Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * DMA driver for NVIDIA Tegra GPC DMA controller.
   4 *
   5 * Copyright (c) 2014-2022, NVIDIA CORPORATION.  All rights reserved.
   6 */
   7
   8#include <linux/bitfield.h>
   9#include <linux/dmaengine.h>
  10#include <linux/dma-mapping.h>
  11#include <linux/interrupt.h>
  12#include <linux/iommu.h>
  13#include <linux/iopoll.h>
  14#include <linux/minmax.h>
  15#include <linux/module.h>
  16#include <linux/of.h>
  17#include <linux/of_dma.h>
  18#include <linux/platform_device.h>
  19#include <linux/reset.h>
  20#include <linux/slab.h>
  21#include <dt-bindings/memory/tegra186-mc.h>
  22#include "virt-dma.h"
  23
  24/* CSR register */
  25#define TEGRA_GPCDMA_CHAN_CSR			0x00
  26#define TEGRA_GPCDMA_CSR_ENB			BIT(31)
  27#define TEGRA_GPCDMA_CSR_IE_EOC			BIT(30)
  28#define TEGRA_GPCDMA_CSR_ONCE			BIT(27)
  29
  30#define TEGRA_GPCDMA_CSR_FC_MODE		GENMASK(25, 24)
  31#define TEGRA_GPCDMA_CSR_FC_MODE_NO_MMIO	\
  32		FIELD_PREP(TEGRA_GPCDMA_CSR_FC_MODE, 0)
  33#define TEGRA_GPCDMA_CSR_FC_MODE_ONE_MMIO	\
  34		FIELD_PREP(TEGRA_GPCDMA_CSR_FC_MODE, 1)
  35#define TEGRA_GPCDMA_CSR_FC_MODE_TWO_MMIO	\
  36		FIELD_PREP(TEGRA_GPCDMA_CSR_FC_MODE, 2)
  37#define TEGRA_GPCDMA_CSR_FC_MODE_FOUR_MMIO	\
  38		FIELD_PREP(TEGRA_GPCDMA_CSR_FC_MODE, 3)
  39
  40#define TEGRA_GPCDMA_CSR_DMA			GENMASK(23, 21)
  41#define TEGRA_GPCDMA_CSR_DMA_IO2MEM_NO_FC	\
  42		FIELD_PREP(TEGRA_GPCDMA_CSR_DMA, 0)
  43#define TEGRA_GPCDMA_CSR_DMA_IO2MEM_FC		\
  44		FIELD_PREP(TEGRA_GPCDMA_CSR_DMA, 1)
  45#define TEGRA_GPCDMA_CSR_DMA_MEM2IO_NO_FC	\
  46		FIELD_PREP(TEGRA_GPCDMA_CSR_DMA, 2)
  47#define TEGRA_GPCDMA_CSR_DMA_MEM2IO_FC		\
  48		FIELD_PREP(TEGRA_GPCDMA_CSR_DMA, 3)
  49#define TEGRA_GPCDMA_CSR_DMA_MEM2MEM		\
  50		FIELD_PREP(TEGRA_GPCDMA_CSR_DMA, 4)
  51#define TEGRA_GPCDMA_CSR_DMA_FIXED_PAT		\
  52		FIELD_PREP(TEGRA_GPCDMA_CSR_DMA, 6)
  53
  54#define TEGRA_GPCDMA_CSR_REQ_SEL_MASK		GENMASK(20, 16)
  55#define TEGRA_GPCDMA_CSR_REQ_SEL_UNUSED		\
  56					FIELD_PREP(TEGRA_GPCDMA_CSR_REQ_SEL_MASK, 4)
  57#define TEGRA_GPCDMA_CSR_IRQ_MASK		BIT(15)
  58#define TEGRA_GPCDMA_CSR_WEIGHT			GENMASK(13, 10)
  59
  60/* STATUS register */
  61#define TEGRA_GPCDMA_CHAN_STATUS		0x004
  62#define TEGRA_GPCDMA_STATUS_BUSY		BIT(31)
  63#define TEGRA_GPCDMA_STATUS_ISE_EOC		BIT(30)
  64#define TEGRA_GPCDMA_STATUS_PING_PONG		BIT(28)
  65#define TEGRA_GPCDMA_STATUS_DMA_ACTIVITY	BIT(27)
  66#define TEGRA_GPCDMA_STATUS_CHANNEL_PAUSE	BIT(26)
  67#define TEGRA_GPCDMA_STATUS_CHANNEL_RX		BIT(25)
  68#define TEGRA_GPCDMA_STATUS_CHANNEL_TX		BIT(24)
  69#define TEGRA_GPCDMA_STATUS_IRQ_INTR_STA	BIT(23)
  70#define TEGRA_GPCDMA_STATUS_IRQ_STA		BIT(21)
  71#define TEGRA_GPCDMA_STATUS_IRQ_TRIG_STA	BIT(20)
  72
  73#define TEGRA_GPCDMA_CHAN_CSRE			0x008
  74#define TEGRA_GPCDMA_CHAN_CSRE_PAUSE		BIT(31)
  75
  76/* Source address */
  77#define TEGRA_GPCDMA_CHAN_SRC_PTR		0x00C
  78
  79/* Destination address */
  80#define TEGRA_GPCDMA_CHAN_DST_PTR		0x010
  81
  82/* High address pointer */
  83#define TEGRA_GPCDMA_CHAN_HIGH_ADDR_PTR		0x014
  84#define TEGRA_GPCDMA_HIGH_ADDR_SRC_PTR		GENMASK(7, 0)
  85#define TEGRA_GPCDMA_HIGH_ADDR_DST_PTR		GENMASK(23, 16)
  86
  87/* MC sequence register */
  88#define TEGRA_GPCDMA_CHAN_MCSEQ			0x18
  89#define TEGRA_GPCDMA_MCSEQ_DATA_SWAP		BIT(31)
  90#define TEGRA_GPCDMA_MCSEQ_REQ_COUNT		GENMASK(30, 25)
  91#define TEGRA_GPCDMA_MCSEQ_BURST		GENMASK(24, 23)
  92#define TEGRA_GPCDMA_MCSEQ_BURST_2		\
  93		FIELD_PREP(TEGRA_GPCDMA_MCSEQ_BURST, 0)
  94#define TEGRA_GPCDMA_MCSEQ_BURST_16		\
  95		FIELD_PREP(TEGRA_GPCDMA_MCSEQ_BURST, 3)
  96#define TEGRA_GPCDMA_MCSEQ_WRAP1		GENMASK(22, 20)
  97#define TEGRA_GPCDMA_MCSEQ_WRAP0		GENMASK(19, 17)
  98#define TEGRA_GPCDMA_MCSEQ_WRAP_NONE		0
  99
 100#define TEGRA_GPCDMA_MCSEQ_STREAM_ID1_MASK	GENMASK(13, 7)
 101#define TEGRA_GPCDMA_MCSEQ_STREAM_ID0_MASK	GENMASK(6, 0)
 102
 103/* MMIO sequence register */
 104#define TEGRA_GPCDMA_CHAN_MMIOSEQ			0x01c
 105#define TEGRA_GPCDMA_MMIOSEQ_DBL_BUF		BIT(31)
 106#define TEGRA_GPCDMA_MMIOSEQ_BUS_WIDTH		GENMASK(30, 28)
 107#define TEGRA_GPCDMA_MMIOSEQ_BUS_WIDTH_8	\
 108		FIELD_PREP(TEGRA_GPCDMA_MMIOSEQ_BUS_WIDTH, 0)
 109#define TEGRA_GPCDMA_MMIOSEQ_BUS_WIDTH_16	\
 110		FIELD_PREP(TEGRA_GPCDMA_MMIOSEQ_BUS_WIDTH, 1)
 111#define TEGRA_GPCDMA_MMIOSEQ_BUS_WIDTH_32	\
 112		FIELD_PREP(TEGRA_GPCDMA_MMIOSEQ_BUS_WIDTH, 2)
 113#define TEGRA_GPCDMA_MMIOSEQ_DATA_SWAP		BIT(27)
 114#define TEGRA_GPCDMA_MMIOSEQ_BURST_SHIFT	23
 115#define TEGRA_GPCDMA_MMIOSEQ_BURST_MIN		2U
 116#define TEGRA_GPCDMA_MMIOSEQ_BURST_MAX		32U
 117#define TEGRA_GPCDMA_MMIOSEQ_BURST(bs)	\
 118		(GENMASK((fls(bs) - 2), 0) << TEGRA_GPCDMA_MMIOSEQ_BURST_SHIFT)
 119#define TEGRA_GPCDMA_MMIOSEQ_MASTER_ID		GENMASK(22, 19)
 120#define TEGRA_GPCDMA_MMIOSEQ_WRAP_WORD		GENMASK(18, 16)
 121#define TEGRA_GPCDMA_MMIOSEQ_MMIO_PROT		GENMASK(8, 7)
 122
 123/* Channel WCOUNT */
 124#define TEGRA_GPCDMA_CHAN_WCOUNT		0x20
 125
 126/* Transfer count */
 127#define TEGRA_GPCDMA_CHAN_XFER_COUNT		0x24
 128
 129/* DMA byte count status */
 130#define TEGRA_GPCDMA_CHAN_DMA_BYTE_STATUS	0x28
 131
 132/* Error Status Register */
 133#define TEGRA_GPCDMA_CHAN_ERR_STATUS		0x30
 134#define TEGRA_GPCDMA_CHAN_ERR_TYPE_SHIFT	8
 135#define TEGRA_GPCDMA_CHAN_ERR_TYPE_MASK	0xF
 136#define TEGRA_GPCDMA_CHAN_ERR_TYPE(err)	(			\
 137		((err) >> TEGRA_GPCDMA_CHAN_ERR_TYPE_SHIFT) &	\
 138		TEGRA_GPCDMA_CHAN_ERR_TYPE_MASK)
 139#define TEGRA_DMA_BM_FIFO_FULL_ERR		0xF
 140#define TEGRA_DMA_PERIPH_FIFO_FULL_ERR		0xE
 141#define TEGRA_DMA_PERIPH_ID_ERR			0xD
 142#define TEGRA_DMA_STREAM_ID_ERR			0xC
 143#define TEGRA_DMA_MC_SLAVE_ERR			0xB
 144#define TEGRA_DMA_MMIO_SLAVE_ERR		0xA
 145
 146/* Fixed Pattern */
 147#define TEGRA_GPCDMA_CHAN_FIXED_PATTERN		0x34
 148
 149#define TEGRA_GPCDMA_CHAN_TZ			0x38
 150#define TEGRA_GPCDMA_CHAN_TZ_MMIO_PROT_1	BIT(0)
 151#define TEGRA_GPCDMA_CHAN_TZ_MC_PROT_1		BIT(1)
 152
 153#define TEGRA_GPCDMA_CHAN_SPARE			0x3c
 154#define TEGRA_GPCDMA_CHAN_SPARE_EN_LEGACY_FC	BIT(16)
 155
 156/*
 157 * If any burst is in flight and DMA paused then this is the time to complete
 158 * on-flight burst and update DMA status register.
