Loading...
1/* arch/sparc64/kernel/process.c
2 *
3 * Copyright (C) 1995, 1996, 2008 David S. Miller (davem@davemloft.net)
4 * Copyright (C) 1996 Eddie C. Dost (ecd@skynet.be)
5 * Copyright (C) 1997, 1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
6 */
7
8/*
9 * This file handles the architecture-dependent parts of process handling..
10 */
11
12#include <stdarg.h>
13
14#include <linux/errno.h>
15#include <linux/module.h>
16#include <linux/sched.h>
17#include <linux/kernel.h>
18#include <linux/mm.h>
19#include <linux/fs.h>
20#include <linux/smp.h>
21#include <linux/stddef.h>
22#include <linux/ptrace.h>
23#include <linux/slab.h>
24#include <linux/user.h>
25#include <linux/delay.h>
26#include <linux/compat.h>
27#include <linux/tick.h>
28#include <linux/init.h>
29#include <linux/cpu.h>
30#include <linux/elfcore.h>
31#include <linux/sysrq.h>
32#include <linux/nmi.h>
33
34#include <asm/uaccess.h>
35#include <asm/system.h>
36#include <asm/page.h>
37#include <asm/pgalloc.h>
38#include <asm/pgtable.h>
39#include <asm/processor.h>
40#include <asm/pstate.h>
41#include <asm/elf.h>
42#include <asm/fpumacro.h>
43#include <asm/head.h>
44#include <asm/cpudata.h>
45#include <asm/mmu_context.h>
46#include <asm/unistd.h>
47#include <asm/hypervisor.h>
48#include <asm/syscalls.h>
49#include <asm/irq_regs.h>
50#include <asm/smp.h>
51
52#include "kstack.h"
53
54static void sparc64_yield(int cpu)
55{
56 if (tlb_type != hypervisor) {
57 touch_nmi_watchdog();
58 return;
59 }
60
61 clear_thread_flag(TIF_POLLING_NRFLAG);
62 smp_mb__after_clear_bit();
63
64 while (!need_resched() && !cpu_is_offline(cpu)) {
65 unsigned long pstate;
66
67 /* Disable interrupts. */
68 __asm__ __volatile__(
69 "rdpr %%pstate, %0\n\t"
70 "andn %0, %1, %0\n\t"
71 "wrpr %0, %%g0, %%pstate"
72 : "=&r" (pstate)
73 : "i" (PSTATE_IE));
74
75 if (!need_resched() && !cpu_is_offline(cpu))
76 sun4v_cpu_yield();
77
78 /* Re-enable interrupts. */
79 __asm__ __volatile__(
80 "rdpr %%pstate, %0\n\t"
81 "or %0, %1, %0\n\t"
82 "wrpr %0, %%g0, %%pstate"
83 : "=&r" (pstate)
84 : "i" (PSTATE_IE));
85 }
86
87 set_thread_flag(TIF_POLLING_NRFLAG);
88}
89
90/* The idle loop on sparc64. */
91void cpu_idle(void)
92{
93 int cpu = smp_processor_id();
94
95 set_thread_flag(TIF_POLLING_NRFLAG);
96
97 while(1) {
98 tick_nohz_stop_sched_tick(1);
99
100 while (!need_resched() && !cpu_is_offline(cpu))
101 sparc64_yield(cpu);
102
103 tick_nohz_restart_sched_tick();
104
105 preempt_enable_no_resched();
106
107#ifdef CONFIG_HOTPLUG_CPU
108 if (cpu_is_offline(cpu))
109 cpu_play_dead();
110#endif
111
112 schedule();
113 preempt_disable();
114 }
115}
116
117#ifdef CONFIG_COMPAT
118static void show_regwindow32(struct pt_regs *regs)
119{
120 struct reg_window32 __user *rw;
121 struct reg_window32 r_w;
122 mm_segment_t old_fs;
123
124 __asm__ __volatile__ ("flushw");
125 rw = compat_ptr((unsigned)regs->u_regs[14]);
126 old_fs = get_fs();
127 set_fs (USER_DS);
128 if (copy_from_user (&r_w, rw, sizeof(r_w))) {
129 set_fs (old_fs);
130 return;
131 }
132
133 set_fs (old_fs);
134 printk("l0: %08x l1: %08x l2: %08x l3: %08x "
135 "l4: %08x l5: %08x l6: %08x l7: %08x\n",
136 r_w.locals[0], r_w.locals[1], r_w.locals[2], r_w.locals[3],
137 r_w.locals[4], r_w.locals[5], r_w.locals[6], r_w.locals[7]);
138 printk("i0: %08x i1: %08x i2: %08x i3: %08x "
139 "i4: %08x i5: %08x i6: %08x i7: %08x\n",
140 r_w.ins[0], r_w.ins[1], r_w.ins[2], r_w.ins[3],
141 r_w.ins[4], r_w.ins[5], r_w.ins[6], r_w.ins[7]);
142}
143#else
144#define show_regwindow32(regs) do { } while (0)
145#endif
146
147static void show_regwindow(struct pt_regs *regs)
148{
149 struct reg_window __user *rw;
150 struct reg_window *rwk;
151 struct reg_window r_w;
152 mm_segment_t old_fs;
153
154 if ((regs->tstate & TSTATE_PRIV) || !(test_thread_flag(TIF_32BIT))) {
155 __asm__ __volatile__ ("flushw");
156 rw = (struct reg_window __user *)
157 (regs->u_regs[14] + STACK_BIAS);
158 rwk = (struct reg_window *)
159 (regs->u_regs[14] + STACK_BIAS);
160 if (!(regs->tstate & TSTATE_PRIV)) {
161 old_fs = get_fs();
162 set_fs (USER_DS);
163 if (copy_from_user (&r_w, rw, sizeof(r_w))) {
164 set_fs (old_fs);
165 return;
166 }
167 rwk = &r_w;
168 set_fs (old_fs);
169 }
170 } else {
171 show_regwindow32(regs);
172 return;
173 }
174 printk("l0: %016lx l1: %016lx l2: %016lx l3: %016lx\n",
175 rwk->locals[0], rwk->locals[1], rwk->locals[2], rwk->locals[3]);
176 printk("l4: %016lx l5: %016lx l6: %016lx l7: %016lx\n",
177 rwk->locals[4], rwk->locals[5], rwk->locals[6], rwk->locals[7]);
178 printk("i0: %016lx i1: %016lx i2: %016lx i3: %016lx\n",
179 rwk->ins[0], rwk->ins[1], rwk->ins[2], rwk->ins[3]);
180 printk("i4: %016lx i5: %016lx i6: %016lx i7: %016lx\n",
181 rwk->ins[4], rwk->ins[5], rwk->ins[6], rwk->ins[7]);
182 if (regs->tstate & TSTATE_PRIV)
183 printk("I7: <%pS>\n", (void *) rwk->ins[7]);
184}
185
186void show_regs(struct pt_regs *regs)
187{
188 printk("TSTATE: %016lx TPC: %016lx TNPC: %016lx Y: %08x %s\n", regs->tstate,
189 regs->tpc, regs->tnpc, regs->y, print_tainted());
190 printk("TPC: <%pS>\n", (void *) regs->tpc);
191 printk("g0: %016lx g1: %016lx g2: %016lx g3: %016lx\n",
192 regs->u_regs[0], regs->u_regs[1], regs->u_regs[2],
193 regs->u_regs[3]);
194 printk("g4: %016lx g5: %016lx g6: %016lx g7: %016lx\n",
195 regs->u_regs[4], regs->u_regs[5], regs->u_regs[6],
196 regs->u_regs[7]);
