Loading...
1/* arch/sparc64/kernel/process.c
2 *
3 * Copyright (C) 1995, 1996, 2008 David S. Miller (davem@davemloft.net)
4 * Copyright (C) 1996 Eddie C. Dost (ecd@skynet.be)
5 * Copyright (C) 1997, 1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
6 */
7
8/*
9 * This file handles the architecture-dependent parts of process handling..
10 */
11
12#include <stdarg.h>
13
14#include <linux/errno.h>
15#include <linux/module.h>
16#include <linux/sched.h>
17#include <linux/kernel.h>
18#include <linux/mm.h>
19#include <linux/fs.h>
20#include <linux/smp.h>
21#include <linux/stddef.h>
22#include <linux/ptrace.h>
23#include <linux/slab.h>
24#include <linux/user.h>
25#include <linux/delay.h>
26#include <linux/compat.h>
27#include <linux/tick.h>
28#include <linux/init.h>
29#include <linux/cpu.h>
30#include <linux/elfcore.h>
31#include <linux/sysrq.h>
32#include <linux/nmi.h>
33
34#include <asm/uaccess.h>
35#include <asm/system.h>
36#include <asm/page.h>
37#include <asm/pgalloc.h>
38#include <asm/pgtable.h>
39#include <asm/processor.h>
40#include <asm/pstate.h>
41#include <asm/elf.h>
42#include <asm/fpumacro.h>
43#include <asm/head.h>
44#include <asm/cpudata.h>
45#include <asm/mmu_context.h>
46#include <asm/unistd.h>
47#include <asm/hypervisor.h>
48#include <asm/syscalls.h>
49#include <asm/irq_regs.h>
50#include <asm/smp.h>
51
52#include "kstack.h"
53
54static void sparc64_yield(int cpu)
55{
56 if (tlb_type != hypervisor) {
57 touch_nmi_watchdog();
58 return;
59 }
60
61 clear_thread_flag(TIF_POLLING_NRFLAG);
62 smp_mb__after_clear_bit();
63
64 while (!need_resched() && !cpu_is_offline(cpu)) {
65 unsigned long pstate;
66
67 /* Disable interrupts. */
68 __asm__ __volatile__(
69 "rdpr %%pstate, %0\n\t"
70 "andn %0, %1, %0\n\t"
71 "wrpr %0, %%g0, %%pstate"
72 : "=&r" (pstate)
73 : "i" (PSTATE_IE));
74
75 if (!need_resched() && !cpu_is_offline(cpu))
76 sun4v_cpu_yield();
77
78 /* Re-enable interrupts. */
79 __asm__ __volatile__(
80 "rdpr %%pstate, %0\n\t"
81 "or %0, %1, %0\n\t"
82 "wrpr %0, %%g0, %%pstate"
83 : "=&r" (pstate)
84 : "i" (PSTATE_IE));
85 }
86
87 set_thread_flag(TIF_POLLING_NRFLAG);
88}
89
90/* The idle loop on sparc64. */
91void cpu_idle(void)
92{
93 int cpu = smp_processor_id();
94
95 set_thread_flag(TIF_POLLING_NRFLAG);
96
97 while(1) {
98 tick_nohz_stop_sched_tick(1);
99
100 while (!need_resched() && !cpu_is_offline(cpu))
101 sparc64_yield(cpu);
102
103 tick_nohz_restart_sched_tick();
104
105 preempt_enable_no_resched();
106
107#ifdef CONFIG_HOTPLUG_CPU
108 if (cpu_is_offline(cpu))
109 cpu_play_dead();
110#endif
111
112 schedule();
113 preempt_disable();
114 }
115}
116
117#ifdef CONFIG_COMPAT
118static void show_regwindow32(struct pt_regs *regs)
119{
120 struct reg_window32 __user *rw;
121 struct reg_window32 r_w;
122 mm_segment_t old_fs;
123
124 __asm__ __volatile__ ("flushw");
125 rw = compat_ptr((unsigned)regs->u_regs[14]);
126 old_fs = get_fs();
127 set_fs (USER_DS);
128 if (copy_from_user (&r_w, rw, sizeof(r_w))) {
129 set_fs (old_fs);
130 return;
131 }
132
133 set_fs (old_fs);
134 printk("l0: %08x l1: %08x l2: %08x l3: %08x "
135 "l4: %08x l5: %08x l6: %08x l7: %08x\n",
136 r_w.locals[0], r_w.locals[1], r_w.locals[2], r_w.locals[3],
137 r_w.locals[4], r_w.locals[5], r_w.locals[6], r_w.locals[7]);
138 printk("i0: %08x i1: %08x i2: %08x i3: %08x "
139 "i4: %08x i5: %08x i6: %08x i7: %08x\n",
140 r_w.ins[0], r_w.ins[1], r_w.ins[2], r_w.ins[3],
141 r_w.ins[4], r_w.ins[5], r_w.ins[6], r_w.ins[7]);
142}
143#else
144#define show_regwindow32(regs) do { } while (0)
145#endif
146
147static void show_regwindow(struct pt_regs *regs)
148{
149 struct reg_window __user *rw;
150 struct reg_window *rwk;
151 struct reg_window r_w;
152 mm_segment_t old_fs;
153
154 if ((regs->tstate & TSTATE_PRIV) || !(test_thread_flag(TIF_32BIT))) {
155 __asm__ __volatile__ ("flushw");
156 rw = (struct reg_window __user *)
157 (regs->u_regs[14] + STACK_BIAS);
158 rwk = (struct reg_window *)
159 (regs->u_regs[14] + STACK_BIAS);
160 if (!(regs->tstate & TSTATE_PRIV)) {
161 old_fs = get_fs();
162 set_fs (USER_DS);
163 if (copy_from_user (&r_w, rw, sizeof(r_w))) {
164 set_fs (old_fs);
165 return;
166 }
167 rwk = &r_w;
168 set_fs (old_fs);
169 }
170 } else {
171 show_regwindow32(regs);
172 return;
173 }
174 printk("l0: %016lx l1: %016lx l2: %016lx l3: %016lx\n",
175 rwk->locals[0], rwk->locals[1], rwk->locals[2], rwk->locals[3]);
176 printk("l4: %016lx l5: %016lx l6: %016lx l7: %016lx\n",
177 rwk->locals[4], rwk->locals[5], rwk->locals[6], rwk->locals[7]);
178 printk("i0: %016lx i1: %016lx i2: %016lx i3: %016lx\n",
179 rwk->ins[0], rwk->ins[1], rwk->ins[2], rwk->ins[3]);
180 printk("i4: %016lx i5: %016lx i6: %016lx i7: %016lx\n",
181 rwk->ins[4], rwk->ins[5], rwk->ins[6], rwk->ins[7]);
182 if (regs->tstate & TSTATE_PRIV)
183 printk("I7: <%pS>\n", (void *) rwk->ins[7]);
184}
185
186void show_regs(struct pt_regs *regs)
187{
188 printk("TSTATE: %016lx TPC: %016lx TNPC: %016lx Y: %08x %s\n", regs->tstate,
189 regs->tpc, regs->tnpc, regs->y, print_tainted());
190 printk("TPC: <%pS>\n", (void *) regs->tpc);
191 printk("g0: %016lx g1: %016lx g2: %016lx g3: %016lx\n",
192 regs->u_regs[0], regs->u_regs[1], regs->u_regs[2],
193 regs->u_regs[3]);
194 printk("g4: %016lx g5: %016lx g6: %016lx g7: %016lx\n",
195 regs->u_regs[4], regs->u_regs[5], regs->u_regs[6],
196 regs->u_regs[7]);
