Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.9.4.
   1/*
   2 * mm.c - Micro Memory(tm) PCI memory board block device driver - v2.3
   3 *
   4 * (C) 2001 San Mehat <nettwerk@valinux.com>
   5 * (C) 2001 Johannes Erdfelt <jerdfelt@valinux.com>
   6 * (C) 2001 NeilBrown <neilb@cse.unsw.edu.au>
   7 *
   8 * This driver for the Micro Memory PCI Memory Module with Battery Backup
   9 * is Copyright Micro Memory Inc 2001-2002.  All rights reserved.
  10 *
  11 * This driver is released to the public under the terms of the
  12 *  GNU GENERAL PUBLIC LICENSE version 2
  13 * See the file COPYING for details.
  14 *
  15 * This driver provides a standard block device interface for Micro Memory(tm)
  16 * PCI based RAM boards.
  17 * 10/05/01: Phap Nguyen - Rebuilt the driver
  18 * 10/22/01: Phap Nguyen - v2.1 Added disk partitioning
  19 * 29oct2001:NeilBrown   - Use make_request_fn instead of request_fn
  20 *                       - use stand disk partitioning (so fdisk works).
  21 * 08nov2001:NeilBrown	 - change driver name from "mm" to "umem"
  22 *			 - incorporate into main kernel
  23 * 08apr2002:NeilBrown   - Move some of interrupt handle to tasklet
  24 *			 - use spin_lock_bh instead of _irq
  25 *			 - Never block on make_request.  queue
  26 *			   bh's instead.
  27 *			 - unregister umem from devfs at mod unload
  28 *			 - Change version to 2.3
  29 * 07Nov2001:Phap Nguyen - Select pci read command: 06, 12, 15 (Decimal)
  30 * 07Jan2002: P. Nguyen  - Used PCI Memory Write & Invalidate for DMA
  31 * 15May2002:NeilBrown   - convert to bio for 2.5
  32 * 17May2002:NeilBrown   - remove init_mem initialisation.  Instead detect
  33 *			 - a sequence of writes that cover the card, and
  34 *			 - set initialised bit then.
  35 */
  36
  37#undef DEBUG	/* #define DEBUG if you want debugging info (pr_debug) */
  38#include <linux/fs.h>
  39#include <linux/bio.h>
  40#include <linux/kernel.h>
  41#include <linux/mm.h>
  42#include <linux/mman.h>
  43#include <linux/gfp.h>
  44#include <linux/ioctl.h>
  45#include <linux/module.h>
  46#include <linux/init.h>
  47#include <linux/interrupt.h>
  48#include <linux/timer.h>
  49#include <linux/pci.h>
  50#include <linux/dma-mapping.h>
  51
  52#include <linux/fcntl.h>        /* O_ACCMODE */
  53#include <linux/hdreg.h>  /* HDIO_GETGEO */
  54
  55#include "umem.h"
  56
  57#include <asm/uaccess.h>
  58#include <asm/io.h>
  59
  60#define MM_MAXCARDS 4
  61#define MM_RAHEAD 2      /* two sectors */
  62#define MM_BLKSIZE 1024  /* 1k blocks */
  63#define MM_HARDSECT 512  /* 512-byte hardware sectors */
  64#define MM_SHIFT 6       /* max 64 partitions on 4 cards  */
  65
  66/*
  67 * Version Information
  68 */
  69
  70#define DRIVER_NAME	"umem"
  71#define DRIVER_VERSION	"v2.3"
  72#define DRIVER_AUTHOR	"San Mehat, Johannes Erdfelt, NeilBrown"
  73#define DRIVER_DESC	"Micro Memory(tm) PCI memory board block driver"
  74
  75static int debug;
  76/* #define HW_TRACE(x)     writeb(x,cards[0].csr_remap + MEMCTRLSTATUS_MAGIC) */
  77#define HW_TRACE(x)
  78
  79#define DEBUG_LED_ON_TRANSFER	0x01
  80#define DEBUG_BATTERY_POLLING	0x02
  81
  82module_param(debug, int, 0644);
  83MODULE_PARM_DESC(debug, "Debug bitmask");
  84
  85static int pci_read_cmd = 0x0C;		/* Read Multiple */
  86module_param(pci_read_cmd, int, 0);
  87MODULE_PARM_DESC(pci_read_cmd, "PCI read command");
  88
  89static int pci_write_cmd = 0x0F;	/* Write and Invalidate */
  90module_param(pci_write_cmd, int, 0);
  91MODULE_PARM_DESC(pci_write_cmd, "PCI write command");
  92
  93static int pci_cmds;
  94
  95static int major_nr;
  96
  97#include <linux/blkdev.h>
  98#include <linux/blkpg.h>
  99
 100struct cardinfo {
 101	struct pci_dev	*dev;
 102
 103	unsigned char	__iomem *csr_remap;
 104	unsigned int	mm_size;  /* size in kbytes */
 105
 106	unsigned int	init_size; /* initial segment, in sectors,
 107				    * that we know to
 108				    * have been written
 109				    */
 110	struct bio	*bio, *currentbio, **biotail;
