Linux Audio

Check our new training course

Linux kernel drivers training

Mar 31-Apr 9, 2025, special US time zones
Register
Loading...
v3.1
 
  1/*  arch/sparc64/kernel/process.c
  2 *
  3 *  Copyright (C) 1995, 1996, 2008 David S. Miller (davem@davemloft.net)
  4 *  Copyright (C) 1996       Eddie C. Dost   (ecd@skynet.be)
  5 *  Copyright (C) 1997, 1998 Jakub Jelinek   (jj@sunsite.mff.cuni.cz)
  6 */
  7
  8/*
  9 * This file handles the architecture-dependent parts of process handling..
 10 */
 11
 12#include <stdarg.h>
 13
 14#include <linux/errno.h>
 15#include <linux/module.h>
 16#include <linux/sched.h>
 
 
 
 17#include <linux/kernel.h>
 18#include <linux/mm.h>
 19#include <linux/fs.h>
 20#include <linux/smp.h>
 21#include <linux/stddef.h>
 22#include <linux/ptrace.h>
 23#include <linux/slab.h>
 24#include <linux/user.h>
 25#include <linux/delay.h>
 26#include <linux/compat.h>
 27#include <linux/tick.h>
 28#include <linux/init.h>
 29#include <linux/cpu.h>
 
 30#include <linux/elfcore.h>
 31#include <linux/sysrq.h>
 32#include <linux/nmi.h>
 
 
 33
 34#include <asm/uaccess.h>
 35#include <asm/system.h>
 36#include <asm/page.h>
 37#include <asm/pgalloc.h>
 38#include <asm/pgtable.h>
 39#include <asm/processor.h>
 40#include <asm/pstate.h>
 41#include <asm/elf.h>
 42#include <asm/fpumacro.h>
 43#include <asm/head.h>
 44#include <asm/cpudata.h>
 45#include <asm/mmu_context.h>
 46#include <asm/unistd.h>
 47#include <asm/hypervisor.h>
 48#include <asm/syscalls.h>
 49#include <asm/irq_regs.h>
 50#include <asm/smp.h>
 
 51
 52#include "kstack.h"
 53
 54static void sparc64_yield(int cpu)
 
 55{
 56	if (tlb_type != hypervisor) {
 57		touch_nmi_watchdog();
 58		return;
 59	}
 60
 61	clear_thread_flag(TIF_POLLING_NRFLAG);
 62	smp_mb__after_clear_bit();
 63
 64	while (!need_resched() && !cpu_is_offline(cpu)) {
 65		unsigned long pstate;
 66
 67		/* Disable interrupts. */
 
 
 
 
 68		__asm__ __volatile__(
 69			"rdpr %%pstate, %0\n\t"
 70			"andn %0, %1, %0\n\t"
 71			"wrpr %0, %%g0, %%pstate"
 72			: "=&r" (pstate)
 73			: "i" (PSTATE_IE));
 74
 75		if (!need_resched() && !cpu_is_offline(cpu))
 76			sun4v_cpu_yield();
 
 
 
 
 
 77
 78		/* Re-enable interrupts. */
 79		__asm__ __volatile__(
 80			"rdpr %%pstate, %0\n\t"
 81			"or %0, %1, %0\n\t"
 82			"wrpr %0, %%g0, %%pstate"
 83			: "=&r" (pstate)
 84			: "i" (PSTATE_IE));
 85	}
 86
 87	set_thread_flag(TIF_POLLING_NRFLAG);
 88}
 89
 90/* The idle loop on sparc64. */
 91void cpu_idle(void)
 92{
 93	int cpu = smp_processor_id();
 94
 95	set_thread_flag(TIF_POLLING_NRFLAG);
 96
 97	while(1) {
 98		tick_nohz_stop_sched_tick(1);
 99
100		while (!need_resched() && !cpu_is_offline(cpu))
101			sparc64_yield(cpu);
102
103		tick_nohz_restart_sched_tick();
104
105		preempt_enable_no_resched();
106
107#ifdef CONFIG_HOTPLUG_CPU
108		if (cpu_is_offline(cpu))
109			cpu_play_dead();
110#endif
111
112		schedule();
113		preempt_disable();
114	}
115}
 
116
117#ifdef CONFIG_COMPAT
118static void show_regwindow32(struct pt_regs *regs)
119{
120	struct reg_window32 __user *rw;
121	struct reg_window32 r_w;
122	mm_segment_t old_fs;
123	
124	__asm__ __volatile__ ("flushw");
125	rw = compat_ptr((unsigned)regs->u_regs[14]);
126	old_fs = get_fs();
127	set_fs (USER_DS);
128	if (copy_from_user (&r_w, rw, sizeof(r_w))) {
129		set_fs (old_fs);
130		return;
131	}
132
133	set_fs (old_fs);			
134	printk("l0: %08x l1: %08x l2: %08x l3: %08x "
135	       "l4: %08x l5: %08x l6: %08x l7: %08x\n",
136	       r_w.locals[0], r_w.locals[1], r_w.locals[2], r_w.locals[3],
137	       r_w.locals[4], r_w.locals[5], r_w.locals[6], r_w.locals[7]);
138	printk("i0: %08x i1: %08x i2: %08x i3: %08x "
139	       "i4: %08x i5: %08x i6: %08x i7: %08x\n",
140	       r_w.ins[0], r_w.ins[1], r_w.ins[2], r_w.ins[3],
141	       r_w.ins[4], r_w.ins[5], r_w.ins[6], r_w.ins[7]);
142}
143#else
144#define show_regwindow32(regs)	do { } while (0)
145#endif
146
147static void show_regwindow(struct pt_regs *regs)
148{
149	struct reg_window __user *rw;
150	struct reg_window *rwk;
151	struct reg_window r_w;
152	mm_segment_t old_fs;
153
154	if ((regs->tstate & TSTATE_PRIV) || !(test_thread_flag(TIF_32BIT))) {
155		__asm__ __volatile__ ("flushw");
156		rw = (struct reg_window __user *)
157			(regs->u_regs[14] + STACK_BIAS);
158		rwk = (struct reg_window *)
159			(regs->u_regs[14] + STACK_BIAS);
160		if (!(regs->tstate & TSTATE_PRIV)) {
161			old_fs = get_fs();
162			set_fs (USER_DS);
163			if (copy_from_user (&r_w, rw, sizeof(r_w))) {
164				set_fs (old_fs);
165				return;
166			}
167			rwk = &r_w;
168			set_fs (old_fs);			
169		}
170	} else {
171		show_regwindow32(regs);
172		return;
173	}
174	printk("l0: %016lx l1: %016lx l2: %016lx l3: %016lx\n",
175	       rwk->locals[0], rwk->locals[1], rwk->locals[2], rwk->locals[3]);
176	printk("l4: %016lx l5: %016lx l6: %016lx l7: %016lx\n",
177	       rwk->locals[4], rwk->locals[5], rwk->locals[6], rwk->locals[7]);
178	printk("i0: %016lx i1: %016lx i2: %016lx i3: %016lx\n",
179	       rwk->ins[0], rwk->ins[1], rwk->ins[2], rwk->ins[3]);
180	printk("i4: %016lx i5: %016lx i6: %016lx i7: %016lx\n",
181	       rwk->ins[4], rwk->ins[5], rwk->ins[6], rwk->ins[7]);
182	if (regs->tstate & TSTATE_PRIV)
183		printk("I7: <%pS>\n", (void *) rwk->ins[7]);
184}
185
186void show_regs(struct pt_regs *regs)
187{
 
