Linux Audio

Check our new training course

Loading...
v3.1
 
  1/* internal.h: mm/ internal definitions
  2 *
  3 * Copyright (C) 2004 Red Hat, Inc. All Rights Reserved.
  4 * Written by David Howells (dhowells@redhat.com)
  5 *
  6 * This program is free software; you can redistribute it and/or
  7 * modify it under the terms of the GNU General Public License
  8 * as published by the Free Software Foundation; either version
  9 * 2 of the License, or (at your option) any later version.
 10 */
 11#ifndef __MM_INTERNAL_H
 12#define __MM_INTERNAL_H
 13
 
 14#include <linux/mm.h>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 15
 16void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
 17		unsigned long floor, unsigned long ceiling);
 18
 19static inline void set_page_count(struct page *page, int v)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 20{
 21	atomic_set(&page->_count, v);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 22}
 23
 24/*
 25 * Turn a non-refcounted page (->_count == 0) into refcounted with
 26 * a count of one.
 27 */
 28static inline void set_page_refcounted(struct page *page)
 29{
 30	VM_BUG_ON(PageTail(page));
 31	VM_BUG_ON(atomic_read(&page->_count));
 32	set_page_count(page, 1);
 33}
 34
 35static inline void __put_page(struct page *page)
 36{
 37	atomic_dec(&page->_count);
 38}
 39
 40extern unsigned long highest_memmap_pfn;
 41
 42/*
 
 
 
 
 
 
 
 
 
 
 
 
 43 * in mm/vmscan.c:
 44 */
 45extern int isolate_lru_page(struct page *page);
 46extern void putback_lru_page(struct page *page);
 
 
 
 
 
 
 
 
 47
 48/*
 49 * in mm/page_alloc.c
 50 */
 51extern void __free_pages_bootmem(struct page *page, unsigned int order);
 52extern void prep_compound_page(struct page *page, unsigned long order);
 53#ifdef CONFIG_MEMORY_FAILURE
 54extern bool is_free_buddy_page(struct page *page);
 55#endif
 56
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 57
 58/*
 59 * function for dealing with page's order in buddy system.
 60 * zone->lock is already acquired when we use these.
 61 * So, we don't need atomic page->flags operations here.
 
 
 
 62 */
 63static inline unsigned long page_order(struct page *page)
 64{
 65	/* PageBuddy() must be checked by the caller */
 66	return page_private(page);
 67}
 68
 69/* mm/util.c */
 70void __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma,
 71		struct vm_area_struct *prev, struct rb_node *rb_parent);
 72
 73#ifdef CONFIG_MMU
 74extern long mlock_vma_pages_range(struct vm_area_struct *vma,
 75			unsigned long start, unsigned long end);
 76extern void munlock_vma_pages_range(struct vm_area_struct *vma,
 77			unsigned long start, unsigned long end);
 78static inline void munlock_vma_pages_all(struct vm_area_struct *vma)
 79{
 80	munlock_vma_pages_range(vma, vma->vm_start, vma->vm_end);
 81}
 82
 83/*
 84 * Called only in fault path via page_evictable() for a new page
 85 * to determine if it's being mapped into a LOCKED vma.
 86 * If so, mark page as mlocked.
 
 
 
 
 
 
 
 
 87 */
 88static inline int is_mlocked_vma(struct vm_area_struct *vma, struct page *page)
 
 89{
 90	VM_BUG_ON(PageLRU(page));
 
 91
 92	if (likely((vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) != VM_LOCKED))
 93		return 0;
 94
 95	if (!TestSetPageMlocked(page)) {
 96		inc_zone_page_state(page, NR_MLOCK);
 97		count_vm_event(UNEVICTABLE_PGMLOCKED);
 98	}
 99	return 1;
 
 
 
 
 
100}
101
102/*
103 * must be called with vma's mmap_sem held for read or write, and page locked.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
104 */
105extern void mlock_vma_page(struct page *page);
106extern void munlock_vma_page(struct page *page);
 
 
 
107
108/*
109 * Clear the page's PageMlocked().  This can be useful in a situation where
110 * we want to unconditionally remove a page from the pagecache -- e.g.,
111 * on truncation or freeing.
 
 
 
 
 
 
 
112 *
113 * It is legal to call this function for any page, mlocked or not.
114 * If called for a page that is still mapped by mlocked vmas, all we do
115 * is revert to lazy LRU behaviour -- semantics are not broken.
116 */
117extern void __clear_page_mlock(struct page *page);
118static inline void clear_page_mlock(struct page *page)
119{
120	if (unlikely(TestClearPageMlocked(page)))
121		__clear_page_mlock(page);
122}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
123
124/*
125 * mlock_migrate_page - called only from migrate_page_copy() to
126 * migrate the Mlocked page flag; update statistics.
127 */
128static inline void mlock_migrate_page(struct page *newpage, struct page *page)
129{
130	if (TestClearPageMlocked(page)) {
131		unsigned long flags;
132
133		local_irq_save(flags);
134		__dec_zone_page_state(page, NR_MLOCK);
135		SetPageMlocked(newpage);
136		__inc_zone_page_state(newpage, NR_MLOCK);
137		local_irq_restore(flags);
138	}
139}
140
141#ifdef CONFIG_TRANSPARENT_HUGEPAGE
142extern unsigned long vma_address(struct page *page,
143				 struct vm_area_struct *vma);
144#endif
145#else /* !CONFIG_MMU */
146static inline int is_mlocked_vma(struct vm_area_struct *v, struct page *p)
 
 
 
 
 
 
 
 
 
147{
148	return 0;
149}
150static inline void clear_page_mlock(struct page *page) { }
151static inline void mlock_vma_page(struct page *page) { }
152static inline void mlock_migrate_page(struct page *new, struct page *old) { }
153
154#endif /* !CONFIG_MMU */
155
156/*
157 * Return the mem_map entry representing the 'offset' subpage within
158 * the maximally aligned gigantic page 'base'.  Handle any discontiguity
159 * in the mem_map at MAX_ORDER_NR_PAGES boundaries.
 
