Loading...
1/*
2 * Copyright (c) 2008-2011 Atheros Communications Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17#include "hw.h"
18
19static inline u16 ath9k_hw_fbin2freq(u8 fbin, bool is2GHz)
20{
21 if (fbin == AR5416_BCHAN_UNUSED)
22 return fbin;
23
24 return (u16) ((is2GHz) ? (2300 + fbin) : (4800 + 5 * fbin));
25}
26
27void ath9k_hw_analog_shift_regwrite(struct ath_hw *ah, u32 reg, u32 val)
28{
29 REG_WRITE(ah, reg, val);
30
31 if (ah->config.analog_shiftreg)
32 udelay(100);
33}
34
35void ath9k_hw_analog_shift_rmw(struct ath_hw *ah, u32 reg, u32 mask,
36 u32 shift, u32 val)
37{
38 u32 regVal;
39
40 regVal = REG_READ(ah, reg) & ~mask;
41 regVal |= (val << shift) & mask;
42
43 REG_WRITE(ah, reg, regVal);
44
45 if (ah->config.analog_shiftreg)
46 udelay(100);
47}
48
49int16_t ath9k_hw_interpolate(u16 target, u16 srcLeft, u16 srcRight,
50 int16_t targetLeft, int16_t targetRight)
51{
52 int16_t rv;
53
54 if (srcRight == srcLeft) {
55 rv = targetLeft;
56 } else {
57 rv = (int16_t) (((target - srcLeft) * targetRight +
58 (srcRight - target) * targetLeft) /
59 (srcRight - srcLeft));
60 }
61 return rv;
62}
63
64bool ath9k_hw_get_lower_upper_index(u8 target, u8 *pList, u16 listSize,
65 u16 *indexL, u16 *indexR)
66{
67 u16 i;
68
69 if (target <= pList[0]) {
70 *indexL = *indexR = 0;
71 return true;
72 }
73 if (target >= pList[listSize - 1]) {
74 *indexL = *indexR = (u16) (listSize - 1);
75 return true;
76 }
77
78 for (i = 0; i < listSize - 1; i++) {
79 if (pList[i] == target) {
80 *indexL = *indexR = i;
81 return true;
82 }
83 if (target < pList[i + 1]) {
84 *indexL = i;
85 *indexR = (u16) (i + 1);
86 return false;
87 }
88 }
89 return false;
90}
91
92void ath9k_hw_usb_gen_fill_eeprom(struct ath_hw *ah, u16 *eep_data,
93 int eep_start_loc, int size)
94{
95 int i = 0, j, addr;
96 u32 addrdata[8];
97 u32 data[8];
98
99 for (addr = 0; addr < size; addr++) {
100 addrdata[i] = AR5416_EEPROM_OFFSET +
101 ((addr + eep_start_loc) << AR5416_EEPROM_S);
102 i++;
103 if (i == 8) {
104 REG_READ_MULTI(ah, addrdata, data, i);
105
106 for (j = 0; j < i; j++) {
107 *eep_data = data[j];
108 eep_data++;
109 }
110 i = 0;
111 }
112 }
113
114 if (i != 0) {
115 REG_READ_MULTI(ah, addrdata, data, i);
116
117 for (j = 0; j < i; j++) {
118 *eep_data = data[j];
119 eep_data++;
120 }
121 }
122}
123
124bool ath9k_hw_nvram_read(struct ath_common *common, u32 off, u16 *data)
125{
126 return common->bus_ops->eeprom_read(common, off, data);
127}
128
129void ath9k_hw_fill_vpd_table(u8 pwrMin, u8 pwrMax, u8 *pPwrList,
130 u8 *pVpdList, u16 numIntercepts,
131 u8 *pRetVpdList)
132{
133 u16 i, k;
134 u8 currPwr = pwrMin;
135 u16 idxL = 0, idxR = 0;
136
137 for (i = 0; i <= (pwrMax - pwrMin) / 2; i++) {
138 ath9k_hw_get_lower_upper_index(currPwr, pPwrList,
139 numIntercepts, &(idxL),
140 &(idxR));
141 if (idxR < 1)
142 idxR = 1;
143 if (idxL == numIntercepts - 1)
144 idxL = (u16) (numIntercepts - 2);
145 if (pPwrList[idxL] == pPwrList[idxR])
146 k = pVpdList[idxL];
147 else
148 k = (u16)(((currPwr - pPwrList[idxL]) * pVpdList[idxR] +
149 (pPwrList[idxR] - currPwr) * pVpdList[idxL]) /
150 (pPwrList[idxR] - pPwrList[idxL]));
151 pRetVpdList[i] = (u8) k;
152 currPwr += 2;
153 }
154}
155
156void ath9k_hw_get_legacy_target_powers(struct ath_hw *ah,
157 struct ath9k_channel *chan,
158 struct cal_target_power_leg *powInfo,
159 u16 numChannels,
160 struct cal_target_power_leg *pNewPower,
161 u16 numRates, bool isExtTarget)
162{
163 struct chan_centers centers;
164 u16 clo, chi;
165 int i;
166 int matchIndex = -1, lowIndex = -1;
167 u16 freq;
168
169 ath9k_hw_get_channel_centers(ah, chan, ¢ers);
170 freq = (isExtTarget) ? centers.ext_center : centers.ctl_center;
171
172 if (freq <= ath9k_hw_fbin2freq(powInfo[0].bChannel,
173 IS_CHAN_2GHZ(chan))) {
174 matchIndex = 0;
175 } else {
176 for (i = 0; (i < numChannels) &&
