Linux Audio

Check our new training course

In-person Linux kernel drivers training

Jun 16-20, 2025
Register
Loading...
v3.1
  1/*
  2 * Copyright (c) 2008-2011 Atheros Communications Inc.
  3 *
  4 * Permission to use, copy, modify, and/or distribute this software for any
  5 * purpose with or without fee is hereby granted, provided that the above
  6 * copyright notice and this permission notice appear in all copies.
  7 *
  8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 15 */
 16
 17#include "hw.h"
 18
 19static inline u16 ath9k_hw_fbin2freq(u8 fbin, bool is2GHz)
 20{
 21	if (fbin == AR5416_BCHAN_UNUSED)
 22		return fbin;
 23
 24	return (u16) ((is2GHz) ? (2300 + fbin) : (4800 + 5 * fbin));
 25}
 26
 27void ath9k_hw_analog_shift_regwrite(struct ath_hw *ah, u32 reg, u32 val)
 28{
 29        REG_WRITE(ah, reg, val);
 30
 31        if (ah->config.analog_shiftreg)
 32		udelay(100);
 33}
 34
 35void ath9k_hw_analog_shift_rmw(struct ath_hw *ah, u32 reg, u32 mask,
 36			       u32 shift, u32 val)
 37{
 38	u32 regVal;
 39
 40	regVal = REG_READ(ah, reg) & ~mask;
 41	regVal |= (val << shift) & mask;
 42
 43	REG_WRITE(ah, reg, regVal);
 44
 45	if (ah->config.analog_shiftreg)
 46		udelay(100);
 47}
 48
 49int16_t ath9k_hw_interpolate(u16 target, u16 srcLeft, u16 srcRight,
 50			     int16_t targetLeft, int16_t targetRight)
 51{
 52	int16_t rv;
 53
 54	if (srcRight == srcLeft) {
 55		rv = targetLeft;
 56	} else {
 57		rv = (int16_t) (((target - srcLeft) * targetRight +
 58				 (srcRight - target) * targetLeft) /
 59				(srcRight - srcLeft));
 60	}
 61	return rv;
 62}
 63
 64bool ath9k_hw_get_lower_upper_index(u8 target, u8 *pList, u16 listSize,
 65				    u16 *indexL, u16 *indexR)
 66{
 67	u16 i;
 68
 69	if (target <= pList[0]) {
 70		*indexL = *indexR = 0;
 71		return true;
 72	}
 73	if (target >= pList[listSize - 1]) {
 74		*indexL = *indexR = (u16) (listSize - 1);
 75		return true;
 76	}
 77
 78	for (i = 0; i < listSize - 1; i++) {
 79		if (pList[i] == target) {
 80			*indexL = *indexR = i;
 81			return true;
 82		}
 83		if (target < pList[i + 1]) {
 84			*indexL = i;
 85			*indexR = (u16) (i + 1);
 86			return false;
 87		}
 88	}
 89	return false;
 90}
 91
 92void ath9k_hw_usb_gen_fill_eeprom(struct ath_hw *ah, u16 *eep_data,
 93				  int eep_start_loc, int size)
 94{
 95	int i = 0, j, addr;
 96	u32 addrdata[8];
 97	u32 data[8];
 98
 99	for (addr = 0; addr < size; addr++) {
100		addrdata[i] = AR5416_EEPROM_OFFSET +
101			((addr + eep_start_loc) << AR5416_EEPROM_S);
102		i++;
103		if (i == 8) {
104			REG_READ_MULTI(ah, addrdata, data, i);
105
106			for (j = 0; j < i; j++) {
107				*eep_data = data[j];
108				eep_data++;
109			}
110			i = 0;
111		}
112	}
113
114	if (i != 0) {
115		REG_READ_MULTI(ah, addrdata, data, i);
116
117		for (j = 0; j < i; j++) {
118			*eep_data = data[j];
119			eep_data++;
120		}
121	}
122}
123
124bool ath9k_hw_nvram_read(struct ath_common *common, u32 off, u16 *data)
 
 
 
 
 
 
 
 
 
 
 
 
 
125{
126	return common->bus_ops->eeprom_read(common, off, data);
 
 
 
 
 
 
 
 
 
 
 