160 */
161static inline struct page *mem_map_offset(struct page *base, int offset)
162{
163	if (unlikely(offset >= MAX_ORDER_NR_PAGES))
164		return pfn_to_page(page_to_pfn(base) + offset);
165	return base + offset;
166}
167
168/*
169 * Iterator over all subpages within the maximally aligned gigantic
170 * page 'base'.  Handle any discontiguity in the mem_map.
171 */
172static inline struct page *mem_map_next(struct page *iter,
173						struct page *base, int offset)
174{
175	if (unlikely((offset & (MAX_ORDER_NR_PAGES - 1)) == 0)) {
176		unsigned long pfn = page_to_pfn(base) + offset;
177		if (!pfn_valid(pfn))
178			return NULL;
179		return pfn_to_page(pfn);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
180	}
181	return iter + 1;
182}
183
184/*
185 * FLATMEM and DISCONTIGMEM configurations use alloc_bootmem_node,
186 * so all functions starting at paging_init should be marked __init
187 * in those cases. SPARSEMEM, however, allows for memory hotplug,
188 * and alloc_bootmem_node is not used.
189 */
190#ifdef CONFIG_SPARSEMEM
191#define __paginginit __meminit
192#else
193#define __paginginit __init
194#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
195
196/* Memory initialisation debug and verification */
197enum mminit_level {
198	MMINIT_WARNING,
199	MMINIT_VERIFY,
200	MMINIT_TRACE
201};
202
203#ifdef CONFIG_DEBUG_MEMORY_INIT
204
205extern int mminit_loglevel;
206
207#define mminit_dprintk(level, prefix, fmt, arg...) \
208do { \
209	if (level < mminit_loglevel) { \
210		printk(level <= MMINIT_WARNING ? KERN_WARNING : KERN_DEBUG); \
211		printk(KERN_CONT "mminit::" prefix " " fmt, ##arg); \
 
 
212	} \
213} while (0)
214
215extern void mminit_verify_pageflags_layout(void);
216extern void mminit_verify_page_links(struct page *page,
217		enum zone_type zone, unsigned long nid, unsigned long pfn);
218extern void mminit_verify_zonelist(void);
219
220#else
221
222static inline void mminit_dprintk(enum mminit_level level,
223				const char *prefix, const char *fmt, ...)
224{
225}
226
227static inline void mminit_verify_pageflags_layout(void)
228{
229}
230
231static inline void mminit_verify_page_links(struct page *page,
232		enum zone_type zone, unsigned long nid, unsigned long pfn)
233{
234}
235
236static inline void mminit_verify_zonelist(void)
237{
238}
239#endif /* CONFIG_DEBUG_MEMORY_INIT */
240
241/* mminit_validate_memmodel_limits is independent of CONFIG_DEBUG_MEMORY_INIT */
242#if defined(CONFIG_SPARSEMEM)
243extern void mminit_validate_memmodel_limits(unsigned long *start_pfn,
244				unsigned long *end_pfn);
 
 
 
 
245#else
246static inline void mminit_validate_memmodel_limits(unsigned long *start_pfn,
247				unsigned long *end_pfn)
248{
 
 
 
 
 
249}
250#endif /* CONFIG_SPARSEMEM */
251
252#define ZONE_RECLAIM_NOSCAN	-2
253#define ZONE_RECLAIM_FULL	-1
254#define ZONE_RECLAIM_SOME	0
255#define ZONE_RECLAIM_SUCCESS	1
256#endif
257
 
 
 
258extern int hwpoison_filter(struct page *p);
259
260extern u32 hwpoison_filter_dev_major;
261extern u32 hwpoison_filter_dev_minor;
262extern u64 hwpoison_filter_flags_mask;
263extern u64 hwpoison_filter_flags_value;
264extern u64 hwpoison_filter_memcg;
265extern u32 hwpoison_filter_enable;
v6.2
  1/* SPDX-License-Identifier: GPL-2.0-or-later */
  2/* internal.h: mm/ internal definitions
  3 *
  4 * Copyright (C) 2004 Red Hat, Inc. All Rights Reserved.
  5 * Written by David Howells (dhowells@redhat.com)
 
 
 
 
 
