607	kernel_code.end     = virt_to_phys(_etext - 1);
 608	kernel_data.start   = virt_to_phys(_sdata);
 609	kernel_data.end     = virt_to_phys(_end - 1);
 610
 611	for_each_memblock(memory, region) {
 612		res = alloc_bootmem_low(sizeof(*res));
 613		res->name  = "System RAM";
 614		res->start = __pfn_to_phys(memblock_region_memory_base_pfn(region));
 615		res->end = __pfn_to_phys(memblock_region_memory_end_pfn(region)) - 1;
 616		res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
 617
 618		request_resource(&iomem_resource, res);
 619
 620		if (kernel_code.start >= res->start &&
 621		    kernel_code.end <= res->end)
 622			request_resource(res, &kernel_code);
 623		if (kernel_data.start >= res->start &&
 624		    kernel_data.end <= res->end)
 625			request_resource(res, &kernel_data);
 626	}
 627
 628	if (mdesc->video_start) {
 629		video_ram.start = mdesc->video_start;
 630		video_ram.end   = mdesc->video_end;
 631		request_resource(&iomem_resource, &video_ram);
 632	}
 633
 634	/*
 635	 * Some machines don't have the possibility of ever
 636	 * possessing lp0, lp1 or lp2
 637	 */
 638	if (mdesc->reserve_lp0)
 639		request_resource(&ioport_resource, &lp0);
 640	if (mdesc->reserve_lp1)
 641		request_resource(&ioport_resource, &lp1);
 642	if (mdesc->reserve_lp2)
 643		request_resource(&ioport_resource, &lp2);
 644}
 645
 646/*
 647 *  Tag parsing.
 648 *
 649 * This is the new way of passing data to the kernel at boot time.  Rather
 650 * than passing a fixed inflexible structure to the kernel, we pass a list
 651 * of variable-sized tags to the kernel.  The first tag must be a ATAG_CORE
 652 * tag for the list to be recognised (to distinguish the tagged list from
 653 * a param_struct).  The list is terminated with a zero-length tag (this tag
 654 * is not parsed in any way).
 655 */
 656static int __init parse_tag_core(const struct tag *tag)
 657{
 658	if (tag->hdr.size > 2) {
 659		if ((tag->u.core.flags & 1) == 0)
 660			root_mountflags &= ~MS_RDONLY;
 661		ROOT_DEV = old_decode_dev(tag->u.core.rootdev);
 662	}
 663	return 0;
 664}
 665
 666__tagtable(ATAG_CORE, parse_tag_core);
 667
 668static int __init parse_tag_mem32(const struct tag *tag)
 669{
 670	return arm_add_memory(tag->u.mem.start, tag->u.mem.size);
 671}
 672
 673__tagtable(ATAG_MEM, parse_tag_mem32);
 674
 675#if defined(CONFIG_VGA_CONSOLE) || defined(CONFIG_DUMMY_CONSOLE)
 676struct screen_info screen_info = {
 677 .orig_video_lines	= 30,
 678 .orig_video_cols	= 80,
 679 .orig_video_mode	= 0,
 680 .orig_video_ega_bx	= 0,
 681 .orig_video_isVGA	= 1,
 682 .orig_video_points	= 8
 683};
 684
 685static int __init parse_tag_videotext(const struct tag *tag)
 686{
 687	screen_info.orig_x            = tag->u.videotext.x;
 688	screen_info.orig_y            = tag->u.videotext.y;
 689	screen_info.orig_video_page   = tag->u.videotext.video_page;
 690	screen_info.orig_video_mode   = tag->u.videotext.video_mode;
 691	screen_info.orig_video_cols   = tag->u.videotext.video_cols;
