Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * EMIF driver
   4 *
   5 * Copyright (C) 2012 Texas Instruments, Inc.
   6 *
   7 * Aneesh V <aneesh@ti.com>
   8 * Santosh Shilimkar <santosh.shilimkar@ti.com>
   9 */
  10#include <linux/err.h>
  11#include <linux/kernel.h>
  12#include <linux/reboot.h>
  13#include <linux/platform_data/emif_plat.h>
  14#include <linux/io.h>
  15#include <linux/device.h>
  16#include <linux/platform_device.h>
  17#include <linux/interrupt.h>
  18#include <linux/slab.h>
  19#include <linux/of.h>
  20#include <linux/debugfs.h>
  21#include <linux/seq_file.h>
  22#include <linux/module.h>
  23#include <linux/list.h>
  24#include <linux/spinlock.h>
  25#include <linux/pm.h>
  26
  27#include "emif.h"
  28#include "jedec_ddr.h"
  29#include "of_memory.h"
  30
  31/**
  32 * struct emif_data - Per device static data for driver's use
  33 * @duplicate:			Whether the DDR devices attached to this EMIF
  34 *				instance are exactly same as that on EMIF1. In
  35 *				this case we can save some memory and processing
  36 * @temperature_level:		Maximum temperature of LPDDR2 devices attached
  37 *				to this EMIF - read from MR4 register. If there
  38 *				are two devices attached to this EMIF, this
  39 *				value is the maximum of the two temperature
  40 *				levels.
  41 * @node:			node in the device list
  42 * @base:			base address of memory-mapped IO registers.
  43 * @dev:			device pointer.
  44 * @regs_cache:			An array of 'struct emif_regs' that stores
  45 *				calculated register values for different
  46 *				frequencies, to avoid re-calculating them on
  47 *				each DVFS transition.
  48 * @curr_regs:			The set of register values used in the last
  49 *				frequency change (i.e. corresponding to the
  50 *				frequency in effect at the moment)
  51 * @plat_data:			Pointer to saved platform data.
  52 * @debugfs_root:		dentry to the root folder for EMIF in debugfs
  53 * @np_ddr:			Pointer to ddr device tree node
  54 */
  55struct emif_data {
  56	u8				duplicate;
  57	u8				temperature_level;
  58	u8				lpmode;
  59	struct list_head		node;
  60	unsigned long			irq_state;
  61	void __iomem			*base;
  62	struct device			*dev;
  63	struct emif_regs		*regs_cache[EMIF_MAX_NUM_FREQUENCIES];
  64	struct emif_regs		*curr_regs;
  65	struct emif_platform_data	*plat_data;
  66	struct dentry			*debugfs_root;
  67	struct device_node		*np_ddr;
  68};
  69
  70static struct emif_data *emif1;
  71static DEFINE_SPINLOCK(emif_lock);
  72static unsigned long	irq_state;
  73static LIST_HEAD(device_list);
  74
  75static void do_emif_regdump_show(struct seq_file *s, struct emif_data *emif,
  76	struct emif_regs *regs)
  77{
  78	u32 type = emif->plat_data->device_info->type;
  79	u32 ip_rev = emif->plat_data->ip_rev;
  80
  81	seq_printf(s, "EMIF register cache dump for %dMHz\n",
  82		regs->freq/1000000);
  83
  84	seq_printf(s, "ref_ctrl_shdw\t: 0x%08x\n", regs->ref_ctrl_shdw);
  85	seq_printf(s, "sdram_tim1_shdw\t: 0x%08x\n", regs->sdram_tim1_shdw);
  86	seq_printf(s, "sdram_tim2_shdw\t: 0x%08x\n", regs->sdram_tim2_shdw);
  87	seq_printf(s, "sdram_tim3_shdw\t: 0x%08x\n", regs->sdram_tim3_shdw);
  88
  89	if (ip_rev == EMIF_4D) {
  90		seq_printf(s, "read_idle_ctrl_shdw_normal\t: 0x%08x\n",
  91			regs->read_idle_ctrl_shdw_normal);
  92		seq_printf(s, "read_idle_ctrl_shdw_volt_ramp\t: 0x%08x\n",
  93			regs->read_idle_ctrl_shdw_volt_ramp);
  94	} else if (ip_rev == EMIF_4D5) {
  95		seq_printf(s, "dll_calib_ctrl_shdw_normal\t: 0x%08x\n",
  96			regs->dll_calib_ctrl_shdw_normal);
  97		seq_printf(s, "dll_calib_ctrl_shdw_volt_ramp\t: 0x%08x\n",
  98			regs->dll_calib_ctrl_shdw_volt_ramp);
  99	}
 100
 101	if (type == DDR_TYPE_LPDDR2_S2 || type == DDR_TYPE_LPDDR2_S4) {
 102		seq_printf(s, "ref_ctrl_shdw_derated\t: 0x%08x\n",
 103			regs->ref_ctrl_shdw_derated);
 104		seq_printf(s, "sdram_tim1_shdw_derated\t: 0x%08x\n",
 105			regs->sdram_tim1_shdw_derated);
 106		seq_printf(s, "sdram_tim3_shdw_derated\t: 0x%08x\n",
 107			regs->sdram_tim3_shdw_derated);
 108	}
 109}
 110
 111static int emif_regdump_show(struct seq_file *s, void *unused)
 112{
 113	struct emif_data	*emif	= s->private;
 114	struct emif_regs	**regs_cache;
 115	int			i;
 116
 117	if (emif->duplicate)
 118		regs_cache = emif1->regs_cache;
 119	else
 120		regs_cache = emif->regs_cache;
 121
 122	for (i = 0; i < EMIF_MAX_NUM_FREQUENCIES && regs_cache[i]; i++) {
 123		do_emif_regdump_show(s, emif, regs_cache[i]);
 124		seq_putc(s, '\n');
 125	}
 126
 127	return 0;
 128}
 129
 130DEFINE_SHOW_ATTRIBUTE(emif_regdump);
 131
 132static int emif_mr4_show(struct seq_file *s, void *unused)
 133{
 134	struct emif_data *emif = s->private;
 135
 136	seq_printf(s, "MR4=%d\n", emif->temperature_level);
 137	return 0;
 138}
 139
 140DEFINE_SHOW_ATTRIBUTE(emif_mr4);
 141
 142static void emif_debugfs_init(struct emif_data *emif)
 143{
 144	if (IS_ENABLED(CONFIG_DEBUG_FS)) {
 145		emif->debugfs_root = debugfs_create_dir(dev_name(emif->dev), NULL);
 146		debugfs_create_file("regcache_dump", S_IRUGO, emif->debugfs_root, emif,
 147				    &emif_regdump_fops);
 148		debugfs_create_file("mr4", S_IRUGO, emif->debugfs_root, emif,
 149				    &emif_mr4_fops);
 150	}
 151}
 152
 153static void emif_debugfs_exit(struct emif_data *emif)
 154{
 155	if (IS_ENABLED(CONFIG_DEBUG_FS)) {
 156		debugfs_remove_recursive(emif->debugfs_root);
 157		emif->debugfs_root = NULL;
 158	}
 159}
 160
 161/*
 162 * Get bus width used by EMIF. Note that this may be different from the
 163 * bus width of the DDR devices used. For instance two 16-bit DDR devices
 164 * may be connected to a given CS of EMIF. In this case bus width as far
 165 * as EMIF is concerned is 32, where as the DDR bus width is 16 bits.
