Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * EMIF driver
   4 *
   5 * Copyright (C) 2012 Texas Instruments, Inc.
   6 *
   7 * Aneesh V <aneesh@ti.com>
   8 * Santosh Shilimkar <santosh.shilimkar@ti.com>
   9 */
  10#include <linux/err.h>
  11#include <linux/kernel.h>
  12#include <linux/reboot.h>
  13#include <linux/platform_data/emif_plat.h>
  14#include <linux/io.h>
  15#include <linux/device.h>
  16#include <linux/platform_device.h>
  17#include <linux/interrupt.h>
  18#include <linux/slab.h>
  19#include <linux/of.h>
  20#include <linux/debugfs.h>
  21#include <linux/seq_file.h>
  22#include <linux/module.h>
  23#include <linux/list.h>
  24#include <linux/spinlock.h>
  25#include <linux/pm.h>
  26
  27#include "emif.h"
  28#include "jedec_ddr.h"
  29#include "of_memory.h"
  30
  31/**
  32 * struct emif_data - Per device static data for driver's use
  33 * @duplicate:			Whether the DDR devices attached to this EMIF
  34 *				instance are exactly same as that on EMIF1. In
  35 *				this case we can save some memory and processing
  36 * @temperature_level:		Maximum temperature of LPDDR2 devices attached
  37 *				to this EMIF - read from MR4 register. If there
  38 *				are two devices attached to this EMIF, this
  39 *				value is the maximum of the two temperature
  40 *				levels.
  41 * @node:			node in the device list
  42 * @base:			base address of memory-mapped IO registers.
  43 * @dev:			device pointer.
  44 * @regs_cache:			An array of 'struct emif_regs' that stores
  45 *				calculated register values for different
  46 *				frequencies, to avoid re-calculating them on
  47 *				each DVFS transition.
  48 * @curr_regs:			The set of register values used in the last
  49 *				frequency change (i.e. corresponding to the
  50 *				frequency in effect at the moment)
  51 * @plat_data:			Pointer to saved platform data.
  52 * @debugfs_root:		dentry to the root folder for EMIF in debugfs
  53 * @np_ddr:			Pointer to ddr device tree node
  54 */
  55struct emif_data {
  56	u8				duplicate;
  57	u8				temperature_level;
  58	u8				lpmode;
  59	struct list_head		node;
  60	unsigned long			irq_state;
  61	void __iomem			*base;
  62	struct device			*dev;
  63	struct emif_regs		*regs_cache[EMIF_MAX_NUM_FREQUENCIES];
  64	struct emif_regs		*curr_regs;
  65	struct emif_platform_data	*plat_data;
  66	struct dentry			*debugfs_root;
  67	struct device_node		*np_ddr;
  68};
  69
  70static struct emif_data *emif1;
  71static DEFINE_SPINLOCK(emif_lock);
  72static unsigned long	irq_state;
  73static LIST_HEAD(device_list);
  74
  75#ifdef CONFIG_DEBUG_FS
  76static void do_emif_regdump_show(struct seq_file *s, struct emif_data *emif,
  77	struct emif_regs *regs)
  78{
  79	u32 type = emif->plat_data->device_info->type;
  80	u32 ip_rev = emif->plat_data->ip_rev;
  81
  82	seq_printf(s, "EMIF register cache dump for %dMHz\n",
  83		regs->freq/1000000);
  84
  85	seq_printf(s, "ref_ctrl_shdw\t: 0x%08x\n", regs->ref_ctrl_shdw);
  86	seq_printf(s, "sdram_tim1_shdw\t: 0x%08x\n", regs->sdram_tim1_shdw);
  87	seq_printf(s, "sdram_tim2_shdw\t: 0x%08x\n", regs->sdram_tim2_shdw);
  88	seq_printf(s, "sdram_tim3_shdw\t: 0x%08x\n", regs->sdram_tim3_shdw);
  89
  90	if (ip_rev == EMIF_4D) {
  91		seq_printf(s, "read_idle_ctrl_shdw_normal\t: 0x%08x\n",
  92			regs->read_idle_ctrl_shdw_normal);
  93		seq_printf(s, "read_idle_ctrl_shdw_volt_ramp\t: 0x%08x\n",
  94			regs->read_idle_ctrl_shdw_volt_ramp);
  95	} else if (ip_rev == EMIF_4D5) {
  96		seq_printf(s, "dll_calib_ctrl_shdw_normal\t: 0x%08x\n",
  97			regs->dll_calib_ctrl_shdw_normal);
  98		seq_printf(s, "dll_calib_ctrl_shdw_volt_ramp\t: 0x%08x\n",
  99			regs->dll_calib_ctrl_shdw_volt_ramp);
 100	}
 101
 102	if (type == DDR_TYPE_LPDDR2_S2 || type == DDR_TYPE_LPDDR2_S4) {
 103		seq_printf(s, "ref_ctrl_shdw_derated\t: 0x%08x\n",
 104			regs->ref_ctrl_shdw_derated);
 105		seq_printf(s, "sdram_tim1_shdw_derated\t: 0x%08x\n",
 106			regs->sdram_tim1_shdw_derated);
 107		seq_printf(s, "sdram_tim3_shdw_derated\t: 0x%08x\n",
 108			regs->sdram_tim3_shdw_derated);
 109	}
 110}
 111
 112static int emif_regdump_show(struct seq_file *s, void *unused)
 113{
 114	struct emif_data	*emif	= s->private;
 115	struct emif_regs	**regs_cache;
 116	int			i;
 117
 118	if (emif->duplicate)
 119		regs_cache = emif1->regs_cache;
 120	else
 121		regs_cache = emif->regs_cache;
 122
 123	for (i = 0; i < EMIF_MAX_NUM_FREQUENCIES && regs_cache[i]; i++) {
 124		do_emif_regdump_show(s, emif, regs_cache[i]);
 125		seq_putc(s, '\n');
 126	}
 127
 128	return 0;
 129}
 130
 131DEFINE_SHOW_ATTRIBUTE(emif_regdump);
 132
 133static int emif_mr4_show(struct seq_file *s, void *unused)
 134{
 135	struct emif_data *emif = s->private;
 136
 137	seq_printf(s, "MR4=%d\n", emif->temperature_level);
 138	return 0;
 139}
 140
 141DEFINE_SHOW_ATTRIBUTE(emif_mr4);
 142
 143static int __init_or_module emif_debugfs_init(struct emif_data *emif)
 144{
 145	emif->debugfs_root = debugfs_create_dir(dev_name(emif->dev), NULL);
 146	debugfs_create_file("regcache_dump", S_IRUGO, emif->debugfs_root, emif,
 147			    &emif_regdump_fops);
 148	debugfs_create_file("mr4", S_IRUGO, emif->debugfs_root, emif,
 149			    &emif_mr4_fops);
 150	return 0;
 151}
 152
 153static void __exit emif_debugfs_exit(struct emif_data *emif)
 154{
 155	debugfs_remove_recursive(emif->debugfs_root);
 156	emif->debugfs_root = NULL;
 157}
 158#else
 159static inline int __init_or_module emif_debugfs_init(struct emif_data *emif)
 160{
 161	return 0;
 162}
 163
 164static inline void __exit emif_debugfs_exit(struct emif_data *emif)
 165{
 166}
 167#endif
 168
 169/*
 170 * Get bus width used by EMIF. Note that this may be different from the
 171 * bus width of the DDR devices used. For instance two 16-bit DDR devices
 172 * may be connected to a given CS of EMIF. In this case bus width as far
 173 * as EMIF is concerned is 32, where as the DDR bus width is 16 bits.
