Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * DMA driver for NVIDIA Tegra GPC DMA controller.
   4 *
   5 * Copyright (c) 2014-2022, NVIDIA CORPORATION.  All rights reserved.
   6 */
   7
   8#include <linux/bitfield.h>
   9#include <linux/dmaengine.h>
  10#include <linux/dma-mapping.h>
  11#include <linux/interrupt.h>
  12#include <linux/iommu.h>
  13#include <linux/iopoll.h>
  14#include <linux/minmax.h>
  15#include <linux/module.h>
  16#include <linux/of.h>
  17#include <linux/of_dma.h>
  18#include <linux/platform_device.h>
  19#include <linux/reset.h>
  20#include <linux/slab.h>
  21#include <dt-bindings/memory/tegra186-mc.h>
  22#include "virt-dma.h"
  23
  24/* CSR register */
  25#define TEGRA_GPCDMA_CHAN_CSR			0x00
  26#define TEGRA_GPCDMA_CSR_ENB			BIT(31)
  27#define TEGRA_GPCDMA_CSR_IE_EOC			BIT(30)
  28#define TEGRA_GPCDMA_CSR_ONCE			BIT(27)
  29
  30#define TEGRA_GPCDMA_CSR_FC_MODE		GENMASK(25, 24)
  31#define TEGRA_GPCDMA_CSR_FC_MODE_NO_MMIO	\
  32		FIELD_PREP(TEGRA_GPCDMA_CSR_FC_MODE, 0)
  33#define TEGRA_GPCDMA_CSR_FC_MODE_ONE_MMIO	\
  34		FIELD_PREP(TEGRA_GPCDMA_CSR_FC_MODE, 1)
  35#define TEGRA_GPCDMA_CSR_FC_MODE_TWO_MMIO	\
  36		FIELD_PREP(TEGRA_GPCDMA_CSR_FC_MODE, 2)
  37#define TEGRA_GPCDMA_CSR_FC_MODE_FOUR_MMIO	\
  38		FIELD_PREP(TEGRA_GPCDMA_CSR_FC_MODE, 3)
  39
  40#define TEGRA_GPCDMA_CSR_DMA			GENMASK(23, 21)
  41#define TEGRA_GPCDMA_CSR_DMA_IO2MEM_NO_FC	\
  42		FIELD_PREP(TEGRA_GPCDMA_CSR_DMA, 0)
  43#define TEGRA_GPCDMA_CSR_DMA_IO2MEM_FC		\
  44		FIELD_PREP(TEGRA_GPCDMA_CSR_DMA, 1)
  45#define TEGRA_GPCDMA_CSR_DMA_MEM2IO_NO_FC	\
  46		FIELD_PREP(TEGRA_GPCDMA_CSR_DMA, 2)
  47#define TEGRA_GPCDMA_CSR_DMA_MEM2IO_FC		\
  48		FIELD_PREP(TEGRA_GPCDMA_CSR_DMA, 3)
  49#define TEGRA_GPCDMA_CSR_DMA_MEM2MEM		\
  50		FIELD_PREP(TEGRA_GPCDMA_CSR_DMA, 4)
  51#define TEGRA_GPCDMA_CSR_DMA_FIXED_PAT		\
  52		FIELD_PREP(TEGRA_GPCDMA_CSR_DMA, 6)
  53
  54#define TEGRA_GPCDMA_CSR_REQ_SEL_MASK		GENMASK(20, 16)
  55#define TEGRA_GPCDMA_CSR_REQ_SEL_UNUSED		\
  56					FIELD_PREP(TEGRA_GPCDMA_CSR_REQ_SEL_MASK, 4)
  57#define TEGRA_GPCDMA_CSR_IRQ_MASK		BIT(15)
  58#define TEGRA_GPCDMA_CSR_WEIGHT			GENMASK(13, 10)
  59
  60/* STATUS register */
  61#define TEGRA_GPCDMA_CHAN_STATUS		0x004
  62#define TEGRA_GPCDMA_STATUS_BUSY		BIT(31)
  63#define TEGRA_GPCDMA_STATUS_ISE_EOC		BIT(30)
  64#define TEGRA_GPCDMA_STATUS_PING_PONG		BIT(28)
  65#define TEGRA_GPCDMA_STATUS_DMA_ACTIVITY	BIT(27)
  66#define TEGRA_GPCDMA_STATUS_CHANNEL_PAUSE	BIT(26)
  67#define TEGRA_GPCDMA_STATUS_CHANNEL_RX		BIT(25)
  68#define TEGRA_GPCDMA_STATUS_CHANNEL_TX		BIT(24)
  69#define TEGRA_GPCDMA_STATUS_IRQ_INTR_STA	BIT(23)
  70#define TEGRA_GPCDMA_STATUS_IRQ_STA		BIT(21)
  71#define TEGRA_GPCDMA_STATUS_IRQ_TRIG_STA	BIT(20)
  72
  73#define TEGRA_GPCDMA_CHAN_CSRE			0x008
  74#define TEGRA_GPCDMA_CHAN_CSRE_PAUSE		BIT(31)
  75
  76/* Source address */
  77#define TEGRA_GPCDMA_CHAN_SRC_PTR		0x00C
  78
  79/* Destination address */
  80#define TEGRA_GPCDMA_CHAN_DST_PTR		0x010
  81
  82/* High address pointer */
  83#define TEGRA_GPCDMA_CHAN_HIGH_ADDR_PTR		0x014
  84#define TEGRA_GPCDMA_HIGH_ADDR_SRC_PTR		GENMASK(7, 0)
  85#define TEGRA_GPCDMA_HIGH_ADDR_DST_PTR		GENMASK(23, 16)
  86
  87/* MC sequence register */
  88#define TEGRA_GPCDMA_CHAN_MCSEQ			0x18
  89#define TEGRA_GPCDMA_MCSEQ_DATA_SWAP		BIT(31)
  90#define TEGRA_GPCDMA_MCSEQ_REQ_COUNT		GENMASK(30, 25)
  91#define TEGRA_GPCDMA_MCSEQ_BURST		GENMASK(24, 23)
  92#define TEGRA_GPCDMA_MCSEQ_BURST_2		\
  93		FIELD_PREP(TEGRA_GPCDMA_MCSEQ_BURST, 0)
  94#define TEGRA_GPCDMA_MCSEQ_BURST_16		\
  95		FIELD_PREP(TEGRA_GPCDMA_MCSEQ_BURST, 3)
  96#define TEGRA_GPCDMA_MCSEQ_WRAP1		GENMASK(22, 20)
  97#define TEGRA_GPCDMA_MCSEQ_WRAP0		GENMASK(19, 17)
  98#define TEGRA_GPCDMA_MCSEQ_WRAP_NONE		0
  99
 100#define TEGRA_GPCDMA_MCSEQ_STREAM_ID1_MASK	GENMASK(13, 7)
 101#define TEGRA_GPCDMA_MCSEQ_STREAM_ID0_MASK	GENMASK(6, 0)
 102
 103/* MMIO sequence register */
 104#define TEGRA_GPCDMA_CHAN_MMIOSEQ			0x01c
 105#define TEGRA_GPCDMA_MMIOSEQ_DBL_BUF		BIT(31)
 106#define TEGRA_GPCDMA_MMIOSEQ_BUS_WIDTH		GENMASK(30, 28)
 107#define TEGRA_GPCDMA_MMIOSEQ_BUS_WIDTH_8	\
 108		FIELD_PREP(TEGRA_GPCDMA_MMIOSEQ_BUS_WIDTH, 0)
 109#define TEGRA_GPCDMA_MMIOSEQ_BUS_WIDTH_16	\
 110		FIELD_PREP(TEGRA_GPCDMA_MMIOSEQ_BUS_WIDTH, 1)
 111#define TEGRA_GPCDMA_MMIOSEQ_BUS_WIDTH_32	\
 112		FIELD_PREP(TEGRA_GPCDMA_MMIOSEQ_BUS_WIDTH, 2)
 113#define TEGRA_GPCDMA_MMIOSEQ_DATA_SWAP		BIT(27)
 114#define TEGRA_GPCDMA_MMIOSEQ_BURST_SHIFT	23
 115#define TEGRA_GPCDMA_MMIOSEQ_BURST_MIN		2U
 116#define TEGRA_GPCDMA_MMIOSEQ_BURST_MAX		32U
 117#define TEGRA_GPCDMA_MMIOSEQ_BURST(bs)	\
 118		(GENMASK((fls(bs) - 2), 0) << TEGRA_GPCDMA_MMIOSEQ_BURST_SHIFT)
 119#define TEGRA_GPCDMA_MMIOSEQ_MASTER_ID		GENMASK(22, 19)
 120#define TEGRA_GPCDMA_MMIOSEQ_WRAP_WORD		GENMASK(18, 16)
 121#define TEGRA_GPCDMA_MMIOSEQ_MMIO_PROT		GENMASK(8, 7)
 122
 123/* Channel WCOUNT */
 124#define TEGRA_GPCDMA_CHAN_WCOUNT		0x20
 125
 126/* Transfer count */
 127#define TEGRA_GPCDMA_CHAN_XFER_COUNT		0x24
 128
 129/* DMA byte count status */
 130#define TEGRA_GPCDMA_CHAN_DMA_BYTE_STATUS	0x28
 131
 132/* Error Status Register */
 133#define TEGRA_GPCDMA_CHAN_ERR_STATUS		0x30
 134#define TEGRA_GPCDMA_CHAN_ERR_TYPE_SHIFT	8
 135#define TEGRA_GPCDMA_CHAN_ERR_TYPE_MASK	0xF
 136#define TEGRA_GPCDMA_CHAN_ERR_TYPE(err)	(			\
 137		((err) >> TEGRA_GPCDMA_CHAN_ERR_TYPE_SHIFT) &	\
 138		TEGRA_GPCDMA_CHAN_ERR_TYPE_MASK)
 139#define TEGRA_DMA_BM_FIFO_FULL_ERR		0xF
 140#define TEGRA_DMA_PERIPH_FIFO_FULL_ERR		0xE
 141#define TEGRA_DMA_PERIPH_ID_ERR			0xD
 142#define TEGRA_DMA_STREAM_ID_ERR			0xC
 143#define TEGRA_DMA_MC_SLAVE_ERR			0xB
 144#define TEGRA_DMA_MMIO_SLAVE_ERR		0xA
 145
 146/* Fixed Pattern */
 147#define TEGRA_GPCDMA_CHAN_FIXED_PATTERN		0x34
 148
 149#define TEGRA_GPCDMA_CHAN_TZ			0x38
 150#define TEGRA_GPCDMA_CHAN_TZ_MMIO_PROT_1	BIT(0)
 151#define TEGRA_GPCDMA_CHAN_TZ_MC_PROT_1		BIT(1)
 152
 153#define TEGRA_GPCDMA_CHAN_SPARE			0x3c
 154#define TEGRA_GPCDMA_CHAN_SPARE_EN_LEGACY_FC	BIT(16)
 155
 156/*
 157 * If any burst is in flight and DMA paused then this is the time to complete
 158 * on-flight burst and update DMA status register.
