Loading...
1/* arch/sparc64/kernel/process.c
2 *
3 * Copyright (C) 1995, 1996, 2008 David S. Miller (davem@davemloft.net)
4 * Copyright (C) 1996 Eddie C. Dost (ecd@skynet.be)
5 * Copyright (C) 1997, 1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
6 */
7
8/*
9 * This file handles the architecture-dependent parts of process handling..
10 */
11
12#include <stdarg.h>
13
14#include <linux/errno.h>
15#include <linux/module.h>
16#include <linux/sched.h>
17#include <linux/kernel.h>
18#include <linux/mm.h>
19#include <linux/fs.h>
20#include <linux/smp.h>
21#include <linux/stddef.h>
22#include <linux/ptrace.h>
23#include <linux/slab.h>
24#include <linux/user.h>
25#include <linux/delay.h>
26#include <linux/compat.h>
27#include <linux/tick.h>
28#include <linux/init.h>
29#include <linux/cpu.h>
30#include <linux/elfcore.h>
31#include <linux/sysrq.h>
32#include <linux/nmi.h>
33
34#include <asm/uaccess.h>
35#include <asm/system.h>
36#include <asm/page.h>
37#include <asm/pgalloc.h>
38#include <asm/pgtable.h>
39#include <asm/processor.h>
40#include <asm/pstate.h>
41#include <asm/elf.h>
42#include <asm/fpumacro.h>
43#include <asm/head.h>
44#include <asm/cpudata.h>
45#include <asm/mmu_context.h>
46#include <asm/unistd.h>
47#include <asm/hypervisor.h>
48#include <asm/syscalls.h>
49#include <asm/irq_regs.h>
50#include <asm/smp.h>
51
52#include "kstack.h"
53
54static void sparc64_yield(int cpu)
55{
56 if (tlb_type != hypervisor) {
57 touch_nmi_watchdog();
58 return;
59 }
60
61 clear_thread_flag(TIF_POLLING_NRFLAG);
62 smp_mb__after_clear_bit();
63
64 while (!need_resched() && !cpu_is_offline(cpu)) {
65 unsigned long pstate;
66
67 /* Disable interrupts. */
68 __asm__ __volatile__(
69 "rdpr %%pstate, %0\n\t"
70 "andn %0, %1, %0\n\t"
71 "wrpr %0, %%g0, %%pstate"
72 : "=&r" (pstate)
73 : "i" (PSTATE_IE));
74
75 if (!need_resched() && !cpu_is_offline(cpu))
76 sun4v_cpu_yield();
77
78 /* Re-enable interrupts. */
79 __asm__ __volatile__(
80 "rdpr %%pstate, %0\n\t"
81 "or %0, %1, %0\n\t"
82 "wrpr %0, %%g0, %%pstate"
83 : "=&r" (pstate)
84 : "i" (PSTATE_IE));
85 }
86
87 set_thread_flag(TIF_POLLING_NRFLAG);
88}
89
90/* The idle loop on sparc64. */
91void cpu_idle(void)
92{
93 int cpu = smp_processor_id();
94
95 set_thread_flag(TIF_POLLING_NRFLAG);
96
97 while(1) {
98 tick_nohz_stop_sched_tick(1);
99
100 while (!need_resched() && !cpu_is_offline(cpu))
101 sparc64_yield(cpu);
102
103 tick_nohz_restart_sched_tick();
104
105 preempt_enable_no_resched();
106
107#ifdef CONFIG_HOTPLUG_CPU
108 if (cpu_is_offline(cpu))
109 cpu_play_dead();
110#endif
111
112 schedule();
113 preempt_disable();
114 }
115}
116
117#ifdef CONFIG_COMPAT
118static void show_regwindow32(struct pt_regs *regs)
119{
120 struct reg_window32 __user *rw;
121 struct reg_window32 r_w;
122 mm_segment_t old_fs;
123
124 __asm__ __volatile__ ("flushw");
125 rw = compat_ptr((unsigned)regs->u_regs[14]);
126 old_fs = get_fs();
127 set_fs (USER_DS);
128 if (copy_from_user (&r_w, rw, sizeof(r_w))) {
129 set_fs (old_fs);
130 return;
131 }
132
133 set_fs (old_fs);
134 printk("l0: %08x l1: %08x l2: %08x l3: %08x "
135 "l4: %08x l5: %08x l6: %08x l7: %08x\n",
136 r_w.locals[0], r_w.locals[1], r_w.locals[2], r_w.locals[3],
137 r_w.locals[4], r_w.locals[5], r_w.locals[6], r_w.locals[7]);
138 printk("i0: %08x i1: %08x i2: %08x i3: %08x "
139 "i4: %08x i5: %08x i6: %08x i7: %08x\n",
140 r_w.ins[0], r_w.ins[1], r_w.ins[2], r_w.ins[3],
141 r_w.ins[4], r_w.ins[5], r_w.ins[6], r_w.ins[7]);
142}
143#else
144#define show_regwindow32(regs) do { } while (0)
145#endif
146
147static void show_regwindow(struct pt_regs *regs)
148{
149 struct reg_window __user *rw;
150 struct reg_window *rwk;
151 struct reg_window r_w;
152 mm_segment_t old_fs;
153
154 if ((regs->tstate & TSTATE_PRIV) || !(test_thread_flag(TIF_32BIT))) {
155 __asm__ __volatile__ ("flushw");
156 rw = (struct reg_window __user *)
157 (regs->u_regs[14] + STACK_BIAS);
158 rwk = (struct reg_window *)
159 (regs->u_regs[14] + STACK_BIAS);
160 if (!(regs->tstate & TSTATE_PRIV)) {
161 old_fs = get_fs();
162 set_fs (USER_DS);
163 if (copy_from_user (&r_w, rw, sizeof(r_w))) {
164 set_fs (old_fs);
165 return;
166 }
167 rwk = &r_w;
168 set_fs (old_fs);
169 }
170 } else {
171 show_regwindow32(regs);
172 return;
173 }
174 printk("l0: %016lx l1: %016lx l2: %016lx l3: %016lx\n",
175 rwk->locals[0], rwk->locals[1], rwk->locals[2], rwk->locals[3]);
176 printk("l4: %016lx l5: %016lx l6: %016lx l7: %016lx\n",
177 rwk->locals[4], rwk->locals[5], rwk->locals[6], rwk->locals[7]);
178 printk("i0: %016lx i1: %016lx i2: %016lx i3: %016lx\n",
179 rwk->ins[0], rwk->ins[1], rwk->ins[2], rwk->ins[3]);
180 printk("i4: %016lx i5: %016lx i6: %016lx i7: %016lx\n",
181 rwk->ins[4], rwk->ins[5], rwk->ins[6], rwk->ins[7]);
182 if (regs->tstate & TSTATE_PRIV)
183 printk("I7: <%pS>\n", (void *) rwk->ins[7]);
184}
185
186void show_regs(struct pt_regs *regs)
187{
188 printk("TSTATE: %016lx TPC: %016lx TNPC: %016lx Y: %08x %s\n", regs->tstate,
189 regs->tpc, regs->tnpc, regs->y, print_tainted());
190 printk("TPC: <%pS>\n", (void *) regs->tpc);
191 printk("g0: %016lx g1: %016lx g2: %016lx g3: %016lx\n",
192 regs->u_regs[0], regs->u_regs[1], regs->u_regs[2],
193 regs->u_regs[3]);
194 printk("g4: %016lx g5: %016lx g6: %016lx g7: %016lx\n",
195 regs->u_regs[4], regs->u_regs[5], regs->u_regs[6],
196 regs->u_regs[7]);