197 printk("o0: %016lx o1: %016lx o2: %016lx o3: %016lx\n",
198 regs->u_regs[8], regs->u_regs[9], regs->u_regs[10],
199 regs->u_regs[11]);
200 printk("o4: %016lx o5: %016lx sp: %016lx ret_pc: %016lx\n",
201 regs->u_regs[12], regs->u_regs[13], regs->u_regs[14],
202 regs->u_regs[15]);
203 printk("RPC: <%pS>\n", (void *) regs->u_regs[15]);
204 show_regwindow(regs);
205 show_stack(current, (unsigned long *) regs->u_regs[UREG_FP]);
206}
207
208struct global_reg_snapshot global_reg_snapshot[NR_CPUS];
209static DEFINE_SPINLOCK(global_reg_snapshot_lock);
210
211static void __global_reg_self(struct thread_info *tp, struct pt_regs *regs,
212 int this_cpu)
213{
214 flushw_all();
215
216 global_reg_snapshot[this_cpu].tstate = regs->tstate;
217 global_reg_snapshot[this_cpu].tpc = regs->tpc;
218 global_reg_snapshot[this_cpu].tnpc = regs->tnpc;
219 global_reg_snapshot[this_cpu].o7 = regs->u_regs[UREG_I7];
220
221 if (regs->tstate & TSTATE_PRIV) {
222 struct reg_window *rw;
223
224 rw = (struct reg_window *)
225 (regs->u_regs[UREG_FP] + STACK_BIAS);
226 if (kstack_valid(tp, (unsigned long) rw)) {
227 global_reg_snapshot[this_cpu].i7 = rw->ins[7];
228 rw = (struct reg_window *)
229 (rw->ins[6] + STACK_BIAS);
230 if (kstack_valid(tp, (unsigned long) rw))
231 global_reg_snapshot[this_cpu].rpc = rw->ins[7];
232 }
233 } else {
234 global_reg_snapshot[this_cpu].i7 = 0;
235 global_reg_snapshot[this_cpu].rpc = 0;
236 }
237 global_reg_snapshot[this_cpu].thread = tp;
238}
239
240/* In order to avoid hangs we do not try to synchronize with the
241 * global register dump client cpus. The last store they make is to
242 * the thread pointer, so do a short poll waiting for that to become
243 * non-NULL.
244 */
245static void __global_reg_poll(struct global_reg_snapshot *gp)
246{
247 int limit = 0;
248
249 while (!gp->thread && ++limit < 100) {
250 barrier();
251 udelay(1);
252 }
253}
254
255void arch_trigger_all_cpu_backtrace(void)
256{
257 struct thread_info *tp = current_thread_info();
258 struct pt_regs *regs = get_irq_regs();
259 unsigned long flags;
260 int this_cpu, cpu;
261
262 if (!regs)
263 regs = tp->kregs;
264
265 spin_lock_irqsave(&global_reg_snapshot_lock, flags);
266
267 memset(global_reg_snapshot, 0, sizeof(global_reg_snapshot));
268
269 this_cpu = raw_smp_processor_id();
270
271 __global_reg_self(tp, regs, this_cpu);
272
273 smp_fetch_global_regs();
274
275 for_each_online_cpu(cpu) {
276 struct global_reg_snapshot *gp = &global_reg_snapshot[cpu];
277
278 __global_reg_poll(gp);
279
280 tp = gp->thread;
281 printk("%c CPU[%3d]: TSTATE[%016lx] TPC[%016lx] TNPC[%016lx] TASK[%s:%d]\n",
282 (cpu == this_cpu ? '*' : ' '), cpu,
283 gp->tstate, gp->tpc, gp->tnpc,
284 ((tp && tp->task) ? tp->task->comm : "NULL"),
285 ((tp && tp->task) ? tp->task->pid : -1));
286
287 if (gp->tstate & TSTATE_PRIV) {
288 printk(" TPC[%pS] O7[%pS] I7[%pS] RPC[%pS]\n",
289 (void *) gp->tpc,
290 (void *) gp->o7,
291 (void *) gp->i7,
292 (void *) gp->rpc);
293 } else {
294 printk(" TPC[%lx] O7[%lx] I7[%lx] RPC[%lx]\n",
295 gp->tpc, gp->o7, gp->i7, gp->rpc);
296 }
297 }
298
299 memset(global_reg_snapshot, 0, sizeof(global_reg_snapshot));
300
301 spin_unlock_irqrestore(&global_reg_snapshot_lock, flags);
302}
303
304#ifdef CONFIG_MAGIC_SYSRQ
305
306static void sysrq_handle_globreg(int key)
307{
308 arch_trigger_all_cpu_backtrace();
309}
310
311static struct sysrq_key_op sparc_globalreg_op = {
312 .handler = sysrq_handle_globreg,
313 .help_msg = "Globalregs",
314 .action_msg = "Show Global CPU Regs",
315};
316
317static int __init sparc_globreg_init(void)
318{
319 return register_sysrq_key('y', &sparc_globalreg_op);
320}
321
322core_initcall(sparc_globreg_init);
323
324#endif
325
326unsigned long thread_saved_pc(struct task_struct *tsk)
327{
328 struct thread_info *ti = task_thread_info(tsk);
329 unsigned long ret = 0xdeadbeefUL;
330
331 if (ti && ti->ksp) {
332 unsigned long *sp;
333 sp = (unsigned long *)(ti->ksp + STACK_BIAS);
334 if (((unsigned long)sp & (sizeof(long) - 1)) == 0UL &&
335 sp[14]) {
336 unsigned long *fp;
337 fp = (unsigned long *)(sp[14] + STACK_BIAS);
338 if (((unsigned long)fp & (sizeof(long) - 1)) == 0UL)
339 ret = fp[15];
340 }
341 }
342 return ret;
343}
344
345/* Free current thread data structures etc.. */
346void exit_thread(void)
347{
348 struct thread_info *t = current_thread_info();
349
350 if (t->utraps) {
351 if (t->utraps[0] < 2)
352 kfree (t->utraps);
353 else
354 t->utraps[0]--;
355 }
356}
357
358void flush_thread(void)
359{
360 struct thread_info *t = current_thread_info();
361 struct mm_struct *mm;
362
363 mm = t->task->mm;
364 if (mm)
365 tsb_context_switch(mm);
366
367 set_thread_wsaved(0);
368
369 /* Clear FPU register state. */
370 t->fpsaved[0] = 0;
371}
372
373/* It's a bit more tricky when 64-bit tasks are involved... */
374static unsigned long clone_stackframe(unsigned long csp, unsigned long psp)
375{
376 unsigned long fp, distance, rval;
377
378 if (!(test_thread_flag(TIF_32BIT))) {
379 csp += STACK_BIAS;
380 psp += STACK_BIAS;
381 __get_user(fp, &(((struct reg_window __user *)psp)->ins[6]));
382 fp += STACK_BIAS;
383 } else
384 __get_user(fp, &(((struct reg_window32 __user *)psp)->ins[6]));
385
386 /* Now align the stack as this is mandatory in the Sparc ABI
387 * due to how register windows work. This hides the
388 * restriction from thread libraries etc.