 
127}
128
129void ath9k_hw_fill_vpd_table(u8 pwrMin, u8 pwrMax, u8 *pPwrList,
130			     u8 *pVpdList, u16 numIntercepts,
131			     u8 *pRetVpdList)
132{
133	u16 i, k;
134	u8 currPwr = pwrMin;
135	u16 idxL = 0, idxR = 0;
136
137	for (i = 0; i <= (pwrMax - pwrMin) / 2; i++) {
138		ath9k_hw_get_lower_upper_index(currPwr, pPwrList,
139					       numIntercepts, &(idxL),
140					       &(idxR));
141		if (idxR < 1)
142			idxR = 1;
143		if (idxL == numIntercepts - 1)
144			idxL = (u16) (numIntercepts - 2);
145		if (pPwrList[idxL] == pPwrList[idxR])
146			k = pVpdList[idxL];
147		else
148			k = (u16)(((currPwr - pPwrList[idxL]) * pVpdList[idxR] +
149				   (pPwrList[idxR] - currPwr) * pVpdList[idxL]) /
150				  (pPwrList[idxR] - pPwrList[idxL]));
151		pRetVpdList[i] = (u8) k;
152		currPwr += 2;
153	}
154}
155
156void ath9k_hw_get_legacy_target_powers(struct ath_hw *ah,
157				       struct ath9k_channel *chan,
158				       struct cal_target_power_leg *powInfo,
159				       u16 numChannels,
160				       struct cal_target_power_leg *pNewPower,
161				       u16 numRates, bool isExtTarget)
162{
163	struct chan_centers centers;
164	u16 clo, chi;
165	int i;
166	int matchIndex = -1, lowIndex = -1;
167	u16 freq;
168
169	ath9k_hw_get_channel_centers(ah, chan, &centers);
170	freq = (isExtTarget) ? centers.ext_center : centers.ctl_center;
171
172	if (freq <= ath9k_hw_fbin2freq(powInfo[0].bChannel,
173				       IS_CHAN_2GHZ(chan))) {
174		matchIndex = 0;
175	} else {
176		for (i = 0; (i < numChannels) &&
177			     (powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
178			if (freq == ath9k_hw_fbin2freq(powInfo[i].bChannel,
179						       IS_CHAN_2GHZ(chan))) {
180				matchIndex = i;
181				break;
182			} else if (freq < ath9k_hw_fbin2freq(powInfo[i].bChannel,
183						IS_CHAN_2GHZ(chan)) && i > 0 &&
184				   freq > ath9k_hw_fbin2freq(powInfo[i - 1].bChannel,
185						IS_CHAN_2GHZ(chan))) {
186				lowIndex = i - 1;
187				break;
188			}
189		}
190		if ((matchIndex == -1) && (lowIndex == -1))
191			matchIndex = i - 1;
192	}
193
194	if (matchIndex != -1) {
195		*pNewPower = powInfo[matchIndex];
196	} else {
197		clo = ath9k_hw_fbin2freq(powInfo[lowIndex].bChannel,
198					 IS_CHAN_2GHZ(chan));
199		chi = ath9k_hw_fbin2freq(powInfo[lowIndex + 1].bChannel,
200					 IS_CHAN_2GHZ(chan));
201
202		for (i = 0; i < numRates; i++) {
203			pNewPower->tPow2x[i] =
204				(u8)ath9k_hw_interpolate(freq, clo, chi,
205						powInfo[lowIndex].tPow2x[i],
206						powInfo[lowIndex + 1].tPow2x[i]);
207		}
208	}
209}
210
211void ath9k_hw_get_target_powers(struct ath_hw *ah,
212				struct ath9k_channel *chan,
213				struct cal_target_power_ht *powInfo,
214				u16 numChannels,
215				struct cal_target_power_ht *pNewPower,
216				u16 numRates, bool isHt40Target)
217{
218	struct chan_centers centers;
219	u16 clo, chi;
220	int i;
221	int matchIndex = -1, lowIndex = -1;
222	u16 freq;
223
224	ath9k_hw_get_channel_centers(ah, chan, &centers);
225	freq = isHt40Target ? centers.synth_center : centers.ctl_center;
226
227	if (freq <= ath9k_hw_fbin2freq(powInfo[0].bChannel, IS_CHAN_2GHZ(chan))) {
228		matchIndex = 0;
229	} else {
230		for (i = 0; (i < numChannels) &&
231			     (powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
232			if (freq == ath9k_hw_fbin2freq(powInfo[i].bChannel,
233						       IS_CHAN_2GHZ(chan))) {
234				matchIndex = i;
235				break;
236			} else
237				if (freq < ath9k_hw_fbin2freq(powInfo[i].bChannel,
238						IS_CHAN_2GHZ(chan)) && i > 0 &&
239				    freq > ath9k_hw_fbin2freq(powInfo[i - 1].bChannel,
240						IS_CHAN_2GHZ(chan))) {
241					lowIndex = i - 1;
242					break;
243				}
244		}
245		if ((matchIndex == -1) && (lowIndex == -1))
246			matchIndex = i - 1;
247	}
248
249	if (matchIndex != -1) {
250		*pNewPower = powInfo[matchIndex];
251	} else {
252		clo = ath9k_hw_fbin2freq(powInfo[lowIndex].bChannel,
253					 IS_CHAN_2GHZ(chan));
254		chi = ath9k_hw_fbin2freq(powInfo[lowIndex + 1].bChannel,
255					 IS_CHAN_2GHZ(chan));
256
257		for (i = 0; i < numRates; i++) {
258			pNewPower->tPow2x[i] = (u8)ath9k_hw_interpolate(freq,
259						clo, chi,
260						powInfo[lowIndex].tPow2x[i],
261						powInfo[lowIndex + 1].tPow2x[i]);
262		}
263	}
264}
265
266u16 ath9k_hw_get_max_edge_power(u16 freq, struct cal_ctl_edges *pRdEdgesPower,
267				bool is2GHz, int num_band_edges)
268{
269	u16 twiceMaxEdgePower = MAX_RATE_POWER;