 
188	printk("TSTATE: %016lx TPC: %016lx TNPC: %016lx Y: %08x    %s\n", regs->tstate,
189	       regs->tpc, regs->tnpc, regs->y, print_tainted());
190	printk("TPC: <%pS>\n", (void *) regs->tpc);
191	printk("g0: %016lx g1: %016lx g2: %016lx g3: %016lx\n",
192	       regs->u_regs[0], regs->u_regs[1], regs->u_regs[2],
193	       regs->u_regs[3]);
194	printk("g4: %016lx g5: %016lx g6: %016lx g7: %016lx\n",
195	       regs->u_regs[4], regs->u_regs[5], regs->u_regs[6],
196	       regs->u_regs[7]);
197	printk("o0: %016lx o1: %016lx o2: %016lx o3: %016lx\n",
198	       regs->u_regs[8], regs->u_regs[9], regs->u_regs[10],
199	       regs->u_regs[11]);
200	printk("o4: %016lx o5: %016lx sp: %016lx ret_pc: %016lx\n",
201	       regs->u_regs[12], regs->u_regs[13], regs->u_regs[14],
202	       regs->u_regs[15]);
203	printk("RPC: <%pS>\n", (void *) regs->u_regs[15]);
204	show_regwindow(regs);
205	show_stack(current, (unsigned long *) regs->u_regs[UREG_FP]);
206}
207
208struct global_reg_snapshot global_reg_snapshot[NR_CPUS];
209static DEFINE_SPINLOCK(global_reg_snapshot_lock);
210
211static void __global_reg_self(struct thread_info *tp, struct pt_regs *regs,
212			      int this_cpu)
213{
 
 
214	flushw_all();
215
216	global_reg_snapshot[this_cpu].tstate = regs->tstate;
217	global_reg_snapshot[this_cpu].tpc = regs->tpc;
218	global_reg_snapshot[this_cpu].tnpc = regs->tnpc;
219	global_reg_snapshot[this_cpu].o7 = regs->u_regs[UREG_I7];
 
 
220
221	if (regs->tstate & TSTATE_PRIV) {
222		struct reg_window *rw;
223
224		rw = (struct reg_window *)
225			(regs->u_regs[UREG_FP] + STACK_BIAS);
226		if (kstack_valid(tp, (unsigned long) rw)) {
227			global_reg_snapshot[this_cpu].i7 = rw->ins[7];
228			rw = (struct reg_window *)
229				(rw->ins[6] + STACK_BIAS);
230			if (kstack_valid(tp, (unsigned long) rw))
231				global_reg_snapshot[this_cpu].rpc = rw->ins[7];
232		}
233	} else {
234		global_reg_snapshot[this_cpu].i7 = 0;
235		global_reg_snapshot[this_cpu].rpc = 0;
236	}
237	global_reg_snapshot[this_cpu].thread = tp;
238}
239
240/* In order to avoid hangs we do not try to synchronize with the
241 * global register dump client cpus.  The last store they make is to
242 * the thread pointer, so do a short poll waiting for that to become
243 * non-NULL.
244 */
245static void __global_reg_poll(struct global_reg_snapshot *gp)
246{
247	int limit = 0;
248
249	while (!gp->thread && ++limit < 100) {
250		barrier();
251		udelay(1);
252	}
253}
254
255void arch_trigger_all_cpu_backtrace(void)
256{
257	struct thread_info *tp = current_thread_info();
258	struct pt_regs *regs = get_irq_regs();
259	unsigned long flags;
260	int this_cpu, cpu;
261
262	if (!regs)
263		regs = tp->kregs;
264
265	spin_lock_irqsave(&global_reg_snapshot_lock, flags);
266
267	memset(global_reg_snapshot, 0, sizeof(global_reg_snapshot));
268
269	this_cpu = raw_smp_processor_id();
270
271	__global_reg_self(tp, regs, this_cpu);
 
 
 
272
273	smp_fetch_global_regs();
274
275	for_each_online_cpu(cpu) {
276		struct global_reg_snapshot *gp = &global_reg_snapshot[cpu];
 
 
 
 
 
277
278		__global_reg_poll(gp);
279
280		tp = gp->thread;
281		printk("%c CPU[%3d]: TSTATE[%016lx] TPC[%016lx] TNPC[%016lx] TASK[%s:%d]\n",
282		       (cpu == this_cpu ? '*' : ' '), cpu,
283		       gp->tstate, gp->tpc, gp->tnpc,
284		       ((tp && tp->task) ? tp->task->comm : "NULL"),
285		       ((tp && tp->task) ? tp->task->pid : -1));
286
287		if (gp->tstate & TSTATE_PRIV) {
288			printk("             TPC[%pS] O7[%pS] I7[%pS] RPC[%pS]\n",
289			       (void *) gp->tpc,
290			       (void *) gp->o7,
291			       (void *) gp->i7,
292			       (void *) gp->rpc);
293		} else {
294			printk("             TPC[%lx] O7[%lx] I7[%lx] RPC[%lx]\n",
295			       gp->tpc, gp->o7, gp->i7, gp->rpc);
296		}
 
 
297	}
298
299	memset(global_reg_snapshot, 0, sizeof(global_reg_snapshot));
300
301	spin_unlock_irqrestore(&global_reg_snapshot_lock, flags);
302}
303
304#ifdef CONFIG_MAGIC_SYSRQ
305
306static void sysrq_handle_globreg(int key)
307{
308	arch_trigger_all_cpu_backtrace();
309}
310
311static struct sysrq_key_op sparc_globalreg_op = {
312	.handler	= sysrq_handle_globreg,
313	.help_msg	= "Globalregs",
314	.action_msg	= "Show Global CPU Regs",
315};
316
317static int __init sparc_globreg_init(void)
318{
319	return register_sysrq_key('y', &sparc_globalreg_op);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
320}
321
322core_initcall(sparc_globreg_init);
 
 
323
324#endif
 
 
 
 
325
326unsigned long thread_saved_pc(struct task_struct *tsk)
327{
328	struct thread_info *ti = task_thread_info(tsk);
329	unsigned long ret = 0xdeadbeefUL;
330	
331	if (ti && ti->ksp) {
332		unsigned long *sp;
333		sp = (unsigned long *)(ti->ksp + STACK_BIAS);
334		if (((unsigned long)sp & (sizeof(long) - 1)) == 0UL &&
335		    sp[14]) {
336			unsigned long *fp;
337			fp = (unsigned long *)(sp[14] + STACK_BIAS);
338			if (((unsigned long)fp & (sizeof(long) - 1)) == 0UL)
339				ret = fp[15];
340		}
 
 
 
 
 
 
 
 
 
 
 
341	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
342	return ret;
343}
344
 
 
 
 
345/* Free current thread data structures etc.. */
346void exit_thread(void)
347{
348	struct thread_info *t = current_thread_info();
349
350	if (t->utraps) {
351		if (t->utraps[0] < 2)
352			kfree (t->utraps);
353		else
354			t->utraps[0]--;
355	}
356}
357
358void flush_thread(void)
359{
360	struct thread_info *t = current_thread_info();
361	struct mm_struct *mm;
362
363	mm = t->task->mm;
364	if (mm)
365		tsb_context_switch(mm);
366
367	set_thread_wsaved(0);
368
369	/* Clear FPU register state. */
370	t->fpsaved[0] = 0;
371}
372
373/* It's a bit more tricky when 64-bit tasks are involved... */
374static unsigned long clone_stackframe(unsigned long csp, unsigned long psp)
375{
 
376	unsigned long fp, distance, rval;
377
378	if (!(test_thread_flag(TIF_32BIT))) {
379		csp += STACK_BIAS;
380		psp += STACK_BIAS;
381		__get_user(fp, &(((struct reg_window __user *)psp)->ins[6]));
382		fp += STACK_BIAS;
 
