Linux Audio

Check our new training course

Loading...
v3.1
 
  1/* internal.h: mm/ internal definitions
  2 *
  3 * Copyright (C) 2004 Red Hat, Inc. All Rights Reserved.
  4 * Written by David Howells (dhowells@redhat.com)
  5 *
  6 * This program is free software; you can redistribute it and/or
  7 * modify it under the terms of the GNU General Public License
  8 * as published by the Free Software Foundation; either version
  9 * 2 of the License, or (at your option) any later version.
 10 */
 11#ifndef __MM_INTERNAL_H
 12#define __MM_INTERNAL_H
 13
 
 14#include <linux/mm.h>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 15
 16void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
 17		unsigned long floor, unsigned long ceiling);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 18
 19static inline void set_page_count(struct page *page, int v)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 20{
 21	atomic_set(&page->_count, v);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 22}
 23
 24/*
 25 * Turn a non-refcounted page (->_count == 0) into refcounted with
 26 * a count of one.
 27 */
 28static inline void set_page_refcounted(struct page *page)
 29{
 30	VM_BUG_ON(PageTail(page));
 31	VM_BUG_ON(atomic_read(&page->_count));
 32	set_page_count(page, 1);
 33}
 34
 35static inline void __put_page(struct page *page)
 
 
 
 36{
 37	atomic_dec(&page->_count);
 
 
 
 38}
 39
 40extern unsigned long highest_memmap_pfn;
 41
 42/*
 
 
 
 
 
 
 43 * in mm/vmscan.c:
 44 */
 45extern int isolate_lru_page(struct page *page);
 46extern void putback_lru_page(struct page *page);
 
 
 
 
 
 
 
 
 47
 48/*
 49 * in mm/page_alloc.c
 50 */
 51extern void __free_pages_bootmem(struct page *page, unsigned int order);
 52extern void prep_compound_page(struct page *page, unsigned long order);
 53#ifdef CONFIG_MEMORY_FAILURE
 54extern bool is_free_buddy_page(struct page *page);
 55#endif
 
 56
 
 
 
 
 
 
 57
 58/*
 59 * function for dealing with page's order in buddy system.
 60 * zone->lock is already acquired when we use these.
 61 * So, we don't need atomic page->flags operations here.
 
 
 
 
 
 
 
 
 62 */
 63static inline unsigned long page_order(struct page *page)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 64{
 65	/* PageBuddy() must be checked by the caller */
 66	return page_private(page);
 67}
 68
 69/* mm/util.c */
 70void __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma,
 71		struct vm_area_struct *prev, struct rb_node *rb_parent);
 
 
 
 
 
 
 
 
 
 72
 73#ifdef CONFIG_MMU
 74extern long mlock_vma_pages_range(struct vm_area_struct *vma,
 75			unsigned long start, unsigned long end);
 76extern void munlock_vma_pages_range(struct vm_area_struct *vma,
 77			unsigned long start, unsigned long end);
 78static inline void munlock_vma_pages_all(struct vm_area_struct *vma)
 
 
 
 
 
 
 
 
 
 79{
 80	munlock_vma_pages_range(vma, vma->vm_start, vma->vm_end);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 81}
 82
 83/*
 84 * Called only in fault path via page_evictable() for a new page
 85 * to determine if it's being mapped into a LOCKED vma.
 86 * If so, mark page as mlocked.
 
 
 
 
 
 
 
 
 
 
 
 
 87 */
 88static inline int is_mlocked_vma(struct vm_area_struct *vma, struct page *page)
 
 89{
 90	VM_BUG_ON(PageLRU(page));
 
 91
 92	if (likely((vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) != VM_LOCKED))
 93		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 94
 95	if (!TestSetPageMlocked(page)) {
 96		inc_zone_page_state(page, NR_MLOCK);
 97		count_vm_event(UNEVICTABLE_PGMLOCKED);
 98	}
 99	return 1;
 
 
100}
101
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
102/*
103 * must be called with vma's mmap_sem held for read or write, and page locked.
 
104 */
105extern void mlock_vma_page(struct page *page);
106extern void munlock_vma_page(struct page *page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
107
108/*
109 * Clear the page's PageMlocked().  This can be useful in a situation where
110 * we want to unconditionally remove a page from the pagecache -- e.g.,
111 * on truncation or freeing.
112 *
113 * It is legal to call this function for any page, mlocked or not.
114 * If called for a page that is still mapped by mlocked vmas, all we do
115 * is revert to lazy LRU behaviour -- semantics are not broken.
 
116 */
117extern void __clear_page_mlock(struct page *page);
118static inline void clear_page_mlock(struct page *page)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
119{
120	if (unlikely(TestClearPageMlocked(page)))
121		__clear_page_mlock(page);
122}
123
124/*
125 * mlock_migrate_page - called only from migrate_page_copy() to
126 * migrate the Mlocked page flag; update statistics.
127 */
128static inline void mlock_migrate_page(struct page *newpage, struct page *page)
 
 
 
 
129{
130	if (TestClearPageMlocked(page)) {
131		unsigned long flags;
132
133		local_irq_save(flags);
134		__dec_zone_page_state(page, NR_MLOCK);
135		SetPageMlocked(newpage);
136		__inc_zone_page_state(newpage, NR_MLOCK);
137		local_irq_restore(flags);
138	}
 
 
 
139}
140
141#ifdef CONFIG_TRANSPARENT_HUGEPAGE
142extern unsigned long vma_address(struct page *page,
143				 struct vm_area_struct *vma);
144#endif
145#else /* !CONFIG_MMU */
146static inline int is_mlocked_vma(struct vm_area_struct *v, struct page *p)
147{
148	return 0;
149}
150static inline void clear_page_mlock(struct page *page) { }
151static inline void mlock_vma_page(struct page *page) { }
152static inline void mlock_migrate_page(struct page *new, struct page *old) { }
153
154#endif /* !CONFIG_MMU */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
155
156/*
157 * Return the mem_map entry representing the 'offset' subpage within
158 * the maximally aligned gigantic page 'base'.  Handle any discontiguity
159 * in the mem_map at MAX_ORDER_NR_PAGES boundaries.
 
 
 
 
160 */
161static inline struct page *mem_map_offset(struct page *base, int offset)
 
 
162{
163	if (unlikely(offset >= MAX_ORDER_NR_PAGES))
164		return pfn_to_page(page_to_pfn(base) + offset);
165	return base + offset;
 
 
 
 
 
 
 
166}
167
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
168/*
169 * Iterator over all subpages within the maximally aligned gigantic
170 * page 'base'.  Handle any discontiguity in the mem_map.
171 */
172static inline struct page *mem_map_next(struct page *iter,
173						struct page *base, int offset)
 
174{
175	if (unlikely((offset & (MAX_ORDER_NR_PAGES - 1)) == 0)) {
176		unsigned long pfn = page_to_pfn(base) + offset;
177		if (!pfn_valid(pfn))
178			return NULL;
179		return pfn_to_page(pfn);
 
 
 
 
 
 
 
 
180	}
181	return iter + 1;
182}
183
184/*
185 * FLATMEM and DISCONTIGMEM configurations use alloc_bootmem_node,
186 * so all functions starting at paging_init should be marked __init
187 * in those cases. SPARSEMEM, however, allows for memory hotplug,
188 * and alloc_bootmem_node is not used.
189 */
190#ifdef CONFIG_SPARSEMEM
191#define __paginginit __meminit
192#else
193#define __paginginit __init
194#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
195
196/* Memory initialisation debug and verification */
 
 
 
 
 
 
197enum mminit_level {
198	MMINIT_WARNING,
199	MMINIT_VERIFY,
200	MMINIT_TRACE
201};
202
203#ifdef CONFIG_DEBUG_MEMORY_INIT
204
205extern int mminit_loglevel;
206
207#define mminit_dprintk(level, prefix, fmt, arg...) \
208do { \
209	if (level < mminit_loglevel) { \
210		printk(level <= MMINIT_WARNING ? KERN_WARNING : KERN_DEBUG); \
211		printk(KERN_CONT "mminit::" prefix " " fmt, ##arg); \
 