270	int i;
271
272	for (i = 0; (i < num_band_edges) &&
273		     (pRdEdgesPower[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
274		if (freq == ath9k_hw_fbin2freq(pRdEdgesPower[i].bChannel, is2GHz)) {
275			twiceMaxEdgePower = CTL_EDGE_TPOWER(pRdEdgesPower[i].ctl);
276			break;
277		} else if ((i > 0) &&
278			   (freq < ath9k_hw_fbin2freq(pRdEdgesPower[i].bChannel,
279						      is2GHz))) {
280			if (ath9k_hw_fbin2freq(pRdEdgesPower[i - 1].bChannel,
281					       is2GHz) < freq &&
282			    CTL_EDGE_FLAGS(pRdEdgesPower[i - 1].ctl)) {
283				twiceMaxEdgePower =
284					CTL_EDGE_TPOWER(pRdEdgesPower[i - 1].ctl);
285			}
286			break;
287		}
288	}
289
290	return twiceMaxEdgePower;
291}
292
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
293void ath9k_hw_update_regulatory_maxpower(struct ath_hw *ah)
294{
295	struct ath_common *common = ath9k_hw_common(ah);
296	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
297
298	switch (ar5416_get_ntxchains(ah->txchainmask)) {
299	case 1:
300		break;
301	case 2:
302		regulatory->max_power_level += INCREASE_MAXPOW_BY_TWO_CHAIN;
303		break;
304	case 3:
305		regulatory->max_power_level += INCREASE_MAXPOW_BY_THREE_CHAIN;
306		break;
307	default:
308		ath_dbg(common, ATH_DBG_EEPROM,
309			"Invalid chainmask configuration\n");
310		break;
311	}
312}
313
314void ath9k_hw_get_gain_boundaries_pdadcs(struct ath_hw *ah,
315				struct ath9k_channel *chan,
316				void *pRawDataSet,
317				u8 *bChans, u16 availPiers,
318				u16 tPdGainOverlap,
319				u16 *pPdGainBoundaries, u8 *pPDADCValues,
320				u16 numXpdGains)
321{
322	int i, j, k;
323	int16_t ss;
324	u16 idxL = 0, idxR = 0, numPiers;
325	static u8 vpdTableL[AR5416_NUM_PD_GAINS]
326		[AR5416_MAX_PWR_RANGE_IN_HALF_DB];
327	static u8 vpdTableR[AR5416_NUM_PD_GAINS]
328		[AR5416_MAX_PWR_RANGE_IN_HALF_DB];
329	static u8 vpdTableI[AR5416_NUM_PD_GAINS]
330		[AR5416_MAX_PWR_RANGE_IN_HALF_DB];
331
332	u8 *pVpdL, *pVpdR, *pPwrL, *pPwrR;
333	u8 minPwrT4[AR5416_NUM_PD_GAINS];
334	u8 maxPwrT4[AR5416_NUM_PD_GAINS];
335	int16_t vpdStep;
336	int16_t tmpVal;
337	u16 sizeCurrVpdTable, maxIndex, tgtIndex;
338	bool match;
339	int16_t minDelta = 0;
340	struct chan_centers centers;
341	int pdgain_boundary_default;
342	struct cal_data_per_freq *data_def = pRawDataSet;
343	struct cal_data_per_freq_4k *data_4k = pRawDataSet;
344	struct cal_data_per_freq_ar9287 *data_9287 = pRawDataSet;
345	bool eeprom_4k = AR_SREV_9285(ah) || AR_SREV_9271(ah);
346	int intercepts;
347
348	if (AR_SREV_9287(ah))
349		intercepts = AR9287_PD_GAIN_ICEPTS;
350	else
351		intercepts = AR5416_PD_GAIN_ICEPTS;
352
353	memset(&minPwrT4, 0, AR5416_NUM_PD_GAINS);
354	ath9k_hw_get_channel_centers(ah, chan, &centers);
355
356	for (numPiers = 0; numPiers < availPiers; numPiers++) {
357		if (bChans[numPiers] == AR5416_BCHAN_UNUSED)
358			break;
359	}
360
361	match = ath9k_hw_get_lower_upper_index((u8)FREQ2FBIN(centers.synth_center,
362							     IS_CHAN_2GHZ(chan)),
363					       bChans, numPiers, &idxL, &idxR);
364
365	if (match) {
366		if (AR_SREV_9287(ah)) {
367			/* FIXME: array overrun? */
368			for (i = 0; i < numXpdGains; i++) {
369				minPwrT4[i] = data_9287[idxL].pwrPdg[i][0];
370				maxPwrT4[i] = data_9287[idxL].pwrPdg[i][4];
371				ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
372						data_9287[idxL].pwrPdg[i],
373						data_9287[idxL].vpdPdg[i],
374						intercepts,
375						vpdTableI[i]);
376			}
377		} else if (eeprom_4k) {
378			for (i = 0; i < numXpdGains; i++) {
379				minPwrT4[i] = data_4k[idxL].pwrPdg[i][0];
380				maxPwrT4[i] = data_4k[idxL].pwrPdg[i][4];
381				ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
382						data_4k[idxL].pwrPdg[i],
383						data_4k[idxL].vpdPdg[i],
384						intercepts,
385						vpdTableI[i]);
386			}
387		} else {
388			for (i = 0; i < numXpdGains; i++) {
389				minPwrT4[i] = data_def[idxL].pwrPdg[i][0];
390				maxPwrT4[i] = data_def[idxL].pwrPdg[i][4];
391				ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
392						data_def[idxL].pwrPdg[i],
393						data_def[idxL].vpdPdg[i],
394						intercepts,
395						vpdTableI[i]);
396			}
397		}
398	} else {
399		for (i = 0; i < numXpdGains; i++) {
400			if (AR_SREV_9287(ah)) {
401				pVpdL = data_9287[idxL].vpdPdg[i];
402				pPwrL = data_9287[idxL].pwrPdg[i];
403				pVpdR = data_9287[idxR].vpdPdg[i];
404				pPwrR = data_9287[idxR].pwrPdg[i];