177 (powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
178 if (freq == ath9k_hw_fbin2freq(powInfo[i].bChannel,
179 IS_CHAN_2GHZ(chan))) {
180 matchIndex = i;
181 break;
182 } else if (freq < ath9k_hw_fbin2freq(powInfo[i].bChannel,
183 IS_CHAN_2GHZ(chan)) && i > 0 &&
184 freq > ath9k_hw_fbin2freq(powInfo[i - 1].bChannel,
185 IS_CHAN_2GHZ(chan))) {
186 lowIndex = i - 1;
187 break;
188 }
189 }
190 if ((matchIndex == -1) && (lowIndex == -1))
191 matchIndex = i - 1;
192 }
193
194 if (matchIndex != -1) {
195 *pNewPower = powInfo[matchIndex];
196 } else {
197 clo = ath9k_hw_fbin2freq(powInfo[lowIndex].bChannel,
198 IS_CHAN_2GHZ(chan));
199 chi = ath9k_hw_fbin2freq(powInfo[lowIndex + 1].bChannel,
200 IS_CHAN_2GHZ(chan));
201
202 for (i = 0; i < numRates; i++) {
203 pNewPower->tPow2x[i] =
204 (u8)ath9k_hw_interpolate(freq, clo, chi,
205 powInfo[lowIndex].tPow2x[i],
206 powInfo[lowIndex + 1].tPow2x[i]);
207 }
208 }
209}
210
211void ath9k_hw_get_target_powers(struct ath_hw *ah,
212 struct ath9k_channel *chan,
213 struct cal_target_power_ht *powInfo,
214 u16 numChannels,
215 struct cal_target_power_ht *pNewPower,
216 u16 numRates, bool isHt40Target)
217{
218 struct chan_centers centers;
219 u16 clo, chi;
220 int i;
221 int matchIndex = -1, lowIndex = -1;
222 u16 freq;
223
224 ath9k_hw_get_channel_centers(ah, chan, ¢ers);
225 freq = isHt40Target ? centers.synth_center : centers.ctl_center;
226
227 if (freq <= ath9k_hw_fbin2freq(powInfo[0].bChannel, IS_CHAN_2GHZ(chan))) {
228 matchIndex = 0;
229 } else {
230 for (i = 0; (i < numChannels) &&
231 (powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
232 if (freq == ath9k_hw_fbin2freq(powInfo[i].bChannel,
233 IS_CHAN_2GHZ(chan))) {
234 matchIndex = i;
235 break;
236 } else
237 if (freq < ath9k_hw_fbin2freq(powInfo[i].bChannel,
238 IS_CHAN_2GHZ(chan)) && i > 0 &&
239 freq > ath9k_hw_fbin2freq(powInfo[i - 1].bChannel,
240 IS_CHAN_2GHZ(chan))) {
241 lowIndex = i - 1;
242 break;
243 }
244 }
245 if ((matchIndex == -1) && (lowIndex == -1))
246 matchIndex = i - 1;
247 }
248
249 if (matchIndex != -1) {
250 *pNewPower = powInfo[matchIndex];
251 } else {
252 clo = ath9k_hw_fbin2freq(powInfo[lowIndex].bChannel,
253 IS_CHAN_2GHZ(chan));
254 chi = ath9k_hw_fbin2freq(powInfo[lowIndex + 1].bChannel,
255 IS_CHAN_2GHZ(chan));
256
257 for (i = 0; i < numRates; i++) {
258 pNewPower->tPow2x[i] = (u8)ath9k_hw_interpolate(freq,
259 clo, chi,
260 powInfo[lowIndex].tPow2x[i],
261 powInfo[lowIndex + 1].tPow2x[i]);
262 }
263 }
264}
265
266u16 ath9k_hw_get_max_edge_power(u16 freq, struct cal_ctl_edges *pRdEdgesPower,
267 bool is2GHz, int num_band_edges)
268{
269 u16 twiceMaxEdgePower = MAX_RATE_POWER;
270 int i;
271
272 for (i = 0; (i < num_band_edges) &&
273 (pRdEdgesPower[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
274 if (freq == ath9k_hw_fbin2freq(pRdEdgesPower[i].bChannel, is2GHz)) {
275 twiceMaxEdgePower = CTL_EDGE_TPOWER(pRdEdgesPower[i].ctl);
276 break;
277 } else if ((i > 0) &&
278 (freq < ath9k_hw_fbin2freq(pRdEdgesPower[i].bChannel,
279 is2GHz))) {
280 if (ath9k_hw_fbin2freq(pRdEdgesPower[i - 1].bChannel,
281 is2GHz) < freq &&
282 CTL_EDGE_FLAGS(pRdEdgesPower[i - 1].ctl)) {
283 twiceMaxEdgePower =
284 CTL_EDGE_TPOWER(pRdEdgesPower[i - 1].ctl);
285 }
286 break;
287 }
288 }
289
290 return twiceMaxEdgePower;
291}
292
293void ath9k_hw_update_regulatory_maxpower(struct ath_hw *ah)
294{
295 struct ath_common *common = ath9k_hw_common(ah);
296 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
297
298 switch (ar5416_get_ntxchains(ah->txchainmask)) {
299 case 1:
300 break;
301 case 2:
302 regulatory->max_power_level += INCREASE_MAXPOW_BY_TWO_CHAIN;
303 break;
304 case 3:
305 regulatory->max_power_level += INCREASE_MAXPOW_BY_THREE_CHAIN;
306 break;
307 default:
308 ath_dbg(common, ATH_DBG_EEPROM,