197 printk("o0: %016lx o1: %016lx o2: %016lx o3: %016lx\n",
198 regs->u_regs[8], regs->u_regs[9], regs->u_regs[10],
199 regs->u_regs[11]);
200 printk("o4: %016lx o5: %016lx sp: %016lx ret_pc: %016lx\n",
201 regs->u_regs[12], regs->u_regs[13], regs->u_regs[14],
202 regs->u_regs[15]);
203 printk("RPC: <%pS>\n", (void *) regs->u_regs[15]);
204 show_regwindow(regs);
205 show_stack(current, (unsigned long *) regs->u_regs[UREG_FP]);
206}
207
208struct global_reg_snapshot global_reg_snapshot[NR_CPUS];
209static DEFINE_SPINLOCK(global_reg_snapshot_lock);
210
211static void __global_reg_self(struct thread_info *tp, struct pt_regs *regs,
212 int this_cpu)
213{
214 flushw_all();
215
216 global_reg_snapshot[this_cpu].tstate = regs->tstate;
217 global_reg_snapshot[this_cpu].tpc = regs->tpc;
218 global_reg_snapshot[this_cpu].tnpc = regs->tnpc;
219 global_reg_snapshot[this_cpu].o7 = regs->u_regs[UREG_I7];
220
221 if (regs->tstate & TSTATE_PRIV) {
222 struct reg_window *rw;
223
224 rw = (struct reg_window *)
225 (regs->u_regs[UREG_FP] + STACK_BIAS);
226 if (kstack_valid(tp, (unsigned long) rw)) {
227 global_reg_snapshot[this_cpu].i7 = rw->ins[7];
228 rw = (struct reg_window *)
229 (rw->ins[6] + STACK_BIAS);
230 if (kstack_valid(tp, (unsigned long) rw))
231 global_reg_snapshot[this_cpu].rpc = rw->ins[7];
232 }
233 } else {
234 global_reg_snapshot[this_cpu].i7 = 0;
235 global_reg_snapshot[this_cpu].rpc = 0;
236 }
237 global_reg_snapshot[this_cpu].thread = tp;
238}
239
240/* In order to avoid hangs we do not try to synchronize with the
241 * global register dump client cpus. The last store they make is to
242 * the thread pointer, so do a short poll waiting for that to become
243 * non-NULL.
244 */
245static void __global_reg_poll(struct global_reg_snapshot *gp)
246{
247 int limit = 0;
248
249 while (!gp->thread && ++limit < 100) {
250 barrier();
251 udelay(1);
252 }
253}
254
255void arch_trigger_all_cpu_backtrace(void)
256{
257 struct thread_info *tp = current_thread_info();
258 struct pt_regs *regs = get_irq_regs();
259 unsigned long flags;
260 int this_cpu, cpu;
261
262 if (!regs)
263 regs = tp->kregs;
264
265 spin_lock_irqsave(&global_reg_snapshot_lock, flags);
266
267 memset(global_reg_snapshot, 0, sizeof(global_reg_snapshot));
268
269 this_cpu = raw_smp_processor_id();
270
271 __global_reg_self(tp, regs, this_cpu);
272
273 smp_fetch_global_regs();
274
275 for_each_online_cpu(cpu) {
276 struct global_reg_snapshot *gp = &global_reg_snapshot[cpu];
277
278 __global_reg_poll(gp);
279
280 tp = gp->thread;
281 printk("%c CPU[%3d]: TSTATE[%016lx] TPC[%016lx] TNPC[%016lx] TASK[%s:%d]\n",
282 (cpu == this_cpu ? '*' : ' '), cpu,
283 gp->tstate, gp->tpc, gp->tnpc,
284 ((tp && tp->task) ? tp->task->comm : "NULL"),
285 ((tp && tp->task) ? tp->task->pid : -1));
286
287 if (gp->tstate & TSTATE_PRIV) {
288 printk(" TPC[%pS] O7[%pS] I7[%pS] RPC[%pS]\n",
289 (void *) gp->tpc,
290 (void *) gp->o7,
291 (void *) gp->i7,
292 (void *) gp->rpc);
293 } else {
294 printk(" TPC[%lx] O7[%lx] I7[%lx] RPC[%lx]\n",
295 gp->tpc, gp->o7, gp->i7, gp->rpc);
296 }
297 }
298
299 memset(global_reg_snapshot, 0, sizeof(global_reg_snapshot));
300
301 spin_unlock_irqrestore(&global_reg_snapshot_lock, flags);
302}
303
304#ifdef CONFIG_MAGIC_SYSRQ
305
306static void sysrq_handle_globreg(int key)
307{
308 arch_trigger_all_cpu_backtrace();
309}
310
311static struct sysrq_key_op sparc_globalreg_op = {
312 .handler = sysrq_handle_globreg,
313 .help_msg = "Globalregs",
314 .action_msg = "Show Global CPU Regs",
315};
316
317static int __init sparc_globreg_init(void)
318{
319 return register_sysrq_key('y', &sparc_globalreg_op);
320}
321
322core_initcall(sparc_globreg_init);
323
324#endif
325
326unsigned long thread_saved_pc(struct task_struct *tsk)
327{
328 struct thread_info *ti = task_thread_info(tsk);
329 unsigned long ret = 0xdeadbeefUL;
330
331 if (ti && ti->ksp) {
332 unsigned long *sp;
333 sp = (unsigned long *)(ti->ksp + STACK_BIAS);
334 if (((unsigned long)sp & (sizeof(long) - 1)) == 0UL &&
335 sp[14]) {
336 unsigned long *fp;
337 fp = (unsigned long *)(sp[14] + STACK_BIAS);
338 if (((unsigned long)fp & (sizeof(long) - 1)) == 0UL)
339 ret = fp[15];
340 }
341 }
342 return ret;
343}
344
345/* Free current thread data structures etc.. */
346void exit_thread(void)
347{
348 struct thread_info *t = current_thread_info();
349
350 if (t->utraps) {
351 if (t->utraps[0] < 2)
352 kfree (t->utraps);
353 else
354 t->utraps[0]--;
355 }
356}
357
358void flush_thread(void)
359{
360 struct thread_info *t = current_thread_info();
361 struct mm_struct *mm;
362
363 mm = t->task->mm;
364 if (mm)
365 tsb_context_switch(mm);
366
367 set_thread_wsaved(0);
368
369 /* Clear FPU register state. */
370 t->fpsaved[0] = 0;
371}
372
373/* It's a bit more tricky when 64-bit tasks are involved... */
374static unsigned long clone_stackframe(unsigned long csp, unsigned long psp)
375{
376 unsigned long fp, distance, rval;
377
378 if (!(test_thread_flag(TIF_32BIT))) {
379 csp += STACK_BIAS;
380 psp += STACK_BIAS;
381 __get_user(fp, &(((struct reg_window __user *)psp)->ins[6]));
382 fp += STACK_BIAS;
383 } else
384 __get_user(fp, &(((struct reg_window32 __user *)psp)->ins[6]));
385
386 /* Now align the stack as this is mandatory in the Sparc ABI
387 * due to how register windows work. This hides the
388 * restriction from thread libraries etc.
