Linux Audio

Check our new training course

Loading...
v3.1
  1/*
  2 * Copyright (c) 2008-2011 Atheros Communications Inc.
  3 *
  4 * Permission to use, copy, modify, and/or distribute this software for any
  5 * purpose with or without fee is hereby granted, provided that the above
  6 * copyright notice and this permission notice appear in all copies.
  7 *
  8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 15 */
 16
 17#include "hw.h"
 18
 19static inline u16 ath9k_hw_fbin2freq(u8 fbin, bool is2GHz)
 20{
 21	if (fbin == AR5416_BCHAN_UNUSED)
 22		return fbin;
 23
 24	return (u16) ((is2GHz) ? (2300 + fbin) : (4800 + 5 * fbin));
 25}
 26
 27void ath9k_hw_analog_shift_regwrite(struct ath_hw *ah, u32 reg, u32 val)
 28{
 29        REG_WRITE(ah, reg, val);
 30
 31        if (ah->config.analog_shiftreg)
 32		udelay(100);
 33}
 34
 35void ath9k_hw_analog_shift_rmw(struct ath_hw *ah, u32 reg, u32 mask,
 36			       u32 shift, u32 val)
 37{
 38	u32 regVal;
 39
 40	regVal = REG_READ(ah, reg) & ~mask;
 41	regVal |= (val << shift) & mask;
 42
 43	REG_WRITE(ah, reg, regVal);
 44
 45	if (ah->config.analog_shiftreg)
 46		udelay(100);
 47}
 48
 49int16_t ath9k_hw_interpolate(u16 target, u16 srcLeft, u16 srcRight,
 50			     int16_t targetLeft, int16_t targetRight)
 51{
 52	int16_t rv;
 53
 54	if (srcRight == srcLeft) {
 55		rv = targetLeft;
 56	} else {
 57		rv = (int16_t) (((target - srcLeft) * targetRight +
 58				 (srcRight - target) * targetLeft) /
 59				(srcRight - srcLeft));
 60	}
 61	return rv;
 62}
 63
 64bool ath9k_hw_get_lower_upper_index(u8 target, u8 *pList, u16 listSize,
 65				    u16 *indexL, u16 *indexR)
 66{
 67	u16 i;
 68
 69	if (target <= pList[0]) {
 70		*indexL = *indexR = 0;
 71		return true;
 72	}
 73	if (target >= pList[listSize - 1]) {
 74		*indexL = *indexR = (u16) (listSize - 1);
 75		return true;
 76	}
 77
 78	for (i = 0; i < listSize - 1; i++) {
 79		if (pList[i] == target) {
 80			*indexL = *indexR = i;
 81			return true;
 82		}
 83		if (target < pList[i + 1]) {
 84			*indexL = i;
 85			*indexR = (u16) (i + 1);
 86			return false;
 87		}
 88	}
 89	return false;
 90}
 91
 92void ath9k_hw_usb_gen_fill_eeprom(struct ath_hw *ah, u16 *eep_data,
 93				  int eep_start_loc, int size)
 94{
 95	int i = 0, j, addr;
 96	u32 addrdata[8];
 97	u32 data[8];
 98
 99	for (addr = 0; addr < size; addr++) {
100		addrdata[i] = AR5416_EEPROM_OFFSET +
101			((addr + eep_start_loc) << AR5416_EEPROM_S);
102		i++;
103		if (i == 8) {
104			REG_READ_MULTI(ah, addrdata, data, i);
105
106			for (j = 0; j < i; j++) {
107				*eep_data = data[j];
108				eep_data++;
109			}
110			i = 0;
111		}
112	}
113
114	if (i != 0) {
115		REG_READ_MULTI(ah, addrdata, data, i);
116
117		for (j = 0; j < i; j++) {
118			*eep_data = data[j];
119			eep_data++;
120		}
121	}
122}
123
124bool ath9k_hw_nvram_read(struct ath_common *common, u32 off, u16 *data)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
125{
126	return common->bus_ops->eeprom_read(common, off, data);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
127}
128
129void ath9k_hw_fill_vpd_table(u8 pwrMin, u8 pwrMax, u8 *pPwrList,
130			     u8 *pVpdList, u16 numIntercepts,
131			     u8 *pRetVpdList)
132{
133	u16 i, k;
134	u8 currPwr = pwrMin;
135	u16 idxL = 0, idxR = 0;
136
137	for (i = 0; i <= (pwrMax - pwrMin) / 2; i++) {
138		ath9k_hw_get_lower_upper_index(currPwr, pPwrList,
139					       numIntercepts, &(idxL),
140					       &(idxR));
141		if (idxR < 1)
142			idxR = 1;
143		if (idxL == numIntercepts - 1)
144			idxL = (u16) (numIntercepts - 2);
145		if (pPwrList[idxL] == pPwrList[idxR])
146			k = pVpdList[idxL];
147		else
148			k = (u16)(((currPwr - pPwrList[idxL]) * pVpdList[idxR] +
149				   (pPwrList[idxR] - currPwr) * pVpdList[idxL]) /
150				  (pPwrList[idxR] - pPwrList[idxL]));
151		pRetVpdList[i] = (u8) k;
152		currPwr += 2;
153	}
154}
155
156void ath9k_hw_get_legacy_target_powers(struct ath_hw *ah,
157				       struct ath9k_channel *chan,
158				       struct cal_target_power_leg *powInfo,
159				       u16 numChannels,
160				       struct cal_target_power_leg *pNewPower,
161				       u16 numRates, bool isExtTarget)
162{
163	struct chan_centers centers;
164	u16 clo, chi;
165	int i;
166	int matchIndex = -1, lowIndex = -1;
167	u16 freq;
168
169	ath9k_hw_get_channel_centers(ah, chan, &centers);
170	freq = (isExtTarget) ? centers.ext_center : centers.ctl_center;
171
172	if (freq <= ath9k_hw_fbin2freq(powInfo[0].bChannel,
173				       IS_CHAN_2GHZ(chan))) {
174		matchIndex = 0;
175	} else {
176		for (i = 0; (i < numChannels) &&
177			     (powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
178			if (freq == ath9k_hw_fbin2freq(powInfo[i].bChannel,
179						       IS_CHAN_2GHZ(chan))) {
180				matchIndex = i;
181				break;
182			} else if (freq < ath9k_hw_fbin2freq(powInfo[i].bChannel,
183						IS_CHAN_2GHZ(chan)) && i > 0 &&
184				   freq > ath9k_hw_fbin2freq(powInfo[i - 1].bChannel,
185						IS_CHAN_2GHZ(chan))) {
186				lowIndex = i - 1;
187				break;
188			}
189		}
190		if ((matchIndex == -1) && (lowIndex == -1))
191			matchIndex = i - 1;
192	}
193
194	if (matchIndex != -1) {
195		*pNewPower = powInfo[matchIndex];
196	} else {
197		clo = ath9k_hw_fbin2freq(powInfo[lowIndex].bChannel,
198					 IS_CHAN_2GHZ(chan));
199		chi = ath9k_hw_fbin2freq(powInfo[lowIndex + 1].bChannel,
200					 IS_CHAN_2GHZ(chan));
201
202		for (i = 0; i < numRates; i++) {