389 */
390 csp &= ~15UL;
391
392 distance = fp - psp;
393 rval = (csp - distance);
394 if (copy_in_user((void __user *) rval, (void __user *) psp, distance))
395 rval = 0;
396 else if (test_thread_flag(TIF_32BIT)) {
397 if (put_user(((u32)csp),
398 &(((struct reg_window32 __user *)rval)->ins[6])))
399 rval = 0;
400 } else {
401 if (put_user(((u64)csp - STACK_BIAS),
402 &(((struct reg_window __user *)rval)->ins[6])))
403 rval = 0;
404 else
405 rval = rval - STACK_BIAS;
406 }
407
408 return rval;
409}
410
411/* Standard stuff. */
412static inline void shift_window_buffer(int first_win, int last_win,
413 struct thread_info *t)
414{
415 int i;
416
417 for (i = first_win; i < last_win; i++) {
418 t->rwbuf_stkptrs[i] = t->rwbuf_stkptrs[i+1];
419 memcpy(&t->reg_window[i], &t->reg_window[i+1],
420 sizeof(struct reg_window));
421 }
422}
423
424void synchronize_user_stack(void)
425{
426 struct thread_info *t = current_thread_info();
427 unsigned long window;
428
429 flush_user_windows();
430 if ((window = get_thread_wsaved()) != 0) {
431 int winsize = sizeof(struct reg_window);
432 int bias = 0;
433
434 if (test_thread_flag(TIF_32BIT))
435 winsize = sizeof(struct reg_window32);
436 else
437 bias = STACK_BIAS;
438
439 window -= 1;
440 do {
441 unsigned long sp = (t->rwbuf_stkptrs[window] + bias);
442 struct reg_window *rwin = &t->reg_window[window];
443
444 if (!copy_to_user((char __user *)sp, rwin, winsize)) {
445 shift_window_buffer(window, get_thread_wsaved() - 1, t);
446 set_thread_wsaved(get_thread_wsaved() - 1);
447 }
448 } while (window--);
449 }
450}
451
452static void stack_unaligned(unsigned long sp)
453{
454 siginfo_t info;
455
456 info.si_signo = SIGBUS;
457 info.si_errno = 0;
458 info.si_code = BUS_ADRALN;
459 info.si_addr = (void __user *) sp;
460 info.si_trapno = 0;
461 force_sig_info(SIGBUS, &info, current);
462}
463
464void fault_in_user_windows(void)
465{
466 struct thread_info *t = current_thread_info();
467 unsigned long window;
468 int winsize = sizeof(struct reg_window);
469 int bias = 0;
470
471 if (test_thread_flag(TIF_32BIT))
472 winsize = sizeof(struct reg_window32);
473 else
474 bias = STACK_BIAS;
475
476 flush_user_windows();
477 window = get_thread_wsaved();
478
479 if (likely(window != 0)) {
480 window -= 1;
481 do {
482 unsigned long sp = (t->rwbuf_stkptrs[window] + bias);
483 struct reg_window *rwin = &t->reg_window[window];
484
485 if (unlikely(sp & 0x7UL))
486 stack_unaligned(sp);
487
488 if (unlikely(copy_to_user((char __user *)sp,
489 rwin, winsize)))
490 goto barf;
491 } while (window--);
492 }
493 set_thread_wsaved(0);
494 return;
495
496barf:
497 set_thread_wsaved(window + 1);
498 do_exit(SIGILL);
499}
500
501asmlinkage long sparc_do_fork(unsigned long clone_flags,
502 unsigned long stack_start,
503 struct pt_regs *regs,
504 unsigned long stack_size)
505{
506 int __user *parent_tid_ptr, *child_tid_ptr;
507 unsigned long orig_i1 = regs->u_regs[UREG_I1];
508 long ret;
509
510#ifdef CONFIG_COMPAT
511 if (test_thread_flag(TIF_32BIT)) {
512 parent_tid_ptr = compat_ptr(regs->u_regs[UREG_I2]);
513 child_tid_ptr = compat_ptr(regs->u_regs[UREG_I4]);
514 } else
515#endif
516 {
517 parent_tid_ptr = (int __user *) regs->u_regs[UREG_I2];
518 child_tid_ptr = (int __user *) regs->u_regs[UREG_I4];
519 }
520
521 ret = do_fork(clone_flags, stack_start,
522 regs, stack_size,
523 parent_tid_ptr, child_tid_ptr);
524
525 /* If we get an error and potentially restart the system
526 * call, we're screwed because copy_thread() clobbered
527 * the parent's %o1. So detect that case and restore it
528 * here.
529 */
530 if ((unsigned long)ret >= -ERESTART_RESTARTBLOCK)
531 regs->u_regs[UREG_I1] = orig_i1;
532
533 return ret;
534}
535
536/* Copy a Sparc thread. The fork() return value conventions
537 * under SunOS are nothing short of bletcherous:
538 * Parent --> %o0 == childs pid, %o1 == 0
539 * Child --> %o0 == parents pid, %o1 == 1
540 */
541int copy_thread(unsigned long clone_flags, unsigned long sp,
542 unsigned long unused,
543 struct task_struct *p, struct pt_regs *regs)
544{
545 struct thread_info *t = task_thread_info(p);
546 struct sparc_stackf *parent_sf;
547 unsigned long child_stack_sz;
548 char *child_trap_frame;
549 int kernel_thread;
550
551 kernel_thread = (regs->tstate & TSTATE_PRIV) ? 1 : 0;
552 parent_sf = ((struct sparc_stackf *) regs) - 1;
553
554 /* Calculate offset to stack_frame & pt_regs */
555 child_stack_sz = ((STACKFRAME_SZ + TRACEREG_SZ) +
556 (kernel_thread ? STACKFRAME_SZ : 0));
557 child_trap_frame = (task_stack_page(p) +
558 (THREAD_SIZE - child_stack_sz));
559 memcpy(child_trap_frame, parent_sf, child_stack_sz);
560
561 t->flags = (t->flags & ~((0xffUL << TI_FLAG_CWP_SHIFT) |
562 (0xffUL << TI_FLAG_CURRENT_DS_SHIFT))) |
563 (((regs->tstate + 1) & TSTATE_CWP) << TI_FLAG_CWP_SHIFT);
564 t->new_child = 1;
565 t->ksp = ((unsigned long) child_trap_frame) - STACK_BIAS;
566 t->kregs = (struct pt_regs *) (child_trap_frame +
567 sizeof(struct sparc_stackf));
568 t->fpsaved[0] = 0;
569
570 if (kernel_thread) {
571 struct sparc_stackf *child_sf = (struct sparc_stackf *)
572 (child_trap_frame + (STACKFRAME_SZ + TRACEREG_SZ));
573
574 /* Zero terminate the stack backtrace. */
575 child_sf->fp = NULL;
576 t->kregs->u_regs[UREG_FP] =
577 ((unsigned long) child_sf) - STACK_BIAS;
578
579 t->flags |= ((long)ASI_P << TI_FLAG_CURRENT_DS_SHIFT);
580 t->kregs->u_regs[UREG_G6] = (unsigned long) t;
581 t->kregs->u_regs[UREG_G4] = (unsigned long) t->task;
582 } else {
583 if (t->flags & _TIF_32BIT) {
584 sp &= 0x00000000ffffffffUL;
585 regs->u_regs[UREG_FP] &= 0x00000000ffffffffUL;
586 }
587 t->kregs->u_regs[UREG_FP] = sp;
588 t->flags |= ((long)ASI_AIUS << TI_FLAG_CURRENT_DS_SHIFT);
589 if (sp != regs->u_regs[UREG_FP]) {
590 unsigned long csp;
591
592 csp = clone_stackframe(sp, regs->u_regs[UREG_FP]);
593 if (!csp)
594 return -EFAULT;
595 t->kregs->u_regs[UREG_FP] = csp;
596 }
597 if (t->utraps)
598 t->utraps[0]++;
599 }
600
601 /* Set the return value for the child. */
602 t->kregs->u_regs[UREG_I0] = current->pid;
603 t->kregs->u_regs[UREG_I1] = 1;
604
605 /* Set the second return value for the parent. */
606 regs->u_regs[UREG_I1] = 0;
607
608 if (clone_flags & CLONE_SETTLS)
609 t->kregs->u_regs[UREG_G7] = regs->u_regs[UREG_I3];
610
611 return 0;
612}
613
614/*
615 * This is the mechanism for creating a new kernel thread.