389 */
390 csp &= ~15UL;
391
392 distance = fp - psp;
393 rval = (csp - distance);
394 if (copy_in_user((void __user *) rval, (void __user *) psp, distance))
395 rval = 0;
396 else if (test_thread_flag(TIF_32BIT)) {
397 if (put_user(((u32)csp),
398 &(((struct reg_window32 __user *)rval)->ins[6])))
399 rval = 0;
400 } else {
401 if (put_user(((u64)csp - STACK_BIAS),
402 &(((struct reg_window __user *)rval)->ins[6])))
403 rval = 0;
404 else
405 rval = rval - STACK_BIAS;
406 }
407
408 return rval;
409}
410
411/* Standard stuff. */
412static inline void shift_window_buffer(int first_win, int last_win,
413 struct thread_info *t)
414{
415 int i;
416
417 for (i = first_win; i < last_win; i++) {
418 t->rwbuf_stkptrs[i] = t->rwbuf_stkptrs[i+1];
419 memcpy(&t->reg_window[i], &t->reg_window[i+1],
420 sizeof(struct reg_window));
421 }
422}
423
424void synchronize_user_stack(void)
425{
426 struct thread_info *t = current_thread_info();
427 unsigned long window;
428
429 flush_user_windows();
430 if ((window = get_thread_wsaved()) != 0) {
431 int winsize = sizeof(struct reg_window);
432 int bias = 0;
433
434 if (test_thread_flag(TIF_32BIT))
435 winsize = sizeof(struct reg_window32);
436 else
437 bias = STACK_BIAS;
438
439 window -= 1;
440 do {
441 unsigned long sp = (t->rwbuf_stkptrs[window] + bias);
442 struct reg_window *rwin = &t->reg_window[window];
443
444 if (!copy_to_user((char __user *)sp, rwin, winsize)) {
445 shift_window_buffer(window, get_thread_wsaved() - 1, t);
446 set_thread_wsaved(get_thread_wsaved() - 1);
447 }
448 } while (window--);
449 }
450}
451
452static void stack_unaligned(unsigned long sp)
453{
454 siginfo_t info;
455
456 info.si_signo = SIGBUS;
457 info.si_errno = 0;
458 info.si_code = BUS_ADRALN;
459 info.si_addr = (void __user *) sp;
460 info.si_trapno = 0;
461 force_sig_info(SIGBUS, &info, current);
462}
463
464void fault_in_user_windows(void)
465{
466 struct thread_info *t = current_thread_info();
467 unsigned long window;
468 int winsize = sizeof(struct reg_window);
469 int bias = 0;
470
471 if (test_thread_flag(TIF_32BIT))
472 winsize = sizeof(struct reg_window32);
473 else
474 bias = STACK_BIAS;
475
476 flush_user_windows();
477 window = get_thread_wsaved();
478
479 if (likely(window != 0)) {
480 window -= 1;
481 do {
482 unsigned long sp = (t->rwbuf_stkptrs[window] + bias);
483 struct reg_window *rwin = &t->reg_window[window];
484
485 if (unlikely(sp & 0x7UL))
486 stack_unaligned(sp);
487
488 if (unlikely(copy_to_user((char __user *)sp,
489 rwin, winsize)))
490 goto barf;
491 } while (window--);
492 }
493 set_thread_wsaved(0);
494 return;
495
496barf:
497 set_thread_wsaved(window + 1);
498 do_exit(SIGILL);
499}
500
501asmlinkage long sparc_do_fork(unsigned long clone_flags,
502 unsigned long stack_start,
503 struct pt_regs *regs,
504 unsigned long stack_size)
505{
506 int __user *parent_tid_ptr, *child_tid_ptr;
507 unsigned long orig_i1 = regs->u_regs[UREG_I1];
508 long ret;
509
510#ifdef CONFIG_COMPAT
511 if (test_thread_flag(TIF_32BIT)) {
512 parent_tid_ptr = compat_ptr(regs->u_regs[UREG_I2]);
513 child_tid_ptr = compat_ptr(regs->u_regs[UREG_I4]);
514 } else
515#endif
516 {
517 parent_tid_ptr = (int __user *) regs->u_regs[UREG_I2];
518 child_tid_ptr = (int __user *) regs->u_regs[UREG_I4];
519 }
520
521 ret = do_fork(clone_flags, stack_start,
522 regs, stack_size,
523 parent_tid_ptr, child_tid_ptr);
524
525 /* If we get an error and potentially restart the system
526 * call, we're screwed because copy_thread() clobbered
527 * the parent's %o1. So detect that case and restore it
528 * here.
529 */
530 if ((unsigned long)ret >= -ERESTART_RESTARTBLOCK)
531 regs->u_regs[UREG_I1] = orig_i1;
532
533 return ret;
534}
535
536/* Copy a Sparc thread. The fork() return value conventions
537 * under SunOS are nothing short of bletcherous:
538 * Parent --> %o0 == childs pid, %o1 == 0
539 * Child --> %o0 == parents pid, %o1 == 1
540 */
541int copy_thread(unsigned long clone_flags, unsigned long sp,
542 unsigned long unused,
543 struct task_struct *p, struct pt_regs *regs)
544{
545 struct thread_info *t = task_thread_info(p);
546 struct sparc_stackf *parent_sf;
547 unsigned long child_stack_sz;
548 char *child_trap_frame;
549 int kernel_thread;
550
551 kernel_thread = (regs->tstate & TSTATE_PRIV) ? 1 : 0;
552 parent_sf = ((struct sparc_stackf *) regs) - 1;
553
554 /* Calculate offset to stack_frame & pt_regs */
555 child_stack_sz = ((STACKFRAME_SZ + TRACEREG_SZ) +
556 (kernel_thread ? STACKFRAME_SZ : 0));
557 child_trap_frame = (task_stack_page(p) +
558 (THREAD_SIZE - child_stack_sz));
559 memcpy(child_trap_frame, parent_sf, child_stack_sz);
560
561 t->flags = (t->flags & ~((0xffUL << TI_FLAG_CWP_SHIFT) |
562 (0xffUL << TI_FLAG_CURRENT_DS_SHIFT))) |
563 (((regs->tstate + 1) & TSTATE_CWP) << TI_FLAG_CWP_SHIFT);
564 t->new_child = 1;
565 t->ksp = ((unsigned long) child_trap_frame) - STACK_BIAS;
566 t->kregs = (struct pt_regs *) (child_trap_frame +
567 sizeof(struct sparc_stackf));
568 t->fpsaved[0] = 0;
569
570 if (kernel_thread) {
571 struct sparc_stackf *child_sf = (struct sparc_stackf *)
572 (child_trap_frame + (STACKFRAME_SZ + TRACEREG_SZ));
573
574 /* Zero terminate the stack backtrace. */
575 child_sf->fp = NULL;
576 t->kregs->u_regs[UREG_FP] =
577 ((unsigned long) child_sf) - STACK_BIAS;
578
579 t->flags |= ((long)ASI_P << TI_FLAG_CURRENT_DS_SHIFT);
580 t->kregs->u_regs[UREG_G6] = (unsigned long) t;
581 t->kregs->u_regs[UREG_G4] = (unsigned long) t->task;
582 } else {
583 if (t->flags & _TIF_32BIT) {
584 sp &= 0x00000000ffffffffUL;
585 regs->u_regs[UREG_FP] &= 0x00000000ffffffffUL;
586 }
587 t->kregs->u_regs[UREG_FP] = sp;
588 t->flags |= ((long)ASI_AIUS << TI_FLAG_CURRENT_DS_SHIFT);
589 if (sp != regs->u_regs[UREG_FP]) {
590 unsigned long csp;
591
592 csp = clone_stackframe(sp, regs->u_regs[UREG_FP]);
593 if (!csp)
594 return -EFAULT;
595 t->kregs->u_regs[UREG_FP] = csp;
596 }
597 if (t->utraps)
598 t->utraps[0]++;
599 }
600
601 /* Set the return value for the child. */
602 t->kregs->u_regs[UREG_I0] = current->pid;
603 t->kregs->u_regs[UREG_I1] = 1;
604
605 /* Set the second return value for the parent. */
606 regs->u_regs[UREG_I1] = 0;
607
608 if (clone_flags & CLONE_SETTLS)
609 t->kregs->u_regs[UREG_G7] = regs->u_regs[UREG_I3];
610
611 return 0;
612}
613
614/*
615 * This is the mechanism for creating a new kernel thread.