203			pNewPower->tPow2x[i] =
204				(u8)ath9k_hw_interpolate(freq, clo, chi,
205						powInfo[lowIndex].tPow2x[i],
206						powInfo[lowIndex + 1].tPow2x[i]);
207		}
208	}
209}
210
211void ath9k_hw_get_target_powers(struct ath_hw *ah,
212				struct ath9k_channel *chan,
213				struct cal_target_power_ht *powInfo,
214				u16 numChannels,
215				struct cal_target_power_ht *pNewPower,
216				u16 numRates, bool isHt40Target)
217{
218	struct chan_centers centers;
219	u16 clo, chi;
220	int i;
221	int matchIndex = -1, lowIndex = -1;
222	u16 freq;
223
224	ath9k_hw_get_channel_centers(ah, chan, &centers);
225	freq = isHt40Target ? centers.synth_center : centers.ctl_center;
226
227	if (freq <= ath9k_hw_fbin2freq(powInfo[0].bChannel, IS_CHAN_2GHZ(chan))) {
228		matchIndex = 0;
229	} else {
230		for (i = 0; (i < numChannels) &&
231			     (powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
232			if (freq == ath9k_hw_fbin2freq(powInfo[i].bChannel,
233						       IS_CHAN_2GHZ(chan))) {
234				matchIndex = i;
235				break;
236			} else
237				if (freq < ath9k_hw_fbin2freq(powInfo[i].bChannel,
238						IS_CHAN_2GHZ(chan)) && i > 0 &&
239				    freq > ath9k_hw_fbin2freq(powInfo[i - 1].bChannel,
240						IS_CHAN_2GHZ(chan))) {
241					lowIndex = i - 1;
242					break;
243				}
244		}
245		if ((matchIndex == -1) && (lowIndex == -1))
246			matchIndex = i - 1;
247	}
248
249	if (matchIndex != -1) {
250		*pNewPower = powInfo[matchIndex];
251	} else {
252		clo = ath9k_hw_fbin2freq(powInfo[lowIndex].bChannel,
253					 IS_CHAN_2GHZ(chan));
254		chi = ath9k_hw_fbin2freq(powInfo[lowIndex + 1].bChannel,
255					 IS_CHAN_2GHZ(chan));
256
257		for (i = 0; i < numRates; i++) {
258			pNewPower->tPow2x[i] = (u8)ath9k_hw_interpolate(freq,
259						clo, chi,
260						powInfo[lowIndex].tPow2x[i],
261						powInfo[lowIndex + 1].tPow2x[i]);
262		}
263	}
264}
265
266u16 ath9k_hw_get_max_edge_power(u16 freq, struct cal_ctl_edges *pRdEdgesPower,
267				bool is2GHz, int num_band_edges)
268{
269	u16 twiceMaxEdgePower = MAX_RATE_POWER;
270	int i;
271
272	for (i = 0; (i < num_band_edges) &&
273		     (pRdEdgesPower[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
274		if (freq == ath9k_hw_fbin2freq(pRdEdgesPower[i].bChannel, is2GHz)) {
275			twiceMaxEdgePower = CTL_EDGE_TPOWER(pRdEdgesPower[i].ctl);
276			break;
277		} else if ((i > 0) &&
278			   (freq < ath9k_hw_fbin2freq(pRdEdgesPower[i].bChannel,
279						      is2GHz))) {
280			if (ath9k_hw_fbin2freq(pRdEdgesPower[i - 1].bChannel,
281					       is2GHz) < freq &&
282			    CTL_EDGE_FLAGS(pRdEdgesPower[i - 1].ctl)) {
283				twiceMaxEdgePower =
284					CTL_EDGE_TPOWER(pRdEdgesPower[i - 1].ctl);
285			}
286			break;
287		}
288	}
289
290	return twiceMaxEdgePower;
291}
292
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
293void ath9k_hw_update_regulatory_maxpower(struct ath_hw *ah)
294{
295	struct ath_common *common = ath9k_hw_common(ah);
296	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
297
298	switch (ar5416_get_ntxchains(ah->txchainmask)) {
299	case 1:
300		break;
301	case 2:
302		regulatory->max_power_level += INCREASE_MAXPOW_BY_TWO_CHAIN;
303		break;
304	case 3:
305		regulatory->max_power_level += INCREASE_MAXPOW_BY_THREE_CHAIN;
306		break;
307	default:
308		ath_dbg(common, ATH_DBG_EEPROM,
309			"Invalid chainmask configuration\n");
310		break;
311	}
312}
313
314void ath9k_hw_get_gain_boundaries_pdadcs(struct ath_hw *ah,
315				struct ath9k_channel *chan,
316				void *pRawDataSet,
317				u8 *bChans, u16 availPiers,
318				u16 tPdGainOverlap,
319				u16 *pPdGainBoundaries, u8 *pPDADCValues,
320				u16 numXpdGains)
321{
322	int i, j, k;
323	int16_t ss;
324	u16 idxL = 0, idxR = 0, numPiers;
325	static u8 vpdTableL[AR5416_NUM_PD_GAINS]
326		[AR5416_MAX_PWR_RANGE_IN_HALF_DB];
327	static u8 vpdTableR[AR5416_NUM_PD_GAINS]
328		[AR5416_MAX_PWR_RANGE_IN_HALF_DB];
329	static u8 vpdTableI[AR5416_NUM_PD_GAINS]
330		[AR5416_MAX_PWR_RANGE_IN_HALF_DB];
331
332	u8 *pVpdL, *pVpdR, *pPwrL, *pPwrR;
333	u8 minPwrT4[AR5416_NUM_PD_GAINS];
334	u8 maxPwrT4[AR5416_NUM_PD_GAINS];
335	int16_t vpdStep;
336	int16_t tmpVal;
337	u16 sizeCurrVpdTable, maxIndex, tgtIndex;
338	bool match;
339	int16_t minDelta = 0;
340	struct chan_centers centers;
341	int pdgain_boundary_default;
342	struct cal_data_per_freq *data_def = pRawDataSet;
343	struct cal_data_per_freq_4k *data_4k = pRawDataSet;
344	struct cal_data_per_freq_ar9287 *data_9287 = pRawDataSet;
345	bool eeprom_4k = AR_SREV_9285(ah) || AR_SREV_9271(ah);
346	int intercepts;
347
348	if (AR_SREV_9287(ah))
349		intercepts = AR9287_PD_GAIN_ICEPTS;
350	else
351		intercepts = AR5416_PD_GAIN_ICEPTS;
352
353	memset(&minPwrT4, 0, AR5416_NUM_PD_GAINS);
354	ath9k_hw_get_channel_centers(ah, chan, &centers);
355
356	for (numPiers = 0; numPiers < availPiers; numPiers++) {
357		if (bChans[numPiers] == AR5416_BCHAN_UNUSED)
358			break;
359	}
360
361	match = ath9k_hw_get_lower_upper_index((u8)FREQ2FBIN(centers.synth_center,
362							     IS_CHAN_2GHZ(chan)),
363					       bChans, numPiers, &idxL, &idxR);
364
365	if (match) {
366		if (AR_SREV_9287(ah)) {
367			/* FIXME: array overrun? */
368			for (i = 0; i < numXpdGains; i++) {
369				minPwrT4[i] = data_9287[idxL].pwrPdg[i][0];
370				maxPwrT4[i] = data_9287[idxL].pwrPdg[i][4];
371				ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
372						data_9287[idxL].pwrPdg[i],
373						data_9287[idxL].vpdPdg[i],