 111	int		current_idx;
 112	sector_t	current_sector;
 113
 114	struct request_queue *queue;
 115
 116	struct mm_page {
 117		dma_addr_t		page_dma;
 118		struct mm_dma_desc	*desc;
 119		int	 		cnt, headcnt;
 120		struct bio		*bio, **biotail;
 121		int			idx;
 122	} mm_pages[2];
 123#define DESC_PER_PAGE ((PAGE_SIZE*2)/sizeof(struct mm_dma_desc))
 124
 125	int  Active, Ready;
 126
 127	struct tasklet_struct	tasklet;
 128	unsigned int dma_status;
 129
 130	struct {
 131		int		good;
 132		int		warned;
 133		unsigned long	last_change;
 134	} battery[2];
 135
 136	spinlock_t 	lock;
 137	int		check_batteries;
 138
 139	int		flags;
 140};
 141
 142static struct cardinfo cards[MM_MAXCARDS];
 143static struct timer_list battery_timer;
 144
 145static int num_cards;
 146
 147static struct gendisk *mm_gendisk[MM_MAXCARDS];
 148
 149static void check_batteries(struct cardinfo *card);
 150
 151static int get_userbit(struct cardinfo *card, int bit)
 152{
 153	unsigned char led;
 154
 155	led = readb(card->csr_remap + MEMCTRLCMD_LEDCTRL);
 156	return led & bit;
 157}
 158
 159static int set_userbit(struct cardinfo *card, int bit, unsigned char state)
 160{
 161	unsigned char led;
 162
 163	led = readb(card->csr_remap + MEMCTRLCMD_LEDCTRL);
 164	if (state)
 165		led |= bit;
 166	else
 167		led &= ~bit;
 168	writeb(led, card->csr_remap + MEMCTRLCMD_LEDCTRL);
 169
 170	return 0;
 171}
 172
 173/*
 174 * NOTE: For the power LED, use the LED_POWER_* macros since they differ
 175 */
 176static void set_led(struct cardinfo *card, int shift, unsigned char state)
 177{
 178	unsigned char led;
 179
 180	led = readb(card->csr_remap + MEMCTRLCMD_LEDCTRL);
 181	if (state == LED_FLIP)
 182		led ^= (1<<shift);
 183	else {
 184		led &= ~(0x03 << shift);
 185		led |= (state << shift);
 186	}
 187	writeb(led, card->csr_remap + MEMCTRLCMD_LEDCTRL);
 188
 189}
 190
 191#ifdef MM_DIAG
 192static void dump_regs(struct cardinfo *card)
 193{
 194	unsigned char *p;
 195	int i, i1;
 196
 197	p = card->csr_remap;
 198	for (i = 0; i < 8; i++) {
 199		printk(KERN_DEBUG "%p   ", p);
 200
 201		for (i1 = 0; i1 < 16; i1++)
 202			printk("%02x ", *p++);
 203
 204		printk("\n");
 205	}
 206}
 207#endif
 208
 209static void dump_dmastat(struct cardinfo *card, unsigned int dmastat)
 210{
 211	dev_printk(KERN_DEBUG, &card->dev->dev, "DMAstat - ");
 212	if (dmastat & DMASCR_ANY_ERR)
 213		printk(KERN_CONT "ANY_ERR ");
 214	if (dmastat & DMASCR_MBE_ERR)
 215		printk(KERN_CONT "MBE_ERR ");
 216	if (dmastat & DMASCR_PARITY_ERR_REP)
 217		printk(KERN_CONT "PARITY_ERR_REP ");
 218	if (dmastat & DMASCR_PARITY_ERR_DET)
 219		printk(KERN_CONT "PARITY_ERR_DET ");
 220	if (dmastat & DMASCR_SYSTEM_ERR_SIG)
 221		printk(KERN_CONT "SYSTEM_ERR_SIG ");
 222	if (dmastat & DMASCR_TARGET_ABT)
 223		printk(KERN_CONT "TARGET_ABT ");
 224	if (dmastat & DMASCR_MASTER_ABT)
 225		printk(KERN_CONT "MASTER_ABT ");
 226	if (dmastat & DMASCR_CHAIN_COMPLETE)
 227		printk(KERN_CONT "CHAIN_COMPLETE ");
 228	if (dmastat & DMASCR_DMA_COMPLETE)
 229		printk(KERN_CONT "DMA_COMPLETE ");
 230	printk("\n");
 231}
 232
 233/*
 234 * Theory of request handling
 235 *
 236 * Each bio is assigned to one mm_dma_desc - which may not be enough FIXME
 237 * We have two pages of mm_dma_desc, holding about 64 descriptors
 238 * each.  These are allocated at init time.
 239 * One page is "Ready" and is either full, or can have request added.
 240 * The other page might be "Active", which DMA is happening on it.
 241 *
 242 * Whenever IO on the active page completes, the Ready page is activated
 243 * and the ex-Active page is clean out and made Ready.
 244 * Otherwise the Ready page is only activated when it becomes full.
 245 *
 246 * If a request arrives while both pages a full, it is queued, and b_rdev is
 247 * overloaded to record whether it was a read or a write.
 248 *
 249 * The interrupt handler only polls the device to clear the interrupt.
 250 * The processing of the result is done in a tasklet.