 159 */
 160#define TEGRA_GPCDMA_BURST_COMPLETE_TIME	10
 161#define TEGRA_GPCDMA_BURST_COMPLETION_TIMEOUT	5000 /* 5 msec */
 162
 163/* Channel base address offset from GPCDMA base address */
 164#define TEGRA_GPCDMA_CHANNEL_BASE_ADDR_OFFSET	0x10000
 165
 166/* Default channel mask reserving channel0 */
 167#define TEGRA_GPCDMA_DEFAULT_CHANNEL_MASK	0xfffffffe
 168
 169struct tegra_dma;
 170struct tegra_dma_channel;
 171
 172/*
 173 * tegra_dma_chip_data Tegra chip specific DMA data
 174 * @nr_channels: Number of channels available in the controller.
 175 * @channel_reg_size: Channel register size.
 176 * @max_dma_count: Maximum DMA transfer count supported by DMA controller.
 177 * @hw_support_pause: DMA HW engine support pause of the channel.
 178 */
 179struct tegra_dma_chip_data {
 180	bool hw_support_pause;
 181	unsigned int nr_channels;
 182	unsigned int channel_reg_size;
 183	unsigned int max_dma_count;
 184	int (*terminate)(struct tegra_dma_channel *tdc);
 185};
 186
 187/* DMA channel registers */
 188struct tegra_dma_channel_regs {
 189	u32 csr;
 190	u32 src_ptr;
 191	u32 dst_ptr;
 192	u32 high_addr_ptr;
 193	u32 mc_seq;
 194	u32 mmio_seq;
 195	u32 wcount;
 196	u32 fixed_pattern;
 197};
 198
 199/*
 200 * tegra_dma_sg_req: DMA request details to configure hardware. This
 201 * contains the details for one transfer to configure DMA hw.
 202 * The client's request for data transfer can be broken into multiple
 203 * sub-transfer as per requester details and hw support. This sub transfer
 204 * get added as an array in Tegra DMA desc which manages the transfer details.
 205 */
 206struct tegra_dma_sg_req {
 207	unsigned int len;
 208	struct tegra_dma_channel_regs ch_regs;
 209};
 210
 211/*
 212 * tegra_dma_desc: Tegra DMA descriptors which uses virt_dma_desc to
 213 * manage client request and keep track of transfer status, callbacks
 214 * and request counts etc.
 215 */
 216struct tegra_dma_desc {
 217	bool cyclic;
 218	unsigned int bytes_req;
 219	unsigned int bytes_xfer;
 220	unsigned int sg_idx;
 221	unsigned int sg_count;
 222	struct virt_dma_desc vd;
 223	struct tegra_dma_channel *tdc;
 224	struct tegra_dma_sg_req sg_req[] __counted_by(sg_count);
 225};
 226
 227/*
 228 * tegra_dma_channel: Channel specific information
 229 */
 230struct tegra_dma_channel {
 231	bool config_init;
 232	char name[30];
 233	enum dma_transfer_direction sid_dir;
 234	int id;
 235	int irq;
 236	int slave_id;
 237	struct tegra_dma *tdma;
 238	struct virt_dma_chan vc;
 239	struct tegra_dma_desc *dma_desc;
 240	struct dma_slave_config dma_sconfig;
 241	unsigned int stream_id;
 242	unsigned long chan_base_offset;
 243};
 244
 245/*
 246 * tegra_dma: Tegra DMA specific information
 247 */
 248struct tegra_dma {
 249	const struct tegra_dma_chip_data *chip_data;
 250	unsigned long sid_m2d_reserved;
 251	unsigned long sid_d2m_reserved;
 252	u32 chan_mask;
 253	void __iomem *base_addr;
 254	struct device *dev;
 255	struct dma_device dma_dev;
 256	struct reset_control *rst;
 257	struct tegra_dma_channel channels[];
 258};
 259
 260static inline void tdc_write(struct tegra_dma_channel *tdc,
 261			     u32 reg, u32 val)
 262{
 263	writel_relaxed(val, tdc->tdma->base_addr + tdc->chan_base_offset + reg);
 264}
 265
 266static inline u32 tdc_read(struct tegra_dma_channel *tdc, u32 reg)
 267{
 268	return readl_relaxed(tdc->tdma->base_addr + tdc->chan_base_offset + reg);
 269}
 270
 271static inline struct tegra_dma_channel *to_tegra_dma_chan(struct dma_chan *dc)
 272{
 273	return container_of(dc, struct tegra_dma_channel, vc.chan);
 274}
 275
 276static inline struct tegra_dma_desc *vd_to_tegra_dma_desc(struct virt_dma_desc *vd)
 277{
 278	return container_of(vd, struct tegra_dma_desc, vd);
 279}
 280
 281static inline struct device *tdc2dev(struct tegra_dma_channel *tdc)
 282{
 283	return tdc->vc.chan.device->dev;
 284}
 285
 286static void tegra_dma_dump_chan_regs(struct tegra_dma_channel *tdc)
 287{
 288	dev_dbg(tdc2dev(tdc), "DMA Channel %d name %s register dump:\n",
 289		tdc->id, tdc->name);
 290	dev_dbg(tdc2dev(tdc), "CSR %x STA %x CSRE %x SRC %x DST %x\n",
 291		tdc_read(tdc, TEGRA_GPCDMA_CHAN_CSR),
 292		tdc_read(tdc, TEGRA_GPCDMA_CHAN_STATUS),
 293		tdc_read(tdc, TEGRA_GPCDMA_CHAN_CSRE),
 294		tdc_read(tdc, TEGRA_GPCDMA_CHAN_SRC_PTR),
 295		tdc_read(tdc, TEGRA_GPCDMA_CHAN_DST_PTR)
 296	);
 297	dev_dbg(tdc2dev(tdc), "MCSEQ %x IOSEQ %x WCNT %x XFER %x BSTA %x\n",
 298		tdc_read(tdc, TEGRA_GPCDMA_CHAN_MCSEQ),
 299		tdc_read(tdc, TEGRA_GPCDMA_CHAN_MMIOSEQ),
 300		tdc_read(tdc, TEGRA_GPCDMA_CHAN_WCOUNT),
 301		tdc_read(tdc, TEGRA_GPCDMA_CHAN_XFER_COUNT),
 302		tdc_read(tdc, TEGRA_GPCDMA_CHAN_DMA_BYTE_STATUS)
 303	);
 304	dev_dbg(tdc2dev(tdc), "DMA ERR_STA %x\n",
 305		tdc_read(tdc, TEGRA_GPCDMA_CHAN_ERR_STATUS));
 306}
 307
 308static int tegra_dma_sid_reserve(struct tegra_dma_channel *tdc,
 309				 enum dma_transfer_direction direction)
 310{
 311	struct tegra_dma *tdma = tdc->tdma;
 312	int sid = tdc->slave_id;
 313
 314	if (!is_slave_direction(direction))
 315		return 0;
 316
 317	switch (direction) {
 318	case DMA_MEM_TO_DEV:
 319		if (test_and_set_bit(sid, &tdma->sid_m2d_reserved)) {
 320			dev_err(tdma->dev, "slave id already in use\n");
 321			return -EINVAL;
 322		}
 323		break;
 324	case DMA_DEV_TO_MEM:
 325		if (test_and_set_bit(sid, &tdma->sid_d2m_reserved)) {
 326			dev_err(tdma->dev, "slave id already in use\n");
 327			return -EINVAL;
 328		}
 329		break;
 330	default:
 331		break;
 332	}
 333
 334	tdc->sid_dir = direction;
 335
 336	return 0;
 337}
 338
 339static void tegra_dma_sid_free(struct tegra_dma_channel *tdc)
 340{
 341	struct tegra_dma *tdma = tdc->tdma;
 342	int sid = tdc->slave_id;
 343
 344	switch (tdc->sid_dir) {
 345	case DMA_MEM_TO_DEV:
 346		clear_bit(sid,  &tdma->sid_m2d_reserved);