 692	screen_info.orig_video_ega_bx = tag->u.videotext.video_ega_bx;
 693	screen_info.orig_video_lines  = tag->u.videotext.video_lines;
 694	screen_info.orig_video_isVGA  = tag->u.videotext.video_isvga;
 695	screen_info.orig_video_points = tag->u.videotext.video_points;
 696	return 0;
 697}
 698
 699__tagtable(ATAG_VIDEOTEXT, parse_tag_videotext);
 700#endif
 701
 702static int __init parse_tag_ramdisk(const struct tag *tag)
 703{
 704	setup_ramdisk((tag->u.ramdisk.flags & 1) == 0,
 705		      (tag->u.ramdisk.flags & 2) == 0,
 706		      tag->u.ramdisk.start, tag->u.ramdisk.size);
 707	return 0;
 708}
 709
 710__tagtable(ATAG_RAMDISK, parse_tag_ramdisk);
 711
 712static int __init parse_tag_serialnr(const struct tag *tag)
 713{
 714	system_serial_low = tag->u.serialnr.low;
 715	system_serial_high = tag->u.serialnr.high;
 716	return 0;
 717}
 718
 719__tagtable(ATAG_SERIAL, parse_tag_serialnr);
 720
 721static int __init parse_tag_revision(const struct tag *tag)
 722{
 723	system_rev = tag->u.revision.rev;
 724	return 0;
 725}
 726
 727__tagtable(ATAG_REVISION, parse_tag_revision);
 728
 729static int __init parse_tag_cmdline(const struct tag *tag)
 730{
 731#if defined(CONFIG_CMDLINE_EXTEND)
 732	strlcat(default_command_line, " ", COMMAND_LINE_SIZE);
 733	strlcat(default_command_line, tag->u.cmdline.cmdline,
 734		COMMAND_LINE_SIZE);
 735#elif defined(CONFIG_CMDLINE_FORCE)
 736	pr_warning("Ignoring tag cmdline (using the default kernel command line)\n");
 737#else
 738	strlcpy(default_command_line, tag->u.cmdline.cmdline,
 739		COMMAND_LINE_SIZE);
 740#endif
 741	return 0;
 742}
 743
 744__tagtable(ATAG_CMDLINE, parse_tag_cmdline);
 745
 746/*
 747 * Scan the tag table for this tag, and call its parse function.
 748 * The tag table is built by the linker from all the __tagtable
 749 * declarations.
 750 */
 751static int __init parse_tag(const struct tag *tag)
 752{
 753	extern struct tagtable __tagtable_begin, __tagtable_end;
 754	struct tagtable *t;
 755
 756	for (t = &__tagtable_begin; t < &__tagtable_end; t++)
 757		if (tag->hdr.tag == t->tag) {
 758			t->parse(tag);
 759			break;
 760		}
 761
 762	return t < &__tagtable_end;
 763}
 764
 765/*
 766 * Parse all tags in the list, checking both the global and architecture
 767 * specific tag tables.
 768 */
 769static void __init parse_tags(const struct tag *t)
 770{
 771	for (; t->hdr.size; t = tag_next(t))
 772		if (!parse_tag(t))
 773			printk(KERN_WARNING
 774				"Ignoring unrecognised tag 0x%08x\n",
 775				t->hdr.tag);
 776}
 777
 778/*
 779 * This holds our defaults.
 780 */
 781static struct init_tags {
 782	struct tag_header hdr1;
 783	struct tag_core   core;
 784	struct tag_header hdr2;
 785	struct tag_mem32  mem;
 786	struct tag_header hdr3;
 787} init_tags __initdata = {
 788	{ tag_size(tag_core), ATAG_CORE },
 789	{ 1, PAGE_SIZE, 0xff },
 790	{ tag_size(tag_mem32), ATAG_MEM },
 791	{ MEM_SIZE },
 792	{ 0, ATAG_NONE }
 793};
 794
 795static int __init customize_machine(void)
 796{
 797	/* customizes platform devices, or adds new ones */
 