 166 */
 167static u32 get_emif_bus_width(struct emif_data *emif)
 168{
 169	u32		width;
 170	void __iomem	*base = emif->base;
 171
 172	width = (readl(base + EMIF_SDRAM_CONFIG) & NARROW_MODE_MASK)
 173			>> NARROW_MODE_SHIFT;
 174	width = width == 0 ? 32 : 16;
 175
 176	return width;
 177}
 178
 179static void set_lpmode(struct emif_data *emif, u8 lpmode)
 180{
 181	u32 temp;
 182	void __iomem *base = emif->base;
 183
 184	/*
 185	 * Workaround for errata i743 - LPDDR2 Power-Down State is Not
 186	 * Efficient
 187	 *
 188	 * i743 DESCRIPTION:
 189	 * The EMIF supports power-down state for low power. The EMIF
 190	 * automatically puts the SDRAM into power-down after the memory is
 191	 * not accessed for a defined number of cycles and the
 192	 * EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE bit field is set to 0x4.
 193	 * As the EMIF supports automatic output impedance calibration, a ZQ
 194	 * calibration long command is issued every time it exits active
 195	 * power-down and precharge power-down modes. The EMIF waits and
 196	 * blocks any other command during this calibration.
 197	 * The EMIF does not allow selective disabling of ZQ calibration upon
 198	 * exit of power-down mode. Due to very short periods of power-down
 199	 * cycles, ZQ calibration overhead creates bandwidth issues and
 200	 * increases overall system power consumption. On the other hand,
 201	 * issuing ZQ calibration long commands when exiting self-refresh is
 202	 * still required.
 203	 *
 204	 * WORKAROUND
 205	 * Because there is no power consumption benefit of the power-down due
 206	 * to the calibration and there is a performance risk, the guideline
 207	 * is to not allow power-down state and, therefore, to not have set
 208	 * the EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE bit field to 0x4.
 209	 */
 210	if ((emif->plat_data->ip_rev == EMIF_4D) &&
 211	    (lpmode == EMIF_LP_MODE_PWR_DN)) {
 212		WARN_ONCE(1,
 213			  "REG_LP_MODE = LP_MODE_PWR_DN(4) is prohibited by erratum i743 switch to LP_MODE_SELF_REFRESH(2)\n");
 214		/* rollback LP_MODE to Self-refresh mode */
 215		lpmode = EMIF_LP_MODE_SELF_REFRESH;
 216	}
 217
 218	temp = readl(base + EMIF_POWER_MANAGEMENT_CONTROL);
 219	temp &= ~LP_MODE_MASK;
 220	temp |= (lpmode << LP_MODE_SHIFT);
 221	writel(temp, base + EMIF_POWER_MANAGEMENT_CONTROL);
 222}
 223
 224static void do_freq_update(void)
 225{
 226	struct emif_data *emif;
 227
 228	/*
 229	 * Workaround for errata i728: Disable LPMODE during FREQ_UPDATE
 230	 *
 231	 * i728 DESCRIPTION:
 232	 * The EMIF automatically puts the SDRAM into self-refresh mode
 233	 * after the EMIF has not performed accesses during
 234	 * EMIF_PWR_MGMT_CTRL[7:4] REG_SR_TIM number of DDR clock cycles
 235	 * and the EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE bit field is set
 236	 * to 0x2. If during a small window the following three events
 237	 * occur:
 238	 * - The SR_TIMING counter expires
 239	 * - And frequency change is requested
 240	 * - And OCP access is requested
 241	 * Then it causes instable clock on the DDR interface.
 242	 *
 243	 * WORKAROUND
 244	 * To avoid the occurrence of the three events, the workaround
 245	 * is to disable the self-refresh when requesting a frequency
 246	 * change. Before requesting a frequency change the software must
 247	 * program EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE to 0x0. When the
 248	 * frequency change has been done, the software can reprogram
 249	 * EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE to 0x2
 250	 */
 251	list_for_each_entry(emif, &device_list, node) {
 252		if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH)
 253			set_lpmode(emif, EMIF_LP_MODE_DISABLE);
 254	}
 255
 256	/*
 257	 * TODO: Do FREQ_UPDATE here when an API
 258	 * is available for this as part of the new
 259	 * clock framework
 260	 */
 261
 262	list_for_each_entry(emif, &device_list, node) {
 263		if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH)
 264			set_lpmode(emif, EMIF_LP_MODE_SELF_REFRESH);
 265	}
 266}
 267
 268/* Find addressing table entry based on the device's type and density */
 269static const struct lpddr2_addressing *get_addressing_table(
 270	const struct ddr_device_info *device_info)
 271{
 272	u32		index, type, density;
 273
 274	type = device_info->type;
 275	density = device_info->density;
 276
 277	switch (type) {
 278	case DDR_TYPE_LPDDR2_S4:
 279		index = density - 1;
 280		break;
 281	case DDR_TYPE_LPDDR2_S2:
 282		switch (density) {
 283		case DDR_DENSITY_1Gb:
 284		case DDR_DENSITY_2Gb:
 285			index = density + 3;
 286			break;
 287		default:
 288			index = density - 1;
 289		}
 290		break;
 291	default:
 292		return NULL;
 293	}
 294
 295	return &lpddr2_jedec_addressing_table[index];
 296}
 297
 298static u32 get_zq_config_reg(const struct lpddr2_addressing *addressing,