405			} else if (eeprom_4k) {
406				pVpdL = data_4k[idxL].vpdPdg[i];
407				pPwrL = data_4k[idxL].pwrPdg[i];
408				pVpdR = data_4k[idxR].vpdPdg[i];
409				pPwrR = data_4k[idxR].pwrPdg[i];
410			} else {
411				pVpdL = data_def[idxL].vpdPdg[i];
412				pPwrL = data_def[idxL].pwrPdg[i];
413				pVpdR = data_def[idxR].vpdPdg[i];
414				pPwrR = data_def[idxR].pwrPdg[i];
415			}
416
417			minPwrT4[i] = max(pPwrL[0], pPwrR[0]);
418
419			maxPwrT4[i] =
420				min(pPwrL[intercepts - 1],
421				    pPwrR[intercepts - 1]);
422
423
424			ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
425						pPwrL, pVpdL,
426						intercepts,
427						vpdTableL[i]);
428			ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
429						pPwrR, pVpdR,
430						intercepts,
431						vpdTableR[i]);
432
433			for (j = 0; j <= (maxPwrT4[i] - minPwrT4[i]) / 2; j++) {
434				vpdTableI[i][j] =
435					(u8)(ath9k_hw_interpolate((u16)
436					     FREQ2FBIN(centers.
437						       synth_center,
438						       IS_CHAN_2GHZ
439						       (chan)),
440					     bChans[idxL], bChans[idxR],
441					     vpdTableL[i][j], vpdTableR[i][j]));
442			}
443		}
444	}
445
446	k = 0;
447
448	for (i = 0; i < numXpdGains; i++) {
449		if (i == (numXpdGains - 1))
450			pPdGainBoundaries[i] =
451				(u16)(maxPwrT4[i] / 2);
452		else
453			pPdGainBoundaries[i] =
454				(u16)((maxPwrT4[i] + minPwrT4[i + 1]) / 4);
455
456		pPdGainBoundaries[i] =
457			min((u16)MAX_RATE_POWER, pPdGainBoundaries[i]);
458
459		if ((i == 0) && !AR_SREV_5416_20_OR_LATER(ah)) {
460			minDelta = pPdGainBoundaries[0] - 23;
461			pPdGainBoundaries[0] = 23;
462		} else {
463			minDelta = 0;
464		}
465
466		if (i == 0) {
467			if (AR_SREV_9280_20_OR_LATER(ah))
468				ss = (int16_t)(0 - (minPwrT4[i] / 2));
469			else
470				ss = 0;
471		} else {
472			ss = (int16_t)((pPdGainBoundaries[i - 1] -
473					(minPwrT4[i] / 2)) -
474				       tPdGainOverlap + 1 + minDelta);
475		}
476		vpdStep = (int16_t)(vpdTableI[i][1] - vpdTableI[i][0]);
477		vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
478
479		while ((ss < 0) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
480			tmpVal = (int16_t)(vpdTableI[i][0] + ss * vpdStep);
481			pPDADCValues[k++] = (u8)((tmpVal < 0) ? 0 : tmpVal);
482			ss++;
483		}
484
485		sizeCurrVpdTable = (u8) ((maxPwrT4[i] - minPwrT4[i]) / 2 + 1);
486		tgtIndex = (u8)(pPdGainBoundaries[i] + tPdGainOverlap -
487				(minPwrT4[i] / 2));
488		maxIndex = (tgtIndex < sizeCurrVpdTable) ?
489			tgtIndex : sizeCurrVpdTable;
490
491		while ((ss < maxIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
492			pPDADCValues[k++] = vpdTableI[i][ss++];
493		}
494
495		vpdStep = (int16_t)(vpdTableI[i][sizeCurrVpdTable - 1] -
496				    vpdTableI[i][sizeCurrVpdTable - 2]);
497		vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
498
499		if (tgtIndex >= maxIndex) {
500			while ((ss <= tgtIndex) &&
501			       (k < (AR5416_NUM_PDADC_VALUES - 1))) {
502				tmpVal = (int16_t)((vpdTableI[i][sizeCurrVpdTable - 1] +
503						    (ss - maxIndex + 1) * vpdStep));
504				pPDADCValues[k++] = (u8)((tmpVal > 255) ?
505							 255 : tmpVal);
506				ss++;
507			}
508		}
509	}
510
511	if (eeprom_4k)
512		pdgain_boundary_default = 58;
513	else
514		pdgain_boundary_default = pPdGainBoundaries[i - 1];
515
516	while (i < AR5416_PD_GAINS_IN_MASK) {
517		pPdGainBoundaries[i] = pdgain_boundary_default;
518		i++;
519	}
520
521	while (k < AR5416_NUM_PDADC_VALUES) {
522		pPDADCValues[k] = pPDADCValues[k - 1];
523		k++;
524	}
525}
526
527int ath9k_hw_eeprom_init(struct ath_hw *ah)
528{
529	int status;
530
531	if (AR_SREV_9300_20_OR_LATER(ah))
532		ah->eep_ops = &eep_ar9300_ops;
533	else if (AR_SREV_9287(ah)) {
534		ah->eep_ops = &eep_ar9287_ops;
535	} else if (AR_SREV_9285(ah) || AR_SREV_9271(ah)) {
536		ah->eep_ops = &eep_4k_ops;
537	} else {
538		ah->eep_ops = &eep_def_ops;
539	}
540
541	if (!ah->eep_ops->fill_eeprom(ah))
542		return -EIO;
543
544	status = ah->eep_ops->check_eeprom(ah);
545
546	return status;
547}
v3.15
  1/*
  2 * Copyright (c) 2008-2011 Atheros Communications Inc.
  3 *
  4 * Permission to use, copy, modify, and/or distribute this software for any
  5 * purpose with or without fee is hereby granted, provided that the above
  6 * copyright notice and this permission notice appear in all copies.
  7 *
  8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 15 */
 16
 17#include "hw.h"
 18
 