 
212	} \
213} while (0)
214
215extern void mminit_verify_pageflags_layout(void);
216extern void mminit_verify_page_links(struct page *page,
217		enum zone_type zone, unsigned long nid, unsigned long pfn);
218extern void mminit_verify_zonelist(void);
219
220#else
221
222static inline void mminit_dprintk(enum mminit_level level,
223				const char *prefix, const char *fmt, ...)
224{
225}
226
227static inline void mminit_verify_pageflags_layout(void)
228{
229}
230
231static inline void mminit_verify_page_links(struct page *page,
232		enum zone_type zone, unsigned long nid, unsigned long pfn)
233{
234}
235
236static inline void mminit_verify_zonelist(void)
237{
238}
239#endif /* CONFIG_DEBUG_MEMORY_INIT */
240
241/* mminit_validate_memmodel_limits is independent of CONFIG_DEBUG_MEMORY_INIT */
242#if defined(CONFIG_SPARSEMEM)
243extern void mminit_validate_memmodel_limits(unsigned long *start_pfn,
244				unsigned long *end_pfn);
 
 
 
 
245#else
246static inline void mminit_validate_memmodel_limits(unsigned long *start_pfn,
247				unsigned long *end_pfn)
248{
 
 
 
 
 
249}
250#endif /* CONFIG_SPARSEMEM */
251
252#define ZONE_RECLAIM_NOSCAN	-2
253#define ZONE_RECLAIM_FULL	-1
254#define ZONE_RECLAIM_SOME	0
255#define ZONE_RECLAIM_SUCCESS	1
256#endif
257
 
 
 
258extern int hwpoison_filter(struct page *p);
259
260extern u32 hwpoison_filter_dev_major;
261extern u32 hwpoison_filter_dev_minor;
262extern u64 hwpoison_filter_flags_mask;
263extern u64 hwpoison_filter_flags_value;
264extern u64 hwpoison_filter_memcg;
265extern u32 hwpoison_filter_enable;
v6.9.4
   1/* SPDX-License-Identifier: GPL-2.0-or-later */
   2/* internal.h: mm/ internal definitions
   3 *
   4 * Copyright (C) 2004 Red Hat, Inc. All Rights Reserved.
   5 * Written by David Howells (dhowells@redhat.com)
 
 
 
 
 