616 *
617 * NOTE! Only a kernel-only process(ie the swapper or direct descendants
618 * who haven't done an "execve()") should use this: it will work within
619 * a system call from a "real" process, but the process memory space will
620 * not be freed until both the parent and the child have exited.
621 */
622pid_t kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
623{
624 long retval;
625
626 /* If the parent runs before fn(arg) is called by the child,
627 * the input registers of this function can be clobbered.
628 * So we stash 'fn' and 'arg' into global registers which
629 * will not be modified by the parent.
630 */
631 __asm__ __volatile__("mov %4, %%g2\n\t" /* Save FN into global */
632 "mov %5, %%g3\n\t" /* Save ARG into global */
633 "mov %1, %%g1\n\t" /* Clone syscall nr. */
634 "mov %2, %%o0\n\t" /* Clone flags. */
635 "mov 0, %%o1\n\t" /* usp arg == 0 */
636 "t 0x6d\n\t" /* Linux/Sparc clone(). */
637 "brz,a,pn %%o1, 1f\n\t" /* Parent, just return. */
638 " mov %%o0, %0\n\t"
639 "jmpl %%g2, %%o7\n\t" /* Call the function. */
640 " mov %%g3, %%o0\n\t" /* Set arg in delay. */
641 "mov %3, %%g1\n\t"
642 "t 0x6d\n\t" /* Linux/Sparc exit(). */
643 /* Notreached by child. */
644 "1:" :
645 "=r" (retval) :
646 "i" (__NR_clone), "r" (flags | CLONE_VM | CLONE_UNTRACED),
647 "i" (__NR_exit), "r" (fn), "r" (arg) :
648 "g1", "g2", "g3", "o0", "o1", "memory", "cc");
649 return retval;
650}
651EXPORT_SYMBOL(kernel_thread);
652
653typedef struct {
654 union {
655 unsigned int pr_regs[32];
656 unsigned long pr_dregs[16];
657 } pr_fr;
658 unsigned int __unused;
659 unsigned int pr_fsr;
660 unsigned char pr_qcnt;
661 unsigned char pr_q_entrysize;
662 unsigned char pr_en;
663 unsigned int pr_q[64];
664} elf_fpregset_t32;
665
666/*
667 * fill in the fpu structure for a core dump.
668 */
669int dump_fpu (struct pt_regs * regs, elf_fpregset_t * fpregs)
670{
671 unsigned long *kfpregs = current_thread_info()->fpregs;
672 unsigned long fprs = current_thread_info()->fpsaved[0];
673
674 if (test_thread_flag(TIF_32BIT)) {
675 elf_fpregset_t32 *fpregs32 = (elf_fpregset_t32 *)fpregs;
676
677 if (fprs & FPRS_DL)
678 memcpy(&fpregs32->pr_fr.pr_regs[0], kfpregs,
679 sizeof(unsigned int) * 32);
680 else
681 memset(&fpregs32->pr_fr.pr_regs[0], 0,
682 sizeof(unsigned int) * 32);
683 fpregs32->pr_qcnt = 0;
684 fpregs32->pr_q_entrysize = 8;
685 memset(&fpregs32->pr_q[0], 0,
686 (sizeof(unsigned int) * 64));
687 if (fprs & FPRS_FEF) {
688 fpregs32->pr_fsr = (unsigned int) current_thread_info()->xfsr[0];
689 fpregs32->pr_en = 1;
690 } else {
691 fpregs32->pr_fsr = 0;
692 fpregs32->pr_en = 0;
693 }
694 } else {
695 if(fprs & FPRS_DL)
696 memcpy(&fpregs->pr_regs[0], kfpregs,
697 sizeof(unsigned int) * 32);
698 else
699 memset(&fpregs->pr_regs[0], 0,
700 sizeof(unsigned int) * 32);
701 if(fprs & FPRS_DU)
702 memcpy(&fpregs->pr_regs[16], kfpregs+16,
703 sizeof(unsigned int) * 32);
704 else
705 memset(&fpregs->pr_regs[16], 0,
706 sizeof(unsigned int) * 32);
707 if(fprs & FPRS_FEF) {
708 fpregs->pr_fsr = current_thread_info()->xfsr[0];
709 fpregs->pr_gsr = current_thread_info()->gsr[0];
710 } else {
711 fpregs->pr_fsr = fpregs->pr_gsr = 0;
712 }
713 fpregs->pr_fprs = fprs;
714 }
715 return 1;
716}
717EXPORT_SYMBOL(dump_fpu);
718
719/*
720 * sparc_execve() executes a new program after the asm stub has set
721 * things up for us. This should basically do what I want it to.
722 */
723asmlinkage int sparc_execve(struct pt_regs *regs)
724{
725 int error, base = 0;
726 char *filename;
727
728 /* User register window flush is done by entry.S */
729
730 /* Check for indirect call. */
731 if (regs->u_regs[UREG_G1] == 0)
732 base = 1;
733
734 filename = getname((char __user *)regs->u_regs[base + UREG_I0]);
735 error = PTR_ERR(filename);
736 if (IS_ERR(filename))
737 goto out;
738 error = do_execve(filename,
739 (const char __user *const __user *)
740 regs->u_regs[base + UREG_I1],
741 (const char __user *const __user *)
742 regs->u_regs[base + UREG_I2], regs);
743 putname(filename);
744 if (!error) {
745 fprs_write(0);
746 current_thread_info()->xfsr[0] = 0;
747 current_thread_info()->fpsaved[0] = 0;
748 regs->tstate &= ~TSTATE_PEF;
749 }
750out:
751 return error;
752}
753
754unsigned long get_wchan(struct task_struct *task)
755{
756 unsigned long pc, fp, bias = 0;
757 struct thread_info *tp;
758 struct reg_window *rw;
759 unsigned long ret = 0;
760 int count = 0;
761
762 if (!task || task == current ||
763 task->state == TASK_RUNNING)
764 goto out;
765
766 tp = task_thread_info(task);
767 bias = STACK_BIAS;
768 fp = task_thread_info(task)->ksp + bias;
769
770 do {
771 if (!kstack_valid(tp, fp))
772 break;
773 rw = (struct reg_window *) fp;
774 pc = rw->ins[7];
775 if (!in_sched_functions(pc)) {
776 ret = pc;
777 goto out;
778 }
779 fp = rw->ins[6] + bias;
780 } while (++count < 16);
781
782out:
783 return ret;
784}
1// SPDX-License-Identifier: GPL-2.0
2/* arch/sparc64/kernel/process.c
3 *
4 * Copyright (C) 1995, 1996, 2008 David S. Miller (davem@davemloft.net)
5 * Copyright (C) 1996 Eddie C. Dost (ecd@skynet.be)
6 * Copyright (C) 1997, 1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
7 */
8
9/*
10 * This file handles the architecture-dependent parts of process handling..