 
383	} else
384		__get_user(fp, &(((struct reg_window32 __user *)psp)->ins[6]));
385
386	/* Now align the stack as this is mandatory in the Sparc ABI
387	 * due to how register windows work.  This hides the
388	 * restriction from thread libraries etc.
389	 */
390	csp &= ~15UL;
391
392	distance = fp - psp;
393	rval = (csp - distance);
394	if (copy_in_user((void __user *) rval, (void __user *) psp, distance))
395		rval = 0;
396	else if (test_thread_flag(TIF_32BIT)) {
397		if (put_user(((u32)csp),
398			     &(((struct reg_window32 __user *)rval)->ins[6])))
399			rval = 0;
400	} else {
401		if (put_user(((u64)csp - STACK_BIAS),
402			     &(((struct reg_window __user *)rval)->ins[6])))
403			rval = 0;
404		else
405			rval = rval - STACK_BIAS;
406	}
407
408	return rval;
409}
410
411/* Standard stuff. */
412static inline void shift_window_buffer(int first_win, int last_win,
413				       struct thread_info *t)
414{
415	int i;
416
417	for (i = first_win; i < last_win; i++) {
418		t->rwbuf_stkptrs[i] = t->rwbuf_stkptrs[i+1];
419		memcpy(&t->reg_window[i], &t->reg_window[i+1],
420		       sizeof(struct reg_window));
421	}
422}
423
424void synchronize_user_stack(void)
425{
426	struct thread_info *t = current_thread_info();
427	unsigned long window;
428
429	flush_user_windows();
430	if ((window = get_thread_wsaved()) != 0) {
431		int winsize = sizeof(struct reg_window);
432		int bias = 0;
433
434		if (test_thread_flag(TIF_32BIT))
435			winsize = sizeof(struct reg_window32);
436		else
437			bias = STACK_BIAS;
438
439		window -= 1;
440		do {
441			unsigned long sp = (t->rwbuf_stkptrs[window] + bias);
442			struct reg_window *rwin = &t->reg_window[window];
 
 
 
 
 
 
 
 
 
443
444			if (!copy_to_user((char __user *)sp, rwin, winsize)) {
445				shift_window_buffer(window, get_thread_wsaved() - 1, t);
446				set_thread_wsaved(get_thread_wsaved() - 1);
447			}
448		} while (window--);
449	}
450}
451
452static void stack_unaligned(unsigned long sp)
453{
454	siginfo_t info;
455
456	info.si_signo = SIGBUS;
457	info.si_errno = 0;
458	info.si_code = BUS_ADRALN;
459	info.si_addr = (void __user *) sp;
460	info.si_trapno = 0;
461	force_sig_info(SIGBUS, &info, current);
462}
463
464void fault_in_user_windows(void)
 
 
 
 
 
465{
466	struct thread_info *t = current_thread_info();
467	unsigned long window;
468	int winsize = sizeof(struct reg_window);
469	int bias = 0;
470
471	if (test_thread_flag(TIF_32BIT))
472		winsize = sizeof(struct reg_window32);
473	else
474		bias = STACK_BIAS;
475
476	flush_user_windows();
477	window = get_thread_wsaved();
478
479	if (likely(window != 0)) {
480		window -= 1;
481		do {
482			unsigned long sp = (t->rwbuf_stkptrs[window] + bias);
483			struct reg_window *rwin = &t->reg_window[window];
 
 
 
 
 
 
 
 
 
484
485			if (unlikely(sp & 0x7UL))
486				stack_unaligned(sp);
487
488			if (unlikely(copy_to_user((char __user *)sp,
489						  rwin, winsize)))
 
 
 
 
 
 
 
490				goto barf;
 
491		} while (window--);
492	}
493	set_thread_wsaved(0);
494	return;
495
496barf:
497	set_thread_wsaved(window + 1);
498	do_exit(SIGILL);
499}
500
501asmlinkage long sparc_do_fork(unsigned long clone_flags,
502			      unsigned long stack_start,
503			      struct pt_regs *regs,
504			      unsigned long stack_size)
505{
506	int __user *parent_tid_ptr, *child_tid_ptr;
507	unsigned long orig_i1 = regs->u_regs[UREG_I1];
508	long ret;
509
510#ifdef CONFIG_COMPAT
511	if (test_thread_flag(TIF_32BIT)) {
512		parent_tid_ptr = compat_ptr(regs->u_regs[UREG_I2]);
513		child_tid_ptr = compat_ptr(regs->u_regs[UREG_I4]);
514	} else
515#endif
516	{
517		parent_tid_ptr = (int __user *) regs->u_regs[UREG_I2];
518		child_tid_ptr = (int __user *) regs->u_regs[UREG_I4];
519	}
520
521	ret = do_fork(clone_flags, stack_start,
522		      regs, stack_size,
523		      parent_tid_ptr, child_tid_ptr);
524
525	/* If we get an error and potentially restart the system
526	 * call, we're screwed because copy_thread() clobbered
527	 * the parent's %o1.  So detect that case and restore it
528	 * here.
529	 */
530	if ((unsigned long)ret >= -ERESTART_RESTARTBLOCK)
531		regs->u_regs[UREG_I1] = orig_i1;
532
533	return ret;
534}
535
536/* Copy a Sparc thread.  The fork() return value conventions
537 * under SunOS are nothing short of bletcherous:
538 * Parent -->  %o0 == childs  pid, %o1 == 0
539 * Child  -->  %o0 == parents pid, %o1 == 1
540 */
541int copy_thread(unsigned long clone_flags, unsigned long sp,
542		unsigned long unused,
543		struct task_struct *p, struct pt_regs *regs)
544{
545	struct thread_info *t = task_thread_info(p);
 
546	struct sparc_stackf *parent_sf;
547	unsigned long child_stack_sz;
548	char *child_trap_frame;
549	int kernel_thread;
550
551	kernel_thread = (regs->tstate & TSTATE_PRIV) ? 1 : 0;
552	parent_sf = ((struct sparc_stackf *) regs) - 1;
553
554	/* Calculate offset to stack_frame & pt_regs */
555	child_stack_sz = ((STACKFRAME_SZ + TRACEREG_SZ) +
556			  (kernel_thread ? STACKFRAME_SZ : 0));
557	child_trap_frame = (task_stack_page(p) +
558			    (THREAD_SIZE - child_stack_sz));
559	memcpy(child_trap_frame, parent_sf, child_stack_sz);
560
561	t->flags = (t->flags & ~((0xffUL << TI_FLAG_CWP_SHIFT) |
562				 (0xffUL << TI_FLAG_CURRENT_DS_SHIFT))) |
563		(((regs->tstate + 1) & TSTATE_CWP) << TI_FLAG_CWP_SHIFT);
564	t->new_child = 1;
565	t->ksp = ((unsigned long) child_trap_frame) - STACK_BIAS;
566	t->kregs = (struct pt_regs *) (child_trap_frame +
567				       sizeof(struct sparc_stackf));
568	t->fpsaved[0] = 0;
569
570	if (kernel_thread) {
571		struct sparc_stackf *child_sf = (struct sparc_stackf *)
572			(child_trap_frame + (STACKFRAME_SZ + TRACEREG_SZ));
573
574		/* Zero terminate the stack backtrace.  */
575		child_sf->fp = NULL;
576		t->kregs->u_regs[UREG_FP] =
577		  ((unsigned long) child_sf) - STACK_BIAS;
578
579		t->flags |= ((long)ASI_P << TI_FLAG_CURRENT_DS_SHIFT);
580		t->kregs->u_regs[UREG_G6] = (unsigned long) t;
581		t->kregs->u_regs[UREG_G4] = (unsigned long) t->task;
582	} else {
583		if (t->flags & _TIF_32BIT) {
584			sp &= 0x00000000ffffffffUL;
585			regs->u_regs[UREG_FP] &= 0x00000000ffffffffUL;
586		}
587		t->kregs->u_regs[UREG_FP] = sp;
588		t->flags |= ((long)ASI_AIUS << TI_FLAG_CURRENT_DS_SHIFT);
589		if (sp != regs->u_regs[UREG_FP]) {
590			unsigned long csp;
591
592			csp = clone_stackframe(sp, regs->u_regs[UREG_FP]);
593			if (!csp)
594				return -EFAULT;
595			t->kregs->u_regs[UREG_FP] = csp;
596		}
597		if (t->utraps)
598			t->utraps[0]++;
599	}
600
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
601	/* Set the return value for the child. */
602	t->kregs->u_regs[UREG_I0] = current->pid;
603	t->kregs->u_regs[UREG_I1] = 1;
604
605	/* Set the second return value for the parent. */
606	regs->u_regs[UREG_I1] = 0;
607
608	if (clone_flags & CLONE_SETTLS)
609		t->kregs->u_regs[UREG_G7] = regs->u_regs[UREG_I3];
610
611	return 0;
612}
613
614/*
615 * This is the mechanism for creating a new kernel thread.
616 *
617 * NOTE! Only a kernel-only process(ie the swapper or direct descendants
618 * who haven't done an "execve()") should use this: it will work within
619 * a system call from a "real" process, but the process memory space will
620 * not be freed until both the parent and the child have exited.
621 */
622pid_t kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
623{
624	long retval;
 