197 printk("o0: %016lx o1: %016lx o2: %016lx o3: %016lx\n",
198 regs->u_regs[8], regs->u_regs[9], regs->u_regs[10],
199 regs->u_regs[11]);
200 printk("o4: %016lx o5: %016lx sp: %016lx ret_pc: %016lx\n",
201 regs->u_regs[12], regs->u_regs[13], regs->u_regs[14],
202 regs->u_regs[15]);
203 printk("RPC: <%pS>\n", (void *) regs->u_regs[15]);
204 show_regwindow(regs);
205 show_stack(current, (unsigned long *) regs->u_regs[UREG_FP]);
206}
207
208struct global_reg_snapshot global_reg_snapshot[NR_CPUS];
209static DEFINE_SPINLOCK(global_reg_snapshot_lock);
210
211static void __global_reg_self(struct thread_info *tp, struct pt_regs *regs,
212 int this_cpu)
213{
214 flushw_all();
215
216 global_reg_snapshot[this_cpu].tstate = regs->tstate;
217 global_reg_snapshot[this_cpu].tpc = regs->tpc;
218 global_reg_snapshot[this_cpu].tnpc = regs->tnpc;
219 global_reg_snapshot[this_cpu].o7 = regs->u_regs[UREG_I7];
220
221 if (regs->tstate & TSTATE_PRIV) {
222 struct reg_window *rw;
223
224 rw = (struct reg_window *)
225 (regs->u_regs[UREG_FP] + STACK_BIAS);
226 if (kstack_valid(tp, (unsigned long) rw)) {
227 global_reg_snapshot[this_cpu].i7 = rw->ins[7];
228 rw = (struct reg_window *)
229 (rw->ins[6] + STACK_BIAS);
230 if (kstack_valid(tp, (unsigned long) rw))
231 global_reg_snapshot[this_cpu].rpc = rw->ins[7];
232 }
233 } else {
234 global_reg_snapshot[this_cpu].i7 = 0;
235 global_reg_snapshot[this_cpu].rpc = 0;
236 }
237 global_reg_snapshot[this_cpu].thread = tp;
238}
239
240/* In order to avoid hangs we do not try to synchronize with the
241 * global register dump client cpus. The last store they make is to
242 * the thread pointer, so do a short poll waiting for that to become
243 * non-NULL.
244 */
245static void __global_reg_poll(struct global_reg_snapshot *gp)
246{
247 int limit = 0;
248
249 while (!gp->thread && ++limit < 100) {
250 barrier();
251 udelay(1);
252 }
253}
254
255void arch_trigger_all_cpu_backtrace(void)
256{
257 struct thread_info *tp = current_thread_info();
258 struct pt_regs *regs = get_irq_regs();
259 unsigned long flags;
260 int this_cpu, cpu;
261
262 if (!regs)
263 regs = tp->kregs;
264
265 spin_lock_irqsave(&global_reg_snapshot_lock, flags);
266
267 memset(global_reg_snapshot, 0, sizeof(global_reg_snapshot));
268
269 this_cpu = raw_smp_processor_id();
270
271 __global_reg_self(tp, regs, this_cpu);
272
273 smp_fetch_global_regs();
274
275 for_each_online_cpu(cpu) {
276 struct global_reg_snapshot *gp = &global_reg_snapshot[cpu];
277
278 __global_reg_poll(gp);
279
280 tp = gp->thread;
281 printk("%c CPU[%3d]: TSTATE[%016lx] TPC[%016lx] TNPC[%016lx] TASK[%s:%d]\n",
282 (cpu == this_cpu ? '*' : ' '), cpu,
283 gp->tstate, gp->tpc, gp->tnpc,
284 ((tp && tp->task) ? tp->task->comm : "NULL"),
285 ((tp && tp->task) ? tp->task->pid : -1));
286
287 if (gp->tstate & TSTATE_PRIV) {
288 printk(" TPC[%pS] O7[%pS] I7[%pS] RPC[%pS]\n",
289 (void *) gp->tpc,
290 (void *) gp->o7,
291 (void *) gp->i7,
292 (void *) gp->rpc);
293 } else {
294 printk(" TPC[%lx] O7[%lx] I7[%lx] RPC[%lx]\n",
295 gp->tpc, gp->o7, gp->i7, gp->rpc);
296 }
297 }
298
299 memset(global_reg_snapshot, 0, sizeof(global_reg_snapshot));
300
301 spin_unlock_irqrestore(&global_reg_snapshot_lock, flags);
302}
303
304#ifdef CONFIG_MAGIC_SYSRQ
305
306static void sysrq_handle_globreg(int key)
307{
308 arch_trigger_all_cpu_backtrace();
309}
310
311static struct sysrq_key_op sparc_globalreg_op = {
312 .handler = sysrq_handle_globreg,
313 .help_msg = "Globalregs",
314 .action_msg = "Show Global CPU Regs",
315};
316
317static int __init sparc_globreg_init(void)
318{
319 return register_sysrq_key('y', &sparc_globalreg_op);
320}
321
322core_initcall(sparc_globreg_init);
323
324#endif
325
326unsigned long thread_saved_pc(struct task_struct *tsk)
327{
328 struct thread_info *ti = task_thread_info(tsk);
329 unsigned long ret = 0xdeadbeefUL;
330
331 if (ti && ti->ksp) {
332 unsigned long *sp;
333 sp = (unsigned long *)(ti->ksp + STACK_BIAS);
334 if (((unsigned long)sp & (sizeof(long) - 1)) == 0UL &&
335 sp[14]) {
336 unsigned long *fp;
337 fp = (unsigned long *)(sp[14] + STACK_BIAS);
338 if (((unsigned long)fp & (sizeof(long) - 1)) == 0UL)
339 ret = fp[15];
340 }
341 }
342 return ret;
343}
344
345/* Free current thread data structures etc.. */
346void exit_thread(void)
347{
348 struct thread_info *t = current_thread_info();
349
350 if (t->utraps) {
351 if (t->utraps[0] < 2)
352 kfree (t->utraps);
353 else
354 t->utraps[0]--;
355 }
356}
357
358void flush_thread(void)
359{
360 struct thread_info *t = current_thread_info();
361 struct mm_struct *mm;
362
363 mm = t->task->mm;
364 if (mm)
365 tsb_context_switch(mm);
366
367 set_thread_wsaved(0);
368
369 /* Clear FPU register state. */
370 t->fpsaved[0] = 0;
371}
372
373/* It's a bit more tricky when 64-bit tasks are involved... */
374static unsigned long clone_stackframe(unsigned long csp, unsigned long psp)
375{
376 unsigned long fp, distance, rval;
377
378 if (!(test_thread_flag(TIF_32BIT))) {
379 csp += STACK_BIAS;
380 psp += STACK_BIAS;
381 __get_user(fp, &(((struct reg_window __user *)psp)->ins[6]));
382 fp += STACK_BIAS;
383 } else
384 __get_user(fp, &(((struct reg_window32 __user *)psp)->ins[6]));
385
386 /* Now align the stack as this is mandatory in the Sparc ABI
387 * due to how register windows work. This hides the
388 * restriction from thread libraries etc.