  6 */
  7#ifndef __MM_INTERNAL_H
  8#define __MM_INTERNAL_H
  9
 10#include <linux/fs.h>
 11#include <linux/mm.h>
 12#include <linux/pagemap.h>
 13#include <linux/rmap.h>
 14#include <linux/tracepoint-defs.h>
 15
 16struct folio_batch;
 17
 18/*
 19 * The set of flags that only affect watermark checking and reclaim
 20 * behaviour. This is used by the MM to obey the caller constraints
 21 * about IO, FS and watermark checking while ignoring placement
 22 * hints such as HIGHMEM usage.
 23 */
 24#define GFP_RECLAIM_MASK (__GFP_RECLAIM|__GFP_HIGH|__GFP_IO|__GFP_FS|\
 25			__GFP_NOWARN|__GFP_RETRY_MAYFAIL|__GFP_NOFAIL|\
 26			__GFP_NORETRY|__GFP_MEMALLOC|__GFP_NOMEMALLOC|\
 27			__GFP_ATOMIC|__GFP_NOLOCKDEP)
 28
 29/* The GFP flags allowed during early boot */
 30#define GFP_BOOT_MASK (__GFP_BITS_MASK & ~(__GFP_RECLAIM|__GFP_IO|__GFP_FS))
 31
 32/* Control allocation cpuset and node placement constraints */
 33#define GFP_CONSTRAINT_MASK (__GFP_HARDWALL|__GFP_THISNODE)
 34
 35/* Do not use these with a slab allocator */
 36#define GFP_SLAB_BUG_MASK (__GFP_DMA32|__GFP_HIGHMEM|~__GFP_BITS_MASK)
 37
 38/*
 39 * Different from WARN_ON_ONCE(), no warning will be issued
 40 * when we specify __GFP_NOWARN.
 41 */
 42#define WARN_ON_ONCE_GFP(cond, gfp)	({				\
 43	static bool __section(".data.once") __warned;			\
 44	int __ret_warn_once = !!(cond);					\
 45									\
 46	if (unlikely(!(gfp & __GFP_NOWARN) && __ret_warn_once && !__warned)) { \
 47		__warned = true;					\
 48		WARN_ON(1);						\
 49	}								\
 50	unlikely(__ret_warn_once);					\
 51})
 52
 53void page_writeback_init(void);
 54
 55static inline void *folio_raw_mapping(struct folio *folio)
 56{
 57	unsigned long mapping = (unsigned long)folio->mapping;
 58
 59	return (void *)(mapping & ~PAGE_MAPPING_FLAGS);
 60}
 61
 62void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio,
 63						int nr_throttled);
 64static inline void acct_reclaim_writeback(struct folio *folio)
 65{
 66	pg_data_t *pgdat = folio_pgdat(folio);
 67	int nr_throttled = atomic_read(&pgdat->nr_writeback_throttled);
 68
 69	if (nr_throttled)
 70		__acct_reclaim_writeback(pgdat, folio, nr_throttled);
 71}
 72
 73static inline void wake_throttle_isolated(pg_data_t *pgdat)
 74{
 75	wait_queue_head_t *wqh;
 76
 77	wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_ISOLATED];
 78	if (waitqueue_active(wqh))
 79		wake_up(wqh);
 80}
 81
 82vm_fault_t do_swap_page(struct vm_fault *vmf);
 83void folio_rotate_reclaimable(struct folio *folio);
 84bool __folio_end_writeback(struct folio *folio);
 85void deactivate_file_folio(struct folio *folio);
 86void folio_activate(struct folio *folio);
 87
 88void free_pgtables(struct mmu_gather *tlb, struct maple_tree *mt,
 89		   struct vm_area_struct *start_vma, unsigned long floor,
 90		   unsigned long ceiling);
 91void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte);
 92
 93struct zap_details;
 94void unmap_page_range(struct mmu_gather *tlb,
 95			     struct vm_area_struct *vma,
 96			     unsigned long addr, unsigned long end,
 97			     struct zap_details *details);
 98
 99void page_cache_ra_order(struct readahead_control *, struct file_ra_state *,
100		unsigned int order);
101void force_page_cache_ra(struct readahead_control *, unsigned long nr);
102static inline void force_page_cache_readahead(struct address_space *mapping,
103		struct file *file, pgoff_t index, unsigned long nr_to_read)
104{
105	DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, index);
106	force_page_cache_ra(&ractl, nr_to_read);
107}
108
109unsigned find_lock_entries(struct address_space *mapping, pgoff_t *start,
110		pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices);
111unsigned find_get_entries(struct address_space *mapping, pgoff_t *start,
112		pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices);
113void filemap_free_folio(struct address_space *mapping, struct folio *folio);
114int truncate_inode_folio(struct address_space *mapping, struct folio *folio);
115bool truncate_inode_partial_folio(struct folio *folio, loff_t start,
116		loff_t end);
117long invalidate_inode_page(struct page *page);
118unsigned long invalidate_mapping_pagevec(struct address_space *mapping,
119		pgoff_t start, pgoff_t end, unsigned long *nr_pagevec);
120
121/**
122 * folio_evictable - Test whether a folio is evictable.
123 * @folio: The folio to test.
124 *
125 * Test whether @folio is evictable -- i.e., should be placed on
126 * active/inactive lists vs unevictable list.
127 *
128 * Reasons folio might not be evictable:
129 * 1. folio's mapping marked unevictable
130 * 2. One of the pages in the folio is part of an mlocked VMA
131 */
132static inline bool folio_evictable(struct folio *folio)
133{
134	bool ret;
135
136	/* Prevent address_space of inode and swap cache from being freed */
137	rcu_read_lock();
138	ret = !mapping_unevictable(folio_mapping(folio)) &&
139			!folio_test_mlocked(folio);
140	rcu_read_unlock();
141	return ret;
142}
143
144static inline bool page_evictable(struct page *page)
145{
146	bool ret;
147
148	/* Prevent address_space of inode and swap cache from being freed */
149	rcu_read_lock();
150	ret = !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
151	rcu_read_unlock();
152	return ret;
153}
154
155/*
156 * Turn a non-refcounted page (->_refcount == 0) into refcounted with
157 * a count of one.
158 */
159static inline void set_page_refcounted(struct page *page)
160{
161	VM_BUG_ON_PAGE(PageTail(page), page);
162	VM_BUG_ON_PAGE(page_ref_count(page), page);
163	set_page_count(page, 1);
164}
165
 