 174 */
 175static u32 get_emif_bus_width(struct emif_data *emif)
 176{
 177	u32		width;
 178	void __iomem	*base = emif->base;
 179
 180	width = (readl(base + EMIF_SDRAM_CONFIG) & NARROW_MODE_MASK)
 181			>> NARROW_MODE_SHIFT;
 182	width = width == 0 ? 32 : 16;
 183
 184	return width;
 185}
 186
 187static void set_lpmode(struct emif_data *emif, u8 lpmode)
 188{
 189	u32 temp;
 190	void __iomem *base = emif->base;
 191
 192	/*
 193	 * Workaround for errata i743 - LPDDR2 Power-Down State is Not
 194	 * Efficient
 195	 *
 196	 * i743 DESCRIPTION:
 197	 * The EMIF supports power-down state for low power. The EMIF
 198	 * automatically puts the SDRAM into power-down after the memory is
 199	 * not accessed for a defined number of cycles and the
 200	 * EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE bit field is set to 0x4.
 201	 * As the EMIF supports automatic output impedance calibration, a ZQ
 202	 * calibration long command is issued every time it exits active
 203	 * power-down and precharge power-down modes. The EMIF waits and
 204	 * blocks any other command during this calibration.
 205	 * The EMIF does not allow selective disabling of ZQ calibration upon
 206	 * exit of power-down mode. Due to very short periods of power-down
 207	 * cycles, ZQ calibration overhead creates bandwidth issues and
 208	 * increases overall system power consumption. On the other hand,
 209	 * issuing ZQ calibration long commands when exiting self-refresh is
 210	 * still required.
 211	 *
 212	 * WORKAROUND
 213	 * Because there is no power consumption benefit of the power-down due
 214	 * to the calibration and there is a performance risk, the guideline
 215	 * is to not allow power-down state and, therefore, to not have set
 216	 * the EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE bit field to 0x4.
 217	 */
 218	if ((emif->plat_data->ip_rev == EMIF_4D) &&
 219	    (lpmode == EMIF_LP_MODE_PWR_DN)) {
 220		WARN_ONCE(1,
 221			  "REG_LP_MODE = LP_MODE_PWR_DN(4) is prohibited by erratum i743 switch to LP_MODE_SELF_REFRESH(2)\n");
 222		/* rollback LP_MODE to Self-refresh mode */
 223		lpmode = EMIF_LP_MODE_SELF_REFRESH;
 224	}
 225
 226	temp = readl(base + EMIF_POWER_MANAGEMENT_CONTROL);
 227	temp &= ~LP_MODE_MASK;
 228	temp |= (lpmode << LP_MODE_SHIFT);
 229	writel(temp, base + EMIF_POWER_MANAGEMENT_CONTROL);
 230}
 231
 232static void do_freq_update(void)
 233{
 234	struct emif_data *emif;
 235
 236	/*
 237	 * Workaround for errata i728: Disable LPMODE during FREQ_UPDATE
 238	 *
 239	 * i728 DESCRIPTION:
 240	 * The EMIF automatically puts the SDRAM into self-refresh mode
 241	 * after the EMIF has not performed accesses during
 242	 * EMIF_PWR_MGMT_CTRL[7:4] REG_SR_TIM number of DDR clock cycles
 243	 * and the EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE bit field is set
 244	 * to 0x2. If during a small window the following three events
 245	 * occur:
 246	 * - The SR_TIMING counter expires
 247	 * - And frequency change is requested
 248	 * - And OCP access is requested
 249	 * Then it causes instable clock on the DDR interface.
 250	 *
 251	 * WORKAROUND
 252	 * To avoid the occurrence of the three events, the workaround
 253	 * is to disable the self-refresh when requesting a frequency
 254	 * change. Before requesting a frequency change the software must
 255	 * program EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE to 0x0. When the
 256	 * frequency change has been done, the software can reprogram
 257	 * EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE to 0x2
 258	 */
 259	list_for_each_entry(emif, &device_list, node) {
 260		if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH)
 261			set_lpmode(emif, EMIF_LP_MODE_DISABLE);
 262	}
 263
 264	/*
 265	 * TODO: Do FREQ_UPDATE here when an API
 266	 * is available for this as part of the new
 267	 * clock framework
 268	 */
 269
 270	list_for_each_entry(emif, &device_list, node) {
 271		if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH)
 272			set_lpmode(emif, EMIF_LP_MODE_SELF_REFRESH);
 273	}
 274}
 275
 276/* Find addressing table entry based on the device's type and density */
 277static const struct lpddr2_addressing *get_addressing_table(
 278	const struct ddr_device_info *device_info)
 279{
 280	u32		index, type, density;
 281
 282	type = device_info->type;
 283	density = device_info->density;
 284
 285	switch (type) {
 286	case DDR_TYPE_LPDDR2_S4:
 287		index = density - 1;
 288		break;
 289	case DDR_TYPE_LPDDR2_S2:
 290		switch (density) {
 291		case DDR_DENSITY_1Gb:
 292		case DDR_DENSITY_2Gb:
 293			index = density + 3;
 294			break;
 295		default:
 296			index = density - 1;
 297		}
 298		break;
 299	default:
 300		return NULL;
 301	}
 302
 303	return &lpddr2_jedec_addressing_table[index];
 304}
 305
 306static u32 get_zq_config_reg(const struct lpddr2_addressing *addressing,
