Linux Audio

Check our new training course

Loading...
   1/*
   2 * mm.c - Micro Memory(tm) PCI memory board block device driver - v2.3
   3 *
   4 * (C) 2001 San Mehat <nettwerk@valinux.com>
   5 * (C) 2001 Johannes Erdfelt <jerdfelt@valinux.com>
   6 * (C) 2001 NeilBrown <neilb@cse.unsw.edu.au>
   7 *
   8 * This driver for the Micro Memory PCI Memory Module with Battery Backup
   9 * is Copyright Micro Memory Inc 2001-2002.  All rights reserved.
  10 *
  11 * This driver is released to the public under the terms of the
  12 *  GNU GENERAL PUBLIC LICENSE version 2
  13 * See the file COPYING for details.
  14 *
  15 * This driver provides a standard block device interface for Micro Memory(tm)
  16 * PCI based RAM boards.
  17 * 10/05/01: Phap Nguyen - Rebuilt the driver
  18 * 10/22/01: Phap Nguyen - v2.1 Added disk partitioning
  19 * 29oct2001:NeilBrown   - Use make_request_fn instead of request_fn
  20 *                       - use stand disk partitioning (so fdisk works).
  21 * 08nov2001:NeilBrown	 - change driver name from "mm" to "umem"
  22 *			 - incorporate into main kernel
  23 * 08apr2002:NeilBrown   - Move some of interrupt handle to tasklet
  24 *			 - use spin_lock_bh instead of _irq
  25 *			 - Never block on make_request.  queue
  26 *			   bh's instead.
  27 *			 - unregister umem from devfs at mod unload
  28 *			 - Change version to 2.3
  29 * 07Nov2001:Phap Nguyen - Select pci read command: 06, 12, 15 (Decimal)
  30 * 07Jan2002: P. Nguyen  - Used PCI Memory Write & Invalidate for DMA
  31 * 15May2002:NeilBrown   - convert to bio for 2.5
  32 * 17May2002:NeilBrown   - remove init_mem initialisation.  Instead detect
  33 *			 - a sequence of writes that cover the card, and
  34 *			 - set initialised bit then.
  35 */
  36
  37#undef DEBUG	/* #define DEBUG if you want debugging info (pr_debug) */
  38#include <linux/fs.h>
  39#include <linux/bio.h>
  40#include <linux/kernel.h>
  41#include <linux/mm.h>
  42#include <linux/mman.h>
  43#include <linux/gfp.h>
  44#include <linux/ioctl.h>
  45#include <linux/module.h>
  46#include <linux/init.h>
  47#include <linux/interrupt.h>
  48#include <linux/timer.h>
  49#include <linux/pci.h>
  50#include <linux/dma-mapping.h>
  51
  52#include <linux/fcntl.h>        /* O_ACCMODE */
  53#include <linux/hdreg.h>  /* HDIO_GETGEO */
  54
  55#include "umem.h"
  56
  57#include <asm/uaccess.h>
  58#include <asm/io.h>
  59
  60#define MM_MAXCARDS 4
  61#define MM_RAHEAD 2      /* two sectors */
  62#define MM_BLKSIZE 1024  /* 1k blocks */
  63#define MM_HARDSECT 512  /* 512-byte hardware sectors */
  64#define MM_SHIFT 6       /* max 64 partitions on 4 cards  */
  65
  66/*
  67 * Version Information
  68 */
  69
  70#define DRIVER_NAME	"umem"
  71#define DRIVER_VERSION	"v2.3"
  72#define DRIVER_AUTHOR	"San Mehat, Johannes Erdfelt, NeilBrown"
  73#define DRIVER_DESC	"Micro Memory(tm) PCI memory board block driver"
  74
  75static int debug;
  76/* #define HW_TRACE(x)     writeb(x,cards[0].csr_remap + MEMCTRLSTATUS_MAGIC) */
  77#define HW_TRACE(x)
  78
  79#define DEBUG_LED_ON_TRANSFER	0x01
  80#define DEBUG_BATTERY_POLLING	0x02
  81
  82module_param(debug, int, 0644);
  83MODULE_PARM_DESC(debug, "Debug bitmask");
  84
  85static int pci_read_cmd = 0x0C;		/* Read Multiple */
  86module_param(pci_read_cmd, int, 0);
  87MODULE_PARM_DESC(pci_read_cmd, "PCI read command");
  88
  89static int pci_write_cmd = 0x0F;	/* Write and Invalidate */
  90module_param(pci_write_cmd, int, 0);
  91MODULE_PARM_DESC(pci_write_cmd, "PCI write command");
  92
  93static int pci_cmds;
  94
  95static int major_nr;
  96
  97#include <linux/blkdev.h>
  98#include <linux/blkpg.h>
  99
 100struct cardinfo {
 101	struct pci_dev	*dev;
 102
 103	unsigned char	__iomem *csr_remap;
 104	unsigned int	mm_size;  /* size in kbytes */
 105
 106	unsigned int	init_size; /* initial segment, in sectors,
 107				    * that we know to
 108				    * have been written
 109				    */
 110	struct bio	*bio, *currentbio, **biotail;
 111	int		current_idx;
 112	sector_t	current_sector;
 113
 114	struct request_queue *queue;
 115
 116	struct mm_page {
 117		dma_addr_t		page_dma;
 118		struct mm_dma_desc	*desc;
 119		int	 		cnt, headcnt;
 120		struct bio		*bio, **biotail;
 121		int			idx;
 122	} mm_pages[2];
 123#define DESC_PER_PAGE ((PAGE_SIZE*2)/sizeof(struct mm_dma_desc))
 124
 125	int  Active, Ready;
 126
 127	struct tasklet_struct	tasklet;
 128	unsigned int dma_status;
 129
 130	struct {
 131		int		good;
 132		int		warned;
 133		unsigned long	last_change;
 134	} battery[2];
 135
 136	spinlock_t 	lock;
 137	int		check_batteries;
 138
 139	int		flags;
 140};
 141
 142static struct cardinfo cards[MM_MAXCARDS];
 143static struct timer_list battery_timer;
 144
 145static int num_cards;
 146
 147static struct gendisk *mm_gendisk[MM_MAXCARDS];
 148
 149static void check_batteries(struct cardinfo *card);
 150
 151static int get_userbit(struct cardinfo *card, int bit)
 152{
 153	unsigned char led;
 154