 
 
 
 
166extern unsigned long highest_memmap_pfn;
167
168/*
169 * Maximum number of reclaim retries without progress before the OOM
170 * killer is consider the only way forward.
171 */
172#define MAX_RECLAIM_RETRIES 16
173
174/*
175 * in mm/early_ioremap.c
176 */
177pgprot_t __init early_memremap_pgprot_adjust(resource_size_t phys_addr,
178					unsigned long size, pgprot_t prot);
179
180/*
181 * in mm/vmscan.c:
182 */
183int isolate_lru_page(struct page *page);
184int folio_isolate_lru(struct folio *folio);
185void putback_lru_page(struct page *page);
186void folio_putback_lru(struct folio *folio);
187extern void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason);
188
189/*
190 * in mm/rmap.c:
191 */
192pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address);
193
194/*
195 * in mm/page_alloc.c
196 */
 
 
 
 
 
197
198/*
199 * Structure for holding the mostly immutable allocation parameters passed
200 * between functions involved in allocations, including the alloc_pages*
201 * family of functions.
202 *
203 * nodemask, migratetype and highest_zoneidx are initialized only once in
204 * __alloc_pages() and then never change.
205 *
206 * zonelist, preferred_zone and highest_zoneidx are set first in
207 * __alloc_pages() for the fast path, and might be later changed
208 * in __alloc_pages_slowpath(). All other functions pass the whole structure
209 * by a const pointer.
210 */
211struct alloc_context {
212	struct zonelist *zonelist;
213	nodemask_t *nodemask;
214	struct zoneref *preferred_zoneref;
215	int migratetype;
216
217	/*
218	 * highest_zoneidx represents highest usable zone index of
219	 * the allocation request. Due to the nature of the zone,
220	 * memory on lower zone than the highest_zoneidx will be
221	 * protected by lowmem_reserve[highest_zoneidx].
222	 *
223	 * highest_zoneidx is also used by reclaim/compaction to limit
224	 * the target zone since higher zone than this index cannot be
225	 * usable for this allocation request.
226	 */
227	enum zone_type highest_zoneidx;
228	bool spread_dirty_pages;
229};
230
231/*
232 * This function returns the order of a free page in the buddy system. In
233 * general, page_zone(page)->lock must be held by the caller to prevent the
234 * page from being allocated in parallel and returning garbage as the order.
235 * If a caller does not hold page_zone(page)->lock, it must guarantee that the
236 * page cannot be allocated or merged in parallel. Alternatively, it must
237 * handle invalid values gracefully, and use buddy_order_unsafe() below.
238 */
239static inline unsigned int buddy_order(struct page *page)
240{
241	/* PageBuddy() must be checked by the caller */
242	return page_private(page);
243}
244
245/*
246 * Like buddy_order(), but for callers who cannot afford to hold the zone lock.
247 * PageBuddy() should be checked first by the caller to minimize race window,
248 * and invalid values must be handled gracefully.
249 *
250 * READ_ONCE is used so that if the caller assigns the result into a local
251 * variable and e.g. tests it for valid range before using, the compiler cannot
252 * decide to remove the variable and inline the page_private(page) multiple
253 * times, potentially observing different values in the tests and the actual
254 * use of the result.
255 */
256#define buddy_order_unsafe(page)	READ_ONCE(page_private(page))
 
257
258/*
259 * This function checks whether a page is free && is the buddy
260 * we can coalesce a page and its buddy if
261 * (a) the buddy is not in a hole (check before calling!) &&
262 * (b) the buddy is in the buddy system &&
263 * (c) a page and its buddy have the same order &&
264 * (d) a page and its buddy are in the same zone.
265 *
266 * For recording whether a page is in the buddy system, we set PageBuddy.
267 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
268 *
269 * For recording page's order, we use page_private(page).
270 */
271static inline bool page_is_buddy(struct page *page, struct page *buddy,
272				 unsigned int order)
273{
274	if (!page_is_guard(buddy) && !PageBuddy(buddy))
275		return false;
276
277	if (buddy_order(buddy) != order)
278		return false;
279
280	/*
281	 * zone check is done late to avoid uselessly calculating
282	 * zone/node ids for pages that could never merge.
283	 */
284	if (page_zone_id(page) != page_zone_id(buddy))
285		return false;
286
287	VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
288
289	return true;
290}
291
292/*
293 * Locate the struct page for both the matching buddy in our
294 * pair (buddy1) and the combined O(n+1) page they form (page).
295 *
296 * 1) Any buddy B1 will have an order O twin B2 which satisfies
297 * the following equation:
298 *     B2 = B1 ^ (1 << O)
299 * For example, if the starting buddy (buddy2) is #8 its order
300 * 1 buddy is #10:
301 *     B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
302 *
303 * 2) Any buddy B will have an order O+1 parent P which
304 * satisfies the following equation:
305 *     P = B & ~(1 << O)
306 *
307 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
308 */
309static inline unsigned long
310__find_buddy_pfn(unsigned long page_pfn, unsigned int order)
311{
312	return page_pfn ^ (1 << order);
313}
314
315/*
316 * Find the buddy of @page and validate it.
317 * @page: The input page
318 * @pfn: The pfn of the page, it saves a call to page_to_pfn() when the
319 *       function is used in the performance-critical __free_one_page().
320 * @order: The order of the page
321 * @buddy_pfn: The output pointer to the buddy pfn, it also saves a call to
322 *             page_to_pfn().
323 *
324 * The found buddy can be a non PageBuddy, out of @page's zone, or its order is
325 * not the same as @page. The validation is necessary before use it.
326 *
327 * Return: the found buddy page or NULL if not found.
 