 159 */
 160#define TEGRA_GPCDMA_BURST_COMPLETE_TIME	10
 161#define TEGRA_GPCDMA_BURST_COMPLETION_TIMEOUT	5000 /* 5 msec */
 162
 163/* Channel base address offset from GPCDMA base address */
 164#define TEGRA_GPCDMA_CHANNEL_BASE_ADDR_OFFSET	0x10000
 165
 166/* Default channel mask reserving channel0 */
 167#define TEGRA_GPCDMA_DEFAULT_CHANNEL_MASK	0xfffffffe
 168
 169struct tegra_dma;
 170struct tegra_dma_channel;
 171
 172/*
 173 * tegra_dma_chip_data Tegra chip specific DMA data
 174 * @nr_channels: Number of channels available in the controller.
 175 * @channel_reg_size: Channel register size.
 176 * @max_dma_count: Maximum DMA transfer count supported by DMA controller.
 177 * @hw_support_pause: DMA HW engine support pause of the channel.
 178 */
 179struct tegra_dma_chip_data {
 180	bool hw_support_pause;
 181	unsigned int nr_channels;
 182	unsigned int channel_reg_size;
 183	unsigned int max_dma_count;
 184	int (*terminate)(struct tegra_dma_channel *tdc);
 185};
 186
 187/* DMA channel registers */
 188struct tegra_dma_channel_regs {
 189	u32 csr;
 190	u32 src_ptr;
 191	u32 dst_ptr;
 192	u32 high_addr_ptr;
 193	u32 mc_seq;
 194	u32 mmio_seq;
 195	u32 wcount;
 196	u32 fixed_pattern;
 197};
 198
 199/*
 200 * tegra_dma_sg_req: DMA request details to configure hardware. This
 201 * contains the details for one transfer to configure DMA hw.
 202 * The client's request for data transfer can be broken into multiple
 203 * sub-transfer as per requester details and hw support. This sub transfer
 204 * get added as an array in Tegra DMA desc which manages the transfer details.
 205 */
 206struct tegra_dma_sg_req {
 207	unsigned int len;
 208	struct tegra_dma_channel_regs ch_regs;
 209};
 210
 211/*
 212 * tegra_dma_desc: Tegra DMA descriptors which uses virt_dma_desc to
 213 * manage client request and keep track of transfer status, callbacks
 214 * and request counts etc.
 215 */
 216struct tegra_dma_desc {
 217	bool cyclic;
 218	unsigned int bytes_req;
 219	unsigned int bytes_xfer;
 220	unsigned int sg_idx;
 221	unsigned int sg_count;
 222	struct virt_dma_desc vd;
 223	struct tegra_dma_channel *tdc;
 224	struct tegra_dma_sg_req sg_req[] __counted_by(sg_count);
 225};
 226
 227/*
 228 * tegra_dma_channel: Channel specific information
 229 */
 230struct tegra_dma_channel {
 231	bool config_init;
 232	char name[30];
 233	enum dma_transfer_direction sid_dir;
 234	enum dma_status status;
 235	int id;
 236	int irq;
 237	int slave_id;
 238	struct tegra_dma *tdma;
 239	struct virt_dma_chan vc;
 240	struct tegra_dma_desc *dma_desc;
 241	struct dma_slave_config dma_sconfig;
 242	unsigned int stream_id;
 243	unsigned long chan_base_offset;
 244};
 245
 246/*
 247 * tegra_dma: Tegra DMA specific information
 248 */
 249struct tegra_dma {
 250	const struct tegra_dma_chip_data *chip_data;
 251	unsigned long sid_m2d_reserved;
 252	unsigned long sid_d2m_reserved;
 253	u32 chan_mask;
 254	void __iomem *base_addr;
 255	struct device *dev;
 256	struct dma_device dma_dev;
 257	struct reset_control *rst;
 258	struct tegra_dma_channel channels[];
 259};
 260
 261static inline void tdc_write(struct tegra_dma_channel *tdc,
 262			     u32 reg, u32 val)
 263{
 264	writel_relaxed(val, tdc->tdma->base_addr + tdc->chan_base_offset + reg);
 265}
 266
 267static inline u32 tdc_read(struct tegra_dma_channel *tdc, u32 reg)
 268{
 269	return readl_relaxed(tdc->tdma->base_addr + tdc->chan_base_offset + reg);
 270}
 271
 272static inline struct tegra_dma_channel *to_tegra_dma_chan(struct dma_chan *dc)
 273{
 274	return container_of(dc, struct tegra_dma_channel, vc.chan);
 275}
 276
 277static inline struct tegra_dma_desc *vd_to_tegra_dma_desc(struct virt_dma_desc *vd)
 278{
 279	return container_of(vd, struct tegra_dma_desc, vd);
 280}
 281
 282static inline struct device *tdc2dev(struct tegra_dma_channel *tdc)
 283{
 284	return tdc->vc.chan.device->dev;
 285}
 286
 287static void tegra_dma_dump_chan_regs(struct tegra_dma_channel *tdc)
 288{
 289	dev_dbg(tdc2dev(tdc), "DMA Channel %d name %s register dump:\n",
 290		tdc->id, tdc->name);
 291	dev_dbg(tdc2dev(tdc), "CSR %x STA %x CSRE %x SRC %x DST %x\n",
 292		tdc_read(tdc, TEGRA_GPCDMA_CHAN_CSR),
 293		tdc_read(tdc, TEGRA_GPCDMA_CHAN_STATUS),
 294		tdc_read(tdc, TEGRA_GPCDMA_CHAN_CSRE),
 295		tdc_read(tdc, TEGRA_GPCDMA_CHAN_SRC_PTR),
 296		tdc_read(tdc, TEGRA_GPCDMA_CHAN_DST_PTR)
 297	);
 298	dev_dbg(tdc2dev(tdc), "MCSEQ %x IOSEQ %x WCNT %x XFER %x BSTA %x\n",
 299		tdc_read(tdc, TEGRA_GPCDMA_CHAN_MCSEQ),
 300		tdc_read(tdc, TEGRA_GPCDMA_CHAN_MMIOSEQ),
 301		tdc_read(tdc, TEGRA_GPCDMA_CHAN_WCOUNT),
 302		tdc_read(tdc, TEGRA_GPCDMA_CHAN_XFER_COUNT),
 303		tdc_read(tdc, TEGRA_GPCDMA_CHAN_DMA_BYTE_STATUS)
 304	);
 305	dev_dbg(tdc2dev(tdc), "DMA ERR_STA %x\n",
 306		tdc_read(tdc, TEGRA_GPCDMA_CHAN_ERR_STATUS));
 307}
 308
 309static int tegra_dma_sid_reserve(struct tegra_dma_channel *tdc,
 310				 enum dma_transfer_direction direction)
 311{
 312	struct tegra_dma *tdma = tdc->tdma;
 313	int sid = tdc->slave_id;
 314
 315	if (!is_slave_direction(direction))
 316		return 0;
 317
 318	switch (direction) {
 319	case DMA_MEM_TO_DEV:
 320		if (test_and_set_bit(sid, &tdma->sid_m2d_reserved)) {
 321			dev_err(tdma->dev, "slave id already in use\n");
 322			return -EINVAL;
 323		}
 324		break;
 325	case DMA_DEV_TO_MEM:
 326		if (test_and_set_bit(sid, &tdma->sid_d2m_reserved)) {
 327			dev_err(tdma->dev, "slave id already in use\n");
 328			return -EINVAL;
 329		}
 330		break;
 331	default:
 332		break;
 333	}
 334
 335	tdc->sid_dir = direction;
 336
 337	return 0;
 338}
 339
 340static void tegra_dma_sid_free(struct tegra_dma_channel *tdc)
 341{
 342	struct tegra_dma *tdma = tdc->tdma;
 343	int sid = tdc->slave_id;
 344
 345	switch (tdc->sid_dir) {
 346	case DMA_MEM_TO_DEV:
 347		clear_bit(sid,  &tdma->sid_m2d_reserved);
 348		break;