 155	led = readb(card->csr_remap + MEMCTRLCMD_LEDCTRL);
 156	return led & bit;
 157}
 158
 159static int set_userbit(struct cardinfo *card, int bit, unsigned char state)
 160{
 161	unsigned char led;
 162
 163	led = readb(card->csr_remap + MEMCTRLCMD_LEDCTRL);
 164	if (state)
 165		led |= bit;
 166	else
 167		led &= ~bit;
 168	writeb(led, card->csr_remap + MEMCTRLCMD_LEDCTRL);
 169
 170	return 0;
 171}
 172
 173/*
 174 * NOTE: For the power LED, use the LED_POWER_* macros since they differ
 175 */
 176static void set_led(struct cardinfo *card, int shift, unsigned char state)
 177{
 178	unsigned char led;
 179
 180	led = readb(card->csr_remap + MEMCTRLCMD_LEDCTRL);
 181	if (state == LED_FLIP)
 182		led ^= (1<<shift);
 183	else {
 184		led &= ~(0x03 << shift);
 185		led |= (state << shift);
 186	}
 187	writeb(led, card->csr_remap + MEMCTRLCMD_LEDCTRL);
 188
 189}
 190
 191#ifdef MM_DIAG
 192static void dump_regs(struct cardinfo *card)
 193{
 194	unsigned char *p;
 195	int i, i1;
 196
 197	p = card->csr_remap;
 198	for (i = 0; i < 8; i++) {
 199		printk(KERN_DEBUG "%p   ", p);
 200
 201		for (i1 = 0; i1 < 16; i1++)
 202			printk("%02x ", *p++);
 203
 204		printk("\n");
 205	}
 206}
 207#endif
 208
 209static void dump_dmastat(struct cardinfo *card, unsigned int dmastat)
 210{
 211	dev_printk(KERN_DEBUG, &card->dev->dev, "DMAstat - ");
 212	if (dmastat & DMASCR_ANY_ERR)
 213		printk(KERN_CONT "ANY_ERR ");
 214	if (dmastat & DMASCR_MBE_ERR)
 215		printk(KERN_CONT "MBE_ERR ");
 216	if (dmastat & DMASCR_PARITY_ERR_REP)
 217		printk(KERN_CONT "PARITY_ERR_REP ");
 218	if (dmastat & DMASCR_PARITY_ERR_DET)
 219		printk(KERN_CONT "PARITY_ERR_DET ");
 220	if (dmastat & DMASCR_SYSTEM_ERR_SIG)
 221		printk(KERN_CONT "SYSTEM_ERR_SIG ");
 222	if (dmastat & DMASCR_TARGET_ABT)
 223		printk(KERN_CONT "TARGET_ABT ");
 224	if (dmastat & DMASCR_MASTER_ABT)
 225		printk(KERN_CONT "MASTER_ABT ");
 226	if (dmastat & DMASCR_CHAIN_COMPLETE)
 227		printk(KERN_CONT "CHAIN_COMPLETE ");
 228	if (dmastat & DMASCR_DMA_COMPLETE)
 229		printk(KERN_CONT "DMA_COMPLETE ");
 230	printk("\n");
 231}
 232
 233/*
 234 * Theory of request handling
 235 *
 236 * Each bio is assigned to one mm_dma_desc - which may not be enough FIXME
 237 * We have two pages of mm_dma_desc, holding about 64 descriptors
 238 * each.  These are allocated at init time.
 239 * One page is "Ready" and is either full, or can have request added.
 240 * The other page might be "Active", which DMA is happening on it.
 241 *
 242 * Whenever IO on the active page completes, the Ready page is activated
 243 * and the ex-Active page is clean out and made Ready.
 244 * Otherwise the Ready page is only activated when it becomes full.
 245 *
 246 * If a request arrives while both pages a full, it is queued, and b_rdev is
 247 * overloaded to record whether it was a read or a write.
 248 *
 249 * The interrupt handler only polls the device to clear the interrupt.
 250 * The processing of the result is done in a tasklet.
 251 */
 252
 253static void mm_start_io(struct cardinfo *card)
 254{
 255	/* we have the lock, we know there is
 256	 * no IO active, and we know that card->Active
 257	 * is set
 258	 */
 259	struct mm_dma_desc *desc;
 260	struct mm_page *page;
 261	int offset;
 262
 263	/* make the last descriptor end the chain */
 264	page = &card->mm_pages[card->Active];
 265	pr_debug("start_io: %d %d->%d\n",
 266		card->Active, page->headcnt, page->cnt - 1);
 267	desc = &page->desc[page->cnt-1];
 268
 269	desc->control_bits |= cpu_to_le32(DMASCR_CHAIN_COMP_EN);
 270	desc->control_bits &= ~cpu_to_le32(DMASCR_CHAIN_EN);
 271	desc->sem_control_bits = desc->control_bits;
 272
 273
 274	if (debug & DEBUG_LED_ON_TRANSFER)
 275		set_led(card, LED_REMOVE, LED_ON);
 276
 277	desc = &page->desc[page->headcnt];
 278	writel(0, card->csr_remap + DMA_PCI_ADDR);
 279	writel(0, card->csr_remap + DMA_PCI_ADDR + 4);
 280
 281	writel(0, card->csr_remap + DMA_LOCAL_ADDR);
 282	writel(0, card->csr_remap + DMA_LOCAL_ADDR + 4);
 283
 284	writel(0, card->csr_remap + DMA_TRANSFER_SIZE);
 285	writel(0, card->csr_remap + DMA_TRANSFER_SIZE + 4);
 286
 287	writel(0, card->csr_remap + DMA_SEMAPHORE_ADDR);
 288	writel(0, card->csr_remap + DMA_SEMAPHORE_ADDR + 4);
 289
 290	offset = ((char *)desc) - ((char *)page->desc);
 291	writel(cpu_to_le32((page->page_dma+offset) & 0xffffffff),
 292	       card->csr_remap + DMA_DESCRIPTOR_ADDR);
 293	/* Force the value to u64 before shifting otherwise >> 32 is undefined C
 294	 * and on some ports will do nothing ! */
 295	writel(cpu_to_le32(((u64)page->page_dma)>>32),
 296	       card->csr_remap + DMA_DESCRIPTOR_ADDR + 4);
 297
 298	/* Go, go, go */
 299	writel(cpu_to_le32(DMASCR_GO | DMASCR_CHAIN_EN | pci_cmds),
 300	       card->csr_remap + DMA_STATUS_CTRL);
 301}
 302
 303static int add_bio(struct cardinfo *card);
 304
 305static void activate(struct cardinfo *card)
 306{
 307	/* if No page is Active, and Ready is
 308	 * not empty, then switch Ready page
 309	 * to active and start IO.
