Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * EMIF driver
   4 *
   5 * Copyright (C) 2012 Texas Instruments, Inc.
   6 *
   7 * Aneesh V <aneesh@ti.com>
   8 * Santosh Shilimkar <santosh.shilimkar@ti.com>
   9 */
  10#include <linux/err.h>
  11#include <linux/kernel.h>
  12#include <linux/reboot.h>
  13#include <linux/platform_data/emif_plat.h>
  14#include <linux/io.h>
  15#include <linux/device.h>
  16#include <linux/platform_device.h>
  17#include <linux/interrupt.h>
  18#include <linux/slab.h>
  19#include <linux/of.h>
  20#include <linux/debugfs.h>
  21#include <linux/seq_file.h>
  22#include <linux/module.h>
  23#include <linux/list.h>
  24#include <linux/spinlock.h>
  25#include <linux/pm.h>
  26
  27#include "emif.h"
  28#include "jedec_ddr.h"
  29#include "of_memory.h"
  30
  31/**
  32 * struct emif_data - Per device static data for driver's use
  33 * @duplicate:			Whether the DDR devices attached to this EMIF
  34 *				instance are exactly same as that on EMIF1. In
  35 *				this case we can save some memory and processing
  36 * @temperature_level:		Maximum temperature of LPDDR2 devices attached
  37 *				to this EMIF - read from MR4 register. If there
  38 *				are two devices attached to this EMIF, this
  39 *				value is the maximum of the two temperature
  40 *				levels.
  41 * @node:			node in the device list
  42 * @base:			base address of memory-mapped IO registers.
  43 * @dev:			device pointer.
  44 * @addressing			table with addressing information from the spec
  45 * @regs_cache:			An array of 'struct emif_regs' that stores
  46 *				calculated register values for different
  47 *				frequencies, to avoid re-calculating them on
  48 *				each DVFS transition.
  49 * @curr_regs:			The set of register values used in the last
  50 *				frequency change (i.e. corresponding to the
  51 *				frequency in effect at the moment)
  52 * @plat_data:			Pointer to saved platform data.
  53 * @debugfs_root:		dentry to the root folder for EMIF in debugfs
  54 * @np_ddr:			Pointer to ddr device tree node
  55 */
  56struct emif_data {
  57	u8				duplicate;
  58	u8				temperature_level;
  59	u8				lpmode;
  60	struct list_head		node;
  61	unsigned long			irq_state;
  62	void __iomem			*base;
  63	struct device			*dev;
  64	const struct lpddr2_addressing	*addressing;
  65	struct emif_regs		*regs_cache[EMIF_MAX_NUM_FREQUENCIES];
  66	struct emif_regs		*curr_regs;
  67	struct emif_platform_data	*plat_data;
  68	struct dentry			*debugfs_root;
  69	struct device_node		*np_ddr;
  70};
  71
  72static struct emif_data *emif1;
  73static spinlock_t	emif_lock;
  74static unsigned long	irq_state;
  75static u32		t_ck; /* DDR clock period in ps */
  76static LIST_HEAD(device_list);
  77
  78#ifdef CONFIG_DEBUG_FS
  79static void do_emif_regdump_show(struct seq_file *s, struct emif_data *emif,
  80	struct emif_regs *regs)
  81{
  82	u32 type = emif->plat_data->device_info->type;
  83	u32 ip_rev = emif->plat_data->ip_rev;
  84
  85	seq_printf(s, "EMIF register cache dump for %dMHz\n",
  86		regs->freq/1000000);
  87
  88	seq_printf(s, "ref_ctrl_shdw\t: 0x%08x\n", regs->ref_ctrl_shdw);
  89	seq_printf(s, "sdram_tim1_shdw\t: 0x%08x\n", regs->sdram_tim1_shdw);
  90	seq_printf(s, "sdram_tim2_shdw\t: 0x%08x\n", regs->sdram_tim2_shdw);
  91	seq_printf(s, "sdram_tim3_shdw\t: 0x%08x\n", regs->sdram_tim3_shdw);
  92
  93	if (ip_rev == EMIF_4D) {
  94		seq_printf(s, "read_idle_ctrl_shdw_normal\t: 0x%08x\n",
  95			regs->read_idle_ctrl_shdw_normal);
  96		seq_printf(s, "read_idle_ctrl_shdw_volt_ramp\t: 0x%08x\n",
  97			regs->read_idle_ctrl_shdw_volt_ramp);
  98	} else if (ip_rev == EMIF_4D5) {
  99		seq_printf(s, "dll_calib_ctrl_shdw_normal\t: 0x%08x\n",
 100			regs->dll_calib_ctrl_shdw_normal);
 101		seq_printf(s, "dll_calib_ctrl_shdw_volt_ramp\t: 0x%08x\n",
 102			regs->dll_calib_ctrl_shdw_volt_ramp);
 103	}
 104
 105	if (type == DDR_TYPE_LPDDR2_S2 || type == DDR_TYPE_LPDDR2_S4) {
 106		seq_printf(s, "ref_ctrl_shdw_derated\t: 0x%08x\n",
 107			regs->ref_ctrl_shdw_derated);
 108		seq_printf(s, "sdram_tim1_shdw_derated\t: 0x%08x\n",
 109			regs->sdram_tim1_shdw_derated);
 110		seq_printf(s, "sdram_tim3_shdw_derated\t: 0x%08x\n",
 111			regs->sdram_tim3_shdw_derated);
 112	}
 113}
 114
 115static int emif_regdump_show(struct seq_file *s, void *unused)
 116{
 117	struct emif_data	*emif	= s->private;
 118	struct emif_regs	**regs_cache;
 119	int			i;
 120
 121	if (emif->duplicate)
 122		regs_cache = emif1->regs_cache;
 123	else
 124		regs_cache = emif->regs_cache;
 125
 126	for (i = 0; i < EMIF_MAX_NUM_FREQUENCIES && regs_cache[i]; i++) {
 127		do_emif_regdump_show(s, emif, regs_cache[i]);
 128		seq_putc(s, '\n');
 129	}
 130
 131	return 0;
 132}
 133
 134static int emif_regdump_open(struct inode *inode, struct file *file)
 135{
 136	return single_open(file, emif_regdump_show, inode->i_private);
 137}
 138
 139static const struct file_operations emif_regdump_fops = {
 140	.open			= emif_regdump_open,
 141	.read			= seq_read,
 142	.release		= single_release,
 143};
 144
 145static int emif_mr4_show(struct seq_file *s, void *unused)
 146{
 147	struct emif_data *emif = s->private;
 148
 149	seq_printf(s, "MR4=%d\n", emif->temperature_level);
 150	return 0;
 151}
 152
 153static int emif_mr4_open(struct inode *inode, struct file *file)
 154{
 155	return single_open(file, emif_mr4_show, inode->i_private);
 156}
 157
 158static const struct file_operations emif_mr4_fops = {
 159	.open			= emif_mr4_open,
 160	.read			= seq_read,
 161	.release		= single_release,
 162};
 163
 164static int __init_or_module emif_debugfs_init(struct emif_data *emif)
 165{
 166	struct dentry	*dentry;
 167	int		ret;
 168
 169	dentry = debugfs_create_dir(dev_name(emif->dev), NULL);
 170	if (!dentry) {
 171		ret = -ENOMEM;
 172		goto err0;
 173	}
 174	emif->debugfs_root = dentry;
 175
 176	dentry = debugfs_create_file("regcache_dump", S_IRUGO,
 177			emif->debugfs_root, emif, &emif_regdump_fops);
 178	if (!dentry) {
 179		ret = -ENOMEM;
 180		goto err1;
 181	}
 182
 183	dentry = debugfs_create_file("mr4", S_IRUGO,
 184			emif->debugfs_root, emif, &emif_mr4_fops);
 185	if (!dentry) {
 186		ret = -ENOMEM;
 187		goto err1;
 188	}
 189
 190	return 0;
 191err1:
 192	debugfs_remove_recursive(emif->debugfs_root);
 193err0:
 194	return ret;
 195}
 196
 197static void __exit emif_debugfs_exit(struct emif_data *emif)
 198{
 199	debugfs_remove_recursive(emif->debugfs_root);
 200	emif->debugfs_root = NULL;
 201}
 202#else
 203static inline int __init_or_module emif_debugfs_init(struct emif_data *emif)
 204{
 205	return 0;
 206}
 207
 208static inline void __exit emif_debugfs_exit(struct emif_data *emif)
 209{
 210}
 211#endif
 212
 213/*
 214 * Calculate the period of DDR clock from frequency value
 215 */
 216static void set_ddr_clk_period(u32 freq)
 217{
 218	/* Divide 10^12 by frequency to get period in ps */
 219	t_ck = (u32)DIV_ROUND_UP_ULL(1000000000000ull, freq);
 220}
 221
 222/*
 223 * Get bus width used by EMIF. Note that this may be different from the
 224 * bus width of the DDR devices used. For instance two 16-bit DDR devices
 225 * may be connected to a given CS of EMIF. In this case bus width as far
 226 * as EMIF is concerned is 32, where as the DDR bus width is 16 bits.
 227 */
 228static u32 get_emif_bus_width(struct emif_data *emif)
 229{
 230	u32		width;
 231	void __iomem	*base = emif->base;
 232
 233	width = (readl(base + EMIF_SDRAM_CONFIG) & NARROW_MODE_MASK)
 234			>> NARROW_MODE_SHIFT;
 235	width = width == 0 ? 32 : 16;
 236
 237	return width;
 238}
 239
 240/*
 241 * Get the CL from SDRAM_CONFIG register
 242 */
 243static u32 get_cl(struct emif_data *emif)
 244{
 245	u32		cl;
 246	void __iomem	*base = emif->base;
 247
 248	cl = (readl(base + EMIF_SDRAM_CONFIG) & CL_MASK) >> CL_SHIFT;
 249
 250	return cl;
 251}
 252
 253static void set_lpmode(struct emif_data *emif, u8 lpmode)
 254{
 255	u32 temp;
 256	void __iomem *base = emif->base;
 257
 258	/*
 259	 * Workaround for errata i743 - LPDDR2 Power-Down State is Not
 260	 * Efficient
 261	 *
 262	 * i743 DESCRIPTION:
 263	 * The EMIF supports power-down state for low power. The EMIF
 264	 * automatically puts the SDRAM into power-down after the memory is
 265	 * not accessed for a defined number of cycles and the
 266	 * EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE bit field is set to 0x4.