309 "Invalid chainmask configuration\n");
310 break;
311 }
312}
313
314void ath9k_hw_get_gain_boundaries_pdadcs(struct ath_hw *ah,
315 struct ath9k_channel *chan,
316 void *pRawDataSet,
317 u8 *bChans, u16 availPiers,
318 u16 tPdGainOverlap,
319 u16 *pPdGainBoundaries, u8 *pPDADCValues,
320 u16 numXpdGains)
321{
322 int i, j, k;
323 int16_t ss;
324 u16 idxL = 0, idxR = 0, numPiers;
325 static u8 vpdTableL[AR5416_NUM_PD_GAINS]
326 [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
327 static u8 vpdTableR[AR5416_NUM_PD_GAINS]
328 [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
329 static u8 vpdTableI[AR5416_NUM_PD_GAINS]
330 [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
331
332 u8 *pVpdL, *pVpdR, *pPwrL, *pPwrR;
333 u8 minPwrT4[AR5416_NUM_PD_GAINS];
334 u8 maxPwrT4[AR5416_NUM_PD_GAINS];
335 int16_t vpdStep;
336 int16_t tmpVal;
337 u16 sizeCurrVpdTable, maxIndex, tgtIndex;
338 bool match;
339 int16_t minDelta = 0;
340 struct chan_centers centers;
341 int pdgain_boundary_default;
342 struct cal_data_per_freq *data_def = pRawDataSet;
343 struct cal_data_per_freq_4k *data_4k = pRawDataSet;
344 struct cal_data_per_freq_ar9287 *data_9287 = pRawDataSet;
345 bool eeprom_4k = AR_SREV_9285(ah) || AR_SREV_9271(ah);
346 int intercepts;
347
348 if (AR_SREV_9287(ah))
349 intercepts = AR9287_PD_GAIN_ICEPTS;
350 else
351 intercepts = AR5416_PD_GAIN_ICEPTS;
352
353 memset(&minPwrT4, 0, AR5416_NUM_PD_GAINS);
354 ath9k_hw_get_channel_centers(ah, chan, ¢ers);
355
356 for (numPiers = 0; numPiers < availPiers; numPiers++) {
357 if (bChans[numPiers] == AR5416_BCHAN_UNUSED)
358 break;
359 }
360
361 match = ath9k_hw_get_lower_upper_index((u8)FREQ2FBIN(centers.synth_center,
362 IS_CHAN_2GHZ(chan)),
363 bChans, numPiers, &idxL, &idxR);
364
365 if (match) {
366 if (AR_SREV_9287(ah)) {
367 /* FIXME: array overrun? */
368 for (i = 0; i < numXpdGains; i++) {
369 minPwrT4[i] = data_9287[idxL].pwrPdg[i][0];
370 maxPwrT4[i] = data_9287[idxL].pwrPdg[i][4];
371 ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
372 data_9287[idxL].pwrPdg[i],
373 data_9287[idxL].vpdPdg[i],
374 intercepts,
375 vpdTableI[i]);
376 }
377 } else if (eeprom_4k) {
378 for (i = 0; i < numXpdGains; i++) {
379 minPwrT4[i] = data_4k[idxL].pwrPdg[i][0];
380 maxPwrT4[i] = data_4k[idxL].pwrPdg[i][4];
381 ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
382 data_4k[idxL].pwrPdg[i],
383 data_4k[idxL].vpdPdg[i],
384 intercepts,
385 vpdTableI[i]);
386 }
387 } else {
388 for (i = 0; i < numXpdGains; i++) {
389 minPwrT4[i] = data_def[idxL].pwrPdg[i][0];
390 maxPwrT4[i] = data_def[idxL].pwrPdg[i][4];
391 ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
392 data_def[idxL].pwrPdg[i],
393 data_def[idxL].vpdPdg[i],
394 intercepts,
395 vpdTableI[i]);
396 }
397 }
398 } else {
399 for (i = 0; i < numXpdGains; i++) {
400 if (AR_SREV_9287(ah)) {
401 pVpdL = data_9287[idxL].vpdPdg[i];
402 pPwrL = data_9287[idxL].pwrPdg[i];
403 pVpdR = data_9287[idxR].vpdPdg[i];
404 pPwrR = data_9287[idxR].pwrPdg[i];
405 } else if (eeprom_4k) {
406 pVpdL = data_4k[idxL].vpdPdg[i];
407 pPwrL = data_4k[idxL].pwrPdg[i];
408 pVpdR = data_4k[idxR].vpdPdg[i];
409 pPwrR = data_4k[idxR].pwrPdg[i];
410 } else {
411 pVpdL = data_def[idxL].vpdPdg[i];
412 pPwrL = data_def[idxL].pwrPdg[i];
413 pVpdR = data_def[idxR].vpdPdg[i];
414 pPwrR = data_def[idxR].pwrPdg[i];
415 }
416
417 minPwrT4[i] = max(pPwrL[0], pPwrR[0]);
418
419 maxPwrT4[i] =
420 min(pPwrL[intercepts - 1],
421 pPwrR[intercepts - 1]);
422
423
424 ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
425 pPwrL, pVpdL,
426 intercepts,
427 vpdTableL[i]);
428 ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
429 pPwrR, pVpdR,
430 intercepts,
431 vpdTableR[i]);
432
433 for (j = 0; j <= (maxPwrT4[i] - minPwrT4[i]) / 2; j++) {
434 vpdTableI[i][j] =
435 (u8)(ath9k_hw_interpolate((u16)