 310	 * Then add any bh's that are available to Ready
 311	 */
 312
 313	do {
 314		while (add_bio(card))
 315			;
 316
 317		if (card->Active == -1 &&
 318		    card->mm_pages[card->Ready].cnt > 0) {
 319			card->Active = card->Ready;
 320			card->Ready = 1-card->Ready;
 321			mm_start_io(card);
 322		}
 323
 324	} while (card->Active == -1 && add_bio(card));
 325}
 326
 327static inline void reset_page(struct mm_page *page)
 328{
 329	page->cnt = 0;
 330	page->headcnt = 0;
 331	page->bio = NULL;
 332	page->biotail = &page->bio;
 333}
 334
 335/*
 336 * If there is room on Ready page, take
 337 * one bh off list and add it.
 338 * return 1 if there was room, else 0.
 339 */
 340static int add_bio(struct cardinfo *card)
 341{
 342	struct mm_page *p;
 343	struct mm_dma_desc *desc;
 344	dma_addr_t dma_handle;
 345	int offset;
 346	struct bio *bio;
 347	struct bio_vec *vec;
 348	int idx;
 349	int rw;
 350	int len;
 351
 352	bio = card->currentbio;
 353	if (!bio && card->bio) {
 354		card->currentbio = card->bio;
 355		card->current_idx = card->bio->bi_idx;
 356		card->current_sector = card->bio->bi_sector;
 357		card->bio = card->bio->bi_next;
 358		if (card->bio == NULL)
 359			card->biotail = &card->bio;
 360		card->currentbio->bi_next = NULL;
 361		return 1;
 362	}
 363	if (!bio)
 364		return 0;
 365	idx = card->current_idx;
 366
 367	rw = bio_rw(bio);
 368	if (card->mm_pages[card->Ready].cnt >= DESC_PER_PAGE)
 369		return 0;
 370
 371	vec = bio_iovec_idx(bio, idx);
 372	len = vec->bv_len;
 373	dma_handle = pci_map_page(card->dev,
 374				  vec->bv_page,
 375				  vec->bv_offset,
 376				  len,
 377				  (rw == READ) ?
 378				  PCI_DMA_FROMDEVICE : PCI_DMA_TODEVICE);
 379
 380	p = &card->mm_pages[card->Ready];
 381	desc = &p->desc[p->cnt];
 382	p->cnt++;
 383	if (p->bio == NULL)
 384		p->idx = idx;
 385	if ((p->biotail) != &bio->bi_next) {
 386		*(p->biotail) = bio;
 387		p->biotail = &(bio->bi_next);
 388		bio->bi_next = NULL;
 389	}
 390
 391	desc->data_dma_handle = dma_handle;
 392
 393	desc->pci_addr = cpu_to_le64((u64)desc->data_dma_handle);
 394	desc->local_addr = cpu_to_le64(card->current_sector << 9);
 395	desc->transfer_size = cpu_to_le32(len);
 396	offset = (((char *)&desc->sem_control_bits) - ((char *)p->desc));
 397	desc->sem_addr = cpu_to_le64((u64)(p->page_dma+offset));
 398	desc->zero1 = desc->zero2 = 0;
 399	offset = (((char *)(desc+1)) - ((char *)p->desc));
 400	desc->next_desc_addr = cpu_to_le64(p->page_dma+offset);
 401	desc->control_bits = cpu_to_le32(DMASCR_GO|DMASCR_ERR_INT_EN|
 402					 DMASCR_PARITY_INT_EN|
 403					 DMASCR_CHAIN_EN |
 404					 DMASCR_SEM_EN |
 405					 pci_cmds);
 406	if (rw == WRITE)
 407		desc->control_bits |= cpu_to_le32(DMASCR_TRANSFER_READ);
 408	desc->sem_control_bits = desc->control_bits;
 409
 410	card->current_sector += (len >> 9);
 411	idx++;
 412	card->current_idx = idx;
 413	if (idx >= bio->bi_vcnt)
 414		card->currentbio = NULL;
 415
 416	return 1;
 417}
 418
 419static void process_page(unsigned long data)
 420{
 421	/* check if any of the requests in the page are DMA_COMPLETE,
 422	 * and deal with them appropriately.
 423	 * If we find a descriptor without DMA_COMPLETE in the semaphore, then
 424	 * dma must have hit an error on that descriptor, so use dma_status
 425	 * instead and assume that all following descriptors must be re-tried.