616 *
617 * NOTE! Only a kernel-only process(ie the swapper or direct descendants
618 * who haven't done an "execve()") should use this: it will work within
619 * a system call from a "real" process, but the process memory space will
620 * not be freed until both the parent and the child have exited.
621 */
622pid_t kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
623{
624 long retval;
625
626 /* If the parent runs before fn(arg) is called by the child,
627 * the input registers of this function can be clobbered.
628 * So we stash 'fn' and 'arg' into global registers which
629 * will not be modified by the parent.
630 */
631 __asm__ __volatile__("mov %4, %%g2\n\t" /* Save FN into global */
632 "mov %5, %%g3\n\t" /* Save ARG into global */
633 "mov %1, %%g1\n\t" /* Clone syscall nr. */
634 "mov %2, %%o0\n\t" /* Clone flags. */
635 "mov 0, %%o1\n\t" /* usp arg == 0 */
636 "t 0x6d\n\t" /* Linux/Sparc clone(). */
637 "brz,a,pn %%o1, 1f\n\t" /* Parent, just return. */
638 " mov %%o0, %0\n\t"
639 "jmpl %%g2, %%o7\n\t" /* Call the function. */
640 " mov %%g3, %%o0\n\t" /* Set arg in delay. */
641 "mov %3, %%g1\n\t"
642 "t 0x6d\n\t" /* Linux/Sparc exit(). */
643 /* Notreached by child. */
644 "1:" :
645 "=r" (retval) :
646 "i" (__NR_clone), "r" (flags | CLONE_VM | CLONE_UNTRACED),
647 "i" (__NR_exit), "r" (fn), "r" (arg) :
648 "g1", "g2", "g3", "o0", "o1", "memory", "cc");
649 return retval;
650}
651EXPORT_SYMBOL(kernel_thread);
652
653typedef struct {
654 union {
655 unsigned int pr_regs[32];
656 unsigned long pr_dregs[16];
657 } pr_fr;
658 unsigned int __unused;
659 unsigned int pr_fsr;
660 unsigned char pr_qcnt;
661 unsigned char pr_q_entrysize;
662 unsigned char pr_en;
663 unsigned int pr_q[64];
664} elf_fpregset_t32;
665
666/*
667 * fill in the fpu structure for a core dump.
668 */
669int dump_fpu (struct pt_regs * regs, elf_fpregset_t * fpregs)
670{
671 unsigned long *kfpregs = current_thread_info()->fpregs;
672 unsigned long fprs = current_thread_info()->fpsaved[0];
673
674 if (test_thread_flag(TIF_32BIT)) {
675 elf_fpregset_t32 *fpregs32 = (elf_fpregset_t32 *)fpregs;
676
677 if (fprs & FPRS_DL)
678 memcpy(&fpregs32->pr_fr.pr_regs[0], kfpregs,
679 sizeof(unsigned int) * 32);
680 else
681 memset(&fpregs32->pr_fr.pr_regs[0], 0,
682 sizeof(unsigned int) * 32);
683 fpregs32->pr_qcnt = 0;
684 fpregs32->pr_q_entrysize = 8;
685 memset(&fpregs32->pr_q[0], 0,
686 (sizeof(unsigned int) * 64));
687 if (fprs & FPRS_FEF) {
688 fpregs32->pr_fsr = (unsigned int) current_thread_info()->xfsr[0];
689 fpregs32->pr_en = 1;
690 } else {
691 fpregs32->pr_fsr = 0;
692 fpregs32->pr_en = 0;
693 }
694 } else {
695 if(fprs & FPRS_DL)
696 memcpy(&fpregs->pr_regs[0], kfpregs,
697 sizeof(unsigned int) * 32);
698 else
699 memset(&fpregs->pr_regs[0], 0,
700 sizeof(unsigned int) * 32);
701 if(fprs & FPRS_DU)
702 memcpy(&fpregs->pr_regs[16], kfpregs+16,
703 sizeof(unsigned int) * 32);
704 else
705 memset(&fpregs->pr_regs[16], 0,
706 sizeof(unsigned int) * 32);
707 if(fprs & FPRS_FEF) {
708 fpregs->pr_fsr = current_thread_info()->xfsr[0];
709 fpregs->pr_gsr = current_thread_info()->gsr[0];
710 } else {
711 fpregs->pr_fsr = fpregs->pr_gsr = 0;
712 }
713 fpregs->pr_fprs = fprs;
714 }
715 return 1;
716}
717EXPORT_SYMBOL(dump_fpu);
718
719/*
720 * sparc_execve() executes a new program after the asm stub has set
721 * things up for us. This should basically do what I want it to.