625
626	/* If the parent runs before fn(arg) is called by the child,
627	 * the input registers of this function can be clobbered.
628	 * So we stash 'fn' and 'arg' into global registers which
629	 * will not be modified by the parent.
630	 */
631	__asm__ __volatile__("mov %4, %%g2\n\t"	   /* Save FN into global */
632			     "mov %5, %%g3\n\t"	   /* Save ARG into global */
633			     "mov %1, %%g1\n\t"	   /* Clone syscall nr. */
634			     "mov %2, %%o0\n\t"	   /* Clone flags. */
635			     "mov 0, %%o1\n\t"	   /* usp arg == 0 */
636			     "t 0x6d\n\t"	   /* Linux/Sparc clone(). */
637			     "brz,a,pn %%o1, 1f\n\t" /* Parent, just return. */
638			     " mov %%o0, %0\n\t"
639			     "jmpl %%g2, %%o7\n\t"   /* Call the function. */
640			     " mov %%g3, %%o0\n\t"   /* Set arg in delay. */
641			     "mov %3, %%g1\n\t"
642			     "t 0x6d\n\t"	   /* Linux/Sparc exit(). */
643			     /* Notreached by child. */
644			     "1:" :
645			     "=r" (retval) :
646			     "i" (__NR_clone), "r" (flags | CLONE_VM | CLONE_UNTRACED),
647			     "i" (__NR_exit),  "r" (fn), "r" (arg) :
648			     "g1", "g2", "g3", "o0", "o1", "memory", "cc");
649	return retval;
650}
651EXPORT_SYMBOL(kernel_thread);
652
653typedef struct {
654	union {
655		unsigned int	pr_regs[32];
656		unsigned long	pr_dregs[16];
657	} pr_fr;
658	unsigned int __unused;
659	unsigned int	pr_fsr;
660	unsigned char	pr_qcnt;
661	unsigned char	pr_q_entrysize;
662	unsigned char	pr_en;
663	unsigned int	pr_q[64];
664} elf_fpregset_t32;
665
666/*
667 * fill in the fpu structure for a core dump.
668 */
669int dump_fpu (struct pt_regs * regs, elf_fpregset_t * fpregs)
670{
671	unsigned long *kfpregs = current_thread_info()->fpregs;
672	unsigned long fprs = current_thread_info()->fpsaved[0];
673
674	if (test_thread_flag(TIF_32BIT)) {
675		elf_fpregset_t32 *fpregs32 = (elf_fpregset_t32 *)fpregs;
676
677		if (fprs & FPRS_DL)
678			memcpy(&fpregs32->pr_fr.pr_regs[0], kfpregs,
679			       sizeof(unsigned int) * 32);
680		else
681			memset(&fpregs32->pr_fr.pr_regs[0], 0,
682			       sizeof(unsigned int) * 32);
683		fpregs32->pr_qcnt = 0;
684		fpregs32->pr_q_entrysize = 8;
685		memset(&fpregs32->pr_q[0], 0,
686		       (sizeof(unsigned int) * 64));
687		if (fprs & FPRS_FEF) {
688			fpregs32->pr_fsr = (unsigned int) current_thread_info()->xfsr[0];
689			fpregs32->pr_en = 1;
690		} else {
691			fpregs32->pr_fsr = 0;
692			fpregs32->pr_en = 0;
693		}
694	} else {
695		if(fprs & FPRS_DL)
696			memcpy(&fpregs->pr_regs[0], kfpregs,
697			       sizeof(unsigned int) * 32);
698		else
699			memset(&fpregs->pr_regs[0], 0,
700			       sizeof(unsigned int) * 32);
701		if(fprs & FPRS_DU)
702			memcpy(&fpregs->pr_regs[16], kfpregs+16,
703			       sizeof(unsigned int) * 32);
704		else
705			memset(&fpregs->pr_regs[16], 0,
706			       sizeof(unsigned int) * 32);
707		if(fprs & FPRS_FEF) {
708			fpregs->pr_fsr = current_thread_info()->xfsr[0];
709			fpregs->pr_gsr = current_thread_info()->gsr[0];
710		} else {
711			fpregs->pr_fsr = fpregs->pr_gsr = 0;
712		}
713		fpregs->pr_fprs = fprs;
714	}
715	return 1;
716}
717EXPORT_SYMBOL(dump_fpu);
718
719/*
720 * sparc_execve() executes a new program after the asm stub has set
721 * things up for us.  This should basically do what I want it to.
722 */
723asmlinkage int sparc_execve(struct pt_regs *regs)
724{
725	int error, base = 0;
726	char *filename;
727
728	/* User register window flush is done by entry.S */
729
730	/* Check for indirect call. */
731	if (regs->u_regs[UREG_G1] == 0)
732		base = 1;
733
734	filename = getname((char __user *)regs->u_regs[base + UREG_I0]);
735	error = PTR_ERR(filename);
736	if (IS_ERR(filename))
737		goto out;
738	error = do_execve(filename,
739			  (const char __user *const __user *)
740			  regs->u_regs[base + UREG_I1],
741			  (const char __user *const __user *)
742			  regs->u_regs[base + UREG_I2], regs);
743	putname(filename);
744	if (!error) {
745		fprs_write(0);
746		current_thread_info()->xfsr[0] = 0;
747		current_thread_info()->fpsaved[0] = 0;
748		regs->tstate &= ~TSTATE_PEF;
749	}
750out:
751	return error;
752}
753
754unsigned long get_wchan(struct task_struct *task)
755{
756	unsigned long pc, fp, bias = 0;
757	struct thread_info *tp;
758	struct reg_window *rw;
759        unsigned long ret = 0;
760	int count = 0; 
761
762	if (!task || task == current ||
763            task->state == TASK_RUNNING)
764		goto out;
765
766	tp = task_thread_info(task);
767	bias = STACK_BIAS;
768	fp = task_thread_info(task)->ksp + bias;
769
770	do {
771		if (!kstack_valid(tp, fp))
772			break;
773		rw = (struct reg_window *) fp;
774		pc = rw->ins[7];
775		if (!in_sched_functions(pc)) {
776			ret = pc;
777			goto out;
778		}
779		fp = rw->ins[6] + bias;
780	} while (++count < 16);
781
782out:
783	return ret;
784}
v5.4
  1// SPDX-License-Identifier: GPL-2.0
  2/*  arch/sparc64/kernel/process.c
  3 *
  4 *  Copyright (C) 1995, 1996, 2008 David S. Miller (davem@davemloft.net)
  5 *  Copyright (C) 1996       Eddie C. Dost   (ecd@skynet.be)
  6 *  Copyright (C) 1997, 1998 Jakub Jelinek   (jj@sunsite.mff.cuni.cz)
  7 */
  8
  9/*
 10 * This file handles the architecture-dependent parts of process handling..
 11 */
 12
 13#include <stdarg.h>
 14
 15#include <linux/errno.h>
 16#include <linux/export.h>
 17#include <linux/sched.h>
 18#include <linux/sched/debug.h>
 19#include <linux/sched/task.h>
 20#include <linux/sched/task_stack.h>
 21#include <linux/kernel.h>
 22#include <linux/mm.h>
 23#include <linux/fs.h>
 24#include <linux/smp.h>
 25#include <linux/stddef.h>
 26#include <linux/ptrace.h>
 27#include <linux/slab.h>
 28#include <linux/user.h>
 29#include <linux/delay.h>
 30#include <linux/compat.h>
 31#include <linux/tick.h>
 32#include <linux/init.h>
 33#include <linux/cpu.h>
 34#include <linux/perf_event.h>
 35#include <linux/elfcore.h>
 36#include <linux/sysrq.h>
 37#include <linux/nmi.h>
 38#include <linux/context_tracking.h>
 39#include <linux/signal.h>
 40
 41#include <linux/uaccess.h>
 