 
328 */
329static inline struct page *find_buddy_page_pfn(struct page *page,
330			unsigned long pfn, unsigned int order, unsigned long *buddy_pfn)
331{
332	unsigned long __buddy_pfn = __find_buddy_pfn(pfn, order);
333	struct page *buddy;
334
335	buddy = page + (__buddy_pfn - pfn);
336	if (buddy_pfn)
337		*buddy_pfn = __buddy_pfn;
338
339	if (page_is_buddy(page, buddy, order))
340		return buddy;
341	return NULL;
342}
343
344extern struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
345				unsigned long end_pfn, struct zone *zone);
346
347static inline struct page *pageblock_pfn_to_page(unsigned long start_pfn,
348				unsigned long end_pfn, struct zone *zone)
349{
350	if (zone->contiguous)
351		return pfn_to_page(start_pfn);
352
353	return __pageblock_pfn_to_page(start_pfn, end_pfn, zone);
354}
355
356extern int __isolate_free_page(struct page *page, unsigned int order);
357extern void __putback_isolated_page(struct page *page, unsigned int order,
358				    int mt);
359extern void memblock_free_pages(struct page *page, unsigned long pfn,
360					unsigned int order);
361extern void __free_pages_core(struct page *page, unsigned int order);
362extern void prep_compound_page(struct page *page, unsigned int order);
363extern void post_alloc_hook(struct page *page, unsigned int order,
364					gfp_t gfp_flags);
365extern int user_min_free_kbytes;
366
367extern void free_unref_page(struct page *page, unsigned int order);
368extern void free_unref_page_list(struct list_head *list);
369
370extern void zone_pcp_reset(struct zone *zone);
371extern void zone_pcp_disable(struct zone *zone);
372extern void zone_pcp_enable(struct zone *zone);
373
374extern void *memmap_alloc(phys_addr_t size, phys_addr_t align,
375			  phys_addr_t min_addr,
376			  int nid, bool exact_nid);
377
378int split_free_page(struct page *free_page,
379			unsigned int order, unsigned long split_pfn_offset);
380
381#if defined CONFIG_COMPACTION || defined CONFIG_CMA
382
383/*
384 * in mm/compaction.c
385 */
386/*
387 * compact_control is used to track pages being migrated and the free pages
388 * they are being migrated to during memory compaction. The free_pfn starts
389 * at the end of a zone and migrate_pfn begins at the start. Movable pages
390 * are moved to the end of a zone during a compaction run and the run
391 * completes when free_pfn <= migrate_pfn
392 */
393struct compact_control {
394	struct list_head freepages;	/* List of free pages to migrate to */
395	struct list_head migratepages;	/* List of pages being migrated */
396	unsigned int nr_freepages;	/* Number of isolated free pages */
397	unsigned int nr_migratepages;	/* Number of pages to migrate */
398	unsigned long free_pfn;		/* isolate_freepages search base */
399	/*
400	 * Acts as an in/out parameter to page isolation for migration.
401	 * isolate_migratepages uses it as a search base.
402	 * isolate_migratepages_block will update the value to the next pfn
403	 * after the last isolated one.
404	 */
405	unsigned long migrate_pfn;
406	unsigned long fast_start_pfn;	/* a pfn to start linear scan from */
407	struct zone *zone;
408	unsigned long total_migrate_scanned;
409	unsigned long total_free_scanned;
410	unsigned short fast_search_fail;/* failures to use free list searches */
411	short search_order;		/* order to start a fast search at */
412	const gfp_t gfp_mask;		/* gfp mask of a direct compactor */
413	int order;			/* order a direct compactor needs */
414	int migratetype;		/* migratetype of direct compactor */
415	const unsigned int alloc_flags;	/* alloc flags of a direct compactor */
416	const int highest_zoneidx;	/* zone index of a direct compactor */
417	enum migrate_mode mode;		/* Async or sync migration mode */
418	bool ignore_skip_hint;		/* Scan blocks even if marked skip */
419	bool no_set_skip_hint;		/* Don't mark blocks for skipping */
420	bool ignore_block_suitable;	/* Scan blocks considered unsuitable */
421	bool direct_compaction;		/* False from kcompactd or /proc/... */
422	bool proactive_compaction;	/* kcompactd proactive compaction */
423	bool whole_zone;		/* Whole zone should/has been scanned */
424	bool contended;			/* Signal lock contention */
425	bool rescan;			/* Rescanning the same pageblock */
426	bool alloc_contig;		/* alloc_contig_range allocation */
427};
428
429/*
430 * Used in direct compaction when a page should be taken from the freelists
431 * immediately when one is created during the free path.
432 */
433struct capture_control {
434	struct compact_control *cc;
435	struct page *page;
436};
437
438unsigned long
439isolate_freepages_range(struct compact_control *cc,
440			unsigned long start_pfn, unsigned long end_pfn);
441int
442isolate_migratepages_range(struct compact_control *cc,
443			   unsigned long low_pfn, unsigned long end_pfn);
 