 251 */
 252
 253static void mm_start_io(struct cardinfo *card)
 254{
 255	/* we have the lock, we know there is
 256	 * no IO active, and we know that card->Active
 257	 * is set
 258	 */
 259	struct mm_dma_desc *desc;
 260	struct mm_page *page;
 261	int offset;
 262
 263	/* make the last descriptor end the chain */
 264	page = &card->mm_pages[card->Active];
 265	pr_debug("start_io: %d %d->%d\n",
 266		card->Active, page->headcnt, page->cnt - 1);
 267	desc = &page->desc[page->cnt-1];
 268
 269	desc->control_bits |= cpu_to_le32(DMASCR_CHAIN_COMP_EN);
 270	desc->control_bits &= ~cpu_to_le32(DMASCR_CHAIN_EN);
 271	desc->sem_control_bits = desc->control_bits;
 272
 273
 274	if (debug & DEBUG_LED_ON_TRANSFER)
 275		set_led(card, LED_REMOVE, LED_ON);
 276
 277	desc = &page->desc[page->headcnt];
 278	writel(0, card->csr_remap + DMA_PCI_ADDR);
 279	writel(0, card->csr_remap + DMA_PCI_ADDR + 4);
 280
 281	writel(0, card->csr_remap + DMA_LOCAL_ADDR);
 282	writel(0, card->csr_remap + DMA_LOCAL_ADDR + 4);
 283
 284	writel(0, card->csr_remap + DMA_TRANSFER_SIZE);
 285	writel(0, card->csr_remap + DMA_TRANSFER_SIZE + 4);
 286
 287	writel(0, card->csr_remap + DMA_SEMAPHORE_ADDR);
 288	writel(0, card->csr_remap + DMA_SEMAPHORE_ADDR + 4);
 289
 290	offset = ((char *)desc) - ((char *)page->desc);
 291	writel(cpu_to_le32((page->page_dma+offset) & 0xffffffff),
 292	       card->csr_remap + DMA_DESCRIPTOR_ADDR);
 293	/* Force the value to u64 before shifting otherwise >> 32 is undefined C
 294	 * and on some ports will do nothing ! */
 295	writel(cpu_to_le32(((u64)page->page_dma)>>32),
 296	       card->csr_remap + DMA_DESCRIPTOR_ADDR + 4);
 297
 298	/* Go, go, go */
 299	writel(cpu_to_le32(DMASCR_GO | DMASCR_CHAIN_EN | pci_cmds),
 300	       card->csr_remap + DMA_STATUS_CTRL);
 301}
 302
 303static int add_bio(struct cardinfo *card);
 304
 305static void activate(struct cardinfo *card)
 306{
 307	/* if No page is Active, and Ready is
 308	 * not empty, then switch Ready page
 309	 * to active and start IO.
 310	 * Then add any bh's that are available to Ready
 311	 */
 312
 313	do {
 314		while (add_bio(card))
 315			;
 316
 317		if (card->Active == -1 &&
 318		    card->mm_pages[card->Ready].cnt > 0) {
 319			card->Active = card->Ready;
 320			card->Ready = 1-card->Ready;
 321			mm_start_io(card);
 322		}
 323
 324	} while (card->Active == -1 && add_bio(card));
 325}
 326
 327static inline void reset_page(struct mm_page *page)
 328{
 329	page->cnt = 0;
 330	page->headcnt = 0;
 331	page->bio = NULL;
 332	page->biotail = &page->bio;
 333}
 334
 335/*
 336 * If there is room on Ready page, take
 337 * one bh off list and add it.
 338 * return 1 if there was room, else 0.
 339 */
 340static int add_bio(struct cardinfo *card)
 341{
 342	struct mm_page *p;
 343	struct mm_dma_desc *desc;
 344	dma_addr_t dma_handle;
 345	int offset;
 346	struct bio *bio;
 347	struct bio_vec *vec;
 348	int idx;
 349	int rw;
 350	int len;
 351
 352	bio = card->currentbio;
 353	if (!bio && card->bio) {
 354		card->currentbio = card->bio;
 355		card->current_idx = card->bio->bi_idx;
 356		card->current_sector = card->bio->bi_sector;
 357		card->bio = card->bio->bi_next;
 358		if (card->bio == NULL)
 359			card->biotail = &card->bio;
 360		card->currentbio->bi_next = NULL;
 361		return 1;
 362	}
 363	if (!bio)
 364		return 0;
 365	idx = card->current_idx;
 366
 367	rw = bio_rw(bio);
 368	if (card->mm_pages[card->Ready].cnt >= DESC_PER_PAGE)
 369		return 0;
 370
 371	vec = bio_iovec_idx(bio, idx);
 372	len = vec->bv_len;
 373	dma_handle = pci_map_page(card->dev,
 374				  vec->bv_page,
 375				  vec->bv_offset,
 376				  len,
 377				  (rw == READ) ?
 378				  PCI_DMA_FROMDEVICE : PCI_DMA_TODEVICE);
 379
 380	p = &card->mm_pages[card->Ready];
 381	desc = &p->desc[p->cnt];
 382	p->cnt++;
 383	if (p->bio == NULL)
 384		p->idx = idx;
 385	if ((p->biotail) != &bio->bi_next) {
 386		*(p->biotail) = bio;
 387		p->biotail = &(bio->bi_next);
 388		bio->bi_next = NULL;
 389	}
 390
 391	desc->data_dma_handle = dma_handle;
 392
 393	desc->pci_addr = cpu_to_le64((u64)desc->data_dma_handle);
 394	desc->local_addr = cpu_to_le64(card->current_sector << 9);
 395	desc->transfer_size = cpu_to_le32(len);
 396	offset = (((char *)&desc->sem_control_bits) - ((char *)p->desc));
 397	desc->sem_addr = cpu_to_le64((u64)(p->page_dma+offset));
 398	desc->zero1 = desc->zero2 = 0;
 399	offset = (((char *)(desc+1)) - ((char *)p->desc));
 400	desc->next_desc_addr = cpu_to_le64(p->page_dma+offset);
 401	desc->control_bits = cpu_to_le32(DMASCR_GO|DMASCR_ERR_INT_EN|
 402					 DMASCR_PARITY_INT_EN|
 403					 DMASCR_CHAIN_EN |
 404					 DMASCR_SEM_EN |
 405					 pci_cmds);
 406	if (rw == WRITE)
 407		desc->control_bits |= cpu_to_le32(DMASCR_TRANSFER_READ);
 408	desc->sem_control_bits = desc->control_bits;
 409
 410	card->current_sector += (len >> 9);
 411	idx++;
 412	card->current_idx = idx;
 413	if (idx >= bio->bi_vcnt)
 414		card->currentbio = NULL;
 415
 416	return 1;
 417}
 418
 419static void process_page(unsigned long data)
 420{
 421	/* check if any of the requests in the page are DMA_COMPLETE,
 422	 * and deal with them appropriately.