 347		break;
 348	case DMA_DEV_TO_MEM:
 349		clear_bit(sid,  &tdma->sid_d2m_reserved);
 350		break;
 351	default:
 352		break;
 353	}
 354
 355	tdc->sid_dir = DMA_TRANS_NONE;
 356}
 357
 358static void tegra_dma_desc_free(struct virt_dma_desc *vd)
 359{
 360	kfree(container_of(vd, struct tegra_dma_desc, vd));
 361}
 362
 363static int tegra_dma_slave_config(struct dma_chan *dc,
 364				  struct dma_slave_config *sconfig)
 365{
 366	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
 367
 368	memcpy(&tdc->dma_sconfig, sconfig, sizeof(*sconfig));
 369	tdc->config_init = true;
 370
 371	return 0;
 372}
 373
 374static int tegra_dma_pause(struct tegra_dma_channel *tdc)
 375{
 376	int ret;
 377	u32 val;
 378
 379	val = tdc_read(tdc, TEGRA_GPCDMA_CHAN_CSRE);
 380	val |= TEGRA_GPCDMA_CHAN_CSRE_PAUSE;
 381	tdc_write(tdc, TEGRA_GPCDMA_CHAN_CSRE, val);
 382
 383	/* Wait until busy bit is de-asserted */
 384	ret = readl_relaxed_poll_timeout_atomic(tdc->tdma->base_addr +
 385			tdc->chan_base_offset + TEGRA_GPCDMA_CHAN_STATUS,
 386			val,
 387			!(val & TEGRA_GPCDMA_STATUS_BUSY),
 388			TEGRA_GPCDMA_BURST_COMPLETE_TIME,
 389			TEGRA_GPCDMA_BURST_COMPLETION_TIMEOUT);
 390
 391	if (ret) {
 392		dev_err(tdc2dev(tdc), "DMA pause timed out\n");
 393		tegra_dma_dump_chan_regs(tdc);
 394	}
 395
 396	return ret;
 397}
 398
 399static int tegra_dma_device_pause(struct dma_chan *dc)
 400{
 401	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
 402	unsigned long flags;
 403	int ret;
 404
 405	if (!tdc->tdma->chip_data->hw_support_pause)
 406		return -ENOSYS;
 407
 408	spin_lock_irqsave(&tdc->vc.lock, flags);
 409	ret = tegra_dma_pause(tdc);
 410	spin_unlock_irqrestore(&tdc->vc.lock, flags);
 411
 412	return ret;
 413}
 414
 415static void tegra_dma_resume(struct tegra_dma_channel *tdc)
 416{
 417	u32 val;
 418
 419	val = tdc_read(tdc, TEGRA_GPCDMA_CHAN_CSRE);
 420	val &= ~TEGRA_GPCDMA_CHAN_CSRE_PAUSE;
 421	tdc_write(tdc, TEGRA_GPCDMA_CHAN_CSRE, val);
 422}
 423
 424static int tegra_dma_device_resume(struct dma_chan *dc)
 425{
 426	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
 427	unsigned long flags;
 428
 429	if (!tdc->tdma->chip_data->hw_support_pause)
 430		return -ENOSYS;
 431
 432	spin_lock_irqsave(&tdc->vc.lock, flags);
 433	tegra_dma_resume(tdc);
 434	spin_unlock_irqrestore(&tdc->vc.lock, flags);
 435
 436	return 0;
 437}
 438
 439static inline int tegra_dma_pause_noerr(struct tegra_dma_channel *tdc)
 440{
 441	/* Return 0 irrespective of PAUSE status.
 442	 * This is useful to recover channels that can exit out of flush
 443	 * state when the channel is disabled.
 444	 */
 445
 446	tegra_dma_pause(tdc);
 447	return 0;
 448}
 449
 450static void tegra_dma_disable(struct tegra_dma_channel *tdc)
 451{
 452	u32 csr, status;
 453
 454	csr = tdc_read(tdc, TEGRA_GPCDMA_CHAN_CSR);
 455
 456	/* Disable interrupts */
 457	csr &= ~TEGRA_GPCDMA_CSR_IE_EOC;
 458
 459	/* Disable DMA */
 460	csr &= ~TEGRA_GPCDMA_CSR_ENB;
 461	tdc_write(tdc, TEGRA_GPCDMA_CHAN_CSR, csr);
 462
 463	/* Clear interrupt status if it is there */
 464	status = tdc_read(tdc, TEGRA_GPCDMA_CHAN_STATUS);
 465	if (status & TEGRA_GPCDMA_STATUS_ISE_EOC) {
 466		dev_dbg(tdc2dev(tdc), "%s():clearing interrupt\n", __func__);
 467		tdc_write(tdc, TEGRA_GPCDMA_CHAN_STATUS, status);
 468	}
 469}
 470
 471static void tegra_dma_configure_next_sg(struct tegra_dma_channel *tdc)
 472{
 473	struct tegra_dma_desc *dma_desc = tdc->dma_desc;
 474	struct tegra_dma_channel_regs *ch_regs;
 475	int ret;
 476	u32 val;
 477
 478	dma_desc->sg_idx++;
 479
 480	/* Reset the sg index for cyclic transfers */
 481	if (dma_desc->sg_idx == dma_desc->sg_count)
 482		dma_desc->sg_idx = 0;
 483
 484	/* Configure next transfer immediately after DMA is busy */
 485	ret = readl_relaxed_poll_timeout_atomic(tdc->tdma->base_addr +
 486			tdc->chan_base_offset + TEGRA_GPCDMA_CHAN_STATUS,
 487			val,
 488			(val & TEGRA_GPCDMA_STATUS_BUSY), 0,
 489			TEGRA_GPCDMA_BURST_COMPLETION_TIMEOUT);
 490	if (ret)
 491		return;
 492
 493	ch_regs = &dma_desc->sg_req[dma_desc->sg_idx].ch_regs;
 494
 495	tdc_write(tdc, TEGRA_GPCDMA_CHAN_WCOUNT, ch_regs->wcount);
 496	tdc_write(tdc, TEGRA_GPCDMA_CHAN_SRC_PTR, ch_regs->src_ptr);
 497	tdc_write(tdc, TEGRA_GPCDMA_CHAN_DST_PTR, ch_regs->dst_ptr);
 498	tdc_write(tdc, TEGRA_GPCDMA_CHAN_HIGH_ADDR_PTR, ch_regs->high_addr_ptr);
 499
 500	/* Start DMA */
 501	tdc_write(tdc, TEGRA_GPCDMA_CHAN_CSR,
 502		  ch_regs->csr | TEGRA_GPCDMA_CSR_ENB);
 503}
 504
 505static void tegra_dma_start(struct tegra_dma_channel *tdc)
 506{
 507	struct tegra_dma_desc *dma_desc = tdc->dma_desc;
 508	struct tegra_dma_channel_regs *ch_regs;
 509	struct virt_dma_desc *vdesc;
 510
 511	if (!dma_desc) {
 512		vdesc = vchan_next_desc(&tdc->vc);
 513		if (!vdesc)
 514			return;
 515
 516		dma_desc = vd_to_tegra_dma_desc(vdesc);
 517		list_del(&vdesc->node);
 518		dma_desc->tdc = tdc;
 519		tdc->dma_desc = dma_desc;
 520
 521		tegra_dma_resume(tdc);
 522	}
 523
 524	ch_regs = &dma_desc->sg_req[dma_desc->sg_idx].ch_regs;
 525
 526	tdc_write(tdc, TEGRA_GPCDMA_CHAN_WCOUNT, ch_regs->wcount);
 527	tdc_write(tdc, TEGRA_GPCDMA_CHAN_CSR, 0);
 528	tdc_write(tdc, TEGRA_GPCDMA_CHAN_SRC_PTR, ch_regs->src_ptr);
 529	tdc_write(tdc, TEGRA_GPCDMA_CHAN_DST_PTR, ch_regs->dst_ptr);
 530	tdc_write(tdc, TEGRA_GPCDMA_CHAN_HIGH_ADDR_PTR, ch_regs->high_addr_ptr);
 531	tdc_write(tdc, TEGRA_GPCDMA_CHAN_FIXED_PATTERN, ch_regs->fixed_pattern);
 532	tdc_write(tdc, TEGRA_GPCDMA_CHAN_MMIOSEQ, ch_regs->mmio_seq);
 533	tdc_write(tdc, TEGRA_GPCDMA_CHAN_MCSEQ, ch_regs->mc_seq);
 534	tdc_write(tdc, TEGRA_GPCDMA_CHAN_CSR, ch_regs->csr);
 535
 536	/* Start DMA */
 537	tdc_write(tdc, TEGRA_GPCDMA_CHAN_CSR,
 538		  ch_regs->csr | TEGRA_GPCDMA_CSR_ENB);
 539}
 540