   6 */
   7#ifndef __MM_INTERNAL_H
   8#define __MM_INTERNAL_H
   9
  10#include <linux/fs.h>
  11#include <linux/mm.h>
  12#include <linux/pagemap.h>
  13#include <linux/rmap.h>
  14#include <linux/tracepoint-defs.h>
  15
  16struct folio_batch;
  17
  18/*
  19 * The set of flags that only affect watermark checking and reclaim
  20 * behaviour. This is used by the MM to obey the caller constraints
  21 * about IO, FS and watermark checking while ignoring placement
  22 * hints such as HIGHMEM usage.
  23 */
  24#define GFP_RECLAIM_MASK (__GFP_RECLAIM|__GFP_HIGH|__GFP_IO|__GFP_FS|\
  25			__GFP_NOWARN|__GFP_RETRY_MAYFAIL|__GFP_NOFAIL|\
  26			__GFP_NORETRY|__GFP_MEMALLOC|__GFP_NOMEMALLOC|\
  27			__GFP_NOLOCKDEP)
  28
  29/* The GFP flags allowed during early boot */
  30#define GFP_BOOT_MASK (__GFP_BITS_MASK & ~(__GFP_RECLAIM|__GFP_IO|__GFP_FS))
  31
  32/* Control allocation cpuset and node placement constraints */
  33#define GFP_CONSTRAINT_MASK (__GFP_HARDWALL|__GFP_THISNODE)
  34
  35/* Do not use these with a slab allocator */
  36#define GFP_SLAB_BUG_MASK (__GFP_DMA32|__GFP_HIGHMEM|~__GFP_BITS_MASK)
  37
  38/*
  39 * Different from WARN_ON_ONCE(), no warning will be issued
  40 * when we specify __GFP_NOWARN.
  41 */
  42#define WARN_ON_ONCE_GFP(cond, gfp)	({				\
  43	static bool __section(".data.once") __warned;			\
  44	int __ret_warn_once = !!(cond);					\
  45									\
  46	if (unlikely(!(gfp & __GFP_NOWARN) && __ret_warn_once && !__warned)) { \
  47		__warned = true;					\
  48		WARN_ON(1);						\
  49	}								\
  50	unlikely(__ret_warn_once);					\
  51})
  52
  53void page_writeback_init(void);
  54
  55/*
  56 * If a 16GB hugetlb folio were mapped by PTEs of all of its 4kB pages,
  57 * its nr_pages_mapped would be 0x400000: choose the ENTIRELY_MAPPED bit
  58 * above that range, instead of 2*(PMD_SIZE/PAGE_SIZE).  Hugetlb currently
  59 * leaves nr_pages_mapped at 0, but avoid surprise if it participates later.
  60 */
  61#define ENTIRELY_MAPPED		0x800000
  62#define FOLIO_PAGES_MAPPED	(ENTIRELY_MAPPED - 1)
  63
  64/*
  65 * Flags passed to __show_mem() and show_free_areas() to suppress output in
  66 * various contexts.
  67 */
  68#define SHOW_MEM_FILTER_NODES		(0x0001u)	/* disallowed nodes */
  69
  70/*
  71 * How many individual pages have an elevated _mapcount.  Excludes
  72 * the folio's entire_mapcount.
  73 */
  74static inline int folio_nr_pages_mapped(struct folio *folio)
  75{
  76	return atomic_read(&folio->_nr_pages_mapped) & FOLIO_PAGES_MAPPED;
  77}
  78
  79static inline void *folio_raw_mapping(struct folio *folio)
  80{
  81	unsigned long mapping = (unsigned long)folio->mapping;
  82
  83	return (void *)(mapping & ~PAGE_MAPPING_FLAGS);
  84}
  85
  86#ifdef CONFIG_MMU
  87
  88/* Flags for folio_pte_batch(). */
  89typedef int __bitwise fpb_t;
  90
  91/* Compare PTEs after pte_mkclean(), ignoring the dirty bit. */
  92#define FPB_IGNORE_DIRTY		((__force fpb_t)BIT(0))
  93
  94/* Compare PTEs after pte_clear_soft_dirty(), ignoring the soft-dirty bit. */
  95#define FPB_IGNORE_SOFT_DIRTY		((__force fpb_t)BIT(1))
  96
  97static inline pte_t __pte_batch_clear_ignored(pte_t pte, fpb_t flags)
  98{
  99	if (flags & FPB_IGNORE_DIRTY)
 100		pte = pte_mkclean(pte);
 101	if (likely(flags & FPB_IGNORE_SOFT_DIRTY))
 102		pte = pte_clear_soft_dirty(pte);
 103	return pte_wrprotect(pte_mkold(pte));
 104}
 105
 106/**
 107 * folio_pte_batch - detect a PTE batch for a large folio
 108 * @folio: The large folio to detect a PTE batch for.
 109 * @addr: The user virtual address the first page is mapped at.
 110 * @start_ptep: Page table pointer for the first entry.
 111 * @pte: Page table entry for the first page.
 112 * @max_nr: The maximum number of table entries to consider.
 113 * @flags: Flags to modify the PTE batch semantics.
 114 * @any_writable: Optional pointer to indicate whether any entry except the
 115 *		  first one is writable.
 116 *
 117 * Detect a PTE batch: consecutive (present) PTEs that map consecutive
 118 * pages of the same large folio.
 119 *
 120 * All PTEs inside a PTE batch have the same PTE bits set, excluding the PFN,
 121 * the accessed bit, writable bit, dirty bit (with FPB_IGNORE_DIRTY) and
 122 * soft-dirty bit (with FPB_IGNORE_SOFT_DIRTY).
 123 *
 124 * start_ptep must map any page of the folio. max_nr must be at least one and
 125 * must be limited by the caller so scanning cannot exceed a single page table.
 126 *
 127 * Return: the number of table entries in the batch.
 128 */
 129static inline int folio_pte_batch(struct folio *folio, unsigned long addr,
 130		pte_t *start_ptep, pte_t pte, int max_nr, fpb_t flags,
 131		bool *any_writable)
 132{
 133	unsigned long folio_end_pfn = folio_pfn(folio) + folio_nr_pages(folio);
 134	const pte_t *end_ptep = start_ptep + max_nr;
 135	pte_t expected_pte, *ptep;
 136	bool writable;
 137	int nr;
 138
 139	if (any_writable)
 140		*any_writable = false;
 141
 142	VM_WARN_ON_FOLIO(!pte_present(pte), folio);
 143	VM_WARN_ON_FOLIO(!folio_test_large(folio) || max_nr < 1, folio);
 144	VM_WARN_ON_FOLIO(page_folio(pfn_to_page(pte_pfn(pte))) != folio, folio);
 145
 146	nr = pte_batch_hint(start_ptep, pte);
 147	expected_pte = __pte_batch_clear_ignored(pte_advance_pfn(pte, nr), flags);
 148	ptep = start_ptep + nr;
 149
 150	while (ptep < end_ptep) {
 151		pte = ptep_get(ptep);
 152		if (any_writable)
 153			writable = !!pte_write(pte);
 154		pte = __pte_batch_clear_ignored(pte, flags);
 155
 156		if (!pte_same(pte, expected_pte))
 157			break;
 158
 159		/*
 160		 * Stop immediately once we reached the end of the folio. In
 161		 * corner cases the next PFN might fall into a different
 162		 * folio.
 163		 */
 164		if (pte_pfn(pte) >= folio_end_pfn)
 165			break;
 166
 167		if (any_writable)
 168			*any_writable |= writable;
 169
 170		nr = pte_batch_hint(ptep, pte);
 171		expected_pte = pte_advance_pfn(expected_pte, nr);
 172		ptep += nr;
 173	}
 174
 175	return min(ptep - start_ptep, max_nr);
 176}
 177#endif /* CONFIG_MMU */
 178
 179void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio,
 180						int nr_throttled);
 181static inline void acct_reclaim_writeback(struct folio *folio)
 182{
 183	pg_data_t *pgdat = folio_pgdat(folio);
 184	int nr_throttled = atomic_read(&pgdat->nr_writeback_throttled);
 185
 186	if (nr_throttled)
 187		__acct_reclaim_writeback(pgdat, folio, nr_throttled);
 188}
 189
 190static inline void wake_throttle_isolated(pg_data_t *pgdat)
 191{
 192	wait_queue_head_t *wqh;
 193
 194	wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_ISOLATED];
 195	if (waitqueue_active(wqh))
 196		wake_up(wqh);
 197}
 198
 199vm_fault_t vmf_anon_prepare(struct vm_fault *vmf);
 200vm_fault_t do_swap_page(struct vm_fault *vmf);
 201void folio_rotate_reclaimable(struct folio *folio);
 202bool __folio_end_writeback(struct folio *folio);
 203void deactivate_file_folio(struct folio *folio);
 204void folio_activate(struct folio *folio);
 205
 206void free_pgtables(struct mmu_gather *tlb, struct ma_state *mas,
 207		   struct vm_area_struct *start_vma, unsigned long floor,
 208		   unsigned long ceiling, bool mm_wr_locked);
 209void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte);
 210
 211struct zap_details;
 212void unmap_page_range(struct mmu_gather *tlb,
 213			     struct vm_area_struct *vma,
 214			     unsigned long addr, unsigned long end,
 215			     struct zap_details *details);
 216
 217void page_cache_ra_order(struct readahead_control *, struct file_ra_state *,
 218		unsigned int order);
 219void force_page_cache_ra(struct readahead_control *, unsigned long nr);
 220static inline void force_page_cache_readahead(struct address_space *mapping,
 221		struct file *file, pgoff_t index, unsigned long nr_to_read)
 222{
 223	DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, index);
 224	force_page_cache_ra(&ractl, nr_to_read);
 225}
 226