 426	 */
 427	struct mm_page *page;
 428	struct bio *return_bio = NULL;
 429	struct cardinfo *card = (struct cardinfo *)data;
 430	unsigned int dma_status = card->dma_status;
 431
 432	spin_lock_bh(&card->lock);
 433	if (card->Active < 0)
 434		goto out_unlock;
 435	page = &card->mm_pages[card->Active];
 436
 437	while (page->headcnt < page->cnt) {
 438		struct bio *bio = page->bio;
 439		struct mm_dma_desc *desc = &page->desc[page->headcnt];
 440		int control = le32_to_cpu(desc->sem_control_bits);
 441		int last = 0;
 442		int idx;
 443
 444		if (!(control & DMASCR_DMA_COMPLETE)) {
 445			control = dma_status;
 446			last = 1;
 447		}
 448		page->headcnt++;
 449		idx = page->idx;
 450		page->idx++;
 451		if (page->idx >= bio->bi_vcnt) {
 452			page->bio = bio->bi_next;
 453			if (page->bio)
 454				page->idx = page->bio->bi_idx;
 455		}
 456
 457		pci_unmap_page(card->dev, desc->data_dma_handle,
 458			       bio_iovec_idx(bio, idx)->bv_len,
 459				 (control & DMASCR_TRANSFER_READ) ?
 460				PCI_DMA_TODEVICE : PCI_DMA_FROMDEVICE);
 461		if (control & DMASCR_HARD_ERROR) {
 462			/* error */
 463			clear_bit(BIO_UPTODATE, &bio->bi_flags);
 464			dev_printk(KERN_WARNING, &card->dev->dev,
 465				"I/O error on sector %d/%d\n",
 466				le32_to_cpu(desc->local_addr)>>9,
 467				le32_to_cpu(desc->transfer_size));
 468			dump_dmastat(card, control);
 469		} else if ((bio->bi_rw & REQ_WRITE) &&
 470			   le32_to_cpu(desc->local_addr) >> 9 ==
 471				card->init_size) {
 472			card->init_size += le32_to_cpu(desc->transfer_size) >> 9;
 473			if (card->init_size >> 1 >= card->mm_size) {
 474				dev_printk(KERN_INFO, &card->dev->dev,
 475					"memory now initialised\n");
 476				set_userbit(card, MEMORY_INITIALIZED, 1);
 477			}
 478		}
 479		if (bio != page->bio) {
 480			bio->bi_next = return_bio;
 481			return_bio = bio;
 482		}
 483
 484		if (last)
 485			break;
 486	}
 487
 488	if (debug & DEBUG_LED_ON_TRANSFER)
 489		set_led(card, LED_REMOVE, LED_OFF);
 490
 491	if (card->check_batteries) {
 492		card->check_batteries = 0;
 493		check_batteries(card);
 494	}
 495	if (page->headcnt >= page->cnt) {
 496		reset_page(page);
 497		card->Active = -1;
 498		activate(card);
 499	} else {
 500		/* haven't finished with this one yet */
 501		pr_debug("do some more\n");
 502		mm_start_io(card);
 503	}
 504 out_unlock:
 505	spin_unlock_bh(&card->lock);
 506
 507	while (return_bio) {
 508		struct bio *bio = return_bio;
 509
 510		return_bio = bio->bi_next;
 511		bio->bi_next = NULL;
 512		bio_endio(bio, 0);
 513	}
 514}
 515
 516struct mm_plug_cb {
 517	struct blk_plug_cb cb;
 518	struct cardinfo *card;
 519};
 520
 521static void mm_unplug(struct blk_plug_cb *cb)
 522{
 523	struct mm_plug_cb *mmcb = container_of(cb, struct mm_plug_cb, cb);
 524
 525	spin_lock_irq(&mmcb->card->lock);
 526	activate(mmcb->card);
 527	spin_unlock_irq(&mmcb->card->lock);
 528	kfree(mmcb);
 529}
 530
 531static int mm_check_plugged(struct cardinfo *card)
 532{
 533	struct blk_plug *plug = current->plug;
 534	struct mm_plug_cb *mmcb;
 535
 536	if (!plug)
 537		return 0;
 538
 539	list_for_each_entry(mmcb, &plug->cb_list, cb.list) {
 540		if (mmcb->cb.callback == mm_unplug && mmcb->card == card)
 541			return 1;
 542	}
 543	/* Not currently on the callback list */
 544	mmcb = kmalloc(sizeof(*mmcb), GFP_ATOMIC);
 545	if (!mmcb)
 546		return 0;
 547
 548	mmcb->card = card;
 549	mmcb->cb.callback = mm_unplug;
 550	list_add(&mmcb->cb.list, &plug->cb_list);
 551	return 1;
 552}
 553
 554static void mm_make_request(struct request_queue *q, struct bio *bio)
 555{
 556	struct cardinfo *card = q->queuedata;
 557	pr_debug("mm_make_request %llu %u\n",
 558		 (unsigned long long)bio->bi_sector, bio->bi_size);
 559
 560	spin_lock_irq(&card->lock);
 561	*card->biotail = bio;
 562	bio->bi_next = NULL;
 563	card->biotail = &bio->bi_next;
 564	if (bio->bi_rw & REQ_SYNC || !mm_check_plugged(card))
 565		activate(card);
 566	spin_unlock_irq(&card->lock);
 567
 568	return;
 569}
 570
 571static irqreturn_t mm_interrupt(int irq, void *__card)
 572{
 573	struct cardinfo *card = (struct cardinfo *) __card;
 574	unsigned int dma_status;
 575	unsigned short cfg_status;
 576
 577HW_TRACE(0x30);
 578
 579	dma_status = le32_to_cpu(readl(card->csr_remap + DMA_STATUS_CTRL));
 580
 581	if (!(dma_status & (DMASCR_ERROR_MASK | DMASCR_CHAIN_COMPLETE))) {
 582		/* interrupt wasn't for me ... */
 583		return IRQ_NONE;
 584	}
 585
 586	/* clear COMPLETION interrupts */