 299		bool cs1_used, bool cal_resistors_per_cs)
 300{
 301	u32 zq = 0, val = 0;
 302
 303	val = EMIF_ZQCS_INTERVAL_US * 1000 / addressing->tREFI_ns;
 304	zq |= val << ZQ_REFINTERVAL_SHIFT;
 305
 306	val = DIV_ROUND_UP(T_ZQCL_DEFAULT_NS, T_ZQCS_DEFAULT_NS) - 1;
 307	zq |= val << ZQ_ZQCL_MULT_SHIFT;
 308
 309	val = DIV_ROUND_UP(T_ZQINIT_DEFAULT_NS, T_ZQCL_DEFAULT_NS) - 1;
 310	zq |= val << ZQ_ZQINIT_MULT_SHIFT;
 311
 312	zq |= ZQ_SFEXITEN_ENABLE << ZQ_SFEXITEN_SHIFT;
 313
 314	if (cal_resistors_per_cs)
 315		zq |= ZQ_DUALCALEN_ENABLE << ZQ_DUALCALEN_SHIFT;
 316	else
 317		zq |= ZQ_DUALCALEN_DISABLE << ZQ_DUALCALEN_SHIFT;
 318
 319	zq |= ZQ_CS0EN_MASK; /* CS0 is used for sure */
 320
 321	val = cs1_used ? 1 : 0;
 322	zq |= val << ZQ_CS1EN_SHIFT;
 323
 324	return zq;
 325}
 326
 327static u32 get_temp_alert_config(const struct lpddr2_addressing *addressing,
 328		const struct emif_custom_configs *custom_configs, bool cs1_used,
 329		u32 sdram_io_width, u32 emif_bus_width)
 330{
 331	u32 alert = 0, interval, devcnt;
 332
 333	if (custom_configs && (custom_configs->mask &
 334				EMIF_CUSTOM_CONFIG_TEMP_ALERT_POLL_INTERVAL))
 335		interval = custom_configs->temp_alert_poll_interval_ms;
 336	else
 337		interval = TEMP_ALERT_POLL_INTERVAL_DEFAULT_MS;
 338
 339	interval *= 1000000;			/* Convert to ns */
 340	interval /= addressing->tREFI_ns;	/* Convert to refresh cycles */
 341	alert |= (interval << TA_REFINTERVAL_SHIFT);
 342
 343	/*
 344	 * sdram_io_width is in 'log2(x) - 1' form. Convert emif_bus_width
 345	 * also to this form and subtract to get TA_DEVCNT, which is
 346	 * in log2(x) form.
 347	 */
 348	emif_bus_width = __fls(emif_bus_width) - 1;
 349	devcnt = emif_bus_width - sdram_io_width;
 350	alert |= devcnt << TA_DEVCNT_SHIFT;
 351
 352	/* DEVWDT is in 'log2(x) - 3' form */
 353	alert |= (sdram_io_width - 2) << TA_DEVWDT_SHIFT;
 354
 355	alert |= 1 << TA_SFEXITEN_SHIFT;
 356	alert |= 1 << TA_CS0EN_SHIFT;
 357	alert |= (cs1_used ? 1 : 0) << TA_CS1EN_SHIFT;
 358
 359	return alert;
 360}
 361
 362static u32 get_pwr_mgmt_ctrl(u32 freq, struct emif_data *emif, u32 ip_rev)
 363{
 364	u32 pwr_mgmt_ctrl	= 0, timeout;
 365	u32 lpmode		= EMIF_LP_MODE_SELF_REFRESH;
 366	u32 timeout_perf	= EMIF_LP_MODE_TIMEOUT_PERFORMANCE;
 367	u32 timeout_pwr		= EMIF_LP_MODE_TIMEOUT_POWER;
 368	u32 freq_threshold	= EMIF_LP_MODE_FREQ_THRESHOLD;
 369	u32 mask;
 370	u8 shift;
 371
 372	struct emif_custom_configs *cust_cfgs = emif->plat_data->custom_configs;
 373
 374	if (cust_cfgs && (cust_cfgs->mask & EMIF_CUSTOM_CONFIG_LPMODE)) {
 375		lpmode		= cust_cfgs->lpmode;
 376		timeout_perf	= cust_cfgs->lpmode_timeout_performance;
 377		timeout_pwr	= cust_cfgs->lpmode_timeout_power;
 378		freq_threshold  = cust_cfgs->lpmode_freq_threshold;
 379	}
 380
 381	/* Timeout based on DDR frequency */
 382	timeout = freq >= freq_threshold ? timeout_perf : timeout_pwr;
 383
 384	/*
 385	 * The value to be set in register is "log2(timeout) - 3"
 386	 * if timeout < 16 load 0 in register
 387	 * if timeout is not a power of 2, round to next highest power of 2
 388	 */
 389	if (timeout < 16) {
 390		timeout = 0;
 391	} else {
 392		if (timeout & (timeout - 1))
 393			timeout <<= 1;
 394		timeout = __fls(timeout) - 3;
 395	}
 396
 397	switch (lpmode) {
 398	case EMIF_LP_MODE_CLOCK_STOP:
 399		shift = CS_TIM_SHIFT;
 400		mask = CS_TIM_MASK;
 401		break;
 402	case EMIF_LP_MODE_SELF_REFRESH:
 403		/* Workaround for errata i735 */
 404		if (timeout < 6)
 405			timeout = 6;
 406
 407		shift = SR_TIM_SHIFT;
 408		mask = SR_TIM_MASK;
 409		break;
 410	case EMIF_LP_MODE_PWR_DN:
 411		shift = PD_TIM_SHIFT;
 412		mask = PD_TIM_MASK;
 413		break;
 414	case EMIF_LP_MODE_DISABLE:
 415	default:
 416		mask = 0;
 417		shift = 0;
 418		break;
 419	}
 420	/* Round to maximum in case of overflow, BUT warn! */
 421	if (lpmode != EMIF_LP_MODE_DISABLE && timeout > mask >> shift) {
 422		pr_err("TIMEOUT Overflow - lpmode=%d perf=%d pwr=%d freq=%d\n",
 423		       lpmode,
 424		       timeout_perf,
 425		       timeout_pwr,
 426		       freq_threshold);
 427		WARN(1, "timeout=0x%02x greater than 0x%02x. Using max\n",
 428		     timeout, mask >> shift);
 429		timeout = mask >> shift;
 430	}
 431
 432	/* Setup required timing */
 433	pwr_mgmt_ctrl = (timeout << shift) & mask;
 434	/* setup a default mask for rest of the modes */
 435	pwr_mgmt_ctrl |= (SR_TIM_MASK | CS_TIM_MASK | PD_TIM_MASK) &
 436			  ~mask;
 437
 438	/* No CS_TIM in EMIF_4D5 */
 439	if (ip_rev == EMIF_4D5)
 440		pwr_mgmt_ctrl &= ~CS_TIM_MASK;
 441
 442	pwr_mgmt_ctrl |= lpmode << LP_MODE_SHIFT;
 443
 444	return pwr_mgmt_ctrl;
 445}
 446
 447/*
 448 * Get the temperature level of the EMIF instance:
 449 * Reads the MR4 register of attached SDRAM parts to find out the temperature
 450 * level. If there are two parts attached(one on each CS), then the temperature
 451 * level for the EMIF instance is the higher of the two temperatures.