444
445int __alloc_contig_migrate_range(struct compact_control *cc,
446					unsigned long start, unsigned long end);
 
447#endif
448int find_suitable_fallback(struct free_area *area, unsigned int order,
449			int migratetype, bool only_stealable, bool *can_steal);
450
451/*
452 * These three helpers classifies VMAs for virtual memory accounting.
453 */
454
455/*
456 * Executable code area - executable, not writable, not stack
457 */
458static inline bool is_exec_mapping(vm_flags_t flags)
459{
460	return (flags & (VM_EXEC | VM_WRITE | VM_STACK)) == VM_EXEC;
461}
 
 
 
 
 
462
463/*
464 * Stack area - automatically grows in one direction
465 *
466 * VM_GROWSUP / VM_GROWSDOWN VMAs are always private anonymous:
467 * do_mmap() forbids all other combinations.
468 */
469static inline bool is_stack_mapping(vm_flags_t flags)
470{
471	return (flags & VM_STACK) == VM_STACK;
 
 
472}
473
474/*
475 * Data area - private, writable, not stack
 
476 */
477static inline bool is_data_mapping(vm_flags_t flags)
 
478{
479	return (flags & (VM_WRITE | VM_SHARED | VM_STACK)) == VM_WRITE;
480}
481
482/* mm/util.c */
483struct anon_vma *folio_anon_vma(struct folio *folio);
484
485#ifdef CONFIG_MMU
486void unmap_mapping_folio(struct folio *folio);
487extern long populate_vma_page_range(struct vm_area_struct *vma,
488		unsigned long start, unsigned long end, int *locked);
489extern long faultin_vma_page_range(struct vm_area_struct *vma,
490				   unsigned long start, unsigned long end,
491				   bool write, int *locked);
492extern int mlock_future_check(struct mm_struct *mm, unsigned long flags,
493			      unsigned long len);
494/*
495 * mlock_vma_page() and munlock_vma_page():
496 * should be called with vma's mmap_lock held for read or write,
497 * under page table lock for the pte/pmd being added or removed.
498 *
499 * mlock is usually called at the end of page_add_*_rmap(),
500 * munlock at the end of page_remove_rmap(); but new anon
501 * pages are managed by lru_cache_add_inactive_or_unevictable()
502 * calling mlock_new_page().
503 *
504 * @compound is used to include pmd mappings of THPs, but filter out
505 * pte mappings of THPs, which cannot be consistently counted: a pte
506 * mapping of the THP head cannot be distinguished by the page alone.
507 */
508void mlock_folio(struct folio *folio);
509static inline void mlock_vma_folio(struct folio *folio,
510			struct vm_area_struct *vma, bool compound)
511{
512	/*
513	 * The VM_SPECIAL check here serves two purposes.
514	 * 1) VM_IO check prevents migration from double-counting during mlock.
515	 * 2) Although mmap_region() and mlock_fixup() take care that VM_LOCKED
516	 *    is never left set on a VM_SPECIAL vma, there is an interval while
517	 *    file->f_op->mmap() is using vm_insert_page(s), when VM_LOCKED may
518	 *    still be set while VM_SPECIAL bits are added: so ignore it then.
519	 */
520	if (unlikely((vma->vm_flags & (VM_LOCKED|VM_SPECIAL)) == VM_LOCKED) &&
521	    (compound || !folio_test_large(folio)))
522		mlock_folio(folio);
523}
524
525static inline void mlock_vma_page(struct page *page,
526			struct vm_area_struct *vma, bool compound)
527{
528	mlock_vma_folio(page_folio(page), vma, compound);
529}
530
531void munlock_page(struct page *page);
532static inline void munlock_vma_page(struct page *page,
533			struct vm_area_struct *vma, bool compound)
534{
535	if (unlikely(vma->vm_flags & VM_LOCKED) &&
536	    (compound || !PageTransCompound(page)))
537		munlock_page(page);
538}
539void mlock_new_page(struct page *page);
540bool need_mlock_page_drain(int cpu);
541void mlock_page_drain_local(void);
542void mlock_page_drain_remote(int cpu);
543
544extern pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma);
545
546/*
547 * Return the start of user virtual address at the specific offset within
548 * a vma.
549 */
550static inline unsigned long
551vma_pgoff_address(pgoff_t pgoff, unsigned long nr_pages,
552		  struct vm_area_struct *vma)
553{
554	unsigned long address;
555
556	if (pgoff >= vma->vm_pgoff) {
557		address = vma->vm_start +
558			((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
559		/* Check for address beyond vma (or wrapped through 0?) */
560		if (address < vma->vm_start || address >= vma->vm_end)
561			address = -EFAULT;
562	} else if (pgoff + nr_pages - 1 >= vma->vm_pgoff) {
563		/* Test above avoids possibility of wrap to 0 on 32-bit */
564		address = vma->vm_start;
565	} else {
566		address = -EFAULT;
567	}
568	return address;
569}
570
571/*
572 * Return the start of user virtual address of a page within a vma.
573 * Returns -EFAULT if all of the page is outside the range of vma.
574 * If page is a compound head, the entire compound page is considered.
 