 42#include <asm/page.h>
 43#include <asm/pgalloc.h>
 44#include <asm/pgtable.h>
 45#include <asm/processor.h>
 46#include <asm/pstate.h>
 47#include <asm/elf.h>
 48#include <asm/fpumacro.h>
 49#include <asm/head.h>
 50#include <asm/cpudata.h>
 51#include <asm/mmu_context.h>
 52#include <asm/unistd.h>
 53#include <asm/hypervisor.h>
 54#include <asm/syscalls.h>
 55#include <asm/irq_regs.h>
 56#include <asm/smp.h>
 57#include <asm/pcr.h>
 58
 59#include "kstack.h"
 60
 61/* Idle loop support on sparc64. */
 62void arch_cpu_idle(void)
 63{
 64	if (tlb_type != hypervisor) {
 65		touch_nmi_watchdog();
 66		local_irq_enable();
 67	} else {
 
 
 
 
 
 68		unsigned long pstate;
 69
 70		local_irq_enable();
 71
 72                /* The sun4v sleeping code requires that we have PSTATE.IE cleared over
 73                 * the cpu sleep hypervisor call.
 74                 */
 75		__asm__ __volatile__(
 76			"rdpr %%pstate, %0\n\t"
 77			"andn %0, %1, %0\n\t"
 78			"wrpr %0, %%g0, %%pstate"
 79			: "=&r" (pstate)
 80			: "i" (PSTATE_IE));
 81
 82		if (!need_resched() && !cpu_is_offline(smp_processor_id())) {
 83			sun4v_cpu_yield();
 84			/* If resumed by cpu_poke then we need to explicitly
 85			 * call scheduler_ipi().
 86			 */
 87			scheduler_poke();
 88		}
 89
 90		/* Re-enable interrupts. */
 91		__asm__ __volatile__(
 92			"rdpr %%pstate, %0\n\t"
 93			"or %0, %1, %0\n\t"
 94			"wrpr %0, %%g0, %%pstate"
 95			: "=&r" (pstate)
 96			: "i" (PSTATE_IE));
 97	}
 
 
 98}
 99
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
100#ifdef CONFIG_HOTPLUG_CPU
101void arch_cpu_idle_dead(void)
102{
103	sched_preempt_enable_no_resched();
104	cpu_play_dead();
 
 
 
105}
106#endif
107
108#ifdef CONFIG_COMPAT
109static void show_regwindow32(struct pt_regs *regs)
110{
111	struct reg_window32 __user *rw;
112	struct reg_window32 r_w;
113	mm_segment_t old_fs;
114	
115	__asm__ __volatile__ ("flushw");
116	rw = compat_ptr((unsigned int)regs->u_regs[14]);
117	old_fs = get_fs();
118	set_fs (USER_DS);
119	if (copy_from_user (&r_w, rw, sizeof(r_w))) {
120		set_fs (old_fs);
121		return;
122	}
123
124	set_fs (old_fs);			
125	printk("l0: %08x l1: %08x l2: %08x l3: %08x "
126	       "l4: %08x l5: %08x l6: %08x l7: %08x\n",
127	       r_w.locals[0], r_w.locals[1], r_w.locals[2], r_w.locals[3],
128	       r_w.locals[4], r_w.locals[5], r_w.locals[6], r_w.locals[7]);
129	printk("i0: %08x i1: %08x i2: %08x i3: %08x "
130	       "i4: %08x i5: %08x i6: %08x i7: %08x\n",
131	       r_w.ins[0], r_w.ins[1], r_w.ins[2], r_w.ins[3],
132	       r_w.ins[4], r_w.ins[5], r_w.ins[6], r_w.ins[7]);
133}
134#else
135#define show_regwindow32(regs)	do { } while (0)
136#endif
137
138static void show_regwindow(struct pt_regs *regs)
139{
140	struct reg_window __user *rw;
141	struct reg_window *rwk;
142	struct reg_window r_w;
143	mm_segment_t old_fs;
144
145	if ((regs->tstate & TSTATE_PRIV) || !(test_thread_flag(TIF_32BIT))) {
146		__asm__ __volatile__ ("flushw");
147		rw = (struct reg_window __user *)
148			(regs->u_regs[14] + STACK_BIAS);
149		rwk = (struct reg_window *)
150			(regs->u_regs[14] + STACK_BIAS);
151		if (!(regs->tstate & TSTATE_PRIV)) {
152			old_fs = get_fs();
153			set_fs (USER_DS);
154			if (copy_from_user (&r_w, rw, sizeof(r_w))) {
155				set_fs (old_fs);
156				return;
157			}
158			rwk = &r_w;
159			set_fs (old_fs);			
160		}
161	} else {
162		show_regwindow32(regs);
163		return;
164	}
165	printk("l0: %016lx l1: %016lx l2: %016lx l3: %016lx\n",
166	       rwk->locals[0], rwk->locals[1], rwk->locals[2], rwk->locals[3]);
167	printk("l4: %016lx l5: %016lx l6: %016lx l7: %016lx\n",
168	       rwk->locals[4], rwk->locals[5], rwk->locals[6], rwk->locals[7]);
169	printk("i0: %016lx i1: %016lx i2: %016lx i3: %016lx\n",
170	       rwk->ins[0], rwk->ins[1], rwk->ins[2], rwk->ins[3]);
171	printk("i4: %016lx i5: %016lx i6: %016lx i7: %016lx\n",
172	       rwk->ins[4], rwk->ins[5], rwk->ins[6], rwk->ins[7]);
173	if (regs->tstate & TSTATE_PRIV)
174		printk("I7: <%pS>\n", (void *) rwk->ins[7]);
175}
176
177void show_regs(struct pt_regs *regs)
178{
179	show_regs_print_info(KERN_DEFAULT);
180
181	printk("TSTATE: %016lx TPC: %016lx TNPC: %016lx Y: %08x    %s\n", regs->tstate,
182	       regs->tpc, regs->tnpc, regs->y, print_tainted());
183	printk("TPC: <%pS>\n", (void *) regs->tpc);
184	printk("g0: %016lx g1: %016lx g2: %016lx g3: %016lx\n",
185	       regs->u_regs[0], regs->u_regs[1], regs->u_regs[2],
186	       regs->u_regs[3]);
187	printk("g4: %016lx g5: %016lx g6: %016lx g7: %016lx\n",
188	       regs->u_regs[4], regs->u_regs[5], regs->u_regs[6],
189	       regs->u_regs[7]);
190	printk("o0: %016lx o1: %016lx o2: %016lx o3: %016lx\n",
191	       regs->u_regs[8], regs->u_regs[9], regs->u_regs[10],
192	       regs->u_regs[11]);
193	printk("o4: %016lx o5: %016lx sp: %016lx ret_pc: %016lx\n",
194	       regs->u_regs[12], regs->u_regs[13], regs->u_regs[14],
195	       regs->u_regs[15]);
196	printk("RPC: <%pS>\n", (void *) regs->u_regs[15]);
197	show_regwindow(regs);
198	show_stack(current, (unsigned long *) regs->u_regs[UREG_FP]);
199}
200
201union global_cpu_snapshot global_cpu_snapshot[NR_CPUS];
202static DEFINE_SPINLOCK(global_cpu_snapshot_lock);
203
204static void __global_reg_self(struct thread_info *tp, struct pt_regs *regs,
205			      int this_cpu)
206{
207	struct global_reg_snapshot *rp;
208
209	flushw_all();
210
211	rp = &global_cpu_snapshot[this_cpu].reg;
212
213	rp->tstate = regs->tstate;
214	rp->tpc = regs->tpc;
215	rp->tnpc = regs->tnpc;
216	rp->o7 = regs->u_regs[UREG_I7];
217
218	if (regs->tstate & TSTATE_PRIV) {
219		struct reg_window *rw;
220
221		rw = (struct reg_window *)
222			(regs->u_regs[UREG_FP] + STACK_BIAS);
223		if (kstack_valid(tp, (unsigned long) rw)) {
224			rp->i7 = rw->ins[7];
225			rw = (struct reg_window *)
226				(rw->ins[6] + STACK_BIAS);
227			if (kstack_valid(tp, (unsigned long) rw))
228				rp->rpc = rw->ins[7];
229		}
230	} else {
231		rp->i7 = 0;
232		rp->rpc = 0;
233	}
234	rp->thread = tp;
235}
236
237/* In order to avoid hangs we do not try to synchronize with the
238 * global register dump client cpus.  The last store they make is to
239 * the thread pointer, so do a short poll waiting for that to become
240 * non-NULL.
241 */
242static void __global_reg_poll(struct global_reg_snapshot *gp)
243{
244	int limit = 0;
245
246	while (!gp->thread && ++limit < 100) {
247		barrier();
248		udelay(1);
249	}
250}
251
252void arch_trigger_cpumask_backtrace(const cpumask_t *mask, bool exclude_self)
253{
254	struct thread_info *tp = current_thread_info();
255	struct pt_regs *regs = get_irq_regs();
256	unsigned long flags;
257	int this_cpu, cpu;
258
259	if (!regs)
260		regs = tp->kregs;
261
262	spin_lock_irqsave(&global_cpu_snapshot_lock, flags);
 