 452 */
 453static void get_temperature_level(struct emif_data *emif)
 454{
 455	u32		temp, temperature_level;
 456	void __iomem	*base;
 457
 458	base = emif->base;
 459
 460	/* Read mode register 4 */
 461	writel(DDR_MR4, base + EMIF_LPDDR2_MODE_REG_CONFIG);
 462	temperature_level = readl(base + EMIF_LPDDR2_MODE_REG_DATA);
 463	temperature_level = (temperature_level & MR4_SDRAM_REF_RATE_MASK) >>
 464				MR4_SDRAM_REF_RATE_SHIFT;
 465
 466	if (emif->plat_data->device_info->cs1_used) {
 467		writel(DDR_MR4 | CS_MASK, base + EMIF_LPDDR2_MODE_REG_CONFIG);
 468		temp = readl(base + EMIF_LPDDR2_MODE_REG_DATA);
 469		temp = (temp & MR4_SDRAM_REF_RATE_MASK)
 470				>> MR4_SDRAM_REF_RATE_SHIFT;
 471		temperature_level = max(temp, temperature_level);
 472	}
 473
 474	/* treat everything less than nominal(3) in MR4 as nominal */
 475	if (unlikely(temperature_level < SDRAM_TEMP_NOMINAL))
 476		temperature_level = SDRAM_TEMP_NOMINAL;
 477
 478	/* if we get reserved value in MR4 persist with the existing value */
 479	if (likely(temperature_level != SDRAM_TEMP_RESERVED_4))
 480		emif->temperature_level = temperature_level;
 481}
 482
 483/*
 484 * setup_temperature_sensitive_regs() - set the timings for temperature
 485 * sensitive registers. This happens once at initialisation time based
 486 * on the temperature at boot time and subsequently based on the temperature
 487 * alert interrupt. Temperature alert can happen when the temperature
 488 * increases or drops. So this function can have the effect of either
 489 * derating the timings or going back to nominal values.
 490 */
 491static void setup_temperature_sensitive_regs(struct emif_data *emif,
 492		struct emif_regs *regs)
 493{
 494	u32		tim1, tim3, ref_ctrl, type;
 495	void __iomem	*base = emif->base;
 496	u32		temperature;
 497
 498	type = emif->plat_data->device_info->type;
 499
 500	tim1 = regs->sdram_tim1_shdw;
 501	tim3 = regs->sdram_tim3_shdw;
 502	ref_ctrl = regs->ref_ctrl_shdw;
 503
 504	/* No de-rating for non-lpddr2 devices */
 505	if (type != DDR_TYPE_LPDDR2_S2 && type != DDR_TYPE_LPDDR2_S4)
 506		goto out;
 507
 508	temperature = emif->temperature_level;
 509	if (temperature == SDRAM_TEMP_HIGH_DERATE_REFRESH) {
 510		ref_ctrl = regs->ref_ctrl_shdw_derated;
 511	} else if (temperature == SDRAM_TEMP_HIGH_DERATE_REFRESH_AND_TIMINGS) {
 512		tim1 = regs->sdram_tim1_shdw_derated;
 513		tim3 = regs->sdram_tim3_shdw_derated;
 514		ref_ctrl = regs->ref_ctrl_shdw_derated;
 515	}
 516
 517out:
 518	writel(tim1, base + EMIF_SDRAM_TIMING_1_SHDW);
 519	writel(tim3, base + EMIF_SDRAM_TIMING_3_SHDW);
 520	writel(ref_ctrl, base + EMIF_SDRAM_REFRESH_CTRL_SHDW);
 521}
 522
 523static irqreturn_t handle_temp_alert(void __iomem *base, struct emif_data *emif)
 524{
 525	u32		old_temp_level;
 526	irqreturn_t	ret = IRQ_HANDLED;
 527	struct emif_custom_configs *custom_configs;
 528
 529	spin_lock_irqsave(&emif_lock, irq_state);
 530	old_temp_level = emif->temperature_level;
 531	get_temperature_level(emif);
 532
 533	if (unlikely(emif->temperature_level == old_temp_level)) {
 534		goto out;
 535	} else if (!emif->curr_regs) {
 536		dev_err(emif->dev, "temperature alert before registers are calculated, not de-rating timings\n");
 537		goto out;
 538	}
 539
 540	custom_configs = emif->plat_data->custom_configs;
 541
 542	/*
 543	 * IF we detect higher than "nominal rating" from DDR sensor
 544	 * on an unsupported DDR part, shutdown system
 545	 */
 546	if (custom_configs && !(custom_configs->mask &
 547				EMIF_CUSTOM_CONFIG_EXTENDED_TEMP_PART)) {
 548		if (emif->temperature_level >= SDRAM_TEMP_HIGH_DERATE_REFRESH) {
 549			dev_err(emif->dev,
 550				"%s:NOT Extended temperature capable memory. Converting MR4=0x%02x as shutdown event\n",
 551				__func__, emif->temperature_level);
 552			/*
 553			 * Temperature far too high - do kernel_power_off()
 554			 * from thread context
 555			 */
 556			emif->temperature_level = SDRAM_TEMP_VERY_HIGH_SHUTDOWN;
 557			ret = IRQ_WAKE_THREAD;
 558			goto out;
 559		}
 560	}
 561
 562	if (emif->temperature_level < old_temp_level ||
 563		emif->temperature_level == SDRAM_TEMP_VERY_HIGH_SHUTDOWN) {
 564		/*
 565		 * Temperature coming down - defer handling to thread OR
 566		 * Temperature far too high - do kernel_power_off() from
 567		 * thread context
 568		 */
 569		ret = IRQ_WAKE_THREAD;
 570	} else {
 571		/* Temperature is going up - handle immediately */
 572		setup_temperature_sensitive_regs(emif, emif->curr_regs);
 573		do_freq_update();
 574	}
 575
 576out:
 577	spin_unlock_irqrestore(&emif_lock, irq_state);
 578	return ret;
 579}
 580
 581static irqreturn_t emif_interrupt_handler(int irq, void *dev_id)
 582{
 583	u32			interrupts;
 584	struct emif_data	*emif = dev_id;
 585	void __iomem		*base = emif->base;
 586	struct device		*dev = emif->dev;
 587	irqreturn_t		ret = IRQ_HANDLED;
 588
 589	/* Save the status and clear it */
 590	interrupts = readl(base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS);
 591	writel(interrupts, base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS);
 592
 593	/*