436 FREQ2FBIN(centers.
437 synth_center,
438 IS_CHAN_2GHZ
439 (chan)),
440 bChans[idxL], bChans[idxR],
441 vpdTableL[i][j], vpdTableR[i][j]));
442 }
443 }
444 }
445
446 k = 0;
447
448 for (i = 0; i < numXpdGains; i++) {
449 if (i == (numXpdGains - 1))
450 pPdGainBoundaries[i] =
451 (u16)(maxPwrT4[i] / 2);
452 else
453 pPdGainBoundaries[i] =
454 (u16)((maxPwrT4[i] + minPwrT4[i + 1]) / 4);
455
456 pPdGainBoundaries[i] =
457 min((u16)MAX_RATE_POWER, pPdGainBoundaries[i]);
458
459 if ((i == 0) && !AR_SREV_5416_20_OR_LATER(ah)) {
460 minDelta = pPdGainBoundaries[0] - 23;
461 pPdGainBoundaries[0] = 23;
462 } else {
463 minDelta = 0;
464 }
465
466 if (i == 0) {
467 if (AR_SREV_9280_20_OR_LATER(ah))
468 ss = (int16_t)(0 - (minPwrT4[i] / 2));
469 else
470 ss = 0;
471 } else {
472 ss = (int16_t)((pPdGainBoundaries[i - 1] -
473 (minPwrT4[i] / 2)) -
474 tPdGainOverlap + 1 + minDelta);
475 }
476 vpdStep = (int16_t)(vpdTableI[i][1] - vpdTableI[i][0]);
477 vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
478
479 while ((ss < 0) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
480 tmpVal = (int16_t)(vpdTableI[i][0] + ss * vpdStep);
481 pPDADCValues[k++] = (u8)((tmpVal < 0) ? 0 : tmpVal);
482 ss++;
483 }
484
485 sizeCurrVpdTable = (u8) ((maxPwrT4[i] - minPwrT4[i]) / 2 + 1);
486 tgtIndex = (u8)(pPdGainBoundaries[i] + tPdGainOverlap -
487 (minPwrT4[i] / 2));
488 maxIndex = (tgtIndex < sizeCurrVpdTable) ?
489 tgtIndex : sizeCurrVpdTable;
490
491 while ((ss < maxIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
492 pPDADCValues[k++] = vpdTableI[i][ss++];
493 }
494
495 vpdStep = (int16_t)(vpdTableI[i][sizeCurrVpdTable - 1] -
496 vpdTableI[i][sizeCurrVpdTable - 2]);
497 vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
498
499 if (tgtIndex >= maxIndex) {
500 while ((ss <= tgtIndex) &&
501 (k < (AR5416_NUM_PDADC_VALUES - 1))) {
502 tmpVal = (int16_t)((vpdTableI[i][sizeCurrVpdTable - 1] +
503 (ss - maxIndex + 1) * vpdStep));
504 pPDADCValues[k++] = (u8)((tmpVal > 255) ?
505 255 : tmpVal);
506 ss++;
507 }
508 }
509 }
510
511 if (eeprom_4k)
512 pdgain_boundary_default = 58;
513 else
514 pdgain_boundary_default = pPdGainBoundaries[i - 1];
515
516 while (i < AR5416_PD_GAINS_IN_MASK) {
517 pPdGainBoundaries[i] = pdgain_boundary_default;
518 i++;
519 }
520
521 while (k < AR5416_NUM_PDADC_VALUES) {
522 pPDADCValues[k] = pPDADCValues[k - 1];
523 k++;
524 }
525}
526
527int ath9k_hw_eeprom_init(struct ath_hw *ah)
528{
529 int status;
530
531 if (AR_SREV_9300_20_OR_LATER(ah))
532 ah->eep_ops = &eep_ar9300_ops;
533 else if (AR_SREV_9287(ah)) {
534 ah->eep_ops = &eep_ar9287_ops;
535 } else if (AR_SREV_9285(ah) || AR_SREV_9271(ah)) {
536 ah->eep_ops = &eep_4k_ops;
537 } else {
538 ah->eep_ops = &eep_def_ops;
539 }
540
541 if (!ah->eep_ops->fill_eeprom(ah))
542 return -EIO;
543
544 status = ah->eep_ops->check_eeprom(ah);
545
546 return status;
547}
1/*
2 * Copyright (c) 2008-2011 Atheros Communications Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17#include "hw.h"
18#include <linux/ath9k_platform.h>
19
20void ath9k_hw_analog_shift_regwrite(struct ath_hw *ah, u32 reg, u32 val)
21{
22 REG_WRITE(ah, reg, val);
23
24 if (ah->config.analog_shiftreg)
25 udelay(100);
26}
27
28void ath9k_hw_analog_shift_rmw(struct ath_hw *ah, u32 reg, u32 mask,
29 u32 shift, u32 val)
30{
31 REG_RMW(ah, reg, ((val << shift) & mask), mask);
32
33 if (ah->config.analog_shiftreg)
34 udelay(100);
35}
36
37int16_t ath9k_hw_interpolate(u16 target, u16 srcLeft, u16 srcRight,
38 int16_t targetLeft, int16_t targetRight)
39{
40 int16_t rv;
41
42 if (srcRight == srcLeft) {
43 rv = targetLeft;
44 } else {
45 rv = (int16_t) (((target - srcLeft) * targetRight +
46 (srcRight - target) * targetLeft) /
47 (srcRight - srcLeft));
48 }
49 return rv;
50}
51
52bool ath9k_hw_get_lower_upper_index(u8 target, u8 *pList, u16 listSize,
53 u16 *indexL, u16 *indexR)
54{
55 u16 i;
56
57 if (target <= pList[0]) {
58 *indexL = *indexR = 0;
59 return true;
60 }
61 if (target >= pList[listSize - 1]) {
62 *indexL = *indexR = (u16) (listSize - 1);
63 return true;
64 }
65
66 for (i = 0; i < listSize - 1; i++) {
67 if (pList[i] == target) {
68 *indexL = *indexR = i;
69 return true;
70 }
71 if (target < pList[i + 1]) {
72 *indexL = i;
73 *indexR = (u16) (i + 1);
74 return false;
75 }
76 }
77 return false;
78}
79
80void ath9k_hw_usb_gen_fill_eeprom(struct ath_hw *ah, u16 *eep_data,
81 int eep_start_loc, int size)
82{
83 int i = 0, j, addr;
84 u32 addrdata[8];
85 u32 data[8];
86
87 for (addr = 0; addr < size; addr++) {
88 addrdata[i] = AR5416_EEPROM_OFFSET +