11 */
12
13#include <stdarg.h>
14
15#include <linux/errno.h>
16#include <linux/export.h>
17#include <linux/sched.h>
18#include <linux/sched/debug.h>
19#include <linux/sched/task.h>
20#include <linux/sched/task_stack.h>
21#include <linux/kernel.h>
22#include <linux/mm.h>
23#include <linux/fs.h>
24#include <linux/smp.h>
25#include <linux/stddef.h>
26#include <linux/ptrace.h>
27#include <linux/slab.h>
28#include <linux/user.h>
29#include <linux/delay.h>
30#include <linux/compat.h>
31#include <linux/tick.h>
32#include <linux/init.h>
33#include <linux/cpu.h>
34#include <linux/perf_event.h>
35#include <linux/elfcore.h>
36#include <linux/sysrq.h>
37#include <linux/nmi.h>
38#include <linux/context_tracking.h>
39#include <linux/signal.h>
40
41#include <linux/uaccess.h>
42#include <asm/page.h>
43#include <asm/pgalloc.h>
44#include <asm/pgtable.h>
45#include <asm/processor.h>
46#include <asm/pstate.h>
47#include <asm/elf.h>
48#include <asm/fpumacro.h>
49#include <asm/head.h>
50#include <asm/cpudata.h>
51#include <asm/mmu_context.h>
52#include <asm/unistd.h>
53#include <asm/hypervisor.h>
54#include <asm/syscalls.h>
55#include <asm/irq_regs.h>
56#include <asm/smp.h>
57#include <asm/pcr.h>
58
59#include "kstack.h"
60
61/* Idle loop support on sparc64. */
62void arch_cpu_idle(void)
63{
64 if (tlb_type != hypervisor) {
65 touch_nmi_watchdog();
66 local_irq_enable();
67 } else {
68 unsigned long pstate;
69
70 local_irq_enable();
71
72 /* The sun4v sleeping code requires that we have PSTATE.IE cleared over
73 * the cpu sleep hypervisor call.
74 */
75 __asm__ __volatile__(
76 "rdpr %%pstate, %0\n\t"
77 "andn %0, %1, %0\n\t"
78 "wrpr %0, %%g0, %%pstate"
79 : "=&r" (pstate)
80 : "i" (PSTATE_IE));
81
82 if (!need_resched() && !cpu_is_offline(smp_processor_id())) {
83 sun4v_cpu_yield();
84 /* If resumed by cpu_poke then we need to explicitly
85 * call scheduler_ipi().
86 */
87 scheduler_poke();
88 }
89
90 /* Re-enable interrupts. */
91 __asm__ __volatile__(
92 "rdpr %%pstate, %0\n\t"
93 "or %0, %1, %0\n\t"
94 "wrpr %0, %%g0, %%pstate"
95 : "=&r" (pstate)
96 : "i" (PSTATE_IE));
97 }
98}
99
100#ifdef CONFIG_HOTPLUG_CPU
101void arch_cpu_idle_dead(void)
102{
103 sched_preempt_enable_no_resched();
104 cpu_play_dead();
105}
106#endif
107
108#ifdef CONFIG_COMPAT
109static void show_regwindow32(struct pt_regs *regs)
110{
111 struct reg_window32 __user *rw;
112 struct reg_window32 r_w;
113 mm_segment_t old_fs;
114
115 __asm__ __volatile__ ("flushw");
116 rw = compat_ptr((unsigned int)regs->u_regs[14]);
117 old_fs = get_fs();
118 set_fs (USER_DS);
119 if (copy_from_user (&r_w, rw, sizeof(r_w))) {
120 set_fs (old_fs);
121 return;
122 }
123
124 set_fs (old_fs);
125 printk("l0: %08x l1: %08x l2: %08x l3: %08x "
126 "l4: %08x l5: %08x l6: %08x l7: %08x\n",
127 r_w.locals[0], r_w.locals[1], r_w.locals[2], r_w.locals[3],
128 r_w.locals[4], r_w.locals[5], r_w.locals[6], r_w.locals[7]);
129 printk("i0: %08x i1: %08x i2: %08x i3: %08x "
130 "i4: %08x i5: %08x i6: %08x i7: %08x\n",
131 r_w.ins[0], r_w.ins[1], r_w.ins[2], r_w.ins[3],
132 r_w.ins[4], r_w.ins[5], r_w.ins[6], r_w.ins[7]);
133}
134#else
135#define show_regwindow32(regs) do { } while (0)
136#endif
137
138static void show_regwindow(struct pt_regs *regs)
139{
140 struct reg_window __user *rw;
141 struct reg_window *rwk;
142 struct reg_window r_w;
143 mm_segment_t old_fs;
144
145 if ((regs->tstate & TSTATE_PRIV) || !(test_thread_flag(TIF_32BIT))) {
146 __asm__ __volatile__ ("flushw");
147 rw = (struct reg_window __user *)
148 (regs->u_regs[14] + STACK_BIAS);
149 rwk = (struct reg_window *)
150 (regs->u_regs[14] + STACK_BIAS);
151 if (!(regs->tstate & TSTATE_PRIV)) {
152 old_fs = get_fs();
153 set_fs (USER_DS);
154 if (copy_from_user (&r_w, rw, sizeof(r_w))) {
155 set_fs (old_fs);
156 return;
157 }
158 rwk = &r_w;
159 set_fs (old_fs);
160 }
161 } else {
162 show_regwindow32(regs);
163 return;
164 }
165 printk("l0: %016lx l1: %016lx l2: %016lx l3: %016lx\n",
166 rwk->locals[0], rwk->locals[1], rwk->locals[2], rwk->locals[3]);
167 printk("l4: %016lx l5: %016lx l6: %016lx l7: %016lx\n",
168 rwk->locals[4], rwk->locals[5], rwk->locals[6], rwk->locals[7]);
169 printk("i0: %016lx i1: %016lx i2: %016lx i3: %016lx\n",
170 rwk->ins[0], rwk->ins[1], rwk->ins[2], rwk->ins[3]);
171 printk("i4: %016lx i5: %016lx i6: %016lx i7: %016lx\n",
172 rwk->ins[4], rwk->ins[5], rwk->ins[6], rwk->ins[7]);
173 if (regs->tstate & TSTATE_PRIV)
174 printk("I7: <%pS>\n", (void *) rwk->ins[7]);
175}
176
177void show_regs(struct pt_regs *regs)
178{
179 show_regs_print_info(KERN_DEFAULT);
180
181 printk("TSTATE: %016lx TPC: %016lx TNPC: %016lx Y: %08x %s\n", regs->tstate,
182 regs->tpc, regs->tnpc, regs->y, print_tainted());
183 printk("TPC: <%pS>\n", (void *) regs->tpc);
184 printk("g0: %016lx g1: %016lx g2: %016lx g3: %016lx\n",
185 regs->u_regs[0], regs->u_regs[1], regs->u_regs[2],
186 regs->u_regs[3]);
187 printk("g4: %016lx g5: %016lx g6: %016lx g7: %016lx\n",
188 regs->u_regs[4], regs->u_regs[5], regs->u_regs[6],
189 regs->u_regs[7]);
190 printk("o0: %016lx o1: %016lx o2: %016lx o3: %016lx\n",
191 regs->u_regs[8], regs->u_regs[9], regs->u_regs[10],
192 regs->u_regs[11]);
193 printk("o4: %016lx o5: %016lx sp: %016lx ret_pc: %016lx\n",
194 regs->u_regs[12], regs->u_regs[13], regs->u_regs[14],