 
 
 
 
 
 
 
 19void ath9k_hw_analog_shift_regwrite(struct ath_hw *ah, u32 reg, u32 val)
 20{
 21        REG_WRITE(ah, reg, val);
 22
 23        if (ah->config.analog_shiftreg)
 24		udelay(100);
 25}
 26
 27void ath9k_hw_analog_shift_rmw(struct ath_hw *ah, u32 reg, u32 mask,
 28			       u32 shift, u32 val)
 29{
 30	u32 regVal;
 31
 32	regVal = REG_READ(ah, reg) & ~mask;
 33	regVal |= (val << shift) & mask;
 34
 35	REG_WRITE(ah, reg, regVal);
 36
 37	if (ah->config.analog_shiftreg)
 38		udelay(100);
 39}
 40
 41int16_t ath9k_hw_interpolate(u16 target, u16 srcLeft, u16 srcRight,
 42			     int16_t targetLeft, int16_t targetRight)
 43{
 44	int16_t rv;
 45
 46	if (srcRight == srcLeft) {
 47		rv = targetLeft;
 48	} else {
 49		rv = (int16_t) (((target - srcLeft) * targetRight +
 50				 (srcRight - target) * targetLeft) /
 51				(srcRight - srcLeft));
 52	}
 53	return rv;
 54}
 55
 56bool ath9k_hw_get_lower_upper_index(u8 target, u8 *pList, u16 listSize,
 57				    u16 *indexL, u16 *indexR)
 58{
 59	u16 i;
 60
 61	if (target <= pList[0]) {
 62		*indexL = *indexR = 0;
 63		return true;
 64	}
 65	if (target >= pList[listSize - 1]) {
 66		*indexL = *indexR = (u16) (listSize - 1);
 67		return true;
 68	}
 69
 70	for (i = 0; i < listSize - 1; i++) {
 71		if (pList[i] == target) {
 72			*indexL = *indexR = i;
 73			return true;
 74		}
 75		if (target < pList[i + 1]) {
 76			*indexL = i;
 77			*indexR = (u16) (i + 1);
 78			return false;
 79		}
 80	}
 81	return false;
 82}
 83
 84void ath9k_hw_usb_gen_fill_eeprom(struct ath_hw *ah, u16 *eep_data,
 85				  int eep_start_loc, int size)
 86{
 87	int i = 0, j, addr;
 88	u32 addrdata[8];
 89	u32 data[8];
 90
 91	for (addr = 0; addr < size; addr++) {
 92		addrdata[i] = AR5416_EEPROM_OFFSET +
 93			((addr + eep_start_loc) << AR5416_EEPROM_S);
 94		i++;
 95		if (i == 8) {
 96			REG_READ_MULTI(ah, addrdata, data, i);
 97
 98			for (j = 0; j < i; j++) {
 99				*eep_data = data[j];
100				eep_data++;
101			}
102			i = 0;
103		}
104	}
105
106	if (i != 0) {
107		REG_READ_MULTI(ah, addrdata, data, i);
108
109		for (j = 0; j < i; j++) {
110			*eep_data = data[j];
111			eep_data++;
112		}
113	}
114}
115
116static bool ath9k_hw_nvram_read_blob(struct ath_hw *ah, u32 off,
117				     u16 *data)
118{
119	u16 *blob_data;
120
121	if (off * sizeof(u16) > ah->eeprom_blob->size)
122		return false;
123
124	blob_data = (u16 *)ah->eeprom_blob->data;
125	*data =  blob_data[off];
126	return true;
127}
128
129bool ath9k_hw_nvram_read(struct ath_hw *ah, u32 off, u16 *data)
130{
131	struct ath_common *common = ath9k_hw_common(ah);
132	bool ret;
133
134	if (ah->eeprom_blob)
135		ret = ath9k_hw_nvram_read_blob(ah, off, data);
136	else
137		ret = common->bus_ops->eeprom_read(common, off, data);
138
139	if (!ret)
140		ath_dbg(common, EEPROM,
141			"unable to read eeprom region at offset %u\n", off);
142
143	return ret;
144}
145
146void ath9k_hw_fill_vpd_table(u8 pwrMin, u8 pwrMax, u8 *pPwrList,
147			     u8 *pVpdList, u16 numIntercepts,
148			     u8 *pRetVpdList)
149{
150	u16 i, k;
151	u8 currPwr = pwrMin;
152	u16 idxL = 0, idxR = 0;
153
154	for (i = 0; i <= (pwrMax - pwrMin) / 2; i++) {
155		ath9k_hw_get_lower_upper_index(currPwr, pPwrList,
156					       numIntercepts, &(idxL),
157					       &(idxR));
158		if (idxR < 1)
159			idxR = 1;
160		if (idxL == numIntercepts - 1)
161			idxL = (u16) (numIntercepts - 2);
162		if (pPwrList[idxL] == pPwrList[idxR])
163			k = pVpdList[idxL];
164		else
165			k = (u16)(((currPwr - pPwrList[idxL]) * pVpdList[idxR] +
166				   (pPwrList[idxR] - currPwr) * pVpdList[idxL]) /
167				  (pPwrList[idxR] - pPwrList[idxL]));
168		pRetVpdList[i] = (u8) k;
169		currPwr += 2;
170	}
171}
172
173void ath9k_hw_get_legacy_target_powers(struct ath_hw *ah,
174				       struct ath9k_channel *chan,
175				       struct cal_target_power_leg *powInfo,
176				       u16 numChannels,
177				       struct cal_target_power_leg *pNewPower,
178				       u16 numRates, bool isExtTarget)
179{
180	struct chan_centers centers;
181	u16 clo, chi;
182	int i;
183	int matchIndex = -1, lowIndex = -1;
184	u16 freq;
185
186	ath9k_hw_get_channel_centers(ah, chan, &centers);
187	freq = (isExtTarget) ? centers.ext_center : centers.ctl_center;
188
189	if (freq <= ath9k_hw_fbin2freq(powInfo[0].bChannel,
190				       IS_CHAN_2GHZ(chan))) {
191		matchIndex = 0;
192	} else {
193		for (i = 0; (i < numChannels) &&
194			     (powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
195			if (freq == ath9k_hw_fbin2freq(powInfo[i].bChannel,
196						       IS_CHAN_2GHZ(chan))) {