89 ((addr + eep_start_loc) << AR5416_EEPROM_S);
90 i++;
91 if (i == 8) {
92 REG_READ_MULTI(ah, addrdata, data, i);
93
94 for (j = 0; j < i; j++) {
95 *eep_data = data[j];
96 eep_data++;
97 }
98 i = 0;
99 }
100 }
101
102 if (i != 0) {
103 REG_READ_MULTI(ah, addrdata, data, i);
104
105 for (j = 0; j < i; j++) {
106 *eep_data = data[j];
107 eep_data++;
108 }
109 }
110}
111
112static bool ath9k_hw_nvram_read_array(u16 *blob, size_t blob_size,
113 off_t offset, u16 *data)
114{
115 if (offset >= blob_size)
116 return false;
117
118 *data = blob[offset];
119 return true;
120}
121
122static bool ath9k_hw_nvram_read_pdata(struct ath9k_platform_data *pdata,
123 off_t offset, u16 *data)
124{
125 return ath9k_hw_nvram_read_array(pdata->eeprom_data,
126 ARRAY_SIZE(pdata->eeprom_data),
127 offset, data);
128}
129
130static bool ath9k_hw_nvram_read_firmware(const struct firmware *eeprom_blob,
131 off_t offset, u16 *data)
132{
133 return ath9k_hw_nvram_read_array((u16 *) eeprom_blob->data,
134 eeprom_blob->size / sizeof(u16),
135 offset, data);
136}
137
138static bool ath9k_hw_nvram_read_nvmem(struct ath_hw *ah, off_t offset,
139 u16 *data)
140{
141 return ath9k_hw_nvram_read_array(ah->nvmem_blob,
142 ah->nvmem_blob_len / sizeof(u16),
143 offset, data);
144}
145
146bool ath9k_hw_nvram_read(struct ath_hw *ah, u32 off, u16 *data)
147{
148 struct ath_common *common = ath9k_hw_common(ah);
149 struct ath9k_platform_data *pdata = ah->dev->platform_data;
150 bool ret;
151
152 if (ah->nvmem_blob)
153 ret = ath9k_hw_nvram_read_nvmem(ah, off, data);
154 else if (ah->eeprom_blob)
155 ret = ath9k_hw_nvram_read_firmware(ah->eeprom_blob, off, data);
156 else if (pdata && !pdata->use_eeprom)
157 ret = ath9k_hw_nvram_read_pdata(pdata, off, data);
158 else
159 ret = common->bus_ops->eeprom_read(common, off, data);
160
161 if (!ret)
162 ath_dbg(common, EEPROM,
163 "unable to read eeprom region at offset %u\n", off);
164
165 return ret;
166}
167
168int ath9k_hw_nvram_swap_data(struct ath_hw *ah, bool *swap_needed, int size)
169{
170 u16 magic;
171 u16 *eepdata;
172 int i;
173 bool needs_byteswap = false;
174 struct ath_common *common = ath9k_hw_common(ah);
175
176 if (!ath9k_hw_nvram_read(ah, AR5416_EEPROM_MAGIC_OFFSET, &magic)) {
177 ath_err(common, "Reading Magic # failed\n");
178 return -EIO;
179 }
180
181 if (swab16(magic) == AR5416_EEPROM_MAGIC) {
182 needs_byteswap = true;
183 ath_dbg(common, EEPROM,
184 "EEPROM needs byte-swapping to correct endianness.\n");
185 } else if (magic != AR5416_EEPROM_MAGIC) {
186 if (ath9k_hw_use_flash(ah)) {
187 ath_dbg(common, EEPROM,
188 "Ignoring invalid EEPROM magic (0x%04x).\n",
189 magic);
190 } else {
191 ath_err(common,
192 "Invalid EEPROM magic (0x%04x).\n", magic);
193 return -EINVAL;
194 }
195 }
196
197 if (needs_byteswap) {
198 if (ah->ah_flags & AH_NO_EEP_SWAP) {
199 ath_info(common,
200 "Ignoring endianness difference in EEPROM magic bytes.\n");
201 } else {
202 eepdata = (u16 *)(&ah->eeprom);
203
204 for (i = 0; i < size; i++)
205 eepdata[i] = swab16(eepdata[i]);
206 }
207 }
208
209 if (ah->eep_ops->get_eepmisc(ah) & AR5416_EEPMISC_BIG_ENDIAN) {
210 *swap_needed = true;
211 ath_dbg(common, EEPROM,
212 "Big Endian EEPROM detected according to EEPMISC register.\n");
213 } else {
214 *swap_needed = false;
215 }
216
217 return 0;
218}
219
220bool ath9k_hw_nvram_validate_checksum(struct ath_hw *ah, int size)
221{
222 u32 i, sum = 0;
223 u16 *eepdata = (u16 *)(&ah->eeprom);
224 struct ath_common *common = ath9k_hw_common(ah);
225
226 for (i = 0; i < size; i++)
227 sum ^= eepdata[i];
228
229 if (sum != 0xffff) {
230 ath_err(common, "Bad EEPROM checksum 0x%x\n", sum);
231 return false;
232 }
233
234 return true;
235}
236
237bool ath9k_hw_nvram_check_version(struct ath_hw *ah, int version, int minrev)
238{
239 struct ath_common *common = ath9k_hw_common(ah);
240
241 if (ah->eep_ops->get_eeprom_ver(ah) != version ||
242 ah->eep_ops->get_eeprom_rev(ah) < minrev) {
243 ath_err(common, "Bad EEPROM VER 0x%04x or REV 0x%04x\n",
244 ah->eep_ops->get_eeprom_ver(ah),
245 ah->eep_ops->get_eeprom_rev(ah));
246 return false;
247 }
248
249 return true;
250}
251
252void ath9k_hw_fill_vpd_table(u8 pwrMin, u8 pwrMax, u8 *pPwrList,
253 u8 *pVpdList, u16 numIntercepts,
254 u8 *pRetVpdList)
255{
256 u16 i, k;
257 u8 currPwr = pwrMin;
258 u16 idxL = 0, idxR = 0;
259
260 for (i = 0; i <= (pwrMax - pwrMin) / 2; i++) {
261 ath9k_hw_get_lower_upper_index(currPwr, pPwrList,
262 numIntercepts, &(idxL),
263 &(idxR));
264 if (idxR < 1)
265 idxR = 1;