 
 
 
 
 798	if (machine_desc->init_machine)
 799		machine_desc->init_machine();
 
 
 
 
 
 800	return 0;
 801}
 802arch_initcall(customize_machine);
 803
 804static int __init init_machine_late(void)
 805{
 806	if (machine_desc->init_late)
 807		machine_desc->init_late();
 808	return 0;
 809}
 810late_initcall(init_machine_late);
 811
 812#ifdef CONFIG_KEXEC
 813static inline unsigned long long get_total_mem(void)
 814{
 815	unsigned long total;
 816
 817	total = max_low_pfn - min_low_pfn;
 818	return total << PAGE_SHIFT;
 819}
 820
 821/**
 822 * reserve_crashkernel() - reserves memory are for crash kernel
 823 *
 824 * This function reserves memory area given in "crashkernel=" kernel command
 825 * line parameter. The memory reserved is used by a dump capture kernel when
 826 * primary kernel is crashing.
 827 */
 828static void __init reserve_crashkernel(void)
 829{
 830	unsigned long long crash_size, crash_base;
 831	unsigned long long total_mem;
 832	int ret;
 833
 834	total_mem = get_total_mem();
 835	ret = parse_crashkernel(boot_command_line, total_mem,
 836				&crash_size, &crash_base);
 837	if (ret)
 838		return;
 839
 840	ret = reserve_bootmem(crash_base, crash_size, BOOTMEM_EXCLUSIVE);
 841	if (ret < 0) {
 842		printk(KERN_WARNING "crashkernel reservation failed - "
 843		       "memory is in use (0x%lx)\n", (unsigned long)crash_base);
 844		return;
 845	}
 846
 847	printk(KERN_INFO "Reserving %ldMB of memory at %ldMB "
 848	       "for crashkernel (System RAM: %ldMB)\n",
 849	       (unsigned long)(crash_size >> 20),
 850	       (unsigned long)(crash_base >> 20),
 851	       (unsigned long)(total_mem >> 20));
 852
 853	crashk_res.start = crash_base;
 854	crashk_res.end = crash_base + crash_size - 1;
 855	insert_resource(&iomem_resource, &crashk_res);
 856}
 857#else
 858static inline void reserve_crashkernel(void) {}
 859#endif /* CONFIG_KEXEC */
 860
 861static void __init squash_mem_tags(struct tag *tag)
 862{
 863	for (; tag->hdr.size; tag = tag_next(tag))
 864		if (tag->hdr.tag == ATAG_MEM)
 865			tag->hdr.tag = ATAG_NONE;
 866}
 867
 868static struct machine_desc * __init setup_machine_tags(unsigned int nr)
 869{
 870	struct tag *tags = (struct tag *)&init_tags;
 871	struct machine_desc *mdesc = NULL, *p;
 872	char *from = default_command_line;
 873
 874	init_tags.mem.start = PHYS_OFFSET;
 875
 876	/*
 877	 * locate machine in the list of supported machines.
 878	 */
 879	for_each_machine_desc(p)
 880		if (nr == p->nr) {
 881			printk("Machine: %s\n", p->name);
 882			mdesc = p;
 883			break;
 884		}
 885
 886	if (!mdesc) {
 887		early_print("\nError: unrecognized/unsupported machine ID"
 888			" (r1 = 0x%08x).\n\n", nr);
 889		dump_machine_table(); /* does not return */
 890	}
 891
 892	if (__atags_pointer)
 893		tags = phys_to_virt(__atags_pointer);
 894	else if (mdesc->atag_offset)
 895		tags = (void *)(PAGE_OFFSET + mdesc->atag_offset);
 896
 897#if defined(CONFIG_DEPRECATED_PARAM_STRUCT)
 898	/*
 899	 * If we have the old style parameters, convert them to
 900	 * a tag list.
 901	 */
 902	if (tags->hdr.tag != ATAG_CORE)
 903		convert_to_tag_list(tags);
 904#endif
 905
 906	if (tags->hdr.tag != ATAG_CORE) {
 907#if defined(CONFIG_OF)
 908		/*
 909		 * If CONFIG_OF is set, then assume this is a reasonably
 910		 * modern system that should pass boot parameters
 911		 */
 912		early_print("Warning: Neither atags nor dtb found\n");
 913#endif
 914		tags = (struct tag *)&init_tags;
 915	}
 916
 917	if (mdesc->fixup)
 918		mdesc->fixup(tags, &from, &meminfo);
 919
 920	if (tags->hdr.tag == ATAG_CORE) {
 921		if (meminfo.nr_banks != 0)
 922			squash_mem_tags(tags);
 923		save_atags(tags);
 924		parse_tags(tags);
 925	}
 926
 927	/* parse_early_param needs a boot_command_line */
 928	strlcpy(boot_command_line, from, COMMAND_LINE_SIZE);
 929
 930	return mdesc;
 931}
 932
 933static int __init meminfo_cmp(const void *_a, const void *_b)
 934{
 935	const struct membank *a = _a, *b = _b;
 936	long cmp = bank_pfn_start(a) - bank_pfn_start(b);
 937	return cmp < 0 ? -1 : cmp > 0 ? 1 : 0;
 938}
 939
 940void __init setup_arch(char **cmdline_p)
 941{
 942	struct machine_desc *mdesc;
 943
 944	setup_processor();
 945	mdesc = setup_machine_fdt(__atags_pointer);
 946	if (!mdesc)
 947		mdesc = setup_machine_tags(machine_arch_type);
 948	machine_desc = mdesc;
 949	machine_name = mdesc->name;
 950
 951	setup_dma_zone(mdesc);
 952
 953	if (mdesc->restart_mode)
 954		reboot_setup(&mdesc->restart_mode);
 955
 956	init_mm.start_code = (unsigned long) _text;
 957	init_mm.end_code   = (unsigned long) _etext;
 958	init_mm.end_data   = (unsigned long) _edata;
 959	init_mm.brk	   = (unsigned long) _end;
 960
 961	/* populate cmd_line too for later use, preserving boot_command_line */
 962	strlcpy(cmd_line, boot_command_line, COMMAND_LINE_SIZE);
 963	*cmdline_p = cmd_line;
 964
 965	parse_early_param();
 966
 967	sort(&meminfo.bank, meminfo.nr_banks, sizeof(meminfo.bank[0]), meminfo_cmp, NULL);
 