 267	 * As the EMIF supports automatic output impedance calibration, a ZQ
 268	 * calibration long command is issued every time it exits active
 269	 * power-down and precharge power-down modes. The EMIF waits and
 270	 * blocks any other command during this calibration.
 271	 * The EMIF does not allow selective disabling of ZQ calibration upon
 272	 * exit of power-down mode. Due to very short periods of power-down
 273	 * cycles, ZQ calibration overhead creates bandwidth issues and
 274	 * increases overall system power consumption. On the other hand,
 275	 * issuing ZQ calibration long commands when exiting self-refresh is
 276	 * still required.
 277	 *
 278	 * WORKAROUND
 279	 * Because there is no power consumption benefit of the power-down due
 280	 * to the calibration and there is a performance risk, the guideline
 281	 * is to not allow power-down state and, therefore, to not have set
 282	 * the EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE bit field to 0x4.
 283	 */
 284	if ((emif->plat_data->ip_rev == EMIF_4D) &&
 285	    (EMIF_LP_MODE_PWR_DN == lpmode)) {
 286		WARN_ONCE(1,
 287			  "REG_LP_MODE = LP_MODE_PWR_DN(4) is prohibited by"
 288			  "erratum i743 switch to LP_MODE_SELF_REFRESH(2)\n");
 289		/* rollback LP_MODE to Self-refresh mode */
 290		lpmode = EMIF_LP_MODE_SELF_REFRESH;
 291	}
 292
 293	temp = readl(base + EMIF_POWER_MANAGEMENT_CONTROL);
 294	temp &= ~LP_MODE_MASK;
 295	temp |= (lpmode << LP_MODE_SHIFT);
 296	writel(temp, base + EMIF_POWER_MANAGEMENT_CONTROL);
 297}
 298
 299static void do_freq_update(void)
 300{
 301	struct emif_data *emif;
 302
 303	/*
 304	 * Workaround for errata i728: Disable LPMODE during FREQ_UPDATE
 305	 *
 306	 * i728 DESCRIPTION:
 307	 * The EMIF automatically puts the SDRAM into self-refresh mode
 308	 * after the EMIF has not performed accesses during
 309	 * EMIF_PWR_MGMT_CTRL[7:4] REG_SR_TIM number of DDR clock cycles
 310	 * and the EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE bit field is set
 311	 * to 0x2. If during a small window the following three events
 312	 * occur:
 313	 * - The SR_TIMING counter expires
 314	 * - And frequency change is requested
 315	 * - And OCP access is requested
 316	 * Then it causes instable clock on the DDR interface.
 317	 *
 318	 * WORKAROUND
 319	 * To avoid the occurrence of the three events, the workaround
 320	 * is to disable the self-refresh when requesting a frequency
 321	 * change. Before requesting a frequency change the software must
 322	 * program EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE to 0x0. When the
 323	 * frequency change has been done, the software can reprogram
 324	 * EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE to 0x2
 325	 */
 326	list_for_each_entry(emif, &device_list, node) {
 327		if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH)
 328			set_lpmode(emif, EMIF_LP_MODE_DISABLE);
 329	}
 330
 331	/*
 332	 * TODO: Do FREQ_UPDATE here when an API
 333	 * is available for this as part of the new
 334	 * clock framework
 335	 */
 336
 337	list_for_each_entry(emif, &device_list, node) {
 338		if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH)
 339			set_lpmode(emif, EMIF_LP_MODE_SELF_REFRESH);
 340	}
 341}
 342
 343/* Find addressing table entry based on the device's type and density */
 344static const struct lpddr2_addressing *get_addressing_table(
 345	const struct ddr_device_info *device_info)
 346{
 347	u32		index, type, density;
 348
 349	type = device_info->type;
 350	density = device_info->density;
 351
 352	switch (type) {
 353	case DDR_TYPE_LPDDR2_S4:
 354		index = density - 1;
 355		break;
 356	case DDR_TYPE_LPDDR2_S2:
 357		switch (density) {
 358		case DDR_DENSITY_1Gb:
 359		case DDR_DENSITY_2Gb:
 360			index = density + 3;
 361			break;
 362		default:
 363			index = density - 1;
 364		}
 365		break;
 366	default:
 367		return NULL;
 368	}
 369
 370	return &lpddr2_jedec_addressing_table[index];
 371}
 372
 373/*
 374 * Find the the right timing table from the array of timing
 375 * tables of the device using DDR clock frequency
 376 */
 377static const struct lpddr2_timings *get_timings_table(struct emif_data *emif,
 378		u32 freq)
 379{
 380	u32				i, min, max, freq_nearest;
 381	const struct lpddr2_timings	*timings = NULL;
 382	const struct lpddr2_timings	*timings_arr = emif->plat_data->timings;
 383	struct				device *dev = emif->dev;
 384
 385	/* Start with a very high frequency - 1GHz */
 386	freq_nearest = 1000000000;
 387
 388	/*
 389	 * Find the timings table such that:
 390	 *  1. the frequency range covers the required frequency(safe) AND
 391	 *  2. the max_freq is closest to the required frequency(optimal)
 392	 */
 393	for (i = 0; i < emif->plat_data->timings_arr_size; i++) {
 394		max = timings_arr[i].max_freq;
 395		min = timings_arr[i].min_freq;
 396		if ((freq >= min) && (freq <= max) && (max < freq_nearest)) {
 397			freq_nearest = max;
 398			timings = &timings_arr[i];
 399		}
 400	}
 401
 402	if (!timings)
 403		dev_err(dev, "%s: couldn't find timings for - %dHz\n",
 404			__func__, freq);
 405
 406	dev_dbg(dev, "%s: timings table: freq %d, speed bin freq %d\n",
 407		__func__, freq, freq_nearest);
 408
 409	return timings;
 410}
 411
 412static u32 get_sdram_ref_ctrl_shdw(u32 freq,
 413		const struct lpddr2_addressing *addressing)
 414{
 415	u32 ref_ctrl_shdw = 0, val = 0, freq_khz, t_refi;
 416
 417	/* Scale down frequency and t_refi to avoid overflow */
 418	freq_khz = freq / 1000;
 419	t_refi = addressing->tREFI_ns / 100;
 420
 421	/*
 422	 * refresh rate to be set is 'tREFI(in us) * freq in MHz
 423	 * division by 10000 to account for change in units
 424	 */
 425	val = t_refi * freq_khz / 10000;
 426	ref_ctrl_shdw |= val << REFRESH_RATE_SHIFT;
 427
 428	return ref_ctrl_shdw;
 429}
 430
 431static u32 get_sdram_tim_1_shdw(const struct lpddr2_timings *timings,
 432		const struct lpddr2_min_tck *min_tck,
 433		const struct lpddr2_addressing *addressing)
 434{
 435	u32 tim1 = 0, val = 0;
 436
 437	val = max(min_tck->tWTR, DIV_ROUND_UP(timings->tWTR, t_ck)) - 1;
 438	tim1 |= val << T_WTR_SHIFT;
 439
 440	if (addressing->num_banks == B8)
 441		val = DIV_ROUND_UP(timings->tFAW, t_ck*4);
 442	else
 443		val = max(min_tck->tRRD, DIV_ROUND_UP(timings->tRRD, t_ck));
 444	tim1 |= (val - 1) << T_RRD_SHIFT;
 445
 446	val = DIV_ROUND_UP(timings->tRAS_min + timings->tRPab, t_ck) - 1;
 447	tim1 |= val << T_RC_SHIFT;
 448
 449	val = max(min_tck->tRASmin, DIV_ROUND_UP(timings->tRAS_min, t_ck));
 450	tim1 |= (val - 1) << T_RAS_SHIFT;
 451
 452	val = max(min_tck->tWR, DIV_ROUND_UP(timings->tWR, t_ck)) - 1;
 453	tim1 |= val << T_WR_SHIFT;
 454
 455	val = max(min_tck->tRCD, DIV_ROUND_UP(timings->tRCD, t_ck)) - 1;
 456	tim1 |= val << T_RCD_SHIFT;
 457
 458	val = max(min_tck->tRPab, DIV_ROUND_UP(timings->tRPab, t_ck)) - 1;
 459	tim1 |= val << T_RP_SHIFT;
 460
 461	return tim1;
 462}
 463
 464static u32 get_sdram_tim_1_shdw_derated(const struct lpddr2_timings *timings,
 465		const struct lpddr2_min_tck *min_tck,
 466		const struct lpddr2_addressing *addressing)
 467{
 468	u32 tim1 = 0, val = 0;
 469
 470	val = max(min_tck->tWTR, DIV_ROUND_UP(timings->tWTR, t_ck)) - 1;
 471	tim1 = val << T_WTR_SHIFT;
 472
 473	/*
 474	 * tFAW is approximately 4 times tRRD. So add 1875*4 = 7500ps
 475	 * to tFAW for de-rating
 476	 */
 477	if (addressing->num_banks == B8) {
 478		val = DIV_ROUND_UP(timings->tFAW + 7500, 4 * t_ck) - 1;
 479	} else {
 480		val = DIV_ROUND_UP(timings->tRRD + 1875, t_ck);
 481		val = max(min_tck->tRRD, val) - 1;
 482	}
 483	tim1 |= val << T_RRD_SHIFT;
 484
 485	val = DIV_ROUND_UP(timings->tRAS_min + timings->tRPab + 1875, t_ck);
 486	tim1 |= (val - 1) << T_RC_SHIFT;
 487
 488	val = DIV_ROUND_UP(timings->tRAS_min + 1875, t_ck);
 489	val = max(min_tck->tRASmin, val) - 1;
 490	tim1 |= val << T_RAS_SHIFT;
 491
 492	val = max(min_tck->tWR, DIV_ROUND_UP(timings->tWR, t_ck)) - 1;
 493	tim1 |= val << T_WR_SHIFT;
 494
 495	val = max(min_tck->tRCD, DIV_ROUND_UP(timings->tRCD + 1875, t_ck));
 496	tim1 |= (val - 1) << T_RCD_SHIFT;
 497
 498	val = max(min_tck->tRPab, DIV_ROUND_UP(timings->tRPab + 1875, t_ck));
 499	tim1 |= (val - 1) << T_RP_SHIFT;
 500
 501	return tim1;
 502}
 503
 504static u32 get_sdram_tim_2_shdw(const struct lpddr2_timings *timings,
 505		const struct lpddr2_min_tck *min_tck,
 506		const struct lpddr2_addressing *addressing,
 507		u32 type)
 508{
 509	u32 tim2 = 0, val = 0;
 510
 511	val = min_tck->tCKE - 1;
 512	tim2 |= val << T_CKE_SHIFT;
 513
 514	val = max(min_tck->tRTP, DIV_ROUND_UP(timings->tRTP, t_ck)) - 1;
 515	tim2 |= val << T_RTP_SHIFT;
 516
 517	/* tXSNR = tRFCab_ps + 10 ns(tRFCab_ps for LPDDR2). */
 518	val = DIV_ROUND_UP(addressing->tRFCab_ps + 10000, t_ck) - 1;
 519	tim2 |= val << T_XSNR_SHIFT;
 520
 521	/* XSRD same as XSNR for LPDDR2 */
 522	tim2 |= val << T_XSRD_SHIFT;
 523
 524	val = max(min_tck->tXP, DIV_ROUND_UP(timings->tXP, t_ck)) - 1;
 525	tim2 |= val << T_XP_SHIFT;
 526
 527	return tim2;
 528}
 529
 530static u32 get_sdram_tim_3_shdw(const struct lpddr2_timings *timings,
 531		const struct lpddr2_min_tck *min_tck,
 532		const struct lpddr2_addressing *addressing,
 533		u32 type, u32 ip_rev, u32 derated)
 534{
 535	u32 tim3 = 0, val = 0, t_dqsck;
 536
 537	val = timings->tRAS_max_ns / addressing->tREFI_ns - 1;
 538	val = val > 0xF ? 0xF : val;
 539	tim3 |= val << T_RAS_MAX_SHIFT;
 540
 541	val = DIV_ROUND_UP(addressing->tRFCab_ps, t_ck) - 1;
 542	tim3 |= val << T_RFC_SHIFT;
 543
 544	t_dqsck = (derated == EMIF_DERATED_TIMINGS) ?