 423	 * If we find a descriptor without DMA_COMPLETE in the semaphore, then
 424	 * dma must have hit an error on that descriptor, so use dma_status
 425	 * instead and assume that all following descriptors must be re-tried.
 426	 */
 427	struct mm_page *page;
 428	struct bio *return_bio = NULL;
 429	struct cardinfo *card = (struct cardinfo *)data;
 430	unsigned int dma_status = card->dma_status;
 431
 432	spin_lock_bh(&card->lock);
 433	if (card->Active < 0)
 434		goto out_unlock;
 435	page = &card->mm_pages[card->Active];
 436
 437	while (page->headcnt < page->cnt) {
 438		struct bio *bio = page->bio;
 439		struct mm_dma_desc *desc = &page->desc[page->headcnt];
 440		int control = le32_to_cpu(desc->sem_control_bits);
 441		int last = 0;
 442		int idx;
 443
 444		if (!(control & DMASCR_DMA_COMPLETE)) {
 445			control = dma_status;
 446			last = 1;
 447		}
 448		page->headcnt++;
 449		idx = page->idx;
 450		page->idx++;
 451		if (page->idx >= bio->bi_vcnt) {
 452			page->bio = bio->bi_next;
 453			if (page->bio)
 454				page->idx = page->bio->bi_idx;
 455		}
 456
 457		pci_unmap_page(card->dev, desc->data_dma_handle,
 458			       bio_iovec_idx(bio, idx)->bv_len,
 459				 (control & DMASCR_TRANSFER_READ) ?
 460				PCI_DMA_TODEVICE : PCI_DMA_FROMDEVICE);
 461		if (control & DMASCR_HARD_ERROR) {
 462			/* error */
 463			clear_bit(BIO_UPTODATE, &bio->bi_flags);
 464			dev_printk(KERN_WARNING, &card->dev->dev,
 465				"I/O error on sector %d/%d\n",
 466				le32_to_cpu(desc->local_addr)>>9,
 467				le32_to_cpu(desc->transfer_size));
 468			dump_dmastat(card, control);
 469		} else if ((bio->bi_rw & REQ_WRITE) &&
 470			   le32_to_cpu(desc->local_addr) >> 9 ==
 471				card->init_size) {
 472			card->init_size += le32_to_cpu(desc->transfer_size) >> 9;
 473			if (card->init_size >> 1 >= card->mm_size) {
 474				dev_printk(KERN_INFO, &card->dev->dev,
 475					"memory now initialised\n");
 476				set_userbit(card, MEMORY_INITIALIZED, 1);
 477			}
 478		}
 479		if (bio != page->bio) {
 480			bio->bi_next = return_bio;
 481			return_bio = bio;
 482		}
 483
 484		if (last)
 485			break;
 486	}
 487
 488	if (debug & DEBUG_LED_ON_TRANSFER)
 489		set_led(card, LED_REMOVE, LED_OFF);
 490
 491	if (card->check_batteries) {
 492		card->check_batteries = 0;
 493		check_batteries(card);
 494	}
 495	if (page->headcnt >= page->cnt) {
 496		reset_page(page);
 497		card->Active = -1;
 498		activate(card);
 499	} else {
 500		/* haven't finished with this one yet */
 501		pr_debug("do some more\n");
 502		mm_start_io(card);
 503	}
 504 out_unlock:
 505	spin_unlock_bh(&card->lock);
 506
 507	while (return_bio) {
 508		struct bio *bio = return_bio;
 509
 510		return_bio = bio->bi_next;
 511		bio->bi_next = NULL;
 512		bio_endio(bio, 0);
 513	}
 514}
 515
 516static int mm_make_request(struct request_queue *q, struct bio *bio)
 517{
 518	struct cardinfo *card = q->queuedata;
 519	pr_debug("mm_make_request %llu %u\n",
 520		 (unsigned long long)bio->bi_sector, bio->bi_size);
 521
 522	spin_lock_irq(&card->lock);
 523	*card->biotail = bio;
 524	bio->bi_next = NULL;
 525	card->biotail = &bio->bi_next;
 526	spin_unlock_irq(&card->lock);
 527
 528	return 0;
 529}
 530
 531static irqreturn_t mm_interrupt(int irq, void *__card)
 532{
 533	struct cardinfo *card = (struct cardinfo *) __card;
 534	unsigned int dma_status;
 535	unsigned short cfg_status;
 536
 537HW_TRACE(0x30);
 538
 539	dma_status = le32_to_cpu(readl(card->csr_remap + DMA_STATUS_CTRL));
 540
 541	if (!(dma_status & (DMASCR_ERROR_MASK | DMASCR_CHAIN_COMPLETE))) {
 542		/* interrupt wasn't for me ... */
 543		return IRQ_NONE;
 544	}
 545
 546	/* clear COMPLETION interrupts */
 547	if (card->flags & UM_FLAG_NO_BYTE_STATUS)
 548		writel(cpu_to_le32(DMASCR_DMA_COMPLETE|DMASCR_CHAIN_COMPLETE),
 549		       card->csr_remap + DMA_STATUS_CTRL);
 550	else
 551		writeb((DMASCR_DMA_COMPLETE|DMASCR_CHAIN_COMPLETE) >> 16,
 552		       card->csr_remap + DMA_STATUS_CTRL + 2);
 553
 554	/* log errors and clear interrupt status */
 555	if (dma_status & DMASCR_ANY_ERR) {
 556		unsigned int	data_log1, data_log2;
 557		unsigned int	addr_log1, addr_log2;
 558		unsigned char	stat, count, syndrome, check;
 559
 560		stat = readb(card->csr_remap + MEMCTRLCMD_ERRSTATUS);
 561
 562		data_log1 = le32_to_cpu(readl(card->csr_remap +
 563						ERROR_DATA_LOG));
 564		data_log2 = le32_to_cpu(readl(card->csr_remap +
 565						ERROR_DATA_LOG + 4));
 566		addr_log1 = le32_to_cpu(readl(card->csr_remap +
 567						ERROR_ADDR_LOG));
 568		addr_log2 = readb(card->csr_remap + ERROR_ADDR_LOG + 4);
 569
 570		count = readb(card->csr_remap + ERROR_COUNT);
 571		syndrome = readb(card->csr_remap + ERROR_SYNDROME);
 572		check = readb(card->csr_remap + ERROR_CHECK);
 573
 574		dump_dmastat(card, dma_status);
 575
 576		if (stat & 0x01)
 577			dev_printk(KERN_ERR, &card->dev->dev,
 578				"Memory access error detected (err count %d)\n",
 579				count);
 580		if (stat & 0x02)
 581			dev_printk(KERN_ERR, &card->dev->dev,
 582				"Multi-bit EDC error\n");
 583
 584		dev_printk(KERN_ERR, &card->dev->dev,
 585			"Fault Address 0x%02x%08x, Fault Data 0x%08x%08x\n",