 
 
 968	sanity_check_meminfo();
 969	arm_memblock_init(&meminfo, mdesc);
 970
 971	paging_init(mdesc);
 972	request_standard_resources(mdesc);
 973
 974	if (mdesc->restart)
 975		arm_pm_restart = mdesc->restart;
 976
 977	unflatten_device_tree();
 978
 
 
 979#ifdef CONFIG_SMP
 980	if (is_smp())
 
 
 
 
 
 
 981		smp_init_cpus();
 
 
 982#endif
 
 
 
 
 983	reserve_crashkernel();
 984
 985	tcm_init();
 986
 987#ifdef CONFIG_MULTI_IRQ_HANDLER
 988	handle_arch_irq = mdesc->handle_irq;
 989#endif
 990
 991#ifdef CONFIG_VT
 992#if defined(CONFIG_VGA_CONSOLE)
 993	conswitchp = &vga_con;
 994#elif defined(CONFIG_DUMMY_CONSOLE)
 995	conswitchp = &dummy_con;
 996#endif
 997#endif
 998
 999	if (mdesc->init_early)
1000		mdesc->init_early();
1001}
1002
1003
1004static int __init topology_init(void)
1005{
1006	int cpu;
1007
1008	for_each_possible_cpu(cpu) {
1009		struct cpuinfo_arm *cpuinfo = &per_cpu(cpu_data, cpu);
1010		cpuinfo->cpu.hotpluggable = 1;
1011		register_cpu(&cpuinfo->cpu, cpu);
1012	}
1013
1014	return 0;
1015}
1016subsys_initcall(topology_init);
1017
1018#ifdef CONFIG_HAVE_PROC_CPU
1019static int __init proc_cpu_init(void)
1020{
1021	struct proc_dir_entry *res;
1022
1023	res = proc_mkdir("cpu", NULL);
1024	if (!res)
1025		return -ENOMEM;
1026	return 0;
1027}
1028fs_initcall(proc_cpu_init);
1029#endif
1030
1031static const char *hwcap_str[] = {
1032	"swp",
1033	"half",
1034	"thumb",
1035	"26bit",
1036	"fastmult",
1037	"fpa",
1038	"vfp",
1039	"edsp",
1040	"java",
1041	"iwmmxt",
1042	"crunch",
1043	"thumbee",
1044	"neon",
1045	"vfpv3",
1046	"vfpv3d16",
1047	"tls",
1048	"vfpv4",
1049	"idiva",
1050	"idivt",
 