 594	 * Handle temperature alert
 595	 * Temperature alert should be same for all ports
 596	 * So, it's enough to process it only for one of the ports
 597	 */
 598	if (interrupts & TA_SYS_MASK)
 599		ret = handle_temp_alert(base, emif);
 600
 601	if (interrupts & ERR_SYS_MASK)
 602		dev_err(dev, "Access error from SYS port - %x\n", interrupts);
 603
 604	if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE) {
 605		/* Save the status and clear it */
 606		interrupts = readl(base + EMIF_LL_OCP_INTERRUPT_STATUS);
 607		writel(interrupts, base + EMIF_LL_OCP_INTERRUPT_STATUS);
 608
 609		if (interrupts & ERR_LL_MASK)
 610			dev_err(dev, "Access error from LL port - %x\n",
 611				interrupts);
 612	}
 613
 614	return ret;
 615}
 616
 617static irqreturn_t emif_threaded_isr(int irq, void *dev_id)
 618{
 619	struct emif_data	*emif = dev_id;
 620
 621	if (emif->temperature_level == SDRAM_TEMP_VERY_HIGH_SHUTDOWN) {
 622		dev_emerg(emif->dev, "SDRAM temperature exceeds operating limit.. Needs shut down!!!\n");
 623
 624		/* If we have Power OFF ability, use it, else try restarting */
 625		if (kernel_can_power_off()) {
 626			kernel_power_off();
 627		} else {
 628			WARN(1, "FIXME: NO pm_power_off!!! trying restart\n");
 629			kernel_restart("SDRAM Over-temp Emergency restart");
 630		}
 631		return IRQ_HANDLED;
 632	}
 633
 634	spin_lock_irqsave(&emif_lock, irq_state);
 635
 636	if (emif->curr_regs) {
 637		setup_temperature_sensitive_regs(emif, emif->curr_regs);
 638		do_freq_update();
 639	} else {
 640		dev_err(emif->dev, "temperature alert before registers are calculated, not de-rating timings\n");
 641	}
 642
 643	spin_unlock_irqrestore(&emif_lock, irq_state);
 644
 645	return IRQ_HANDLED;
 646}
 647
 648static void clear_all_interrupts(struct emif_data *emif)
 649{
 650	void __iomem	*base = emif->base;
 651
 652	writel(readl(base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS),
 653		base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS);
 654	if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE)
 655		writel(readl(base + EMIF_LL_OCP_INTERRUPT_STATUS),
 656			base + EMIF_LL_OCP_INTERRUPT_STATUS);
 657}
 658
 659static void disable_and_clear_all_interrupts(struct emif_data *emif)
 660{
 661	void __iomem		*base = emif->base;
 662
 663	/* Disable all interrupts */
 664	writel(readl(base + EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_SET),
 665		base + EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_CLEAR);
 666	if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE)
 667		writel(readl(base + EMIF_LL_OCP_INTERRUPT_ENABLE_SET),
 668			base + EMIF_LL_OCP_INTERRUPT_ENABLE_CLEAR);
 669
 670	/* Clear all interrupts */
 671	clear_all_interrupts(emif);
 672}
 673
 674static int setup_interrupts(struct emif_data *emif, u32 irq)
 675{
 676	u32		interrupts, type;
 677	void __iomem	*base = emif->base;
 678
 679	type = emif->plat_data->device_info->type;
 680
 681	clear_all_interrupts(emif);
 682
 683	/* Enable interrupts for SYS interface */
 684	interrupts = EN_ERR_SYS_MASK;
 685	if (type == DDR_TYPE_LPDDR2_S2 || type == DDR_TYPE_LPDDR2_S4)
 686		interrupts |= EN_TA_SYS_MASK;
 687	writel(interrupts, base + EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_SET);
 688
 689	/* Enable interrupts for LL interface */
 690	if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE) {
 691		/* TA need not be enabled for LL */
 692		interrupts = EN_ERR_LL_MASK;
 693		writel(interrupts, base + EMIF_LL_OCP_INTERRUPT_ENABLE_SET);
 694	}
 695
 696	/* setup IRQ handlers */
 697	return devm_request_threaded_irq(emif->dev, irq,
 698				    emif_interrupt_handler,
 699				    emif_threaded_isr,
 700				    0, dev_name(emif->dev),
 701				    emif);
 702
 703}
 704
 705static void emif_onetime_settings(struct emif_data *emif)
 706{
 707	u32				pwr_mgmt_ctrl, zq, temp_alert_cfg;
 708	void __iomem			*base = emif->base;
 709	const struct lpddr2_addressing	*addressing;
 710	const struct ddr_device_info	*device_info;
 711
 712	device_info = emif->plat_data->device_info;
 713	addressing = get_addressing_table(device_info);
 714
 715	/*
 716	 * Init power management settings
 717	 * We don't know the frequency yet. Use a high frequency
 718	 * value for a conservative timeout setting
 719	 */
 720	pwr_mgmt_ctrl = get_pwr_mgmt_ctrl(1000000000, emif,
 721			emif->plat_data->ip_rev);
 722	emif->lpmode = (pwr_mgmt_ctrl & LP_MODE_MASK) >> LP_MODE_SHIFT;
 723	writel(pwr_mgmt_ctrl, base + EMIF_POWER_MANAGEMENT_CONTROL);
 724
 725	/* Init ZQ calibration settings */
 726	zq = get_zq_config_reg(addressing, device_info->cs1_used,
 727		device_info->cal_resistors_per_cs);
 728	writel(zq, base + EMIF_SDRAM_OUTPUT_IMPEDANCE_CALIBRATION_CONFIG);
 729
 730	/* Check temperature level temperature level*/
 731	get_temperature_level(emif);
 732	if (emif->temperature_level == SDRAM_TEMP_VERY_HIGH_SHUTDOWN)
 733		dev_emerg(emif->dev, "SDRAM temperature exceeds operating limit.. Needs shut down!!!\n");
 734
 735	/* Init temperature polling */
 736	temp_alert_cfg = get_temp_alert_config(addressing,