197				matchIndex = i;
198				break;
199			} else if (freq < ath9k_hw_fbin2freq(powInfo[i].bChannel,
200						IS_CHAN_2GHZ(chan)) && i > 0 &&
201				   freq > ath9k_hw_fbin2freq(powInfo[i - 1].bChannel,
202						IS_CHAN_2GHZ(chan))) {
203				lowIndex = i - 1;
204				break;
205			}
206		}
207		if ((matchIndex == -1) && (lowIndex == -1))
208			matchIndex = i - 1;
209	}
210
211	if (matchIndex != -1) {
212		*pNewPower = powInfo[matchIndex];
213	} else {
214		clo = ath9k_hw_fbin2freq(powInfo[lowIndex].bChannel,
215					 IS_CHAN_2GHZ(chan));
216		chi = ath9k_hw_fbin2freq(powInfo[lowIndex + 1].bChannel,
217					 IS_CHAN_2GHZ(chan));
218
219		for (i = 0; i < numRates; i++) {
220			pNewPower->tPow2x[i] =
221				(u8)ath9k_hw_interpolate(freq, clo, chi,
222						powInfo[lowIndex].tPow2x[i],
223						powInfo[lowIndex + 1].tPow2x[i]);
224		}
225	}
226}
227
228void ath9k_hw_get_target_powers(struct ath_hw *ah,
229				struct ath9k_channel *chan,
230				struct cal_target_power_ht *powInfo,
231				u16 numChannels,
232				struct cal_target_power_ht *pNewPower,
233				u16 numRates, bool isHt40Target)
234{
235	struct chan_centers centers;
236	u16 clo, chi;
237	int i;
238	int matchIndex = -1, lowIndex = -1;
239	u16 freq;
240
241	ath9k_hw_get_channel_centers(ah, chan, &centers);
242	freq = isHt40Target ? centers.synth_center : centers.ctl_center;
243
244	if (freq <= ath9k_hw_fbin2freq(powInfo[0].bChannel, IS_CHAN_2GHZ(chan))) {
245		matchIndex = 0;
246	} else {
247		for (i = 0; (i < numChannels) &&
248			     (powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
249			if (freq == ath9k_hw_fbin2freq(powInfo[i].bChannel,
250						       IS_CHAN_2GHZ(chan))) {
251				matchIndex = i;
252				break;
253			} else
254				if (freq < ath9k_hw_fbin2freq(powInfo[i].bChannel,
255						IS_CHAN_2GHZ(chan)) && i > 0 &&
256				    freq > ath9k_hw_fbin2freq(powInfo[i - 1].bChannel,
257						IS_CHAN_2GHZ(chan))) {
258					lowIndex = i - 1;
259					break;
260				}
261		}
262		if ((matchIndex == -1) && (lowIndex == -1))
263			matchIndex = i - 1;
264	}
265
266	if (matchIndex != -1) {
267		*pNewPower = powInfo[matchIndex];
268	} else {
269		clo = ath9k_hw_fbin2freq(powInfo[lowIndex].bChannel,
270					 IS_CHAN_2GHZ(chan));
271		chi = ath9k_hw_fbin2freq(powInfo[lowIndex + 1].bChannel,
272					 IS_CHAN_2GHZ(chan));
273
274		for (i = 0; i < numRates; i++) {
275			pNewPower->tPow2x[i] = (u8)ath9k_hw_interpolate(freq,
276						clo, chi,
277						powInfo[lowIndex].tPow2x[i],
278						powInfo[lowIndex + 1].tPow2x[i]);
279		}
280	}
281}
282
283u16 ath9k_hw_get_max_edge_power(u16 freq, struct cal_ctl_edges *pRdEdgesPower,
284				bool is2GHz, int num_band_edges)
285{
286	u16 twiceMaxEdgePower = MAX_RATE_POWER;
287	int i;
288
289	for (i = 0; (i < num_band_edges) &&
290		     (pRdEdgesPower[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
291		if (freq == ath9k_hw_fbin2freq(pRdEdgesPower[i].bChannel, is2GHz)) {
292			twiceMaxEdgePower = CTL_EDGE_TPOWER(pRdEdgesPower[i].ctl);
293			break;
294		} else if ((i > 0) &&
295			   (freq < ath9k_hw_fbin2freq(pRdEdgesPower[i].bChannel,
296						      is2GHz))) {
297			if (ath9k_hw_fbin2freq(pRdEdgesPower[i - 1].bChannel,
298					       is2GHz) < freq &&
299			    CTL_EDGE_FLAGS(pRdEdgesPower[i - 1].ctl)) {
300				twiceMaxEdgePower =
301					CTL_EDGE_TPOWER(pRdEdgesPower[i - 1].ctl);
302			}
303			break;
304		}
305	}
306
307	return twiceMaxEdgePower;
308}
309
310u16 ath9k_hw_get_scaled_power(struct ath_hw *ah, u16 power_limit,
311			      u8 antenna_reduction)
312{
313	u16 reduction = antenna_reduction;
314
315	/*
316	 * Reduce scaled Power by number of chains active
317	 * to get the per chain tx power level.
318	 */
319	switch (ar5416_get_ntxchains(ah->txchainmask)) {
320	case 1:
321		break;
322	case 2:
323		reduction += POWER_CORRECTION_FOR_TWO_CHAIN;
324		break;
325	case 3:
326		reduction += POWER_CORRECTION_FOR_THREE_CHAIN;
327		break;
328	}
329
330	if (power_limit > reduction)
331		power_limit -= reduction;
332	else
333		power_limit = 0;
334
335	return power_limit;
336}
337
338void ath9k_hw_update_regulatory_maxpower(struct ath_hw *ah)
339{
340	struct ath_common *common = ath9k_hw_common(ah);
341	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
342
343	switch (ar5416_get_ntxchains(ah->txchainmask)) {
344	case 1:
345		break;
346	case 2:
347		regulatory->max_power_level += POWER_CORRECTION_FOR_TWO_CHAIN;
348		break;
349	case 3:
350		regulatory->max_power_level += POWER_CORRECTION_FOR_THREE_CHAIN;
351		break;
352	default:
353		ath_dbg(common, EEPROM, "Invalid chainmask configuration\n");
 