374						intercepts,
375						vpdTableI[i]);
376			}
377		} else if (eeprom_4k) {
378			for (i = 0; i < numXpdGains; i++) {
379				minPwrT4[i] = data_4k[idxL].pwrPdg[i][0];
380				maxPwrT4[i] = data_4k[idxL].pwrPdg[i][4];
381				ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
382						data_4k[idxL].pwrPdg[i],
383						data_4k[idxL].vpdPdg[i],
384						intercepts,
385						vpdTableI[i]);
386			}
387		} else {
388			for (i = 0; i < numXpdGains; i++) {
389				minPwrT4[i] = data_def[idxL].pwrPdg[i][0];
390				maxPwrT4[i] = data_def[idxL].pwrPdg[i][4];
391				ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
392						data_def[idxL].pwrPdg[i],
393						data_def[idxL].vpdPdg[i],
394						intercepts,
395						vpdTableI[i]);
396			}
397		}
398	} else {
399		for (i = 0; i < numXpdGains; i++) {
400			if (AR_SREV_9287(ah)) {
401				pVpdL = data_9287[idxL].vpdPdg[i];
402				pPwrL = data_9287[idxL].pwrPdg[i];
403				pVpdR = data_9287[idxR].vpdPdg[i];
404				pPwrR = data_9287[idxR].pwrPdg[i];
405			} else if (eeprom_4k) {
406				pVpdL = data_4k[idxL].vpdPdg[i];
407				pPwrL = data_4k[idxL].pwrPdg[i];
408				pVpdR = data_4k[idxR].vpdPdg[i];
409				pPwrR = data_4k[idxR].pwrPdg[i];
410			} else {
411				pVpdL = data_def[idxL].vpdPdg[i];
412				pPwrL = data_def[idxL].pwrPdg[i];
413				pVpdR = data_def[idxR].vpdPdg[i];
414				pPwrR = data_def[idxR].pwrPdg[i];
415			}
416
417			minPwrT4[i] = max(pPwrL[0], pPwrR[0]);
418
419			maxPwrT4[i] =
420				min(pPwrL[intercepts - 1],
421				    pPwrR[intercepts - 1]);
422
423
424			ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
425						pPwrL, pVpdL,
426						intercepts,
427						vpdTableL[i]);
428			ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
429						pPwrR, pVpdR,
430						intercepts,
431						vpdTableR[i]);
432
433			for (j = 0; j <= (maxPwrT4[i] - minPwrT4[i]) / 2; j++) {
434				vpdTableI[i][j] =
435					(u8)(ath9k_hw_interpolate((u16)
436					     FREQ2FBIN(centers.
437						       synth_center,
438						       IS_CHAN_2GHZ
439						       (chan)),
440					     bChans[idxL], bChans[idxR],
441					     vpdTableL[i][j], vpdTableR[i][j]));
442			}
443		}
444	}
445
446	k = 0;
447
448	for (i = 0; i < numXpdGains; i++) {
449		if (i == (numXpdGains - 1))
450			pPdGainBoundaries[i] =
451				(u16)(maxPwrT4[i] / 2);
452		else
453			pPdGainBoundaries[i] =
454				(u16)((maxPwrT4[i] + minPwrT4[i + 1]) / 4);
455
456		pPdGainBoundaries[i] =
457			min((u16)MAX_RATE_POWER, pPdGainBoundaries[i]);
458
459		if ((i == 0) && !AR_SREV_5416_20_OR_LATER(ah)) {
460			minDelta = pPdGainBoundaries[0] - 23;
461			pPdGainBoundaries[0] = 23;
462		} else {
463			minDelta = 0;
464		}
465
466		if (i == 0) {
467			if (AR_SREV_9280_20_OR_LATER(ah))
468				ss = (int16_t)(0 - (minPwrT4[i] / 2));
469			else
470				ss = 0;
471		} else {
472			ss = (int16_t)((pPdGainBoundaries[i - 1] -
473					(minPwrT4[i] / 2)) -
474				       tPdGainOverlap + 1 + minDelta);
475		}
476		vpdStep = (int16_t)(vpdTableI[i][1] - vpdTableI[i][0]);
477		vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
478
479		while ((ss < 0) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
480			tmpVal = (int16_t)(vpdTableI[i][0] + ss * vpdStep);
481			pPDADCValues[k++] = (u8)((tmpVal < 0) ? 0 : tmpVal);
482			ss++;
483		}
484
485		sizeCurrVpdTable = (u8) ((maxPwrT4[i] - minPwrT4[i]) / 2 + 1);
486		tgtIndex = (u8)(pPdGainBoundaries[i] + tPdGainOverlap -
487				(minPwrT4[i] / 2));
488		maxIndex = (tgtIndex < sizeCurrVpdTable) ?
489			tgtIndex : sizeCurrVpdTable;
490
491		while ((ss < maxIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
492			pPDADCValues[k++] = vpdTableI[i][ss++];
493		}
494
495		vpdStep = (int16_t)(vpdTableI[i][sizeCurrVpdTable - 1] -
496				    vpdTableI[i][sizeCurrVpdTable - 2]);
497		vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
498
499		if (tgtIndex >= maxIndex) {
500			while ((ss <= tgtIndex) &&
501			       (k < (AR5416_NUM_PDADC_VALUES - 1))) {
502				tmpVal = (int16_t)((vpdTableI[i][sizeCurrVpdTable - 1] +
503						    (ss - maxIndex + 1) * vpdStep));
504				pPDADCValues[k++] = (u8)((tmpVal > 255) ?
505							 255 : tmpVal);
506				ss++;
507			}
508		}
509	}
510
511	if (eeprom_4k)
512		pdgain_boundary_default = 58;
513	else
514		pdgain_boundary_default = pPdGainBoundaries[i - 1];
515
516	while (i < AR5416_PD_GAINS_IN_MASK) {
517		pPdGainBoundaries[i] = pdgain_boundary_default;
518		i++;
519	}
520
521	while (k < AR5416_NUM_PDADC_VALUES) {
522		pPDADCValues[k] = pPDADCValues[k - 1];
523		k++;
524	}
525}
526
527int ath9k_hw_eeprom_init(struct ath_hw *ah)
528{
529	int status;
530
531	if (AR_SREV_9300_20_OR_LATER(ah))
532		ah->eep_ops = &eep_ar9300_ops;
533	else if (AR_SREV_9287(ah)) {
534		ah->eep_ops = &eep_ar9287_ops;
535	} else if (AR_SREV_9285(ah) || AR_SREV_9271(ah)) {
536		ah->eep_ops = &eep_4k_ops;
537	} else {
538		ah->eep_ops = &eep_def_ops;
539	}
540
541	if (!ah->eep_ops->fill_eeprom(ah))
542		return -EIO;
543
544	status = ah->eep_ops->check_eeprom(ah);
545
546	return status;
547}
v6.13.7
  1/*
  2 * Copyright (c) 2008-2011 Atheros Communications Inc.
  3 *
  4 * Permission to use, copy, modify, and/or distribute this software for any
  5 * purpose with or without fee is hereby granted, provided that the above
  6 * copyright notice and this permission notice appear in all copies.
  7 *
  8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 15 */
 16
 17#include "hw.h"
 18
 