 545		timings->tDQSCK_max_derated : timings->tDQSCK_max;
 546	if (ip_rev == EMIF_4D5)
 547		val = DIV_ROUND_UP(t_dqsck + 1000, t_ck) - 1;
 548	else
 549		val = DIV_ROUND_UP(t_dqsck, t_ck) - 1;
 550
 551	tim3 |= val << T_TDQSCKMAX_SHIFT;
 552
 553	val = DIV_ROUND_UP(timings->tZQCS, t_ck) - 1;
 554	tim3 |= val << ZQ_ZQCS_SHIFT;
 555
 556	val = DIV_ROUND_UP(timings->tCKESR, t_ck);
 557	val = max(min_tck->tCKESR, val) - 1;
 558	tim3 |= val << T_CKESR_SHIFT;
 559
 560	if (ip_rev == EMIF_4D5) {
 561		tim3 |= (EMIF_T_CSTA - 1) << T_CSTA_SHIFT;
 562
 563		val = DIV_ROUND_UP(EMIF_T_PDLL_UL, 128) - 1;
 564		tim3 |= val << T_PDLL_UL_SHIFT;
 565	}
 566
 567	return tim3;
 568}
 569
 570static u32 get_zq_config_reg(const struct lpddr2_addressing *addressing,
 571		bool cs1_used, bool cal_resistors_per_cs)
 572{
 573	u32 zq = 0, val = 0;
 574
 575	val = EMIF_ZQCS_INTERVAL_US * 1000 / addressing->tREFI_ns;
 576	zq |= val << ZQ_REFINTERVAL_SHIFT;
 577
 578	val = DIV_ROUND_UP(T_ZQCL_DEFAULT_NS, T_ZQCS_DEFAULT_NS) - 1;
 579	zq |= val << ZQ_ZQCL_MULT_SHIFT;
 580
 581	val = DIV_ROUND_UP(T_ZQINIT_DEFAULT_NS, T_ZQCL_DEFAULT_NS) - 1;
 582	zq |= val << ZQ_ZQINIT_MULT_SHIFT;
 583
 584	zq |= ZQ_SFEXITEN_ENABLE << ZQ_SFEXITEN_SHIFT;
 585
 586	if (cal_resistors_per_cs)
 587		zq |= ZQ_DUALCALEN_ENABLE << ZQ_DUALCALEN_SHIFT;
 588	else
 589		zq |= ZQ_DUALCALEN_DISABLE << ZQ_DUALCALEN_SHIFT;
 590
 591	zq |= ZQ_CS0EN_MASK; /* CS0 is used for sure */
 592
 593	val = cs1_used ? 1 : 0;
 594	zq |= val << ZQ_CS1EN_SHIFT;
 595
 596	return zq;
 597}
 598
 599static u32 get_temp_alert_config(const struct lpddr2_addressing *addressing,
 600		const struct emif_custom_configs *custom_configs, bool cs1_used,
 601		u32 sdram_io_width, u32 emif_bus_width)
 602{
 603	u32 alert = 0, interval, devcnt;
 604
 605	if (custom_configs && (custom_configs->mask &
 606				EMIF_CUSTOM_CONFIG_TEMP_ALERT_POLL_INTERVAL))
 607		interval = custom_configs->temp_alert_poll_interval_ms;
 608	else
 609		interval = TEMP_ALERT_POLL_INTERVAL_DEFAULT_MS;
 610
 611	interval *= 1000000;			/* Convert to ns */
 612	interval /= addressing->tREFI_ns;	/* Convert to refresh cycles */
 613	alert |= (interval << TA_REFINTERVAL_SHIFT);
 614
 615	/*
 616	 * sdram_io_width is in 'log2(x) - 1' form. Convert emif_bus_width
 617	 * also to this form and subtract to get TA_DEVCNT, which is
 618	 * in log2(x) form.
 619	 */
 620	emif_bus_width = __fls(emif_bus_width) - 1;
 621	devcnt = emif_bus_width - sdram_io_width;
 622	alert |= devcnt << TA_DEVCNT_SHIFT;
 623
 624	/* DEVWDT is in 'log2(x) - 3' form */
 625	alert |= (sdram_io_width - 2) << TA_DEVWDT_SHIFT;
 626
 627	alert |= 1 << TA_SFEXITEN_SHIFT;
 628	alert |= 1 << TA_CS0EN_SHIFT;
 629	alert |= (cs1_used ? 1 : 0) << TA_CS1EN_SHIFT;
 630
 631	return alert;
 632}
 633
 634static u32 get_read_idle_ctrl_shdw(u8 volt_ramp)
 635{
 636	u32 idle = 0, val = 0;
 637
 638	/*
 639	 * Maximum value in normal conditions and increased frequency
 640	 * when voltage is ramping
 641	 */
 642	if (volt_ramp)
 643		val = READ_IDLE_INTERVAL_DVFS / t_ck / 64 - 1;
 644	else
 645		val = 0x1FF;
 646
 647	/*
 648	 * READ_IDLE_CTRL register in EMIF4D has same offset and fields
 649	 * as DLL_CALIB_CTRL in EMIF4D5, so use the same shifts
 650	 */
 651	idle |= val << DLL_CALIB_INTERVAL_SHIFT;
 652	idle |= EMIF_READ_IDLE_LEN_VAL << ACK_WAIT_SHIFT;
 653
 654	return idle;
 655}
 656
 657static u32 get_dll_calib_ctrl_shdw(u8 volt_ramp)
 658{
 659	u32 calib = 0, val = 0;
 660
 661	if (volt_ramp == DDR_VOLTAGE_RAMPING)
 662		val = DLL_CALIB_INTERVAL_DVFS / t_ck / 16 - 1;
 663	else
 664		val = 0; /* Disabled when voltage is stable */
 665
 666	calib |= val << DLL_CALIB_INTERVAL_SHIFT;
 667	calib |= DLL_CALIB_ACK_WAIT_VAL << ACK_WAIT_SHIFT;
 668
 669	return calib;
 670}
 671
 672static u32 get_ddr_phy_ctrl_1_attilaphy_4d(const struct lpddr2_timings *timings,
 673	u32 freq, u8 RL)
 674{
 675	u32 phy = EMIF_DDR_PHY_CTRL_1_BASE_VAL_ATTILAPHY, val = 0;
 676
 677	val = RL + DIV_ROUND_UP(timings->tDQSCK_max, t_ck) - 1;
 678	phy |= val << READ_LATENCY_SHIFT_4D;
 679
 680	if (freq <= 100000000)
 681		val = EMIF_DLL_SLAVE_DLY_CTRL_100_MHZ_AND_LESS_ATTILAPHY;
 682	else if (freq <= 200000000)
 683		val = EMIF_DLL_SLAVE_DLY_CTRL_200_MHZ_ATTILAPHY;
 684	else
 685		val = EMIF_DLL_SLAVE_DLY_CTRL_400_MHZ_ATTILAPHY;
 686
 687	phy |= val << DLL_SLAVE_DLY_CTRL_SHIFT_4D;
 688
 689	return phy;
 690}
 691
 692static u32 get_phy_ctrl_1_intelliphy_4d5(u32 freq, u8 cl)
 693{
 694	u32 phy = EMIF_DDR_PHY_CTRL_1_BASE_VAL_INTELLIPHY, half_delay;
 695
 696	/*
 697	 * DLL operates at 266 MHz. If DDR frequency is near 266 MHz,
 698	 * half-delay is not needed else set half-delay
 699	 */
 700	if (freq >= 265000000 && freq < 267000000)
 701		half_delay = 0;
 702	else
 703		half_delay = 1;
 704
 705	phy |= half_delay << DLL_HALF_DELAY_SHIFT_4D5;
 706	phy |= ((cl + DIV_ROUND_UP(EMIF_PHY_TOTAL_READ_LATENCY_INTELLIPHY_PS,
 707			t_ck) - 1) << READ_LATENCY_SHIFT_4D5);
 708
 709	return phy;
 710}
 711
 712static u32 get_ext_phy_ctrl_2_intelliphy_4d5(void)
 713{
 714	u32 fifo_we_slave_ratio;
 715
 716	fifo_we_slave_ratio =  DIV_ROUND_CLOSEST(
 717		EMIF_INTELLI_PHY_DQS_GATE_OPENING_DELAY_PS * 256 , t_ck);
 718
 719	return fifo_we_slave_ratio | fifo_we_slave_ratio << 11 |
 720		fifo_we_slave_ratio << 22;
 721}
 722
 723static u32 get_ext_phy_ctrl_3_intelliphy_4d5(void)
 724{
 725	u32 fifo_we_slave_ratio;
 726
 727	fifo_we_slave_ratio =  DIV_ROUND_CLOSEST(
 728		EMIF_INTELLI_PHY_DQS_GATE_OPENING_DELAY_PS * 256 , t_ck);
 729
 730	return fifo_we_slave_ratio >> 10 | fifo_we_slave_ratio << 1 |
 731		fifo_we_slave_ratio << 12 | fifo_we_slave_ratio << 23;
 732}
 733
 734static u32 get_ext_phy_ctrl_4_intelliphy_4d5(void)
 735{
 736	u32 fifo_we_slave_ratio;
 737
 738	fifo_we_slave_ratio =  DIV_ROUND_CLOSEST(
 739		EMIF_INTELLI_PHY_DQS_GATE_OPENING_DELAY_PS * 256 , t_ck);
 740
 741	return fifo_we_slave_ratio >> 9 | fifo_we_slave_ratio << 2 |
 742		fifo_we_slave_ratio << 13;
 743}
 744
 745static u32 get_pwr_mgmt_ctrl(u32 freq, struct emif_data *emif, u32 ip_rev)
 746{
 747	u32 pwr_mgmt_ctrl	= 0, timeout;
 748	u32 lpmode		= EMIF_LP_MODE_SELF_REFRESH;
 749	u32 timeout_perf	= EMIF_LP_MODE_TIMEOUT_PERFORMANCE;
 750	u32 timeout_pwr		= EMIF_LP_MODE_TIMEOUT_POWER;
 751	u32 freq_threshold	= EMIF_LP_MODE_FREQ_THRESHOLD;
 752	u32 mask;
 753	u8 shift;
 754
 755	struct emif_custom_configs *cust_cfgs = emif->plat_data->custom_configs;
 756
 757	if (cust_cfgs && (cust_cfgs->mask & EMIF_CUSTOM_CONFIG_LPMODE)) {
 758		lpmode		= cust_cfgs->lpmode;
 759		timeout_perf	= cust_cfgs->lpmode_timeout_performance;
 760		timeout_pwr	= cust_cfgs->lpmode_timeout_power;
 761		freq_threshold  = cust_cfgs->lpmode_freq_threshold;
 762	}
 763
 764	/* Timeout based on DDR frequency */
 765	timeout = freq >= freq_threshold ? timeout_perf : timeout_pwr;
 766
 767	/*
 768	 * The value to be set in register is "log2(timeout) - 3"
 769	 * if timeout < 16 load 0 in register
 770	 * if timeout is not a power of 2, round to next highest power of 2
 771	 */
 772	if (timeout < 16) {
 773		timeout = 0;
 774	} else {