 587	if (card->flags & UM_FLAG_NO_BYTE_STATUS)
 588		writel(cpu_to_le32(DMASCR_DMA_COMPLETE|DMASCR_CHAIN_COMPLETE),
 589		       card->csr_remap + DMA_STATUS_CTRL);
 590	else
 591		writeb((DMASCR_DMA_COMPLETE|DMASCR_CHAIN_COMPLETE) >> 16,
 592		       card->csr_remap + DMA_STATUS_CTRL + 2);
 593
 594	/* log errors and clear interrupt status */
 595	if (dma_status & DMASCR_ANY_ERR) {
 596		unsigned int	data_log1, data_log2;
 597		unsigned int	addr_log1, addr_log2;
 598		unsigned char	stat, count, syndrome, check;
 599
 600		stat = readb(card->csr_remap + MEMCTRLCMD_ERRSTATUS);
 601
 602		data_log1 = le32_to_cpu(readl(card->csr_remap +
 603						ERROR_DATA_LOG));
 604		data_log2 = le32_to_cpu(readl(card->csr_remap +
 605						ERROR_DATA_LOG + 4));
 606		addr_log1 = le32_to_cpu(readl(card->csr_remap +
 607						ERROR_ADDR_LOG));
 608		addr_log2 = readb(card->csr_remap + ERROR_ADDR_LOG + 4);
 609
 610		count = readb(card->csr_remap + ERROR_COUNT);
 611		syndrome = readb(card->csr_remap + ERROR_SYNDROME);
 612		check = readb(card->csr_remap + ERROR_CHECK);
 613
 614		dump_dmastat(card, dma_status);
 615
 616		if (stat & 0x01)
 617			dev_printk(KERN_ERR, &card->dev->dev,
 618				"Memory access error detected (err count %d)\n",
 619				count);
 620		if (stat & 0x02)
 621			dev_printk(KERN_ERR, &card->dev->dev,
 622				"Multi-bit EDC error\n");
 623
 624		dev_printk(KERN_ERR, &card->dev->dev,
 625			"Fault Address 0x%02x%08x, Fault Data 0x%08x%08x\n",
 626			addr_log2, addr_log1, data_log2, data_log1);
 627		dev_printk(KERN_ERR, &card->dev->dev,
 628			"Fault Check 0x%02x, Fault Syndrome 0x%02x\n",
 629			check, syndrome);
 630
 631		writeb(0, card->csr_remap + ERROR_COUNT);
 632	}
 633
 634	if (dma_status & DMASCR_PARITY_ERR_REP) {
 635		dev_printk(KERN_ERR, &card->dev->dev,
 636			"PARITY ERROR REPORTED\n");
 637		pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
 638		pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
 639	}
 640
 641	if (dma_status & DMASCR_PARITY_ERR_DET) {
 642		dev_printk(KERN_ERR, &card->dev->dev,
 643			"PARITY ERROR DETECTED\n");
 644		pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
 645		pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
 646	}
 647
 648	if (dma_status & DMASCR_SYSTEM_ERR_SIG) {
 649		dev_printk(KERN_ERR, &card->dev->dev, "SYSTEM ERROR\n");
 650		pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
 651		pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
 652	}
 653
 654	if (dma_status & DMASCR_TARGET_ABT) {
 655		dev_printk(KERN_ERR, &card->dev->dev, "TARGET ABORT\n");
 656		pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
 657		pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
 658	}
 659
 660	if (dma_status & DMASCR_MASTER_ABT) {
 661		dev_printk(KERN_ERR, &card->dev->dev, "MASTER ABORT\n");
 662		pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
 663		pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
 664	}
 665
 666	/* and process the DMA descriptors */
 667	card->dma_status = dma_status;
 668	tasklet_schedule(&card->tasklet);
 669
 670HW_TRACE(0x36);
 671
 672	return IRQ_HANDLED;
 673}
 674
 675/*
 676 * If both batteries are good, no LED
 677 * If either battery has been warned, solid LED
 678 * If both batteries are bad, flash the LED quickly
 679 * If either battery is bad, flash the LED semi quickly
 680 */
 681static void set_fault_to_battery_status(struct cardinfo *card)
 682{
 683	if (card->battery[0].good && card->battery[1].good)
 684		set_led(card, LED_FAULT, LED_OFF);
 685	else if (card->battery[0].warned || card->battery[1].warned)
 686		set_led(card, LED_FAULT, LED_ON);
 687	else if (!card->battery[0].good && !card->battery[1].good)
 688		set_led(card, LED_FAULT, LED_FLASH_7_0);
 689	else
 690		set_led(card, LED_FAULT, LED_FLASH_3_5);
 691}
 692
 693static void init_battery_timer(void);
 694
 695static int check_battery(struct cardinfo *card, int battery, int status)
 696{
 697	if (status != card->battery[battery].good) {
 698		card->battery[battery].good = !card->battery[battery].good;
 699		card->battery[battery].last_change = jiffies;
 700
 701		if (card->battery[battery].good) {
 702			dev_printk(KERN_ERR, &card->dev->dev,
 703				"Battery %d now good\n", battery + 1);
 704			card->battery[battery].warned = 0;
 705		} else
 706			dev_printk(KERN_ERR, &card->dev->dev,
 707				"Battery %d now FAILED\n", battery + 1);
 708
 709		return 1;
 710	} else if (!card->battery[battery].good &&