 307		bool cs1_used, bool cal_resistors_per_cs)
 308{
 309	u32 zq = 0, val = 0;
 310
 311	val = EMIF_ZQCS_INTERVAL_US * 1000 / addressing->tREFI_ns;
 312	zq |= val << ZQ_REFINTERVAL_SHIFT;
 313
 314	val = DIV_ROUND_UP(T_ZQCL_DEFAULT_NS, T_ZQCS_DEFAULT_NS) - 1;
 315	zq |= val << ZQ_ZQCL_MULT_SHIFT;
 316
 317	val = DIV_ROUND_UP(T_ZQINIT_DEFAULT_NS, T_ZQCL_DEFAULT_NS) - 1;
 318	zq |= val << ZQ_ZQINIT_MULT_SHIFT;
 319
 320	zq |= ZQ_SFEXITEN_ENABLE << ZQ_SFEXITEN_SHIFT;
 321
 322	if (cal_resistors_per_cs)
 323		zq |= ZQ_DUALCALEN_ENABLE << ZQ_DUALCALEN_SHIFT;
 324	else
 325		zq |= ZQ_DUALCALEN_DISABLE << ZQ_DUALCALEN_SHIFT;
 326
 327	zq |= ZQ_CS0EN_MASK; /* CS0 is used for sure */
 328
 329	val = cs1_used ? 1 : 0;
 330	zq |= val << ZQ_CS1EN_SHIFT;
 331
 332	return zq;
 333}
 334
 335static u32 get_temp_alert_config(const struct lpddr2_addressing *addressing,
 336		const struct emif_custom_configs *custom_configs, bool cs1_used,
 337		u32 sdram_io_width, u32 emif_bus_width)
 338{
 339	u32 alert = 0, interval, devcnt;
 340
 341	if (custom_configs && (custom_configs->mask &
 342				EMIF_CUSTOM_CONFIG_TEMP_ALERT_POLL_INTERVAL))
 343		interval = custom_configs->temp_alert_poll_interval_ms;
 344	else
 345		interval = TEMP_ALERT_POLL_INTERVAL_DEFAULT_MS;
 346
 347	interval *= 1000000;			/* Convert to ns */
 348	interval /= addressing->tREFI_ns;	/* Convert to refresh cycles */
 349	alert |= (interval << TA_REFINTERVAL_SHIFT);
 350
 351	/*
 352	 * sdram_io_width is in 'log2(x) - 1' form. Convert emif_bus_width
 353	 * also to this form and subtract to get TA_DEVCNT, which is
 354	 * in log2(x) form.
 355	 */
 356	emif_bus_width = __fls(emif_bus_width) - 1;
 357	devcnt = emif_bus_width - sdram_io_width;
 358	alert |= devcnt << TA_DEVCNT_SHIFT;
 359
 360	/* DEVWDT is in 'log2(x) - 3' form */
 361	alert |= (sdram_io_width - 2) << TA_DEVWDT_SHIFT;
 362
 363	alert |= 1 << TA_SFEXITEN_SHIFT;
 364	alert |= 1 << TA_CS0EN_SHIFT;
 365	alert |= (cs1_used ? 1 : 0) << TA_CS1EN_SHIFT;
 366
 367	return alert;
 368}
 369
 370static u32 get_pwr_mgmt_ctrl(u32 freq, struct emif_data *emif, u32 ip_rev)
 371{
 372	u32 pwr_mgmt_ctrl	= 0, timeout;
 373	u32 lpmode		= EMIF_LP_MODE_SELF_REFRESH;
 374	u32 timeout_perf	= EMIF_LP_MODE_TIMEOUT_PERFORMANCE;
 375	u32 timeout_pwr		= EMIF_LP_MODE_TIMEOUT_POWER;
 376	u32 freq_threshold	= EMIF_LP_MODE_FREQ_THRESHOLD;
 377	u32 mask;
 378	u8 shift;
 379
 380	struct emif_custom_configs *cust_cfgs = emif->plat_data->custom_configs;
 381
 382	if (cust_cfgs && (cust_cfgs->mask & EMIF_CUSTOM_CONFIG_LPMODE)) {
 383		lpmode		= cust_cfgs->lpmode;
 384		timeout_perf	= cust_cfgs->lpmode_timeout_performance;
 385		timeout_pwr	= cust_cfgs->lpmode_timeout_power;
 386		freq_threshold  = cust_cfgs->lpmode_freq_threshold;
 387	}
 388
 389	/* Timeout based on DDR frequency */
 390	timeout = freq >= freq_threshold ? timeout_perf : timeout_pwr;
 391
 392	/*
 393	 * The value to be set in register is "log2(timeout) - 3"
 394	 * if timeout < 16 load 0 in register
 395	 * if timeout is not a power of 2, round to next highest power of 2
 396	 */
 397	if (timeout < 16) {
 398		timeout = 0;
 399	} else {
 400		if (timeout & (timeout - 1))
 401			timeout <<= 1;
 402		timeout = __fls(timeout) - 3;
 403	}
 404
 405	switch (lpmode) {
 406	case EMIF_LP_MODE_CLOCK_STOP:
 407		shift = CS_TIM_SHIFT;
 408		mask = CS_TIM_MASK;
 409		break;
 410	case EMIF_LP_MODE_SELF_REFRESH:
 411		/* Workaround for errata i735 */
 412		if (timeout < 6)
 413			timeout = 6;
 414
 415		shift = SR_TIM_SHIFT;
 416		mask = SR_TIM_MASK;
 417		break;
 418	case EMIF_LP_MODE_PWR_DN:
 419		shift = PD_TIM_SHIFT;
 420		mask = PD_TIM_MASK;
 421		break;
 422	case EMIF_LP_MODE_DISABLE:
 423	default:
 424		mask = 0;
 425		shift = 0;
 426		break;
 427	}
 428	/* Round to maximum in case of overflow, BUT warn! */
 429	if (lpmode != EMIF_LP_MODE_DISABLE && timeout > mask >> shift) {
 430		pr_err("TIMEOUT Overflow - lpmode=%d perf=%d pwr=%d freq=%d\n",
 431		       lpmode,
 432		       timeout_perf,
 433		       timeout_pwr,
 434		       freq_threshold);
 435		WARN(1, "timeout=0x%02x greater than 0x%02x. Using max\n",
 436		     timeout, mask >> shift);
 437		timeout = mask >> shift;
 438	}
 439
 440	/* Setup required timing */
 441	pwr_mgmt_ctrl = (timeout << shift) & mask;
 442	/* setup a default mask for rest of the modes */
 443	pwr_mgmt_ctrl |= (SR_TIM_MASK | CS_TIM_MASK | PD_TIM_MASK) &
 444			  ~mask;
 445
 446	/* No CS_TIM in EMIF_4D5 */
 447	if (ip_rev == EMIF_4D5)
 448		pwr_mgmt_ctrl &= ~CS_TIM_MASK;
 449
 450	pwr_mgmt_ctrl |= lpmode << LP_MODE_SHIFT;
 451
 452	return pwr_mgmt_ctrl;
 453}
 454
 455/*
 456 * Get the temperature level of the EMIF instance:
 457 * Reads the MR4 register of attached SDRAM parts to find out the temperature
 458 * level. If there are two parts attached(one on each CS), then the temperature
 459 * level for the EMIF instance is the higher of the two temperatures.