266 if (idxL == numIntercepts - 1)
267 idxL = (u16) (numIntercepts - 2);
268 if (pPwrList[idxL] == pPwrList[idxR])
269 k = pVpdList[idxL];
270 else
271 k = (u16)(((currPwr - pPwrList[idxL]) * pVpdList[idxR] +
272 (pPwrList[idxR] - currPwr) * pVpdList[idxL]) /
273 (pPwrList[idxR] - pPwrList[idxL]));
274 pRetVpdList[i] = (u8) k;
275 currPwr += 2;
276 }
277}
278
279void ath9k_hw_get_legacy_target_powers(struct ath_hw *ah,
280 struct ath9k_channel *chan,
281 struct cal_target_power_leg *powInfo,
282 u16 numChannels,
283 struct cal_target_power_leg *pNewPower,
284 u16 numRates, bool isExtTarget)
285{
286 struct chan_centers centers;
287 u16 clo, chi;
288 int i;
289 int matchIndex = -1, lowIndex = -1;
290 u16 freq;
291
292 ath9k_hw_get_channel_centers(ah, chan, ¢ers);
293 freq = (isExtTarget) ? centers.ext_center : centers.ctl_center;
294
295 if (freq <= ath9k_hw_fbin2freq(powInfo[0].bChannel,
296 IS_CHAN_2GHZ(chan))) {
297 matchIndex = 0;
298 } else {
299 for (i = 0; (i < numChannels) &&
300 (powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
301 if (freq == ath9k_hw_fbin2freq(powInfo[i].bChannel,
302 IS_CHAN_2GHZ(chan))) {
303 matchIndex = i;
304 break;
305 } else if (freq < ath9k_hw_fbin2freq(powInfo[i].bChannel,
306 IS_CHAN_2GHZ(chan)) && i > 0 &&
307 freq > ath9k_hw_fbin2freq(powInfo[i - 1].bChannel,
308 IS_CHAN_2GHZ(chan))) {
309 lowIndex = i - 1;
310 break;
311 }
312 }
313 if ((matchIndex == -1) && (lowIndex == -1))
314 matchIndex = i - 1;
315 }
316
317 if (matchIndex != -1) {
318 *pNewPower = powInfo[matchIndex];
319 } else {
320 clo = ath9k_hw_fbin2freq(powInfo[lowIndex].bChannel,
321 IS_CHAN_2GHZ(chan));
322 chi = ath9k_hw_fbin2freq(powInfo[lowIndex + 1].bChannel,
323 IS_CHAN_2GHZ(chan));
324
325 for (i = 0; i < numRates; i++) {
326 pNewPower->tPow2x[i] =
327 (u8)ath9k_hw_interpolate(freq, clo, chi,
328 powInfo[lowIndex].tPow2x[i],
329 powInfo[lowIndex + 1].tPow2x[i]);
330 }
331 }
332}
333
334void ath9k_hw_get_target_powers(struct ath_hw *ah,
335 struct ath9k_channel *chan,
336 struct cal_target_power_ht *powInfo,
337 u16 numChannels,
338 struct cal_target_power_ht *pNewPower,
339 u16 numRates, bool isHt40Target)
340{
341 struct chan_centers centers;
342 u16 clo, chi;
343 int i;
344 int matchIndex = -1, lowIndex = -1;
345 u16 freq;
346
347 ath9k_hw_get_channel_centers(ah, chan, ¢ers);
348 freq = isHt40Target ? centers.synth_center : centers.ctl_center;
349
350 if (freq <= ath9k_hw_fbin2freq(powInfo[0].bChannel, IS_CHAN_2GHZ(chan))) {
351 matchIndex = 0;
352 } else {
353 for (i = 0; (i < numChannels) &&
354 (powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
355 if (freq == ath9k_hw_fbin2freq(powInfo[i].bChannel,
356 IS_CHAN_2GHZ(chan))) {
357 matchIndex = i;
358 break;
359 } else
360 if (freq < ath9k_hw_fbin2freq(powInfo[i].bChannel,
361 IS_CHAN_2GHZ(chan)) && i > 0 &&
362 freq > ath9k_hw_fbin2freq(powInfo[i - 1].bChannel,
363 IS_CHAN_2GHZ(chan))) {
364 lowIndex = i - 1;
365 break;
366 }
367 }
368 if ((matchIndex == -1) && (lowIndex == -1))
369 matchIndex = i - 1;
370 }
371
372 if (matchIndex != -1) {
373 *pNewPower = powInfo[matchIndex];
374 } else {
375 clo = ath9k_hw_fbin2freq(powInfo[lowIndex].bChannel,
376 IS_CHAN_2GHZ(chan));
377 chi = ath9k_hw_fbin2freq(powInfo[lowIndex + 1].bChannel,
378 IS_CHAN_2GHZ(chan));
379
380 for (i = 0; i < numRates; i++) {
381 pNewPower->tPow2x[i] = (u8)ath9k_hw_interpolate(freq,
382 clo, chi,
383 powInfo[lowIndex].tPow2x[i],
384 powInfo[lowIndex + 1].tPow2x[i]);
385 }
386 }
387}
388
389u16 ath9k_hw_get_max_edge_power(u16 freq, struct cal_ctl_edges *pRdEdgesPower,
390 bool is2GHz, int num_band_edges)
391{
392 u16 twiceMaxEdgePower = MAX_RATE_POWER;
393 int i;
394
395 for (i = 0; (i < num_band_edges) &&
396 (pRdEdgesPower[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
397 if (freq == ath9k_hw_fbin2freq(pRdEdgesPower[i].bChannel, is2GHz)) {
398 twiceMaxEdgePower = CTL_EDGE_TPOWER(pRdEdgesPower[i].ctl);
399 break;
400 } else if ((i > 0) &&
401 (freq < ath9k_hw_fbin2freq(pRdEdgesPower[i].bChannel,
402 is2GHz))) {
403 if (ath9k_hw_fbin2freq(pRdEdgesPower[i - 1].bChannel,
404 is2GHz) < freq &&
405 CTL_EDGE_FLAGS(pRdEdgesPower[i - 1].ctl)) {
406 twiceMaxEdgePower =
407 CTL_EDGE_TPOWER(pRdEdgesPower[i - 1].ctl);
408 }
409 break;
410 }
411 }
412
413 return twiceMaxEdgePower;
414}
415
416u16 ath9k_hw_get_scaled_power(struct ath_hw *ah, u16 power_limit,
417 u8 antenna_reduction)
418{
419 u16 reduction = antenna_reduction;
420
421 /*
422 * Reduce scaled Power by number of chains active
423 * to get the per chain tx power level.