 
 
 
 
 
 
 
 19void ath9k_hw_analog_shift_regwrite(struct ath_hw *ah, u32 reg, u32 val)
 20{
 21        REG_WRITE(ah, reg, val);
 22
 23        if (ah->config.analog_shiftreg)
 24		udelay(100);
 25}
 26
 27void ath9k_hw_analog_shift_rmw(struct ath_hw *ah, u32 reg, u32 mask,
 28			       u32 shift, u32 val)
 29{
 30	REG_RMW(ah, reg, ((val << shift) & mask), mask);
 
 
 
 
 
 31
 32	if (ah->config.analog_shiftreg)
 33		udelay(100);
 34}
 35
 36int16_t ath9k_hw_interpolate(u16 target, u16 srcLeft, u16 srcRight,
 37			     int16_t targetLeft, int16_t targetRight)
 38{
 39	int16_t rv;
 40
 41	if (srcRight == srcLeft) {
 42		rv = targetLeft;
 43	} else {
 44		rv = (int16_t) (((target - srcLeft) * targetRight +
 45				 (srcRight - target) * targetLeft) /
 46				(srcRight - srcLeft));
 47	}
 48	return rv;
 49}
 50
 51bool ath9k_hw_get_lower_upper_index(u8 target, u8 *pList, u16 listSize,
 52				    u16 *indexL, u16 *indexR)
 53{
 54	u16 i;
 55
 56	if (target <= pList[0]) {
 57		*indexL = *indexR = 0;
 58		return true;
 59	}
 60	if (target >= pList[listSize - 1]) {
 61		*indexL = *indexR = (u16) (listSize - 1);
 62		return true;
 63	}
 64
 65	for (i = 0; i < listSize - 1; i++) {
 66		if (pList[i] == target) {
 67			*indexL = *indexR = i;
 68			return true;
 69		}
 70		if (target < pList[i + 1]) {
 71			*indexL = i;
 72			*indexR = (u16) (i + 1);
 73			return false;
 74		}
 75	}
 76	return false;
 77}
 78
 79void ath9k_hw_usb_gen_fill_eeprom(struct ath_hw *ah, u16 *eep_data,
 80				  int eep_start_loc, int size)
 81{
 82	int i = 0, j, addr;
 83	u32 addrdata[8];
 84	u32 data[8];
 85
 86	for (addr = 0; addr < size; addr++) {
 87		addrdata[i] = AR5416_EEPROM_OFFSET +
 88			((addr + eep_start_loc) << AR5416_EEPROM_S);
 89		i++;
 90		if (i == 8) {
 91			REG_READ_MULTI(ah, addrdata, data, i);
 92
 93			for (j = 0; j < i; j++) {
 94				*eep_data = data[j];
 95				eep_data++;
 96			}
 97			i = 0;
 98		}
 99	}
100
101	if (i != 0) {
102		REG_READ_MULTI(ah, addrdata, data, i);
103
104		for (j = 0; j < i; j++) {
105			*eep_data = data[j];
106			eep_data++;
107		}
108	}
109}
110
111static bool ath9k_hw_nvram_read_array(u16 *blob, size_t blob_size,
112				      off_t offset, u16 *data)
113{
114	if (offset >= blob_size)
115		return false;
116
117	*data =  blob[offset];
118	return true;
119}
120
121static bool ath9k_hw_nvram_read_firmware(const struct firmware *eeprom_blob,
122					 off_t offset, u16 *data)
123{
124	return ath9k_hw_nvram_read_array((u16 *) eeprom_blob->data,
125					 eeprom_blob->size / sizeof(u16),
126					 offset, data);
127}
128
129static bool ath9k_hw_nvram_read_nvmem(struct ath_hw *ah, off_t offset,
130				      u16 *data)
131{
132	return ath9k_hw_nvram_read_array(ah->nvmem_blob,
133					 ah->nvmem_blob_len / sizeof(u16),
134					 offset, data);
135}
136
137bool ath9k_hw_nvram_read(struct ath_hw *ah, u32 off, u16 *data)
138{
139	struct ath_common *common = ath9k_hw_common(ah);
140	bool ret;
141
142	if (ah->nvmem_blob)
143		ret = ath9k_hw_nvram_read_nvmem(ah, off, data);
144	else if (ah->eeprom_blob)
145		ret = ath9k_hw_nvram_read_firmware(ah->eeprom_blob, off, data);
146	else
147		ret = common->bus_ops->eeprom_read(common, off, data);
148
149	if (!ret)
150		ath_dbg(common, EEPROM,
151			"unable to read eeprom region at offset %u\n", off);
152
153	return ret;
154}
155
156int ath9k_hw_nvram_swap_data(struct ath_hw *ah, bool *swap_needed, int size)
157{
158	u16 magic;
159	u16 *eepdata;
160	int i;
161	bool needs_byteswap = false;
162	struct ath_common *common = ath9k_hw_common(ah);
163
164	if (!ath9k_hw_nvram_read(ah, AR5416_EEPROM_MAGIC_OFFSET, &magic)) {
165		ath_err(common, "Reading Magic # failed\n");
166		return -EIO;
167	}
168
169	if (swab16(magic) == AR5416_EEPROM_MAGIC) {
170		needs_byteswap = true;
171		ath_dbg(common, EEPROM,
172			"EEPROM needs byte-swapping to correct endianness.\n");
173	} else if (magic != AR5416_EEPROM_MAGIC) {
174		if (ath9k_hw_use_flash(ah)) {
175			ath_dbg(common, EEPROM,
176				"Ignoring invalid EEPROM magic (0x%04x).\n",
177				magic);
178		} else {
179			ath_err(common,
180				"Invalid EEPROM magic (0x%04x).\n", magic);
181			return -EINVAL;
182		}
183	}
184
185	if (needs_byteswap) {
186		if (ah->ah_flags & AH_NO_EEP_SWAP) {
187			ath_info(common,
188				 "Ignoring endianness difference in EEPROM magic bytes.\n");
189		} else {
190			eepdata = (u16 *)(&ah->eeprom);
191
192			for (i = 0; i < size; i++)
193				eepdata[i] = swab16(eepdata[i]);
194		}
195	}
196
197	if (ah->eep_ops->get_eepmisc(ah) & AR5416_EEPMISC_BIG_ENDIAN) {
198		*swap_needed = true;
199		ath_dbg(common, EEPROM,
200			"Big Endian EEPROM detected according to EEPMISC register.\n");
201	} else {
202		*swap_needed = false;
203	}
204
205	return 0;
206}
207
208bool ath9k_hw_nvram_validate_checksum(struct ath_hw *ah, int size)
209{
210	u32 i, sum = 0;
211	u16 *eepdata = (u16 *)(&ah->eeprom);
212	struct ath_common *common = ath9k_hw_common(ah);
213
214	for (i = 0; i < size; i++)
215		sum ^= eepdata[i];
216
217	if (sum != 0xffff) {
218		ath_err(common, "Bad EEPROM checksum 0x%x\n", sum);
219		return false;
220	}
221
222	return true;
223}
224
225bool ath9k_hw_nvram_check_version(struct ath_hw *ah, int version, int minrev)
226{
227	struct ath_common *common = ath9k_hw_common(ah);
228
229	if (ah->eep_ops->get_eeprom_ver(ah) != version ||
230	    ah->eep_ops->get_eeprom_rev(ah) < minrev) {
231		ath_err(common, "Bad EEPROM VER 0x%04x or REV 0x%04x\n",
232			ah->eep_ops->get_eeprom_ver(ah),
233			ah->eep_ops->get_eeprom_rev(ah));
234		return false;
235	}
236
237	return true;
238}
239
240void ath9k_hw_fill_vpd_table(u8 pwrMin, u8 pwrMax, u8 *pPwrList,
241			     u8 *pVpdList, u16 numIntercepts,
242			     u8 *pRetVpdList)
243{
244	u16 i, k;
245	u8 currPwr = pwrMin;
246	u16 idxL = 0, idxR = 0;
247
248	for (i = 0; i <= (pwrMax - pwrMin) / 2; i++) {
249		ath9k_hw_get_lower_upper_index(currPwr, pPwrList,
250					       numIntercepts, &(idxL),