 460 */
 461static void get_temperature_level(struct emif_data *emif)
 462{
 463	u32		temp, temperature_level;
 464	void __iomem	*base;
 465
 466	base = emif->base;
 467
 468	/* Read mode register 4 */
 469	writel(DDR_MR4, base + EMIF_LPDDR2_MODE_REG_CONFIG);
 470	temperature_level = readl(base + EMIF_LPDDR2_MODE_REG_DATA);
 471	temperature_level = (temperature_level & MR4_SDRAM_REF_RATE_MASK) >>
 472				MR4_SDRAM_REF_RATE_SHIFT;
 473
 474	if (emif->plat_data->device_info->cs1_used) {
 475		writel(DDR_MR4 | CS_MASK, base + EMIF_LPDDR2_MODE_REG_CONFIG);
 476		temp = readl(base + EMIF_LPDDR2_MODE_REG_DATA);
 477		temp = (temp & MR4_SDRAM_REF_RATE_MASK)
 478				>> MR4_SDRAM_REF_RATE_SHIFT;
 479		temperature_level = max(temp, temperature_level);
 480	}
 481
 482	/* treat everything less than nominal(3) in MR4 as nominal */
 483	if (unlikely(temperature_level < SDRAM_TEMP_NOMINAL))
 484		temperature_level = SDRAM_TEMP_NOMINAL;
 485
 486	/* if we get reserved value in MR4 persist with the existing value */
 487	if (likely(temperature_level != SDRAM_TEMP_RESERVED_4))
 488		emif->temperature_level = temperature_level;
 489}
 490
 491/*
 492 * setup_temperature_sensitive_regs() - set the timings for temperature
 493 * sensitive registers. This happens once at initialisation time based
 494 * on the temperature at boot time and subsequently based on the temperature
 495 * alert interrupt. Temperature alert can happen when the temperature
 496 * increases or drops. So this function can have the effect of either
 497 * derating the timings or going back to nominal values.
 498 */
 499static void setup_temperature_sensitive_regs(struct emif_data *emif,
 500		struct emif_regs *regs)
 501{
 502	u32		tim1, tim3, ref_ctrl, type;
 503	void __iomem	*base = emif->base;
 504	u32		temperature;
 505
 506	type = emif->plat_data->device_info->type;
 507
 508	tim1 = regs->sdram_tim1_shdw;
 509	tim3 = regs->sdram_tim3_shdw;
 510	ref_ctrl = regs->ref_ctrl_shdw;
 511
 512	/* No de-rating for non-lpddr2 devices */
 513	if (type != DDR_TYPE_LPDDR2_S2 && type != DDR_TYPE_LPDDR2_S4)
 514		goto out;
 515
 516	temperature = emif->temperature_level;
 517	if (temperature == SDRAM_TEMP_HIGH_DERATE_REFRESH) {
 518		ref_ctrl = regs->ref_ctrl_shdw_derated;
 519	} else if (temperature == SDRAM_TEMP_HIGH_DERATE_REFRESH_AND_TIMINGS) {
 520		tim1 = regs->sdram_tim1_shdw_derated;
 521		tim3 = regs->sdram_tim3_shdw_derated;
 522		ref_ctrl = regs->ref_ctrl_shdw_derated;
 523	}
 524
 525out:
 526	writel(tim1, base + EMIF_SDRAM_TIMING_1_SHDW);
 527	writel(tim3, base + EMIF_SDRAM_TIMING_3_SHDW);
 528	writel(ref_ctrl, base + EMIF_SDRAM_REFRESH_CTRL_SHDW);
 529}
 530
 531static irqreturn_t handle_temp_alert(void __iomem *base, struct emif_data *emif)
 532{
 533	u32		old_temp_level;
 534	irqreturn_t	ret = IRQ_HANDLED;
 535	struct emif_custom_configs *custom_configs;
 536
 537	spin_lock_irqsave(&emif_lock, irq_state);
 538	old_temp_level = emif->temperature_level;
 539	get_temperature_level(emif);
 540
 541	if (unlikely(emif->temperature_level == old_temp_level)) {
 542		goto out;
 543	} else if (!emif->curr_regs) {
 544		dev_err(emif->dev, "temperature alert before registers are calculated, not de-rating timings\n");
 545		goto out;
 546	}
 547
 548	custom_configs = emif->plat_data->custom_configs;
 549
 550	/*
 551	 * IF we detect higher than "nominal rating" from DDR sensor
 552	 * on an unsupported DDR part, shutdown system
 553	 */
 554	if (custom_configs && !(custom_configs->mask &
 555				EMIF_CUSTOM_CONFIG_EXTENDED_TEMP_PART)) {
 556		if (emif->temperature_level >= SDRAM_TEMP_HIGH_DERATE_REFRESH) {
 557			dev_err(emif->dev,
 558				"%s:NOT Extended temperature capable memory. Converting MR4=0x%02x as shutdown event\n",
 559				__func__, emif->temperature_level);
 560			/*
 561			 * Temperature far too high - do kernel_power_off()
 562			 * from thread context
 563			 */
 564			emif->temperature_level = SDRAM_TEMP_VERY_HIGH_SHUTDOWN;
 565			ret = IRQ_WAKE_THREAD;
 566			goto out;
 567		}
 568	}
 569
 570	if (emif->temperature_level < old_temp_level ||
 571		emif->temperature_level == SDRAM_TEMP_VERY_HIGH_SHUTDOWN) {
 572		/*
 573		 * Temperature coming down - defer handling to thread OR
 574		 * Temperature far too high - do kernel_power_off() from
 575		 * thread context
 576		 */
 577		ret = IRQ_WAKE_THREAD;
 578	} else {
 579		/* Temperature is going up - handle immediately */
 580		setup_temperature_sensitive_regs(emif, emif->curr_regs);
 581		do_freq_update();
 582	}
 583
 584out:
 585	spin_unlock_irqrestore(&emif_lock, irq_state);
 586	return ret;
 587}
 588
 589static irqreturn_t emif_interrupt_handler(int irq, void *dev_id)
 590{
 591	u32			interrupts;
 592	struct emif_data	*emif = dev_id;
 593	void __iomem		*base = emif->base;
 594	struct device		*dev = emif->dev;
 595	irqreturn_t		ret = IRQ_HANDLED;
 596
 597	/* Save the status and clear it */
 598	interrupts = readl(base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS);
 599	writel(interrupts, base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS);
 600
 601	/*
 602	 * Handle temperature alert
 603	 * Temperature alert should be same for all ports