 349	case DMA_DEV_TO_MEM:
 350		clear_bit(sid,  &tdma->sid_d2m_reserved);
 351		break;
 352	default:
 353		break;
 354	}
 355
 356	tdc->sid_dir = DMA_TRANS_NONE;
 357}
 358
 359static void tegra_dma_desc_free(struct virt_dma_desc *vd)
 360{
 361	kfree(container_of(vd, struct tegra_dma_desc, vd));
 362}
 363
 364static int tegra_dma_slave_config(struct dma_chan *dc,
 365				  struct dma_slave_config *sconfig)
 366{
 367	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
 368
 369	memcpy(&tdc->dma_sconfig, sconfig, sizeof(*sconfig));
 370	tdc->config_init = true;
 371
 372	return 0;
 373}
 374
 375static int tegra_dma_pause(struct tegra_dma_channel *tdc)
 376{
 377	int ret;
 378	u32 val;
 379
 380	val = tdc_read(tdc, TEGRA_GPCDMA_CHAN_CSRE);
 381	val |= TEGRA_GPCDMA_CHAN_CSRE_PAUSE;
 382	tdc_write(tdc, TEGRA_GPCDMA_CHAN_CSRE, val);
 383
 384	/* Wait until busy bit is de-asserted */
 385	ret = readl_relaxed_poll_timeout_atomic(tdc->tdma->base_addr +
 386			tdc->chan_base_offset + TEGRA_GPCDMA_CHAN_STATUS,
 387			val,
 388			!(val & TEGRA_GPCDMA_STATUS_BUSY),
 389			TEGRA_GPCDMA_BURST_COMPLETE_TIME,
 390			TEGRA_GPCDMA_BURST_COMPLETION_TIMEOUT);
 391
 392	if (ret) {
 393		dev_err(tdc2dev(tdc), "DMA pause timed out\n");
 394		tegra_dma_dump_chan_regs(tdc);
 395	}
 396
 397	tdc->status = DMA_PAUSED;
 398
 399	return ret;
 400}
 401
 402static int tegra_dma_device_pause(struct dma_chan *dc)
 403{
 404	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
 405	unsigned long flags;
 406	int ret;
 407
 408	if (!tdc->tdma->chip_data->hw_support_pause)
 409		return -ENOSYS;
 410
 411	spin_lock_irqsave(&tdc->vc.lock, flags);
 412	ret = tegra_dma_pause(tdc);
 413	spin_unlock_irqrestore(&tdc->vc.lock, flags);
 414
 415	return ret;
 416}
 417
 418static void tegra_dma_resume(struct tegra_dma_channel *tdc)
 419{
 420	u32 val;
 421
 422	val = tdc_read(tdc, TEGRA_GPCDMA_CHAN_CSRE);
 423	val &= ~TEGRA_GPCDMA_CHAN_CSRE_PAUSE;
 424	tdc_write(tdc, TEGRA_GPCDMA_CHAN_CSRE, val);
 425
 426	tdc->status = DMA_IN_PROGRESS;
 427}
 428
 429static int tegra_dma_device_resume(struct dma_chan *dc)
 430{
 431	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
 432	unsigned long flags;
 433
 434	if (!tdc->tdma->chip_data->hw_support_pause)
 435		return -ENOSYS;
 436
 437	spin_lock_irqsave(&tdc->vc.lock, flags);
 438	tegra_dma_resume(tdc);
 439	spin_unlock_irqrestore(&tdc->vc.lock, flags);
 440
 441	return 0;
 442}
 443
 444static inline int tegra_dma_pause_noerr(struct tegra_dma_channel *tdc)
 445{
 446	/* Return 0 irrespective of PAUSE status.
 447	 * This is useful to recover channels that can exit out of flush
 448	 * state when the channel is disabled.
 449	 */
 450
 451	tegra_dma_pause(tdc);
 452	return 0;
 453}
 454
 455static void tegra_dma_disable(struct tegra_dma_channel *tdc)
 456{
 457	u32 csr, status;
 458
 459	csr = tdc_read(tdc, TEGRA_GPCDMA_CHAN_CSR);
 460
 461	/* Disable interrupts */
 462	csr &= ~TEGRA_GPCDMA_CSR_IE_EOC;
 463
 464	/* Disable DMA */
 465	csr &= ~TEGRA_GPCDMA_CSR_ENB;
 466	tdc_write(tdc, TEGRA_GPCDMA_CHAN_CSR, csr);
 467
 468	/* Clear interrupt status if it is there */
 469	status = tdc_read(tdc, TEGRA_GPCDMA_CHAN_STATUS);
 470	if (status & TEGRA_GPCDMA_STATUS_ISE_EOC) {
 471		dev_dbg(tdc2dev(tdc), "%s():clearing interrupt\n", __func__);
 472		tdc_write(tdc, TEGRA_GPCDMA_CHAN_STATUS, status);
 473	}
 474}
 475
 476static void tegra_dma_configure_next_sg(struct tegra_dma_channel *tdc)
 477{
 478	struct tegra_dma_desc *dma_desc = tdc->dma_desc;
 479	struct tegra_dma_channel_regs *ch_regs;
 480	int ret;
 481	u32 val;
 482
 483	dma_desc->sg_idx++;
 484
 485	/* Reset the sg index for cyclic transfers */
 486	if (dma_desc->sg_idx == dma_desc->sg_count)
 487		dma_desc->sg_idx = 0;
 488
 489	/* Configure next transfer immediately after DMA is busy */
 490	ret = readl_relaxed_poll_timeout_atomic(tdc->tdma->base_addr +
 491			tdc->chan_base_offset + TEGRA_GPCDMA_CHAN_STATUS,
 492			val,
 493			(val & TEGRA_GPCDMA_STATUS_BUSY), 0,
 494			TEGRA_GPCDMA_BURST_COMPLETION_TIMEOUT);
 495	if (ret)
 496		return;
 497
 498	ch_regs = &dma_desc->sg_req[dma_desc->sg_idx].ch_regs;
 499
 500	tdc_write(tdc, TEGRA_GPCDMA_CHAN_WCOUNT, ch_regs->wcount);
 501	tdc_write(tdc, TEGRA_GPCDMA_CHAN_SRC_PTR, ch_regs->src_ptr);
 502	tdc_write(tdc, TEGRA_GPCDMA_CHAN_DST_PTR, ch_regs->dst_ptr);
 503	tdc_write(tdc, TEGRA_GPCDMA_CHAN_HIGH_ADDR_PTR, ch_regs->high_addr_ptr);
 504
 505	/* Start DMA */
 506	tdc_write(tdc, TEGRA_GPCDMA_CHAN_CSR,
 507		  ch_regs->csr | TEGRA_GPCDMA_CSR_ENB);
 508}
 509
 510static void tegra_dma_start(struct tegra_dma_channel *tdc)
 511{
 512	struct tegra_dma_desc *dma_desc = tdc->dma_desc;
 513	struct tegra_dma_channel_regs *ch_regs;
 514	struct virt_dma_desc *vdesc;
 515
 516	if (!dma_desc) {
 517		vdesc = vchan_next_desc(&tdc->vc);
 518		if (!vdesc)
 519			return;
 520
 521		dma_desc = vd_to_tegra_dma_desc(vdesc);
 522		list_del(&vdesc->node);
 523		dma_desc->tdc = tdc;
 524		tdc->dma_desc = dma_desc;
 525
 526		tegra_dma_resume(tdc);
 527	}
 528
 529	ch_regs = &dma_desc->sg_req[dma_desc->sg_idx].ch_regs;
 530
 531	tdc_write(tdc, TEGRA_GPCDMA_CHAN_WCOUNT, ch_regs->wcount);
 532	tdc_write(tdc, TEGRA_GPCDMA_CHAN_CSR, 0);
 533	tdc_write(tdc, TEGRA_GPCDMA_CHAN_SRC_PTR, ch_regs->src_ptr);
 534	tdc_write(tdc, TEGRA_GPCDMA_CHAN_DST_PTR, ch_regs->dst_ptr);
 535	tdc_write(tdc, TEGRA_GPCDMA_CHAN_HIGH_ADDR_PTR, ch_regs->high_addr_ptr);
 536	tdc_write(tdc, TEGRA_GPCDMA_CHAN_FIXED_PATTERN, ch_regs->fixed_pattern);
 537	tdc_write(tdc, TEGRA_GPCDMA_CHAN_MMIOSEQ, ch_regs->mmio_seq);
 538	tdc_write(tdc, TEGRA_GPCDMA_CHAN_MCSEQ, ch_regs->mc_seq);
 539	tdc_write(tdc, TEGRA_GPCDMA_CHAN_CSR, ch_regs->csr);
 540
 541	/* Start DMA */
 542	tdc_write(tdc, TEGRA_GPCDMA_CHAN_CSR,
 543		  ch_regs->csr | TEGRA_GPCDMA_CSR_ENB);
 544}
 545