389 */
390 csp &= ~15UL;
391
392 distance = fp - psp;
393 rval = (csp - distance);
394 if (copy_in_user((void __user *) rval, (void __user *) psp, distance))
395 rval = 0;
396 else if (test_thread_flag(TIF_32BIT)) {
397 if (put_user(((u32)csp),
398 &(((struct reg_window32 __user *)rval)->ins[6])))
399 rval = 0;
400 } else {
401 if (put_user(((u64)csp - STACK_BIAS),
402 &(((struct reg_window __user *)rval)->ins[6])))
403 rval = 0;
404 else
405 rval = rval - STACK_BIAS;
406 }
407
408 return rval;
409}
410
411/* Standard stuff. */
412static inline void shift_window_buffer(int first_win, int last_win,
413 struct thread_info *t)
414{
415 int i;
416
417 for (i = first_win; i < last_win; i++) {
418 t->rwbuf_stkptrs[i] = t->rwbuf_stkptrs[i+1];
419 memcpy(&t->reg_window[i], &t->reg_window[i+1],
420 sizeof(struct reg_window));
421 }
422}
423
424void synchronize_user_stack(void)
425{
426 struct thread_info *t = current_thread_info();
427 unsigned long window;
428
429 flush_user_windows();
430 if ((window = get_thread_wsaved()) != 0) {
431 int winsize = sizeof(struct reg_window);
432 int bias = 0;
433
434 if (test_thread_flag(TIF_32BIT))
435 winsize = sizeof(struct reg_window32);
436 else
437 bias = STACK_BIAS;
438
439 window -= 1;
440 do {
441 unsigned long sp = (t->rwbuf_stkptrs[window] + bias);
442 struct reg_window *rwin = &t->reg_window[window];
443
444 if (!copy_to_user((char __user *)sp, rwin, winsize)) {
445 shift_window_buffer(window, get_thread_wsaved() - 1, t);
446 set_thread_wsaved(get_thread_wsaved() - 1);
447 }
448 } while (window--);
449 }
450}
451
452static void stack_unaligned(unsigned long sp)
453{
454 siginfo_t info;
455
456 info.si_signo = SIGBUS;
457 info.si_errno = 0;
458 info.si_code = BUS_ADRALN;
459 info.si_addr = (void __user *) sp;
460 info.si_trapno = 0;
461 force_sig_info(SIGBUS, &info, current);
462}
463
464void fault_in_user_windows(void)
465{
466 struct thread_info *t = current_thread_info();
467 unsigned long window;
468 int winsize = sizeof(struct reg_window);
469 int bias = 0;
470
471 if (test_thread_flag(TIF_32BIT))
472 winsize = sizeof(struct reg_window32);
473 else
474 bias = STACK_BIAS;
475
476 flush_user_windows();
477 window = get_thread_wsaved();
478
479 if (likely(window != 0)) {
480 window -= 1;
481 do {
482 unsigned long sp = (t->rwbuf_stkptrs[window] + bias);
483 struct reg_window *rwin = &t->reg_window[window];
484
485 if (unlikely(sp & 0x7UL))
486 stack_unaligned(sp);
487
488 if (unlikely(copy_to_user((char __user *)sp,
489 rwin, winsize)))
490 goto barf;
491 } while (window--);
492 }
493 set_thread_wsaved(0);
494 return;
495
496barf:
497 set_thread_wsaved(window + 1);
498 do_exit(SIGILL);
499}
500
501asmlinkage long sparc_do_fork(unsigned long clone_flags,
502 unsigned long stack_start,
503 struct pt_regs *regs,
504 unsigned long stack_size)
505{
506 int __user *parent_tid_ptr, *child_tid_ptr;
507 unsigned long orig_i1 = regs->u_regs[UREG_I1];
508 long ret;
509
510#ifdef CONFIG_COMPAT
511 if (test_thread_flag(TIF_32BIT)) {
512 parent_tid_ptr = compat_ptr(regs->u_regs[UREG_I2]);
513 child_tid_ptr = compat_ptr(regs->u_regs[UREG_I4]);
514 } else
515#endif
516 {
517 parent_tid_ptr = (int __user *) regs->u_regs[UREG_I2];
518 child_tid_ptr = (int __user *) regs->u_regs[UREG_I4];
519 }
520
521 ret = do_fork(clone_flags, stack_start,
522 regs, stack_size,
523 parent_tid_ptr, child_tid_ptr);
524
525 /* If we get an error and potentially restart the system
526 * call, we're screwed because copy_thread() clobbered
527 * the parent's %o1. So detect that case and restore it
528 * here.