 541static void tegra_dma_xfer_complete(struct tegra_dma_channel *tdc)
 542{
 543	vchan_cookie_complete(&tdc->dma_desc->vd);
 544
 545	tegra_dma_sid_free(tdc);
 546	tdc->dma_desc = NULL;
 547}
 548
 549static void tegra_dma_chan_decode_error(struct tegra_dma_channel *tdc,
 550					unsigned int err_status)
 551{
 552	switch (TEGRA_GPCDMA_CHAN_ERR_TYPE(err_status)) {
 553	case TEGRA_DMA_BM_FIFO_FULL_ERR:
 554		dev_err(tdc->tdma->dev,
 555			"GPCDMA CH%d bm fifo full\n", tdc->id);
 556		break;
 557
 558	case TEGRA_DMA_PERIPH_FIFO_FULL_ERR:
 559		dev_err(tdc->tdma->dev,
 560			"GPCDMA CH%d peripheral fifo full\n", tdc->id);
 561		break;
 562
 563	case TEGRA_DMA_PERIPH_ID_ERR:
 564		dev_err(tdc->tdma->dev,
 565			"GPCDMA CH%d illegal peripheral id\n", tdc->id);
 566		break;
 567
 568	case TEGRA_DMA_STREAM_ID_ERR:
 569		dev_err(tdc->tdma->dev,
 570			"GPCDMA CH%d illegal stream id\n", tdc->id);
 571		break;
 572
 573	case TEGRA_DMA_MC_SLAVE_ERR:
 574		dev_err(tdc->tdma->dev,
 575			"GPCDMA CH%d mc slave error\n", tdc->id);
 576		break;
 577
 578	case TEGRA_DMA_MMIO_SLAVE_ERR:
 579		dev_err(tdc->tdma->dev,
 580			"GPCDMA CH%d mmio slave error\n", tdc->id);
 581		break;
 582
 583	default:
 584		dev_err(tdc->tdma->dev,
 585			"GPCDMA CH%d security violation %x\n", tdc->id,
 586			err_status);
 587	}
 588}
 589
 590static irqreturn_t tegra_dma_isr(int irq, void *dev_id)
 591{
 592	struct tegra_dma_channel *tdc = dev_id;
 593	struct tegra_dma_desc *dma_desc = tdc->dma_desc;
 594	struct tegra_dma_sg_req *sg_req;
 595	u32 status;
 596
 597	/* Check channel error status register */
 598	status = tdc_read(tdc, TEGRA_GPCDMA_CHAN_ERR_STATUS);
 599	if (status) {
 600		tegra_dma_chan_decode_error(tdc, status);
 601		tegra_dma_dump_chan_regs(tdc);
 602		tdc_write(tdc, TEGRA_GPCDMA_CHAN_ERR_STATUS, 0xFFFFFFFF);
 603	}
 604
 605	spin_lock(&tdc->vc.lock);
 606	status = tdc_read(tdc, TEGRA_GPCDMA_CHAN_STATUS);
 607	if (!(status & TEGRA_GPCDMA_STATUS_ISE_EOC))
 608		goto irq_done;
 609
 610	tdc_write(tdc, TEGRA_GPCDMA_CHAN_STATUS,
 611		  TEGRA_GPCDMA_STATUS_ISE_EOC);
 612
 613	if (!dma_desc)
 614		goto irq_done;
 615
 616	sg_req = dma_desc->sg_req;
 617	dma_desc->bytes_xfer += sg_req[dma_desc->sg_idx].len;
 618
 619	if (dma_desc->cyclic) {
 620		vchan_cyclic_callback(&dma_desc->vd);
 621		tegra_dma_configure_next_sg(tdc);
 622	} else {
 623		dma_desc->sg_idx++;
 624		if (dma_desc->sg_idx == dma_desc->sg_count)
 625			tegra_dma_xfer_complete(tdc);
 626		else
 627			tegra_dma_start(tdc);
 628	}
 629
 630irq_done:
 631	spin_unlock(&tdc->vc.lock);
 632	return IRQ_HANDLED;
 633}
 634
 635static void tegra_dma_issue_pending(struct dma_chan *dc)
 636{
 637	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
 638	unsigned long flags;
 639
 640	if (tdc->dma_desc)
 641		return;
 642
 643	spin_lock_irqsave(&tdc->vc.lock, flags);
 644	if (vchan_issue_pending(&tdc->vc))
 645		tegra_dma_start(tdc);
 646
 647	/*
 648	 * For cyclic DMA transfers, program the second
 649	 * transfer parameters as soon as the first DMA
 650	 * transfer is started inorder for the DMA
 651	 * controller to trigger the second transfer
 652	 * with the correct parameters.
 653	 */
 654	if (tdc->dma_desc && tdc->dma_desc->cyclic)
 655		tegra_dma_configure_next_sg(tdc);
 656
 657	spin_unlock_irqrestore(&tdc->vc.lock, flags);
 658}
 659
 660static int tegra_dma_stop_client(struct tegra_dma_channel *tdc)
 661{
 662	int ret;
 663	u32 status, csr;
 664
 665	/*
 666	 * Change the client associated with the DMA channel
 667	 * to stop DMA engine from starting any more bursts for
 668	 * the given client and wait for in flight bursts to complete
 669	 */
 670	csr = tdc_read(tdc, TEGRA_GPCDMA_CHAN_CSR);
 671	csr &= ~(TEGRA_GPCDMA_CSR_REQ_SEL_MASK);
 672	csr |= TEGRA_GPCDMA_CSR_REQ_SEL_UNUSED;
 673	tdc_write(tdc, TEGRA_GPCDMA_CHAN_CSR, csr);
 674
 675	/* Wait for in flight data transfer to finish */
 676	udelay(TEGRA_GPCDMA_BURST_COMPLETE_TIME);
 677
 678	/* If TX/RX path is still active wait till it becomes
 679	 * inactive
 680	 */
 681
 682	ret = readl_relaxed_poll_timeout_atomic(tdc->tdma->base_addr +
 683				tdc->chan_base_offset +
 684				TEGRA_GPCDMA_CHAN_STATUS,
 685				status,
 686				!(status & (TEGRA_GPCDMA_STATUS_CHANNEL_TX |
 687				TEGRA_GPCDMA_STATUS_CHANNEL_RX)),
 688				5,
 689				TEGRA_GPCDMA_BURST_COMPLETION_TIMEOUT);
 690	if (ret) {
 691		dev_err(tdc2dev(tdc), "Timeout waiting for DMA burst completion!\n");
 692		tegra_dma_dump_chan_regs(tdc);
 693	}
 694
 695	return ret;
 696}
 697
 698static int tegra_dma_terminate_all(struct dma_chan *dc)
 699{
 700	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
 701	unsigned long flags;
 702	LIST_HEAD(head);
 703	int err;
 704
 705	spin_lock_irqsave(&tdc->vc.lock, flags);
 706
 707	if (tdc->dma_desc) {
 708		err = tdc->tdma->chip_data->terminate(tdc);
 709		if (err) {
 710			spin_unlock_irqrestore(&tdc->vc.lock, flags);
 711			return err;
 712		}
 713
 714		vchan_terminate_vdesc(&tdc->dma_desc->vd);
 715		tegra_dma_disable(tdc);
 716		tdc->dma_desc = NULL;
 717	}
 718
 719	tegra_dma_sid_free(tdc);
 720	vchan_get_all_descriptors(&tdc->vc, &head);
 721	spin_unlock_irqrestore(&tdc->vc.lock, flags);
 722
 723	vchan_dma_desc_free_list(&tdc->vc, &head);
 724
 725	return 0;
 726}
 727
 728static int tegra_dma_get_residual(struct tegra_dma_channel *tdc)
 729{
 730	struct tegra_dma_desc *dma_desc = tdc->dma_desc;
 731	struct tegra_dma_sg_req *sg_req = dma_desc->sg_req;
 732	unsigned int bytes_xfer, residual;
 733	u32 wcount = 0, status;
 734
 735	wcount = tdc_read(tdc, TEGRA_GPCDMA_CHAN_XFER_COUNT);
 736
 737	/*
 738	 * Set wcount = 0 if EOC bit is set. The transfer would have
 739	 * already completed and the CHAN_XFER_COUNT could have updated
 740	 * for the next transfer, specifically in case of cyclic transfers.