 737		emif->plat_data->custom_configs, device_info->cs1_used,
 738		device_info->io_width, get_emif_bus_width(emif));
 739	writel(temp_alert_cfg, base + EMIF_TEMPERATURE_ALERT_CONFIG);
 740
 741	/*
 742	 * Program external PHY control registers that are not frequency
 743	 * dependent
 744	 */
 745	if (emif->plat_data->phy_type != EMIF_PHY_TYPE_INTELLIPHY)
 746		return;
 747	writel(EMIF_EXT_PHY_CTRL_1_VAL, base + EMIF_EXT_PHY_CTRL_1_SHDW);
 748	writel(EMIF_EXT_PHY_CTRL_5_VAL, base + EMIF_EXT_PHY_CTRL_5_SHDW);
 749	writel(EMIF_EXT_PHY_CTRL_6_VAL, base + EMIF_EXT_PHY_CTRL_6_SHDW);
 750	writel(EMIF_EXT_PHY_CTRL_7_VAL, base + EMIF_EXT_PHY_CTRL_7_SHDW);
 751	writel(EMIF_EXT_PHY_CTRL_8_VAL, base + EMIF_EXT_PHY_CTRL_8_SHDW);
 752	writel(EMIF_EXT_PHY_CTRL_9_VAL, base + EMIF_EXT_PHY_CTRL_9_SHDW);
 753	writel(EMIF_EXT_PHY_CTRL_10_VAL, base + EMIF_EXT_PHY_CTRL_10_SHDW);
 754	writel(EMIF_EXT_PHY_CTRL_11_VAL, base + EMIF_EXT_PHY_CTRL_11_SHDW);
 755	writel(EMIF_EXT_PHY_CTRL_12_VAL, base + EMIF_EXT_PHY_CTRL_12_SHDW);
 756	writel(EMIF_EXT_PHY_CTRL_13_VAL, base + EMIF_EXT_PHY_CTRL_13_SHDW);
 757	writel(EMIF_EXT_PHY_CTRL_14_VAL, base + EMIF_EXT_PHY_CTRL_14_SHDW);
 758	writel(EMIF_EXT_PHY_CTRL_15_VAL, base + EMIF_EXT_PHY_CTRL_15_SHDW);
 759	writel(EMIF_EXT_PHY_CTRL_16_VAL, base + EMIF_EXT_PHY_CTRL_16_SHDW);
 760	writel(EMIF_EXT_PHY_CTRL_17_VAL, base + EMIF_EXT_PHY_CTRL_17_SHDW);
 761	writel(EMIF_EXT_PHY_CTRL_18_VAL, base + EMIF_EXT_PHY_CTRL_18_SHDW);
 762	writel(EMIF_EXT_PHY_CTRL_19_VAL, base + EMIF_EXT_PHY_CTRL_19_SHDW);
 763	writel(EMIF_EXT_PHY_CTRL_20_VAL, base + EMIF_EXT_PHY_CTRL_20_SHDW);
 764	writel(EMIF_EXT_PHY_CTRL_21_VAL, base + EMIF_EXT_PHY_CTRL_21_SHDW);
 765	writel(EMIF_EXT_PHY_CTRL_22_VAL, base + EMIF_EXT_PHY_CTRL_22_SHDW);
 766	writel(EMIF_EXT_PHY_CTRL_23_VAL, base + EMIF_EXT_PHY_CTRL_23_SHDW);
 767	writel(EMIF_EXT_PHY_CTRL_24_VAL, base + EMIF_EXT_PHY_CTRL_24_SHDW);
 768}
 769
 770static void get_default_timings(struct emif_data *emif)
 771{
 772	struct emif_platform_data *pd = emif->plat_data;
 773
 774	pd->timings		= lpddr2_jedec_timings;
 775	pd->timings_arr_size	= ARRAY_SIZE(lpddr2_jedec_timings);
 776
 777	dev_warn(emif->dev, "%s: using default timings\n", __func__);
 778}
 779
 780static int is_dev_data_valid(u32 type, u32 density, u32 io_width, u32 phy_type,
 781		u32 ip_rev, struct device *dev)
 782{
 783	int valid;
 784
 785	valid = (type == DDR_TYPE_LPDDR2_S4 ||
 786			type == DDR_TYPE_LPDDR2_S2)
 787		&& (density >= DDR_DENSITY_64Mb
 788			&& density <= DDR_DENSITY_8Gb)
 789		&& (io_width >= DDR_IO_WIDTH_8
 790			&& io_width <= DDR_IO_WIDTH_32);
 791
 792	/* Combinations of EMIF and PHY revisions that we support today */
 793	switch (ip_rev) {
 794	case EMIF_4D:
 795		valid = valid && (phy_type == EMIF_PHY_TYPE_ATTILAPHY);
 796		break;
 797	case EMIF_4D5:
 798		valid = valid && (phy_type == EMIF_PHY_TYPE_INTELLIPHY);
 799		break;
 800	default:
 801		valid = 0;
 802	}
 803
 804	if (!valid)
 805		dev_err(dev, "%s: invalid DDR details\n", __func__);
 806	return valid;
 807}
 808
 809static int is_custom_config_valid(struct emif_custom_configs *cust_cfgs,
 810		struct device *dev)
 811{
 812	int valid = 1;
 813
 814	if ((cust_cfgs->mask & EMIF_CUSTOM_CONFIG_LPMODE) &&
 815		(cust_cfgs->lpmode != EMIF_LP_MODE_DISABLE))
 816		valid = cust_cfgs->lpmode_freq_threshold &&
 817			cust_cfgs->lpmode_timeout_performance &&
 818			cust_cfgs->lpmode_timeout_power;
 819
 820	if (cust_cfgs->mask & EMIF_CUSTOM_CONFIG_TEMP_ALERT_POLL_INTERVAL)
 821		valid = valid && cust_cfgs->temp_alert_poll_interval_ms;
 822
 823	if (!valid)
 824		dev_warn(dev, "%s: invalid custom configs\n", __func__);
 825
 826	return valid;
 827}
 828
 829static void of_get_custom_configs(struct device_node *np_emif,
 830		struct emif_data *emif)
 831{
 832	struct emif_custom_configs	*cust_cfgs = NULL;
 833	int				len;
 834	const __be32			*lpmode, *poll_intvl;
 835
 836	lpmode = of_get_property(np_emif, "low-power-mode", &len);
 837	poll_intvl = of_get_property(np_emif, "temp-alert-poll-interval", &len);
 838
 839	if (lpmode || poll_intvl)
 840		cust_cfgs = devm_kzalloc(emif->dev, sizeof(*cust_cfgs),
 841			GFP_KERNEL);
 842
 843	if (!cust_cfgs)
 844		return;
 845
 846	if (lpmode) {
 847		cust_cfgs->mask |= EMIF_CUSTOM_CONFIG_LPMODE;
 848		cust_cfgs->lpmode = be32_to_cpup(lpmode);
 849		of_property_read_u32(np_emif,
 850				"low-power-mode-timeout-performance",
 851				&cust_cfgs->lpmode_timeout_performance);
 852		of_property_read_u32(np_emif,
 853				"low-power-mode-timeout-power",
 854				&cust_cfgs->lpmode_timeout_power);
 855		of_property_read_u32(np_emif,
 856				"low-power-mode-freq-threshold",
 857				&cust_cfgs->lpmode_freq_threshold);
 858	}
 859
 860	if (poll_intvl) {
 861		cust_cfgs->mask |=
 862				EMIF_CUSTOM_CONFIG_TEMP_ALERT_POLL_INTERVAL;
 863		cust_cfgs->temp_alert_poll_interval_ms =
 864						be32_to_cpup(poll_intvl);
 865	}
 866
 867	if (of_find_property(np_emif, "extended-temp-part", &len))
 868		cust_cfgs->mask |= EMIF_CUSTOM_CONFIG_EXTENDED_TEMP_PART;
 869
 870	if (!is_custom_config_valid(cust_cfgs, emif->dev)) {