529 */
530 if ((unsigned long)ret >= -ERESTART_RESTARTBLOCK)
531 regs->u_regs[UREG_I1] = orig_i1;
532
533 return ret;
534}
535
536/* Copy a Sparc thread. The fork() return value conventions
537 * under SunOS are nothing short of bletcherous:
538 * Parent --> %o0 == childs pid, %o1 == 0
539 * Child --> %o0 == parents pid, %o1 == 1
540 */
541int copy_thread(unsigned long clone_flags, unsigned long sp,
542 unsigned long unused,
543 struct task_struct *p, struct pt_regs *regs)
544{
545 struct thread_info *t = task_thread_info(p);
546 struct sparc_stackf *parent_sf;
547 unsigned long child_stack_sz;
548 char *child_trap_frame;
549 int kernel_thread;
550
551 kernel_thread = (regs->tstate & TSTATE_PRIV) ? 1 : 0;
552 parent_sf = ((struct sparc_stackf *) regs) - 1;
553
554 /* Calculate offset to stack_frame & pt_regs */
555 child_stack_sz = ((STACKFRAME_SZ + TRACEREG_SZ) +
556 (kernel_thread ? STACKFRAME_SZ : 0));
557 child_trap_frame = (task_stack_page(p) +
558 (THREAD_SIZE - child_stack_sz));
559 memcpy(child_trap_frame, parent_sf, child_stack_sz);
560
561 t->flags = (t->flags & ~((0xffUL << TI_FLAG_CWP_SHIFT) |
562 (0xffUL << TI_FLAG_CURRENT_DS_SHIFT))) |
563 (((regs->tstate + 1) & TSTATE_CWP) << TI_FLAG_CWP_SHIFT);
564 t->new_child = 1;
565 t->ksp = ((unsigned long) child_trap_frame) - STACK_BIAS;
566 t->kregs = (struct pt_regs *) (child_trap_frame +
567 sizeof(struct sparc_stackf));
568 t->fpsaved[0] = 0;
569
570 if (kernel_thread) {
571 struct sparc_stackf *child_sf = (struct sparc_stackf *)
572 (child_trap_frame + (STACKFRAME_SZ + TRACEREG_SZ));
573
574 /* Zero terminate the stack backtrace. */
575 child_sf->fp = NULL;
576 t->kregs->u_regs[UREG_FP] =
577 ((unsigned long) child_sf) - STACK_BIAS;
578
579 t->flags |= ((long)ASI_P << TI_FLAG_CURRENT_DS_SHIFT);
580 t->kregs->u_regs[UREG_G6] = (unsigned long) t;
581 t->kregs->u_regs[UREG_G4] = (unsigned long) t->task;
582 } else {
583 if (t->flags & _TIF_32BIT) {
584 sp &= 0x00000000ffffffffUL;
585 regs->u_regs[UREG_FP] &= 0x00000000ffffffffUL;
586 }
587 t->kregs->u_regs[UREG_FP] = sp;
588 t->flags |= ((long)ASI_AIUS << TI_FLAG_CURRENT_DS_SHIFT);
589 if (sp != regs->u_regs[UREG_FP]) {
590 unsigned long csp;
591
592 csp = clone_stackframe(sp, regs->u_regs[UREG_FP]);
593 if (!csp)
594 return -EFAULT;
595 t->kregs->u_regs[UREG_FP] = csp;
596 }
597 if (t->utraps)
598 t->utraps[0]++;
599 }
600
601 /* Set the return value for the child. */
602 t->kregs->u_regs[UREG_I0] = current->pid;
603 t->kregs->u_regs[UREG_I1] = 1;
604
605 /* Set the second return value for the parent. */
606 regs->u_regs[UREG_I1] = 0;
607
608 if (clone_flags & CLONE_SETTLS)
609 t->kregs->u_regs[UREG_G7] = regs->u_regs[UREG_I3];
610
611 return 0;
612}
613
614/*
615 * This is the mechanism for creating a new kernel thread.
616 *
617 * NOTE! Only a kernel-only process(ie the swapper or direct descendants
618 * who haven't done an "execve()") should use this: it will work within
619 * a system call from a "real" process, but the process memory space will
620 * not be freed until both the parent and the child have exited.
621 */
622pid_t kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
623{
624 long retval;
625
626 /* If the parent runs before fn(arg) is called by the child,
627 * the input registers of this function can be clobbered.
628 * So we stash 'fn' and 'arg' into global registers which
629 * will not be modified by the parent.
630 */
631 __asm__ __volatile__("mov %4, %%g2\n\t" /* Save FN into global */
632 "mov %5, %%g3\n\t" /* Save ARG into global */
633 "mov %1, %%g1\n\t" /* Clone syscall nr. */
634 "mov %2, %%o0\n\t" /* Clone flags. */
635 "mov 0, %%o1\n\t" /* usp arg == 0 */
636 "t 0x6d\n\t" /* Linux/Sparc clone(). */
637 "brz,a,pn %%o1, 1f\n\t" /* Parent, just return. */
638 " mov %%o0, %0\n\t"
639 "jmpl %%g2, %%o7\n\t" /* Call the function. */
640 " mov %%g3, %%o0\n\t" /* Set arg in delay. */
641 "mov %3, %%g1\n\t"
642 "t 0x6d\n\t" /* Linux/Sparc exit(). */
643 /* Notreached by child. */
644 "1:" :
645 "=r" (retval) :
646 "i" (__NR_clone), "r" (flags | CLONE_VM | CLONE_UNTRACED),
647 "i" (__NR_exit), "r" (fn), "r" (arg) :
648 "g1", "g2", "g3", "o0", "o1", "memory", "cc");
649 return retval;
650}
651EXPORT_SYMBOL(kernel_thread);
652
653typedef struct {
654 union {
655 unsigned int pr_regs[32];
656 unsigned long pr_dregs[16];
657 } pr_fr;
658 unsigned int __unused;
659 unsigned int pr_fsr;
660 unsigned char pr_qcnt;
661 unsigned char pr_q_entrysize;
662 unsigned char pr_en;
663 unsigned int pr_q[64];
664} elf_fpregset_t32;
665
666/*
667 * fill in the fpu structure for a core dump.
668 */
669int dump_fpu (struct pt_regs * regs, elf_fpregset_t * fpregs)
670{
671 unsigned long *kfpregs = current_thread_info()->fpregs;
672 unsigned long fprs = current_thread_info()->fpsaved[0];
673
674 if (test_thread_flag(TIF_32BIT)) {
675 elf_fpregset_t32 *fpregs32 = (elf_fpregset_t32 *)fpregs;
676
677 if (fprs & FPRS_DL)
678 memcpy(&fpregs32->pr_fr.pr_regs[0], kfpregs,
679 sizeof(unsigned int) * 32);
680 else
681 memset(&fpregs32->pr_fr.pr_regs[0], 0,
682 sizeof(unsigned int) * 32);
683 fpregs32->pr_qcnt = 0;
684 fpregs32->pr_q_entrysize = 8;
685 memset(&fpregs32->pr_q[0], 0,
686 (sizeof(unsigned int) * 64));
687 if (fprs & FPRS_FEF) {
688 fpregs32->pr_fsr = (unsigned int) current_thread_info()->xfsr[0];
689 fpregs32->pr_en = 1;
690 } else {
691 fpregs32->pr_fsr = 0;
692 fpregs32->pr_en = 0;
693 }
694 } else {
695 if(fprs & FPRS_DL)
696 memcpy(&fpregs->pr_regs[0], kfpregs,
697 sizeof(unsigned int) * 32);
698 else
699 memset(&fpregs->pr_regs[0], 0,
700 sizeof(unsigned int) * 32);
701 if(fprs & FPRS_DU)
702 memcpy(&fpregs->pr_regs[16], kfpregs+16,
703 sizeof(unsigned int) * 32);
704 else
705 memset(&fpregs->pr_regs[16], 0,
706 sizeof(unsigned int) * 32);
707 if(fprs & FPRS_FEF) {
708 fpregs->pr_fsr = current_thread_info()->xfsr[0];
709 fpregs->pr_gsr = current_thread_info()->gsr[0];
710 } else {
711 fpregs->pr_fsr = fpregs->pr_gsr = 0;
712 }
713 fpregs->pr_fprs = fprs;
714 }
715 return 1;
716}
717EXPORT_SYMBOL(dump_fpu);
718
719/*
720 * sparc_execve() executes a new program after the asm stub has set
721 * things up for us. This should basically do what I want it to.