 586			addr_log2, addr_log1, data_log2, data_log1);
 587		dev_printk(KERN_ERR, &card->dev->dev,
 588			"Fault Check 0x%02x, Fault Syndrome 0x%02x\n",
 589			check, syndrome);
 590
 591		writeb(0, card->csr_remap + ERROR_COUNT);
 592	}
 593
 594	if (dma_status & DMASCR_PARITY_ERR_REP) {
 595		dev_printk(KERN_ERR, &card->dev->dev,
 596			"PARITY ERROR REPORTED\n");
 597		pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
 598		pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
 599	}
 600
 601	if (dma_status & DMASCR_PARITY_ERR_DET) {
 602		dev_printk(KERN_ERR, &card->dev->dev,
 603			"PARITY ERROR DETECTED\n");
 604		pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
 605		pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
 606	}
 607
 608	if (dma_status & DMASCR_SYSTEM_ERR_SIG) {
 609		dev_printk(KERN_ERR, &card->dev->dev, "SYSTEM ERROR\n");
 610		pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
 611		pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
 612	}
 613
 614	if (dma_status & DMASCR_TARGET_ABT) {
 615		dev_printk(KERN_ERR, &card->dev->dev, "TARGET ABORT\n");
 616		pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
 617		pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
 618	}
 619
 620	if (dma_status & DMASCR_MASTER_ABT) {
 621		dev_printk(KERN_ERR, &card->dev->dev, "MASTER ABORT\n");
 622		pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
 623		pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
 624	}
 625
 626	/* and process the DMA descriptors */
 627	card->dma_status = dma_status;
 628	tasklet_schedule(&card->tasklet);
 629
 630HW_TRACE(0x36);
 631
 632	return IRQ_HANDLED;
 633}
 634
 635/*
 636 * If both batteries are good, no LED
 637 * If either battery has been warned, solid LED
 638 * If both batteries are bad, flash the LED quickly
 639 * If either battery is bad, flash the LED semi quickly
 640 */
 641static void set_fault_to_battery_status(struct cardinfo *card)
 642{
 643	if (card->battery[0].good && card->battery[1].good)
 644		set_led(card, LED_FAULT, LED_OFF);
 645	else if (card->battery[0].warned || card->battery[1].warned)
 646		set_led(card, LED_FAULT, LED_ON);
 647	else if (!card->battery[0].good && !card->battery[1].good)
 648		set_led(card, LED_FAULT, LED_FLASH_7_0);
 649	else
 650		set_led(card, LED_FAULT, LED_FLASH_3_5);
 651}
 652
 653static void init_battery_timer(void);
 654
 655static int check_battery(struct cardinfo *card, int battery, int status)
 656{
 657	if (status != card->battery[battery].good) {
 658		card->battery[battery].good = !card->battery[battery].good;
 659		card->battery[battery].last_change = jiffies;
 660
 661		if (card->battery[battery].good) {
 662			dev_printk(KERN_ERR, &card->dev->dev,
 663				"Battery %d now good\n", battery + 1);
 664			card->battery[battery].warned = 0;
 665		} else
 666			dev_printk(KERN_ERR, &card->dev->dev,
 667				"Battery %d now FAILED\n", battery + 1);
 668
 669		return 1;
 670	} else if (!card->battery[battery].good &&
 671		   !card->battery[battery].warned &&
 672		   time_after_eq(jiffies, card->battery[battery].last_change +
 673				 (HZ * 60 * 60 * 5))) {
 674		dev_printk(KERN_ERR, &card->dev->dev,
 675			"Battery %d still FAILED after 5 hours\n", battery + 1);
 676		card->battery[battery].warned = 1;
 677
 678		return 1;
 679	}
 680
 681	return 0;
 682}
 683
 684static void check_batteries(struct cardinfo *card)
 685{
 686	/* NOTE: this must *never* be called while the card
 687	 * is doing (bus-to-card) DMA, or you will need the
 688	 * reset switch
 689	 */
 690	unsigned char status;
 691	int ret1, ret2;
 692
 693	status = readb(card->csr_remap + MEMCTRLSTATUS_BATTERY);
 694	if (debug & DEBUG_BATTERY_POLLING)
 695		dev_printk(KERN_DEBUG, &card->dev->dev,
 696			"checking battery status, 1 = %s, 2 = %s\n",
 697		       (status & BATTERY_1_FAILURE) ? "FAILURE" : "OK",
 698		       (status & BATTERY_2_FAILURE) ? "FAILURE" : "OK");
 699
 700	ret1 = check_battery(card, 0, !(status & BATTERY_1_FAILURE));
 701	ret2 = check_battery(card, 1, !(status & BATTERY_2_FAILURE));
 702
 703	if (ret1 || ret2)
 704		set_fault_to_battery_status(card);
 705}
 706
 707static void check_all_batteries(unsigned long ptr)
 708{
 709	int i;
 710
 711	for (i = 0; i < num_cards; i++)
 712		if (!(cards[i].flags & UM_FLAG_NO_BATT)) {
 713			struct cardinfo *card = &cards[i];
 714			spin_lock_bh(&card->lock);
 715			if (card->Active >= 0)
 716				card->check_batteries = 1;
 717			else
 718				check_batteries(card);
 719			spin_unlock_bh(&card->lock);
 720		}
 721
 722	init_battery_timer();
 723}
 724
 725static void init_battery_timer(void)
 726{
 727	init_timer(&battery_timer);
 728	battery_timer.function = check_all_batteries;
 729	battery_timer.expires = jiffies + (HZ * 60);
 730	add_timer(&battery_timer);
 731}
 732
 733static void del_battery_timer(void)
 734{
 735	del_timer(&battery_timer);
 736}
 737
 738/*
 739 * Note no locks taken out here.  In a worst case scenario, we could drop
 740 * a chunk of system memory.  But that should never happen, since validation
 741 * happens at open or mount time, when locks are held.