354		break;
355	}
356}
357
358void ath9k_hw_get_gain_boundaries_pdadcs(struct ath_hw *ah,
359				struct ath9k_channel *chan,
360				void *pRawDataSet,
361				u8 *bChans, u16 availPiers,
362				u16 tPdGainOverlap,
363				u16 *pPdGainBoundaries, u8 *pPDADCValues,
364				u16 numXpdGains)
365{
366	int i, j, k;
367	int16_t ss;
368	u16 idxL = 0, idxR = 0, numPiers;
369	static u8 vpdTableL[AR5416_NUM_PD_GAINS]
370		[AR5416_MAX_PWR_RANGE_IN_HALF_DB];
371	static u8 vpdTableR[AR5416_NUM_PD_GAINS]
372		[AR5416_MAX_PWR_RANGE_IN_HALF_DB];
373	static u8 vpdTableI[AR5416_NUM_PD_GAINS]
374		[AR5416_MAX_PWR_RANGE_IN_HALF_DB];
375
376	u8 *pVpdL, *pVpdR, *pPwrL, *pPwrR;
377	u8 minPwrT4[AR5416_NUM_PD_GAINS];
378	u8 maxPwrT4[AR5416_NUM_PD_GAINS];
379	int16_t vpdStep;
380	int16_t tmpVal;
381	u16 sizeCurrVpdTable, maxIndex, tgtIndex;
382	bool match;
383	int16_t minDelta = 0;
384	struct chan_centers centers;
385	int pdgain_boundary_default;
386	struct cal_data_per_freq *data_def = pRawDataSet;
387	struct cal_data_per_freq_4k *data_4k = pRawDataSet;
388	struct cal_data_per_freq_ar9287 *data_9287 = pRawDataSet;
389	bool eeprom_4k = AR_SREV_9285(ah) || AR_SREV_9271(ah);
390	int intercepts;
391
392	if (AR_SREV_9287(ah))
393		intercepts = AR9287_PD_GAIN_ICEPTS;
394	else
395		intercepts = AR5416_PD_GAIN_ICEPTS;
396
397	memset(&minPwrT4, 0, AR5416_NUM_PD_GAINS);
398	ath9k_hw_get_channel_centers(ah, chan, &centers);
399
400	for (numPiers = 0; numPiers < availPiers; numPiers++) {
401		if (bChans[numPiers] == AR5416_BCHAN_UNUSED)
402			break;
403	}
404
405	match = ath9k_hw_get_lower_upper_index((u8)FREQ2FBIN(centers.synth_center,
406							     IS_CHAN_2GHZ(chan)),
407					       bChans, numPiers, &idxL, &idxR);
408
409	if (match) {
410		if (AR_SREV_9287(ah)) {
411			/* FIXME: array overrun? */
412			for (i = 0; i < numXpdGains; i++) {
413				minPwrT4[i] = data_9287[idxL].pwrPdg[i][0];
414				maxPwrT4[i] = data_9287[idxL].pwrPdg[i][4];
415				ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
416						data_9287[idxL].pwrPdg[i],
417						data_9287[idxL].vpdPdg[i],
418						intercepts,
419						vpdTableI[i]);
420			}
421		} else if (eeprom_4k) {
422			for (i = 0; i < numXpdGains; i++) {
423				minPwrT4[i] = data_4k[idxL].pwrPdg[i][0];
424				maxPwrT4[i] = data_4k[idxL].pwrPdg[i][4];
425				ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
426						data_4k[idxL].pwrPdg[i],
427						data_4k[idxL].vpdPdg[i],
428						intercepts,
429						vpdTableI[i]);
430			}
431		} else {
432			for (i = 0; i < numXpdGains; i++) {
433				minPwrT4[i] = data_def[idxL].pwrPdg[i][0];
434				maxPwrT4[i] = data_def[idxL].pwrPdg[i][4];
435				ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
436						data_def[idxL].pwrPdg[i],
437						data_def[idxL].vpdPdg[i],
438						intercepts,
439						vpdTableI[i]);
440			}
441		}
442	} else {
443		for (i = 0; i < numXpdGains; i++) {
444			if (AR_SREV_9287(ah)) {
445				pVpdL = data_9287[idxL].vpdPdg[i];
446				pPwrL = data_9287[idxL].pwrPdg[i];
447				pVpdR = data_9287[idxR].vpdPdg[i];
448				pPwrR = data_9287[idxR].pwrPdg[i];
449			} else if (eeprom_4k) {
450				pVpdL = data_4k[idxL].vpdPdg[i];
451				pPwrL = data_4k[idxL].pwrPdg[i];
452				pVpdR = data_4k[idxR].vpdPdg[i];
453				pPwrR = data_4k[idxR].pwrPdg[i];
454			} else {
455				pVpdL = data_def[idxL].vpdPdg[i];
456				pPwrL = data_def[idxL].pwrPdg[i];
457				pVpdR = data_def[idxR].vpdPdg[i];
458				pPwrR = data_def[idxR].pwrPdg[i];
459			}
460
461			minPwrT4[i] = max(pPwrL[0], pPwrR[0]);
462
463			maxPwrT4[i] =
464				min(pPwrL[intercepts - 1],
465				    pPwrR[intercepts - 1]);
466
467
468			ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
469						pPwrL, pVpdL,
470						intercepts,
471						vpdTableL[i]);
472			ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
473						pPwrR, pVpdR,
474						intercepts,
475						vpdTableR[i]);
476
477			for (j = 0; j <= (maxPwrT4[i] - minPwrT4[i]) / 2; j++) {
478				vpdTableI[i][j] =
479					(u8)(ath9k_hw_interpolate((u16)
480					     FREQ2FBIN(centers.
481						       synth_center,
482						       IS_CHAN_2GHZ
483						       (chan)),
484					     bChans[idxL], bChans[idxR],
485					     vpdTableL[i][j], vpdTableR[i][j]));
486			}
487		}
488	}
489
490	k = 0;
491
492	for (i = 0; i < numXpdGains; i++) {
493		if (i == (numXpdGains - 1))
494			pPdGainBoundaries[i] =
495				(u16)(maxPwrT4[i] / 2);
496		else
497			pPdGainBoundaries[i] =
498				(u16)((maxPwrT4[i] + minPwrT4[i + 1]) / 4);
499
500		pPdGainBoundaries[i] =
501			min((u16)MAX_RATE_POWER, pPdGainBoundaries[i]);
502
503		minDelta = 0;
 