 227unsigned find_lock_entries(struct address_space *mapping, pgoff_t *start,
 228		pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices);
 229unsigned find_get_entries(struct address_space *mapping, pgoff_t *start,
 230		pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices);
 231void filemap_free_folio(struct address_space *mapping, struct folio *folio);
 232int truncate_inode_folio(struct address_space *mapping, struct folio *folio);
 233bool truncate_inode_partial_folio(struct folio *folio, loff_t start,
 234		loff_t end);
 235long mapping_evict_folio(struct address_space *mapping, struct folio *folio);
 236unsigned long mapping_try_invalidate(struct address_space *mapping,
 237		pgoff_t start, pgoff_t end, unsigned long *nr_failed);
 238
 239/**
 240 * folio_evictable - Test whether a folio is evictable.
 241 * @folio: The folio to test.
 242 *
 243 * Test whether @folio is evictable -- i.e., should be placed on
 244 * active/inactive lists vs unevictable list.
 245 *
 246 * Reasons folio might not be evictable:
 247 * 1. folio's mapping marked unevictable
 248 * 2. One of the pages in the folio is part of an mlocked VMA
 249 */
 250static inline bool folio_evictable(struct folio *folio)
 251{
 252	bool ret;
 253
 254	/* Prevent address_space of inode and swap cache from being freed */
 255	rcu_read_lock();
 256	ret = !mapping_unevictable(folio_mapping(folio)) &&
 257			!folio_test_mlocked(folio);
 258	rcu_read_unlock();
 259	return ret;
 260}
 261
 262/*
 263 * Turn a non-refcounted page (->_refcount == 0) into refcounted with
 264 * a count of one.
 265 */
 266static inline void set_page_refcounted(struct page *page)
 267{
 268	VM_BUG_ON_PAGE(PageTail(page), page);
 269	VM_BUG_ON_PAGE(page_ref_count(page), page);
 270	set_page_count(page, 1);
 271}
 272
 273/*
 274 * Return true if a folio needs ->release_folio() calling upon it.
 275 */
 276static inline bool folio_needs_release(struct folio *folio)
 277{
 278	struct address_space *mapping = folio_mapping(folio);
 279
 280	return folio_has_private(folio) ||
 281		(mapping && mapping_release_always(mapping));
 282}
 283
 284extern unsigned long highest_memmap_pfn;
 285
 286/*
 287 * Maximum number of reclaim retries without progress before the OOM
 288 * killer is consider the only way forward.
 289 */
 290#define MAX_RECLAIM_RETRIES 16
 291
 292/*
 293 * in mm/vmscan.c:
 294 */
 295bool isolate_lru_page(struct page *page);
 296bool folio_isolate_lru(struct folio *folio);
 297void putback_lru_page(struct page *page);
 298void folio_putback_lru(struct folio *folio);
 299extern void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason);
 300
 301/*
 302 * in mm/rmap.c:
 303 */
 304pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address);
 305
 306/*
 307 * in mm/page_alloc.c
 308 */
 309#define K(x) ((x) << (PAGE_SHIFT-10))
 310
 311extern char * const zone_names[MAX_NR_ZONES];
 312
 313/* perform sanity checks on struct pages being allocated or freed */
 314DECLARE_STATIC_KEY_MAYBE(CONFIG_DEBUG_VM, check_pages_enabled);
 315
 316extern int min_free_kbytes;
 317
 318void setup_per_zone_wmarks(void);
 319void calculate_min_free_kbytes(void);
 320int __meminit init_per_zone_wmark_min(void);
 321void page_alloc_sysctl_init(void);
 322
 323/*
 324 * Structure for holding the mostly immutable allocation parameters passed
 325 * between functions involved in allocations, including the alloc_pages*
 326 * family of functions.
 327 *
 328 * nodemask, migratetype and highest_zoneidx are initialized only once in
 329 * __alloc_pages() and then never change.
 330 *
 331 * zonelist, preferred_zone and highest_zoneidx are set first in
 332 * __alloc_pages() for the fast path, and might be later changed
 333 * in __alloc_pages_slowpath(). All other functions pass the whole structure
 334 * by a const pointer.
 335 */
 336struct alloc_context {
 337	struct zonelist *zonelist;
 338	nodemask_t *nodemask;
 339	struct zoneref *preferred_zoneref;
 340	int migratetype;
 341
 342	/*
 343	 * highest_zoneidx represents highest usable zone index of
 344	 * the allocation request. Due to the nature of the zone,
 345	 * memory on lower zone than the highest_zoneidx will be
 346	 * protected by lowmem_reserve[highest_zoneidx].
 347	 *
 348	 * highest_zoneidx is also used by reclaim/compaction to limit
 349	 * the target zone since higher zone than this index cannot be
 350	 * usable for this allocation request.
 351	 */
 352	enum zone_type highest_zoneidx;
 353	bool spread_dirty_pages;
 354};
 355
 356/*
 357 * This function returns the order of a free page in the buddy system. In
 358 * general, page_zone(page)->lock must be held by the caller to prevent the
 359 * page from being allocated in parallel and returning garbage as the order.
 360 * If a caller does not hold page_zone(page)->lock, it must guarantee that the
 361 * page cannot be allocated or merged in parallel. Alternatively, it must
 362 * handle invalid values gracefully, and use buddy_order_unsafe() below.
 363 */
 364static inline unsigned int buddy_order(struct page *page)
 365{
 366	/* PageBuddy() must be checked by the caller */
 367	return page_private(page);
 368}
 369
 370/*
 371 * Like buddy_order(), but for callers who cannot afford to hold the zone lock.
 372 * PageBuddy() should be checked first by the caller to minimize race window,
 373 * and invalid values must be handled gracefully.
 374 *
 375 * READ_ONCE is used so that if the caller assigns the result into a local
 376 * variable and e.g. tests it for valid range before using, the compiler cannot
 377 * decide to remove the variable and inline the page_private(page) multiple
 378 * times, potentially observing different values in the tests and the actual
 379 * use of the result.
 380 */
 381#define buddy_order_unsafe(page)	READ_ONCE(page_private(page))
 382
 383/*
 384 * This function checks whether a page is free && is the buddy
 385 * we can coalesce a page and its buddy if
 386 * (a) the buddy is not in a hole (check before calling!) &&
 387 * (b) the buddy is in the buddy system &&
 388 * (c) a page and its buddy have the same order &&
 389 * (d) a page and its buddy are in the same zone.
 390 *
 391 * For recording whether a page is in the buddy system, we set PageBuddy.
 392 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
 393 *
 394 * For recording page's order, we use page_private(page).
 395 */
 396static inline bool page_is_buddy(struct page *page, struct page *buddy,
 397				 unsigned int order)
 398{
 399	if (!page_is_guard(buddy) && !PageBuddy(buddy))
 400		return false;
 401
 402	if (buddy_order(buddy) != order)
 403		return false;
 404
 405	/*
 406	 * zone check is done late to avoid uselessly calculating
 407	 * zone/node ids for pages that could never merge.
 408	 */
 409	if (page_zone_id(page) != page_zone_id(buddy))
 410		return false;
 411
 412	VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
 413
 414	return true;
 415}
 416
 417/*
 418 * Locate the struct page for both the matching buddy in our
 419 * pair (buddy1) and the combined O(n+1) page they form (page).
 420 *
 421 * 1) Any buddy B1 will have an order O twin B2 which satisfies
 422 * the following equation:
 423 *     B2 = B1 ^ (1 << O)
 424 * For example, if the starting buddy (buddy2) is #8 its order
 425 * 1 buddy is #10:
 426 *     B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
 427 *
 428 * 2) Any buddy B will have an order O+1 parent P which
 429 * satisfies the following equation:
 430 *     P = B & ~(1 << O)
 431 *
 432 * Assumption: *_mem_map is contiguous at least up to MAX_PAGE_ORDER
 433 */
 434static inline unsigned long
 435__find_buddy_pfn(unsigned long page_pfn, unsigned int order)
 436{
 437	return page_pfn ^ (1 << order);
 438}
 439
 440/*
 441 * Find the buddy of @page and validate it.
 442 * @page: The input page
 443 * @pfn: The pfn of the page, it saves a call to page_to_pfn() when the