 775		if (timeout & (timeout - 1))
 776			timeout <<= 1;
 777		timeout = __fls(timeout) - 3;
 778	}
 779
 780	switch (lpmode) {
 781	case EMIF_LP_MODE_CLOCK_STOP:
 782		shift = CS_TIM_SHIFT;
 783		mask = CS_TIM_MASK;
 784		break;
 785	case EMIF_LP_MODE_SELF_REFRESH:
 786		/* Workaround for errata i735 */
 787		if (timeout < 6)
 788			timeout = 6;
 789
 790		shift = SR_TIM_SHIFT;
 791		mask = SR_TIM_MASK;
 792		break;
 793	case EMIF_LP_MODE_PWR_DN:
 794		shift = PD_TIM_SHIFT;
 795		mask = PD_TIM_MASK;
 796		break;
 797	case EMIF_LP_MODE_DISABLE:
 798	default:
 799		mask = 0;
 800		shift = 0;
 801		break;
 802	}
 803	/* Round to maximum in case of overflow, BUT warn! */
 804	if (lpmode != EMIF_LP_MODE_DISABLE && timeout > mask >> shift) {
 805		pr_err("TIMEOUT Overflow - lpmode=%d perf=%d pwr=%d freq=%d\n",
 806		       lpmode,
 807		       timeout_perf,
 808		       timeout_pwr,
 809		       freq_threshold);
 810		WARN(1, "timeout=0x%02x greater than 0x%02x. Using max\n",
 811		     timeout, mask >> shift);
 812		timeout = mask >> shift;
 813	}
 814
 815	/* Setup required timing */
 816	pwr_mgmt_ctrl = (timeout << shift) & mask;
 817	/* setup a default mask for rest of the modes */
 818	pwr_mgmt_ctrl |= (SR_TIM_MASK | CS_TIM_MASK | PD_TIM_MASK) &
 819			  ~mask;
 820
 821	/* No CS_TIM in EMIF_4D5 */
 822	if (ip_rev == EMIF_4D5)
 823		pwr_mgmt_ctrl &= ~CS_TIM_MASK;
 824
 825	pwr_mgmt_ctrl |= lpmode << LP_MODE_SHIFT;
 826
 827	return pwr_mgmt_ctrl;
 828}
 829
 830/*
 831 * Get the temperature level of the EMIF instance:
 832 * Reads the MR4 register of attached SDRAM parts to find out the temperature
 833 * level. If there are two parts attached(one on each CS), then the temperature
 834 * level for the EMIF instance is the higher of the two temperatures.
 835 */
 836static void get_temperature_level(struct emif_data *emif)
 837{
 838	u32		temp, temperature_level;
 839	void __iomem	*base;
 840
 841	base = emif->base;
 842
 843	/* Read mode register 4 */
 844	writel(DDR_MR4, base + EMIF_LPDDR2_MODE_REG_CONFIG);
 845	temperature_level = readl(base + EMIF_LPDDR2_MODE_REG_DATA);
 846	temperature_level = (temperature_level & MR4_SDRAM_REF_RATE_MASK) >>
 847				MR4_SDRAM_REF_RATE_SHIFT;
 848
 849	if (emif->plat_data->device_info->cs1_used) {
 850		writel(DDR_MR4 | CS_MASK, base + EMIF_LPDDR2_MODE_REG_CONFIG);
 851		temp = readl(base + EMIF_LPDDR2_MODE_REG_DATA);
 852		temp = (temp & MR4_SDRAM_REF_RATE_MASK)
 853				>> MR4_SDRAM_REF_RATE_SHIFT;
 854		temperature_level = max(temp, temperature_level);
 855	}
 856
 857	/* treat everything less than nominal(3) in MR4 as nominal */
 858	if (unlikely(temperature_level < SDRAM_TEMP_NOMINAL))
 859		temperature_level = SDRAM_TEMP_NOMINAL;
 860
 861	/* if we get reserved value in MR4 persist with the existing value */
 862	if (likely(temperature_level != SDRAM_TEMP_RESERVED_4))
 863		emif->temperature_level = temperature_level;
 864}
 865
 866/*
 867 * Program EMIF shadow registers that are not dependent on temperature
 868 * or voltage
 869 */
 870static void setup_registers(struct emif_data *emif, struct emif_regs *regs)
 871{
 872	void __iomem	*base = emif->base;
 873
 874	writel(regs->sdram_tim2_shdw, base + EMIF_SDRAM_TIMING_2_SHDW);
 875	writel(regs->phy_ctrl_1_shdw, base + EMIF_DDR_PHY_CTRL_1_SHDW);
 876	writel(regs->pwr_mgmt_ctrl_shdw,
 877	       base + EMIF_POWER_MANAGEMENT_CTRL_SHDW);
 878
 879	/* Settings specific for EMIF4D5 */
 880	if (emif->plat_data->ip_rev != EMIF_4D5)
 881		return;
 882	writel(regs->ext_phy_ctrl_2_shdw, base + EMIF_EXT_PHY_CTRL_2_SHDW);
 883	writel(regs->ext_phy_ctrl_3_shdw, base + EMIF_EXT_PHY_CTRL_3_SHDW);
 884	writel(regs->ext_phy_ctrl_4_shdw, base + EMIF_EXT_PHY_CTRL_4_SHDW);
 885}
 886
 887/*
 888 * When voltage ramps dll calibration and forced read idle should
 889 * happen more often
 890 */
 891static void setup_volt_sensitive_regs(struct emif_data *emif,
 892		struct emif_regs *regs, u32 volt_state)
 893{
 894	u32		calib_ctrl;
 895	void __iomem	*base = emif->base;
 896
 897	/*
 898	 * EMIF_READ_IDLE_CTRL in EMIF4D refers to the same register as
 899	 * EMIF_DLL_CALIB_CTRL in EMIF4D5 and dll_calib_ctrl_shadow_*
 900	 * is an alias of the respective read_idle_ctrl_shdw_* (members of
 901	 * a union). So, the below code takes care of both cases
 902	 */
 903	if (volt_state == DDR_VOLTAGE_RAMPING)
 904		calib_ctrl = regs->dll_calib_ctrl_shdw_volt_ramp;
 905	else
 906		calib_ctrl = regs->dll_calib_ctrl_shdw_normal;
 907
 908	writel(calib_ctrl, base + EMIF_DLL_CALIB_CTRL_SHDW);
 909}
 910
 911/*
 912 * setup_temperature_sensitive_regs() - set the timings for temperature
 913 * sensitive registers. This happens once at initialisation time based
 914 * on the temperature at boot time and subsequently based on the temperature
 915 * alert interrupt. Temperature alert can happen when the temperature
 916 * increases or drops. So this function can have the effect of either
 917 * derating the timings or going back to nominal values.
 918 */
 919static void setup_temperature_sensitive_regs(struct emif_data *emif,
 920		struct emif_regs *regs)
 921{
 922	u32		tim1, tim3, ref_ctrl, type;
 923	void __iomem	*base = emif->base;
 924	u32		temperature;
 925
 926	type = emif->plat_data->device_info->type;
 927
 928	tim1 = regs->sdram_tim1_shdw;
 929	tim3 = regs->sdram_tim3_shdw;
 930	ref_ctrl = regs->ref_ctrl_shdw;
 931
 932	/* No de-rating for non-lpddr2 devices */
 933	if (type != DDR_TYPE_LPDDR2_S2 && type != DDR_TYPE_LPDDR2_S4)
 934		goto out;
 935
 936	temperature = emif->temperature_level;
 937	if (temperature == SDRAM_TEMP_HIGH_DERATE_REFRESH) {
 938		ref_ctrl = regs->ref_ctrl_shdw_derated;
 939	} else if (temperature == SDRAM_TEMP_HIGH_DERATE_REFRESH_AND_TIMINGS) {
 940		tim1 = regs->sdram_tim1_shdw_derated;
 941		tim3 = regs->sdram_tim3_shdw_derated;
 942		ref_ctrl = regs->ref_ctrl_shdw_derated;
 943	}
 944
 945out:
 946	writel(tim1, base + EMIF_SDRAM_TIMING_1_SHDW);
 947	writel(tim3, base + EMIF_SDRAM_TIMING_3_SHDW);
 948	writel(ref_ctrl, base + EMIF_SDRAM_REFRESH_CTRL_SHDW);
 949}
 950
 951static irqreturn_t handle_temp_alert(void __iomem *base, struct emif_data *emif)
 952{
 953	u32		old_temp_level;
 954	irqreturn_t	ret = IRQ_HANDLED;
 955	struct emif_custom_configs *custom_configs;
 956
 957	spin_lock_irqsave(&emif_lock, irq_state);
 958	old_temp_level = emif->temperature_level;
 959	get_temperature_level(emif);
 960
 961	if (unlikely(emif->temperature_level == old_temp_level)) {
 962		goto out;
 963	} else if (!emif->curr_regs) {
 964		dev_err(emif->dev, "temperature alert before registers are calculated, not de-rating timings\n");
 965		goto out;
 966	}
 967
 968	custom_configs = emif->plat_data->custom_configs;
 969
 970	/*
 971	 * IF we detect higher than "nominal rating" from DDR sensor
 972	 * on an unsupported DDR part, shutdown system
 973	 */
 974	if (custom_configs && !(custom_configs->mask &
 975				EMIF_CUSTOM_CONFIG_EXTENDED_TEMP_PART)) {
 976		if (emif->temperature_level >= SDRAM_TEMP_HIGH_DERATE_REFRESH) {
 977			dev_err(emif->dev,
 978				"%s:NOT Extended temperature capable memory."