 742 *
 743 *	That's crap, since doing that while some partitions are opened
 744 * or mounted will give you really nasty results.
 745 */
 746static int mm_revalidate(struct gendisk *disk)
 747{
 748	struct cardinfo *card = disk->private_data;
 749	set_capacity(disk, card->mm_size << 1);
 750	return 0;
 751}
 752
 753static int mm_getgeo(struct block_device *bdev, struct hd_geometry *geo)
 754{
 755	struct cardinfo *card = bdev->bd_disk->private_data;
 756	int size = card->mm_size * (1024 / MM_HARDSECT);
 757
 758	/*
 759	 * get geometry: we have to fake one...  trim the size to a
 760	 * multiple of 2048 (1M): tell we have 32 sectors, 64 heads,
 761	 * whatever cylinders.
 762	 */
 763	geo->heads     = 64;
 764	geo->sectors   = 32;
 765	geo->cylinders = size / (geo->heads * geo->sectors);
 766	return 0;
 767}
 768
 769static const struct block_device_operations mm_fops = {
 770	.owner		= THIS_MODULE,
 771	.getgeo		= mm_getgeo,
 772	.revalidate_disk = mm_revalidate,
 773};
 774
 775static int __devinit mm_pci_probe(struct pci_dev *dev,
 776				const struct pci_device_id *id)
 777{
 778	int ret = -ENODEV;
 779	struct cardinfo *card = &cards[num_cards];
 780	unsigned char	mem_present;
 781	unsigned char	batt_status;
 782	unsigned int	saved_bar, data;
 783	unsigned long	csr_base;
 784	unsigned long	csr_len;
 785	int		magic_number;
 786	static int	printed_version;
 787
 788	if (!printed_version++)
 789		printk(KERN_INFO DRIVER_VERSION " : " DRIVER_DESC "\n");
 790
 791	ret = pci_enable_device(dev);
 792	if (ret)
 793		return ret;
 794
 795	pci_write_config_byte(dev, PCI_LATENCY_TIMER, 0xF8);
 796	pci_set_master(dev);
 797
 798	card->dev         = dev;
 799
 800	csr_base = pci_resource_start(dev, 0);
 801	csr_len  = pci_resource_len(dev, 0);
 802	if (!csr_base || !csr_len)
 803		return -ENODEV;
 804
 805	dev_printk(KERN_INFO, &dev->dev,
 806	  "Micro Memory(tm) controller found (PCI Mem Module (Battery Backup))\n");
 807
 808	if (pci_set_dma_mask(dev, DMA_BIT_MASK(64)) &&
 809	    pci_set_dma_mask(dev, DMA_BIT_MASK(32))) {
 810		dev_printk(KERN_WARNING, &dev->dev, "NO suitable DMA found\n");
 811		return  -ENOMEM;
 812	}
 813
 814	ret = pci_request_regions(dev, DRIVER_NAME);
 815	if (ret) {
 816		dev_printk(KERN_ERR, &card->dev->dev,
 817			"Unable to request memory region\n");
 818		goto failed_req_csr;
 819	}
 820
 821	card->csr_remap = ioremap_nocache(csr_base, csr_len);
 822	if (!card->csr_remap) {
 823		dev_printk(KERN_ERR, &card->dev->dev,
 824			"Unable to remap memory region\n");
 825		ret = -ENOMEM;
 826
 827		goto failed_remap_csr;
 828	}
 829
 830	dev_printk(KERN_INFO, &card->dev->dev,
 831		"CSR 0x%08lx -> 0x%p (0x%lx)\n",
 832	       csr_base, card->csr_remap, csr_len);
 833
 834	switch (card->dev->device) {
 835	case 0x5415:
 836		card->flags |= UM_FLAG_NO_BYTE_STATUS | UM_FLAG_NO_BATTREG;
 837		magic_number = 0x59;
 838		break;
 839
 840	case 0x5425:
 841		card->flags |= UM_FLAG_NO_BYTE_STATUS;
 842		magic_number = 0x5C;
 843		break;
 844
 845	case 0x6155:
 846		card->flags |= UM_FLAG_NO_BYTE_STATUS |
 847				UM_FLAG_NO_BATTREG | UM_FLAG_NO_BATT;
 848		magic_number = 0x99;
 849		break;
 850
 851	default:
 852		magic_number = 0x100;
 853		break;
 854	}
 855
 856	if (readb(card->csr_remap + MEMCTRLSTATUS_MAGIC) != magic_number) {
 857		dev_printk(KERN_ERR, &card->dev->dev, "Magic number invalid\n");
 858		ret = -ENOMEM;
 859		goto failed_magic;
 860	}
 861
 862	card->mm_pages[0].desc = pci_alloc_consistent(card->dev,
 863						PAGE_SIZE * 2,
 864						&card->mm_pages[0].page_dma);
 865	card->mm_pages[1].desc = pci_alloc_consistent(card->dev,
 866						PAGE_SIZE * 2,
 867						&card->mm_pages[1].page_dma);
 868	if (card->mm_pages[0].desc == NULL ||
 869	    card->mm_pages[1].desc == NULL) {