 444 *       function is used in the performance-critical __free_one_page().
 445 * @order: The order of the page
 446 * @buddy_pfn: The output pointer to the buddy pfn, it also saves a call to
 447 *             page_to_pfn().
 448 *
 449 * The found buddy can be a non PageBuddy, out of @page's zone, or its order is
 450 * not the same as @page. The validation is necessary before use it.
 451 *
 452 * Return: the found buddy page or NULL if not found.
 453 */
 454static inline struct page *find_buddy_page_pfn(struct page *page,
 455			unsigned long pfn, unsigned int order, unsigned long *buddy_pfn)
 456{
 457	unsigned long __buddy_pfn = __find_buddy_pfn(pfn, order);
 458	struct page *buddy;
 459
 460	buddy = page + (__buddy_pfn - pfn);
 461	if (buddy_pfn)
 462		*buddy_pfn = __buddy_pfn;
 463
 464	if (page_is_buddy(page, buddy, order))
 465		return buddy;
 466	return NULL;
 467}
 468
 469extern struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
 470				unsigned long end_pfn, struct zone *zone);
 471
 472static inline struct page *pageblock_pfn_to_page(unsigned long start_pfn,
 473				unsigned long end_pfn, struct zone *zone)
 474{
 475	if (zone->contiguous)
 476		return pfn_to_page(start_pfn);
 477
 478	return __pageblock_pfn_to_page(start_pfn, end_pfn, zone);
 479}
 480
 481void set_zone_contiguous(struct zone *zone);
 482
 483static inline void clear_zone_contiguous(struct zone *zone)
 484{
 485	zone->contiguous = false;
 486}
 487
 488extern int __isolate_free_page(struct page *page, unsigned int order);
 489extern void __putback_isolated_page(struct page *page, unsigned int order,
 490				    int mt);
 491extern void memblock_free_pages(struct page *page, unsigned long pfn,
 492					unsigned int order);
 493extern void __free_pages_core(struct page *page, unsigned int order);
 494
 495/*
 496 * This will have no effect, other than possibly generating a warning, if the
 497 * caller passes in a non-large folio.
 498 */
 499static inline void folio_set_order(struct folio *folio, unsigned int order)
 500{
 501	if (WARN_ON_ONCE(!order || !folio_test_large(folio)))
 502		return;
 503
 504	folio->_flags_1 = (folio->_flags_1 & ~0xffUL) | order;
 505#ifdef CONFIG_64BIT
 506	folio->_folio_nr_pages = 1U << order;
 507#endif
 508}
 509
 510void folio_undo_large_rmappable(struct folio *folio);
 511
 512static inline struct folio *page_rmappable_folio(struct page *page)
 513{
 514	struct folio *folio = (struct folio *)page;
 515
 516	folio_prep_large_rmappable(folio);
 517	return folio;
 518}
 519
 520static inline void prep_compound_head(struct page *page, unsigned int order)
 521{
 522	struct folio *folio = (struct folio *)page;
 523
 524	folio_set_order(folio, order);
 525	atomic_set(&folio->_entire_mapcount, -1);
 526	atomic_set(&folio->_nr_pages_mapped, 0);
 527	atomic_set(&folio->_pincount, 0);
 528}
 529
 530static inline void prep_compound_tail(struct page *head, int tail_idx)
 531{
 532	struct page *p = head + tail_idx;
 533
 534	p->mapping = TAIL_MAPPING;
 535	set_compound_head(p, head);
 536	set_page_private(p, 0);
 537}
 538
 539extern void prep_compound_page(struct page *page, unsigned int order);
 540
 541extern void post_alloc_hook(struct page *page, unsigned int order,
 542					gfp_t gfp_flags);
 543extern bool free_pages_prepare(struct page *page, unsigned int order);
 544
 545extern int user_min_free_kbytes;
 546
 547void free_unref_page(struct page *page, unsigned int order);
 548void free_unref_folios(struct folio_batch *fbatch);
 549
 550extern void zone_pcp_reset(struct zone *zone);
 551extern void zone_pcp_disable(struct zone *zone);
 552extern void zone_pcp_enable(struct zone *zone);
 553extern void zone_pcp_init(struct zone *zone);
 554
 555extern void *memmap_alloc(phys_addr_t size, phys_addr_t align,
 556			  phys_addr_t min_addr,
 557			  int nid, bool exact_nid);
 558
 559void memmap_init_range(unsigned long, int, unsigned long, unsigned long,
 560		unsigned long, enum meminit_context, struct vmem_altmap *, int);
 561
 562
 563int split_free_page(struct page *free_page,
 564			unsigned int order, unsigned long split_pfn_offset);
 565
 566#if defined CONFIG_COMPACTION || defined CONFIG_CMA
 567
 568/*
 569 * in mm/compaction.c
 570 */
 571/*
 572 * compact_control is used to track pages being migrated and the free pages
 573 * they are being migrated to during memory compaction. The free_pfn starts
 574 * at the end of a zone and migrate_pfn begins at the start. Movable pages
 575 * are moved to the end of a zone during a compaction run and the run
 576 * completes when free_pfn <= migrate_pfn
 577 */
 578struct compact_control {
 579	struct list_head freepages[NR_PAGE_ORDERS];	/* List of free pages to migrate to */
 580	struct list_head migratepages;	/* List of pages being migrated */
 581	unsigned int nr_freepages;	/* Number of isolated free pages */
 582	unsigned int nr_migratepages;	/* Number of pages to migrate */
 583	unsigned long free_pfn;		/* isolate_freepages search base */
 584	/*
 585	 * Acts as an in/out parameter to page isolation for migration.
 586	 * isolate_migratepages uses it as a search base.
 587	 * isolate_migratepages_block will update the value to the next pfn
 588	 * after the last isolated one.
 589	 */
 590	unsigned long migrate_pfn;
 591	unsigned long fast_start_pfn;	/* a pfn to start linear scan from */
 592	struct zone *zone;
 593	unsigned long total_migrate_scanned;
 594	unsigned long total_free_scanned;
 595	unsigned short fast_search_fail;/* failures to use free list searches */
 596	short search_order;		/* order to start a fast search at */
 597	const gfp_t gfp_mask;		/* gfp mask of a direct compactor */
 598	int order;			/* order a direct compactor needs */
 599	int migratetype;		/* migratetype of direct compactor */
 600	const unsigned int alloc_flags;	/* alloc flags of a direct compactor */
 601	const int highest_zoneidx;	/* zone index of a direct compactor */
 602	enum migrate_mode mode;		/* Async or sync migration mode */
 603	bool ignore_skip_hint;		/* Scan blocks even if marked skip */
 604	bool no_set_skip_hint;		/* Don't mark blocks for skipping */
 605	bool ignore_block_suitable;	/* Scan blocks considered unsuitable */
 606	bool direct_compaction;		/* False from kcompactd or /proc/... */
 607	bool proactive_compaction;	/* kcompactd proactive compaction */
 608	bool whole_zone;		/* Whole zone should/has been scanned */
 609	bool contended;			/* Signal lock contention */
 610	bool finish_pageblock;		/* Scan the remainder of a pageblock. Used
 611					 * when there are potentially transient
 612					 * isolation or migration failures to
 613					 * ensure forward progress.
 614					 */
 615	bool alloc_contig;		/* alloc_contig_range allocation */
 616};
 617
 618/*
 619 * Used in direct compaction when a page should be taken from the freelists
 620 * immediately when one is created during the free path.
 621 */
 622struct capture_control {
 623	struct compact_control *cc;
 624	struct page *page;
 625};
 626
 627unsigned long
 628isolate_freepages_range(struct compact_control *cc,
 629			unsigned long start_pfn, unsigned long end_pfn);
 630int
 631isolate_migratepages_range(struct compact_control *cc,
 632			   unsigned long low_pfn, unsigned long end_pfn);
 633
 634int __alloc_contig_migrate_range(struct compact_control *cc,
 635					unsigned long start, unsigned long end,
 636					int migratetype);
 637
 638/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
 639void init_cma_reserved_pageblock(struct page *page);
 640
 641#endif /* CONFIG_COMPACTION || CONFIG_CMA */
 642
 643int find_suitable_fallback(struct free_area *area, unsigned int order,
 644			int migratetype, bool only_stealable, bool *can_steal);
 645
 646static inline bool free_area_empty(struct free_area *area, int migratetype)
 647{
 648	return list_empty(&area->free_list[migratetype]);
 