575 */
576static inline unsigned long
577vma_address(struct page *page, struct vm_area_struct *vma)
578{
579	VM_BUG_ON_PAGE(PageKsm(page), page);	/* KSM page->index unusable */
580	return vma_pgoff_address(page_to_pgoff(page), compound_nr(page), vma);
581}
582
583/*
584 * Then at what user virtual address will none of the range be found in vma?
585 * Assumes that vma_address() already returned a good starting address.
586 */
587static inline unsigned long vma_address_end(struct page_vma_mapped_walk *pvmw)
588{
589	struct vm_area_struct *vma = pvmw->vma;
590	pgoff_t pgoff;
591	unsigned long address;
592
593	/* Common case, plus ->pgoff is invalid for KSM */
594	if (pvmw->nr_pages == 1)
595		return pvmw->address + PAGE_SIZE;
596
597	pgoff = pvmw->pgoff + pvmw->nr_pages;
598	address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
599	/* Check for address beyond vma (or wrapped through 0?) */
600	if (address < vma->vm_start || address > vma->vm_end)
601		address = vma->vm_end;
602	return address;
603}
604
605static inline struct file *maybe_unlock_mmap_for_io(struct vm_fault *vmf,
606						    struct file *fpin)
607{
608	int flags = vmf->flags;
609
610	if (fpin)
611		return fpin;
612
613	/*
614	 * FAULT_FLAG_RETRY_NOWAIT means we don't want to wait on page locks or
615	 * anything, so we only pin the file and drop the mmap_lock if only
616	 * FAULT_FLAG_ALLOW_RETRY is set, while this is the first attempt.
617	 */
618	if (fault_flag_allow_retry_first(flags) &&
619	    !(flags & FAULT_FLAG_RETRY_NOWAIT)) {
620		fpin = get_file(vmf->vma->vm_file);
621		mmap_read_unlock(vmf->vma->vm_mm);
622	}
623	return fpin;
624}
625#else /* !CONFIG_MMU */
626static inline void unmap_mapping_folio(struct folio *folio) { }
627static inline void mlock_vma_page(struct page *page,
628			struct vm_area_struct *vma, bool compound) { }
629static inline void munlock_vma_page(struct page *page,
630			struct vm_area_struct *vma, bool compound) { }
631static inline void mlock_new_page(struct page *page) { }
632static inline bool need_mlock_page_drain(int cpu) { return false; }
633static inline void mlock_page_drain_local(void) { }
634static inline void mlock_page_drain_remote(int cpu) { }
635static inline void vunmap_range_noflush(unsigned long start, unsigned long end)
636{
637}
638#endif /* !CONFIG_MMU */
639
640/* Memory initialisation debug and verification */
641enum mminit_level {
642	MMINIT_WARNING,
643	MMINIT_VERIFY,
644	MMINIT_TRACE
645};
646
647#ifdef CONFIG_DEBUG_MEMORY_INIT
648
649extern int mminit_loglevel;
650
651#define mminit_dprintk(level, prefix, fmt, arg...) \
652do { \
653	if (level < mminit_loglevel) { \
654		if (level <= MMINIT_WARNING) \
655			pr_warn("mminit::" prefix " " fmt, ##arg);	\
656		else \
657			printk(KERN_DEBUG "mminit::" prefix " " fmt, ##arg); \
658	} \
659} while (0)
660
661extern void mminit_verify_pageflags_layout(void);
 
 
662extern void mminit_verify_zonelist(void);
 
663#else
664
665static inline void mminit_dprintk(enum mminit_level level,
666				const char *prefix, const char *fmt, ...)
667{
668}
669
670static inline void mminit_verify_pageflags_layout(void)
671{
672}
673
 
 
 
 
 
674static inline void mminit_verify_zonelist(void)
675{
676}
677#endif /* CONFIG_DEBUG_MEMORY_INIT */
678
679#define NODE_RECLAIM_NOSCAN	-2
680#define NODE_RECLAIM_FULL	-1
681#define NODE_RECLAIM_SOME	0
682#define NODE_RECLAIM_SUCCESS	1
683
684#ifdef CONFIG_NUMA
685extern int node_reclaim(struct pglist_data *, gfp_t, unsigned int);
686extern int find_next_best_node(int node, nodemask_t *used_node_mask);
687#else
688static inline int node_reclaim(struct pglist_data *pgdat, gfp_t mask,
689				unsigned int order)
690{
691	return NODE_RECLAIM_NOSCAN;
692}
693static inline int find_next_best_node(int node, nodemask_t *used_node_mask)
694{
695	return NUMA_NO_NODE;
696}
 
 
 
 
 