 870		dev_printk(KERN_ERR, &card->dev->dev, "alloc failed\n");
 871		goto failed_alloc;
 872	}
 873	reset_page(&card->mm_pages[0]);
 874	reset_page(&card->mm_pages[1]);
 875	card->Ready = 0;	/* page 0 is ready */
 876	card->Active = -1;	/* no page is active */
 877	card->bio = NULL;
 878	card->biotail = &card->bio;
 879
 880	card->queue = blk_alloc_queue(GFP_KERNEL);
 881	if (!card->queue)
 882		goto failed_alloc;
 883
 884	blk_queue_make_request(card->queue, mm_make_request);
 885	card->queue->queue_lock = &card->lock;
 886	card->queue->queuedata = card;
 887
 888	tasklet_init(&card->tasklet, process_page, (unsigned long)card);
 889
 890	card->check_batteries = 0;
 891
 892	mem_present = readb(card->csr_remap + MEMCTRLSTATUS_MEMORY);
 893	switch (mem_present) {
 894	case MEM_128_MB:
 895		card->mm_size = 1024 * 128;
 896		break;
 897	case MEM_256_MB:
 898		card->mm_size = 1024 * 256;
 899		break;
 900	case MEM_512_MB:
 901		card->mm_size = 1024 * 512;
 902		break;
 903	case MEM_1_GB:
 904		card->mm_size = 1024 * 1024;
 905		break;
 906	case MEM_2_GB:
 907		card->mm_size = 1024 * 2048;
 908		break;
 909	default:
 910		card->mm_size = 0;
 911		break;
 912	}
 913
 914	/* Clear the LED's we control */
 915	set_led(card, LED_REMOVE, LED_OFF);
 916	set_led(card, LED_FAULT, LED_OFF);
 917
 918	batt_status = readb(card->csr_remap + MEMCTRLSTATUS_BATTERY);
 919
 920	card->battery[0].good = !(batt_status & BATTERY_1_FAILURE);
 921	card->battery[1].good = !(batt_status & BATTERY_2_FAILURE);
 922	card->battery[0].last_change = card->battery[1].last_change = jiffies;
 923
 924	if (card->flags & UM_FLAG_NO_BATT)
 925		dev_printk(KERN_INFO, &card->dev->dev,
 926			"Size %d KB\n", card->mm_size);
 927	else {
 928		dev_printk(KERN_INFO, &card->dev->dev,
 929			"Size %d KB, Battery 1 %s (%s), Battery 2 %s (%s)\n",
 930		       card->mm_size,
 931		       batt_status & BATTERY_1_DISABLED ? "Disabled" : "Enabled",
 932		       card->battery[0].good ? "OK" : "FAILURE",
 933		       batt_status & BATTERY_2_DISABLED ? "Disabled" : "Enabled",
 934		       card->battery[1].good ? "OK" : "FAILURE");
 935
 936		set_fault_to_battery_status(card);
 937	}
 938
 939	pci_read_config_dword(dev, PCI_BASE_ADDRESS_1, &saved_bar);
 940	data = 0xffffffff;
 941	pci_write_config_dword(dev, PCI_BASE_ADDRESS_1, data);
 942	pci_read_config_dword(dev, PCI_BASE_ADDRESS_1, &data);
 943	pci_write_config_dword(dev, PCI_BASE_ADDRESS_1, saved_bar);
 944	data &= 0xfffffff0;
 945	data = ~data;
 946	data += 1;
 947
 948	if (request_irq(dev->irq, mm_interrupt, IRQF_SHARED, DRIVER_NAME,
 949			card)) {
 950		dev_printk(KERN_ERR, &card->dev->dev,
 951			"Unable to allocate IRQ\n");
 952		ret = -ENODEV;
 953		goto failed_req_irq;
 954	}
 955
 956	dev_printk(KERN_INFO, &card->dev->dev,
 957		"Window size %d bytes, IRQ %d\n", data, dev->irq);
 958
 959	spin_lock_init(&card->lock);
 960
 961	pci_set_drvdata(dev, card);
 962
 963	if (pci_write_cmd != 0x0F) 	/* If not Memory Write & Invalidate */
 964		pci_write_cmd = 0x07;	/* then Memory Write command */
 965
 966	if (pci_write_cmd & 0x08) { /* use Memory Write and Invalidate */
 967		unsigned short cfg_command;
 968		pci_read_config_word(dev, PCI_COMMAND, &cfg_command);
 969		cfg_command |= 0x10; /* Memory Write & Invalidate Enable */
 970		pci_write_config_word(dev, PCI_COMMAND, cfg_command);
 971	}
 972	pci_cmds = (pci_read_cmd << 28) | (pci_write_cmd << 24);
 973
 974	num_cards++;
 975
 976	if (!get_userbit(card, MEMORY_INITIALIZED)) {
 977		dev_printk(KERN_INFO, &card->dev->dev,
 978		  "memory NOT initialized. Consider over-writing whole device.\n");
 979		card->init_size = 0;
 980	} else {
 981		dev_printk(KERN_INFO, &card->dev->dev,
 982			"memory already initialized\n");
 983		card->init_size = card->mm_size;