722 */
723asmlinkage int sparc_execve(struct pt_regs *regs)
724{
725 int error, base = 0;
726 char *filename;
727
728 /* User register window flush is done by entry.S */
729
730 /* Check for indirect call. */
731 if (regs->u_regs[UREG_G1] == 0)
732 base = 1;
733
734 filename = getname((char __user *)regs->u_regs[base + UREG_I0]);
735 error = PTR_ERR(filename);
736 if (IS_ERR(filename))
737 goto out;
738 error = do_execve(filename,
739 (const char __user *const __user *)
740 regs->u_regs[base + UREG_I1],
741 (const char __user *const __user *)
742 regs->u_regs[base + UREG_I2], regs);
743 putname(filename);
744 if (!error) {
745 fprs_write(0);
746 current_thread_info()->xfsr[0] = 0;
747 current_thread_info()->fpsaved[0] = 0;
748 regs->tstate &= ~TSTATE_PEF;
749 }
750out:
751 return error;
752}
753
754unsigned long get_wchan(struct task_struct *task)
755{
756 unsigned long pc, fp, bias = 0;
757 struct thread_info *tp;
758 struct reg_window *rw;
759 unsigned long ret = 0;
760 int count = 0;
761
762 if (!task || task == current ||
763 task->state == TASK_RUNNING)
764 goto out;
765
766 tp = task_thread_info(task);
767 bias = STACK_BIAS;
768 fp = task_thread_info(task)->ksp + bias;
769
770 do {
771 if (!kstack_valid(tp, fp))
772 break;
773 rw = (struct reg_window *) fp;
774 pc = rw->ins[7];
775 if (!in_sched_functions(pc)) {
776 ret = pc;
777 goto out;
778 }
779 fp = rw->ins[6] + bias;
780 } while (++count < 16);
781
782out:
783 return ret;
784}
1/* arch/sparc64/kernel/process.c
2 *
3 * Copyright (C) 1995, 1996, 2008 David S. Miller (davem@davemloft.net)
4 * Copyright (C) 1996 Eddie C. Dost (ecd@skynet.be)
5 * Copyright (C) 1997, 1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
6 */
7
8/*
9 * This file handles the architecture-dependent parts of process handling..
10 */
11
12#include <stdarg.h>
13
14#include <linux/errno.h>
15#include <linux/export.h>
16#include <linux/sched.h>
17#include <linux/kernel.h>
18#include <linux/mm.h>
19#include <linux/fs.h>
20#include <linux/smp.h>
21#include <linux/stddef.h>
22#include <linux/ptrace.h>
23#include <linux/slab.h>
24#include <linux/user.h>
25#include <linux/delay.h>
26#include <linux/compat.h>
27#include <linux/tick.h>
28#include <linux/init.h>
29#include <linux/cpu.h>
30#include <linux/perf_event.h>
31#include <linux/elfcore.h>
32#include <linux/sysrq.h>
33#include <linux/nmi.h>
34#include <linux/context_tracking.h>
35
36#include <asm/uaccess.h>
37#include <asm/page.h>
38#include <asm/pgalloc.h>
39#include <asm/pgtable.h>
40#include <asm/processor.h>
41#include <asm/pstate.h>
42#include <asm/elf.h>
43#include <asm/fpumacro.h>
44#include <asm/head.h>
45#include <asm/cpudata.h>
46#include <asm/mmu_context.h>
47#include <asm/unistd.h>
48#include <asm/hypervisor.h>
49#include <asm/syscalls.h>
50#include <asm/irq_regs.h>
51#include <asm/smp.h>
52#include <asm/pcr.h>
53
54#include "kstack.h"
55
56/* Idle loop support on sparc64. */
57void arch_cpu_idle(void)
58{
59 if (tlb_type != hypervisor) {
60 touch_nmi_watchdog();
61 local_irq_enable();
62 } else {
63 unsigned long pstate;
64
65 local_irq_enable();
66
67 /* The sun4v sleeping code requires that we have PSTATE.IE cleared over
68 * the cpu sleep hypervisor call.
69 */
70 __asm__ __volatile__(
71 "rdpr %%pstate, %0\n\t"
72 "andn %0, %1, %0\n\t"
73 "wrpr %0, %%g0, %%pstate"
74 : "=&r" (pstate)
75 : "i" (PSTATE_IE));
76
77 if (!need_resched() && !cpu_is_offline(smp_processor_id()))
78 sun4v_cpu_yield();
79
80 /* Re-enable interrupts. */
81 __asm__ __volatile__(
82 "rdpr %%pstate, %0\n\t"
83 "or %0, %1, %0\n\t"
84 "wrpr %0, %%g0, %%pstate"
85 : "=&r" (pstate)
86 : "i" (PSTATE_IE));
87 }
88}
89
90#ifdef CONFIG_HOTPLUG_CPU
91void arch_cpu_idle_dead()
92{
93 sched_preempt_enable_no_resched();
94 cpu_play_dead();
95}
96#endif
97
98#ifdef CONFIG_COMPAT
99static void show_regwindow32(struct pt_regs *regs)
100{
101 struct reg_window32 __user *rw;
102 struct reg_window32 r_w;
103 mm_segment_t old_fs;
104
105 __asm__ __volatile__ ("flushw");
106 rw = compat_ptr((unsigned)regs->u_regs[14]);
107 old_fs = get_fs();
108 set_fs (USER_DS);
109 if (copy_from_user (&r_w, rw, sizeof(r_w))) {
110 set_fs (old_fs);
111 return;
112 }
113
114 set_fs (old_fs);
115 printk("l0: %08x l1: %08x l2: %08x l3: %08x "
116 "l4: %08x l5: %08x l6: %08x l7: %08x\n",
117 r_w.locals[0], r_w.locals[1], r_w.locals[2], r_w.locals[3],
118 r_w.locals[4], r_w.locals[5], r_w.locals[6], r_w.locals[7]);
119 printk("i0: %08x i1: %08x i2: %08x i3: %08x "
120 "i4: %08x i5: %08x i6: %08x i7: %08x\n",
121 r_w.ins[0], r_w.ins[1], r_w.ins[2], r_w.ins[3],
122 r_w.ins[4], r_w.ins[5], r_w.ins[6], r_w.ins[7]);
123}
124#else
125#define show_regwindow32(regs) do { } while (0)
126#endif
127
128static void show_regwindow(struct pt_regs *regs)
129{
130 struct reg_window __user *rw;
131 struct reg_window *rwk;
132 struct reg_window r_w;
133 mm_segment_t old_fs;
134
135 if ((regs->tstate & TSTATE_PRIV) || !(test_thread_flag(TIF_32BIT))) {
136 __asm__ __volatile__ ("flushw");
137 rw = (struct reg_window __user *)
138 (regs->u_regs[14] + STACK_BIAS);
139 rwk = (struct reg_window *)
140 (regs->u_regs[14] + STACK_BIAS);
141 if (!(regs->tstate & TSTATE_PRIV)) {
142 old_fs = get_fs();
143 set_fs (USER_DS);
144 if (copy_from_user (&r_w, rw, sizeof(r_w))) {
145 set_fs (old_fs);
146 return;
147 }
148 rwk = &r_w;
149 set_fs (old_fs);
150 }
151 } else {
152 show_regwindow32(regs);
153 return;
154 }
155 printk("l0: %016lx l1: %016lx l2: %016lx l3: %016lx\n",
156 rwk->locals[0], rwk->locals[1], rwk->locals[2], rwk->locals[3]);
157 printk("l4: %016lx l5: %016lx l6: %016lx l7: %016lx\n",
158 rwk->locals[4], rwk->locals[5], rwk->locals[6], rwk->locals[7]);
159 printk("i0: %016lx i1: %016lx i2: %016lx i3: %016lx\n",