 
 
 
 
 
 
 
 
 
 
 
1051	NULL
1052};
1053
1054static int c_show(struct seq_file *m, void *v)
1055{
1056	int i;
1057
1058	seq_printf(m, "Processor\t: %s rev %d (%s)\n",
1059		   cpu_name, read_cpuid_id() & 15, elf_platform);
1060
1061#if defined(CONFIG_SMP)
1062	for_each_online_cpu(i) {
1063		/*
1064		 * glibc reads /proc/cpuinfo to determine the number of
1065		 * online processors, looking for lines beginning with
1066		 * "processor".  Give glibc what it expects.
1067		 */
1068		seq_printf(m, "processor\t: %d\n", i);
1069		seq_printf(m, "BogoMIPS\t: %lu.%02lu\n\n",
1070			   per_cpu(cpu_data, i).loops_per_jiffy / (500000UL/HZ),
1071			   (per_cpu(cpu_data, i).loops_per_jiffy / (5000UL/HZ)) % 100);
1072	}
1073#else /* CONFIG_SMP */
1074	seq_printf(m, "BogoMIPS\t: %lu.%02lu\n",
1075		   loops_per_jiffy / (500000/HZ),
1076		   (loops_per_jiffy / (5000/HZ)) % 100);
1077#endif
1078
1079	/* dump out the processor features */
1080	seq_puts(m, "Features\t: ");
1081
1082	for (i = 0; hwcap_str[i]; i++)
1083		if (elf_hwcap & (1 << i))
1084			seq_printf(m, "%s ", hwcap_str[i]);
1085
1086	seq_printf(m, "\nCPU implementer\t: 0x%02x\n", read_cpuid_id() >> 24);
1087	seq_printf(m, "CPU architecture: %s\n", proc_arch[cpu_architecture()]);
1088
1089	if ((read_cpuid_id() & 0x0008f000) == 0x00000000) {
1090		/* pre-ARM7 */
1091		seq_printf(m, "CPU part\t: %07x\n", read_cpuid_id() >> 4);
1092	} else {
1093		if ((read_cpuid_id() & 0x0008f000) == 0x00007000) {
1094			/* ARM7 */
1095			seq_printf(m, "CPU variant\t: 0x%02x\n",
1096				   (read_cpuid_id() >> 16) & 127);
1097		} else {
1098			/* post-ARM7 */
1099			seq_printf(m, "CPU variant\t: 0x%x\n",
1100				   (read_cpuid_id() >> 20) & 15);
 
 
 
 
 
 
 
 
1101		}
1102		seq_printf(m, "CPU part\t: 0x%03x\n",
1103			   (read_cpuid_id() >> 4) & 0xfff);
1104	}
1105	seq_printf(m, "CPU revision\t: %d\n", read_cpuid_id() & 15);
1106
1107	seq_puts(m, "\n");
1108
1109	seq_printf(m, "Hardware\t: %s\n", machine_name);
1110	seq_printf(m, "Revision\t: %04x\n", system_rev);
1111	seq_printf(m, "Serial\t\t: %08x%08x\n",
1112		   system_serial_high, system_serial_low);
1113
1114	return 0;
1115}
1116
1117static void *c_start(struct seq_file *m, loff_t *pos)
1118{
1119	return *pos < 1 ? (void *)1 : NULL;
1120}
1121
1122static void *c_next(struct seq_file *m, void *v, loff_t *pos)
1123{
1124	++*pos;
1125	return NULL;
1126}
1127
1128static void c_stop(struct seq_file *m, void *v)
1129{
1130}
1131
1132const struct seq_operations cpuinfo_op = {
1133	.start	= c_start,
1134	.next	= c_next,
1135	.stop	= c_stop,
1136	.show	= c_show
1137};