251					       &(idxR));
252		if (idxR < 1)
253			idxR = 1;
254		if (idxL == numIntercepts - 1)
255			idxL = (u16) (numIntercepts - 2);
256		if (pPwrList[idxL] == pPwrList[idxR])
257			k = pVpdList[idxL];
258		else
259			k = (u16)(((currPwr - pPwrList[idxL]) * pVpdList[idxR] +
260				   (pPwrList[idxR] - currPwr) * pVpdList[idxL]) /
261				  (pPwrList[idxR] - pPwrList[idxL]));
262		pRetVpdList[i] = (u8) k;
263		currPwr += 2;
264	}
265}
266
267void ath9k_hw_get_legacy_target_powers(struct ath_hw *ah,
268				       struct ath9k_channel *chan,
269				       struct cal_target_power_leg *powInfo,
270				       u16 numChannels,
271				       struct cal_target_power_leg *pNewPower,
272				       u16 numRates, bool isExtTarget)
273{
274	struct chan_centers centers;
275	u16 clo, chi;
276	int i;
277	int matchIndex = -1, lowIndex = -1;
278	u16 freq;
279
280	ath9k_hw_get_channel_centers(ah, chan, &centers);
281	freq = (isExtTarget) ? centers.ext_center : centers.ctl_center;
282
283	if (freq <= ath9k_hw_fbin2freq(powInfo[0].bChannel,
284				       IS_CHAN_2GHZ(chan))) {
285		matchIndex = 0;
286	} else {
287		for (i = 0; (i < numChannels) &&
288			     (powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
289			if (freq == ath9k_hw_fbin2freq(powInfo[i].bChannel,
290						       IS_CHAN_2GHZ(chan))) {
291				matchIndex = i;
292				break;
293			} else if (freq < ath9k_hw_fbin2freq(powInfo[i].bChannel,
294						IS_CHAN_2GHZ(chan)) && i > 0 &&
295				   freq > ath9k_hw_fbin2freq(powInfo[i - 1].bChannel,
296						IS_CHAN_2GHZ(chan))) {
297				lowIndex = i - 1;
298				break;
299			}
300		}
301		if ((matchIndex == -1) && (lowIndex == -1))
302			matchIndex = i - 1;
303	}
304
305	if (matchIndex != -1) {
306		*pNewPower = powInfo[matchIndex];
307	} else {
308		clo = ath9k_hw_fbin2freq(powInfo[lowIndex].bChannel,
309					 IS_CHAN_2GHZ(chan));
310		chi = ath9k_hw_fbin2freq(powInfo[lowIndex + 1].bChannel,
311					 IS_CHAN_2GHZ(chan));
312
313		for (i = 0; i < numRates; i++) {
314			pNewPower->tPow2x[i] =
315				(u8)ath9k_hw_interpolate(freq, clo, chi,
316						powInfo[lowIndex].tPow2x[i],
317						powInfo[lowIndex + 1].tPow2x[i]);
318		}
319	}
320}
321
322void ath9k_hw_get_target_powers(struct ath_hw *ah,
323				struct ath9k_channel *chan,
324				struct cal_target_power_ht *powInfo,
325				u16 numChannels,
326				struct cal_target_power_ht *pNewPower,
327				u16 numRates, bool isHt40Target)
328{
329	struct chan_centers centers;
330	u16 clo, chi;
331	int i;
332	int matchIndex = -1, lowIndex = -1;
333	u16 freq;
334
335	ath9k_hw_get_channel_centers(ah, chan, &centers);
336	freq = isHt40Target ? centers.synth_center : centers.ctl_center;
337
338	if (freq <= ath9k_hw_fbin2freq(powInfo[0].bChannel, IS_CHAN_2GHZ(chan))) {
339		matchIndex = 0;
340	} else {
341		for (i = 0; (i < numChannels) &&
342			     (powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
343			if (freq == ath9k_hw_fbin2freq(powInfo[i].bChannel,
344						       IS_CHAN_2GHZ(chan))) {
345				matchIndex = i;
346				break;
347			} else
348				if (freq < ath9k_hw_fbin2freq(powInfo[i].bChannel,
349						IS_CHAN_2GHZ(chan)) && i > 0 &&
350				    freq > ath9k_hw_fbin2freq(powInfo[i - 1].bChannel,
351						IS_CHAN_2GHZ(chan))) {
352					lowIndex = i - 1;
353					break;
354				}
355		}
356		if ((matchIndex == -1) && (lowIndex == -1))
357			matchIndex = i - 1;
358	}
359
360	if (matchIndex != -1) {
361		*pNewPower = powInfo[matchIndex];
362	} else {
363		clo = ath9k_hw_fbin2freq(powInfo[lowIndex].bChannel,
364					 IS_CHAN_2GHZ(chan));
365		chi = ath9k_hw_fbin2freq(powInfo[lowIndex + 1].bChannel,
366					 IS_CHAN_2GHZ(chan));
367
368		for (i = 0; i < numRates; i++) {
369			pNewPower->tPow2x[i] = (u8)ath9k_hw_interpolate(freq,
370						clo, chi,
371						powInfo[lowIndex].tPow2x[i],
372						powInfo[lowIndex + 1].tPow2x[i]);
373		}
374	}
375}
376
377u16 ath9k_hw_get_max_edge_power(u16 freq, struct cal_ctl_edges *pRdEdgesPower,
378				bool is2GHz, int num_band_edges)
379{
380	u16 twiceMaxEdgePower = MAX_RATE_POWER;
381	int i;
382
383	for (i = 0; (i < num_band_edges) &&
384		     (pRdEdgesPower[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
385		if (freq == ath9k_hw_fbin2freq(pRdEdgesPower[i].bChannel, is2GHz)) {
386			twiceMaxEdgePower = CTL_EDGE_TPOWER(pRdEdgesPower[i].ctl);
387			break;
388		} else if ((i > 0) &&
389			   (freq < ath9k_hw_fbin2freq(pRdEdgesPower[i].bChannel,
390						      is2GHz))) {
391			if (ath9k_hw_fbin2freq(pRdEdgesPower[i - 1].bChannel,
392					       is2GHz) < freq &&
393			    CTL_EDGE_FLAGS(pRdEdgesPower[i - 1].ctl)) {
394				twiceMaxEdgePower =
395					CTL_EDGE_TPOWER(pRdEdgesPower[i - 1].ctl);
396			}
397			break;
398		}
399	}
400
401	return twiceMaxEdgePower;
402}
403
404u16 ath9k_hw_get_scaled_power(struct ath_hw *ah, u16 power_limit,
405			      u8 antenna_reduction)
406{
407	u16 reduction = antenna_reduction;
408
409	/*
410	 * Reduce scaled Power by number of chains active
411	 * to get the per chain tx power level.
412	 */
413	switch (ar5416_get_ntxchains(ah->txchainmask)) {
414	case 1:
415		break;
416	case 2:
417		reduction += POWER_CORRECTION_FOR_TWO_CHAIN;
418		break;
419	case 3:
420		reduction += POWER_CORRECTION_FOR_THREE_CHAIN;
421		break;
422	}
423
424	if (power_limit > reduction)
425		power_limit -= reduction;
426	else
427		power_limit = 0;
428
429	return min_t(u16, power_limit, MAX_RATE_POWER);
430}
431
432void ath9k_hw_update_regulatory_maxpower(struct ath_hw *ah)
433{
434	struct ath_common *common = ath9k_hw_common(ah);
435	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
436
437	switch (ar5416_get_ntxchains(ah->txchainmask)) {
438	case 1:
439		break;
440	case 2:
441		regulatory->max_power_level += POWER_CORRECTION_FOR_TWO_CHAIN;
442		break;
443	case 3:
444		regulatory->max_power_level += POWER_CORRECTION_FOR_THREE_CHAIN;
445		break;
446	default:
447		ath_dbg(common, EEPROM, "Invalid chainmask configuration\n");
 