160 rwk->ins[0], rwk->ins[1], rwk->ins[2], rwk->ins[3]);
161 printk("i4: %016lx i5: %016lx i6: %016lx i7: %016lx\n",
162 rwk->ins[4], rwk->ins[5], rwk->ins[6], rwk->ins[7]);
163 if (regs->tstate & TSTATE_PRIV)
164 printk("I7: <%pS>\n", (void *) rwk->ins[7]);
165}
166
167void show_regs(struct pt_regs *regs)
168{
169 show_regs_print_info(KERN_DEFAULT);
170
171 printk("TSTATE: %016lx TPC: %016lx TNPC: %016lx Y: %08x %s\n", regs->tstate,
172 regs->tpc, regs->tnpc, regs->y, print_tainted());
173 printk("TPC: <%pS>\n", (void *) regs->tpc);
174 printk("g0: %016lx g1: %016lx g2: %016lx g3: %016lx\n",
175 regs->u_regs[0], regs->u_regs[1], regs->u_regs[2],
176 regs->u_regs[3]);
177 printk("g4: %016lx g5: %016lx g6: %016lx g7: %016lx\n",
178 regs->u_regs[4], regs->u_regs[5], regs->u_regs[6],
179 regs->u_regs[7]);
180 printk("o0: %016lx o1: %016lx o2: %016lx o3: %016lx\n",
181 regs->u_regs[8], regs->u_regs[9], regs->u_regs[10],
182 regs->u_regs[11]);
183 printk("o4: %016lx o5: %016lx sp: %016lx ret_pc: %016lx\n",
184 regs->u_regs[12], regs->u_regs[13], regs->u_regs[14],
185 regs->u_regs[15]);
186 printk("RPC: <%pS>\n", (void *) regs->u_regs[15]);
187 show_regwindow(regs);
188 show_stack(current, (unsigned long *) regs->u_regs[UREG_FP]);
189}
190
191union global_cpu_snapshot global_cpu_snapshot[NR_CPUS];
192static DEFINE_SPINLOCK(global_cpu_snapshot_lock);
193
194static void __global_reg_self(struct thread_info *tp, struct pt_regs *regs,
195 int this_cpu)
196{
197 struct global_reg_snapshot *rp;
198
199 flushw_all();
200
201 rp = &global_cpu_snapshot[this_cpu].reg;
202
203 rp->tstate = regs->tstate;
204 rp->tpc = regs->tpc;
205 rp->tnpc = regs->tnpc;
206 rp->o7 = regs->u_regs[UREG_I7];
207
208 if (regs->tstate & TSTATE_PRIV) {
209 struct reg_window *rw;
210
211 rw = (struct reg_window *)
212 (regs->u_regs[UREG_FP] + STACK_BIAS);
213 if (kstack_valid(tp, (unsigned long) rw)) {
214 rp->i7 = rw->ins[7];
215 rw = (struct reg_window *)
216 (rw->ins[6] + STACK_BIAS);
217 if (kstack_valid(tp, (unsigned long) rw))
218 rp->rpc = rw->ins[7];
219 }
220 } else {
221 rp->i7 = 0;
222 rp->rpc = 0;
223 }
224 rp->thread = tp;
225}
226
227/* In order to avoid hangs we do not try to synchronize with the
228 * global register dump client cpus. The last store they make is to
229 * the thread pointer, so do a short poll waiting for that to become
230 * non-NULL.
231 */
232static void __global_reg_poll(struct global_reg_snapshot *gp)
233{
234 int limit = 0;
235
236 while (!gp->thread && ++limit < 100) {
237 barrier();
238 udelay(1);
239 }
240}
241
242void arch_trigger_all_cpu_backtrace(void)
243{
244 struct thread_info *tp = current_thread_info();
245 struct pt_regs *regs = get_irq_regs();
246 unsigned long flags;
247 int this_cpu, cpu;
248
249 if (!regs)
250 regs = tp->kregs;
251
252 spin_lock_irqsave(&global_cpu_snapshot_lock, flags);
253
254 memset(global_cpu_snapshot, 0, sizeof(global_cpu_snapshot));
255
256 this_cpu = raw_smp_processor_id();
257
258 __global_reg_self(tp, regs, this_cpu);
259
260 smp_fetch_global_regs();
261
262 for_each_online_cpu(cpu) {
263 struct global_reg_snapshot *gp = &global_cpu_snapshot[cpu].reg;
264
265 __global_reg_poll(gp);
266
267 tp = gp->thread;
268 printk("%c CPU[%3d]: TSTATE[%016lx] TPC[%016lx] TNPC[%016lx] TASK[%s:%d]\n",
269 (cpu == this_cpu ? '*' : ' '), cpu,
270 gp->tstate, gp->tpc, gp->tnpc,
271 ((tp && tp->task) ? tp->task->comm : "NULL"),
272 ((tp && tp->task) ? tp->task->pid : -1));
273
274 if (gp->tstate & TSTATE_PRIV) {
275 printk(" TPC[%pS] O7[%pS] I7[%pS] RPC[%pS]\n",
276 (void *) gp->tpc,
277 (void *) gp->o7,
278 (void *) gp->i7,
279 (void *) gp->rpc);
280 } else {
281 printk(" TPC[%lx] O7[%lx] I7[%lx] RPC[%lx]\n",
282 gp->tpc, gp->o7, gp->i7, gp->rpc);
283 }
284 }
285
286 memset(global_cpu_snapshot, 0, sizeof(global_cpu_snapshot));
287
288 spin_unlock_irqrestore(&global_cpu_snapshot_lock, flags);
289}
290
291#ifdef CONFIG_MAGIC_SYSRQ
292
293static void sysrq_handle_globreg(int key)
294{
295 arch_trigger_all_cpu_backtrace();
296}
297
298static struct sysrq_key_op sparc_globalreg_op = {
299 .handler = sysrq_handle_globreg,
300 .help_msg = "global-regs(y)",
301 .action_msg = "Show Global CPU Regs",
302};
303
304static void __global_pmu_self(int this_cpu)
305{
306 struct global_pmu_snapshot *pp;
307 int i, num;
308
309 pp = &global_cpu_snapshot[this_cpu].pmu;
310
311 num = 1;
312 if (tlb_type == hypervisor &&
313 sun4v_chip_type >= SUN4V_CHIP_NIAGARA4)
314 num = 4;
315
316 for (i = 0; i < num; i++) {
317 pp->pcr[i] = pcr_ops->read_pcr(i);
318 pp->pic[i] = pcr_ops->read_pic(i);
319 }
320}
321
322static void __global_pmu_poll(struct global_pmu_snapshot *pp)
323{
324 int limit = 0;
325
326 while (!pp->pcr[0] && ++limit < 100) {
327 barrier();
328 udelay(1);
329 }
330}
331
332static void pmu_snapshot_all_cpus(void)
333{
334 unsigned long flags;
335 int this_cpu, cpu;
336
337 spin_lock_irqsave(&global_cpu_snapshot_lock, flags);
338
339 memset(global_cpu_snapshot, 0, sizeof(global_cpu_snapshot));
340
341 this_cpu = raw_smp_processor_id();
342
343 __global_pmu_self(this_cpu);
344
345 smp_fetch_global_pmu();
346
347 for_each_online_cpu(cpu) {
348 struct global_pmu_snapshot *pp = &global_cpu_snapshot[cpu].pmu;
349
350 __global_pmu_poll(pp);
351
352 printk("%c CPU[%3d]: PCR[%08lx:%08lx:%08lx:%08lx] PIC[%08lx:%08lx:%08lx:%08lx]\n",
353 (cpu == this_cpu ? '*' : ' '), cpu,
354 pp->pcr[0], pp->pcr[1], pp->pcr[2], pp->pcr[3],
355 pp->pic[0], pp->pic[1], pp->pic[2], pp->pic[3]);
356 }
357
358 memset(global_cpu_snapshot, 0, sizeof(global_cpu_snapshot));
359
360 spin_unlock_irqrestore(&global_cpu_snapshot_lock, flags);
361}
362
363static void sysrq_handle_globpmu(int key)
364{
365 pmu_snapshot_all_cpus();
366}