 649}
 650
 651/*
 652 * These three helpers classifies VMAs for virtual memory accounting.
 
 653 */
 654
 655/*
 656 * Executable code area - executable, not writable, not stack
 657 */
 658static inline bool is_exec_mapping(vm_flags_t flags)
 659{
 660	return (flags & (VM_EXEC | VM_WRITE | VM_STACK)) == VM_EXEC;
 661}
 662
 663/*
 664 * Stack area (including shadow stacks)
 665 *
 666 * VM_GROWSUP / VM_GROWSDOWN VMAs are always private anonymous:
 667 * do_mmap() forbids all other combinations.
 668 */
 669static inline bool is_stack_mapping(vm_flags_t flags)
 670{
 671	return ((flags & VM_STACK) == VM_STACK) || (flags & VM_SHADOW_STACK);
 672}
 673
 674/*
 675 * Data area - private, writable, not stack
 676 */
 677static inline bool is_data_mapping(vm_flags_t flags)
 
 
 678{
 679	return (flags & (VM_WRITE | VM_SHARED | VM_STACK)) == VM_WRITE;
 680}
 
 
 
 681
 682/* mm/util.c */
 683struct anon_vma *folio_anon_vma(struct folio *folio);
 684
 685#ifdef CONFIG_MMU
 686void unmap_mapping_folio(struct folio *folio);
 687extern long populate_vma_page_range(struct vm_area_struct *vma,
 688		unsigned long start, unsigned long end, int *locked);
 689extern long faultin_page_range(struct mm_struct *mm, unsigned long start,
 690		unsigned long end, bool write, int *locked);
 691extern bool mlock_future_ok(struct mm_struct *mm, unsigned long flags,
 692			       unsigned long bytes);
 693
 694/*
 695 * NOTE: This function can't tell whether the folio is "fully mapped" in the
 696 * range.
 697 * "fully mapped" means all the pages of folio is associated with the page
 698 * table of range while this function just check whether the folio range is
 699 * within the range [start, end). Function caller needs to do page table
 700 * check if it cares about the page table association.
 701 *
 702 * Typical usage (like mlock or madvise) is:
 703 * Caller knows at least 1 page of folio is associated with page table of VMA
 704 * and the range [start, end) is intersect with the VMA range. Caller wants
 705 * to know whether the folio is fully associated with the range. It calls
 706 * this function to check whether the folio is in the range first. Then checks
 707 * the page table to know whether the folio is fully mapped to the range.
 708 */
 709static inline bool
 710folio_within_range(struct folio *folio, struct vm_area_struct *vma,
 711		unsigned long start, unsigned long end)
 712{
 713	pgoff_t pgoff, addr;
 714	unsigned long vma_pglen = vma_pages(vma);
 715
 716	VM_WARN_ON_FOLIO(folio_test_ksm(folio), folio);
 717	if (start > end)
 718		return false;
 719
 720	if (start < vma->vm_start)
 721		start = vma->vm_start;
 722
 723	if (end > vma->vm_end)
 724		end = vma->vm_end;
 725
 726	pgoff = folio_pgoff(folio);
 727
 728	/* if folio start address is not in vma range */
 729	if (!in_range(pgoff, vma->vm_pgoff, vma_pglen))
 730		return false;
 731
 732	addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
 733
 734	return !(addr < start || end - addr < folio_size(folio));
 735}
 736
 737static inline bool
 738folio_within_vma(struct folio *folio, struct vm_area_struct *vma)
 739{
 740	return folio_within_range(folio, vma, vma->vm_start, vma->vm_end);
 741}
 742
 743/*
 744 * mlock_vma_folio() and munlock_vma_folio():
 745 * should be called with vma's mmap_lock held for read or write,
 746 * under page table lock for the pte/pmd being added or removed.
 747 *
 748 * mlock is usually called at the end of folio_add_*_rmap_*(), munlock at
 749 * the end of folio_remove_rmap_*(); but new anon folios are managed by
 750 * folio_add_lru_vma() calling mlock_new_folio().
 751 */
 752void mlock_folio(struct folio *folio);
 753static inline void mlock_vma_folio(struct folio *folio,
 754				struct vm_area_struct *vma)
 755{
 756	/*
 757	 * The VM_SPECIAL check here serves two purposes.
 758	 * 1) VM_IO check prevents migration from double-counting during mlock.
 759	 * 2) Although mmap_region() and mlock_fixup() take care that VM_LOCKED
 760	 *    is never left set on a VM_SPECIAL vma, there is an interval while
 761	 *    file->f_op->mmap() is using vm_insert_page(s), when VM_LOCKED may
 762	 *    still be set while VM_SPECIAL bits are added: so ignore it then.
 763	 */
 764	if (unlikely((vma->vm_flags & (VM_LOCKED|VM_SPECIAL)) == VM_LOCKED))
 765		mlock_folio(folio);
 766}
 767
 768void munlock_folio(struct folio *folio);
 769static inline void munlock_vma_folio(struct folio *folio,
 770					struct vm_area_struct *vma)
 771{
 772	/*
 773	 * munlock if the function is called. Ideally, we should only
 774	 * do munlock if any page of folio is unmapped from VMA and
 775	 * cause folio not fully mapped to VMA.
 776	 *
 777	 * But it's not easy to confirm that's the situation. So we
 778	 * always munlock the folio and page reclaim will correct it
 779	 * if it's wrong.
 780	 */
 781	if (unlikely(vma->vm_flags & VM_LOCKED))
 782		munlock_folio(folio);
 783}
 784
 785void mlock_new_folio(struct folio *folio);
 786bool need_mlock_drain(int cpu);
 787void mlock_drain_local(void);
 788void mlock_drain_remote(int cpu);
 789
 790extern pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma);
 791
 792/*
 793 * Return the start of user virtual address at the specific offset within
 794 * a vma.
 795 */
 796static inline unsigned long
 797vma_pgoff_address(pgoff_t pgoff, unsigned long nr_pages,
 798		  struct vm_area_struct *vma)
 799{
 800	unsigned long address;
 801
 802	if (pgoff >= vma->vm_pgoff) {
 803		address = vma->vm_start +
 804			((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
 805		/* Check for address beyond vma (or wrapped through 0?) */
 806		if (address < vma->vm_start || address >= vma->vm_end)
 807			address = -EFAULT;
 808	} else if (pgoff + nr_pages - 1 >= vma->vm_pgoff) {
 809		/* Test above avoids possibility of wrap to 0 on 32-bit */
 810		address = vma->vm_start;
 811	} else {
 812		address = -EFAULT;
 813	}
 814	return address;
 815}
 816
 817/*
 818 * Return the start of user virtual address of a page within a vma.
 819 * Returns -EFAULT if all of the page is outside the range of vma.
 820 * If page is a compound head, the entire compound page is considered.
 