 
263
264	this_cpu = raw_smp_processor_id();
265
266	memset(global_cpu_snapshot, 0, sizeof(global_cpu_snapshot));
267
268	if (cpumask_test_cpu(this_cpu, mask) && !exclude_self)
269		__global_reg_self(tp, regs, this_cpu);
270
271	smp_fetch_global_regs();
272
273	for_each_cpu(cpu, mask) {
274		struct global_reg_snapshot *gp;
275
276		if (exclude_self && cpu == this_cpu)
277			continue;
278
279		gp = &global_cpu_snapshot[cpu].reg;
280
281		__global_reg_poll(gp);
282
283		tp = gp->thread;
284		printk("%c CPU[%3d]: TSTATE[%016lx] TPC[%016lx] TNPC[%016lx] TASK[%s:%d]\n",
285		       (cpu == this_cpu ? '*' : ' '), cpu,
286		       gp->tstate, gp->tpc, gp->tnpc,
287		       ((tp && tp->task) ? tp->task->comm : "NULL"),
288		       ((tp && tp->task) ? tp->task->pid : -1));
289
290		if (gp->tstate & TSTATE_PRIV) {
291			printk("             TPC[%pS] O7[%pS] I7[%pS] RPC[%pS]\n",
292			       (void *) gp->tpc,
293			       (void *) gp->o7,
294			       (void *) gp->i7,
295			       (void *) gp->rpc);
296		} else {
297			printk("             TPC[%lx] O7[%lx] I7[%lx] RPC[%lx]\n",
298			       gp->tpc, gp->o7, gp->i7, gp->rpc);
299		}
300
301		touch_nmi_watchdog();
302	}
303
304	memset(global_cpu_snapshot, 0, sizeof(global_cpu_snapshot));
305
306	spin_unlock_irqrestore(&global_cpu_snapshot_lock, flags);
307}
308
309#ifdef CONFIG_MAGIC_SYSRQ
310
311static void sysrq_handle_globreg(int key)
312{
313	trigger_all_cpu_backtrace();
314}
315
316static struct sysrq_key_op sparc_globalreg_op = {
317	.handler	= sysrq_handle_globreg,
318	.help_msg	= "global-regs(y)",
319	.action_msg	= "Show Global CPU Regs",
320};
321
322static void __global_pmu_self(int this_cpu)
323{
324	struct global_pmu_snapshot *pp;
325	int i, num;
326
327	if (!pcr_ops)
328		return;
329
330	pp = &global_cpu_snapshot[this_cpu].pmu;
331
332	num = 1;
333	if (tlb_type == hypervisor &&
334	    sun4v_chip_type >= SUN4V_CHIP_NIAGARA4)
335		num = 4;
336
337	for (i = 0; i < num; i++) {
338		pp->pcr[i] = pcr_ops->read_pcr(i);
339		pp->pic[i] = pcr_ops->read_pic(i);
340	}
341}
342
343static void __global_pmu_poll(struct global_pmu_snapshot *pp)
344{
345	int limit = 0;
346
347	while (!pp->pcr[0] && ++limit < 100) {
348		barrier();
349		udelay(1);
350	}
351}
352
353static void pmu_snapshot_all_cpus(void)
354{
355	unsigned long flags;
356	int this_cpu, cpu;
357
358	spin_lock_irqsave(&global_cpu_snapshot_lock, flags);
359
360	memset(global_cpu_snapshot, 0, sizeof(global_cpu_snapshot));
361
362	this_cpu = raw_smp_processor_id();
363
364	__global_pmu_self(this_cpu);
365
366	smp_fetch_global_pmu();
367
368	for_each_online_cpu(cpu) {
369		struct global_pmu_snapshot *pp = &global_cpu_snapshot[cpu].pmu;
370
371		__global_pmu_poll(pp);
372
373		printk("%c CPU[%3d]: PCR[%08lx:%08lx:%08lx:%08lx] PIC[%08lx:%08lx:%08lx:%08lx]\n",
374		       (cpu == this_cpu ? '*' : ' '), cpu,
375		       pp->pcr[0], pp->pcr[1], pp->pcr[2], pp->pcr[3],
376		       pp->pic[0], pp->pic[1], pp->pic[2], pp->pic[3]);
377
378		touch_nmi_watchdog();
379	}
380
381	memset(global_cpu_snapshot, 0, sizeof(global_cpu_snapshot));
382
383	spin_unlock_irqrestore(&global_cpu_snapshot_lock, flags);
384}
385
386static void sysrq_handle_globpmu(int key)
387{
388	pmu_snapshot_all_cpus();
389}
390
391static struct sysrq_key_op sparc_globalpmu_op = {
392	.handler	= sysrq_handle_globpmu,
393	.help_msg	= "global-pmu(x)",
394	.action_msg	= "Show Global PMU Regs",
395};
396
397static int __init sparc_sysrq_init(void)
398{
399	int ret = register_sysrq_key('y', &sparc_globalreg_op);
400
401	if (!ret)
402		ret = register_sysrq_key('x', &sparc_globalpmu_op);
403	return ret;
404}
405
406core_initcall(sparc_sysrq_init);
407
408#endif
409
410/* Free current thread data structures etc.. */
411void exit_thread(struct task_struct *tsk)
412{
413	struct thread_info *t = task_thread_info(tsk);
414
415	if (t->utraps) {
416		if (t->utraps[0] < 2)
417			kfree (t->utraps);
418		else
419			t->utraps[0]--;
420	}
421}
422
423void flush_thread(void)
424{
425	struct thread_info *t = current_thread_info();
426	struct mm_struct *mm;
427
428	mm = t->task->mm;
429	if (mm)
430		tsb_context_switch(mm);
431
432	set_thread_wsaved(0);
433
434	/* Clear FPU register state. */
435	t->fpsaved[0] = 0;
436}
437
438/* It's a bit more tricky when 64-bit tasks are involved... */
439static unsigned long clone_stackframe(unsigned long csp, unsigned long psp)
440{
441	bool stack_64bit = test_thread_64bit_stack(psp);
442	unsigned long fp, distance, rval;
443
444	if (stack_64bit) {
445		csp += STACK_BIAS;
446		psp += STACK_BIAS;
447		__get_user(fp, &(((struct reg_window __user *)psp)->ins[6]));
448		fp += STACK_BIAS;
449		if (test_thread_flag(TIF_32BIT))
450			fp &= 0xffffffff;
451	} else
452		__get_user(fp, &(((struct reg_window32 __user *)psp)->ins[6]));
453
454	/* Now align the stack as this is mandatory in the Sparc ABI
455	 * due to how register windows work.  This hides the
456	 * restriction from thread libraries etc.
457	 */
458	csp &= ~15UL;
459
460	distance = fp - psp;
461	rval = (csp - distance);
462	if (copy_in_user((void __user *) rval, (void __user *) psp, distance))
463		rval = 0;
464	else if (!stack_64bit) {
465		if (put_user(((u32)csp),
466			     &(((struct reg_window32 __user *)rval)->ins[6])))
467			rval = 0;
468	} else {
469		if (put_user(((u64)csp - STACK_BIAS),
470			     &(((struct reg_window __user *)rval)->ins[6])))
471			rval = 0;
472		else
473			rval = rval - STACK_BIAS;
474	}
475
476	return rval;
477}
478
479/* Standard stuff. */
480static inline void shift_window_buffer(int first_win, int last_win,
481				       struct thread_info *t)
482{
483	int i;
484
485	for (i = first_win; i < last_win; i++) {
486		t->rwbuf_stkptrs[i] = t->rwbuf_stkptrs[i+1];
487		memcpy(&t->reg_window[i], &t->reg_window[i+1],
488		       sizeof(struct reg_window));
489	}
490}
491
492void synchronize_user_stack(void)
493{
494	struct thread_info *t = current_thread_info();
495	unsigned long window;
496
497	flush_user_windows();
498	if ((window = get_thread_wsaved()) != 0) {
 