 871		devm_kfree(emif->dev, cust_cfgs);
 872		return;
 873	}
 874
 875	emif->plat_data->custom_configs = cust_cfgs;
 876}
 877
 878static void of_get_ddr_info(struct device_node *np_emif,
 879		struct device_node *np_ddr,
 880		struct ddr_device_info *dev_info)
 881{
 882	u32 density = 0, io_width = 0;
 883	int len;
 884
 885	if (of_find_property(np_emif, "cs1-used", &len))
 886		dev_info->cs1_used = true;
 887
 888	if (of_find_property(np_emif, "cal-resistor-per-cs", &len))
 889		dev_info->cal_resistors_per_cs = true;
 890
 891	if (of_device_is_compatible(np_ddr, "jedec,lpddr2-s4"))
 892		dev_info->type = DDR_TYPE_LPDDR2_S4;
 893	else if (of_device_is_compatible(np_ddr, "jedec,lpddr2-s2"))
 894		dev_info->type = DDR_TYPE_LPDDR2_S2;
 895
 896	of_property_read_u32(np_ddr, "density", &density);
 897	of_property_read_u32(np_ddr, "io-width", &io_width);
 898
 899	/* Convert from density in Mb to the density encoding in jedc_ddr.h */
 900	if (density & (density - 1))
 901		dev_info->density = 0;
 902	else
 903		dev_info->density = __fls(density) - 5;
 904
 905	/* Convert from io_width in bits to io_width encoding in jedc_ddr.h */
 906	if (io_width & (io_width - 1))
 907		dev_info->io_width = 0;
 908	else
 909		dev_info->io_width = __fls(io_width) - 1;
 910}
 911
 912static struct emif_data *of_get_memory_device_details(
 913		struct device_node *np_emif, struct device *dev)
 914{
 915	struct emif_data		*emif = NULL;
 916	struct ddr_device_info		*dev_info = NULL;
 917	struct emif_platform_data	*pd = NULL;
 918	struct device_node		*np_ddr;
 919	int				len;
 920
 921	np_ddr = of_parse_phandle(np_emif, "device-handle", 0);
 922	if (!np_ddr)
 923		goto error;
 924	emif	= devm_kzalloc(dev, sizeof(struct emif_data), GFP_KERNEL);
 925	pd	= devm_kzalloc(dev, sizeof(*pd), GFP_KERNEL);
 926	dev_info = devm_kzalloc(dev, sizeof(*dev_info), GFP_KERNEL);
 927
 928	if (!emif || !pd || !dev_info) {
 929		dev_err(dev, "%s: Out of memory!!\n",
 930			__func__);
 931		goto error;
 932	}
 933
 934	emif->plat_data		= pd;
 935	pd->device_info		= dev_info;
 936	emif->dev		= dev;
 937	emif->np_ddr		= np_ddr;
 938	emif->temperature_level	= SDRAM_TEMP_NOMINAL;
 939
 940	if (of_device_is_compatible(np_emif, "ti,emif-4d"))
 941		emif->plat_data->ip_rev = EMIF_4D;
 942	else if (of_device_is_compatible(np_emif, "ti,emif-4d5"))
 943		emif->plat_data->ip_rev = EMIF_4D5;
 944
 945	of_property_read_u32(np_emif, "phy-type", &pd->phy_type);
 946
 947	if (of_find_property(np_emif, "hw-caps-ll-interface", &len))
 948		pd->hw_caps |= EMIF_HW_CAPS_LL_INTERFACE;
 949
 950	of_get_ddr_info(np_emif, np_ddr, dev_info);
 951	if (!is_dev_data_valid(pd->device_info->type, pd->device_info->density,
 952			pd->device_info->io_width, pd->phy_type, pd->ip_rev,
 953			emif->dev)) {
 954		dev_err(dev, "%s: invalid device data!!\n", __func__);
 955		goto error;
 956	}
 957	/*
 958	 * For EMIF instances other than EMIF1 see if the devices connected
 959	 * are exactly same as on EMIF1(which is typically the case). If so,
 960	 * mark it as a duplicate of EMIF1. This will save some memory and
 961	 * computation.
 962	 */
 963	if (emif1 && emif1->np_ddr == np_ddr) {
 964		emif->duplicate = true;
 965		goto out;
 966	} else if (emif1) {
 967		dev_warn(emif->dev, "%s: Non-symmetric DDR geometry\n",
 968			__func__);
 969	}
 970
 971	of_get_custom_configs(np_emif, emif);
 972	emif->plat_data->timings = of_get_ddr_timings(np_ddr, emif->dev,
 973					emif->plat_data->device_info->type,
 974					&emif->plat_data->timings_arr_size);
 975
 976	emif->plat_data->min_tck = of_get_min_tck(np_ddr, emif->dev);
 977	goto out;
 978
 979error:
 980	return NULL;
 981out:
 982	return emif;
 983}
 984
 985static struct emif_data *get_device_details(
 986		struct platform_device *pdev)
 987{
 988	u32				size;
 989	struct emif_data		*emif = NULL;
 990	struct ddr_device_info		*dev_info;
 991	struct emif_custom_configs	*cust_cfgs;
 992	struct emif_platform_data	*pd;
 993	struct device			*dev;
 994	void				*temp;
 995
 996	pd = pdev->dev.platform_data;
 997	dev = &pdev->dev;
 998
 999	if (!(pd && pd->device_info && is_dev_data_valid(pd->device_info->type,
1000			pd->device_info->density, pd->device_info->io_width,
1001			pd->phy_type, pd->ip_rev, dev))) {
1002		dev_err(dev, "%s: invalid device data\n", __func__);
1003		goto error;
1004	}
1005
1006	emif	= devm_kzalloc(dev, sizeof(*emif), GFP_KERNEL);
1007	temp	= devm_kzalloc(dev, sizeof(*pd), GFP_KERNEL);
1008	dev_info = devm_kzalloc(dev, sizeof(*dev_info), GFP_KERNEL);
1009
1010	if (!emif || !temp || !dev_info)
1011		goto error;
1012
1013	memcpy(temp, pd, sizeof(*pd));
1014	pd = temp;
1015	memcpy(dev_info, pd->device_info, sizeof(*dev_info));
1016
1017	pd->device_info		= dev_info;
1018	emif->plat_data		= pd;
1019	emif->dev		= dev;
1020	emif->temperature_level	= SDRAM_TEMP_NOMINAL;
1021
1022	/*
1023	 * For EMIF instances other than EMIF1 see if the devices connected
1024	 * are exactly same as on EMIF1(which is typically the case). If so,
1025	 * mark it as a duplicate of EMIF1 and skip copying timings data.