722 */
723asmlinkage int sparc_execve(struct pt_regs *regs)
724{
725 int error, base = 0;
726 char *filename;
727
728 /* User register window flush is done by entry.S */
729
730 /* Check for indirect call. */
731 if (regs->u_regs[UREG_G1] == 0)
732 base = 1;
733
734 filename = getname((char __user *)regs->u_regs[base + UREG_I0]);
735 error = PTR_ERR(filename);
736 if (IS_ERR(filename))
737 goto out;
738 error = do_execve(filename,
739 (const char __user *const __user *)
740 regs->u_regs[base + UREG_I1],
741 (const char __user *const __user *)
742 regs->u_regs[base + UREG_I2], regs);
743 putname(filename);
744 if (!error) {
745 fprs_write(0);
746 current_thread_info()->xfsr[0] = 0;
747 current_thread_info()->fpsaved[0] = 0;
748 regs->tstate &= ~TSTATE_PEF;
749 }
750out:
751 return error;
752}
753
754unsigned long get_wchan(struct task_struct *task)
755{
756 unsigned long pc, fp, bias = 0;
757 struct thread_info *tp;
758 struct reg_window *rw;
759 unsigned long ret = 0;
760 int count = 0;
761
762 if (!task || task == current ||
763 task->state == TASK_RUNNING)
764 goto out;
765
766 tp = task_thread_info(task);
767 bias = STACK_BIAS;
768 fp = task_thread_info(task)->ksp + bias;
769
770 do {
771 if (!kstack_valid(tp, fp))
772 break;
773 rw = (struct reg_window *) fp;
774 pc = rw->ins[7];
775 if (!in_sched_functions(pc)) {
776 ret = pc;
777 goto out;
778 }
779 fp = rw->ins[6] + bias;
780 } while (++count < 16);
781
782out:
783 return ret;
784}
1// SPDX-License-Identifier: GPL-2.0
2/* arch/sparc64/kernel/process.c
3 *
4 * Copyright (C) 1995, 1996, 2008 David S. Miller (davem@davemloft.net)
5 * Copyright (C) 1996 Eddie C. Dost (ecd@skynet.be)
6 * Copyright (C) 1997, 1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
7 */
8
9/*
10 * This file handles the architecture-dependent parts of process handling..
11 */
12#include <linux/errno.h>
13#include <linux/export.h>
14#include <linux/sched.h>
15#include <linux/sched/debug.h>
16#include <linux/sched/task.h>
17#include <linux/sched/task_stack.h>
18#include <linux/kernel.h>
19#include <linux/mm.h>
20#include <linux/fs.h>
21#include <linux/smp.h>
22#include <linux/stddef.h>
23#include <linux/ptrace.h>
24#include <linux/slab.h>
25#include <linux/user.h>
26#include <linux/delay.h>
27#include <linux/compat.h>
28#include <linux/tick.h>
29#include <linux/init.h>
30#include <linux/cpu.h>
31#include <linux/perf_event.h>
32#include <linux/elfcore.h>
33#include <linux/sysrq.h>
34#include <linux/nmi.h>
35#include <linux/context_tracking.h>
36#include <linux/signal.h>
37
38#include <linux/uaccess.h>
39#include <asm/page.h>
40#include <asm/pgalloc.h>
41#include <asm/processor.h>
42#include <asm/pstate.h>
43#include <asm/elf.h>
44#include <asm/fpumacro.h>
45#include <asm/head.h>
46#include <asm/cpudata.h>
47#include <asm/mmu_context.h>
48#include <asm/unistd.h>
49#include <asm/hypervisor.h>
50#include <asm/syscalls.h>
51#include <asm/irq_regs.h>
52#include <asm/smp.h>
53#include <asm/pcr.h>
54
55#include "kstack.h"
56
57/* Idle loop support on sparc64. */
58void arch_cpu_idle(void)
59{
60 if (tlb_type != hypervisor) {
61 touch_nmi_watchdog();
62 } else {
63 unsigned long pstate;
64
65 raw_local_irq_enable();
66
67 /* The sun4v sleeping code requires that we have PSTATE.IE cleared over
68 * the cpu sleep hypervisor call.
69 */
70 __asm__ __volatile__(
71 "rdpr %%pstate, %0\n\t"
72 "andn %0, %1, %0\n\t"
73 "wrpr %0, %%g0, %%pstate"
74 : "=&r" (pstate)
75 : "i" (PSTATE_IE));
76
77 if (!need_resched() && !cpu_is_offline(smp_processor_id())) {
78 sun4v_cpu_yield();
79 /* If resumed by cpu_poke then we need to explicitly
80 * call scheduler_ipi().