 
 
 
 
 
 
 
499		window -= 1;
500		do {
 
501			struct reg_window *rwin = &t->reg_window[window];
502			int winsize = sizeof(struct reg_window);
503			unsigned long sp;
504
505			sp = t->rwbuf_stkptrs[window];
506
507			if (test_thread_64bit_stack(sp))
508				sp += STACK_BIAS;
509			else
510				winsize = sizeof(struct reg_window32);
511
512			if (!copy_to_user((char __user *)sp, rwin, winsize)) {
513				shift_window_buffer(window, get_thread_wsaved() - 1, t);
514				set_thread_wsaved(get_thread_wsaved() - 1);
515			}
516		} while (window--);
517	}
518}
519
520static void stack_unaligned(unsigned long sp)
521{
522	force_sig_fault(SIGBUS, BUS_ADRALN, (void __user *) sp, 0);
 
 
 
 
 
 
 
523}
524
525static const char uwfault32[] = KERN_INFO \
526	"%s[%d]: bad register window fault: SP %08lx (orig_sp %08lx) TPC %08lx O7 %08lx\n";
527static const char uwfault64[] = KERN_INFO \
528	"%s[%d]: bad register window fault: SP %016lx (orig_sp %016lx) TPC %08lx O7 %016lx\n";
529
530void fault_in_user_windows(struct pt_regs *regs)
531{
532	struct thread_info *t = current_thread_info();
533	unsigned long window;
 
 
 
 
 
 
 
534
535	flush_user_windows();
536	window = get_thread_wsaved();
537
538	if (likely(window != 0)) {
539		window -= 1;
540		do {
 
541			struct reg_window *rwin = &t->reg_window[window];
542			int winsize = sizeof(struct reg_window);
543			unsigned long sp, orig_sp;
544
545			orig_sp = sp = t->rwbuf_stkptrs[window];
546
547			if (test_thread_64bit_stack(sp))
548				sp += STACK_BIAS;
549			else
550				winsize = sizeof(struct reg_window32);
551
552			if (unlikely(sp & 0x7UL))
553				stack_unaligned(sp);
554
555			if (unlikely(copy_to_user((char __user *)sp,
556						  rwin, winsize))) {
557				if (show_unhandled_signals)
558					printk_ratelimited(is_compat_task() ?
559							   uwfault32 : uwfault64,
560							   current->comm, current->pid,
561							   sp, orig_sp,
562							   regs->tpc,
563							   regs->u_regs[UREG_I7]);
564				goto barf;
565			}
566		} while (window--);
567	}
568	set_thread_wsaved(0);
569	return;
570
571barf:
572	set_thread_wsaved(window + 1);
573	force_sig(SIGSEGV);
574}
575
576asmlinkage long sparc_do_fork(unsigned long clone_flags,
577			      unsigned long stack_start,
578			      struct pt_regs *regs,
579			      unsigned long stack_size)
580{
581	int __user *parent_tid_ptr, *child_tid_ptr;
582	unsigned long orig_i1 = regs->u_regs[UREG_I1];
583	long ret;
584
585#ifdef CONFIG_COMPAT
586	if (test_thread_flag(TIF_32BIT)) {
587		parent_tid_ptr = compat_ptr(regs->u_regs[UREG_I2]);
588		child_tid_ptr = compat_ptr(regs->u_regs[UREG_I4]);
589	} else
590#endif
591	{
592		parent_tid_ptr = (int __user *) regs->u_regs[UREG_I2];
593		child_tid_ptr = (int __user *) regs->u_regs[UREG_I4];
594	}
595
596	ret = do_fork(clone_flags, stack_start, stack_size,
 