 604	 * So, it's enough to process it only for one of the ports
 605	 */
 606	if (interrupts & TA_SYS_MASK)
 607		ret = handle_temp_alert(base, emif);
 608
 609	if (interrupts & ERR_SYS_MASK)
 610		dev_err(dev, "Access error from SYS port - %x\n", interrupts);
 611
 612	if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE) {
 613		/* Save the status and clear it */
 614		interrupts = readl(base + EMIF_LL_OCP_INTERRUPT_STATUS);
 615		writel(interrupts, base + EMIF_LL_OCP_INTERRUPT_STATUS);
 616
 617		if (interrupts & ERR_LL_MASK)
 618			dev_err(dev, "Access error from LL port - %x\n",
 619				interrupts);
 620	}
 621
 622	return ret;
 623}
 624
 625static irqreturn_t emif_threaded_isr(int irq, void *dev_id)
 626{
 627	struct emif_data	*emif = dev_id;
 628
 629	if (emif->temperature_level == SDRAM_TEMP_VERY_HIGH_SHUTDOWN) {
 630		dev_emerg(emif->dev, "SDRAM temperature exceeds operating limit.. Needs shut down!!!\n");
 631
 632		/* If we have Power OFF ability, use it, else try restarting */
 633		if (kernel_can_power_off()) {
 634			kernel_power_off();
 635		} else {
 636			WARN(1, "FIXME: NO pm_power_off!!! trying restart\n");
 637			kernel_restart("SDRAM Over-temp Emergency restart");
 638		}
 639		return IRQ_HANDLED;
 640	}
 641
 642	spin_lock_irqsave(&emif_lock, irq_state);
 643
 644	if (emif->curr_regs) {
 645		setup_temperature_sensitive_regs(emif, emif->curr_regs);
 646		do_freq_update();
 647	} else {
 648		dev_err(emif->dev, "temperature alert before registers are calculated, not de-rating timings\n");
 649	}
 650
 651	spin_unlock_irqrestore(&emif_lock, irq_state);
 652
 653	return IRQ_HANDLED;
 654}
 655
 656static void clear_all_interrupts(struct emif_data *emif)
 657{
 658	void __iomem	*base = emif->base;
 659
 660	writel(readl(base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS),
 661		base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS);
 662	if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE)
 663		writel(readl(base + EMIF_LL_OCP_INTERRUPT_STATUS),
 664			base + EMIF_LL_OCP_INTERRUPT_STATUS);
 665}
 666
 667static void disable_and_clear_all_interrupts(struct emif_data *emif)
 668{
 669	void __iomem		*base = emif->base;
 670
 671	/* Disable all interrupts */
 672	writel(readl(base + EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_SET),
 673		base + EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_CLEAR);
 674	if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE)
 675		writel(readl(base + EMIF_LL_OCP_INTERRUPT_ENABLE_SET),
 676			base + EMIF_LL_OCP_INTERRUPT_ENABLE_CLEAR);
 677
 678	/* Clear all interrupts */
 679	clear_all_interrupts(emif);
 680}
 681
 682static int __init_or_module setup_interrupts(struct emif_data *emif, u32 irq)
 683{
 684	u32		interrupts, type;
 685	void __iomem	*base = emif->base;
 686
 687	type = emif->plat_data->device_info->type;
 688
 689	clear_all_interrupts(emif);
 690
 691	/* Enable interrupts for SYS interface */
 692	interrupts = EN_ERR_SYS_MASK;
 693	if (type == DDR_TYPE_LPDDR2_S2 || type == DDR_TYPE_LPDDR2_S4)
 694		interrupts |= EN_TA_SYS_MASK;
 695	writel(interrupts, base + EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_SET);
 696
 697	/* Enable interrupts for LL interface */
 698	if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE) {
 699		/* TA need not be enabled for LL */
 700		interrupts = EN_ERR_LL_MASK;
 701		writel(interrupts, base + EMIF_LL_OCP_INTERRUPT_ENABLE_SET);
 702	}
 703
 704	/* setup IRQ handlers */
 705	return devm_request_threaded_irq(emif->dev, irq,
 706				    emif_interrupt_handler,
 707				    emif_threaded_isr,
 708				    0, dev_name(emif->dev),
 709				    emif);
 710
 711}
 712
 713static void __init_or_module emif_onetime_settings(struct emif_data *emif)
 714{
 715	u32				pwr_mgmt_ctrl, zq, temp_alert_cfg;
 716	void __iomem			*base = emif->base;
 717	const struct lpddr2_addressing	*addressing;
 718	const struct ddr_device_info	*device_info;
 719
 720	device_info = emif->plat_data->device_info;
 721	addressing = get_addressing_table(device_info);
 722
 723	/*
 724	 * Init power management settings
 725	 * We don't know the frequency yet. Use a high frequency
 726	 * value for a conservative timeout setting
 727	 */
 728	pwr_mgmt_ctrl = get_pwr_mgmt_ctrl(1000000000, emif,
 729			emif->plat_data->ip_rev);
 730	emif->lpmode = (pwr_mgmt_ctrl & LP_MODE_MASK) >> LP_MODE_SHIFT;
 731	writel(pwr_mgmt_ctrl, base + EMIF_POWER_MANAGEMENT_CONTROL);
 732
 733	/* Init ZQ calibration settings */
 734	zq = get_zq_config_reg(addressing, device_info->cs1_used,
 735		device_info->cal_resistors_per_cs);
 736	writel(zq, base + EMIF_SDRAM_OUTPUT_IMPEDANCE_CALIBRATION_CONFIG);
 737
 738	/* Check temperature level temperature level*/
 739	get_temperature_level(emif);
 740	if (emif->temperature_level == SDRAM_TEMP_VERY_HIGH_SHUTDOWN)
 741		dev_emerg(emif->dev, "SDRAM temperature exceeds operating limit.. Needs shut down!!!\n");
 742
 743	/* Init temperature polling */
 744	temp_alert_cfg = get_temp_alert_config(addressing,
 745		emif->plat_data->custom_configs, device_info->cs1_used,
 746		device_info->io_width, get_emif_bus_width(emif));