 741	 */
 742	status = tdc_read(tdc, TEGRA_GPCDMA_CHAN_STATUS);
 743	if (status & TEGRA_GPCDMA_STATUS_ISE_EOC)
 744		wcount = 0;
 745
 746	bytes_xfer = dma_desc->bytes_xfer +
 747		     sg_req[dma_desc->sg_idx].len - (wcount * 4);
 748
 749	if (dma_desc->bytes_req == bytes_xfer)
 750		return 0;
 751
 752	residual = dma_desc->bytes_req - (bytes_xfer % dma_desc->bytes_req);
 753
 754	return residual;
 755}
 756
 757static enum dma_status tegra_dma_tx_status(struct dma_chan *dc,
 758					   dma_cookie_t cookie,
 759					   struct dma_tx_state *txstate)
 760{
 761	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
 762	struct tegra_dma_desc *dma_desc;
 763	struct virt_dma_desc *vd;
 764	unsigned int residual;
 765	unsigned long flags;
 766	enum dma_status ret;
 767
 768	ret = dma_cookie_status(dc, cookie, txstate);
 769	if (ret == DMA_COMPLETE)
 770		return ret;
 771
 772	spin_lock_irqsave(&tdc->vc.lock, flags);
 773	vd = vchan_find_desc(&tdc->vc, cookie);
 774	if (vd) {
 775		dma_desc = vd_to_tegra_dma_desc(vd);
 776		residual = dma_desc->bytes_req;
 777		dma_set_residue(txstate, residual);
 778	} else if (tdc->dma_desc && tdc->dma_desc->vd.tx.cookie == cookie) {
 779		residual =  tegra_dma_get_residual(tdc);
 780		dma_set_residue(txstate, residual);
 781	} else {
 782		dev_err(tdc2dev(tdc), "cookie %d is not found\n", cookie);
 783	}
 784	spin_unlock_irqrestore(&tdc->vc.lock, flags);
 785
 786	return ret;
 787}
 788
 789static inline int get_bus_width(struct tegra_dma_channel *tdc,
 790				enum dma_slave_buswidth slave_bw)
 791{
 792	switch (slave_bw) {
 793	case DMA_SLAVE_BUSWIDTH_1_BYTE:
 794		return TEGRA_GPCDMA_MMIOSEQ_BUS_WIDTH_8;
 795	case DMA_SLAVE_BUSWIDTH_2_BYTES:
 796		return TEGRA_GPCDMA_MMIOSEQ_BUS_WIDTH_16;
 797	case DMA_SLAVE_BUSWIDTH_4_BYTES:
 798		return TEGRA_GPCDMA_MMIOSEQ_BUS_WIDTH_32;
 799	default:
 800		dev_err(tdc2dev(tdc), "given slave bus width is not supported\n");
 801		return -EINVAL;
 802	}
 803}
 804
 805static unsigned int get_burst_size(struct tegra_dma_channel *tdc,
 806				   u32 burst_size, enum dma_slave_buswidth slave_bw,
 807				   int len)
 808{
 809	unsigned int burst_mmio_width, burst_byte;
 810
 811	/*
 812	 * burst_size from client is in terms of the bus_width.
 813	 * convert that into words.
 814	 * If burst_size is not specified from client, then use
 815	 * len to calculate the optimum burst size
 816	 */
 817	burst_byte = burst_size ? burst_size * slave_bw : len;
 818	burst_mmio_width = burst_byte / 4;
 819
 820	if (burst_mmio_width < TEGRA_GPCDMA_MMIOSEQ_BURST_MIN)
 821		return 0;
 822
 823	burst_mmio_width = min(burst_mmio_width, TEGRA_GPCDMA_MMIOSEQ_BURST_MAX);
 824
 825	return TEGRA_GPCDMA_MMIOSEQ_BURST(burst_mmio_width);
 826}
 827
 828static int get_transfer_param(struct tegra_dma_channel *tdc,
 829			      enum dma_transfer_direction direction,
 830			      u32 *apb_addr,
 831			      u32 *mmio_seq,
 832			      u32 *csr,
 833			      unsigned int *burst_size,
 834			      enum dma_slave_buswidth *slave_bw)
 835{
 836	switch (direction) {
 837	case DMA_MEM_TO_DEV:
 838		*apb_addr = tdc->dma_sconfig.dst_addr;
 839		*mmio_seq = get_bus_width(tdc, tdc->dma_sconfig.dst_addr_width);
 840		*burst_size = tdc->dma_sconfig.dst_maxburst;
 841		*slave_bw = tdc->dma_sconfig.dst_addr_width;
 842		*csr = TEGRA_GPCDMA_CSR_DMA_MEM2IO_FC;
 843		return 0;
 844	case DMA_DEV_TO_MEM:
 845		*apb_addr = tdc->dma_sconfig.src_addr;
 846		*mmio_seq = get_bus_width(tdc, tdc->dma_sconfig.src_addr_width);
 847		*burst_size = tdc->dma_sconfig.src_maxburst;
 848		*slave_bw = tdc->dma_sconfig.src_addr_width;
 849		*csr = TEGRA_GPCDMA_CSR_DMA_IO2MEM_FC;
 850		return 0;
 851	default:
 852		dev_err(tdc2dev(tdc), "DMA direction is not supported\n");
 853	}
 854
 855	return -EINVAL;
 856}
 857
 858static struct dma_async_tx_descriptor *
 859tegra_dma_prep_dma_memset(struct dma_chan *dc, dma_addr_t dest, int value,
 860			  size_t len, unsigned long flags)
 861{
 862	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
 863	unsigned int max_dma_count = tdc->tdma->chip_data->max_dma_count;
 864	struct tegra_dma_sg_req *sg_req;
 865	struct tegra_dma_desc *dma_desc;
 866	u32 csr, mc_seq;
 867
 868	if ((len & 3) || (dest & 3) || len > max_dma_count) {
 869		dev_err(tdc2dev(tdc),
 870			"DMA length/memory address is not supported\n");
 871		return NULL;
 872	}
 873
 874	/* Set DMA mode to fixed pattern */
 875	csr = TEGRA_GPCDMA_CSR_DMA_FIXED_PAT;
 876	/* Enable once or continuous mode */
 877	csr |= TEGRA_GPCDMA_CSR_ONCE;
 878	/* Enable IRQ mask */
 879	csr |= TEGRA_GPCDMA_CSR_IRQ_MASK;
 880	/* Enable the DMA interrupt */
 881	if (flags & DMA_PREP_INTERRUPT)
 882		csr |= TEGRA_GPCDMA_CSR_IE_EOC;
 883	/* Configure default priority weight for the channel */
 884	csr |= FIELD_PREP(TEGRA_GPCDMA_CSR_WEIGHT, 1);
 885
 886	mc_seq =  tdc_read(tdc, TEGRA_GPCDMA_CHAN_MCSEQ);
 887	/* retain stream-id and clean rest */
 888	mc_seq &= TEGRA_GPCDMA_MCSEQ_STREAM_ID0_MASK;
 889
 890	/* Set the address wrapping */
 891	mc_seq |= FIELD_PREP(TEGRA_GPCDMA_MCSEQ_WRAP0,
 892						TEGRA_GPCDMA_MCSEQ_WRAP_NONE);
 893	mc_seq |= FIELD_PREP(TEGRA_GPCDMA_MCSEQ_WRAP1,
 894						TEGRA_GPCDMA_MCSEQ_WRAP_NONE);
 895
 896	/* Program outstanding MC requests */
 897	mc_seq |= FIELD_PREP(TEGRA_GPCDMA_MCSEQ_REQ_COUNT, 1);
 898	/* Set burst size */
 899	mc_seq |= TEGRA_GPCDMA_MCSEQ_BURST_16;
 900
 901	dma_desc = kzalloc(struct_size(dma_desc, sg_req, 1), GFP_NOWAIT);
 902	if (!dma_desc)
 903		return NULL;
 904
 905	dma_desc->bytes_req = len;
 906	dma_desc->sg_count = 1;
 907	sg_req = dma_desc->sg_req;
 908
 909	sg_req[0].ch_regs.src_ptr = 0;
 910	sg_req[0].ch_regs.dst_ptr = dest;
 911	sg_req[0].ch_regs.high_addr_ptr =
 912			FIELD_PREP(TEGRA_GPCDMA_HIGH_ADDR_DST_PTR, (dest >> 32));
 913	sg_req[0].ch_regs.fixed_pattern = value;
 914	/* Word count reg takes value as (N +1) words */
 915	sg_req[0].ch_regs.wcount = ((len - 4) >> 2);
 916	sg_req[0].ch_regs.csr = csr;
 917	sg_req[0].ch_regs.mmio_seq = 0;
 918	sg_req[0].ch_regs.mc_seq = mc_seq;
 919	sg_req[0].len = len;
 920
 921	dma_desc->cyclic = false;
 922	return vchan_tx_prep(&tdc->vc, &dma_desc->vd, flags);
 923}
 924
 925static struct dma_async_tx_descriptor *
 926tegra_dma_prep_dma_memcpy(struct dma_chan *dc, dma_addr_t dest,
 927			  dma_addr_t src, size_t len, unsigned long flags)
 928{
 929	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
 930	struct tegra_dma_sg_req *sg_req;
 931	struct tegra_dma_desc *dma_desc;
 932	unsigned int max_dma_count;
 933	u32 csr, mc_seq;
 934
 935	max_dma_count = tdc->tdma->chip_data->max_dma_count;
 936	if ((len & 3) || (src & 3) || (dest & 3) || len > max_dma_count) {
 937		dev_err(tdc2dev(tdc),
 938			"DMA length/memory address is not supported\n");
 939		return NULL;
 940	}
 941
 942	/* Set DMA mode to memory to memory transfer */
 943	csr = TEGRA_GPCDMA_CSR_DMA_MEM2MEM;
 944	/* Enable once or continuous mode */