 
697#endif
698
699/*
700 * mm/memory-failure.c
701 */
702extern int hwpoison_filter(struct page *p);
703
704extern u32 hwpoison_filter_dev_major;
705extern u32 hwpoison_filter_dev_minor;
706extern u64 hwpoison_filter_flags_mask;
707extern u64 hwpoison_filter_flags_value;
708extern u64 hwpoison_filter_memcg;
709extern u32 hwpoison_filter_enable;
710
711extern unsigned long  __must_check vm_mmap_pgoff(struct file *, unsigned long,
712        unsigned long, unsigned long,
713        unsigned long, unsigned long);
714
715extern void set_pageblock_order(void);
716unsigned int reclaim_clean_pages_from_list(struct zone *zone,
717					    struct list_head *page_list);
718/* The ALLOC_WMARK bits are used as an index to zone->watermark */
719#define ALLOC_WMARK_MIN		WMARK_MIN
720#define ALLOC_WMARK_LOW		WMARK_LOW
721#define ALLOC_WMARK_HIGH	WMARK_HIGH
722#define ALLOC_NO_WATERMARKS	0x04 /* don't check watermarks at all */
723
724/* Mask to get the watermark bits */
725#define ALLOC_WMARK_MASK	(ALLOC_NO_WATERMARKS-1)
726
727/*
728 * Only MMU archs have async oom victim reclaim - aka oom_reaper so we
729 * cannot assume a reduced access to memory reserves is sufficient for
730 * !MMU
731 */
732#ifdef CONFIG_MMU
733#define ALLOC_OOM		0x08
734#else
735#define ALLOC_OOM		ALLOC_NO_WATERMARKS
736#endif
737
738#define ALLOC_HARDER		 0x10 /* try to alloc harder */
739#define ALLOC_HIGH		 0x20 /* __GFP_HIGH set */
740#define ALLOC_CPUSET		 0x40 /* check for correct cpuset */
741#define ALLOC_CMA		 0x80 /* allow allocations from CMA areas */
742#ifdef CONFIG_ZONE_DMA32
743#define ALLOC_NOFRAGMENT	0x100 /* avoid mixing pageblock types */
744#else
745#define ALLOC_NOFRAGMENT	  0x0
746#endif
747#define ALLOC_KSWAPD		0x800 /* allow waking of kswapd, __GFP_KSWAPD_RECLAIM set */
748
749enum ttu_flags;
750struct tlbflush_unmap_batch;
751
752
753/*
754 * only for MM internal work items which do not depend on
755 * any allocations or locks which might depend on allocations
756 */
757extern struct workqueue_struct *mm_percpu_wq;
758
759#ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
760void try_to_unmap_flush(void);
761void try_to_unmap_flush_dirty(void);
762void flush_tlb_batched_pending(struct mm_struct *mm);
763#else
764static inline void try_to_unmap_flush(void)
765{
766}
767static inline void try_to_unmap_flush_dirty(void)
768{
769}
770static inline void flush_tlb_batched_pending(struct mm_struct *mm)
771{
772}
773#endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
774
775extern const struct trace_print_flags pageflag_names[];
776extern const struct trace_print_flags vmaflag_names[];
777extern const struct trace_print_flags gfpflag_names[];
778
779static inline bool is_migrate_highatomic(enum migratetype migratetype)
780{
781	return migratetype == MIGRATE_HIGHATOMIC;
782}
783
784static inline bool is_migrate_highatomic_page(struct page *page)
785{
786	return get_pageblock_migratetype(page) == MIGRATE_HIGHATOMIC;
787}
788
789void setup_zone_pageset(struct zone *zone);
790
791struct migration_target_control {
792	int nid;		/* preferred node id */
793	nodemask_t *nmask;
794	gfp_t gfp_mask;
795};
796
797/*
798 * mm/vmalloc.c
799 */
800#ifdef CONFIG_MMU
801int vmap_pages_range_noflush(unsigned long addr, unsigned long end,
802                pgprot_t prot, struct page **pages, unsigned int page_shift);
803#else
804static inline
805int vmap_pages_range_noflush(unsigned long addr, unsigned long end,
806                pgprot_t prot, struct page **pages, unsigned int page_shift)
807{
808	return -EINVAL;
809}
810#endif
811
812int __vmap_pages_range_noflush(unsigned long addr, unsigned long end,
813			       pgprot_t prot, struct page **pages,
814			       unsigned int page_shift);
815
816void vunmap_range_noflush(unsigned long start, unsigned long end);
817
818void __vunmap_range_noflush(unsigned long start, unsigned long end);
819
820int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
821		      unsigned long addr, int page_nid, int *flags);
822
823void free_zone_device_page(struct page *page);
824int migrate_device_coherent_page(struct page *page);
825
826/*
827 * mm/gup.c
828 */
829struct folio *try_grab_folio(struct page *page, int refs, unsigned int flags);
830
831extern bool mirrored_kernelcore;
832
833static inline bool vma_soft_dirty_enabled(struct vm_area_struct *vma)
834{
835	/*
836	 * NOTE: we must check this before VM_SOFTDIRTY on soft-dirty
837	 * enablements, because when without soft-dirty being compiled in,
838	 * VM_SOFTDIRTY is defined as 0x0, then !(vm_flags & VM_SOFTDIRTY)
839	 * will be constantly true.
840	 */
841	if (!IS_ENABLED(CONFIG_MEM_SOFT_DIRTY))
842		return false;
843
844	/*
845	 * Soft-dirty is kind of special: its tracking is enabled when the
846	 * vma flags not set.
847	 */
848	return !(vma->vm_flags & VM_SOFTDIRTY);
849}
850
851#endif	/* __MM_INTERNAL_H */