 979				"Converting MR4=0x%02x as shutdown event\n",
 980				__func__, emif->temperature_level);
 981			/*
 982			 * Temperature far too high - do kernel_power_off()
 983			 * from thread context
 984			 */
 985			emif->temperature_level = SDRAM_TEMP_VERY_HIGH_SHUTDOWN;
 986			ret = IRQ_WAKE_THREAD;
 987			goto out;
 988		}
 989	}
 990
 991	if (emif->temperature_level < old_temp_level ||
 992		emif->temperature_level == SDRAM_TEMP_VERY_HIGH_SHUTDOWN) {
 993		/*
 994		 * Temperature coming down - defer handling to thread OR
 995		 * Temperature far too high - do kernel_power_off() from
 996		 * thread context
 997		 */
 998		ret = IRQ_WAKE_THREAD;
 999	} else {
1000		/* Temperature is going up - handle immediately */
1001		setup_temperature_sensitive_regs(emif, emif->curr_regs);
1002		do_freq_update();
1003	}
1004
1005out:
1006	spin_unlock_irqrestore(&emif_lock, irq_state);
1007	return ret;
1008}
1009
1010static irqreturn_t emif_interrupt_handler(int irq, void *dev_id)
1011{
1012	u32			interrupts;
1013	struct emif_data	*emif = dev_id;
1014	void __iomem		*base = emif->base;
1015	struct device		*dev = emif->dev;
1016	irqreturn_t		ret = IRQ_HANDLED;
1017
1018	/* Save the status and clear it */
1019	interrupts = readl(base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS);
1020	writel(interrupts, base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS);
1021
1022	/*
1023	 * Handle temperature alert
1024	 * Temperature alert should be same for all ports
1025	 * So, it's enough to process it only for one of the ports
1026	 */
1027	if (interrupts & TA_SYS_MASK)
1028		ret = handle_temp_alert(base, emif);
1029
1030	if (interrupts & ERR_SYS_MASK)
1031		dev_err(dev, "Access error from SYS port - %x\n", interrupts);
1032
1033	if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE) {
1034		/* Save the status and clear it */
1035		interrupts = readl(base + EMIF_LL_OCP_INTERRUPT_STATUS);
1036		writel(interrupts, base + EMIF_LL_OCP_INTERRUPT_STATUS);
1037
1038		if (interrupts & ERR_LL_MASK)
1039			dev_err(dev, "Access error from LL port - %x\n",
1040				interrupts);
1041	}
1042
1043	return ret;
1044}
1045
1046static irqreturn_t emif_threaded_isr(int irq, void *dev_id)
1047{
1048	struct emif_data	*emif = dev_id;
1049
1050	if (emif->temperature_level == SDRAM_TEMP_VERY_HIGH_SHUTDOWN) {
1051		dev_emerg(emif->dev, "SDRAM temperature exceeds operating limit.. Needs shut down!!!\n");
1052
1053		/* If we have Power OFF ability, use it, else try restarting */
1054		if (pm_power_off) {
1055			kernel_power_off();
1056		} else {
1057			WARN(1, "FIXME: NO pm_power_off!!! trying restart\n");
1058			kernel_restart("SDRAM Over-temp Emergency restart");
1059		}
1060		return IRQ_HANDLED;
1061	}
1062
1063	spin_lock_irqsave(&emif_lock, irq_state);
1064
1065	if (emif->curr_regs) {
1066		setup_temperature_sensitive_regs(emif, emif->curr_regs);
1067		do_freq_update();
1068	} else {
1069		dev_err(emif->dev, "temperature alert before registers are calculated, not de-rating timings\n");
1070	}
1071
1072	spin_unlock_irqrestore(&emif_lock, irq_state);
1073
1074	return IRQ_HANDLED;
1075}
1076
1077static void clear_all_interrupts(struct emif_data *emif)
1078{
1079	void __iomem	*base = emif->base;
1080
1081	writel(readl(base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS),
1082		base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS);
1083	if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE)
1084		writel(readl(base + EMIF_LL_OCP_INTERRUPT_STATUS),
1085			base + EMIF_LL_OCP_INTERRUPT_STATUS);
1086}
1087
1088static void disable_and_clear_all_interrupts(struct emif_data *emif)
1089{
1090	void __iomem		*base = emif->base;
1091
1092	/* Disable all interrupts */
1093	writel(readl(base + EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_SET),
1094		base + EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_CLEAR);
1095	if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE)
1096		writel(readl(base + EMIF_LL_OCP_INTERRUPT_ENABLE_SET),
1097			base + EMIF_LL_OCP_INTERRUPT_ENABLE_CLEAR);
1098
1099	/* Clear all interrupts */
1100	clear_all_interrupts(emif);
1101}
1102
1103static int __init_or_module setup_interrupts(struct emif_data *emif, u32 irq)
1104{
1105	u32		interrupts, type;
1106	void __iomem	*base = emif->base;
1107
1108	type = emif->plat_data->device_info->type;
1109
1110	clear_all_interrupts(emif);
1111
1112	/* Enable interrupts for SYS interface */
1113	interrupts = EN_ERR_SYS_MASK;
1114	if (type == DDR_TYPE_LPDDR2_S2 || type == DDR_TYPE_LPDDR2_S4)
1115		interrupts |= EN_TA_SYS_MASK;
1116	writel(interrupts, base + EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_SET);
1117
1118	/* Enable interrupts for LL interface */
1119	if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE) {
1120		/* TA need not be enabled for LL */
1121		interrupts = EN_ERR_LL_MASK;
1122		writel(interrupts, base + EMIF_LL_OCP_INTERRUPT_ENABLE_SET);
1123	}
1124
1125	/* setup IRQ handlers */
1126	return devm_request_threaded_irq(emif->dev, irq,
1127				    emif_interrupt_handler,
1128				    emif_threaded_isr,
1129				    0, dev_name(emif->dev),
1130				    emif);
1131
1132}
1133
1134static void __init_or_module emif_onetime_settings(struct emif_data *emif)
1135{
1136	u32				pwr_mgmt_ctrl, zq, temp_alert_cfg;
1137	void __iomem			*base = emif->base;
1138	const struct lpddr2_addressing	*addressing;
1139	const struct ddr_device_info	*device_info;
1140
1141	device_info = emif->plat_data->device_info;
1142	addressing = get_addressing_table(device_info);
1143
1144	/*
1145	 * Init power management settings
1146	 * We don't know the frequency yet. Use a high frequency
1147	 * value for a conservative timeout setting
1148	 */
1149	pwr_mgmt_ctrl = get_pwr_mgmt_ctrl(1000000000, emif,
1150			emif->plat_data->ip_rev);
1151	emif->lpmode = (pwr_mgmt_ctrl & LP_MODE_MASK) >> LP_MODE_SHIFT;
1152	writel(pwr_mgmt_ctrl, base + EMIF_POWER_MANAGEMENT_CONTROL);
1153
1154	/* Init ZQ calibration settings */
1155	zq = get_zq_config_reg(addressing, device_info->cs1_used,
1156		device_info->cal_resistors_per_cs);
1157	writel(zq, base + EMIF_SDRAM_OUTPUT_IMPEDANCE_CALIBRATION_CONFIG);
1158
1159	/* Check temperature level temperature level*/
1160	get_temperature_level(emif);
1161	if (emif->temperature_level == SDRAM_TEMP_VERY_HIGH_SHUTDOWN)
1162		dev_emerg(emif->dev, "SDRAM temperature exceeds operating limit.. Needs shut down!!!\n");
1163
1164	/* Init temperature polling */
1165	temp_alert_cfg = get_temp_alert_config(addressing,
1166		emif->plat_data->custom_configs, device_info->cs1_used,
1167		device_info->io_width, get_emif_bus_width(emif));
1168	writel(temp_alert_cfg, base + EMIF_TEMPERATURE_ALERT_CONFIG);
1169
1170	/*
1171	 * Program external PHY control registers that are not frequency
1172	 * dependent
1173	 */
1174	if (emif->plat_data->phy_type != EMIF_PHY_TYPE_INTELLIPHY)
1175		return;
1176	writel(EMIF_EXT_PHY_CTRL_1_VAL, base + EMIF_EXT_PHY_CTRL_1_SHDW);
1177	writel(EMIF_EXT_PHY_CTRL_5_VAL, base + EMIF_EXT_PHY_CTRL_5_SHDW);
1178	writel(EMIF_EXT_PHY_CTRL_6_VAL, base + EMIF_EXT_PHY_CTRL_6_SHDW);
1179	writel(EMIF_EXT_PHY_CTRL_7_VAL, base + EMIF_EXT_PHY_CTRL_7_SHDW);
1180	writel(EMIF_EXT_PHY_CTRL_8_VAL, base + EMIF_EXT_PHY_CTRL_8_SHDW);
1181	writel(EMIF_EXT_PHY_CTRL_9_VAL, base + EMIF_EXT_PHY_CTRL_9_SHDW);
1182	writel(EMIF_EXT_PHY_CTRL_10_VAL, base + EMIF_EXT_PHY_CTRL_10_SHDW);