 945	csr |= TEGRA_GPCDMA_CSR_ONCE;
 946	/* Enable IRQ mask */
 947	csr |= TEGRA_GPCDMA_CSR_IRQ_MASK;
 948	/* Enable the DMA interrupt */
 949	if (flags & DMA_PREP_INTERRUPT)
 950		csr |= TEGRA_GPCDMA_CSR_IE_EOC;
 951	/* Configure default priority weight for the channel */
 952	csr |= FIELD_PREP(TEGRA_GPCDMA_CSR_WEIGHT, 1);
 953
 954	mc_seq =  tdc_read(tdc, TEGRA_GPCDMA_CHAN_MCSEQ);
 955	/* retain stream-id and clean rest */
 956	mc_seq &= (TEGRA_GPCDMA_MCSEQ_STREAM_ID0_MASK) |
 957		  (TEGRA_GPCDMA_MCSEQ_STREAM_ID1_MASK);
 958
 959	/* Set the address wrapping */
 960	mc_seq |= FIELD_PREP(TEGRA_GPCDMA_MCSEQ_WRAP0,
 961			     TEGRA_GPCDMA_MCSEQ_WRAP_NONE);
 962	mc_seq |= FIELD_PREP(TEGRA_GPCDMA_MCSEQ_WRAP1,
 963			     TEGRA_GPCDMA_MCSEQ_WRAP_NONE);
 964
 965	/* Program outstanding MC requests */
 966	mc_seq |= FIELD_PREP(TEGRA_GPCDMA_MCSEQ_REQ_COUNT, 1);
 967	/* Set burst size */
 968	mc_seq |= TEGRA_GPCDMA_MCSEQ_BURST_16;
 969
 970	dma_desc = kzalloc(struct_size(dma_desc, sg_req, 1), GFP_NOWAIT);
 971	if (!dma_desc)
 972		return NULL;
 973
 974	dma_desc->bytes_req = len;
 975	dma_desc->sg_count = 1;
 976	sg_req = dma_desc->sg_req;
 977
 978	sg_req[0].ch_regs.src_ptr = src;
 979	sg_req[0].ch_regs.dst_ptr = dest;
 980	sg_req[0].ch_regs.high_addr_ptr =
 981		FIELD_PREP(TEGRA_GPCDMA_HIGH_ADDR_SRC_PTR, (src >> 32));
 982	sg_req[0].ch_regs.high_addr_ptr |=
 983		FIELD_PREP(TEGRA_GPCDMA_HIGH_ADDR_DST_PTR, (dest >> 32));
 984	/* Word count reg takes value as (N +1) words */
 985	sg_req[0].ch_regs.wcount = ((len - 4) >> 2);
 986	sg_req[0].ch_regs.csr = csr;
 987	sg_req[0].ch_regs.mmio_seq = 0;
 988	sg_req[0].ch_regs.mc_seq = mc_seq;
 989	sg_req[0].len = len;
 990
 991	dma_desc->cyclic = false;
 992	return vchan_tx_prep(&tdc->vc, &dma_desc->vd, flags);
 993}
 994
 995static struct dma_async_tx_descriptor *
 996tegra_dma_prep_slave_sg(struct dma_chan *dc, struct scatterlist *sgl,
 997			unsigned int sg_len, enum dma_transfer_direction direction,
 998			unsigned long flags, void *context)
 999{
1000	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
1001	unsigned int max_dma_count = tdc->tdma->chip_data->max_dma_count;
1002	enum dma_slave_buswidth slave_bw = DMA_SLAVE_BUSWIDTH_UNDEFINED;
1003	u32 csr, mc_seq, apb_ptr = 0, mmio_seq = 0;
1004	struct tegra_dma_sg_req *sg_req;
1005	struct tegra_dma_desc *dma_desc;
1006	struct scatterlist *sg;
1007	u32 burst_size;
1008	unsigned int i;
1009	int ret;
1010
1011	if (!tdc->config_init) {
1012		dev_err(tdc2dev(tdc), "DMA channel is not configured\n");
1013		return NULL;
1014	}
1015	if (sg_len < 1) {
1016		dev_err(tdc2dev(tdc), "Invalid segment length %d\n", sg_len);
1017		return NULL;
1018	}
1019
1020	ret = tegra_dma_sid_reserve(tdc, direction);
1021	if (ret)
1022		return NULL;
1023
1024	ret = get_transfer_param(tdc, direction, &apb_ptr, &mmio_seq, &csr,
1025				 &burst_size, &slave_bw);
1026	if (ret < 0)
1027		return NULL;
1028
1029	/* Enable once or continuous mode */
1030	csr |= TEGRA_GPCDMA_CSR_ONCE;
1031	/* Program the slave id in requestor select */
1032	csr |= FIELD_PREP(TEGRA_GPCDMA_CSR_REQ_SEL_MASK, tdc->slave_id);
1033	/* Enable IRQ mask */
1034	csr |= TEGRA_GPCDMA_CSR_IRQ_MASK;
1035	/* Configure default priority weight for the channel*/
1036	csr |= FIELD_PREP(TEGRA_GPCDMA_CSR_WEIGHT, 1);
1037
1038	/* Enable the DMA interrupt */
1039	if (flags & DMA_PREP_INTERRUPT)
1040		csr |= TEGRA_GPCDMA_CSR_IE_EOC;
1041
1042	mc_seq =  tdc_read(tdc, TEGRA_GPCDMA_CHAN_MCSEQ);
1043	/* retain stream-id and clean rest */
1044	mc_seq &= TEGRA_GPCDMA_MCSEQ_STREAM_ID0_MASK;
1045
1046	/* Set the address wrapping on both MC and MMIO side */
1047
1048	mc_seq |= FIELD_PREP(TEGRA_GPCDMA_MCSEQ_WRAP0,
1049			     TEGRA_GPCDMA_MCSEQ_WRAP_NONE);
1050	mc_seq |= FIELD_PREP(TEGRA_GPCDMA_MCSEQ_WRAP1,
1051			     TEGRA_GPCDMA_MCSEQ_WRAP_NONE);
1052	mmio_seq |= FIELD_PREP(TEGRA_GPCDMA_MMIOSEQ_WRAP_WORD, 1);
1053
1054	/* Program 2 MC outstanding requests by default. */
1055	mc_seq |= FIELD_PREP(TEGRA_GPCDMA_MCSEQ_REQ_COUNT, 1);
1056
1057	/* Setting MC burst size depending on MMIO burst size */
1058	if (burst_size == 64)
1059		mc_seq |= TEGRA_GPCDMA_MCSEQ_BURST_16;
1060	else
1061		mc_seq |= TEGRA_GPCDMA_MCSEQ_BURST_2;
1062
1063	dma_desc = kzalloc(struct_size(dma_desc, sg_req, sg_len), GFP_NOWAIT);
1064	if (!dma_desc)
1065		return NULL;
1066
1067	dma_desc->sg_count = sg_len;
1068	sg_req = dma_desc->sg_req;
1069
1070	/* Make transfer requests */
1071	for_each_sg(sgl, sg, sg_len, i) {
1072		u32 len;
1073		dma_addr_t mem;
1074
1075		mem = sg_dma_address(sg);
1076		len = sg_dma_len(sg);
1077
1078		if ((len & 3) || (mem & 3) || len > max_dma_count) {
1079			dev_err(tdc2dev(tdc),
1080				"DMA length/memory address is not supported\n");
1081			kfree(dma_desc);
1082			return NULL;
1083		}
1084
1085		mmio_seq |= get_burst_size(tdc, burst_size, slave_bw, len);
1086		dma_desc->bytes_req += len;
1087
1088		if (direction == DMA_MEM_TO_DEV) {
1089			sg_req[i].ch_regs.src_ptr = mem;
1090			sg_req[i].ch_regs.dst_ptr = apb_ptr;
1091			sg_req[i].ch_regs.high_addr_ptr =
1092				FIELD_PREP(TEGRA_GPCDMA_HIGH_ADDR_SRC_PTR, (mem >> 32));
1093		} else if (direction == DMA_DEV_TO_MEM) {
1094			sg_req[i].ch_regs.src_ptr = apb_ptr;
1095			sg_req[i].ch_regs.dst_ptr = mem;
1096			sg_req[i].ch_regs.high_addr_ptr =
1097				FIELD_PREP(TEGRA_GPCDMA_HIGH_ADDR_DST_PTR, (mem >> 32));
1098		}
1099
1100		/*
1101		 * Word count register takes input in words. Writing a value
1102		 * of N into word count register means a req of (N+1) words.
1103		 */
1104		sg_req[i].ch_regs.wcount = ((len - 4) >> 2);
1105		sg_req[i].ch_regs.csr = csr;
1106		sg_req[i].ch_regs.mmio_seq = mmio_seq;
1107		sg_req[i].ch_regs.mc_seq = mc_seq;
1108		sg_req[i].len = len;
1109	}
1110
1111	dma_desc->cyclic = false;
1112	return vchan_tx_prep(&tdc->vc, &dma_desc->vd, flags);
1113}
1114
1115static struct dma_async_tx_descriptor *
1116tegra_dma_prep_dma_cyclic(struct dma_chan *dc, dma_addr_t buf_addr, size_t buf_len,
1117			  size_t period_len, enum dma_transfer_direction direction,
1118			  unsigned long flags)
1119{
1120	enum dma_slave_buswidth slave_bw = DMA_SLAVE_BUSWIDTH_UNDEFINED;
1121	u32 csr, mc_seq, apb_ptr = 0, mmio_seq = 0, burst_size;
1122	unsigned int max_dma_count, len, period_count, i;
1123	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
1124	struct tegra_dma_desc *dma_desc;
1125	struct tegra_dma_sg_req *sg_req;
1126	dma_addr_t mem = buf_addr;
1127	int ret;
1128
1129	if (!buf_len || !period_len) {
1130		dev_err(tdc2dev(tdc), "Invalid buffer/period len\n");
1131		return NULL;
1132	}
1133
1134	if (!tdc->config_init) {
1135		dev_err(tdc2dev(tdc), "DMA slave is not configured\n");
1136		return NULL;
1137	}
1138
1139	ret = tegra_dma_sid_reserve(tdc, direction);
1140	if (ret)
1141		return NULL;
1142
1143	/*
1144	 * We only support cycle transfer when buf_len is multiple of
1145	 * period_len.