 711		   !card->battery[battery].warned &&
 712		   time_after_eq(jiffies, card->battery[battery].last_change +
 713				 (HZ * 60 * 60 * 5))) {
 714		dev_printk(KERN_ERR, &card->dev->dev,
 715			"Battery %d still FAILED after 5 hours\n", battery + 1);
 716		card->battery[battery].warned = 1;
 717
 718		return 1;
 719	}
 720
 721	return 0;
 722}
 723
 724static void check_batteries(struct cardinfo *card)
 725{
 726	/* NOTE: this must *never* be called while the card
 727	 * is doing (bus-to-card) DMA, or you will need the
 728	 * reset switch
 729	 */
 730	unsigned char status;
 731	int ret1, ret2;
 732
 733	status = readb(card->csr_remap + MEMCTRLSTATUS_BATTERY);
 734	if (debug & DEBUG_BATTERY_POLLING)
 735		dev_printk(KERN_DEBUG, &card->dev->dev,
 736			"checking battery status, 1 = %s, 2 = %s\n",
 737		       (status & BATTERY_1_FAILURE) ? "FAILURE" : "OK",
 738		       (status & BATTERY_2_FAILURE) ? "FAILURE" : "OK");
 739
 740	ret1 = check_battery(card, 0, !(status & BATTERY_1_FAILURE));
 741	ret2 = check_battery(card, 1, !(status & BATTERY_2_FAILURE));
 742
 743	if (ret1 || ret2)
 744		set_fault_to_battery_status(card);
 745}
 746
 747static void check_all_batteries(unsigned long ptr)
 748{
 749	int i;
 750
 751	for (i = 0; i < num_cards; i++)
 752		if (!(cards[i].flags & UM_FLAG_NO_BATT)) {
 753			struct cardinfo *card = &cards[i];
 754			spin_lock_bh(&card->lock);
 755			if (card->Active >= 0)
 756				card->check_batteries = 1;
 757			else
 758				check_batteries(card);
 759			spin_unlock_bh(&card->lock);
 760		}
 761
 762	init_battery_timer();
 763}
 764
 765static void init_battery_timer(void)
 766{
 767	init_timer(&battery_timer);
 768	battery_timer.function = check_all_batteries;
 769	battery_timer.expires = jiffies + (HZ * 60);
 770	add_timer(&battery_timer);
 771}
 772
 773static void del_battery_timer(void)
 774{
 775	del_timer(&battery_timer);
 776}
 777
 778/*
 779 * Note no locks taken out here.  In a worst case scenario, we could drop
 780 * a chunk of system memory.  But that should never happen, since validation
 781 * happens at open or mount time, when locks are held.
 782 *
 783 *	That's crap, since doing that while some partitions are opened
 784 * or mounted will give you really nasty results.
 785 */
 786static int mm_revalidate(struct gendisk *disk)
 787{
 788	struct cardinfo *card = disk->private_data;
 789	set_capacity(disk, card->mm_size << 1);
 790	return 0;
 791}
 792
 793static int mm_getgeo(struct block_device *bdev, struct hd_geometry *geo)
 794{
 795	struct cardinfo *card = bdev->bd_disk->private_data;
 796	int size = card->mm_size * (1024 / MM_HARDSECT);
 797
 798	/*
 799	 * get geometry: we have to fake one...  trim the size to a
 800	 * multiple of 2048 (1M): tell we have 32 sectors, 64 heads,
 801	 * whatever cylinders.
 802	 */
 803	geo->heads     = 64;
 804	geo->sectors   = 32;
 805	geo->cylinders = size / (geo->heads * geo->sectors);
 806	return 0;
 807}
 808
 809static const struct block_device_operations mm_fops = {
 810	.owner		= THIS_MODULE,
 811	.getgeo		= mm_getgeo,
 812	.revalidate_disk = mm_revalidate,
 813};
 814
 815static int __devinit mm_pci_probe(struct pci_dev *dev,
 816				const struct pci_device_id *id)
 817{
 818	int ret = -ENODEV;
 819	struct cardinfo *card = &cards[num_cards];
 820	unsigned char	mem_present;
 821	unsigned char	batt_status;
 822	unsigned int	saved_bar, data;
 823	unsigned long	csr_base;
 824	unsigned long	csr_len;
 825	int		magic_number;
 826	static int	printed_version;
 827
 828	if (!printed_version++)
 829		printk(KERN_INFO DRIVER_VERSION " : " DRIVER_DESC "\n");
 830
 831	ret = pci_enable_device(dev);
 832	if (ret)
 833		return ret;
 834
 835	pci_write_config_byte(dev, PCI_LATENCY_TIMER, 0xF8);
 836	pci_set_master(dev);
 837
 838	card->dev         = dev;
 839
 840	csr_base = pci_resource_start(dev, 0);
 841	csr_len  = pci_resource_len(dev, 0);
 842	if (!csr_base || !csr_len)
 843		return -ENODEV;
 844
 845	dev_printk(KERN_INFO, &dev->dev,
 846	  "Micro Memory(tm) controller found (PCI Mem Module (Battery Backup))\n");
 847
 848	if (pci_set_dma_mask(dev, DMA_BIT_MASK(64)) &&
 849	    pci_set_dma_mask(dev, DMA_BIT_MASK(32))) {
 850		dev_printk(KERN_WARNING, &dev->dev, "NO suitable DMA found\n");
 851		return  -ENOMEM;
 852	}
 853
 854	ret = pci_request_regions(dev, DRIVER_NAME);
 855	if (ret) {
 856		dev_printk(KERN_ERR, &card->dev->dev,
 857			"Unable to request memory region\n");
 858		goto failed_req_csr;
 859	}