 747	writel(temp_alert_cfg, base + EMIF_TEMPERATURE_ALERT_CONFIG);
 748
 749	/*
 750	 * Program external PHY control registers that are not frequency
 751	 * dependent
 752	 */
 753	if (emif->plat_data->phy_type != EMIF_PHY_TYPE_INTELLIPHY)
 754		return;
 755	writel(EMIF_EXT_PHY_CTRL_1_VAL, base + EMIF_EXT_PHY_CTRL_1_SHDW);
 756	writel(EMIF_EXT_PHY_CTRL_5_VAL, base + EMIF_EXT_PHY_CTRL_5_SHDW);
 757	writel(EMIF_EXT_PHY_CTRL_6_VAL, base + EMIF_EXT_PHY_CTRL_6_SHDW);
 758	writel(EMIF_EXT_PHY_CTRL_7_VAL, base + EMIF_EXT_PHY_CTRL_7_SHDW);
 759	writel(EMIF_EXT_PHY_CTRL_8_VAL, base + EMIF_EXT_PHY_CTRL_8_SHDW);
 760	writel(EMIF_EXT_PHY_CTRL_9_VAL, base + EMIF_EXT_PHY_CTRL_9_SHDW);
 761	writel(EMIF_EXT_PHY_CTRL_10_VAL, base + EMIF_EXT_PHY_CTRL_10_SHDW);
 762	writel(EMIF_EXT_PHY_CTRL_11_VAL, base + EMIF_EXT_PHY_CTRL_11_SHDW);
 763	writel(EMIF_EXT_PHY_CTRL_12_VAL, base + EMIF_EXT_PHY_CTRL_12_SHDW);
 764	writel(EMIF_EXT_PHY_CTRL_13_VAL, base + EMIF_EXT_PHY_CTRL_13_SHDW);
 765	writel(EMIF_EXT_PHY_CTRL_14_VAL, base + EMIF_EXT_PHY_CTRL_14_SHDW);
 766	writel(EMIF_EXT_PHY_CTRL_15_VAL, base + EMIF_EXT_PHY_CTRL_15_SHDW);
 767	writel(EMIF_EXT_PHY_CTRL_16_VAL, base + EMIF_EXT_PHY_CTRL_16_SHDW);
 768	writel(EMIF_EXT_PHY_CTRL_17_VAL, base + EMIF_EXT_PHY_CTRL_17_SHDW);
 769	writel(EMIF_EXT_PHY_CTRL_18_VAL, base + EMIF_EXT_PHY_CTRL_18_SHDW);
 770	writel(EMIF_EXT_PHY_CTRL_19_VAL, base + EMIF_EXT_PHY_CTRL_19_SHDW);
 771	writel(EMIF_EXT_PHY_CTRL_20_VAL, base + EMIF_EXT_PHY_CTRL_20_SHDW);
 772	writel(EMIF_EXT_PHY_CTRL_21_VAL, base + EMIF_EXT_PHY_CTRL_21_SHDW);
 773	writel(EMIF_EXT_PHY_CTRL_22_VAL, base + EMIF_EXT_PHY_CTRL_22_SHDW);
 774	writel(EMIF_EXT_PHY_CTRL_23_VAL, base + EMIF_EXT_PHY_CTRL_23_SHDW);
 775	writel(EMIF_EXT_PHY_CTRL_24_VAL, base + EMIF_EXT_PHY_CTRL_24_SHDW);
 776}
 777
 778static void get_default_timings(struct emif_data *emif)
 779{
 780	struct emif_platform_data *pd = emif->plat_data;
 781
 782	pd->timings		= lpddr2_jedec_timings;
 783	pd->timings_arr_size	= ARRAY_SIZE(lpddr2_jedec_timings);
 784
 785	dev_warn(emif->dev, "%s: using default timings\n", __func__);
 786}
 787
 788static int is_dev_data_valid(u32 type, u32 density, u32 io_width, u32 phy_type,
 789		u32 ip_rev, struct device *dev)
 790{
 791	int valid;
 792
 793	valid = (type == DDR_TYPE_LPDDR2_S4 ||
 794			type == DDR_TYPE_LPDDR2_S2)
 795		&& (density >= DDR_DENSITY_64Mb
 796			&& density <= DDR_DENSITY_8Gb)
 797		&& (io_width >= DDR_IO_WIDTH_8
 798			&& io_width <= DDR_IO_WIDTH_32);
 799
 800	/* Combinations of EMIF and PHY revisions that we support today */
 801	switch (ip_rev) {
 802	case EMIF_4D:
 803		valid = valid && (phy_type == EMIF_PHY_TYPE_ATTILAPHY);
 804		break;
 805	case EMIF_4D5:
 806		valid = valid && (phy_type == EMIF_PHY_TYPE_INTELLIPHY);
 807		break;
 808	default:
 809		valid = 0;
 810	}
 811
 812	if (!valid)
 813		dev_err(dev, "%s: invalid DDR details\n", __func__);
 814	return valid;
 815}
 816
 817static int is_custom_config_valid(struct emif_custom_configs *cust_cfgs,
 818		struct device *dev)
 819{
 820	int valid = 1;
 821
 822	if ((cust_cfgs->mask & EMIF_CUSTOM_CONFIG_LPMODE) &&
 823		(cust_cfgs->lpmode != EMIF_LP_MODE_DISABLE))
 824		valid = cust_cfgs->lpmode_freq_threshold &&
 825			cust_cfgs->lpmode_timeout_performance &&
 826			cust_cfgs->lpmode_timeout_power;
 827
 828	if (cust_cfgs->mask & EMIF_CUSTOM_CONFIG_TEMP_ALERT_POLL_INTERVAL)
 829		valid = valid && cust_cfgs->temp_alert_poll_interval_ms;
 830
 831	if (!valid)
 832		dev_warn(dev, "%s: invalid custom configs\n", __func__);
 833
 834	return valid;
 835}
 836
 837#if defined(CONFIG_OF)
 838static void __init_or_module of_get_custom_configs(struct device_node *np_emif,
 839		struct emif_data *emif)
 840{
 841	struct emif_custom_configs	*cust_cfgs = NULL;
 842	int				len;
 843	const __be32			*lpmode, *poll_intvl;
 844
 845	lpmode = of_get_property(np_emif, "low-power-mode", &len);
 846	poll_intvl = of_get_property(np_emif, "temp-alert-poll-interval", &len);
 847
 848	if (lpmode || poll_intvl)
 849		cust_cfgs = devm_kzalloc(emif->dev, sizeof(*cust_cfgs),
 850			GFP_KERNEL);
 851
 852	if (!cust_cfgs)
 853		return;
 854
 855	if (lpmode) {
 856		cust_cfgs->mask |= EMIF_CUSTOM_CONFIG_LPMODE;
 857		cust_cfgs->lpmode = be32_to_cpup(lpmode);
 858		of_property_read_u32(np_emif,
 859				"low-power-mode-timeout-performance",
 860				&cust_cfgs->lpmode_timeout_performance);
 861		of_property_read_u32(np_emif,
 862				"low-power-mode-timeout-power",
 863				&cust_cfgs->lpmode_timeout_power);
 864		of_property_read_u32(np_emif,
 865				"low-power-mode-freq-threshold",
 866				&cust_cfgs->lpmode_freq_threshold);
 867	}
 868
 869	if (poll_intvl) {
 870		cust_cfgs->mask |=
 871				EMIF_CUSTOM_CONFIG_TEMP_ALERT_POLL_INTERVAL;
 872		cust_cfgs->temp_alert_poll_interval_ms =
 873						be32_to_cpup(poll_intvl);
 874	}
 875
 876	if (of_find_property(np_emif, "extended-temp-part", &len))
 877		cust_cfgs->mask |= EMIF_CUSTOM_CONFIG_EXTENDED_TEMP_PART;
 878
 879	if (!is_custom_config_valid(cust_cfgs, emif->dev)) {
 880		devm_kfree(emif->dev, cust_cfgs);
 881		return;
 882	}
 883
 884	emif->plat_data->custom_configs = cust_cfgs;
 885}
 886