1146	 */
1147	if (buf_len % period_len) {
1148		dev_err(tdc2dev(tdc), "buf_len is not multiple of period_len\n");
1149		return NULL;
1150	}
1151
1152	len = period_len;
1153	max_dma_count = tdc->tdma->chip_data->max_dma_count;
1154	if ((len & 3) || (buf_addr & 3) || len > max_dma_count) {
1155		dev_err(tdc2dev(tdc), "Req len/mem address is not correct\n");
1156		return NULL;
1157	}
1158
1159	ret = get_transfer_param(tdc, direction, &apb_ptr, &mmio_seq, &csr,
1160				 &burst_size, &slave_bw);
1161	if (ret < 0)
1162		return NULL;
1163
1164	/* Enable once or continuous mode */
1165	csr &= ~TEGRA_GPCDMA_CSR_ONCE;
1166	/* Program the slave id in requestor select */
1167	csr |= FIELD_PREP(TEGRA_GPCDMA_CSR_REQ_SEL_MASK, tdc->slave_id);
1168	/* Enable IRQ mask */
1169	csr |= TEGRA_GPCDMA_CSR_IRQ_MASK;
1170	/* Configure default priority weight for the channel*/
1171	csr |= FIELD_PREP(TEGRA_GPCDMA_CSR_WEIGHT, 1);
1172
1173	/* Enable the DMA interrupt */
1174	if (flags & DMA_PREP_INTERRUPT)
1175		csr |= TEGRA_GPCDMA_CSR_IE_EOC;
1176
1177	mmio_seq |= FIELD_PREP(TEGRA_GPCDMA_MMIOSEQ_WRAP_WORD, 1);
1178
1179	mc_seq =  tdc_read(tdc, TEGRA_GPCDMA_CHAN_MCSEQ);
1180	/* retain stream-id and clean rest */
1181	mc_seq &= TEGRA_GPCDMA_MCSEQ_STREAM_ID0_MASK;
1182
1183	/* Set the address wrapping on both MC and MMIO side */
1184	mc_seq |= FIELD_PREP(TEGRA_GPCDMA_MCSEQ_WRAP0,
1185			     TEGRA_GPCDMA_MCSEQ_WRAP_NONE);
1186	mc_seq |= FIELD_PREP(TEGRA_GPCDMA_MCSEQ_WRAP1,
1187			     TEGRA_GPCDMA_MCSEQ_WRAP_NONE);
1188
1189	/* Program 2 MC outstanding requests by default. */
1190	mc_seq |= FIELD_PREP(TEGRA_GPCDMA_MCSEQ_REQ_COUNT, 1);
1191	/* Setting MC burst size depending on MMIO burst size */
1192	if (burst_size == 64)
1193		mc_seq |= TEGRA_GPCDMA_MCSEQ_BURST_16;
1194	else
1195		mc_seq |= TEGRA_GPCDMA_MCSEQ_BURST_2;
1196
1197	period_count = buf_len / period_len;
1198	dma_desc = kzalloc(struct_size(dma_desc, sg_req, period_count),
1199			   GFP_NOWAIT);
1200	if (!dma_desc)
1201		return NULL;
1202
1203	dma_desc->bytes_req = buf_len;
1204	dma_desc->sg_count = period_count;
1205	sg_req = dma_desc->sg_req;
1206
1207	/* Split transfer equal to period size */
1208	for (i = 0; i < period_count; i++) {
1209		mmio_seq |= get_burst_size(tdc, burst_size, slave_bw, len);
1210		if (direction == DMA_MEM_TO_DEV) {
1211			sg_req[i].ch_regs.src_ptr = mem;
1212			sg_req[i].ch_regs.dst_ptr = apb_ptr;
1213			sg_req[i].ch_regs.high_addr_ptr =
1214				FIELD_PREP(TEGRA_GPCDMA_HIGH_ADDR_SRC_PTR, (mem >> 32));
1215		} else if (direction == DMA_DEV_TO_MEM) {
1216			sg_req[i].ch_regs.src_ptr = apb_ptr;
1217			sg_req[i].ch_regs.dst_ptr = mem;
1218			sg_req[i].ch_regs.high_addr_ptr =
1219				FIELD_PREP(TEGRA_GPCDMA_HIGH_ADDR_DST_PTR, (mem >> 32));
1220		}
1221		/*
1222		 * Word count register takes input in words. Writing a value
1223		 * of N into word count register means a req of (N+1) words.
1224		 */
1225		sg_req[i].ch_regs.wcount = ((len - 4) >> 2);
1226		sg_req[i].ch_regs.csr = csr;
1227		sg_req[i].ch_regs.mmio_seq = mmio_seq;
1228		sg_req[i].ch_regs.mc_seq = mc_seq;
1229		sg_req[i].len = len;
1230
1231		mem += len;
1232	}
1233
1234	dma_desc->cyclic = true;
1235
1236	return vchan_tx_prep(&tdc->vc, &dma_desc->vd, flags);
1237}
1238
1239static int tegra_dma_alloc_chan_resources(struct dma_chan *dc)
1240{
1241	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
1242	int ret;
1243
1244	ret = request_irq(tdc->irq, tegra_dma_isr, 0, tdc->name, tdc);
1245	if (ret) {
1246		dev_err(tdc2dev(tdc), "request_irq failed for %s\n", tdc->name);
1247		return ret;
1248	}
1249
1250	dma_cookie_init(&tdc->vc.chan);
1251	tdc->config_init = false;
1252	return 0;
1253}
1254
1255static void tegra_dma_chan_synchronize(struct dma_chan *dc)
1256{
1257	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
1258
1259	synchronize_irq(tdc->irq);
1260	vchan_synchronize(&tdc->vc);
1261}
1262
1263static void tegra_dma_free_chan_resources(struct dma_chan *dc)
1264{
1265	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
1266
1267	dev_dbg(tdc2dev(tdc), "Freeing channel %d\n", tdc->id);
1268
1269	tegra_dma_terminate_all(dc);
1270	synchronize_irq(tdc->irq);
1271
1272	tasklet_kill(&tdc->vc.task);
1273	tdc->config_init = false;
1274	tdc->slave_id = -1;
1275	tdc->sid_dir = DMA_TRANS_NONE;
1276	free_irq(tdc->irq, tdc);
1277
1278	vchan_free_chan_resources(&tdc->vc);
1279}
1280
1281static struct dma_chan *tegra_dma_of_xlate(struct of_phandle_args *dma_spec,
1282					   struct of_dma *ofdma)
1283{
1284	struct tegra_dma *tdma = ofdma->of_dma_data;
1285	struct tegra_dma_channel *tdc;
1286	struct dma_chan *chan;
1287
1288	chan = dma_get_any_slave_channel(&tdma->dma_dev);
1289	if (!chan)
1290		return NULL;
1291
1292	tdc = to_tegra_dma_chan(chan);
1293	tdc->slave_id = dma_spec->args[0];
1294
1295	return chan;
1296}
1297
1298static const struct tegra_dma_chip_data tegra186_dma_chip_data = {
1299	.nr_channels = 32,
1300	.channel_reg_size = SZ_64K,
1301	.max_dma_count = SZ_1G,
1302	.hw_support_pause = false,
1303	.terminate = tegra_dma_stop_client,
1304};
1305
1306static const struct tegra_dma_chip_data tegra194_dma_chip_data = {
1307	.nr_channels = 32,
1308	.channel_reg_size = SZ_64K,
1309	.max_dma_count = SZ_1G,
1310	.hw_support_pause = true,
1311	.terminate = tegra_dma_pause,
1312};
1313
1314static const struct tegra_dma_chip_data tegra234_dma_chip_data = {
1315	.nr_channels = 32,
1316	.channel_reg_size = SZ_64K,
1317	.max_dma_count = SZ_1G,
1318	.hw_support_pause = true,
1319	.terminate = tegra_dma_pause_noerr,
1320};
1321
1322static const struct of_device_id tegra_dma_of_match[] = {
1323	{
1324		.compatible = "nvidia,tegra186-gpcdma",
1325		.data = &tegra186_dma_chip_data,
1326	}, {
1327		.compatible = "nvidia,tegra194-gpcdma",
1328		.data = &tegra194_dma_chip_data,
1329	}, {
1330		.compatible = "nvidia,tegra234-gpcdma",
1331		.data = &tegra234_dma_chip_data,
1332	}, {
1333	},
1334};
1335MODULE_DEVICE_TABLE(of, tegra_dma_of_match);
1336
1337static int tegra_dma_program_sid(struct tegra_dma_channel *tdc, int stream_id)
1338{
1339	unsigned int reg_val =  tdc_read(tdc, TEGRA_GPCDMA_CHAN_MCSEQ);
1340
1341	reg_val &= ~(TEGRA_GPCDMA_MCSEQ_STREAM_ID0_MASK);
1342	reg_val &= ~(TEGRA_GPCDMA_MCSEQ_STREAM_ID1_MASK);
1343
1344	reg_val |= FIELD_PREP(TEGRA_GPCDMA_MCSEQ_STREAM_ID0_MASK, stream_id);