81 */
82 scheduler_poke();
83 }
84
85 /* Re-enable interrupts. */
86 __asm__ __volatile__(
87 "rdpr %%pstate, %0\n\t"
88 "or %0, %1, %0\n\t"
89 "wrpr %0, %%g0, %%pstate"
90 : "=&r" (pstate)
91 : "i" (PSTATE_IE));
92
93 raw_local_irq_disable();
94 }
95}
96
97#ifdef CONFIG_HOTPLUG_CPU
98void __noreturn arch_cpu_idle_dead(void)
99{
100 sched_preempt_enable_no_resched();
101 cpu_play_dead();
102}
103#endif
104
105#ifdef CONFIG_COMPAT
106static void show_regwindow32(struct pt_regs *regs)
107{
108 struct reg_window32 __user *rw;
109 struct reg_window32 r_w;
110
111 __asm__ __volatile__ ("flushw");
112 rw = compat_ptr((unsigned int)regs->u_regs[14]);
113 if (copy_from_user (&r_w, rw, sizeof(r_w))) {
114 return;
115 }
116
117 printk("l0: %08x l1: %08x l2: %08x l3: %08x "
118 "l4: %08x l5: %08x l6: %08x l7: %08x\n",
119 r_w.locals[0], r_w.locals[1], r_w.locals[2], r_w.locals[3],
120 r_w.locals[4], r_w.locals[5], r_w.locals[6], r_w.locals[7]);
121 printk("i0: %08x i1: %08x i2: %08x i3: %08x "
122 "i4: %08x i5: %08x i6: %08x i7: %08x\n",
123 r_w.ins[0], r_w.ins[1], r_w.ins[2], r_w.ins[3],
124 r_w.ins[4], r_w.ins[5], r_w.ins[6], r_w.ins[7]);
125}
126#else
127#define show_regwindow32(regs) do { } while (0)
128#endif
129
130static void show_regwindow(struct pt_regs *regs)
131{
132 struct reg_window __user *rw;
133 struct reg_window *rwk;
134 struct reg_window r_w;
135
136 if ((regs->tstate & TSTATE_PRIV) || !(test_thread_flag(TIF_32BIT))) {
137 __asm__ __volatile__ ("flushw");
138 rw = (struct reg_window __user *)
139 (regs->u_regs[14] + STACK_BIAS);
140 rwk = (struct reg_window *)
141 (regs->u_regs[14] + STACK_BIAS);
142 if (!(regs->tstate & TSTATE_PRIV)) {
143 if (copy_from_user (&r_w, rw, sizeof(r_w))) {
144 return;
145 }
146 rwk = &r_w;
147 }
148 } else {
149 show_regwindow32(regs);
150 return;
151 }
152 printk("l0: %016lx l1: %016lx l2: %016lx l3: %016lx\n",
153 rwk->locals[0], rwk->locals[1], rwk->locals[2], rwk->locals[3]);
154 printk("l4: %016lx l5: %016lx l6: %016lx l7: %016lx\n",
155 rwk->locals[4], rwk->locals[5], rwk->locals[6], rwk->locals[7]);
156 printk("i0: %016lx i1: %016lx i2: %016lx i3: %016lx\n",
157 rwk->ins[0], rwk->ins[1], rwk->ins[2], rwk->ins[3]);
158 printk("i4: %016lx i5: %016lx i6: %016lx i7: %016lx\n",
159 rwk->ins[4], rwk->ins[5], rwk->ins[6], rwk->ins[7]);
160 if (regs->tstate & TSTATE_PRIV)
161 printk("I7: <%pS>\n", (void *) rwk->ins[7]);
162}
163
164void show_regs(struct pt_regs *regs)
165{
166 show_regs_print_info(KERN_DEFAULT);
167
168 printk("TSTATE: %016lx TPC: %016lx TNPC: %016lx Y: %08x %s\n", regs->tstate,
169 regs->tpc, regs->tnpc, regs->y, print_tainted());
170 printk("TPC: <%pS>\n", (void *) regs->tpc);
171 printk("g0: %016lx g1: %016lx g2: %016lx g3: %016lx\n",
172 regs->u_regs[0], regs->u_regs[1], regs->u_regs[2],
173 regs->u_regs[3]);
174 printk("g4: %016lx g5: %016lx g6: %016lx g7: %016lx\n",
175 regs->u_regs[4], regs->u_regs[5], regs->u_regs[6],
176 regs->u_regs[7]);
177 printk("o0: %016lx o1: %016lx o2: %016lx o3: %016lx\n",
178 regs->u_regs[8], regs->u_regs[9], regs->u_regs[10],
179 regs->u_regs[11]);
180 printk("o4: %016lx o5: %016lx sp: %016lx ret_pc: %016lx\n",
181 regs->u_regs[12], regs->u_regs[13], regs->u_regs[14],
182 regs->u_regs[15]);
183 printk("RPC: <%pS>\n", (void *) regs->u_regs[15]);
184 show_regwindow(regs);
185 show_stack(current, (unsigned long *)regs->u_regs[UREG_FP], KERN_DEFAULT);
186}
187
188union global_cpu_snapshot global_cpu_snapshot[NR_CPUS];
189static DEFINE_SPINLOCK(global_cpu_snapshot_lock);
190
191static void __global_reg_self(struct thread_info *tp, struct pt_regs *regs,
192 int this_cpu)
193{
194 struct global_reg_snapshot *rp;
195
196 flushw_all();
197
198 rp = &global_cpu_snapshot[this_cpu].reg;
199
200 rp->tstate = regs->tstate;
201 rp->tpc = regs->tpc;
202 rp->tnpc = regs->tnpc;
203 rp->o7 = regs->u_regs[UREG_I7];
204
205 if (regs->tstate & TSTATE_PRIV) {
206 struct reg_window *rw;
207
208 rw = (struct reg_window *)
209 (regs->u_regs[UREG_FP] + STACK_BIAS);
210 if (kstack_valid(tp, (unsigned long) rw)) {
211 rp->i7 = rw->ins[7];
212 rw = (struct reg_window *)
213 (rw->ins[6] + STACK_BIAS);
214 if (kstack_valid(tp, (unsigned long) rw))
215 rp->rpc = rw->ins[7];
216 }
217 } else {
218 rp->i7 = 0;
219 rp->rpc = 0;
220 }
221 rp->thread = tp;
222}
223
224/* In order to avoid hangs we do not try to synchronize with the
225 * global register dump client cpus. The last store they make is to
226 * the thread pointer, so do a short poll waiting for that to become
227 * non-NULL.