195 regs->u_regs[15]);
196 printk("RPC: <%pS>\n", (void *) regs->u_regs[15]);
197 show_regwindow(regs);
198 show_stack(current, (unsigned long *) regs->u_regs[UREG_FP]);
199}
200
201union global_cpu_snapshot global_cpu_snapshot[NR_CPUS];
202static DEFINE_SPINLOCK(global_cpu_snapshot_lock);
203
204static void __global_reg_self(struct thread_info *tp, struct pt_regs *regs,
205 int this_cpu)
206{
207 struct global_reg_snapshot *rp;
208
209 flushw_all();
210
211 rp = &global_cpu_snapshot[this_cpu].reg;
212
213 rp->tstate = regs->tstate;
214 rp->tpc = regs->tpc;
215 rp->tnpc = regs->tnpc;
216 rp->o7 = regs->u_regs[UREG_I7];
217
218 if (regs->tstate & TSTATE_PRIV) {
219 struct reg_window *rw;
220
221 rw = (struct reg_window *)
222 (regs->u_regs[UREG_FP] + STACK_BIAS);
223 if (kstack_valid(tp, (unsigned long) rw)) {
224 rp->i7 = rw->ins[7];
225 rw = (struct reg_window *)
226 (rw->ins[6] + STACK_BIAS);
227 if (kstack_valid(tp, (unsigned long) rw))
228 rp->rpc = rw->ins[7];
229 }
230 } else {
231 rp->i7 = 0;
232 rp->rpc = 0;
233 }
234 rp->thread = tp;
235}
236
237/* In order to avoid hangs we do not try to synchronize with the
238 * global register dump client cpus. The last store they make is to
239 * the thread pointer, so do a short poll waiting for that to become
240 * non-NULL.
241 */
242static void __global_reg_poll(struct global_reg_snapshot *gp)
243{
244 int limit = 0;
245
246 while (!gp->thread && ++limit < 100) {
247 barrier();
248 udelay(1);
249 }
250}
251
252void arch_trigger_cpumask_backtrace(const cpumask_t *mask, bool exclude_self)
253{
254 struct thread_info *tp = current_thread_info();
255 struct pt_regs *regs = get_irq_regs();
256 unsigned long flags;
257 int this_cpu, cpu;
258
259 if (!regs)
260 regs = tp->kregs;
261
262 spin_lock_irqsave(&global_cpu_snapshot_lock, flags);
263
264 this_cpu = raw_smp_processor_id();
265
266 memset(global_cpu_snapshot, 0, sizeof(global_cpu_snapshot));
267
268 if (cpumask_test_cpu(this_cpu, mask) && !exclude_self)
269 __global_reg_self(tp, regs, this_cpu);
270
271 smp_fetch_global_regs();
272
273 for_each_cpu(cpu, mask) {
274 struct global_reg_snapshot *gp;
275
276 if (exclude_self && cpu == this_cpu)
277 continue;
278
279 gp = &global_cpu_snapshot[cpu].reg;
280
281 __global_reg_poll(gp);
282
283 tp = gp->thread;
284 printk("%c CPU[%3d]: TSTATE[%016lx] TPC[%016lx] TNPC[%016lx] TASK[%s:%d]\n",
285 (cpu == this_cpu ? '*' : ' '), cpu,
286 gp->tstate, gp->tpc, gp->tnpc,
287 ((tp && tp->task) ? tp->task->comm : "NULL"),
288 ((tp && tp->task) ? tp->task->pid : -1));
289
290 if (gp->tstate & TSTATE_PRIV) {
291 printk(" TPC[%pS] O7[%pS] I7[%pS] RPC[%pS]\n",
292 (void *) gp->tpc,
293 (void *) gp->o7,
294 (void *) gp->i7,
295 (void *) gp->rpc);
296 } else {
297 printk(" TPC[%lx] O7[%lx] I7[%lx] RPC[%lx]\n",
298 gp->tpc, gp->o7, gp->i7, gp->rpc);
299 }
300
301 touch_nmi_watchdog();
302 }
303
304 memset(global_cpu_snapshot, 0, sizeof(global_cpu_snapshot));
305
306 spin_unlock_irqrestore(&global_cpu_snapshot_lock, flags);
307}
308
309#ifdef CONFIG_MAGIC_SYSRQ
310
311static void sysrq_handle_globreg(int key)
312{
313 trigger_all_cpu_backtrace();
314}
315
316static struct sysrq_key_op sparc_globalreg_op = {
317 .handler = sysrq_handle_globreg,
318 .help_msg = "global-regs(y)",
319 .action_msg = "Show Global CPU Regs",
320};
321
322static void __global_pmu_self(int this_cpu)
323{
324 struct global_pmu_snapshot *pp;
325 int i, num;
326
327 if (!pcr_ops)
328 return;
329
330 pp = &global_cpu_snapshot[this_cpu].pmu;
331
332 num = 1;
333 if (tlb_type == hypervisor &&
334 sun4v_chip_type >= SUN4V_CHIP_NIAGARA4)
335 num = 4;
336
337 for (i = 0; i < num; i++) {
338 pp->pcr[i] = pcr_ops->read_pcr(i);
339 pp->pic[i] = pcr_ops->read_pic(i);
340 }
341}
342
343static void __global_pmu_poll(struct global_pmu_snapshot *pp)
344{
345 int limit = 0;
346
347 while (!pp->pcr[0] && ++limit < 100) {
348 barrier();
349 udelay(1);
350 }
351}
352
353static void pmu_snapshot_all_cpus(void)
354{
355 unsigned long flags;
356 int this_cpu, cpu;
357
358 spin_lock_irqsave(&global_cpu_snapshot_lock, flags);
359
360 memset(global_cpu_snapshot, 0, sizeof(global_cpu_snapshot));
361
362 this_cpu = raw_smp_processor_id();
363
364 __global_pmu_self(this_cpu);
365
366 smp_fetch_global_pmu();
367
368 for_each_online_cpu(cpu) {
369 struct global_pmu_snapshot *pp = &global_cpu_snapshot[cpu].pmu;
370
371 __global_pmu_poll(pp);
372
373 printk("%c CPU[%3d]: PCR[%08lx:%08lx:%08lx:%08lx] PIC[%08lx:%08lx:%08lx:%08lx]\n",
374 (cpu == this_cpu ? '*' : ' '), cpu,
375 pp->pcr[0], pp->pcr[1], pp->pcr[2], pp->pcr[3],
376 pp->pic[0], pp->pic[1], pp->pic[2], pp->pic[3]);
377
378 touch_nmi_watchdog();
379 }
380
381 memset(global_cpu_snapshot, 0, sizeof(global_cpu_snapshot));
382
383 spin_unlock_irqrestore(&global_cpu_snapshot_lock, flags);
384}
385
386static void sysrq_handle_globpmu(int key)
387{
388 pmu_snapshot_all_cpus();
389}
390
391static struct sysrq_key_op sparc_globalpmu_op = {
392 .handler = sysrq_handle_globpmu,
393 .help_msg = "global-pmu(x)",
394 .action_msg = "Show Global PMU Regs",
395};
396
397static int __init sparc_sysrq_init(void)
398{
399 int ret = register_sysrq_key('y', &sparc_globalreg_op);
400
401 if (!ret)