448		break;
449	}
450}
451
452void ath9k_hw_get_gain_boundaries_pdadcs(struct ath_hw *ah,
453				struct ath9k_channel *chan,
454				void *pRawDataSet,
455				u8 *bChans, u16 availPiers,
456				u16 tPdGainOverlap,
457				u16 *pPdGainBoundaries, u8 *pPDADCValues,
458				u16 numXpdGains)
459{
460	int i, j, k;
461	int16_t ss;
462	u16 idxL = 0, idxR = 0, numPiers;
463	static u8 vpdTableL[AR5416_NUM_PD_GAINS]
464		[AR5416_MAX_PWR_RANGE_IN_HALF_DB];
465	static u8 vpdTableR[AR5416_NUM_PD_GAINS]
466		[AR5416_MAX_PWR_RANGE_IN_HALF_DB];
467	static u8 vpdTableI[AR5416_NUM_PD_GAINS]
468		[AR5416_MAX_PWR_RANGE_IN_HALF_DB];
469
470	u8 *pVpdL, *pVpdR, *pPwrL, *pPwrR;
471	u8 minPwrT4[AR5416_NUM_PD_GAINS];
472	u8 maxPwrT4[AR5416_NUM_PD_GAINS];
473	int16_t vpdStep;
474	int16_t tmpVal;
475	u16 sizeCurrVpdTable, maxIndex, tgtIndex;
476	bool match;
477	int16_t minDelta = 0;
478	struct chan_centers centers;
479	int pdgain_boundary_default;
480	struct cal_data_per_freq *data_def = pRawDataSet;
481	struct cal_data_per_freq_4k *data_4k = pRawDataSet;
482	struct cal_data_per_freq_ar9287 *data_9287 = pRawDataSet;
483	bool eeprom_4k = AR_SREV_9285(ah) || AR_SREV_9271(ah);
484	int intercepts;
485
486	if (AR_SREV_9287(ah))
487		intercepts = AR9287_PD_GAIN_ICEPTS;
488	else
489		intercepts = AR5416_PD_GAIN_ICEPTS;
490
491	memset(&minPwrT4, 0, AR5416_NUM_PD_GAINS);
492	ath9k_hw_get_channel_centers(ah, chan, &centers);
493
494	for (numPiers = 0; numPiers < availPiers; numPiers++) {
495		if (bChans[numPiers] == AR5416_BCHAN_UNUSED)
496			break;
497	}
498
499	match = ath9k_hw_get_lower_upper_index((u8)FREQ2FBIN(centers.synth_center,
500							     IS_CHAN_2GHZ(chan)),
501					       bChans, numPiers, &idxL, &idxR);
502
503	if (match) {
504		if (AR_SREV_9287(ah)) {
 