367
368static struct sysrq_key_op sparc_globalpmu_op = {
369 .handler = sysrq_handle_globpmu,
370 .help_msg = "global-pmu(x)",
371 .action_msg = "Show Global PMU Regs",
372};
373
374static int __init sparc_sysrq_init(void)
375{
376 int ret = register_sysrq_key('y', &sparc_globalreg_op);
377
378 if (!ret)
379 ret = register_sysrq_key('x', &sparc_globalpmu_op);
380 return ret;
381}
382
383core_initcall(sparc_sysrq_init);
384
385#endif
386
387unsigned long thread_saved_pc(struct task_struct *tsk)
388{
389 struct thread_info *ti = task_thread_info(tsk);
390 unsigned long ret = 0xdeadbeefUL;
391
392 if (ti && ti->ksp) {
393 unsigned long *sp;
394 sp = (unsigned long *)(ti->ksp + STACK_BIAS);
395 if (((unsigned long)sp & (sizeof(long) - 1)) == 0UL &&
396 sp[14]) {
397 unsigned long *fp;
398 fp = (unsigned long *)(sp[14] + STACK_BIAS);
399 if (((unsigned long)fp & (sizeof(long) - 1)) == 0UL)
400 ret = fp[15];
401 }
402 }
403 return ret;
404}
405
406/* Free current thread data structures etc.. */
407void exit_thread(void)
408{
409 struct thread_info *t = current_thread_info();
410
411 if (t->utraps) {
412 if (t->utraps[0] < 2)
413 kfree (t->utraps);
414 else
415 t->utraps[0]--;
416 }
417}
418
419void flush_thread(void)
420{
421 struct thread_info *t = current_thread_info();
422 struct mm_struct *mm;
423
424 mm = t->task->mm;
425 if (mm)
426 tsb_context_switch(mm);
427
428 set_thread_wsaved(0);
429
430 /* Clear FPU register state. */
431 t->fpsaved[0] = 0;
432}
433
434/* It's a bit more tricky when 64-bit tasks are involved... */
435static unsigned long clone_stackframe(unsigned long csp, unsigned long psp)
436{
437 bool stack_64bit = test_thread_64bit_stack(psp);
438 unsigned long fp, distance, rval;
439
440 if (stack_64bit) {
441 csp += STACK_BIAS;
442 psp += STACK_BIAS;
443 __get_user(fp, &(((struct reg_window __user *)psp)->ins[6]));
444 fp += STACK_BIAS;
445 if (test_thread_flag(TIF_32BIT))
446 fp &= 0xffffffff;
447 } else
448 __get_user(fp, &(((struct reg_window32 __user *)psp)->ins[6]));
449
450 /* Now align the stack as this is mandatory in the Sparc ABI
451 * due to how register windows work. This hides the
452 * restriction from thread libraries etc.
453 */
454 csp &= ~15UL;
455
456 distance = fp - psp;
457 rval = (csp - distance);
458 if (copy_in_user((void __user *) rval, (void __user *) psp, distance))
459 rval = 0;
460 else if (!stack_64bit) {
461 if (put_user(((u32)csp),
462 &(((struct reg_window32 __user *)rval)->ins[6])))
463 rval = 0;
464 } else {
465 if (put_user(((u64)csp - STACK_BIAS),
466 &(((struct reg_window __user *)rval)->ins[6])))
467 rval = 0;
468 else
469 rval = rval - STACK_BIAS;
470 }
471
472 return rval;
473}
474
475/* Standard stuff. */
476static inline void shift_window_buffer(int first_win, int last_win,
477 struct thread_info *t)
478{
479 int i;
480
481 for (i = first_win; i < last_win; i++) {
482 t->rwbuf_stkptrs[i] = t->rwbuf_stkptrs[i+1];
483 memcpy(&t->reg_window[i], &t->reg_window[i+1],
484 sizeof(struct reg_window));
485 }
486}
487
488void synchronize_user_stack(void)
489{
490 struct thread_info *t = current_thread_info();
491 unsigned long window;
492
493 flush_user_windows();
494 if ((window = get_thread_wsaved()) != 0) {
495 window -= 1;
496 do {
497 struct reg_window *rwin = &t->reg_window[window];
498 int winsize = sizeof(struct reg_window);
499 unsigned long sp;
500
501 sp = t->rwbuf_stkptrs[window];
502
503 if (test_thread_64bit_stack(sp))
504 sp += STACK_BIAS;
505 else
506 winsize = sizeof(struct reg_window32);
507
508 if (!copy_to_user((char __user *)sp, rwin, winsize)) {
509 shift_window_buffer(window, get_thread_wsaved() - 1, t);
510 set_thread_wsaved(get_thread_wsaved() - 1);
511 }
512 } while (window--);
513 }
514}
515
516static void stack_unaligned(unsigned long sp)
517{
518 siginfo_t info;
519
520 info.si_signo = SIGBUS;
521 info.si_errno = 0;
522 info.si_code = BUS_ADRALN;
523 info.si_addr = (void __user *) sp;
524 info.si_trapno = 0;
525 force_sig_info(SIGBUS, &info, current);
526}
527
528void fault_in_user_windows(void)
529{
530 struct thread_info *t = current_thread_info();
531 unsigned long window;
532
533 flush_user_windows();
534 window = get_thread_wsaved();
535
536 if (likely(window != 0)) {
537 window -= 1;
538 do {
539 struct reg_window *rwin = &t->reg_window[window];
540 int winsize = sizeof(struct reg_window);
541 unsigned long sp;
542
543 sp = t->rwbuf_stkptrs[window];
544
545 if (test_thread_64bit_stack(sp))
546 sp += STACK_BIAS;
547 else
548 winsize = sizeof(struct reg_window32);
549
550 if (unlikely(sp & 0x7UL))
551 stack_unaligned(sp);
552
553 if (unlikely(copy_to_user((char __user *)sp,
554 rwin, winsize)))
555 goto barf;
556 } while (window--);
557 }
558 set_thread_wsaved(0);
559 return;
560
561barf:
562 set_thread_wsaved(window + 1);
563 user_exit();
564 do_exit(SIGILL);
565}
566
567asmlinkage long sparc_do_fork(unsigned long clone_flags,
568 unsigned long stack_start,
569 struct pt_regs *regs,
570 unsigned long stack_size)
571{
572 int __user *parent_tid_ptr, *child_tid_ptr;
573 unsigned long orig_i1 = regs->u_regs[UREG_I1];
574 long ret;
575
576#ifdef CONFIG_COMPAT
577 if (test_thread_flag(TIF_32BIT)) {
578 parent_tid_ptr = compat_ptr(regs->u_regs[UREG_I2]);
579 child_tid_ptr = compat_ptr(regs->u_regs[UREG_I4]);
580 } else
581#endif
582 {
583 parent_tid_ptr = (int __user *) regs->u_regs[UREG_I2];
584 child_tid_ptr = (int __user *) regs->u_regs[UREG_I4];
585 }
586
587 ret = do_fork(clone_flags, stack_start, stack_size,
588 parent_tid_ptr, child_tid_ptr);
589
590 /* If we get an error and potentially restart the system
591 * call, we're screwed because copy_thread() clobbered
592 * the parent's %o1. So detect that case and restore it
593 * here.