1183	writel(EMIF_EXT_PHY_CTRL_11_VAL, base + EMIF_EXT_PHY_CTRL_11_SHDW);
1184	writel(EMIF_EXT_PHY_CTRL_12_VAL, base + EMIF_EXT_PHY_CTRL_12_SHDW);
1185	writel(EMIF_EXT_PHY_CTRL_13_VAL, base + EMIF_EXT_PHY_CTRL_13_SHDW);
1186	writel(EMIF_EXT_PHY_CTRL_14_VAL, base + EMIF_EXT_PHY_CTRL_14_SHDW);
1187	writel(EMIF_EXT_PHY_CTRL_15_VAL, base + EMIF_EXT_PHY_CTRL_15_SHDW);
1188	writel(EMIF_EXT_PHY_CTRL_16_VAL, base + EMIF_EXT_PHY_CTRL_16_SHDW);
1189	writel(EMIF_EXT_PHY_CTRL_17_VAL, base + EMIF_EXT_PHY_CTRL_17_SHDW);
1190	writel(EMIF_EXT_PHY_CTRL_18_VAL, base + EMIF_EXT_PHY_CTRL_18_SHDW);
1191	writel(EMIF_EXT_PHY_CTRL_19_VAL, base + EMIF_EXT_PHY_CTRL_19_SHDW);
1192	writel(EMIF_EXT_PHY_CTRL_20_VAL, base + EMIF_EXT_PHY_CTRL_20_SHDW);
1193	writel(EMIF_EXT_PHY_CTRL_21_VAL, base + EMIF_EXT_PHY_CTRL_21_SHDW);
1194	writel(EMIF_EXT_PHY_CTRL_22_VAL, base + EMIF_EXT_PHY_CTRL_22_SHDW);
1195	writel(EMIF_EXT_PHY_CTRL_23_VAL, base + EMIF_EXT_PHY_CTRL_23_SHDW);
1196	writel(EMIF_EXT_PHY_CTRL_24_VAL, base + EMIF_EXT_PHY_CTRL_24_SHDW);
1197}
1198
1199static void get_default_timings(struct emif_data *emif)
1200{
1201	struct emif_platform_data *pd = emif->plat_data;
1202
1203	pd->timings		= lpddr2_jedec_timings;
1204	pd->timings_arr_size	= ARRAY_SIZE(lpddr2_jedec_timings);
1205
1206	dev_warn(emif->dev, "%s: using default timings\n", __func__);
1207}
1208
1209static int is_dev_data_valid(u32 type, u32 density, u32 io_width, u32 phy_type,
1210		u32 ip_rev, struct device *dev)
1211{
1212	int valid;
1213
1214	valid = (type == DDR_TYPE_LPDDR2_S4 ||
1215			type == DDR_TYPE_LPDDR2_S2)
1216		&& (density >= DDR_DENSITY_64Mb
1217			&& density <= DDR_DENSITY_8Gb)
1218		&& (io_width >= DDR_IO_WIDTH_8
1219			&& io_width <= DDR_IO_WIDTH_32);
1220
1221	/* Combinations of EMIF and PHY revisions that we support today */
1222	switch (ip_rev) {
1223	case EMIF_4D:
1224		valid = valid && (phy_type == EMIF_PHY_TYPE_ATTILAPHY);
1225		break;
1226	case EMIF_4D5:
1227		valid = valid && (phy_type == EMIF_PHY_TYPE_INTELLIPHY);
1228		break;
1229	default:
1230		valid = 0;
1231	}
1232
1233	if (!valid)
1234		dev_err(dev, "%s: invalid DDR details\n", __func__);
1235	return valid;
1236}
1237
1238static int is_custom_config_valid(struct emif_custom_configs *cust_cfgs,
1239		struct device *dev)
1240{
1241	int valid = 1;
1242
1243	if ((cust_cfgs->mask & EMIF_CUSTOM_CONFIG_LPMODE) &&
1244		(cust_cfgs->lpmode != EMIF_LP_MODE_DISABLE))
1245		valid = cust_cfgs->lpmode_freq_threshold &&
1246			cust_cfgs->lpmode_timeout_performance &&
1247			cust_cfgs->lpmode_timeout_power;
1248
1249	if (cust_cfgs->mask & EMIF_CUSTOM_CONFIG_TEMP_ALERT_POLL_INTERVAL)
1250		valid = valid && cust_cfgs->temp_alert_poll_interval_ms;
1251
1252	if (!valid)
1253		dev_warn(dev, "%s: invalid custom configs\n", __func__);
1254
1255	return valid;
1256}
1257
1258#if defined(CONFIG_OF)
1259static void __init_or_module of_get_custom_configs(struct device_node *np_emif,
1260		struct emif_data *emif)
1261{
1262	struct emif_custom_configs	*cust_cfgs = NULL;
1263	int				len;
1264	const __be32			*lpmode, *poll_intvl;
1265
1266	lpmode = of_get_property(np_emif, "low-power-mode", &len);
1267	poll_intvl = of_get_property(np_emif, "temp-alert-poll-interval", &len);
1268
1269	if (lpmode || poll_intvl)
1270		cust_cfgs = devm_kzalloc(emif->dev, sizeof(*cust_cfgs),
1271			GFP_KERNEL);
1272
1273	if (!cust_cfgs)
1274		return;
1275
1276	if (lpmode) {
1277		cust_cfgs->mask |= EMIF_CUSTOM_CONFIG_LPMODE;
1278		cust_cfgs->lpmode = be32_to_cpup(lpmode);
1279		of_property_read_u32(np_emif,
1280				"low-power-mode-timeout-performance",
1281				&cust_cfgs->lpmode_timeout_performance);
1282		of_property_read_u32(np_emif,
1283				"low-power-mode-timeout-power",
1284				&cust_cfgs->lpmode_timeout_power);
1285		of_property_read_u32(np_emif,
1286				"low-power-mode-freq-threshold",
1287				&cust_cfgs->lpmode_freq_threshold);
1288	}
1289
1290	if (poll_intvl) {
1291		cust_cfgs->mask |=
1292				EMIF_CUSTOM_CONFIG_TEMP_ALERT_POLL_INTERVAL;
1293		cust_cfgs->temp_alert_poll_interval_ms =
1294						be32_to_cpup(poll_intvl);
1295	}
1296
1297	if (of_find_property(np_emif, "extended-temp-part", &len))
1298		cust_cfgs->mask |= EMIF_CUSTOM_CONFIG_EXTENDED_TEMP_PART;
1299
1300	if (!is_custom_config_valid(cust_cfgs, emif->dev)) {
1301		devm_kfree(emif->dev, cust_cfgs);
1302		return;
1303	}
1304
1305	emif->plat_data->custom_configs = cust_cfgs;
1306}
1307
1308static void __init_or_module of_get_ddr_info(struct device_node *np_emif,
1309		struct device_node *np_ddr,
1310		struct ddr_device_info *dev_info)
1311{
1312	u32 density = 0, io_width = 0;
1313	int len;
1314
1315	if (of_find_property(np_emif, "cs1-used", &len))
1316		dev_info->cs1_used = true;
1317
1318	if (of_find_property(np_emif, "cal-resistor-per-cs", &len))
1319		dev_info->cal_resistors_per_cs = true;
1320
1321	if (of_device_is_compatible(np_ddr , "jedec,lpddr2-s4"))
1322		dev_info->type = DDR_TYPE_LPDDR2_S4;
1323	else if (of_device_is_compatible(np_ddr , "jedec,lpddr2-s2"))
1324		dev_info->type = DDR_TYPE_LPDDR2_S2;
1325
1326	of_property_read_u32(np_ddr, "density", &density);
1327	of_property_read_u32(np_ddr, "io-width", &io_width);
1328
1329	/* Convert from density in Mb to the density encoding in jedc_ddr.h */
1330	if (density & (density - 1))
1331		dev_info->density = 0;
1332	else
1333		dev_info->density = __fls(density) - 5;
1334
1335	/* Convert from io_width in bits to io_width encoding in jedc_ddr.h */
1336	if (io_width & (io_width - 1))
1337		dev_info->io_width = 0;
1338	else
1339		dev_info->io_width = __fls(io_width) - 1;
1340}
1341
1342static struct emif_data * __init_or_module of_get_memory_device_details(
1343		struct device_node *np_emif, struct device *dev)
1344{
1345	struct emif_data		*emif = NULL;
1346	struct ddr_device_info		*dev_info = NULL;
1347	struct emif_platform_data	*pd = NULL;
1348	struct device_node		*np_ddr;
1349	int				len;
1350
1351	np_ddr = of_parse_phandle(np_emif, "device-handle", 0);
1352	if (!np_ddr)
1353		goto error;
1354	emif	= devm_kzalloc(dev, sizeof(struct emif_data), GFP_KERNEL);
1355	pd	= devm_kzalloc(dev, sizeof(*pd), GFP_KERNEL);
1356	dev_info = devm_kzalloc(dev, sizeof(*dev_info), GFP_KERNEL);
1357
1358	if (!emif || !pd || !dev_info) {
1359		dev_err(dev, "%s: Out of memory!!\n",
1360			__func__);
1361		goto error;
1362	}
1363
1364	emif->plat_data		= pd;
1365	pd->device_info		= dev_info;
1366	emif->dev		= dev;
1367	emif->np_ddr		= np_ddr;
1368	emif->temperature_level	= SDRAM_TEMP_NOMINAL;
1369
1370	if (of_device_is_compatible(np_emif, "ti,emif-4d"))
1371		emif->plat_data->ip_rev = EMIF_4D;
1372	else if (of_device_is_compatible(np_emif, "ti,emif-4d5"))
1373		emif->plat_data->ip_rev = EMIF_4D5;
1374
1375	of_property_read_u32(np_emif, "phy-type", &pd->phy_type);
1376
1377	if (of_find_property(np_emif, "hw-caps-ll-interface", &len))
1378		pd->hw_caps |= EMIF_HW_CAPS_LL_INTERFACE;
1379
1380	of_get_ddr_info(np_emif, np_ddr, dev_info);
1381	if (!is_dev_data_valid(pd->device_info->type, pd->device_info->density,
1382			pd->device_info->io_width, pd->phy_type, pd->ip_rev,
1383			emif->dev)) {
1384		dev_err(dev, "%s: invalid device data!!\n", __func__);
1385		goto error;
1386	}
1387	/*
1388	 * For EMIF instances other than EMIF1 see if the devices connected
1389	 * are exactly same as on EMIF1(which is typically the case). If so,
1390	 * mark it as a duplicate of EMIF1. This will save some memory and
1391	 * computation.