505			for (i = 0; i < numXpdGains; i++) {
506				minPwrT4[i] = data_9287[idxL].pwrPdg[i][0];
507				maxPwrT4[i] = data_9287[idxL].pwrPdg[i][intercepts - 1];
508				ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
509						data_9287[idxL].pwrPdg[i],
510						data_9287[idxL].vpdPdg[i],
511						intercepts,
512						vpdTableI[i]);
513			}
514		} else if (eeprom_4k) {
515			for (i = 0; i < numXpdGains; i++) {
516				minPwrT4[i] = data_4k[idxL].pwrPdg[i][0];
517				maxPwrT4[i] = data_4k[idxL].pwrPdg[i][intercepts - 1];
518				ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
519						data_4k[idxL].pwrPdg[i],
520						data_4k[idxL].vpdPdg[i],
521						intercepts,
522						vpdTableI[i]);
523			}
524		} else {
525			for (i = 0; i < numXpdGains; i++) {
526				minPwrT4[i] = data_def[idxL].pwrPdg[i][0];
527				maxPwrT4[i] = data_def[idxL].pwrPdg[i][intercepts - 1];
528				ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
529						data_def[idxL].pwrPdg[i],
530						data_def[idxL].vpdPdg[i],
531						intercepts,
532						vpdTableI[i]);
533			}
534		}
535	} else {
536		for (i = 0; i < numXpdGains; i++) {
537			if (AR_SREV_9287(ah)) {
538				pVpdL = data_9287[idxL].vpdPdg[i];
539				pPwrL = data_9287[idxL].pwrPdg[i];
540				pVpdR = data_9287[idxR].vpdPdg[i];
541				pPwrR = data_9287[idxR].pwrPdg[i];
542			} else if (eeprom_4k) {
543				pVpdL = data_4k[idxL].vpdPdg[i];
544				pPwrL = data_4k[idxL].pwrPdg[i];
545				pVpdR = data_4k[idxR].vpdPdg[i];
546				pPwrR = data_4k[idxR].pwrPdg[i];
547			} else {
548				pVpdL = data_def[idxL].vpdPdg[i];
549				pPwrL = data_def[idxL].pwrPdg[i];
550				pVpdR = data_def[idxR].vpdPdg[i];
551				pPwrR = data_def[idxR].pwrPdg[i];
552			}
553
554			minPwrT4[i] = max(pPwrL[0], pPwrR[0]);
555
556			maxPwrT4[i] =
557				min(pPwrL[intercepts - 1],
558				    pPwrR[intercepts - 1]);
559
560
561			ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
562						pPwrL, pVpdL,
563						intercepts,
564						vpdTableL[i]);
565			ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
566						pPwrR, pVpdR,
567						intercepts,
568						vpdTableR[i]);
569
570			for (j = 0; j <= (maxPwrT4[i] - minPwrT4[i]) / 2; j++) {
571				vpdTableI[i][j] =
572					(u8)(ath9k_hw_interpolate((u16)
573					     FREQ2FBIN(centers.
574						       synth_center,
575						       IS_CHAN_2GHZ
576						       (chan)),
577					     bChans[idxL], bChans[idxR],
578					     vpdTableL[i][j], vpdTableR[i][j]));
579			}
580		}
581	}
582
583	k = 0;
584
585	for (i = 0; i < numXpdGains; i++) {
586		if (i == (numXpdGains - 1))
587			pPdGainBoundaries[i] =
588				(u16)(maxPwrT4[i] / 2);
589		else
590			pPdGainBoundaries[i] =
591				(u16)((maxPwrT4[i] + minPwrT4[i + 1]) / 4);
592
593		pPdGainBoundaries[i] =
594			min((u16)MAX_RATE_POWER, pPdGainBoundaries[i]);
595
596		minDelta = 0;
 