 546static void tegra_dma_xfer_complete(struct tegra_dma_channel *tdc)
 547{
 548	vchan_cookie_complete(&tdc->dma_desc->vd);
 549
 550	tegra_dma_sid_free(tdc);
 551	tdc->dma_desc = NULL;
 552	tdc->status = DMA_COMPLETE;
 553}
 554
 555static void tegra_dma_chan_decode_error(struct tegra_dma_channel *tdc,
 556					unsigned int err_status)
 557{
 558	switch (TEGRA_GPCDMA_CHAN_ERR_TYPE(err_status)) {
 559	case TEGRA_DMA_BM_FIFO_FULL_ERR:
 560		dev_err(tdc->tdma->dev,
 561			"GPCDMA CH%d bm fifo full\n", tdc->id);
 562		break;
 563
 564	case TEGRA_DMA_PERIPH_FIFO_FULL_ERR:
 565		dev_err(tdc->tdma->dev,
 566			"GPCDMA CH%d peripheral fifo full\n", tdc->id);
 567		break;
 568
 569	case TEGRA_DMA_PERIPH_ID_ERR:
 570		dev_err(tdc->tdma->dev,
 571			"GPCDMA CH%d illegal peripheral id\n", tdc->id);
 572		break;
 573
 574	case TEGRA_DMA_STREAM_ID_ERR:
 575		dev_err(tdc->tdma->dev,
 576			"GPCDMA CH%d illegal stream id\n", tdc->id);
 577		break;
 578
 579	case TEGRA_DMA_MC_SLAVE_ERR:
 580		dev_err(tdc->tdma->dev,
 581			"GPCDMA CH%d mc slave error\n", tdc->id);
 582		break;
 583
 584	case TEGRA_DMA_MMIO_SLAVE_ERR:
 585		dev_err(tdc->tdma->dev,
 586			"GPCDMA CH%d mmio slave error\n", tdc->id);
 587		break;
 588
 589	default:
 590		dev_err(tdc->tdma->dev,
 591			"GPCDMA CH%d security violation %x\n", tdc->id,
 592			err_status);
 593	}
 594}
 595
 596static irqreturn_t tegra_dma_isr(int irq, void *dev_id)
 597{
 598	struct tegra_dma_channel *tdc = dev_id;
 599	struct tegra_dma_desc *dma_desc = tdc->dma_desc;
 600	struct tegra_dma_sg_req *sg_req;
 601	u32 status;
 602
 603	/* Check channel error status register */
 604	status = tdc_read(tdc, TEGRA_GPCDMA_CHAN_ERR_STATUS);
 605	if (status) {
 606		tegra_dma_chan_decode_error(tdc, status);
 607		tegra_dma_dump_chan_regs(tdc);
 608		tdc_write(tdc, TEGRA_GPCDMA_CHAN_ERR_STATUS, 0xFFFFFFFF);
 609	}
 610
 611	spin_lock(&tdc->vc.lock);
 612	status = tdc_read(tdc, TEGRA_GPCDMA_CHAN_STATUS);
 613	if (!(status & TEGRA_GPCDMA_STATUS_ISE_EOC))
 614		goto irq_done;
 615
 616	tdc_write(tdc, TEGRA_GPCDMA_CHAN_STATUS,
 617		  TEGRA_GPCDMA_STATUS_ISE_EOC);
 618
 619	if (!dma_desc)
 620		goto irq_done;
 621
 622	sg_req = dma_desc->sg_req;
 623	dma_desc->bytes_xfer += sg_req[dma_desc->sg_idx].len;
 624
 625	if (dma_desc->cyclic) {
 626		vchan_cyclic_callback(&dma_desc->vd);
 627		tegra_dma_configure_next_sg(tdc);
 628	} else {
 629		dma_desc->sg_idx++;
 630		if (dma_desc->sg_idx == dma_desc->sg_count)
 631			tegra_dma_xfer_complete(tdc);
 632		else
 633			tegra_dma_start(tdc);
 634	}
 635
 636irq_done:
 637	spin_unlock(&tdc->vc.lock);
 638	return IRQ_HANDLED;
 639}
 640
 641static void tegra_dma_issue_pending(struct dma_chan *dc)
 642{
 643	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
 644	unsigned long flags;
 645
 646	if (tdc->dma_desc)
 647		return;
 648
 649	spin_lock_irqsave(&tdc->vc.lock, flags);
 650	if (vchan_issue_pending(&tdc->vc))
 651		tegra_dma_start(tdc);
 652
 653	/*
 654	 * For cyclic DMA transfers, program the second
 655	 * transfer parameters as soon as the first DMA
 656	 * transfer is started inorder for the DMA
 657	 * controller to trigger the second transfer
 658	 * with the correct parameters.
 659	 */
 660	if (tdc->dma_desc && tdc->dma_desc->cyclic)
 661		tegra_dma_configure_next_sg(tdc);
 662
 663	spin_unlock_irqrestore(&tdc->vc.lock, flags);
 664}
 665
 666static int tegra_dma_stop_client(struct tegra_dma_channel *tdc)
 667{
 668	int ret;
 669	u32 status, csr;
 670
 671	/*
 672	 * Change the client associated with the DMA channel
 673	 * to stop DMA engine from starting any more bursts for
 674	 * the given client and wait for in flight bursts to complete
 675	 */
 676	csr = tdc_read(tdc, TEGRA_GPCDMA_CHAN_CSR);
 677	csr &= ~(TEGRA_GPCDMA_CSR_REQ_SEL_MASK);
 678	csr |= TEGRA_GPCDMA_CSR_REQ_SEL_UNUSED;
 679	tdc_write(tdc, TEGRA_GPCDMA_CHAN_CSR, csr);
 680
 681	/* Wait for in flight data transfer to finish */
 682	udelay(TEGRA_GPCDMA_BURST_COMPLETE_TIME);
 683
 684	/* If TX/RX path is still active wait till it becomes
 685	 * inactive
 686	 */
 687
 688	ret = readl_relaxed_poll_timeout_atomic(tdc->tdma->base_addr +
 689				tdc->chan_base_offset +
 690				TEGRA_GPCDMA_CHAN_STATUS,
 691				status,
 692				!(status & (TEGRA_GPCDMA_STATUS_CHANNEL_TX |
 693				TEGRA_GPCDMA_STATUS_CHANNEL_RX)),
 694				5,
 695				TEGRA_GPCDMA_BURST_COMPLETION_TIMEOUT);
 696	if (ret) {
 697		dev_err(tdc2dev(tdc), "Timeout waiting for DMA burst completion!\n");
 698		tegra_dma_dump_chan_regs(tdc);
 699	}
 700
 701	return ret;
 702}
 703
 704static int tegra_dma_terminate_all(struct dma_chan *dc)
 705{
 706	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
 707	unsigned long flags;
 708	LIST_HEAD(head);
 709	int err;
 710
 711	spin_lock_irqsave(&tdc->vc.lock, flags);
 712
 713	if (tdc->dma_desc) {
 714		err = tdc->tdma->chip_data->terminate(tdc);
 715		if (err) {
 716			spin_unlock_irqrestore(&tdc->vc.lock, flags);
 717			return err;
 718		}
 719
 720		vchan_terminate_vdesc(&tdc->dma_desc->vd);
 721		tegra_dma_disable(tdc);
 722		tdc->dma_desc = NULL;
 723	}
 724
 725	tdc->status = DMA_COMPLETE;
 726	tegra_dma_sid_free(tdc);
 727	vchan_get_all_descriptors(&tdc->vc, &head);
 728	spin_unlock_irqrestore(&tdc->vc.lock, flags);
 729
 730	vchan_dma_desc_free_list(&tdc->vc, &head);
 731
 732	return 0;
 733}
 734
 735static int tegra_dma_get_residual(struct tegra_dma_channel *tdc)
 736{
 737	struct tegra_dma_desc *dma_desc = tdc->dma_desc;
 738	struct tegra_dma_sg_req *sg_req = dma_desc->sg_req;
 739	unsigned int bytes_xfer, residual;
 740	u32 wcount = 0, status;
 741
 742	wcount = tdc_read(tdc, TEGRA_GPCDMA_CHAN_XFER_COUNT);
 743
 744	/*
 745	 * Set wcount = 0 if EOC bit is set. The transfer would have
 746	 * already completed and the CHAN_XFER_COUNT could have updated
 747	 * for the next transfer, specifically in case of cyclic transfers.