1392	 */
1393	if (emif1 && emif1->np_ddr == np_ddr) {
1394		emif->duplicate = true;
1395		goto out;
1396	} else if (emif1) {
1397		dev_warn(emif->dev, "%s: Non-symmetric DDR geometry\n",
1398			__func__);
1399	}
1400
1401	of_get_custom_configs(np_emif, emif);
1402	emif->plat_data->timings = of_get_ddr_timings(np_ddr, emif->dev,
1403					emif->plat_data->device_info->type,
1404					&emif->plat_data->timings_arr_size);
1405
1406	emif->plat_data->min_tck = of_get_min_tck(np_ddr, emif->dev);
1407	goto out;
1408
1409error:
1410	return NULL;
1411out:
1412	return emif;
1413}
1414
1415#else
1416
1417static struct emif_data * __init_or_module of_get_memory_device_details(
1418		struct device_node *np_emif, struct device *dev)
1419{
1420	return NULL;
1421}
1422#endif
1423
1424static struct emif_data *__init_or_module get_device_details(
1425		struct platform_device *pdev)
1426{
1427	u32				size;
1428	struct emif_data		*emif = NULL;
1429	struct ddr_device_info		*dev_info;
1430	struct emif_custom_configs	*cust_cfgs;
1431	struct emif_platform_data	*pd;
1432	struct device			*dev;
1433	void				*temp;
1434
1435	pd = pdev->dev.platform_data;
1436	dev = &pdev->dev;
1437
1438	if (!(pd && pd->device_info && is_dev_data_valid(pd->device_info->type,
1439			pd->device_info->density, pd->device_info->io_width,
1440			pd->phy_type, pd->ip_rev, dev))) {
1441		dev_err(dev, "%s: invalid device data\n", __func__);
1442		goto error;
1443	}
1444
1445	emif	= devm_kzalloc(dev, sizeof(*emif), GFP_KERNEL);
1446	temp	= devm_kzalloc(dev, sizeof(*pd), GFP_KERNEL);
1447	dev_info = devm_kzalloc(dev, sizeof(*dev_info), GFP_KERNEL);
1448
1449	if (!emif || !pd || !dev_info) {
1450		dev_err(dev, "%s:%d: allocation error\n", __func__, __LINE__);
1451		goto error;
1452	}
1453
1454	memcpy(temp, pd, sizeof(*pd));
1455	pd = temp;
1456	memcpy(dev_info, pd->device_info, sizeof(*dev_info));
1457
1458	pd->device_info		= dev_info;
1459	emif->plat_data		= pd;
1460	emif->dev		= dev;
1461	emif->temperature_level	= SDRAM_TEMP_NOMINAL;
1462
1463	/*
1464	 * For EMIF instances other than EMIF1 see if the devices connected
1465	 * are exactly same as on EMIF1(which is typically the case). If so,
1466	 * mark it as a duplicate of EMIF1 and skip copying timings data.
1467	 * This will save some memory and some computation later.
1468	 */
1469	emif->duplicate = emif1 && (memcmp(dev_info,
1470		emif1->plat_data->device_info,
1471		sizeof(struct ddr_device_info)) == 0);
1472
1473	if (emif->duplicate) {
1474		pd->timings = NULL;
1475		pd->min_tck = NULL;
1476		goto out;
1477	} else if (emif1) {
1478		dev_warn(emif->dev, "%s: Non-symmetric DDR geometry\n",
1479			__func__);
1480	}
1481
1482	/*
1483	 * Copy custom configs - ignore allocation error, if any, as
1484	 * custom_configs is not very critical
1485	 */
1486	cust_cfgs = pd->custom_configs;
1487	if (cust_cfgs && is_custom_config_valid(cust_cfgs, dev)) {
1488		temp = devm_kzalloc(dev, sizeof(*cust_cfgs), GFP_KERNEL);
1489		if (temp)
1490			memcpy(temp, cust_cfgs, sizeof(*cust_cfgs));
1491		else
1492			dev_warn(dev, "%s:%d: allocation error\n", __func__,
1493				__LINE__);
1494		pd->custom_configs = temp;
1495	}
1496
1497	/*
1498	 * Copy timings and min-tck values from platform data. If it is not
1499	 * available or if memory allocation fails, use JEDEC defaults
1500	 */
1501	size = sizeof(struct lpddr2_timings) * pd->timings_arr_size;
1502	if (pd->timings) {
1503		temp = devm_kzalloc(dev, size, GFP_KERNEL);
1504		if (temp) {
1505			memcpy(temp, pd->timings, size);
1506			pd->timings = temp;
1507		} else {
1508			dev_warn(dev, "%s:%d: allocation error\n", __func__,
1509				__LINE__);
1510			get_default_timings(emif);
1511		}
1512	} else {
1513		get_default_timings(emif);
1514	}
1515
1516	if (pd->min_tck) {
1517		temp = devm_kzalloc(dev, sizeof(*pd->min_tck), GFP_KERNEL);
1518		if (temp) {
1519			memcpy(temp, pd->min_tck, sizeof(*pd->min_tck));
1520			pd->min_tck = temp;
1521		} else {
1522			dev_warn(dev, "%s:%d: allocation error\n", __func__,
1523				__LINE__);
1524			pd->min_tck = &lpddr2_jedec_min_tck;
1525		}
1526	} else {
1527		pd->min_tck = &lpddr2_jedec_min_tck;
1528	}
1529
1530out:
1531	return emif;
1532
1533error:
1534	return NULL;
1535}
1536
1537static int __init_or_module emif_probe(struct platform_device *pdev)
1538{
1539	struct emif_data	*emif;
1540	struct resource		*res;
1541	int			irq;
1542
1543	if (pdev->dev.of_node)
1544		emif = of_get_memory_device_details(pdev->dev.of_node, &pdev->dev);
1545	else
1546		emif = get_device_details(pdev);
1547
1548	if (!emif) {
1549		pr_err("%s: error getting device data\n", __func__);
1550		goto error;
1551	}
1552
1553	list_add(&emif->node, &device_list);
1554	emif->addressing = get_addressing_table(emif->plat_data->device_info);
1555
1556	/* Save pointers to each other in emif and device structures */
1557	emif->dev = &pdev->dev;
1558	platform_set_drvdata(pdev, emif);
1559
1560	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1561	emif->base = devm_ioremap_resource(emif->dev, res);
1562	if (IS_ERR(emif->base))
1563		goto error;
1564
1565	irq = platform_get_irq(pdev, 0);
1566	if (irq < 0) {
1567		dev_err(emif->dev, "%s: error getting IRQ resource - %d\n",
1568			__func__, irq);
1569		goto error;
1570	}
1571
1572	emif_onetime_settings(emif);
1573	emif_debugfs_init(emif);
1574	disable_and_clear_all_interrupts(emif);
1575	setup_interrupts(emif, irq);
1576
1577	/* One-time actions taken on probing the first device */
1578	if (!emif1) {
1579		emif1 = emif;
1580		spin_lock_init(&emif_lock);
1581
1582		/*
1583		 * TODO: register notifiers for frequency and voltage
1584		 * change here once the respective frameworks are
1585		 * available
1586		 */
1587	}
1588
1589	dev_info(&pdev->dev, "%s: device configured with addr = %p and IRQ%d\n",
1590		__func__, emif->base, irq);
1591
1592	return 0;
1593error:
1594	return -ENODEV;
1595}
1596
1597static int __exit emif_remove(struct platform_device *pdev)
1598{
1599	struct emif_data *emif = platform_get_drvdata(pdev);
1600
1601	emif_debugfs_exit(emif);
1602
1603	return 0;
1604}
1605
1606static void emif_shutdown(struct platform_device *pdev)
1607{
1608	struct emif_data	*emif = platform_get_drvdata(pdev);
1609
1610	disable_and_clear_all_interrupts(emif);
1611}
1612
1613static int get_emif_reg_values(struct emif_data *emif, u32 freq,
1614		struct emif_regs *regs)
1615{
1616	u32				cs1_used, ip_rev, phy_type;
1617	u32				cl, type;
1618	const struct lpddr2_timings	*timings;
1619	const struct lpddr2_min_tck	*min_tck;
1620	const struct ddr_device_info	*device_info;
1621	const struct lpddr2_addressing	*addressing;
1622	struct emif_data		*emif_for_calc;
1623	struct device			*dev;
1624	const struct emif_custom_configs *custom_configs;
1625
1626	dev = emif->dev;
1627	/*
1628	 * If the devices on this EMIF instance is duplicate of EMIF1,
1629	 * use EMIF1 details for the calculation
1630	 */
1631	emif_for_calc	= emif->duplicate ? emif1 : emif;
1632	timings		= get_timings_table(emif_for_calc, freq);
1633	addressing	= emif_for_calc->addressing;
1634	if (!timings || !addressing) {
1635		dev_err(dev, "%s: not enough data available for %dHz",
1636			__func__, freq);
1637		return -1;
1638	}
1639
1640	device_info	= emif_for_calc->plat_data->device_info;
1641	type		= device_info->type;
1642	cs1_used	= device_info->cs1_used;
1643	ip_rev		= emif_for_calc->plat_data->ip_rev;
1644	phy_type	= emif_for_calc->plat_data->phy_type;
1645
1646	min_tck		= emif_for_calc->plat_data->min_tck;
1647	custom_configs	= emif_for_calc->plat_data->custom_configs;
1648
1649	set_ddr_clk_period(freq);
1650
1651	regs->ref_ctrl_shdw = get_sdram_ref_ctrl_shdw(freq, addressing);
1652	regs->sdram_tim1_shdw = get_sdram_tim_1_shdw(timings, min_tck,
1653			addressing);
1654	regs->sdram_tim2_shdw = get_sdram_tim_2_shdw(timings, min_tck,
1655			addressing, type);
1656	regs->sdram_tim3_shdw = get_sdram_tim_3_shdw(timings, min_tck,
1657		addressing, type, ip_rev, EMIF_NORMAL_TIMINGS);
1658
1659	cl = get_cl(emif);
1660
1661	if (phy_type == EMIF_PHY_TYPE_ATTILAPHY && ip_rev == EMIF_4D) {
1662		regs->phy_ctrl_1_shdw = get_ddr_phy_ctrl_1_attilaphy_4d(
1663			timings, freq, cl);
1664	} else if (phy_type == EMIF_PHY_TYPE_INTELLIPHY && ip_rev == EMIF_4D5) {
1665		regs->phy_ctrl_1_shdw = get_phy_ctrl_1_intelliphy_4d5(freq, cl);
1666		regs->ext_phy_ctrl_2_shdw = get_ext_phy_ctrl_2_intelliphy_4d5();
1667		regs->ext_phy_ctrl_3_shdw = get_ext_phy_ctrl_3_intelliphy_4d5();
1668		regs->ext_phy_ctrl_4_shdw = get_ext_phy_ctrl_4_intelliphy_4d5();
1669	} else {
1670		return -1;
1671	}
1672
1673	/* Only timeout values in pwr_mgmt_ctrl_shdw register */
1674	regs->pwr_mgmt_ctrl_shdw =
1675		get_pwr_mgmt_ctrl(freq, emif_for_calc, ip_rev) &
1676		(CS_TIM_MASK | SR_TIM_MASK | PD_TIM_MASK);
1677
1678	if (ip_rev & EMIF_4D) {
1679		regs->read_idle_ctrl_shdw_normal =
1680			get_read_idle_ctrl_shdw(DDR_VOLTAGE_STABLE);
1681
1682		regs->read_idle_ctrl_shdw_volt_ramp =
1683			get_read_idle_ctrl_shdw(DDR_VOLTAGE_RAMPING);
1684	} else if (ip_rev & EMIF_4D5) {
1685		regs->dll_calib_ctrl_shdw_normal =
1686			get_dll_calib_ctrl_shdw(DDR_VOLTAGE_STABLE);
1687
1688		regs->dll_calib_ctrl_shdw_volt_ramp =
1689			get_dll_calib_ctrl_shdw(DDR_VOLTAGE_RAMPING);
1690	}
1691
1692	if (type == DDR_TYPE_LPDDR2_S2 || type == DDR_TYPE_LPDDR2_S4) {
1693		regs->ref_ctrl_shdw_derated = get_sdram_ref_ctrl_shdw(freq / 4,
1694			addressing);
1695
1696		regs->sdram_tim1_shdw_derated =
1697			get_sdram_tim_1_shdw_derated(timings, min_tck,
1698				addressing);
1699
1700		regs->sdram_tim3_shdw_derated = get_sdram_tim_3_shdw(timings,
1701			min_tck, addressing, type, ip_rev,
1702			EMIF_DERATED_TIMINGS);
1703	}
1704
1705	regs->freq = freq;
1706
1707	return 0;
1708}
1709
1710/*
1711 * get_regs() - gets the cached emif_regs structure for a given EMIF instance
1712 * given frequency(freq):
1713 *
1714 * As an optimisation, every EMIF instance other than EMIF1 shares the
1715 * register cache with EMIF1 if the devices connected on this instance
1716 * are same as that on EMIF1(indicated by the duplicate flag)
1717 *
1718 * If we do not have an entry corresponding to the frequency given, we
1719 * allocate a new entry and calculate the values
1720 *
1721 * Upon finding the right reg dump, save it in curr_regs. It can be
1722 * directly used for thermal de-rating and voltage ramping changes.