 887static void __init_or_module of_get_ddr_info(struct device_node *np_emif,
 888		struct device_node *np_ddr,
 889		struct ddr_device_info *dev_info)
 890{
 891	u32 density = 0, io_width = 0;
 892	int len;
 893
 894	if (of_find_property(np_emif, "cs1-used", &len))
 895		dev_info->cs1_used = true;
 896
 897	if (of_find_property(np_emif, "cal-resistor-per-cs", &len))
 898		dev_info->cal_resistors_per_cs = true;
 899
 900	if (of_device_is_compatible(np_ddr, "jedec,lpddr2-s4"))
 901		dev_info->type = DDR_TYPE_LPDDR2_S4;
 902	else if (of_device_is_compatible(np_ddr, "jedec,lpddr2-s2"))
 903		dev_info->type = DDR_TYPE_LPDDR2_S2;
 904
 905	of_property_read_u32(np_ddr, "density", &density);
 906	of_property_read_u32(np_ddr, "io-width", &io_width);
 907
 908	/* Convert from density in Mb to the density encoding in jedc_ddr.h */
 909	if (density & (density - 1))
 910		dev_info->density = 0;
 911	else
 912		dev_info->density = __fls(density) - 5;
 913
 914	/* Convert from io_width in bits to io_width encoding in jedc_ddr.h */
 915	if (io_width & (io_width - 1))
 916		dev_info->io_width = 0;
 917	else
 918		dev_info->io_width = __fls(io_width) - 1;
 919}
 920
 921static struct emif_data * __init_or_module of_get_memory_device_details(
 922		struct device_node *np_emif, struct device *dev)
 923{
 924	struct emif_data		*emif = NULL;
 925	struct ddr_device_info		*dev_info = NULL;
 926	struct emif_platform_data	*pd = NULL;
 927	struct device_node		*np_ddr;
 928	int				len;
 929
 930	np_ddr = of_parse_phandle(np_emif, "device-handle", 0);
 931	if (!np_ddr)
 932		goto error;
 933	emif	= devm_kzalloc(dev, sizeof(struct emif_data), GFP_KERNEL);
 934	pd	= devm_kzalloc(dev, sizeof(*pd), GFP_KERNEL);
 935	dev_info = devm_kzalloc(dev, sizeof(*dev_info), GFP_KERNEL);
 936
 937	if (!emif || !pd || !dev_info) {
 938		dev_err(dev, "%s: Out of memory!!\n",
 939			__func__);
 940		goto error;
 941	}
 942
 943	emif->plat_data		= pd;
 944	pd->device_info		= dev_info;
 945	emif->dev		= dev;
 946	emif->np_ddr		= np_ddr;
 947	emif->temperature_level	= SDRAM_TEMP_NOMINAL;
 948
 949	if (of_device_is_compatible(np_emif, "ti,emif-4d"))
 950		emif->plat_data->ip_rev = EMIF_4D;
 951	else if (of_device_is_compatible(np_emif, "ti,emif-4d5"))
 952		emif->plat_data->ip_rev = EMIF_4D5;
 953
 954	of_property_read_u32(np_emif, "phy-type", &pd->phy_type);
 955
 956	if (of_find_property(np_emif, "hw-caps-ll-interface", &len))
 957		pd->hw_caps |= EMIF_HW_CAPS_LL_INTERFACE;
 958
 959	of_get_ddr_info(np_emif, np_ddr, dev_info);
 960	if (!is_dev_data_valid(pd->device_info->type, pd->device_info->density,
 961			pd->device_info->io_width, pd->phy_type, pd->ip_rev,
 962			emif->dev)) {
 963		dev_err(dev, "%s: invalid device data!!\n", __func__);
 964		goto error;
 965	}
 966	/*
 967	 * For EMIF instances other than EMIF1 see if the devices connected
 968	 * are exactly same as on EMIF1(which is typically the case). If so,
 969	 * mark it as a duplicate of EMIF1. This will save some memory and
 970	 * computation.
 971	 */
 972	if (emif1 && emif1->np_ddr == np_ddr) {
 973		emif->duplicate = true;
 974		goto out;
 975	} else if (emif1) {
 976		dev_warn(emif->dev, "%s: Non-symmetric DDR geometry\n",
 977			__func__);
 978	}
 979
 980	of_get_custom_configs(np_emif, emif);
 981	emif->plat_data->timings = of_get_ddr_timings(np_ddr, emif->dev,
 982					emif->plat_data->device_info->type,
 983					&emif->plat_data->timings_arr_size);
 984
 985	emif->plat_data->min_tck = of_get_min_tck(np_ddr, emif->dev);
 986	goto out;
 987
 988error:
 989	return NULL;
 990out:
 991	return emif;
 992}
 993
 994#else
 995
 996static struct emif_data * __init_or_module of_get_memory_device_details(
 997		struct device_node *np_emif, struct device *dev)
 998{
 999	return NULL;
1000}
1001#endif
1002
1003static struct emif_data *__init_or_module get_device_details(
1004		struct platform_device *pdev)
1005{
1006	u32				size;
1007	struct emif_data		*emif = NULL;
1008	struct ddr_device_info		*dev_info;
1009	struct emif_custom_configs	*cust_cfgs;
1010	struct emif_platform_data	*pd;
1011	struct device			*dev;
1012	void				*temp;
1013
1014	pd = pdev->dev.platform_data;
1015	dev = &pdev->dev;
1016
1017	if (!(pd && pd->device_info && is_dev_data_valid(pd->device_info->type,
1018			pd->device_info->density, pd->device_info->io_width,
1019			pd->phy_type, pd->ip_rev, dev))) {
1020		dev_err(dev, "%s: invalid device data\n", __func__);
1021		goto error;
1022	}
1023
1024	emif	= devm_kzalloc(dev, sizeof(*emif), GFP_KERNEL);
1025	temp	= devm_kzalloc(dev, sizeof(*pd), GFP_KERNEL);
1026	dev_info = devm_kzalloc(dev, sizeof(*dev_info), GFP_KERNEL);
1027
1028	if (!emif || !temp || !dev_info)
1029		goto error;
1030
1031	memcpy(temp, pd, sizeof(*pd));
1032	pd = temp;
1033	memcpy(dev_info, pd->device_info, sizeof(*dev_info));
1034
1035	pd->device_info		= dev_info;
1036	emif->plat_data		= pd;
1037	emif->dev		= dev;
1038	emif->temperature_level	= SDRAM_TEMP_NOMINAL;
1039
1040	/*
1041	 * For EMIF instances other than EMIF1 see if the devices connected
1042	 * are exactly same as on EMIF1(which is typically the case). If so,
1043	 * mark it as a duplicate of EMIF1 and skip copying timings data.