 860
 861	card->csr_remap = ioremap_nocache(csr_base, csr_len);
 862	if (!card->csr_remap) {
 863		dev_printk(KERN_ERR, &card->dev->dev,
 864			"Unable to remap memory region\n");
 865		ret = -ENOMEM;
 866
 867		goto failed_remap_csr;
 868	}
 869
 870	dev_printk(KERN_INFO, &card->dev->dev,
 871		"CSR 0x%08lx -> 0x%p (0x%lx)\n",
 872	       csr_base, card->csr_remap, csr_len);
 873
 874	switch (card->dev->device) {
 875	case 0x5415:
 876		card->flags |= UM_FLAG_NO_BYTE_STATUS | UM_FLAG_NO_BATTREG;
 877		magic_number = 0x59;
 878		break;
 879
 880	case 0x5425:
 881		card->flags |= UM_FLAG_NO_BYTE_STATUS;
 882		magic_number = 0x5C;
 883		break;
 884
 885	case 0x6155:
 886		card->flags |= UM_FLAG_NO_BYTE_STATUS |
 887				UM_FLAG_NO_BATTREG | UM_FLAG_NO_BATT;
 888		magic_number = 0x99;
 889		break;
 890
 891	default:
 892		magic_number = 0x100;
 893		break;
 894	}
 895
 896	if (readb(card->csr_remap + MEMCTRLSTATUS_MAGIC) != magic_number) {
 897		dev_printk(KERN_ERR, &card->dev->dev, "Magic number invalid\n");
 898		ret = -ENOMEM;
 899		goto failed_magic;
 900	}
 901
 902	card->mm_pages[0].desc = pci_alloc_consistent(card->dev,
 903						PAGE_SIZE * 2,
 904						&card->mm_pages[0].page_dma);
 905	card->mm_pages[1].desc = pci_alloc_consistent(card->dev,
 906						PAGE_SIZE * 2,
 907						&card->mm_pages[1].page_dma);
 908	if (card->mm_pages[0].desc == NULL ||
 909	    card->mm_pages[1].desc == NULL) {
 910		dev_printk(KERN_ERR, &card->dev->dev, "alloc failed\n");
 911		goto failed_alloc;
 912	}
 913	reset_page(&card->mm_pages[0]);
 914	reset_page(&card->mm_pages[1]);
 915	card->Ready = 0;	/* page 0 is ready */
 916	card->Active = -1;	/* no page is active */
 917	card->bio = NULL;
 918	card->biotail = &card->bio;
 919
 920	card->queue = blk_alloc_queue(GFP_KERNEL);
 921	if (!card->queue)
 922		goto failed_alloc;
 923
 924	blk_queue_make_request(card->queue, mm_make_request);
 925	card->queue->queue_lock = &card->lock;
 926	card->queue->queuedata = card;
 927
 928	tasklet_init(&card->tasklet, process_page, (unsigned long)card);
 929
 930	card->check_batteries = 0;
 931
 932	mem_present = readb(card->csr_remap + MEMCTRLSTATUS_MEMORY);
 933	switch (mem_present) {
 934	case MEM_128_MB:
 935		card->mm_size = 1024 * 128;
 936		break;
 937	case MEM_256_MB:
 938		card->mm_size = 1024 * 256;
 939		break;
 940	case MEM_512_MB:
 941		card->mm_size = 1024 * 512;
 942		break;
 943	case MEM_1_GB:
 944		card->mm_size = 1024 * 1024;
 945		break;
 946	case MEM_2_GB:
 947		card->mm_size = 1024 * 2048;
 948		break;
 949	default:
 950		card->mm_size = 0;
 951		break;
 952	}
 953
 954	/* Clear the LED's we control */
 955	set_led(card, LED_REMOVE, LED_OFF);
 956	set_led(card, LED_FAULT, LED_OFF);
 957
 958	batt_status = readb(card->csr_remap + MEMCTRLSTATUS_BATTERY);
 959
 960	card->battery[0].good = !(batt_status & BATTERY_1_FAILURE);
 961	card->battery[1].good = !(batt_status & BATTERY_2_FAILURE);
 962	card->battery[0].last_change = card->battery[1].last_change = jiffies;
 963
 964	if (card->flags & UM_FLAG_NO_BATT)
 965		dev_printk(KERN_INFO, &card->dev->dev,
 966			"Size %d KB\n", card->mm_size);
 967	else {
 968		dev_printk(KERN_INFO, &card->dev->dev,
 969			"Size %d KB, Battery 1 %s (%s), Battery 2 %s (%s)\n",
 970		       card->mm_size,
 971		       batt_status & BATTERY_1_DISABLED ? "Disabled" : "Enabled",
 972		       card->battery[0].good ? "OK" : "FAILURE",
 973		       batt_status & BATTERY_2_DISABLED ? "Disabled" : "Enabled",
 974		       card->battery[1].good ? "OK" : "FAILURE");
 975
 976		set_fault_to_battery_status(card);
 977	}
 978
 979	pci_read_config_dword(dev, PCI_BASE_ADDRESS_1, &saved_bar);
 980	data = 0xffffffff;
 981	pci_write_config_dword(dev, PCI_BASE_ADDRESS_1, data);
 982	pci_read_config_dword(dev, PCI_BASE_ADDRESS_1, &data);
 983	pci_write_config_dword(dev, PCI_BASE_ADDRESS_1, saved_bar);
 984	data &= 0xfffffff0;
 985	data = ~data;
 986	data += 1;
 987
 988	if (request_irq(dev->irq, mm_interrupt, IRQF_SHARED, DRIVER_NAME,
 989			card)) {
 990		dev_printk(KERN_ERR, &card->dev->dev,
 991			"Unable to allocate IRQ\n");
 992		ret = -ENODEV;
 993		goto failed_req_irq;
 994	}
 995
 996	dev_printk(KERN_INFO, &card->dev->dev,
 997		"Window size %d bytes, IRQ %d\n", data, dev->irq);
 998
 999	spin_lock_init(&card->lock);
1000
1001	pci_set_drvdata(dev, card);
1002
1003	if (pci_write_cmd != 0x0F) 	/* If not Memory Write & Invalidate */
1004		pci_write_cmd = 0x07;	/* then Memory Write command */
1005