594 */
595 if ((unsigned long)ret >= -ERESTART_RESTARTBLOCK)
596 regs->u_regs[UREG_I1] = orig_i1;
597
598 return ret;
599}
600
601/* Copy a Sparc thread. The fork() return value conventions
602 * under SunOS are nothing short of bletcherous:
603 * Parent --> %o0 == childs pid, %o1 == 0
604 * Child --> %o0 == parents pid, %o1 == 1
605 */
606int copy_thread(unsigned long clone_flags, unsigned long sp,
607 unsigned long arg, struct task_struct *p)
608{
609 struct thread_info *t = task_thread_info(p);
610 struct pt_regs *regs = current_pt_regs();
611 struct sparc_stackf *parent_sf;
612 unsigned long child_stack_sz;
613 char *child_trap_frame;
614
615 /* Calculate offset to stack_frame & pt_regs */
616 child_stack_sz = (STACKFRAME_SZ + TRACEREG_SZ);
617 child_trap_frame = (task_stack_page(p) +
618 (THREAD_SIZE - child_stack_sz));
619
620 t->new_child = 1;
621 t->ksp = ((unsigned long) child_trap_frame) - STACK_BIAS;
622 t->kregs = (struct pt_regs *) (child_trap_frame +
623 sizeof(struct sparc_stackf));
624 t->fpsaved[0] = 0;
625
626 if (unlikely(p->flags & PF_KTHREAD)) {
627 memset(child_trap_frame, 0, child_stack_sz);
628 __thread_flag_byte_ptr(t)[TI_FLAG_BYTE_CWP] =
629 (current_pt_regs()->tstate + 1) & TSTATE_CWP;
630 t->current_ds = ASI_P;
631 t->kregs->u_regs[UREG_G1] = sp; /* function */
632 t->kregs->u_regs[UREG_G2] = arg;
633 return 0;
634 }
635
636 parent_sf = ((struct sparc_stackf *) regs) - 1;
637 memcpy(child_trap_frame, parent_sf, child_stack_sz);
638 if (t->flags & _TIF_32BIT) {
639 sp &= 0x00000000ffffffffUL;
640 regs->u_regs[UREG_FP] &= 0x00000000ffffffffUL;
641 }
642 t->kregs->u_regs[UREG_FP] = sp;
643 __thread_flag_byte_ptr(t)[TI_FLAG_BYTE_CWP] =
644 (regs->tstate + 1) & TSTATE_CWP;
645 t->current_ds = ASI_AIUS;
646 if (sp != regs->u_regs[UREG_FP]) {
647 unsigned long csp;
648
649 csp = clone_stackframe(sp, regs->u_regs[UREG_FP]);
650 if (!csp)
651 return -EFAULT;
652 t->kregs->u_regs[UREG_FP] = csp;
653 }
654 if (t->utraps)
655 t->utraps[0]++;
656
657 /* Set the return value for the child. */
658 t->kregs->u_regs[UREG_I0] = current->pid;
659 t->kregs->u_regs[UREG_I1] = 1;
660
661 /* Set the second return value for the parent. */
662 regs->u_regs[UREG_I1] = 0;
663
664 if (clone_flags & CLONE_SETTLS)
665 t->kregs->u_regs[UREG_G7] = regs->u_regs[UREG_I3];
666
667 return 0;
668}
669
670typedef struct {
671 union {
672 unsigned int pr_regs[32];
673 unsigned long pr_dregs[16];
674 } pr_fr;
675 unsigned int __unused;
676 unsigned int pr_fsr;
677 unsigned char pr_qcnt;
678 unsigned char pr_q_entrysize;
679 unsigned char pr_en;
680 unsigned int pr_q[64];
681} elf_fpregset_t32;
682
683/*
684 * fill in the fpu structure for a core dump.
685 */
686int dump_fpu (struct pt_regs * regs, elf_fpregset_t * fpregs)
687{
688 unsigned long *kfpregs = current_thread_info()->fpregs;
689 unsigned long fprs = current_thread_info()->fpsaved[0];
690
691 if (test_thread_flag(TIF_32BIT)) {
692 elf_fpregset_t32 *fpregs32 = (elf_fpregset_t32 *)fpregs;
693
694 if (fprs & FPRS_DL)
695 memcpy(&fpregs32->pr_fr.pr_regs[0], kfpregs,
696 sizeof(unsigned int) * 32);
697 else
698 memset(&fpregs32->pr_fr.pr_regs[0], 0,
699 sizeof(unsigned int) * 32);
700 fpregs32->pr_qcnt = 0;
701 fpregs32->pr_q_entrysize = 8;
702 memset(&fpregs32->pr_q[0], 0,
703 (sizeof(unsigned int) * 64));
704 if (fprs & FPRS_FEF) {
705 fpregs32->pr_fsr = (unsigned int) current_thread_info()->xfsr[0];
706 fpregs32->pr_en = 1;
707 } else {
708 fpregs32->pr_fsr = 0;
709 fpregs32->pr_en = 0;
710 }
711 } else {
712 if(fprs & FPRS_DL)
713 memcpy(&fpregs->pr_regs[0], kfpregs,
714 sizeof(unsigned int) * 32);
715 else
716 memset(&fpregs->pr_regs[0], 0,
717 sizeof(unsigned int) * 32);
718 if(fprs & FPRS_DU)
719 memcpy(&fpregs->pr_regs[16], kfpregs+16,
720 sizeof(unsigned int) * 32);
721 else
722 memset(&fpregs->pr_regs[16], 0,
723 sizeof(unsigned int) * 32);
724 if(fprs & FPRS_FEF) {
725 fpregs->pr_fsr = current_thread_info()->xfsr[0];
726 fpregs->pr_gsr = current_thread_info()->gsr[0];
727 } else {
728 fpregs->pr_fsr = fpregs->pr_gsr = 0;
729 }
730 fpregs->pr_fprs = fprs;
731 }
732 return 1;
733}
734EXPORT_SYMBOL(dump_fpu);
735
736unsigned long get_wchan(struct task_struct *task)
737{
738 unsigned long pc, fp, bias = 0;
739 struct thread_info *tp;
740 struct reg_window *rw;
741 unsigned long ret = 0;
742 int count = 0;
743
744 if (!task || task == current ||
745 task->state == TASK_RUNNING)
746 goto out;
747
748 tp = task_thread_info(task);
749 bias = STACK_BIAS;
750 fp = task_thread_info(task)->ksp + bias;
751
752 do {
753 if (!kstack_valid(tp, fp))
754 break;
755 rw = (struct reg_window *) fp;
756 pc = rw->ins[7];
757 if (!in_sched_functions(pc)) {
758 ret = pc;
759 goto out;
760 }
761 fp = rw->ins[6] + bias;
762 } while (++count < 16);
763
764out:
765 return ret;
766}