597		      parent_tid_ptr, child_tid_ptr);
598
599	/* If we get an error and potentially restart the system
600	 * call, we're screwed because copy_thread() clobbered
601	 * the parent's %o1.  So detect that case and restore it
602	 * here.
603	 */
604	if ((unsigned long)ret >= -ERESTART_RESTARTBLOCK)
605		regs->u_regs[UREG_I1] = orig_i1;
606
607	return ret;
608}
609
610/* Copy a Sparc thread.  The fork() return value conventions
611 * under SunOS are nothing short of bletcherous:
612 * Parent -->  %o0 == childs  pid, %o1 == 0
613 * Child  -->  %o0 == parents pid, %o1 == 1
614 */
615int copy_thread(unsigned long clone_flags, unsigned long sp,
616		unsigned long arg, struct task_struct *p)
 
617{
618	struct thread_info *t = task_thread_info(p);
619	struct pt_regs *regs = current_pt_regs();
620	struct sparc_stackf *parent_sf;
621	unsigned long child_stack_sz;
622	char *child_trap_frame;
 
 
 
 
623
624	/* Calculate offset to stack_frame & pt_regs */
625	child_stack_sz = (STACKFRAME_SZ + TRACEREG_SZ);
 
626	child_trap_frame = (task_stack_page(p) +
627			    (THREAD_SIZE - child_stack_sz));
 
628
 
 
 
629	t->new_child = 1;
630	t->ksp = ((unsigned long) child_trap_frame) - STACK_BIAS;
631	t->kregs = (struct pt_regs *) (child_trap_frame +
632				       sizeof(struct sparc_stackf));
633	t->fpsaved[0] = 0;
634
635	if (unlikely(p->flags & PF_KTHREAD)) {
636		memset(child_trap_frame, 0, child_stack_sz);
637		__thread_flag_byte_ptr(t)[TI_FLAG_BYTE_CWP] = 
638			(current_pt_regs()->tstate + 1) & TSTATE_CWP;
639		t->current_ds = ASI_P;
640		t->kregs->u_regs[UREG_G1] = sp; /* function */
641		t->kregs->u_regs[UREG_G2] = arg;
642		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
643	}
644
645	parent_sf = ((struct sparc_stackf *) regs) - 1;
646	memcpy(child_trap_frame, parent_sf, child_stack_sz);
647	if (t->flags & _TIF_32BIT) {
648		sp &= 0x00000000ffffffffUL;
649		regs->u_regs[UREG_FP] &= 0x00000000ffffffffUL;
650	}
651	t->kregs->u_regs[UREG_FP] = sp;
652	__thread_flag_byte_ptr(t)[TI_FLAG_BYTE_CWP] = 
653		(regs->tstate + 1) & TSTATE_CWP;
654	t->current_ds = ASI_AIUS;
655	if (sp != regs->u_regs[UREG_FP]) {
656		unsigned long csp;
657
658		csp = clone_stackframe(sp, regs->u_regs[UREG_FP]);
659		if (!csp)
660			return -EFAULT;
661		t->kregs->u_regs[UREG_FP] = csp;
662	}
663	if (t->utraps)
664		t->utraps[0]++;
665
666	/* Set the return value for the child. */
667	t->kregs->u_regs[UREG_I0] = current->pid;
668	t->kregs->u_regs[UREG_I1] = 1;
669
670	/* Set the second return value for the parent. */
671	regs->u_regs[UREG_I1] = 0;
672
673	if (clone_flags & CLONE_SETTLS)
674		t->kregs->u_regs[UREG_G7] = regs->u_regs[UREG_I3];
675
676	return 0;
677}
678
679/* TIF_MCDPER in thread info flags for current task is updated lazily upon
680 * a context switch. Update this flag in current task's thread flags
681 * before dup so the dup'd task will inherit the current TIF_MCDPER flag.
 
 
 
 
682 */
683int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
684{
685	if (adi_capable()) {
686		register unsigned long tmp_mcdper;
687
688		__asm__ __volatile__(
689			".word 0x83438000\n\t"	/* rd  %mcdper, %g1 */
690			"mov %%g1, %0\n\t"
691			: "=r" (tmp_mcdper)
692			:
693			: "g1");
694		if (tmp_mcdper)
695			set_thread_flag(TIF_MCDPER);
696		else
697			clear_thread_flag(TIF_MCDPER);
698	}
699
700	*dst = *src;
701	return 0;
 
 
 
 
 
 
 
 
 
 
702}
 
703
704typedef struct {
705	union {
706		unsigned int	pr_regs[32];
707		unsigned long	pr_dregs[16];
708	} pr_fr;
709	unsigned int __unused;
710	unsigned int	pr_fsr;
711	unsigned char	pr_qcnt;
712	unsigned char	pr_q_entrysize;
713	unsigned char	pr_en;
714	unsigned int	pr_q[64];
715} elf_fpregset_t32;
716
717/*
718 * fill in the fpu structure for a core dump.
719 */
720int dump_fpu (struct pt_regs * regs, elf_fpregset_t * fpregs)
721{
722	unsigned long *kfpregs = current_thread_info()->fpregs;
723	unsigned long fprs = current_thread_info()->fpsaved[0];
724
725	if (test_thread_flag(TIF_32BIT)) {
726		elf_fpregset_t32 *fpregs32 = (elf_fpregset_t32 *)fpregs;
727
728		if (fprs & FPRS_DL)
729			memcpy(&fpregs32->pr_fr.pr_regs[0], kfpregs,
730			       sizeof(unsigned int) * 32);
731		else
732			memset(&fpregs32->pr_fr.pr_regs[0], 0,
733			       sizeof(unsigned int) * 32);
734		fpregs32->pr_qcnt = 0;
735		fpregs32->pr_q_entrysize = 8;
736		memset(&fpregs32->pr_q[0], 0,
737		       (sizeof(unsigned int) * 64));
738		if (fprs & FPRS_FEF) {
739			fpregs32->pr_fsr = (unsigned int) current_thread_info()->xfsr[0];
740			fpregs32->pr_en = 1;
741		} else {
742			fpregs32->pr_fsr = 0;
743			fpregs32->pr_en = 0;
744		}
745	} else {
746		if(fprs & FPRS_DL)
747			memcpy(&fpregs->pr_regs[0], kfpregs,
748			       sizeof(unsigned int) * 32);
749		else
750			memset(&fpregs->pr_regs[0], 0,
751			       sizeof(unsigned int) * 32);
752		if(fprs & FPRS_DU)
753			memcpy(&fpregs->pr_regs[16], kfpregs+16,
754			       sizeof(unsigned int) * 32);
755		else
756			memset(&fpregs->pr_regs[16], 0,
757			       sizeof(unsigned int) * 32);
758		if(fprs & FPRS_FEF) {
759			fpregs->pr_fsr = current_thread_info()->xfsr[0];
760			fpregs->pr_gsr = current_thread_info()->gsr[0];
761		} else {
762			fpregs->pr_fsr = fpregs->pr_gsr = 0;
763		}
764		fpregs->pr_fprs = fprs;
765	}
766	return 1;
767}
768EXPORT_SYMBOL(dump_fpu);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
769
770unsigned long get_wchan(struct task_struct *task)
771{
772	unsigned long pc, fp, bias = 0;
773	struct thread_info *tp;
774	struct reg_window *rw;
775        unsigned long ret = 0;
776	int count = 0; 
777
778	if (!task || task == current ||
779            task->state == TASK_RUNNING)
780		goto out;
781
782	tp = task_thread_info(task);
783	bias = STACK_BIAS;
784	fp = task_thread_info(task)->ksp + bias;
785
786	do {
787		if (!kstack_valid(tp, fp))
788			break;
789		rw = (struct reg_window *) fp;
790		pc = rw->ins[7];
791		if (!in_sched_functions(pc)) {
792			ret = pc;
793			goto out;
794		}
795		fp = rw->ins[6] + bias;
796	} while (++count < 16);
797
798out:
799	return ret;
800}