424 */
425 switch (ar5416_get_ntxchains(ah->txchainmask)) {
426 case 1:
427 break;
428 case 2:
429 reduction += POWER_CORRECTION_FOR_TWO_CHAIN;
430 break;
431 case 3:
432 reduction += POWER_CORRECTION_FOR_THREE_CHAIN;
433 break;
434 }
435
436 if (power_limit > reduction)
437 power_limit -= reduction;
438 else
439 power_limit = 0;
440
441 return min_t(u16, power_limit, MAX_RATE_POWER);
442}
443
444void ath9k_hw_update_regulatory_maxpower(struct ath_hw *ah)
445{
446 struct ath_common *common = ath9k_hw_common(ah);
447 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
448
449 switch (ar5416_get_ntxchains(ah->txchainmask)) {
450 case 1:
451 break;
452 case 2:
453 regulatory->max_power_level += POWER_CORRECTION_FOR_TWO_CHAIN;
454 break;
455 case 3:
456 regulatory->max_power_level += POWER_CORRECTION_FOR_THREE_CHAIN;
457 break;
458 default:
459 ath_dbg(common, EEPROM, "Invalid chainmask configuration\n");
460 break;
461 }
462}
463
464void ath9k_hw_get_gain_boundaries_pdadcs(struct ath_hw *ah,
465 struct ath9k_channel *chan,
466 void *pRawDataSet,
467 u8 *bChans, u16 availPiers,
468 u16 tPdGainOverlap,
469 u16 *pPdGainBoundaries, u8 *pPDADCValues,
470 u16 numXpdGains)
471{
472 int i, j, k;
473 int16_t ss;
474 u16 idxL = 0, idxR = 0, numPiers;
475 static u8 vpdTableL[AR5416_NUM_PD_GAINS]
476 [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
477 static u8 vpdTableR[AR5416_NUM_PD_GAINS]
478 [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
479 static u8 vpdTableI[AR5416_NUM_PD_GAINS]
480 [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
481
482 u8 *pVpdL, *pVpdR, *pPwrL, *pPwrR;
483 u8 minPwrT4[AR5416_NUM_PD_GAINS];
484 u8 maxPwrT4[AR5416_NUM_PD_GAINS];
485 int16_t vpdStep;
486 int16_t tmpVal;
487 u16 sizeCurrVpdTable, maxIndex, tgtIndex;
488 bool match;
489 int16_t minDelta = 0;
490 struct chan_centers centers;
491 int pdgain_boundary_default;
492 struct cal_data_per_freq *data_def = pRawDataSet;
493 struct cal_data_per_freq_4k *data_4k = pRawDataSet;
494 struct cal_data_per_freq_ar9287 *data_9287 = pRawDataSet;
495 bool eeprom_4k = AR_SREV_9285(ah) || AR_SREV_9271(ah);
496 int intercepts;
497
498 if (AR_SREV_9287(ah))
499 intercepts = AR9287_PD_GAIN_ICEPTS;
500 else
501 intercepts = AR5416_PD_GAIN_ICEPTS;
502
503 memset(&minPwrT4, 0, AR5416_NUM_PD_GAINS);
504 ath9k_hw_get_channel_centers(ah, chan, ¢ers);
505
506 for (numPiers = 0; numPiers < availPiers; numPiers++) {
507 if (bChans[numPiers] == AR5416_BCHAN_UNUSED)
508 break;
509 }
510
511 match = ath9k_hw_get_lower_upper_index((u8)FREQ2FBIN(centers.synth_center,
512 IS_CHAN_2GHZ(chan)),
513 bChans, numPiers, &idxL, &idxR);
514
515 if (match) {
516 if (AR_SREV_9287(ah)) {
517 for (i = 0; i < numXpdGains; i++) {
518 minPwrT4[i] = data_9287[idxL].pwrPdg[i][0];
519 maxPwrT4[i] = data_9287[idxL].pwrPdg[i][intercepts - 1];
520 ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
521 data_9287[idxL].pwrPdg[i],
522 data_9287[idxL].vpdPdg[i],
523 intercepts,
524 vpdTableI[i]);
525 }
526 } else if (eeprom_4k) {
527 for (i = 0; i < numXpdGains; i++) {
528 minPwrT4[i] = data_4k[idxL].pwrPdg[i][0];
529 maxPwrT4[i] = data_4k[idxL].pwrPdg[i][intercepts - 1];
530 ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
531 data_4k[idxL].pwrPdg[i],
532 data_4k[idxL].vpdPdg[i],
533 intercepts,
534 vpdTableI[i]);
535 }
536 } else {
537 for (i = 0; i < numXpdGains; i++) {
538 minPwrT4[i] = data_def[idxL].pwrPdg[i][0];
539 maxPwrT4[i] = data_def[idxL].pwrPdg[i][intercepts - 1];
540 ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
541 data_def[idxL].pwrPdg[i],
542 data_def[idxL].vpdPdg[i],
543 intercepts,
544 vpdTableI[i]);
545 }
546 }
547 } else {
548 for (i = 0; i < numXpdGains; i++) {