1723 */
1724static struct emif_regs *get_regs(struct emif_data *emif, u32 freq)
1725{
1726	int			i;
1727	struct emif_regs	**regs_cache;
1728	struct emif_regs	*regs = NULL;
1729	struct device		*dev;
1730
1731	dev = emif->dev;
1732	if (emif->curr_regs && emif->curr_regs->freq == freq) {
1733		dev_dbg(dev, "%s: using curr_regs - %u Hz", __func__, freq);
1734		return emif->curr_regs;
1735	}
1736
1737	if (emif->duplicate)
1738		regs_cache = emif1->regs_cache;
1739	else
1740		regs_cache = emif->regs_cache;
1741
1742	for (i = 0; i < EMIF_MAX_NUM_FREQUENCIES && regs_cache[i]; i++) {
1743		if (regs_cache[i]->freq == freq) {
1744			regs = regs_cache[i];
1745			dev_dbg(dev,
1746				"%s: reg dump found in reg cache for %u Hz\n",
1747				__func__, freq);
1748			break;
1749		}
1750	}
1751
1752	/*
1753	 * If we don't have an entry for this frequency in the cache create one
1754	 * and calculate the values
1755	 */
1756	if (!regs) {
1757		regs = devm_kzalloc(emif->dev, sizeof(*regs), GFP_ATOMIC);
1758		if (!regs)
1759			return NULL;
1760
1761		if (get_emif_reg_values(emif, freq, regs)) {
1762			devm_kfree(emif->dev, regs);
1763			return NULL;
1764		}
1765
1766		/*
1767		 * Now look for an un-used entry in the cache and save the
1768		 * newly created struct. If there are no free entries
1769		 * over-write the last entry
1770		 */
1771		for (i = 0; i < EMIF_MAX_NUM_FREQUENCIES && regs_cache[i]; i++)
1772			;
1773
1774		if (i >= EMIF_MAX_NUM_FREQUENCIES) {
1775			dev_warn(dev, "%s: regs_cache full - reusing a slot!!\n",
1776				__func__);
1777			i = EMIF_MAX_NUM_FREQUENCIES - 1;
1778			devm_kfree(emif->dev, regs_cache[i]);
1779		}
1780		regs_cache[i] = regs;
1781	}
1782
1783	return regs;
1784}
1785
1786static void do_volt_notify_handling(struct emif_data *emif, u32 volt_state)
1787{
1788	dev_dbg(emif->dev, "%s: voltage notification : %d", __func__,
1789		volt_state);
1790
1791	if (!emif->curr_regs) {
1792		dev_err(emif->dev,
1793			"%s: volt-notify before registers are ready: %d\n",
1794			__func__, volt_state);
1795		return;
1796	}
1797
1798	setup_volt_sensitive_regs(emif, emif->curr_regs, volt_state);
1799}
1800
1801/*
1802 * TODO: voltage notify handling should be hooked up to
1803 * regulator framework as soon as the necessary support
1804 * is available in mainline kernel. This function is un-used
1805 * right now.
1806 */
1807static void __attribute__((unused)) volt_notify_handling(u32 volt_state)
1808{
1809	struct emif_data *emif;
1810
1811	spin_lock_irqsave(&emif_lock, irq_state);
1812
1813	list_for_each_entry(emif, &device_list, node)
1814		do_volt_notify_handling(emif, volt_state);
1815	do_freq_update();
1816
1817	spin_unlock_irqrestore(&emif_lock, irq_state);
1818}
1819
1820static void do_freq_pre_notify_handling(struct emif_data *emif, u32 new_freq)
1821{
1822	struct emif_regs *regs;
1823
1824	regs = get_regs(emif, new_freq);
1825	if (!regs)
1826		return;
1827
1828	emif->curr_regs = regs;
1829
1830	/*
1831	 * Update the shadow registers:
1832	 * Temperature and voltage-ramp sensitive settings are also configured
1833	 * in terms of DDR cycles. So, we need to update them too when there
1834	 * is a freq change
1835	 */
1836	dev_dbg(emif->dev, "%s: setting up shadow registers for %uHz",
1837		__func__, new_freq);
1838	setup_registers(emif, regs);
1839	setup_temperature_sensitive_regs(emif, regs);
1840	setup_volt_sensitive_regs(emif, regs, DDR_VOLTAGE_STABLE);
1841
1842	/*
1843	 * Part of workaround for errata i728. See do_freq_update()
1844	 * for more details
1845	 */
1846	if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH)
1847		set_lpmode(emif, EMIF_LP_MODE_DISABLE);
1848}
1849
1850/*
1851 * TODO: frequency notify handling should be hooked up to
1852 * clock framework as soon as the necessary support is
1853 * available in mainline kernel. This function is un-used
1854 * right now.
1855 */
1856static void __attribute__((unused)) freq_pre_notify_handling(u32 new_freq)
1857{
1858	struct emif_data *emif;
1859
1860	/*
1861	 * NOTE: we are taking the spin-lock here and releases it
1862	 * only in post-notifier. This doesn't look good and
1863	 * Sparse complains about it, but this seems to be
1864	 * un-avoidable. We need to lock a sequence of events
1865	 * that is split between EMIF and clock framework.
1866	 *
1867	 * 1. EMIF driver updates EMIF timings in shadow registers in the
1868	 *    frequency pre-notify callback from clock framework
1869	 * 2. clock framework sets up the registers for the new frequency
1870	 * 3. clock framework initiates a hw-sequence that updates
1871	 *    the frequency EMIF timings synchronously.
1872	 *
1873	 * All these 3 steps should be performed as an atomic operation
1874	 * vis-a-vis similar sequence in the EMIF interrupt handler
1875	 * for temperature events. Otherwise, there could be race
1876	 * conditions that could result in incorrect EMIF timings for
1877	 * a given frequency
1878	 */
1879	spin_lock_irqsave(&emif_lock, irq_state);
1880
1881	list_for_each_entry(emif, &device_list, node)
1882		do_freq_pre_notify_handling(emif, new_freq);
1883}
1884
1885static void do_freq_post_notify_handling(struct emif_data *emif)
1886{
1887	/*
1888	 * Part of workaround for errata i728. See do_freq_update()
1889	 * for more details
1890	 */
1891	if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH)
1892		set_lpmode(emif, EMIF_LP_MODE_SELF_REFRESH);
1893}
1894
1895/*
1896 * TODO: frequency notify handling should be hooked up to
1897 * clock framework as soon as the necessary support is
1898 * available in mainline kernel. This function is un-used
1899 * right now.
1900 */
1901static void __attribute__((unused)) freq_post_notify_handling(void)
1902{
1903	struct emif_data *emif;
1904
1905	list_for_each_entry(emif, &device_list, node)
1906		do_freq_post_notify_handling(emif);
1907
1908	/*
1909	 * Lock is done in pre-notify handler. See freq_pre_notify_handling()
1910	 * for more details
1911	 */
1912	spin_unlock_irqrestore(&emif_lock, irq_state);
1913}
1914
1915#if defined(CONFIG_OF)
1916static const struct of_device_id emif_of_match[] = {
1917		{ .compatible = "ti,emif-4d" },
1918		{ .compatible = "ti,emif-4d5" },
1919		{},
1920};
1921MODULE_DEVICE_TABLE(of, emif_of_match);
1922#endif
1923
1924static struct platform_driver emif_driver = {
1925	.remove		= __exit_p(emif_remove),
1926	.shutdown	= emif_shutdown,
1927	.driver = {
1928		.name = "emif",
1929		.of_match_table = of_match_ptr(emif_of_match),
1930	},
1931};
1932
1933module_platform_driver_probe(emif_driver, emif_probe);
1934
1935MODULE_DESCRIPTION("TI EMIF SDRAM Controller Driver");
1936MODULE_LICENSE("GPL");
1937MODULE_ALIAS("platform:emif");
1938MODULE_AUTHOR("Texas Instruments Inc");