402 ret = register_sysrq_key('x', &sparc_globalpmu_op);
403 return ret;
404}
405
406core_initcall(sparc_sysrq_init);
407
408#endif
409
410/* Free current thread data structures etc.. */
411void exit_thread(struct task_struct *tsk)
412{
413 struct thread_info *t = task_thread_info(tsk);
414
415 if (t->utraps) {
416 if (t->utraps[0] < 2)
417 kfree (t->utraps);
418 else
419 t->utraps[0]--;
420 }
421}
422
423void flush_thread(void)
424{
425 struct thread_info *t = current_thread_info();
426 struct mm_struct *mm;
427
428 mm = t->task->mm;
429 if (mm)
430 tsb_context_switch(mm);
431
432 set_thread_wsaved(0);
433
434 /* Clear FPU register state. */
435 t->fpsaved[0] = 0;
436}
437
438/* It's a bit more tricky when 64-bit tasks are involved... */
439static unsigned long clone_stackframe(unsigned long csp, unsigned long psp)
440{
441 bool stack_64bit = test_thread_64bit_stack(psp);
442 unsigned long fp, distance, rval;
443
444 if (stack_64bit) {
445 csp += STACK_BIAS;
446 psp += STACK_BIAS;
447 __get_user(fp, &(((struct reg_window __user *)psp)->ins[6]));
448 fp += STACK_BIAS;
449 if (test_thread_flag(TIF_32BIT))
450 fp &= 0xffffffff;
451 } else
452 __get_user(fp, &(((struct reg_window32 __user *)psp)->ins[6]));
453
454 /* Now align the stack as this is mandatory in the Sparc ABI
455 * due to how register windows work. This hides the
456 * restriction from thread libraries etc.
457 */
458 csp &= ~15UL;
459
460 distance = fp - psp;
461 rval = (csp - distance);
462 if (copy_in_user((void __user *) rval, (void __user *) psp, distance))
463 rval = 0;
464 else if (!stack_64bit) {
465 if (put_user(((u32)csp),
466 &(((struct reg_window32 __user *)rval)->ins[6])))
467 rval = 0;
468 } else {
469 if (put_user(((u64)csp - STACK_BIAS),
470 &(((struct reg_window __user *)rval)->ins[6])))
471 rval = 0;
472 else
473 rval = rval - STACK_BIAS;
474 }
475
476 return rval;
477}
478
479/* Standard stuff. */
480static inline void shift_window_buffer(int first_win, int last_win,
481 struct thread_info *t)
482{
483 int i;
484
485 for (i = first_win; i < last_win; i++) {
486 t->rwbuf_stkptrs[i] = t->rwbuf_stkptrs[i+1];
487 memcpy(&t->reg_window[i], &t->reg_window[i+1],
488 sizeof(struct reg_window));
489 }
490}
491
492void synchronize_user_stack(void)
493{
494 struct thread_info *t = current_thread_info();
495 unsigned long window;
496
497 flush_user_windows();
498 if ((window = get_thread_wsaved()) != 0) {
499 window -= 1;
500 do {
501 struct reg_window *rwin = &t->reg_window[window];
502 int winsize = sizeof(struct reg_window);
503 unsigned long sp;
504
505 sp = t->rwbuf_stkptrs[window];
506
507 if (test_thread_64bit_stack(sp))
508 sp += STACK_BIAS;
509 else
510 winsize = sizeof(struct reg_window32);
511
512 if (!copy_to_user((char __user *)sp, rwin, winsize)) {
513 shift_window_buffer(window, get_thread_wsaved() - 1, t);
514 set_thread_wsaved(get_thread_wsaved() - 1);
515 }
516 } while (window--);
517 }
518}
519
520static void stack_unaligned(unsigned long sp)
521{
522 force_sig_fault(SIGBUS, BUS_ADRALN, (void __user *) sp, 0);
523}
524
525static const char uwfault32[] = KERN_INFO \
526 "%s[%d]: bad register window fault: SP %08lx (orig_sp %08lx) TPC %08lx O7 %08lx\n";
527static const char uwfault64[] = KERN_INFO \
528 "%s[%d]: bad register window fault: SP %016lx (orig_sp %016lx) TPC %08lx O7 %016lx\n";
529
530void fault_in_user_windows(struct pt_regs *regs)
531{
532 struct thread_info *t = current_thread_info();
533 unsigned long window;
534
535 flush_user_windows();
536 window = get_thread_wsaved();
537
538 if (likely(window != 0)) {
539 window -= 1;
540 do {
541 struct reg_window *rwin = &t->reg_window[window];
542 int winsize = sizeof(struct reg_window);
543 unsigned long sp, orig_sp;
544
545 orig_sp = sp = t->rwbuf_stkptrs[window];
546
547 if (test_thread_64bit_stack(sp))
548 sp += STACK_BIAS;
549 else
550 winsize = sizeof(struct reg_window32);
551
552 if (unlikely(sp & 0x7UL))
553 stack_unaligned(sp);
554
555 if (unlikely(copy_to_user((char __user *)sp,
556 rwin, winsize))) {
557 if (show_unhandled_signals)
558 printk_ratelimited(is_compat_task() ?
559 uwfault32 : uwfault64,
560 current->comm, current->pid,
561 sp, orig_sp,
562 regs->tpc,
563 regs->u_regs[UREG_I7]);
564 goto barf;
565 }
566 } while (window--);
567 }
568 set_thread_wsaved(0);
569 return;
570
571barf:
572 set_thread_wsaved(window + 1);
573 force_sig(SIGSEGV);
574}
575
576asmlinkage long sparc_do_fork(unsigned long clone_flags,
577 unsigned long stack_start,
578 struct pt_regs *regs,
579 unsigned long stack_size)
580{
581 int __user *parent_tid_ptr, *child_tid_ptr;
582 unsigned long orig_i1 = regs->u_regs[UREG_I1];
583 long ret;
584
585#ifdef CONFIG_COMPAT
586 if (test_thread_flag(TIF_32BIT)) {
587 parent_tid_ptr = compat_ptr(regs->u_regs[UREG_I2]);
588 child_tid_ptr = compat_ptr(regs->u_regs[UREG_I4]);
589 } else
590#endif
591 {
592 parent_tid_ptr = (int __user *) regs->u_regs[UREG_I2];
593 child_tid_ptr = (int __user *) regs->u_regs[UREG_I4];
594 }
595
596 ret = do_fork(clone_flags, stack_start, stack_size,
597 parent_tid_ptr, child_tid_ptr);
598
599 /* If we get an error and potentially restart the system
600 * call, we're screwed because copy_thread() clobbered
601 * the parent's %o1. So detect that case and restore it
602 * here.