549 if (AR_SREV_9287(ah)) {
550 pVpdL = data_9287[idxL].vpdPdg[i];
551 pPwrL = data_9287[idxL].pwrPdg[i];
552 pVpdR = data_9287[idxR].vpdPdg[i];
553 pPwrR = data_9287[idxR].pwrPdg[i];
554 } else if (eeprom_4k) {
555 pVpdL = data_4k[idxL].vpdPdg[i];
556 pPwrL = data_4k[idxL].pwrPdg[i];
557 pVpdR = data_4k[idxR].vpdPdg[i];
558 pPwrR = data_4k[idxR].pwrPdg[i];
559 } else {
560 pVpdL = data_def[idxL].vpdPdg[i];
561 pPwrL = data_def[idxL].pwrPdg[i];
562 pVpdR = data_def[idxR].vpdPdg[i];
563 pPwrR = data_def[idxR].pwrPdg[i];
564 }
565
566 minPwrT4[i] = max(pPwrL[0], pPwrR[0]);
567
568 maxPwrT4[i] =
569 min(pPwrL[intercepts - 1],
570 pPwrR[intercepts - 1]);
571
572
573 ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
574 pPwrL, pVpdL,
575 intercepts,
576 vpdTableL[i]);
577 ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
578 pPwrR, pVpdR,
579 intercepts,
580 vpdTableR[i]);
581
582 for (j = 0; j <= (maxPwrT4[i] - minPwrT4[i]) / 2; j++) {
583 vpdTableI[i][j] =
584 (u8)(ath9k_hw_interpolate((u16)
585 FREQ2FBIN(centers.
586 synth_center,
587 IS_CHAN_2GHZ
588 (chan)),
589 bChans[idxL], bChans[idxR],
590 vpdTableL[i][j], vpdTableR[i][j]));
591 }
592 }
593 }
594
595 k = 0;
596
597 for (i = 0; i < numXpdGains; i++) {
598 if (i == (numXpdGains - 1))
599 pPdGainBoundaries[i] =
600 (u16)(maxPwrT4[i] / 2);
601 else
602 pPdGainBoundaries[i] =
603 (u16)((maxPwrT4[i] + minPwrT4[i + 1]) / 4);
604
605 pPdGainBoundaries[i] =
606 min((u16)MAX_RATE_POWER, pPdGainBoundaries[i]);
607
608 minDelta = 0;
609
610 if (i == 0) {
611 if (AR_SREV_9280_20_OR_LATER(ah))
612 ss = (int16_t)(0 - (minPwrT4[i] / 2));
613 else
614 ss = 0;
615 } else {
616 ss = (int16_t)((pPdGainBoundaries[i - 1] -
617 (minPwrT4[i] / 2)) -
618 tPdGainOverlap + 1 + minDelta);
619 }
620 vpdStep = (int16_t)(vpdTableI[i][1] - vpdTableI[i][0]);
621 vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
622
623 while ((ss < 0) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
624 tmpVal = (int16_t)(vpdTableI[i][0] + ss * vpdStep);
625 pPDADCValues[k++] = (u8)((tmpVal < 0) ? 0 : tmpVal);
626 ss++;
627 }
628
629 sizeCurrVpdTable = (u8) ((maxPwrT4[i] - minPwrT4[i]) / 2 + 1);
630 tgtIndex = (u8)(pPdGainBoundaries[i] + tPdGainOverlap -
631 (minPwrT4[i] / 2));
632 maxIndex = (tgtIndex < sizeCurrVpdTable) ?
633 tgtIndex : sizeCurrVpdTable;
634
635 while ((ss < maxIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
636 pPDADCValues[k++] = vpdTableI[i][ss++];
637 }
638
639 vpdStep = (int16_t)(vpdTableI[i][sizeCurrVpdTable - 1] -
640 vpdTableI[i][sizeCurrVpdTable - 2]);
641 vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
642
643 if (tgtIndex >= maxIndex) {
644 while ((ss <= tgtIndex) &&
645 (k < (AR5416_NUM_PDADC_VALUES - 1))) {
646 tmpVal = (int16_t)((vpdTableI[i][sizeCurrVpdTable - 1] +
647 (ss - maxIndex + 1) * vpdStep));
648 pPDADCValues[k++] = (u8)((tmpVal > 255) ?
649 255 : tmpVal);
650 ss++;
651 }
652 }
653 }
654
655 if (eeprom_4k)
656 pdgain_boundary_default = 58;
657 else
658 pdgain_boundary_default = pPdGainBoundaries[i - 1];
659
660 while (i < AR5416_PD_GAINS_IN_MASK) {
661 pPdGainBoundaries[i] = pdgain_boundary_default;
662 i++;
663 }
664
665 while (k < AR5416_NUM_PDADC_VALUES) {
666 pPDADCValues[k] = pPDADCValues[k - 1];
667 k++;
668 }
669}
670
671int ath9k_hw_eeprom_init(struct ath_hw *ah)
672{
673 if (AR_SREV_9300_20_OR_LATER(ah))
674 ah->eep_ops = &eep_ar9300_ops;
675 else if (AR_SREV_9287(ah)) {
676 ah->eep_ops = &eep_ar9287_ops;
677 } else if (AR_SREV_9285(ah) || AR_SREV_9271(ah)) {
678 ah->eep_ops = &eep_4k_ops;
679 } else {
680 ah->eep_ops = &eep_def_ops;
681 }
682
683 if (!ah->eep_ops->fill_eeprom(ah))
684 return -EIO;
685
686 return ah->eep_ops->check_eeprom(ah);
687}