228 */
229static void __global_reg_poll(struct global_reg_snapshot *gp)
230{
231 int limit = 0;
232
233 while (!gp->thread && ++limit < 100) {
234 barrier();
235 udelay(1);
236 }
237}
238
239void arch_trigger_cpumask_backtrace(const cpumask_t *mask, int exclude_cpu)
240{
241 struct thread_info *tp = current_thread_info();
242 struct pt_regs *regs = get_irq_regs();
243 unsigned long flags;
244 int this_cpu, cpu;
245
246 if (!regs)
247 regs = tp->kregs;
248
249 spin_lock_irqsave(&global_cpu_snapshot_lock, flags);
250
251 this_cpu = raw_smp_processor_id();
252
253 memset(global_cpu_snapshot, 0, sizeof(global_cpu_snapshot));
254
255 if (cpumask_test_cpu(this_cpu, mask) && this_cpu != exclude_cpu)
256 __global_reg_self(tp, regs, this_cpu);
257
258 smp_fetch_global_regs();
259
260 for_each_cpu(cpu, mask) {
261 struct global_reg_snapshot *gp;
262
263 if (cpu == exclude_cpu)
264 continue;
265
266 gp = &global_cpu_snapshot[cpu].reg;
267
268 __global_reg_poll(gp);
269
270 tp = gp->thread;
271 printk("%c CPU[%3d]: TSTATE[%016lx] TPC[%016lx] TNPC[%016lx] TASK[%s:%d]\n",
272 (cpu == this_cpu ? '*' : ' '), cpu,
273 gp->tstate, gp->tpc, gp->tnpc,
274 ((tp && tp->task) ? tp->task->comm : "NULL"),
275 ((tp && tp->task) ? tp->task->pid : -1));
276
277 if (gp->tstate & TSTATE_PRIV) {
278 printk(" TPC[%pS] O7[%pS] I7[%pS] RPC[%pS]\n",
279 (void *) gp->tpc,
280 (void *) gp->o7,
281 (void *) gp->i7,
282 (void *) gp->rpc);
283 } else {
284 printk(" TPC[%lx] O7[%lx] I7[%lx] RPC[%lx]\n",
285 gp->tpc, gp->o7, gp->i7, gp->rpc);
286 }
287
288 touch_nmi_watchdog();
289 }
290
291 memset(global_cpu_snapshot, 0, sizeof(global_cpu_snapshot));
292
293 spin_unlock_irqrestore(&global_cpu_snapshot_lock, flags);
294}
295
296#ifdef CONFIG_MAGIC_SYSRQ
297
298static void sysrq_handle_globreg(u8 key)
299{
300 trigger_all_cpu_backtrace();
301}
302
303static const struct sysrq_key_op sparc_globalreg_op = {
304 .handler = sysrq_handle_globreg,
305 .help_msg = "global-regs(y)",
306 .action_msg = "Show Global CPU Regs",
307};
308
309static void __global_pmu_self(int this_cpu)
310{
311 struct global_pmu_snapshot *pp;
312 int i, num;
313
314 if (!pcr_ops)
315 return;
316
317 pp = &global_cpu_snapshot[this_cpu].pmu;
318
319 num = 1;
320 if (tlb_type == hypervisor &&
321 sun4v_chip_type >= SUN4V_CHIP_NIAGARA4)
322 num = 4;
323
324 for (i = 0; i < num; i++) {
325 pp->pcr[i] = pcr_ops->read_pcr(i);
326 pp->pic[i] = pcr_ops->read_pic(i);
327 }
328}
329
330static void __global_pmu_poll(struct global_pmu_snapshot *pp)
331{
332 int limit = 0;
333
334 while (!pp->pcr[0] && ++limit < 100) {
335 barrier();
336 udelay(1);
337 }
338}
339
340static void pmu_snapshot_all_cpus(void)
341{
342 unsigned long flags;
343 int this_cpu, cpu;
344
345 spin_lock_irqsave(&global_cpu_snapshot_lock, flags);
346
347 memset(global_cpu_snapshot, 0, sizeof(global_cpu_snapshot));
348
349 this_cpu = raw_smp_processor_id();
350
351 __global_pmu_self(this_cpu);
352
353 smp_fetch_global_pmu();
354
355 for_each_online_cpu(cpu) {
356 struct global_pmu_snapshot *pp = &global_cpu_snapshot[cpu].pmu;
357
358 __global_pmu_poll(pp);
359
360 printk("%c CPU[%3d]: PCR[%08lx:%08lx:%08lx:%08lx] PIC[%08lx:%08lx:%08lx:%08lx]\n",
361 (cpu == this_cpu ? '*' : ' '), cpu,
362 pp->pcr[0], pp->pcr[1], pp->pcr[2], pp->pcr[3],
363 pp->pic[0], pp->pic[1], pp->pic[2], pp->pic[3]);
364
365 touch_nmi_watchdog();
366 }
367
368 memset(global_cpu_snapshot, 0, sizeof(global_cpu_snapshot));
369
370 spin_unlock_irqrestore(&global_cpu_snapshot_lock, flags);
371}
372
373static void sysrq_handle_globpmu(u8 key)
374{
375 pmu_snapshot_all_cpus();
376}
377
378static const struct sysrq_key_op sparc_globalpmu_op = {
379 .handler = sysrq_handle_globpmu,
380 .help_msg = "global-pmu(x)",
381 .action_msg = "Show Global PMU Regs",
382};
383
384static int __init sparc_sysrq_init(void)
385{
386 int ret = register_sysrq_key('y', &sparc_globalreg_op);
387
388 if (!ret)
389 ret = register_sysrq_key('x', &sparc_globalpmu_op);
390 return ret;
391}
392
393core_initcall(sparc_sysrq_init);
394
395#endif
396
397/* Free current thread data structures etc.. */
398void exit_thread(struct task_struct *tsk)
399{
400 struct thread_info *t = task_thread_info(tsk);
401
402 if (t->utraps) {
403 if (t->utraps[0] < 2)
404 kfree (t->utraps);
405 else
406 t->utraps[0]--;
407 }
408}
409
410void flush_thread(void)
411{
412 struct thread_info *t = current_thread_info();
413 struct mm_struct *mm;
414
415 mm = t->task->mm;
416 if (mm)
417 tsb_context_switch(mm);
418
419 set_thread_wsaved(0);
420
421 /* Clear FPU register state. */
422 t->fpsaved[0] = 0;
423}
424
425/* It's a bit more tricky when 64-bit tasks are involved... */
426static unsigned long clone_stackframe(unsigned long csp, unsigned long psp)
427{
428 bool stack_64bit = test_thread_64bit_stack(psp);
429 unsigned long fp, distance, rval;
430
431 if (stack_64bit) {
432 csp += STACK_BIAS;
433 psp += STACK_BIAS;
434 __get_user(fp, &(((struct reg_window __user *)psp)->ins[6]));
435 fp += STACK_BIAS;
436 if (test_thread_flag(TIF_32BIT))
437 fp &= 0xffffffff;
438 } else
439 __get_user(fp, &(((struct reg_window32 __user *)psp)->ins[6]));
440
441 /* Now align the stack as this is mandatory in the Sparc ABI
442 * due to how register windows work. This hides the
443 * restriction from thread libraries etc.