 821 */
 822static inline unsigned long
 823vma_address(struct page *page, struct vm_area_struct *vma)
 824{
 825	VM_BUG_ON_PAGE(PageKsm(page), page);	/* KSM page->index unusable */
 826	return vma_pgoff_address(page_to_pgoff(page), compound_nr(page), vma);
 827}
 828
 829/*
 830 * Then at what user virtual address will none of the range be found in vma?
 831 * Assumes that vma_address() already returned a good starting address.
 832 */
 833static inline unsigned long vma_address_end(struct page_vma_mapped_walk *pvmw)
 834{
 835	struct vm_area_struct *vma = pvmw->vma;
 836	pgoff_t pgoff;
 837	unsigned long address;
 838
 839	/* Common case, plus ->pgoff is invalid for KSM */
 840	if (pvmw->nr_pages == 1)
 841		return pvmw->address + PAGE_SIZE;
 842
 843	pgoff = pvmw->pgoff + pvmw->nr_pages;
 844	address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
 845	/* Check for address beyond vma (or wrapped through 0?) */
 846	if (address < vma->vm_start || address > vma->vm_end)
 847		address = vma->vm_end;
 848	return address;
 849}
 850
 851static inline struct file *maybe_unlock_mmap_for_io(struct vm_fault *vmf,
 852						    struct file *fpin)
 853{
 854	int flags = vmf->flags;
 855
 856	if (fpin)
 857		return fpin;
 858
 859	/*
 860	 * FAULT_FLAG_RETRY_NOWAIT means we don't want to wait on page locks or
 861	 * anything, so we only pin the file and drop the mmap_lock if only
 862	 * FAULT_FLAG_ALLOW_RETRY is set, while this is the first attempt.
 863	 */
 864	if (fault_flag_allow_retry_first(flags) &&
 865	    !(flags & FAULT_FLAG_RETRY_NOWAIT)) {
 866		fpin = get_file(vmf->vma->vm_file);
 867		release_fault_lock(vmf);
 868	}
 869	return fpin;
 870}
 871#else /* !CONFIG_MMU */
 872static inline void unmap_mapping_folio(struct folio *folio) { }
 873static inline void mlock_new_folio(struct folio *folio) { }
 874static inline bool need_mlock_drain(int cpu) { return false; }
 875static inline void mlock_drain_local(void) { }
 876static inline void mlock_drain_remote(int cpu) { }
 877static inline void vunmap_range_noflush(unsigned long start, unsigned long end)
 878{
 879}
 880#endif /* !CONFIG_MMU */
 881
 882/* Memory initialisation debug and verification */
 883#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
 884DECLARE_STATIC_KEY_TRUE(deferred_pages);
 885
 886bool __init deferred_grow_zone(struct zone *zone, unsigned int order);
 887#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
 888
 889enum mminit_level {
 890	MMINIT_WARNING,
 891	MMINIT_VERIFY,
 892	MMINIT_TRACE
 893};
 894
 895#ifdef CONFIG_DEBUG_MEMORY_INIT
 896
 897extern int mminit_loglevel;
 898
 899#define mminit_dprintk(level, prefix, fmt, arg...) \
 900do { \
 901	if (level < mminit_loglevel) { \
 902		if (level <= MMINIT_WARNING) \
 903			pr_warn("mminit::" prefix " " fmt, ##arg);	\
 904		else \
 905			printk(KERN_DEBUG "mminit::" prefix " " fmt, ##arg); \
 906	} \
 907} while (0)
 908
 909extern void mminit_verify_pageflags_layout(void);
 
 
 910extern void mminit_verify_zonelist(void);
 
 911#else
 912
 913static inline void mminit_dprintk(enum mminit_level level,
 914				const char *prefix, const char *fmt, ...)
 915{
 916}
 917
 918static inline void mminit_verify_pageflags_layout(void)
 919{
 920}
 921
 
 
 
 
 
 922static inline void mminit_verify_zonelist(void)
 923{
 924}
 925#endif /* CONFIG_DEBUG_MEMORY_INIT */
 926
 927#define NODE_RECLAIM_NOSCAN	-2
 928#define NODE_RECLAIM_FULL	-1
 929#define NODE_RECLAIM_SOME	0
 930#define NODE_RECLAIM_SUCCESS	1
 931
 932#ifdef CONFIG_NUMA
 933extern int node_reclaim(struct pglist_data *, gfp_t, unsigned int);
 934extern int find_next_best_node(int node, nodemask_t *used_node_mask);
 935#else
 936static inline int node_reclaim(struct pglist_data *pgdat, gfp_t mask,
 937				unsigned int order)
 938{
 939	return NODE_RECLAIM_NOSCAN;
 940}
 941static inline int find_next_best_node(int node, nodemask_t *used_node_mask)
 942{
 943	return NUMA_NO_NODE;
 944}
 
 
 
 
 