 748	 */
 749	status = tdc_read(tdc, TEGRA_GPCDMA_CHAN_STATUS);
 750	if (status & TEGRA_GPCDMA_STATUS_ISE_EOC)
 751		wcount = 0;
 752
 753	bytes_xfer = dma_desc->bytes_xfer +
 754		     sg_req[dma_desc->sg_idx].len - (wcount * 4);
 755
 756	if (dma_desc->bytes_req == bytes_xfer)
 757		return 0;
 758
 759	residual = dma_desc->bytes_req - (bytes_xfer % dma_desc->bytes_req);
 760
 761	return residual;
 762}
 763
 764static enum dma_status tegra_dma_tx_status(struct dma_chan *dc,
 765					   dma_cookie_t cookie,
 766					   struct dma_tx_state *txstate)
 767{
 768	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
 769	struct tegra_dma_desc *dma_desc;
 770	struct virt_dma_desc *vd;
 771	unsigned int residual;
 772	unsigned long flags;
 773	enum dma_status ret;
 774
 775	ret = dma_cookie_status(dc, cookie, txstate);
 776	if (ret == DMA_COMPLETE)
 777		return ret;
 778
 779	if (tdc->status == DMA_PAUSED)
 780		ret = DMA_PAUSED;
 781
 782	spin_lock_irqsave(&tdc->vc.lock, flags);
 783	vd = vchan_find_desc(&tdc->vc, cookie);
 784	if (vd) {
 785		dma_desc = vd_to_tegra_dma_desc(vd);
 786		residual = dma_desc->bytes_req;
 787		dma_set_residue(txstate, residual);
 788	} else if (tdc->dma_desc && tdc->dma_desc->vd.tx.cookie == cookie) {
 789		residual =  tegra_dma_get_residual(tdc);
 790		dma_set_residue(txstate, residual);
 791	} else {
 792		dev_err(tdc2dev(tdc), "cookie %d is not found\n", cookie);
 793	}
 794	spin_unlock_irqrestore(&tdc->vc.lock, flags);
 795
 796	return ret;
 797}
 798
 799static inline int get_bus_width(struct tegra_dma_channel *tdc,
 800				enum dma_slave_buswidth slave_bw)
 801{
 802	switch (slave_bw) {
 803	case DMA_SLAVE_BUSWIDTH_1_BYTE:
 804		return TEGRA_GPCDMA_MMIOSEQ_BUS_WIDTH_8;
 805	case DMA_SLAVE_BUSWIDTH_2_BYTES:
 806		return TEGRA_GPCDMA_MMIOSEQ_BUS_WIDTH_16;
 807	case DMA_SLAVE_BUSWIDTH_4_BYTES:
 808		return TEGRA_GPCDMA_MMIOSEQ_BUS_WIDTH_32;
 809	default:
 810		dev_err(tdc2dev(tdc), "given slave bus width is not supported\n");
 811		return -EINVAL;
 812	}
 813}
 814
 815static unsigned int get_burst_size(struct tegra_dma_channel *tdc,
 816				   u32 burst_size, enum dma_slave_buswidth slave_bw,
 817				   int len)
 818{
 819	unsigned int burst_mmio_width, burst_byte;
 820
 821	/*
 822	 * burst_size from client is in terms of the bus_width.
 823	 * convert that into words.
 824	 * If burst_size is not specified from client, then use
 825	 * len to calculate the optimum burst size
 826	 */
 827	burst_byte = burst_size ? burst_size * slave_bw : len;
 828	burst_mmio_width = burst_byte / 4;
 829
 830	if (burst_mmio_width < TEGRA_GPCDMA_MMIOSEQ_BURST_MIN)
 831		return 0;
 832
 833	burst_mmio_width = min(burst_mmio_width, TEGRA_GPCDMA_MMIOSEQ_BURST_MAX);
 834
 835	return TEGRA_GPCDMA_MMIOSEQ_BURST(burst_mmio_width);
 836}
 837
 838static int get_transfer_param(struct tegra_dma_channel *tdc,
 839			      enum dma_transfer_direction direction,
 840			      u32 *apb_addr,
 841			      u32 *mmio_seq,
 842			      u32 *csr,
 843			      unsigned int *burst_size,
 844			      enum dma_slave_buswidth *slave_bw)
 845{
 846	switch (direction) {
 847	case DMA_MEM_TO_DEV:
 848		*apb_addr = tdc->dma_sconfig.dst_addr;
 849		*mmio_seq = get_bus_width(tdc, tdc->dma_sconfig.dst_addr_width);
 850		*burst_size = tdc->dma_sconfig.dst_maxburst;
 851		*slave_bw = tdc->dma_sconfig.dst_addr_width;
 852		*csr = TEGRA_GPCDMA_CSR_DMA_MEM2IO_FC;
 853		return 0;
 854	case DMA_DEV_TO_MEM:
 855		*apb_addr = tdc->dma_sconfig.src_addr;
 856		*mmio_seq = get_bus_width(tdc, tdc->dma_sconfig.src_addr_width);
 857		*burst_size = tdc->dma_sconfig.src_maxburst;
 858		*slave_bw = tdc->dma_sconfig.src_addr_width;
 859		*csr = TEGRA_GPCDMA_CSR_DMA_IO2MEM_FC;
 860		return 0;
 861	default:
 862		dev_err(tdc2dev(tdc), "DMA direction is not supported\n");
 863	}
 864
 865	return -EINVAL;
 866}
 867
 868static struct dma_async_tx_descriptor *
 869tegra_dma_prep_dma_memset(struct dma_chan *dc, dma_addr_t dest, int value,
 870			  size_t len, unsigned long flags)
 871{
 872	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
 873	unsigned int max_dma_count = tdc->tdma->chip_data->max_dma_count;
 874	struct tegra_dma_sg_req *sg_req;
 875	struct tegra_dma_desc *dma_desc;
 876	u32 csr, mc_seq;
 877
 878	if ((len & 3) || (dest & 3) || len > max_dma_count) {
 879		dev_err(tdc2dev(tdc),
 880			"DMA length/memory address is not supported\n");
 881		return NULL;
 882	}
 883
 884	/* Set DMA mode to fixed pattern */
 885	csr = TEGRA_GPCDMA_CSR_DMA_FIXED_PAT;
 886	/* Enable once or continuous mode */
 887	csr |= TEGRA_GPCDMA_CSR_ONCE;
 888	/* Enable IRQ mask */
 889	csr |= TEGRA_GPCDMA_CSR_IRQ_MASK;
 890	/* Enable the DMA interrupt */
 891	if (flags & DMA_PREP_INTERRUPT)
 892		csr |= TEGRA_GPCDMA_CSR_IE_EOC;
 893	/* Configure default priority weight for the channel */
 894	csr |= FIELD_PREP(TEGRA_GPCDMA_CSR_WEIGHT, 1);
 895
 896	mc_seq =  tdc_read(tdc, TEGRA_GPCDMA_CHAN_MCSEQ);
 897	/* retain stream-id and clean rest */
 898	mc_seq &= TEGRA_GPCDMA_MCSEQ_STREAM_ID0_MASK;
 899
 900	/* Set the address wrapping */
 901	mc_seq |= FIELD_PREP(TEGRA_GPCDMA_MCSEQ_WRAP0,
 902						TEGRA_GPCDMA_MCSEQ_WRAP_NONE);
 903	mc_seq |= FIELD_PREP(TEGRA_GPCDMA_MCSEQ_WRAP1,
 904						TEGRA_GPCDMA_MCSEQ_WRAP_NONE);
 905
 906	/* Program outstanding MC requests */
 907	mc_seq |= FIELD_PREP(TEGRA_GPCDMA_MCSEQ_REQ_COUNT, 1);
 908	/* Set burst size */
 909	mc_seq |= TEGRA_GPCDMA_MCSEQ_BURST_16;
 910
 911	dma_desc = kzalloc(struct_size(dma_desc, sg_req, 1), GFP_NOWAIT);
 912	if (!dma_desc)
 913		return NULL;
 914
 915	dma_desc->bytes_req = len;
 916	dma_desc->sg_count = 1;
 917	sg_req = dma_desc->sg_req;
 918
 919	sg_req[0].ch_regs.src_ptr = 0;
 920	sg_req[0].ch_regs.dst_ptr = dest;
 921	sg_req[0].ch_regs.high_addr_ptr =
 922			FIELD_PREP(TEGRA_GPCDMA_HIGH_ADDR_DST_PTR, (dest >> 32));
 923	sg_req[0].ch_regs.fixed_pattern = value;
 924	/* Word count reg takes value as (N +1) words */
 925	sg_req[0].ch_regs.wcount = ((len - 4) >> 2);
 926	sg_req[0].ch_regs.csr = csr;
 927	sg_req[0].ch_regs.mmio_seq = 0;
 928	sg_req[0].ch_regs.mc_seq = mc_seq;
 929	sg_req[0].len = len;
 930
 931	dma_desc->cyclic = false;
 932	return vchan_tx_prep(&tdc->vc, &dma_desc->vd, flags);
 933}
 934
 935static struct dma_async_tx_descriptor *
 936tegra_dma_prep_dma_memcpy(struct dma_chan *dc, dma_addr_t dest,
 937			  dma_addr_t src, size_t len, unsigned long flags)
 938{
 939	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
 940	struct tegra_dma_sg_req *sg_req;
 941	struct tegra_dma_desc *dma_desc;
 942	unsigned int max_dma_count;
 943	u32 csr, mc_seq;
 944
 945	max_dma_count = tdc->tdma->chip_data->max_dma_count;
 946	if ((len & 3) || (src & 3) || (dest & 3) || len > max_dma_count) {
 947		dev_err(tdc2dev(tdc),
 948			"DMA length/memory address is not supported\n");
 949		return NULL;
 950	}
 951
 952	/* Set DMA mode to memory to memory transfer */
 953	csr = TEGRA_GPCDMA_CSR_DMA_MEM2MEM;