 
 
 
 
504
505		if (i == 0) {
506			if (AR_SREV_9280_20_OR_LATER(ah))
507				ss = (int16_t)(0 - (minPwrT4[i] / 2));
508			else
509				ss = 0;
510		} else {
511			ss = (int16_t)((pPdGainBoundaries[i - 1] -
512					(minPwrT4[i] / 2)) -
513				       tPdGainOverlap + 1 + minDelta);
514		}
515		vpdStep = (int16_t)(vpdTableI[i][1] - vpdTableI[i][0]);
516		vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
517
518		while ((ss < 0) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
519			tmpVal = (int16_t)(vpdTableI[i][0] + ss * vpdStep);
520			pPDADCValues[k++] = (u8)((tmpVal < 0) ? 0 : tmpVal);
521			ss++;
522		}
523
524		sizeCurrVpdTable = (u8) ((maxPwrT4[i] - minPwrT4[i]) / 2 + 1);
525		tgtIndex = (u8)(pPdGainBoundaries[i] + tPdGainOverlap -
526				(minPwrT4[i] / 2));
527		maxIndex = (tgtIndex < sizeCurrVpdTable) ?
528			tgtIndex : sizeCurrVpdTable;
529
530		while ((ss < maxIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
531			pPDADCValues[k++] = vpdTableI[i][ss++];
532		}
533
534		vpdStep = (int16_t)(vpdTableI[i][sizeCurrVpdTable - 1] -
535				    vpdTableI[i][sizeCurrVpdTable - 2]);
536		vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
537
538		if (tgtIndex >= maxIndex) {
539			while ((ss <= tgtIndex) &&
540			       (k < (AR5416_NUM_PDADC_VALUES - 1))) {
541				tmpVal = (int16_t)((vpdTableI[i][sizeCurrVpdTable - 1] +
542						    (ss - maxIndex + 1) * vpdStep));
543				pPDADCValues[k++] = (u8)((tmpVal > 255) ?
544							 255 : tmpVal);
545				ss++;
546			}
547		}
548	}
549
550	if (eeprom_4k)
551		pdgain_boundary_default = 58;
552	else
553		pdgain_boundary_default = pPdGainBoundaries[i - 1];
554
555	while (i < AR5416_PD_GAINS_IN_MASK) {
556		pPdGainBoundaries[i] = pdgain_boundary_default;
557		i++;
558	}
559
560	while (k < AR5416_NUM_PDADC_VALUES) {
561		pPDADCValues[k] = pPDADCValues[k - 1];
562		k++;
563	}
564}
565
566int ath9k_hw_eeprom_init(struct ath_hw *ah)
567{
568	int status;
569
570	if (AR_SREV_9300_20_OR_LATER(ah))
571		ah->eep_ops = &eep_ar9300_ops;
572	else if (AR_SREV_9287(ah)) {
573		ah->eep_ops = &eep_ar9287_ops;
574	} else if (AR_SREV_9285(ah) || AR_SREV_9271(ah)) {
575		ah->eep_ops = &eep_4k_ops;
576	} else {
577		ah->eep_ops = &eep_def_ops;
578	}
579
580	if (!ah->eep_ops->fill_eeprom(ah))
581		return -EIO;
582
583	status = ah->eep_ops->check_eeprom(ah);
584
585	return status;
586}