603 */
604 if ((unsigned long)ret >= -ERESTART_RESTARTBLOCK)
605 regs->u_regs[UREG_I1] = orig_i1;
606
607 return ret;
608}
609
610/* Copy a Sparc thread. The fork() return value conventions
611 * under SunOS are nothing short of bletcherous:
612 * Parent --> %o0 == childs pid, %o1 == 0
613 * Child --> %o0 == parents pid, %o1 == 1
614 */
615int copy_thread(unsigned long clone_flags, unsigned long sp,
616 unsigned long arg, struct task_struct *p)
617{
618 struct thread_info *t = task_thread_info(p);
619 struct pt_regs *regs = current_pt_regs();
620 struct sparc_stackf *parent_sf;
621 unsigned long child_stack_sz;
622 char *child_trap_frame;
623
624 /* Calculate offset to stack_frame & pt_regs */
625 child_stack_sz = (STACKFRAME_SZ + TRACEREG_SZ);
626 child_trap_frame = (task_stack_page(p) +
627 (THREAD_SIZE - child_stack_sz));
628
629 t->new_child = 1;
630 t->ksp = ((unsigned long) child_trap_frame) - STACK_BIAS;
631 t->kregs = (struct pt_regs *) (child_trap_frame +
632 sizeof(struct sparc_stackf));
633 t->fpsaved[0] = 0;
634
635 if (unlikely(p->flags & PF_KTHREAD)) {
636 memset(child_trap_frame, 0, child_stack_sz);
637 __thread_flag_byte_ptr(t)[TI_FLAG_BYTE_CWP] =
638 (current_pt_regs()->tstate + 1) & TSTATE_CWP;
639 t->current_ds = ASI_P;
640 t->kregs->u_regs[UREG_G1] = sp; /* function */
641 t->kregs->u_regs[UREG_G2] = arg;
642 return 0;
643 }
644
645 parent_sf = ((struct sparc_stackf *) regs) - 1;
646 memcpy(child_trap_frame, parent_sf, child_stack_sz);
647 if (t->flags & _TIF_32BIT) {
648 sp &= 0x00000000ffffffffUL;
649 regs->u_regs[UREG_FP] &= 0x00000000ffffffffUL;
650 }
651 t->kregs->u_regs[UREG_FP] = sp;
652 __thread_flag_byte_ptr(t)[TI_FLAG_BYTE_CWP] =
653 (regs->tstate + 1) & TSTATE_CWP;
654 t->current_ds = ASI_AIUS;
655 if (sp != regs->u_regs[UREG_FP]) {
656 unsigned long csp;
657
658 csp = clone_stackframe(sp, regs->u_regs[UREG_FP]);
659 if (!csp)
660 return -EFAULT;
661 t->kregs->u_regs[UREG_FP] = csp;
662 }
663 if (t->utraps)
664 t->utraps[0]++;
665
666 /* Set the return value for the child. */
667 t->kregs->u_regs[UREG_I0] = current->pid;
668 t->kregs->u_regs[UREG_I1] = 1;
669
670 /* Set the second return value for the parent. */
671 regs->u_regs[UREG_I1] = 0;
672
673 if (clone_flags & CLONE_SETTLS)
674 t->kregs->u_regs[UREG_G7] = regs->u_regs[UREG_I3];
675
676 return 0;
677}
678
679/* TIF_MCDPER in thread info flags for current task is updated lazily upon
680 * a context switch. Update this flag in current task's thread flags
681 * before dup so the dup'd task will inherit the current TIF_MCDPER flag.
682 */
683int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
684{
685 if (adi_capable()) {
686 register unsigned long tmp_mcdper;
687
688 __asm__ __volatile__(
689 ".word 0x83438000\n\t" /* rd %mcdper, %g1 */
690 "mov %%g1, %0\n\t"
691 : "=r" (tmp_mcdper)
692 :
693 : "g1");
694 if (tmp_mcdper)
695 set_thread_flag(TIF_MCDPER);
696 else
697 clear_thread_flag(TIF_MCDPER);
698 }
699
700 *dst = *src;
701 return 0;
702}
703
704typedef struct {
705 union {
706 unsigned int pr_regs[32];
707 unsigned long pr_dregs[16];
708 } pr_fr;
709 unsigned int __unused;
710 unsigned int pr_fsr;
711 unsigned char pr_qcnt;
712 unsigned char pr_q_entrysize;
713 unsigned char pr_en;
714 unsigned int pr_q[64];
715} elf_fpregset_t32;
716
717/*
718 * fill in the fpu structure for a core dump.
719 */
720int dump_fpu (struct pt_regs * regs, elf_fpregset_t * fpregs)
721{
722 unsigned long *kfpregs = current_thread_info()->fpregs;
723 unsigned long fprs = current_thread_info()->fpsaved[0];
724
725 if (test_thread_flag(TIF_32BIT)) {
726 elf_fpregset_t32 *fpregs32 = (elf_fpregset_t32 *)fpregs;
727
728 if (fprs & FPRS_DL)
729 memcpy(&fpregs32->pr_fr.pr_regs[0], kfpregs,
730 sizeof(unsigned int) * 32);
731 else
732 memset(&fpregs32->pr_fr.pr_regs[0], 0,
733 sizeof(unsigned int) * 32);
734 fpregs32->pr_qcnt = 0;
735 fpregs32->pr_q_entrysize = 8;
736 memset(&fpregs32->pr_q[0], 0,
737 (sizeof(unsigned int) * 64));
738 if (fprs & FPRS_FEF) {
739 fpregs32->pr_fsr = (unsigned int) current_thread_info()->xfsr[0];
740 fpregs32->pr_en = 1;
741 } else {
742 fpregs32->pr_fsr = 0;
743 fpregs32->pr_en = 0;
744 }
745 } else {
746 if(fprs & FPRS_DL)
747 memcpy(&fpregs->pr_regs[0], kfpregs,
748 sizeof(unsigned int) * 32);
749 else
750 memset(&fpregs->pr_regs[0], 0,
751 sizeof(unsigned int) * 32);
752 if(fprs & FPRS_DU)
753 memcpy(&fpregs->pr_regs[16], kfpregs+16,
754 sizeof(unsigned int) * 32);
755 else
756 memset(&fpregs->pr_regs[16], 0,
757 sizeof(unsigned int) * 32);
758 if(fprs & FPRS_FEF) {
759 fpregs->pr_fsr = current_thread_info()->xfsr[0];
760 fpregs->pr_gsr = current_thread_info()->gsr[0];
761 } else {
762 fpregs->pr_fsr = fpregs->pr_gsr = 0;
763 }
764 fpregs->pr_fprs = fprs;
765 }
766 return 1;
767}
768EXPORT_SYMBOL(dump_fpu);
769
770unsigned long get_wchan(struct task_struct *task)
771{
772 unsigned long pc, fp, bias = 0;
773 struct thread_info *tp;
774 struct reg_window *rw;
775 unsigned long ret = 0;
776 int count = 0;
777
778 if (!task || task == current ||
779 task->state == TASK_RUNNING)
780 goto out;
781
782 tp = task_thread_info(task);
783 bias = STACK_BIAS;
784 fp = task_thread_info(task)->ksp + bias;
785
786 do {
787 if (!kstack_valid(tp, fp))
788 break;
789 rw = (struct reg_window *) fp;
790 pc = rw->ins[7];
791 if (!in_sched_functions(pc)) {
792 ret = pc;
793 goto out;
794 }
795 fp = rw->ins[6] + bias;
796 } while (++count < 16);
797
798out:
799 return ret;
800}