 
 945#endif
 946
 947/*
 948 * mm/memory-failure.c
 949 */
 950extern int hwpoison_filter(struct page *p);
 951
 952extern u32 hwpoison_filter_dev_major;
 953extern u32 hwpoison_filter_dev_minor;
 954extern u64 hwpoison_filter_flags_mask;
 955extern u64 hwpoison_filter_flags_value;
 956extern u64 hwpoison_filter_memcg;
 957extern u32 hwpoison_filter_enable;
 958
 959extern unsigned long  __must_check vm_mmap_pgoff(struct file *, unsigned long,
 960        unsigned long, unsigned long,
 961        unsigned long, unsigned long);
 962
 963extern void set_pageblock_order(void);
 964unsigned long reclaim_pages(struct list_head *folio_list, bool ignore_references);
 965unsigned int reclaim_clean_pages_from_list(struct zone *zone,
 966					    struct list_head *folio_list);
 967/* The ALLOC_WMARK bits are used as an index to zone->watermark */
 968#define ALLOC_WMARK_MIN		WMARK_MIN
 969#define ALLOC_WMARK_LOW		WMARK_LOW
 970#define ALLOC_WMARK_HIGH	WMARK_HIGH
 971#define ALLOC_NO_WATERMARKS	0x04 /* don't check watermarks at all */
 972
 973/* Mask to get the watermark bits */
 974#define ALLOC_WMARK_MASK	(ALLOC_NO_WATERMARKS-1)
 975
 976/*
 977 * Only MMU archs have async oom victim reclaim - aka oom_reaper so we
 978 * cannot assume a reduced access to memory reserves is sufficient for
 979 * !MMU
 980 */
 981#ifdef CONFIG_MMU
 982#define ALLOC_OOM		0x08
 983#else
 984#define ALLOC_OOM		ALLOC_NO_WATERMARKS
 985#endif
 986
 987#define ALLOC_NON_BLOCK		 0x10 /* Caller cannot block. Allow access
 988				       * to 25% of the min watermark or
 989				       * 62.5% if __GFP_HIGH is set.
 990				       */
 991#define ALLOC_MIN_RESERVE	 0x20 /* __GFP_HIGH set. Allow access to 50%
 992				       * of the min watermark.
 993				       */
 994#define ALLOC_CPUSET		 0x40 /* check for correct cpuset */
 995#define ALLOC_CMA		 0x80 /* allow allocations from CMA areas */
 996#ifdef CONFIG_ZONE_DMA32
 997#define ALLOC_NOFRAGMENT	0x100 /* avoid mixing pageblock types */
 998#else
 999#define ALLOC_NOFRAGMENT	  0x0
1000#endif
1001#define ALLOC_HIGHATOMIC	0x200 /* Allows access to MIGRATE_HIGHATOMIC */
1002#define ALLOC_KSWAPD		0x800 /* allow waking of kswapd, __GFP_KSWAPD_RECLAIM set */
1003
1004/* Flags that allow allocations below the min watermark. */
1005#define ALLOC_RESERVES (ALLOC_NON_BLOCK|ALLOC_MIN_RESERVE|ALLOC_HIGHATOMIC|ALLOC_OOM)
1006
1007enum ttu_flags;
1008struct tlbflush_unmap_batch;
1009
1010
1011/*
1012 * only for MM internal work items which do not depend on
1013 * any allocations or locks which might depend on allocations
1014 */
1015extern struct workqueue_struct *mm_percpu_wq;
1016
1017#ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
1018void try_to_unmap_flush(void);
1019void try_to_unmap_flush_dirty(void);
1020void flush_tlb_batched_pending(struct mm_struct *mm);
1021#else
1022static inline void try_to_unmap_flush(void)
1023{
1024}
1025static inline void try_to_unmap_flush_dirty(void)
1026{
1027}
1028static inline void flush_tlb_batched_pending(struct mm_struct *mm)
1029{
1030}
1031#endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
1032
1033extern const struct trace_print_flags pageflag_names[];
1034extern const struct trace_print_flags pagetype_names[];
1035extern const struct trace_print_flags vmaflag_names[];
1036extern const struct trace_print_flags gfpflag_names[];
1037
1038static inline bool is_migrate_highatomic(enum migratetype migratetype)
1039{
1040	return migratetype == MIGRATE_HIGHATOMIC;
1041}
1042
1043static inline bool is_migrate_highatomic_page(struct page *page)
1044{
1045	return get_pageblock_migratetype(page) == MIGRATE_HIGHATOMIC;
1046}
1047
1048void setup_zone_pageset(struct zone *zone);
1049
1050struct migration_target_control {
1051	int nid;		/* preferred node id */
1052	nodemask_t *nmask;
1053	gfp_t gfp_mask;
1054};
1055
1056/*
1057 * mm/filemap.c
1058 */
1059size_t splice_folio_into_pipe(struct pipe_inode_info *pipe,
1060			      struct folio *folio, loff_t fpos, size_t size);
1061
1062/*
1063 * mm/vmalloc.c
1064 */
1065#ifdef CONFIG_MMU
1066void __init vmalloc_init(void);
1067int __must_check vmap_pages_range_noflush(unsigned long addr, unsigned long end,
1068                pgprot_t prot, struct page **pages, unsigned int page_shift);
1069#else
1070static inline void vmalloc_init(void)
1071{
1072}
1073
1074static inline
1075int __must_check vmap_pages_range_noflush(unsigned long addr, unsigned long end,
1076                pgprot_t prot, struct page **pages, unsigned int page_shift)
1077{
1078	return -EINVAL;
1079}
1080#endif
1081
1082int __must_check __vmap_pages_range_noflush(unsigned long addr,
1083			       unsigned long end, pgprot_t prot,
1084			       struct page **pages, unsigned int page_shift);
1085
1086void vunmap_range_noflush(unsigned long start, unsigned long end);
1087
1088void __vunmap_range_noflush(unsigned long start, unsigned long end);
1089
1090int numa_migrate_prep(struct folio *folio, struct vm_area_struct *vma,
1091		      unsigned long addr, int page_nid, int *flags);
1092
1093void free_zone_device_page(struct page *page);
1094int migrate_device_coherent_page(struct page *page);
1095
1096/*
1097 * mm/gup.c
1098 */
1099struct folio *try_grab_folio(struct page *page, int refs, unsigned int flags);
1100int __must_check try_grab_page(struct page *page, unsigned int flags);
1101
1102/*
1103 * mm/huge_memory.c
1104 */
1105struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1106				   unsigned long addr, pmd_t *pmd,
1107				   unsigned int flags);
1108
1109/*
1110 * mm/mmap.c
1111 */
1112struct vm_area_struct *vma_merge_extend(struct vma_iterator *vmi,
1113					struct vm_area_struct *vma,
1114					unsigned long delta);
1115
1116enum {
1117	/* mark page accessed */
1118	FOLL_TOUCH = 1 << 16,
1119	/* a retry, previous pass started an IO */
1120	FOLL_TRIED = 1 << 17,
1121	/* we are working on non-current tsk/mm */
1122	FOLL_REMOTE = 1 << 18,
1123	/* pages must be released via unpin_user_page */
1124	FOLL_PIN = 1 << 19,
1125	/* gup_fast: prevent fall-back to slow gup */
1126	FOLL_FAST_ONLY = 1 << 20,
1127	/* allow unlocking the mmap lock */
1128	FOLL_UNLOCKABLE = 1 << 21,
1129	/* VMA lookup+checks compatible with MADV_POPULATE_(READ|WRITE) */
1130	FOLL_MADV_POPULATE = 1 << 22,
1131};
1132
1133#define INTERNAL_GUP_FLAGS (FOLL_TOUCH | FOLL_TRIED | FOLL_REMOTE | FOLL_PIN | \
1134			    FOLL_FAST_ONLY | FOLL_UNLOCKABLE | \
1135			    FOLL_MADV_POPULATE)
1136
1137/*
1138 * Indicates for which pages that are write-protected in the page table,
1139 * whether GUP has to trigger unsharing via FAULT_FLAG_UNSHARE such that the
1140 * GUP pin will remain consistent with the pages mapped into the page tables
1141 * of the MM.
1142 *
1143 * Temporary unmapping of PageAnonExclusive() pages or clearing of
1144 * PageAnonExclusive() has to protect against concurrent GUP:
1145 * * Ordinary GUP: Using the PT lock
1146 * * GUP-fast and fork(): mm->write_protect_seq
1147 * * GUP-fast and KSM or temporary unmapping (swap, migration): see
1148 *    folio_try_share_anon_rmap_*()
1149 *
1150 * Must be called with the (sub)page that's actually referenced via the
1151 * page table entry, which might not necessarily be the head page for a
1152 * PTE-mapped THP.
1153 *
1154 * If the vma is NULL, we're coming from the GUP-fast path and might have
1155 * to fallback to the slow path just to lookup the vma.
1156 */
1157static inline bool gup_must_unshare(struct vm_area_struct *vma,
1158				    unsigned int flags, struct page *page)
1159{
1160	/*
1161	 * FOLL_WRITE is implicitly handled correctly as the page table entry
1162	 * has to be writable -- and if it references (part of) an anonymous
1163	 * folio, that part is required to be marked exclusive.
1164	 */
1165	if ((flags & (FOLL_WRITE | FOLL_PIN)) != FOLL_PIN)
1166		return false;
1167	/*
1168	 * Note: PageAnon(page) is stable until the page is actually getting
1169	 * freed.
1170	 */
1171	if (!PageAnon(page)) {
1172		/*
1173		 * We only care about R/O long-term pining: R/O short-term
1174		 * pinning does not have the semantics to observe successive
1175		 * changes through the process page tables.
1176		 */
1177		if (!(flags & FOLL_LONGTERM))
1178			return false;
1179
1180		/* We really need the vma ... */
1181		if (!vma)
1182			return true;
1183
1184		/*
1185		 * ... because we only care about writable private ("COW")
1186		 * mappings where we have to break COW early.
1187		 */
1188		return is_cow_mapping(vma->vm_flags);
1189	}
1190
1191	/* Paired with a memory barrier in folio_try_share_anon_rmap_*(). */
1192	if (IS_ENABLED(CONFIG_HAVE_FAST_GUP))
1193		smp_rmb();
1194
1195	/*
1196	 * During GUP-fast we might not get called on the head page for a
1197	 * hugetlb page that is mapped using cont-PTE, because GUP-fast does
1198	 * not work with the abstracted hugetlb PTEs that always point at the
1199	 * head page. For hugetlb, PageAnonExclusive only applies on the head
1200	 * page (as it cannot be partially COW-shared), so lookup the head page.
1201	 */
1202	if (unlikely(!PageHead(page) && PageHuge(page)))
1203		page = compound_head(page);
1204
1205	/*
1206	 * Note that PageKsm() pages cannot be exclusive, and consequently,
1207	 * cannot get pinned.
1208	 */
1209	return !PageAnonExclusive(page);
1210}
1211
1212extern bool mirrored_kernelcore;
1213extern bool memblock_has_mirror(void);
1214
1215static __always_inline void vma_set_range(struct vm_area_struct *vma,
1216					  unsigned long start, unsigned long end,
1217					  pgoff_t pgoff)
1218{
1219	vma->vm_start = start;
1220	vma->vm_end = end;
1221	vma->vm_pgoff = pgoff;
1222}
1223
1224static inline bool vma_soft_dirty_enabled(struct vm_area_struct *vma)
1225{
1226	/*
1227	 * NOTE: we must check this before VM_SOFTDIRTY on soft-dirty
1228	 * enablements, because when without soft-dirty being compiled in,
1229	 * VM_SOFTDIRTY is defined as 0x0, then !(vm_flags & VM_SOFTDIRTY)
1230	 * will be constantly true.
1231	 */
1232	if (!IS_ENABLED(CONFIG_MEM_SOFT_DIRTY))
1233		return false;
1234
1235	/*
1236	 * Soft-dirty is kind of special: its tracking is enabled when the
1237	 * vma flags not set.
1238	 */
1239	return !(vma->vm_flags & VM_SOFTDIRTY);
1240}
1241
1242static inline void vma_iter_config(struct vma_iterator *vmi,
1243		unsigned long index, unsigned long last)
1244{
1245	__mas_set_range(&vmi->mas, index, last - 1);
1246}
1247
1248/*
1249 * VMA Iterator functions shared between nommu and mmap
1250 */
1251static inline int vma_iter_prealloc(struct vma_iterator *vmi,
1252		struct vm_area_struct *vma)
1253{
1254	return mas_preallocate(&vmi->mas, vma, GFP_KERNEL);
1255}
1256
1257static inline void vma_iter_clear(struct vma_iterator *vmi)
1258{
1259	mas_store_prealloc(&vmi->mas, NULL);
1260}
1261
1262static inline struct vm_area_struct *vma_iter_load(struct vma_iterator *vmi)
1263{
1264	return mas_walk(&vmi->mas);
1265}
1266
1267/* Store a VMA with preallocated memory */
1268static inline void vma_iter_store(struct vma_iterator *vmi,
1269				  struct vm_area_struct *vma)
1270{
1271
1272#if defined(CONFIG_DEBUG_VM_MAPLE_TREE)
1273	if (MAS_WARN_ON(&vmi->mas, vmi->mas.status != ma_start &&
1274			vmi->mas.index > vma->vm_start)) {
1275		pr_warn("%lx > %lx\n store vma %lx-%lx\n into slot %lx-%lx\n",
1276			vmi->mas.index, vma->vm_start, vma->vm_start,
1277			vma->vm_end, vmi->mas.index, vmi->mas.last);
1278	}
1279	if (MAS_WARN_ON(&vmi->mas, vmi->mas.status != ma_start &&
1280			vmi->mas.last <  vma->vm_start)) {
1281		pr_warn("%lx < %lx\nstore vma %lx-%lx\ninto slot %lx-%lx\n",
1282		       vmi->mas.last, vma->vm_start, vma->vm_start, vma->vm_end,
1283		       vmi->mas.index, vmi->mas.last);
1284	}
1285#endif
1286
1287	if (vmi->mas.status != ma_start &&
1288	    ((vmi->mas.index > vma->vm_start) || (vmi->mas.last < vma->vm_start)))
1289		vma_iter_invalidate(vmi);
1290
1291	__mas_set_range(&vmi->mas, vma->vm_start, vma->vm_end - 1);
1292	mas_store_prealloc(&vmi->mas, vma);
1293}
1294
1295static inline int vma_iter_store_gfp(struct vma_iterator *vmi,
1296			struct vm_area_struct *vma, gfp_t gfp)
1297{
1298	if (vmi->mas.status != ma_start &&
1299	    ((vmi->mas.index > vma->vm_start) || (vmi->mas.last < vma->vm_start)))
1300		vma_iter_invalidate(vmi);
1301
1302	__mas_set_range(&vmi->mas, vma->vm_start, vma->vm_end - 1);
1303	mas_store_gfp(&vmi->mas, vma, gfp);
1304	if (unlikely(mas_is_err(&vmi->mas)))
1305		return -ENOMEM;
1306
1307	return 0;
1308}
1309
1310/*
1311 * VMA lock generalization
1312 */
1313struct vma_prepare {
1314	struct vm_area_struct *vma;
1315	struct vm_area_struct *adj_next;
1316	struct file *file;
1317	struct address_space *mapping;
1318	struct anon_vma *anon_vma;
1319	struct vm_area_struct *insert;
1320	struct vm_area_struct *remove;
1321	struct vm_area_struct *remove2;
1322};
1323
1324void __meminit __init_single_page(struct page *page, unsigned long pfn,
1325				unsigned long zone, int nid);
1326
1327/* shrinker related functions */
1328unsigned long shrink_slab(gfp_t gfp_mask, int nid, struct mem_cgroup *memcg,
1329			  int priority);
1330
1331#ifdef CONFIG_SHRINKER_DEBUG
1332static inline __printf(2, 0) int shrinker_debugfs_name_alloc(
1333			struct shrinker *shrinker, const char *fmt, va_list ap)
1334{
1335	shrinker->name = kvasprintf_const(GFP_KERNEL, fmt, ap);
1336
1337	return shrinker->name ? 0 : -ENOMEM;
1338}
1339
1340static inline void shrinker_debugfs_name_free(struct shrinker *shrinker)
1341{
1342	kfree_const(shrinker->name);
1343	shrinker->name = NULL;
1344}
1345
1346extern int shrinker_debugfs_add(struct shrinker *shrinker);
1347extern struct dentry *shrinker_debugfs_detach(struct shrinker *shrinker,
1348					      int *debugfs_id);
1349extern void shrinker_debugfs_remove(struct dentry *debugfs_entry,
1350				    int debugfs_id);
1351#else /* CONFIG_SHRINKER_DEBUG */
1352static inline int shrinker_debugfs_add(struct shrinker *shrinker)
1353{
1354	return 0;
1355}
1356static inline int shrinker_debugfs_name_alloc(struct shrinker *shrinker,
1357					      const char *fmt, va_list ap)
1358{
1359	return 0;
1360}
1361static inline void shrinker_debugfs_name_free(struct shrinker *shrinker)
1362{
1363}
1364static inline struct dentry *shrinker_debugfs_detach(struct shrinker *shrinker,
1365						     int *debugfs_id)
1366{
1367	*debugfs_id = -1;
1368	return NULL;
1369}
1370static inline void shrinker_debugfs_remove(struct dentry *debugfs_entry,
1371					   int debugfs_id)
1372{
1373}
1374#endif /* CONFIG_SHRINKER_DEBUG */
1375
1376/* Only track the nodes of mappings with shadow entries */
1377void workingset_update_node(struct xa_node *node);
1378extern struct list_lru shadow_nodes;
1379
1380#endif	/* __MM_INTERNAL_H */