444 */
445 csp &= ~15UL;
446
447 distance = fp - psp;
448 rval = (csp - distance);
449 if (raw_copy_in_user((void __user *)rval, (void __user *)psp, distance))
450 rval = 0;
451 else if (!stack_64bit) {
452 if (put_user(((u32)csp),
453 &(((struct reg_window32 __user *)rval)->ins[6])))
454 rval = 0;
455 } else {
456 if (put_user(((u64)csp - STACK_BIAS),
457 &(((struct reg_window __user *)rval)->ins[6])))
458 rval = 0;
459 else
460 rval = rval - STACK_BIAS;
461 }
462
463 return rval;
464}
465
466/* Standard stuff. */
467static inline void shift_window_buffer(int first_win, int last_win,
468 struct thread_info *t)
469{
470 int i;
471
472 for (i = first_win; i < last_win; i++) {
473 t->rwbuf_stkptrs[i] = t->rwbuf_stkptrs[i+1];
474 memcpy(&t->reg_window[i], &t->reg_window[i+1],
475 sizeof(struct reg_window));
476 }
477}
478
479void synchronize_user_stack(void)
480{
481 struct thread_info *t = current_thread_info();
482 unsigned long window;
483
484 flush_user_windows();
485 if ((window = get_thread_wsaved()) != 0) {
486 window -= 1;
487 do {
488 struct reg_window *rwin = &t->reg_window[window];
489 int winsize = sizeof(struct reg_window);
490 unsigned long sp;
491
492 sp = t->rwbuf_stkptrs[window];
493
494 if (test_thread_64bit_stack(sp))
495 sp += STACK_BIAS;
496 else
497 winsize = sizeof(struct reg_window32);
498
499 if (!copy_to_user((char __user *)sp, rwin, winsize)) {
500 shift_window_buffer(window, get_thread_wsaved() - 1, t);
501 set_thread_wsaved(get_thread_wsaved() - 1);
502 }
503 } while (window--);
504 }
505}
506
507static void stack_unaligned(unsigned long sp)
508{
509 force_sig_fault(SIGBUS, BUS_ADRALN, (void __user *) sp);
510}
511
512static const char uwfault32[] = KERN_INFO \
513 "%s[%d]: bad register window fault: SP %08lx (orig_sp %08lx) TPC %08lx O7 %08lx\n";
514static const char uwfault64[] = KERN_INFO \
515 "%s[%d]: bad register window fault: SP %016lx (orig_sp %016lx) TPC %08lx O7 %016lx\n";
516
517void fault_in_user_windows(struct pt_regs *regs)
518{
519 struct thread_info *t = current_thread_info();
520 unsigned long window;
521
522 flush_user_windows();
523 window = get_thread_wsaved();
524
525 if (likely(window != 0)) {
526 window -= 1;
527 do {
528 struct reg_window *rwin = &t->reg_window[window];
529 int winsize = sizeof(struct reg_window);
530 unsigned long sp, orig_sp;
531
532 orig_sp = sp = t->rwbuf_stkptrs[window];
533
534 if (test_thread_64bit_stack(sp))
535 sp += STACK_BIAS;
536 else
537 winsize = sizeof(struct reg_window32);
538
539 if (unlikely(sp & 0x7UL))
540 stack_unaligned(sp);
541
542 if (unlikely(copy_to_user((char __user *)sp,
543 rwin, winsize))) {
544 if (show_unhandled_signals)
545 printk_ratelimited(is_compat_task() ?
546 uwfault32 : uwfault64,
547 current->comm, current->pid,
548 sp, orig_sp,
549 regs->tpc,
550 regs->u_regs[UREG_I7]);
551 goto barf;
552 }
553 } while (window--);
554 }
555 set_thread_wsaved(0);
556 return;
557
558barf:
559 set_thread_wsaved(window + 1);
560 force_sig(SIGSEGV);
561}
562
563/* Copy a Sparc thread. The fork() return value conventions
564 * under SunOS are nothing short of bletcherous:
565 * Parent --> %o0 == childs pid, %o1 == 0
566 * Child --> %o0 == parents pid, %o1 == 1
567 */
568int copy_thread(struct task_struct *p, const struct kernel_clone_args *args)
569{
570 unsigned long clone_flags = args->flags;
571 unsigned long sp = args->stack;
572 unsigned long tls = args->tls;
573 struct thread_info *t = task_thread_info(p);
574 struct pt_regs *regs = current_pt_regs();
575 struct sparc_stackf *parent_sf;
576 unsigned long child_stack_sz;
577 char *child_trap_frame;
578
579 /* Calculate offset to stack_frame & pt_regs */
580 child_stack_sz = (STACKFRAME_SZ + TRACEREG_SZ);
581 child_trap_frame = (task_stack_page(p) +
582 (THREAD_SIZE - child_stack_sz));
583
584 t->new_child = 1;
585 t->ksp = ((unsigned long) child_trap_frame) - STACK_BIAS;
586 t->kregs = (struct pt_regs *) (child_trap_frame +
587 sizeof(struct sparc_stackf));
588 t->fpsaved[0] = 0;
589
590 if (unlikely(args->fn)) {
591 memset(child_trap_frame, 0, child_stack_sz);
592 __thread_flag_byte_ptr(t)[TI_FLAG_BYTE_CWP] =
593 (current_pt_regs()->tstate + 1) & TSTATE_CWP;
594 t->kregs->u_regs[UREG_G1] = (unsigned long) args->fn;
595 t->kregs->u_regs[UREG_G2] = (unsigned long) args->fn_arg;
596 return 0;
597 }
598
599 parent_sf = ((struct sparc_stackf *) regs) - 1;
600 memcpy(child_trap_frame, parent_sf, child_stack_sz);
601 if (t->flags & _TIF_32BIT) {
602 sp &= 0x00000000ffffffffUL;
603 regs->u_regs[UREG_FP] &= 0x00000000ffffffffUL;
604 }
605 t->kregs->u_regs[UREG_FP] = sp;
606 __thread_flag_byte_ptr(t)[TI_FLAG_BYTE_CWP] =
607 (regs->tstate + 1) & TSTATE_CWP;
608 if (sp != regs->u_regs[UREG_FP]) {
609 unsigned long csp;
610
611 csp = clone_stackframe(sp, regs->u_regs[UREG_FP]);
612 if (!csp)
613 return -EFAULT;
614 t->kregs->u_regs[UREG_FP] = csp;
615 }
616 if (t->utraps)
617 t->utraps[0]++;
618
619 /* Set the return value for the child. */
620 t->kregs->u_regs[UREG_I0] = current->pid;
621 t->kregs->u_regs[UREG_I1] = 1;
622
623 /* Set the second return value for the parent. */
624 regs->u_regs[UREG_I1] = 0;
625
626 if (clone_flags & CLONE_SETTLS)
627 t->kregs->u_regs[UREG_G7] = tls;
628
629 return 0;
630}
631
632/* TIF_MCDPER in thread info flags for current task is updated lazily upon
633 * a context switch. Update this flag in current task's thread flags
634 * before dup so the dup'd task will inherit the current TIF_MCDPER flag.
635 */
636int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
637{
638 if (adi_capable()) {
639 register unsigned long tmp_mcdper;
640
641 __asm__ __volatile__(
642 ".word 0x83438000\n\t" /* rd %mcdper, %g1 */
643 "mov %%g1, %0\n\t"
644 : "=r" (tmp_mcdper)
645 :
646 : "g1");
647 if (tmp_mcdper)
648 set_thread_flag(TIF_MCDPER);
649 else
650 clear_thread_flag(TIF_MCDPER);
651 }
652
653 *dst = *src;
654 return 0;
655}
656
657unsigned long __get_wchan(struct task_struct *task)
658{
659 unsigned long pc, fp, bias = 0;
660 struct thread_info *tp;
661 struct reg_window *rw;
662 unsigned long ret = 0;
663 int count = 0;
664
665 tp = task_thread_info(task);
666 bias = STACK_BIAS;
667 fp = task_thread_info(task)->ksp + bias;
668
669 do {
670 if (!kstack_valid(tp, fp))
671 break;
672 rw = (struct reg_window *) fp;
673 pc = rw->ins[7];
674 if (!in_sched_functions(pc)) {
675 ret = pc;
676 goto out;
677 }
678 fp = rw->ins[6] + bias;
679 } while (++count < 16);
680
681out:
682 return ret;
683}