1006	if (pci_write_cmd & 0x08) { /* use Memory Write and Invalidate */
1007		unsigned short cfg_command;
1008		pci_read_config_word(dev, PCI_COMMAND, &cfg_command);
1009		cfg_command |= 0x10; /* Memory Write & Invalidate Enable */
1010		pci_write_config_word(dev, PCI_COMMAND, cfg_command);
1011	}
1012	pci_cmds = (pci_read_cmd << 28) | (pci_write_cmd << 24);
1013
1014	num_cards++;
1015
1016	if (!get_userbit(card, MEMORY_INITIALIZED)) {
1017		dev_printk(KERN_INFO, &card->dev->dev,
1018		  "memory NOT initialized. Consider over-writing whole device.\n");
1019		card->init_size = 0;
1020	} else {
1021		dev_printk(KERN_INFO, &card->dev->dev,
1022			"memory already initialized\n");
1023		card->init_size = card->mm_size;
1024	}
1025
1026	/* Enable ECC */
1027	writeb(EDC_STORE_CORRECT, card->csr_remap + MEMCTRLCMD_ERRCTRL);
1028
1029	return 0;
1030
1031 failed_req_irq:
1032 failed_alloc:
1033	if (card->mm_pages[0].desc)
1034		pci_free_consistent(card->dev, PAGE_SIZE*2,
1035				    card->mm_pages[0].desc,
1036				    card->mm_pages[0].page_dma);
1037	if (card->mm_pages[1].desc)
1038		pci_free_consistent(card->dev, PAGE_SIZE*2,
1039				    card->mm_pages[1].desc,
1040				    card->mm_pages[1].page_dma);
1041 failed_magic:
1042	iounmap(card->csr_remap);
1043 failed_remap_csr:
1044	pci_release_regions(dev);
1045 failed_req_csr:
1046
1047	return ret;
1048}
1049
1050static void mm_pci_remove(struct pci_dev *dev)
1051{
1052	struct cardinfo *card = pci_get_drvdata(dev);
1053
1054	tasklet_kill(&card->tasklet);
1055	free_irq(dev->irq, card);
1056	iounmap(card->csr_remap);
1057
1058	if (card->mm_pages[0].desc)
1059		pci_free_consistent(card->dev, PAGE_SIZE*2,
1060				    card->mm_pages[0].desc,
1061				    card->mm_pages[0].page_dma);
1062	if (card->mm_pages[1].desc)
1063		pci_free_consistent(card->dev, PAGE_SIZE*2,
1064				    card->mm_pages[1].desc,
1065				    card->mm_pages[1].page_dma);
1066	blk_cleanup_queue(card->queue);
1067
1068	pci_release_regions(dev);
1069	pci_disable_device(dev);
1070}
1071
1072static const struct pci_device_id mm_pci_ids[] = {
1073    {PCI_DEVICE(PCI_VENDOR_ID_MICRO_MEMORY, PCI_DEVICE_ID_MICRO_MEMORY_5415CN)},
1074    {PCI_DEVICE(PCI_VENDOR_ID_MICRO_MEMORY, PCI_DEVICE_ID_MICRO_MEMORY_5425CN)},
1075    {PCI_DEVICE(PCI_VENDOR_ID_MICRO_MEMORY, PCI_DEVICE_ID_MICRO_MEMORY_6155)},
1076    {
1077	.vendor	=	0x8086,
1078	.device	=	0xB555,
1079	.subvendor =	0x1332,
1080	.subdevice =	0x5460,
1081	.class =	0x050000,
1082	.class_mask =	0,
1083    }, { /* end: all zeroes */ }
1084};
1085
1086MODULE_DEVICE_TABLE(pci, mm_pci_ids);
1087
1088static struct pci_driver mm_pci_driver = {
1089	.name		= DRIVER_NAME,
1090	.id_table	= mm_pci_ids,
1091	.probe		= mm_pci_probe,
1092	.remove		= mm_pci_remove,
1093};
1094
1095static int __init mm_init(void)
1096{
1097	int retval, i;
1098	int err;
1099
1100	retval = pci_register_driver(&mm_pci_driver);
1101	if (retval)
1102		return -ENOMEM;
1103
1104	err = major_nr = register_blkdev(0, DRIVER_NAME);
1105	if (err < 0) {
1106		pci_unregister_driver(&mm_pci_driver);
1107		return -EIO;
1108	}
1109
1110	for (i = 0; i < num_cards; i++) {
1111		mm_gendisk[i] = alloc_disk(1 << MM_SHIFT);
1112		if (!mm_gendisk[i])
1113			goto out;
1114	}
1115
1116	for (i = 0; i < num_cards; i++) {
1117		struct gendisk *disk = mm_gendisk[i];
1118		sprintf(disk->disk_name, "umem%c", 'a'+i);
1119		spin_lock_init(&cards[i].lock);
1120		disk->major = major_nr;
1121		disk->first_minor  = i << MM_SHIFT;
1122		disk->fops = &mm_fops;
1123		disk->private_data = &cards[i];
1124		disk->queue = cards[i].queue;
1125		set_capacity(disk, cards[i].mm_size << 1);
1126		add_disk(disk);
1127	}
1128
1129	init_battery_timer();
1130	printk(KERN_INFO "MM: desc_per_page = %ld\n", DESC_PER_PAGE);
1131/* printk("mm_init: Done. 10-19-01 9:00\n"); */
1132	return 0;
1133
1134out:
1135	pci_unregister_driver(&mm_pci_driver);
1136	unregister_blkdev(major_nr, DRIVER_NAME);
1137	while (i--)
1138		put_disk(mm_gendisk[i]);
1139	return -ENOMEM;
1140}
1141
1142static void __exit mm_cleanup(void)
1143{
1144	int i;
1145
1146	del_battery_timer();
1147
1148	for (i = 0; i < num_cards ; i++) {
1149		del_gendisk(mm_gendisk[i]);
1150		put_disk(mm_gendisk[i]);
1151	}
1152
1153	pci_unregister_driver(&mm_pci_driver);
1154
1155	unregister_blkdev(major_nr, DRIVER_NAME);
1156}
1157
1158module_init(mm_init);
1159module_exit(mm_cleanup);
1160
1161MODULE_AUTHOR(DRIVER_AUTHOR);
1162MODULE_DESCRIPTION(DRIVER_DESC);
1163MODULE_LICENSE("GPL");