 
 
 
 
597
598		if (i == 0) {
599			if (AR_SREV_9280_20_OR_LATER(ah))
600				ss = (int16_t)(0 - (minPwrT4[i] / 2));
601			else
602				ss = 0;
603		} else {
604			ss = (int16_t)((pPdGainBoundaries[i - 1] -
605					(minPwrT4[i] / 2)) -
606				       tPdGainOverlap + 1 + minDelta);
607		}
608		vpdStep = (int16_t)(vpdTableI[i][1] - vpdTableI[i][0]);
609		vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
610
611		while ((ss < 0) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
612			tmpVal = (int16_t)(vpdTableI[i][0] + ss * vpdStep);
613			pPDADCValues[k++] = (u8)((tmpVal < 0) ? 0 : tmpVal);
614			ss++;
615		}
616
617		sizeCurrVpdTable = (u8) ((maxPwrT4[i] - minPwrT4[i]) / 2 + 1);
618		tgtIndex = (u8)(pPdGainBoundaries[i] + tPdGainOverlap -
619				(minPwrT4[i] / 2));
620		maxIndex = (tgtIndex < sizeCurrVpdTable) ?
621			tgtIndex : sizeCurrVpdTable;
622
623		while ((ss < maxIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
624			pPDADCValues[k++] = vpdTableI[i][ss++];
625		}
626
627		vpdStep = (int16_t)(vpdTableI[i][sizeCurrVpdTable - 1] -
628				    vpdTableI[i][sizeCurrVpdTable - 2]);
629		vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
630
631		if (tgtIndex >= maxIndex) {
632			while ((ss <= tgtIndex) &&
633			       (k < (AR5416_NUM_PDADC_VALUES - 1))) {
634				tmpVal = (int16_t)((vpdTableI[i][sizeCurrVpdTable - 1] +
635						    (ss - maxIndex + 1) * vpdStep));
636				pPDADCValues[k++] = (u8)((tmpVal > 255) ?
637							 255 : tmpVal);
638				ss++;
639			}
640		}
641	}
642
643	if (eeprom_4k)
644		pdgain_boundary_default = 58;
645	else
646		pdgain_boundary_default = pPdGainBoundaries[i - 1];
647
648	while (i < AR5416_PD_GAINS_IN_MASK) {
649		pPdGainBoundaries[i] = pdgain_boundary_default;
650		i++;
651	}
652
653	while (k < AR5416_NUM_PDADC_VALUES) {
654		pPDADCValues[k] = pPDADCValues[k - 1];
655		k++;
656	}
657}
658
659int ath9k_hw_eeprom_init(struct ath_hw *ah)
660{
 
 
661	if (AR_SREV_9300_20_OR_LATER(ah))
662		ah->eep_ops = &eep_ar9300_ops;
663	else if (AR_SREV_9287(ah)) {
664		ah->eep_ops = &eep_ar9287_ops;
665	} else if (AR_SREV_9285(ah) || AR_SREV_9271(ah)) {
666		ah->eep_ops = &eep_4k_ops;
667	} else {
668		ah->eep_ops = &eep_def_ops;
669	}
670
671	if (!ah->eep_ops->fill_eeprom(ah))
672		return -EIO;
673
674	return ah->eep_ops->check_eeprom(ah);
 
 
675}