 984	}
 985
 986	/* Enable ECC */
 987	writeb(EDC_STORE_CORRECT, card->csr_remap + MEMCTRLCMD_ERRCTRL);
 988
 989	return 0;
 990
 991 failed_req_irq:
 992 failed_alloc:
 993	if (card->mm_pages[0].desc)
 994		pci_free_consistent(card->dev, PAGE_SIZE*2,
 995				    card->mm_pages[0].desc,
 996				    card->mm_pages[0].page_dma);
 997	if (card->mm_pages[1].desc)
 998		pci_free_consistent(card->dev, PAGE_SIZE*2,
 999				    card->mm_pages[1].desc,
1000				    card->mm_pages[1].page_dma);
1001 failed_magic:
1002	iounmap(card->csr_remap);
1003 failed_remap_csr:
1004	pci_release_regions(dev);
1005 failed_req_csr:
1006
1007	return ret;
1008}
1009
1010static void mm_pci_remove(struct pci_dev *dev)
1011{
1012	struct cardinfo *card = pci_get_drvdata(dev);
1013
1014	tasklet_kill(&card->tasklet);
1015	free_irq(dev->irq, card);
1016	iounmap(card->csr_remap);
1017
1018	if (card->mm_pages[0].desc)
1019		pci_free_consistent(card->dev, PAGE_SIZE*2,
1020				    card->mm_pages[0].desc,
1021				    card->mm_pages[0].page_dma);
1022	if (card->mm_pages[1].desc)
1023		pci_free_consistent(card->dev, PAGE_SIZE*2,
1024				    card->mm_pages[1].desc,
1025				    card->mm_pages[1].page_dma);
1026	blk_cleanup_queue(card->queue);
1027
1028	pci_release_regions(dev);
1029	pci_disable_device(dev);
1030}
1031
1032static const struct pci_device_id mm_pci_ids[] = {
1033    {PCI_DEVICE(PCI_VENDOR_ID_MICRO_MEMORY, PCI_DEVICE_ID_MICRO_MEMORY_5415CN)},
1034    {PCI_DEVICE(PCI_VENDOR_ID_MICRO_MEMORY, PCI_DEVICE_ID_MICRO_MEMORY_5425CN)},
1035    {PCI_DEVICE(PCI_VENDOR_ID_MICRO_MEMORY, PCI_DEVICE_ID_MICRO_MEMORY_6155)},
1036    {
1037	.vendor	=	0x8086,
1038	.device	=	0xB555,
1039	.subvendor =	0x1332,
1040	.subdevice =	0x5460,
1041	.class =	0x050000,
1042	.class_mask =	0,
1043    }, { /* end: all zeroes */ }
1044};
1045
1046MODULE_DEVICE_TABLE(pci, mm_pci_ids);
1047
1048static struct pci_driver mm_pci_driver = {
1049	.name		= DRIVER_NAME,
1050	.id_table	= mm_pci_ids,
1051	.probe		= mm_pci_probe,
1052	.remove		= mm_pci_remove,
1053};
1054
1055static int __init mm_init(void)
1056{
1057	int retval, i;
1058	int err;
1059
1060	retval = pci_register_driver(&mm_pci_driver);
1061	if (retval)
1062		return -ENOMEM;
1063
1064	err = major_nr = register_blkdev(0, DRIVER_NAME);
1065	if (err < 0) {
1066		pci_unregister_driver(&mm_pci_driver);
1067		return -EIO;
1068	}
1069
1070	for (i = 0; i < num_cards; i++) {
1071		mm_gendisk[i] = alloc_disk(1 << MM_SHIFT);
1072		if (!mm_gendisk[i])
1073			goto out;
1074	}
1075
1076	for (i = 0; i < num_cards; i++) {
1077		struct gendisk *disk = mm_gendisk[i];
1078		sprintf(disk->disk_name, "umem%c", 'a'+i);
1079		spin_lock_init(&cards[i].lock);
1080		disk->major = major_nr;
1081		disk->first_minor  = i << MM_SHIFT;
1082		disk->fops = &mm_fops;
1083		disk->private_data = &cards[i];
1084		disk->queue = cards[i].queue;
1085		set_capacity(disk, cards[i].mm_size << 1);
1086		add_disk(disk);
1087	}
1088
1089	init_battery_timer();
1090	printk(KERN_INFO "MM: desc_per_page = %ld\n", DESC_PER_PAGE);
1091/* printk("mm_init: Done. 10-19-01 9:00\n"); */
1092	return 0;
1093
1094out:
1095	pci_unregister_driver(&mm_pci_driver);
1096	unregister_blkdev(major_nr, DRIVER_NAME);
1097	while (i--)
1098		put_disk(mm_gendisk[i]);
1099	return -ENOMEM;
1100}
1101
1102static void __exit mm_cleanup(void)
1103{
1104	int i;
1105
1106	del_battery_timer();
1107
1108	for (i = 0; i < num_cards ; i++) {
1109		del_gendisk(mm_gendisk[i]);
1110		put_disk(mm_gendisk[i]);
1111	}
1112
1113	pci_unregister_driver(&mm_pci_driver);
1114
1115	unregister_blkdev(major_nr, DRIVER_NAME);
1116}
1117
1118module_init(mm_init);
1119module_exit(mm_cleanup);
1120
1121MODULE_AUTHOR(DRIVER_AUTHOR);
1122MODULE_DESCRIPTION(DRIVER_DESC);
1123MODULE_LICENSE("GPL");