 954	/* Enable once or continuous mode */
 955	csr |= TEGRA_GPCDMA_CSR_ONCE;
 956	/* Enable IRQ mask */
 957	csr |= TEGRA_GPCDMA_CSR_IRQ_MASK;
 958	/* Enable the DMA interrupt */
 959	if (flags & DMA_PREP_INTERRUPT)
 960		csr |= TEGRA_GPCDMA_CSR_IE_EOC;
 961	/* Configure default priority weight for the channel */
 962	csr |= FIELD_PREP(TEGRA_GPCDMA_CSR_WEIGHT, 1);
 963
 964	mc_seq =  tdc_read(tdc, TEGRA_GPCDMA_CHAN_MCSEQ);
 965	/* retain stream-id and clean rest */
 966	mc_seq &= (TEGRA_GPCDMA_MCSEQ_STREAM_ID0_MASK) |
 967		  (TEGRA_GPCDMA_MCSEQ_STREAM_ID1_MASK);
 968
 969	/* Set the address wrapping */
 970	mc_seq |= FIELD_PREP(TEGRA_GPCDMA_MCSEQ_WRAP0,
 971			     TEGRA_GPCDMA_MCSEQ_WRAP_NONE);
 972	mc_seq |= FIELD_PREP(TEGRA_GPCDMA_MCSEQ_WRAP1,
 973			     TEGRA_GPCDMA_MCSEQ_WRAP_NONE);
 974
 975	/* Program outstanding MC requests */
 976	mc_seq |= FIELD_PREP(TEGRA_GPCDMA_MCSEQ_REQ_COUNT, 1);
 977	/* Set burst size */
 978	mc_seq |= TEGRA_GPCDMA_MCSEQ_BURST_16;
 979
 980	dma_desc = kzalloc(struct_size(dma_desc, sg_req, 1), GFP_NOWAIT);
 981	if (!dma_desc)
 982		return NULL;
 983
 984	dma_desc->bytes_req = len;
 985	dma_desc->sg_count = 1;
 986	sg_req = dma_desc->sg_req;
 987
 988	sg_req[0].ch_regs.src_ptr = src;
 989	sg_req[0].ch_regs.dst_ptr = dest;
 990	sg_req[0].ch_regs.high_addr_ptr =
 991		FIELD_PREP(TEGRA_GPCDMA_HIGH_ADDR_SRC_PTR, (src >> 32));
 992	sg_req[0].ch_regs.high_addr_ptr |=
 993		FIELD_PREP(TEGRA_GPCDMA_HIGH_ADDR_DST_PTR, (dest >> 32));
 994	/* Word count reg takes value as (N +1) words */
 995	sg_req[0].ch_regs.wcount = ((len - 4) >> 2);
 996	sg_req[0].ch_regs.csr = csr;
 997	sg_req[0].ch_regs.mmio_seq = 0;
 998	sg_req[0].ch_regs.mc_seq = mc_seq;
 999	sg_req[0].len = len;
1000
1001	dma_desc->cyclic = false;
1002	return vchan_tx_prep(&tdc->vc, &dma_desc->vd, flags);
1003}
1004
1005static struct dma_async_tx_descriptor *
1006tegra_dma_prep_slave_sg(struct dma_chan *dc, struct scatterlist *sgl,
1007			unsigned int sg_len, enum dma_transfer_direction direction,
1008			unsigned long flags, void *context)
1009{
1010	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
1011	unsigned int max_dma_count = tdc->tdma->chip_data->max_dma_count;
1012	enum dma_slave_buswidth slave_bw = DMA_SLAVE_BUSWIDTH_UNDEFINED;
1013	u32 csr, mc_seq, apb_ptr = 0, mmio_seq = 0;
1014	struct tegra_dma_sg_req *sg_req;
1015	struct tegra_dma_desc *dma_desc;
1016	struct scatterlist *sg;
1017	u32 burst_size;
1018	unsigned int i;
1019	int ret;
1020
1021	if (!tdc->config_init) {
1022		dev_err(tdc2dev(tdc), "DMA channel is not configured\n");
1023		return NULL;
1024	}
1025	if (sg_len < 1) {
1026		dev_err(tdc2dev(tdc), "Invalid segment length %d\n", sg_len);
1027		return NULL;
1028	}
1029
1030	ret = tegra_dma_sid_reserve(tdc, direction);
1031	if (ret)
1032		return NULL;
1033
1034	ret = get_transfer_param(tdc, direction, &apb_ptr, &mmio_seq, &csr,
1035				 &burst_size, &slave_bw);
1036	if (ret < 0)
1037		return NULL;
1038
1039	/* Enable once or continuous mode */
1040	csr |= TEGRA_GPCDMA_CSR_ONCE;
1041	/* Program the slave id in requestor select */
1042	csr |= FIELD_PREP(TEGRA_GPCDMA_CSR_REQ_SEL_MASK, tdc->slave_id);
1043	/* Enable IRQ mask */
1044	csr |= TEGRA_GPCDMA_CSR_IRQ_MASK;
1045	/* Configure default priority weight for the channel*/
1046	csr |= FIELD_PREP(TEGRA_GPCDMA_CSR_WEIGHT, 1);
1047
1048	/* Enable the DMA interrupt */
1049	if (flags & DMA_PREP_INTERRUPT)
1050		csr |= TEGRA_GPCDMA_CSR_IE_EOC;
1051
1052	mc_seq =  tdc_read(tdc, TEGRA_GPCDMA_CHAN_MCSEQ);
1053	/* retain stream-id and clean rest */
1054	mc_seq &= TEGRA_GPCDMA_MCSEQ_STREAM_ID0_MASK;
1055
1056	/* Set the address wrapping on both MC and MMIO side */
1057
1058	mc_seq |= FIELD_PREP(TEGRA_GPCDMA_MCSEQ_WRAP0,
1059			     TEGRA_GPCDMA_MCSEQ_WRAP_NONE);
1060	mc_seq |= FIELD_PREP(TEGRA_GPCDMA_MCSEQ_WRAP1,
1061			     TEGRA_GPCDMA_MCSEQ_WRAP_NONE);
1062	mmio_seq |= FIELD_PREP(TEGRA_GPCDMA_MMIOSEQ_WRAP_WORD, 1);
1063
1064	/* Program 2 MC outstanding requests by default. */
1065	mc_seq |= FIELD_PREP(TEGRA_GPCDMA_MCSEQ_REQ_COUNT, 1);
1066
1067	/* Setting MC burst size depending on MMIO burst size */
1068	if (burst_size == 64)
1069		mc_seq |= TEGRA_GPCDMA_MCSEQ_BURST_16;
1070	else
1071		mc_seq |= TEGRA_GPCDMA_MCSEQ_BURST_2;
1072
1073	dma_desc = kzalloc(struct_size(dma_desc, sg_req, sg_len), GFP_NOWAIT);
1074	if (!dma_desc)
1075		return NULL;
1076
1077	dma_desc->sg_count = sg_len;
1078	sg_req = dma_desc->sg_req;
1079
1080	/* Make transfer requests */
1081	for_each_sg(sgl, sg, sg_len, i) {
1082		u32 len;
1083		dma_addr_t mem;
1084
1085		mem = sg_dma_address(sg);
1086		len = sg_dma_len(sg);
1087
1088		if ((len & 3) || (mem & 3) || len > max_dma_count) {
1089			dev_err(tdc2dev(tdc),
1090				"DMA length/memory address is not supported\n");
1091			kfree(dma_desc);
1092			return NULL;
1093		}
1094
1095		mmio_seq |= get_burst_size(tdc, burst_size, slave_bw, len);
1096		dma_desc->bytes_req += len;
1097
1098		if (direction == DMA_MEM_TO_DEV) {
1099			sg_req[i].ch_regs.src_ptr = mem;
1100			sg_req[i].ch_regs.dst_ptr = apb_ptr;
1101			sg_req[i].ch_regs.high_addr_ptr =
1102				FIELD_PREP(TEGRA_GPCDMA_HIGH_ADDR_SRC_PTR, (mem >> 32));
1103		} else if (direction == DMA_DEV_TO_MEM) {
1104			sg_req[i].ch_regs.src_ptr = apb_ptr;
1105			sg_req[i].ch_regs.dst_ptr = mem;
1106			sg_req[i].ch_regs.high_addr_ptr =
1107				FIELD_PREP(TEGRA_GPCDMA_HIGH_ADDR_DST_PTR, (mem >> 32));
1108		}
1109
1110		/*
1111		 * Word count register takes input in words. Writing a value
1112		 * of N into word count register means a req of (N+1) words.
1113		 */
1114		sg_req[i].ch_regs.wcount = ((len - 4) >> 2);
1115		sg_req[i].ch_regs.csr = csr;
1116		sg_req[i].ch_regs.mmio_seq = mmio_seq;
1117		sg_req[i].ch_regs.mc_seq = mc_seq;
1118		sg_req[i].len = len;
1119	}
1120
1121	dma_desc->cyclic = false;
1122	return vchan_tx_prep(&tdc->vc, &dma_desc->vd, flags);
1123}
1124
1125static struct dma_async_tx_descriptor *
1126tegra_dma_prep_dma_cyclic(struct dma_chan *dc, dma_addr_t buf_addr, size_t buf_len,
1127			  size_t period_len, enum dma_transfer_direction direction,
1128			  unsigned long flags)
1129{
1130	enum dma_slave_buswidth slave_bw = DMA_SLAVE_BUSWIDTH_UNDEFINED;
1131	u32 csr, mc_seq, apb_ptr = 0, mmio_seq = 0, burst_size;
1132	unsigned int max_dma_count, len, period_count, i;
1133	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
1134	struct tegra_dma_desc *dma_desc;
1135	struct tegra_dma_sg_req *sg_req;
1136	dma_addr_t mem = buf_addr;
1137	int ret;
1138
1139	if (!buf_len || !period_len) {
1140		dev_err(tdc2dev(tdc), "Invalid buffer/period len\n");
1141		return NULL;
1142	}
1143
1144	if (!tdc->config_init) {
1145		dev_err(tdc2dev(tdc), "DMA slave is not configured\n");
1146		return NULL;
1147	}
1148
1149	ret = tegra_dma_sid_reserve(tdc, direction);
1150	if (ret)
1151		return NULL;
1152
1153	/*
1154	 * We only support cycle transfer when buf_len is multiple of
1155	 * period_len.