1044	 * This will save some memory and some computation later.
1045	 */
1046	emif->duplicate = emif1 && (memcmp(dev_info,
1047		emif1->plat_data->device_info,
1048		sizeof(struct ddr_device_info)) == 0);
1049
1050	if (emif->duplicate) {
1051		pd->timings = NULL;
1052		pd->min_tck = NULL;
1053		goto out;
1054	} else if (emif1) {
1055		dev_warn(emif->dev, "%s: Non-symmetric DDR geometry\n",
1056			__func__);
1057	}
1058
1059	/*
1060	 * Copy custom configs - ignore allocation error, if any, as
1061	 * custom_configs is not very critical
1062	 */
1063	cust_cfgs = pd->custom_configs;
1064	if (cust_cfgs && is_custom_config_valid(cust_cfgs, dev)) {
1065		temp = devm_kzalloc(dev, sizeof(*cust_cfgs), GFP_KERNEL);
1066		if (temp)
1067			memcpy(temp, cust_cfgs, sizeof(*cust_cfgs));
1068		pd->custom_configs = temp;
1069	}
1070
1071	/*
1072	 * Copy timings and min-tck values from platform data. If it is not
1073	 * available or if memory allocation fails, use JEDEC defaults
1074	 */
1075	size = sizeof(struct lpddr2_timings) * pd->timings_arr_size;
1076	if (pd->timings) {
1077		temp = devm_kzalloc(dev, size, GFP_KERNEL);
1078		if (temp) {
1079			memcpy(temp, pd->timings, size);
1080			pd->timings = temp;
1081		} else {
1082			get_default_timings(emif);
1083		}
1084	} else {
1085		get_default_timings(emif);
1086	}
1087
1088	if (pd->min_tck) {
1089		temp = devm_kzalloc(dev, sizeof(*pd->min_tck), GFP_KERNEL);
1090		if (temp) {
1091			memcpy(temp, pd->min_tck, sizeof(*pd->min_tck));
1092			pd->min_tck = temp;
1093		} else {
1094			pd->min_tck = &lpddr2_jedec_min_tck;
1095		}
1096	} else {
1097		pd->min_tck = &lpddr2_jedec_min_tck;
1098	}
1099
1100out:
1101	return emif;
1102
1103error:
1104	return NULL;
1105}
1106
1107static int __init_or_module emif_probe(struct platform_device *pdev)
1108{
1109	struct emif_data	*emif;
1110	int			irq, ret;
1111
1112	if (pdev->dev.of_node)
1113		emif = of_get_memory_device_details(pdev->dev.of_node, &pdev->dev);
1114	else
1115		emif = get_device_details(pdev);
1116
1117	if (!emif) {
1118		pr_err("%s: error getting device data\n", __func__);
1119		goto error;
1120	}
1121
1122	list_add(&emif->node, &device_list);
1123
1124	/* Save pointers to each other in emif and device structures */
1125	emif->dev = &pdev->dev;
1126	platform_set_drvdata(pdev, emif);
1127
1128	emif->base = devm_platform_ioremap_resource(pdev, 0);
1129	if (IS_ERR(emif->base))
1130		goto error;
1131
1132	irq = platform_get_irq(pdev, 0);
1133	if (irq < 0)
1134		goto error;
1135
1136	emif_onetime_settings(emif);
1137	emif_debugfs_init(emif);
1138	disable_and_clear_all_interrupts(emif);
1139	ret = setup_interrupts(emif, irq);
1140	if (ret)
1141		goto error;
1142
1143	/* One-time actions taken on probing the first device */
1144	if (!emif1) {
1145		emif1 = emif;
1146
1147		/*
1148		 * TODO: register notifiers for frequency and voltage
1149		 * change here once the respective frameworks are
1150		 * available
1151		 */
1152	}
1153
1154	dev_info(&pdev->dev, "%s: device configured with addr = %p and IRQ%d\n",
1155		__func__, emif->base, irq);
1156
1157	return 0;
1158error:
1159	return -ENODEV;
1160}
1161
1162static int __exit emif_remove(struct platform_device *pdev)
1163{
1164	struct emif_data *emif = platform_get_drvdata(pdev);
1165
1166	emif_debugfs_exit(emif);
1167
1168	return 0;
1169}
1170
1171static void emif_shutdown(struct platform_device *pdev)
1172{
1173	struct emif_data	*emif = platform_get_drvdata(pdev);
1174
1175	disable_and_clear_all_interrupts(emif);
1176}
1177
1178#if defined(CONFIG_OF)
1179static const struct of_device_id emif_of_match[] = {
1180		{ .compatible = "ti,emif-4d" },
1181		{ .compatible = "ti,emif-4d5" },
1182		{},
1183};
1184MODULE_DEVICE_TABLE(of, emif_of_match);
1185#endif
1186
1187static struct platform_driver emif_driver = {
1188	.remove		= __exit_p(emif_remove),
1189	.shutdown	= emif_shutdown,
1190	.driver = {
1191		.name = "emif",
1192		.of_match_table = of_match_ptr(emif_of_match),
1193	},
1194};
1195
1196module_platform_driver_probe(emif_driver, emif_probe);
1197
1198MODULE_DESCRIPTION("TI EMIF SDRAM Controller Driver");
1199MODULE_LICENSE("GPL");
1200MODULE_ALIAS("platform:emif");
1201MODULE_AUTHOR("Texas Instruments Inc");