1026	 * This will save some memory and some computation later.
1027	 */
1028	emif->duplicate = emif1 && (memcmp(dev_info,
1029		emif1->plat_data->device_info,
1030		sizeof(struct ddr_device_info)) == 0);
1031
1032	if (emif->duplicate) {
1033		pd->timings = NULL;
1034		pd->min_tck = NULL;
1035		goto out;
1036	} else if (emif1) {
1037		dev_warn(emif->dev, "%s: Non-symmetric DDR geometry\n",
1038			__func__);
1039	}
1040
1041	/*
1042	 * Copy custom configs - ignore allocation error, if any, as
1043	 * custom_configs is not very critical
1044	 */
1045	cust_cfgs = pd->custom_configs;
1046	if (cust_cfgs && is_custom_config_valid(cust_cfgs, dev)) {
1047		temp = devm_kzalloc(dev, sizeof(*cust_cfgs), GFP_KERNEL);
1048		if (temp)
1049			memcpy(temp, cust_cfgs, sizeof(*cust_cfgs));
1050		pd->custom_configs = temp;
1051	}
1052
1053	/*
1054	 * Copy timings and min-tck values from platform data. If it is not
1055	 * available or if memory allocation fails, use JEDEC defaults
1056	 */
1057	size = sizeof(struct lpddr2_timings) * pd->timings_arr_size;
1058	if (pd->timings) {
1059		temp = devm_kzalloc(dev, size, GFP_KERNEL);
1060		if (temp) {
1061			memcpy(temp, pd->timings, size);
1062			pd->timings = temp;
1063		} else {
1064			get_default_timings(emif);
1065		}
1066	} else {
1067		get_default_timings(emif);
1068	}
1069
1070	if (pd->min_tck) {
1071		temp = devm_kzalloc(dev, sizeof(*pd->min_tck), GFP_KERNEL);
1072		if (temp) {
1073			memcpy(temp, pd->min_tck, sizeof(*pd->min_tck));
1074			pd->min_tck = temp;
1075		} else {
1076			pd->min_tck = &lpddr2_jedec_min_tck;
1077		}
1078	} else {
1079		pd->min_tck = &lpddr2_jedec_min_tck;
1080	}
1081
1082out:
1083	return emif;
1084
1085error:
1086	return NULL;
1087}
1088
1089static int emif_probe(struct platform_device *pdev)
1090{
1091	struct emif_data	*emif;
1092	int			irq, ret;
1093
1094	if (pdev->dev.of_node)
1095		emif = of_get_memory_device_details(pdev->dev.of_node, &pdev->dev);
1096	else
1097		emif = get_device_details(pdev);
1098
1099	if (!emif) {
1100		pr_err("%s: error getting device data\n", __func__);
1101		goto error;
1102	}
1103
1104	list_add(&emif->node, &device_list);
1105
1106	/* Save pointers to each other in emif and device structures */
1107	emif->dev = &pdev->dev;
1108	platform_set_drvdata(pdev, emif);
1109
1110	emif->base = devm_platform_ioremap_resource(pdev, 0);
1111	if (IS_ERR(emif->base))
1112		goto error;
1113
1114	irq = platform_get_irq(pdev, 0);
1115	if (irq < 0)
1116		goto error;
1117
1118	emif_onetime_settings(emif);
1119	emif_debugfs_init(emif);
1120	disable_and_clear_all_interrupts(emif);
1121	ret = setup_interrupts(emif, irq);
1122	if (ret)
1123		goto error;
1124
1125	/* One-time actions taken on probing the first device */
1126	if (!emif1) {
1127		emif1 = emif;
1128
1129		/*
1130		 * TODO: register notifiers for frequency and voltage
1131		 * change here once the respective frameworks are
1132		 * available
1133		 */
1134	}
1135
1136	dev_info(&pdev->dev, "%s: device configured with addr = %p and IRQ%d\n",
1137		__func__, emif->base, irq);
1138
1139	return 0;
1140error:
1141	return -ENODEV;
1142}
1143
1144static void emif_remove(struct platform_device *pdev)
1145{
1146	struct emif_data *emif = platform_get_drvdata(pdev);
1147
1148	emif_debugfs_exit(emif);
1149}
1150
1151static void emif_shutdown(struct platform_device *pdev)
1152{
1153	struct emif_data	*emif = platform_get_drvdata(pdev);
1154
1155	disable_and_clear_all_interrupts(emif);
1156}
1157
1158#if defined(CONFIG_OF)
1159static const struct of_device_id emif_of_match[] = {
1160		{ .compatible = "ti,emif-4d" },
1161		{ .compatible = "ti,emif-4d5" },
1162		{},
1163};
1164MODULE_DEVICE_TABLE(of, emif_of_match);
1165#endif
1166
1167static struct platform_driver emif_driver = {
1168	.probe		= emif_probe,
1169	.remove_new	= emif_remove,
1170	.shutdown	= emif_shutdown,
1171	.driver = {
1172		.name = "emif",
1173		.of_match_table = of_match_ptr(emif_of_match),
1174	},
1175};
1176
1177module_platform_driver(emif_driver);
1178
1179MODULE_DESCRIPTION("TI EMIF SDRAM Controller Driver");
1180MODULE_LICENSE("GPL");
1181MODULE_ALIAS("platform:emif");
1182MODULE_AUTHOR("Texas Instruments Inc");