1156	 */
1157	if (buf_len % period_len) {
1158		dev_err(tdc2dev(tdc), "buf_len is not multiple of period_len\n");
1159		return NULL;
1160	}
1161
1162	len = period_len;
1163	max_dma_count = tdc->tdma->chip_data->max_dma_count;
1164	if ((len & 3) || (buf_addr & 3) || len > max_dma_count) {
1165		dev_err(tdc2dev(tdc), "Req len/mem address is not correct\n");
1166		return NULL;
1167	}
1168
1169	ret = get_transfer_param(tdc, direction, &apb_ptr, &mmio_seq, &csr,
1170				 &burst_size, &slave_bw);
1171	if (ret < 0)
1172		return NULL;
1173
1174	/* Enable once or continuous mode */
1175	csr &= ~TEGRA_GPCDMA_CSR_ONCE;
1176	/* Program the slave id in requestor select */
1177	csr |= FIELD_PREP(TEGRA_GPCDMA_CSR_REQ_SEL_MASK, tdc->slave_id);
1178	/* Enable IRQ mask */
1179	csr |= TEGRA_GPCDMA_CSR_IRQ_MASK;
1180	/* Configure default priority weight for the channel*/
1181	csr |= FIELD_PREP(TEGRA_GPCDMA_CSR_WEIGHT, 1);
1182
1183	/* Enable the DMA interrupt */
1184	if (flags & DMA_PREP_INTERRUPT)
1185		csr |= TEGRA_GPCDMA_CSR_IE_EOC;
1186
1187	mmio_seq |= FIELD_PREP(TEGRA_GPCDMA_MMIOSEQ_WRAP_WORD, 1);
1188
1189	mc_seq =  tdc_read(tdc, TEGRA_GPCDMA_CHAN_MCSEQ);
1190	/* retain stream-id and clean rest */
1191	mc_seq &= TEGRA_GPCDMA_MCSEQ_STREAM_ID0_MASK;
1192
1193	/* Set the address wrapping on both MC and MMIO side */
1194	mc_seq |= FIELD_PREP(TEGRA_GPCDMA_MCSEQ_WRAP0,
1195			     TEGRA_GPCDMA_MCSEQ_WRAP_NONE);
1196	mc_seq |= FIELD_PREP(TEGRA_GPCDMA_MCSEQ_WRAP1,
1197			     TEGRA_GPCDMA_MCSEQ_WRAP_NONE);
1198
1199	/* Program 2 MC outstanding requests by default. */
1200	mc_seq |= FIELD_PREP(TEGRA_GPCDMA_MCSEQ_REQ_COUNT, 1);
1201	/* Setting MC burst size depending on MMIO burst size */
1202	if (burst_size == 64)
1203		mc_seq |= TEGRA_GPCDMA_MCSEQ_BURST_16;
1204	else
1205		mc_seq |= TEGRA_GPCDMA_MCSEQ_BURST_2;
1206
1207	period_count = buf_len / period_len;
1208	dma_desc = kzalloc(struct_size(dma_desc, sg_req, period_count),
1209			   GFP_NOWAIT);
1210	if (!dma_desc)
1211		return NULL;
1212
1213	dma_desc->bytes_req = buf_len;
1214	dma_desc->sg_count = period_count;
1215	sg_req = dma_desc->sg_req;
1216
1217	/* Split transfer equal to period size */
1218	for (i = 0; i < period_count; i++) {
1219		mmio_seq |= get_burst_size(tdc, burst_size, slave_bw, len);
1220		if (direction == DMA_MEM_TO_DEV) {
1221			sg_req[i].ch_regs.src_ptr = mem;
1222			sg_req[i].ch_regs.dst_ptr = apb_ptr;
1223			sg_req[i].ch_regs.high_addr_ptr =
1224				FIELD_PREP(TEGRA_GPCDMA_HIGH_ADDR_SRC_PTR, (mem >> 32));
1225		} else if (direction == DMA_DEV_TO_MEM) {
1226			sg_req[i].ch_regs.src_ptr = apb_ptr;
1227			sg_req[i].ch_regs.dst_ptr = mem;
1228			sg_req[i].ch_regs.high_addr_ptr =
1229				FIELD_PREP(TEGRA_GPCDMA_HIGH_ADDR_DST_PTR, (mem >> 32));
1230		}
1231		/*
1232		 * Word count register takes input in words. Writing a value
1233		 * of N into word count register means a req of (N+1) words.
1234		 */
1235		sg_req[i].ch_regs.wcount = ((len - 4) >> 2);
1236		sg_req[i].ch_regs.csr = csr;
1237		sg_req[i].ch_regs.mmio_seq = mmio_seq;
1238		sg_req[i].ch_regs.mc_seq = mc_seq;
1239		sg_req[i].len = len;
1240
1241		mem += len;
1242	}
1243
1244	dma_desc->cyclic = true;
1245
1246	return vchan_tx_prep(&tdc->vc, &dma_desc->vd, flags);
1247}
1248
1249static int tegra_dma_alloc_chan_resources(struct dma_chan *dc)
1250{
1251	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
1252	int ret;
1253
1254	ret = request_irq(tdc->irq, tegra_dma_isr, 0, tdc->name, tdc);
1255	if (ret) {
1256		dev_err(tdc2dev(tdc), "request_irq failed for %s\n", tdc->name);
1257		return ret;
1258	}
1259
1260	dma_cookie_init(&tdc->vc.chan);
1261	tdc->config_init = false;
1262	return 0;
1263}
1264
1265static void tegra_dma_chan_synchronize(struct dma_chan *dc)
1266{
1267	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
1268
1269	synchronize_irq(tdc->irq);
1270	vchan_synchronize(&tdc->vc);
1271}
1272
1273static void tegra_dma_free_chan_resources(struct dma_chan *dc)
1274{
1275	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
1276
1277	dev_dbg(tdc2dev(tdc), "Freeing channel %d\n", tdc->id);
1278
1279	tegra_dma_terminate_all(dc);
1280	synchronize_irq(tdc->irq);
1281
1282	tasklet_kill(&tdc->vc.task);
1283	tdc->config_init = false;
1284	tdc->slave_id = -1;
1285	tdc->sid_dir = DMA_TRANS_NONE;
1286	free_irq(tdc->irq, tdc);
1287
1288	vchan_free_chan_resources(&tdc->vc);
1289}
1290
1291static struct dma_chan *tegra_dma_of_xlate(struct of_phandle_args *dma_spec,
1292					   struct of_dma *ofdma)
1293{
1294	struct tegra_dma *tdma = ofdma->of_dma_data;
1295	struct tegra_dma_channel *tdc;
1296	struct dma_chan *chan;
1297
1298	chan = dma_get_any_slave_channel(&tdma->dma_dev);
1299	if (!chan)
1300		return NULL;
1301
1302	tdc = to_tegra_dma_chan(chan);
1303	tdc->slave_id = dma_spec->args[0];
1304
1305	return chan;
1306}
1307
1308static const struct tegra_dma_chip_data tegra186_dma_chip_data = {
1309	.nr_channels = 32,
1310	.channel_reg_size = SZ_64K,
1311	.max_dma_count = SZ_1G,
1312	.hw_support_pause = false,
1313	.terminate = tegra_dma_stop_client,
1314};
1315
1316static const struct tegra_dma_chip_data tegra194_dma_chip_data = {
1317	.nr_channels = 32,
1318	.channel_reg_size = SZ_64K,
1319	.max_dma_count = SZ_1G,
1320	.hw_support_pause = true,
1321	.terminate = tegra_dma_pause,
1322};
1323
1324static const struct tegra_dma_chip_data tegra234_dma_chip_data = {
1325	.nr_channels = 32,
1326	.channel_reg_size = SZ_64K,
1327	.max_dma_count = SZ_1G,
1328	.hw_support_pause = true,
1329	.terminate = tegra_dma_pause_noerr,
1330};
1331
1332static const struct of_device_id tegra_dma_of_match[] = {
1333	{
1334		.compatible = "nvidia,tegra186-gpcdma",
1335		.data = &tegra186_dma_chip_data,
1336	}, {
1337		.compatible = "nvidia,tegra194-gpcdma",
1338		.data = &tegra194_dma_chip_data,
1339	}, {
1340		.compatible = "nvidia,tegra234-gpcdma",
1341		.data = &tegra234_dma_chip_data,
1342	}, {
1343	},
1344};
1345MODULE_DEVICE_TABLE(of, tegra_dma_of_match);
1346
1347static int tegra_dma_program_sid(struct tegra_dma_channel *tdc, int stream_id)
1348{
1349	unsigned int reg_val =  tdc_read(tdc, TEGRA_GPCDMA_CHAN_MCSEQ);
1350
1351	reg_val &= ~(TEGRA_GPCDMA_MCSEQ_STREAM_ID0_MASK);
1352	reg_val &= ~(TEGRA_GPCDMA_MCSEQ_STREAM_ID1_MASK);
1353
1354	reg_val |= FIELD_PREP(TEGRA_GPCDMA_MCSEQ_STREAM_ID0_MASK, stream_id);