1345	reg_val |= FIELD_PREP(TEGRA_GPCDMA_MCSEQ_STREAM_ID1_MASK, stream_id);
1346
1347	tdc_write(tdc, TEGRA_GPCDMA_CHAN_MCSEQ, reg_val);
1348	return 0;
1349}
1350
1351static int tegra_dma_probe(struct platform_device *pdev)
1352{
1353	const struct tegra_dma_chip_data *cdata = NULL;
1354	unsigned int i;
1355	u32 stream_id;
1356	struct tegra_dma *tdma;
1357	int ret;
1358
1359	cdata = of_device_get_match_data(&pdev->dev);
1360
1361	tdma = devm_kzalloc(&pdev->dev,
1362			    struct_size(tdma, channels, cdata->nr_channels),
1363			    GFP_KERNEL);
1364	if (!tdma)
1365		return -ENOMEM;
1366
1367	tdma->dev = &pdev->dev;
1368	tdma->chip_data = cdata;
1369	platform_set_drvdata(pdev, tdma);
1370
1371	tdma->base_addr = devm_platform_ioremap_resource(pdev, 0);
1372	if (IS_ERR(tdma->base_addr))
1373		return PTR_ERR(tdma->base_addr);
1374
1375	tdma->rst = devm_reset_control_get_exclusive(&pdev->dev, "gpcdma");
1376	if (IS_ERR(tdma->rst)) {
1377		return dev_err_probe(&pdev->dev, PTR_ERR(tdma->rst),
1378			      "Missing controller reset\n");
1379	}
1380	reset_control_reset(tdma->rst);
1381
1382	tdma->dma_dev.dev = &pdev->dev;
1383
1384	if (!tegra_dev_iommu_get_stream_id(&pdev->dev, &stream_id)) {
1385		dev_err(&pdev->dev, "Missing iommu stream-id\n");
1386		return -EINVAL;
1387	}
1388
1389	ret = device_property_read_u32(&pdev->dev, "dma-channel-mask",
1390				       &tdma->chan_mask);
1391	if (ret) {
1392		dev_warn(&pdev->dev,
1393			 "Missing dma-channel-mask property, using default channel mask %#x\n",
1394			 TEGRA_GPCDMA_DEFAULT_CHANNEL_MASK);
1395		tdma->chan_mask = TEGRA_GPCDMA_DEFAULT_CHANNEL_MASK;
1396	}
1397
1398	INIT_LIST_HEAD(&tdma->dma_dev.channels);
1399	for (i = 0; i < cdata->nr_channels; i++) {
1400		struct tegra_dma_channel *tdc = &tdma->channels[i];
1401
1402		/* Check for channel mask */
1403		if (!(tdma->chan_mask & BIT(i)))
1404			continue;
1405
1406		tdc->irq = platform_get_irq(pdev, i);
1407		if (tdc->irq < 0)
1408			return tdc->irq;
1409
1410		tdc->chan_base_offset = TEGRA_GPCDMA_CHANNEL_BASE_ADDR_OFFSET +
1411					i * cdata->channel_reg_size;
1412		snprintf(tdc->name, sizeof(tdc->name), "gpcdma.%d", i);
1413		tdc->tdma = tdma;
1414		tdc->id = i;
1415		tdc->slave_id = -1;
1416
1417		vchan_init(&tdc->vc, &tdma->dma_dev);
1418		tdc->vc.desc_free = tegra_dma_desc_free;
1419
1420		/* program stream-id for this channel */
1421		tegra_dma_program_sid(tdc, stream_id);
1422		tdc->stream_id = stream_id;
1423	}
1424
1425	dma_cap_set(DMA_SLAVE, tdma->dma_dev.cap_mask);
1426	dma_cap_set(DMA_PRIVATE, tdma->dma_dev.cap_mask);
1427	dma_cap_set(DMA_MEMCPY, tdma->dma_dev.cap_mask);
1428	dma_cap_set(DMA_MEMSET, tdma->dma_dev.cap_mask);
1429	dma_cap_set(DMA_CYCLIC, tdma->dma_dev.cap_mask);
1430
1431	/*
1432	 * Only word aligned transfers are supported. Set the copy
1433	 * alignment shift.
1434	 */
1435	tdma->dma_dev.copy_align = 2;
1436	tdma->dma_dev.fill_align = 2;
1437	tdma->dma_dev.device_alloc_chan_resources =
1438					tegra_dma_alloc_chan_resources;
1439	tdma->dma_dev.device_free_chan_resources =
1440					tegra_dma_free_chan_resources;
1441	tdma->dma_dev.device_prep_slave_sg = tegra_dma_prep_slave_sg;
1442	tdma->dma_dev.device_prep_dma_memcpy = tegra_dma_prep_dma_memcpy;
1443	tdma->dma_dev.device_prep_dma_memset = tegra_dma_prep_dma_memset;
1444	tdma->dma_dev.device_prep_dma_cyclic = tegra_dma_prep_dma_cyclic;
1445	tdma->dma_dev.device_config = tegra_dma_slave_config;
1446	tdma->dma_dev.device_terminate_all = tegra_dma_terminate_all;
1447	tdma->dma_dev.device_tx_status = tegra_dma_tx_status;
1448	tdma->dma_dev.device_issue_pending = tegra_dma_issue_pending;
1449	tdma->dma_dev.device_pause = tegra_dma_device_pause;
1450	tdma->dma_dev.device_resume = tegra_dma_device_resume;
1451	tdma->dma_dev.device_synchronize = tegra_dma_chan_synchronize;
1452	tdma->dma_dev.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1453
1454	ret = dma_async_device_register(&tdma->dma_dev);
1455	if (ret < 0) {
1456		dev_err_probe(&pdev->dev, ret,
1457			      "GPC DMA driver registration failed\n");
1458		return ret;
1459	}
1460
1461	ret = of_dma_controller_register(pdev->dev.of_node,
1462					 tegra_dma_of_xlate, tdma);
1463	if (ret < 0) {
1464		dev_err_probe(&pdev->dev, ret,
1465			      "GPC DMA OF registration failed\n");
1466
1467		dma_async_device_unregister(&tdma->dma_dev);
1468		return ret;
1469	}
1470
1471	dev_info(&pdev->dev, "GPC DMA driver register %lu channels\n",
1472		 hweight_long(tdma->chan_mask));
1473
1474	return 0;
1475}
1476
1477static void tegra_dma_remove(struct platform_device *pdev)
1478{
1479	struct tegra_dma *tdma = platform_get_drvdata(pdev);
1480
1481	of_dma_controller_free(pdev->dev.of_node);
1482	dma_async_device_unregister(&tdma->dma_dev);
1483}
1484
1485static int __maybe_unused tegra_dma_pm_suspend(struct device *dev)
1486{
1487	struct tegra_dma *tdma = dev_get_drvdata(dev);
1488	unsigned int i;
1489
1490	for (i = 0; i < tdma->chip_data->nr_channels; i++) {
1491		struct tegra_dma_channel *tdc = &tdma->channels[i];
1492
1493		if (!(tdma->chan_mask & BIT(i)))
1494			continue;
1495
1496		if (tdc->dma_desc) {
1497			dev_err(tdma->dev, "channel %u busy\n", i);
1498			return -EBUSY;
1499		}
1500	}
1501
1502	return 0;
1503}
1504
1505static int __maybe_unused tegra_dma_pm_resume(struct device *dev)
1506{
1507	struct tegra_dma *tdma = dev_get_drvdata(dev);
1508	unsigned int i;
1509
1510	reset_control_reset(tdma->rst);
1511
1512	for (i = 0; i < tdma->chip_data->nr_channels; i++) {
1513		struct tegra_dma_channel *tdc = &tdma->channels[i];
1514
1515		if (!(tdma->chan_mask & BIT(i)))
1516			continue;
1517
1518		tegra_dma_program_sid(tdc, tdc->stream_id);
1519	}
1520
1521	return 0;
1522}
1523
1524static const struct dev_pm_ops tegra_dma_dev_pm_ops = {
1525	SET_SYSTEM_SLEEP_PM_OPS(tegra_dma_pm_suspend, tegra_dma_pm_resume)
1526};
1527
1528static struct platform_driver tegra_dma_driver = {
1529	.driver = {
1530		.name	= "tegra-gpcdma",
1531		.pm	= &tegra_dma_dev_pm_ops,
1532		.of_match_table = tegra_dma_of_match,
1533	},
1534	.probe		= tegra_dma_probe,
1535	.remove_new	= tegra_dma_remove,
1536};
1537
1538module_platform_driver(tegra_dma_driver);
1539
1540MODULE_DESCRIPTION("NVIDIA Tegra GPC DMA Controller driver");
1541MODULE_AUTHOR("Pavan Kunapuli <pkunapuli@nvidia.com>");
1542MODULE_AUTHOR("Rajesh Gumasta <rgumasta@nvidia.com>");
1543MODULE_LICENSE("GPL");