1355	reg_val |= FIELD_PREP(TEGRA_GPCDMA_MCSEQ_STREAM_ID1_MASK, stream_id);
1356
1357	tdc_write(tdc, TEGRA_GPCDMA_CHAN_MCSEQ, reg_val);
1358	return 0;
1359}
1360
1361static int tegra_dma_probe(struct platform_device *pdev)
1362{
1363	const struct tegra_dma_chip_data *cdata = NULL;
1364	unsigned int i;
1365	u32 stream_id;
1366	struct tegra_dma *tdma;
1367	int ret;
1368
1369	cdata = of_device_get_match_data(&pdev->dev);
1370
1371	tdma = devm_kzalloc(&pdev->dev,
1372			    struct_size(tdma, channels, cdata->nr_channels),
1373			    GFP_KERNEL);
1374	if (!tdma)
1375		return -ENOMEM;
1376
1377	tdma->dev = &pdev->dev;
1378	tdma->chip_data = cdata;
1379	platform_set_drvdata(pdev, tdma);
1380
1381	tdma->base_addr = devm_platform_ioremap_resource(pdev, 0);
1382	if (IS_ERR(tdma->base_addr))
1383		return PTR_ERR(tdma->base_addr);
1384
1385	tdma->rst = devm_reset_control_get_exclusive(&pdev->dev, "gpcdma");
1386	if (IS_ERR(tdma->rst)) {
1387		return dev_err_probe(&pdev->dev, PTR_ERR(tdma->rst),
1388			      "Missing controller reset\n");
1389	}
1390	reset_control_reset(tdma->rst);
1391
1392	tdma->dma_dev.dev = &pdev->dev;
1393
1394	if (!tegra_dev_iommu_get_stream_id(&pdev->dev, &stream_id)) {
1395		dev_err(&pdev->dev, "Missing iommu stream-id\n");
1396		return -EINVAL;
1397	}
1398
1399	ret = device_property_read_u32(&pdev->dev, "dma-channel-mask",
1400				       &tdma->chan_mask);
1401	if (ret) {
1402		dev_warn(&pdev->dev,
1403			 "Missing dma-channel-mask property, using default channel mask %#x\n",
1404			 TEGRA_GPCDMA_DEFAULT_CHANNEL_MASK);
1405		tdma->chan_mask = TEGRA_GPCDMA_DEFAULT_CHANNEL_MASK;
1406	}
1407
1408	INIT_LIST_HEAD(&tdma->dma_dev.channels);
1409	for (i = 0; i < cdata->nr_channels; i++) {
1410		struct tegra_dma_channel *tdc = &tdma->channels[i];
1411
1412		/* Check for channel mask */
1413		if (!(tdma->chan_mask & BIT(i)))
1414			continue;
1415
1416		tdc->irq = platform_get_irq(pdev, i);
1417		if (tdc->irq < 0)
1418			return tdc->irq;
1419
1420		tdc->chan_base_offset = TEGRA_GPCDMA_CHANNEL_BASE_ADDR_OFFSET +
1421					i * cdata->channel_reg_size;
1422		snprintf(tdc->name, sizeof(tdc->name), "gpcdma.%d", i);
1423		tdc->tdma = tdma;
1424		tdc->id = i;
1425		tdc->slave_id = -1;
1426
1427		vchan_init(&tdc->vc, &tdma->dma_dev);
1428		tdc->vc.desc_free = tegra_dma_desc_free;
1429
1430		/* program stream-id for this channel */
1431		tegra_dma_program_sid(tdc, stream_id);
1432		tdc->stream_id = stream_id;
1433	}
1434
1435	dma_cap_set(DMA_SLAVE, tdma->dma_dev.cap_mask);
1436	dma_cap_set(DMA_PRIVATE, tdma->dma_dev.cap_mask);
1437	dma_cap_set(DMA_MEMCPY, tdma->dma_dev.cap_mask);
1438	dma_cap_set(DMA_MEMSET, tdma->dma_dev.cap_mask);
1439	dma_cap_set(DMA_CYCLIC, tdma->dma_dev.cap_mask);
1440
1441	/*
1442	 * Only word aligned transfers are supported. Set the copy
1443	 * alignment shift.
1444	 */
1445	tdma->dma_dev.copy_align = 2;
1446	tdma->dma_dev.fill_align = 2;
1447	tdma->dma_dev.device_alloc_chan_resources =
1448					tegra_dma_alloc_chan_resources;
1449	tdma->dma_dev.device_free_chan_resources =
1450					tegra_dma_free_chan_resources;
1451	tdma->dma_dev.device_prep_slave_sg = tegra_dma_prep_slave_sg;
1452	tdma->dma_dev.device_prep_dma_memcpy = tegra_dma_prep_dma_memcpy;
1453	tdma->dma_dev.device_prep_dma_memset = tegra_dma_prep_dma_memset;
1454	tdma->dma_dev.device_prep_dma_cyclic = tegra_dma_prep_dma_cyclic;
1455	tdma->dma_dev.device_config = tegra_dma_slave_config;
1456	tdma->dma_dev.device_terminate_all = tegra_dma_terminate_all;
1457	tdma->dma_dev.device_tx_status = tegra_dma_tx_status;
1458	tdma->dma_dev.device_issue_pending = tegra_dma_issue_pending;
1459	tdma->dma_dev.device_pause = tegra_dma_device_pause;
1460	tdma->dma_dev.device_resume = tegra_dma_device_resume;
1461	tdma->dma_dev.device_synchronize = tegra_dma_chan_synchronize;
1462	tdma->dma_dev.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1463
1464	ret = dma_async_device_register(&tdma->dma_dev);
1465	if (ret < 0) {
1466		dev_err_probe(&pdev->dev, ret,
1467			      "GPC DMA driver registration failed\n");
1468		return ret;
1469	}
1470
1471	ret = of_dma_controller_register(pdev->dev.of_node,
1472					 tegra_dma_of_xlate, tdma);
1473	if (ret < 0) {
1474		dev_err_probe(&pdev->dev, ret,
1475			      "GPC DMA OF registration failed\n");
1476
1477		dma_async_device_unregister(&tdma->dma_dev);
1478		return ret;
1479	}
1480
1481	dev_info(&pdev->dev, "GPC DMA driver register %lu channels\n",
1482		 hweight_long(tdma->chan_mask));
1483
1484	return 0;
1485}
1486
1487static void tegra_dma_remove(struct platform_device *pdev)
1488{
1489	struct tegra_dma *tdma = platform_get_drvdata(pdev);
1490
1491	of_dma_controller_free(pdev->dev.of_node);
1492	dma_async_device_unregister(&tdma->dma_dev);
1493}
1494
1495static int __maybe_unused tegra_dma_pm_suspend(struct device *dev)
1496{
1497	struct tegra_dma *tdma = dev_get_drvdata(dev);
1498	unsigned int i;
1499
1500	for (i = 0; i < tdma->chip_data->nr_channels; i++) {
1501		struct tegra_dma_channel *tdc = &tdma->channels[i];
1502
1503		if (!(tdma->chan_mask & BIT(i)))
1504			continue;
1505
1506		if (tdc->dma_desc) {
1507			dev_err(tdma->dev, "channel %u busy\n", i);
1508			return -EBUSY;
1509		}
1510	}
1511
1512	return 0;
1513}
1514
1515static int __maybe_unused tegra_dma_pm_resume(struct device *dev)
1516{
1517	struct tegra_dma *tdma = dev_get_drvdata(dev);
1518	unsigned int i;
1519
1520	reset_control_reset(tdma->rst);
1521
1522	for (i = 0; i < tdma->chip_data->nr_channels; i++) {
1523		struct tegra_dma_channel *tdc = &tdma->channels[i];
1524
1525		if (!(tdma->chan_mask & BIT(i)))
1526			continue;
1527
1528		tegra_dma_program_sid(tdc, tdc->stream_id);
1529	}
1530
1531	return 0;
1532}
1533
1534static const struct dev_pm_ops tegra_dma_dev_pm_ops = {
1535	SET_SYSTEM_SLEEP_PM_OPS(tegra_dma_pm_suspend, tegra_dma_pm_resume)
1536};
1537
1538static struct platform_driver tegra_dma_driver = {
1539	.driver = {
1540		.name	= "tegra-gpcdma",
1541		.pm	= &tegra_dma_dev_pm_ops,
1542		.of_match_table = tegra_dma_of_match,
1543	},
1544	.probe		= tegra_dma_probe,
1545	.remove		= tegra_dma_remove,
1546};
1547
1548module_platform_driver(tegra_dma_driver);
1549
1550MODULE_DESCRIPTION("NVIDIA Tegra GPC DMA Controller driver");
1551MODULE_AUTHOR("Pavan Kunapuli <pkunapuli@nvidia.com>");
1552MODULE_AUTHOR("Rajesh Gumasta <rgumasta@nvidia.com>");
1553MODULE_LICENSE("GPL");