Linux Audio

Check our new training course

Loading...
v3.1
 
  1/* internal.h: mm/ internal definitions
  2 *
  3 * Copyright (C) 2004 Red Hat, Inc. All Rights Reserved.
  4 * Written by David Howells (dhowells@redhat.com)
  5 *
  6 * This program is free software; you can redistribute it and/or
  7 * modify it under the terms of the GNU General Public License
  8 * as published by the Free Software Foundation; either version
  9 * 2 of the License, or (at your option) any later version.
 10 */
 11#ifndef __MM_INTERNAL_H
 12#define __MM_INTERNAL_H
 13
 
 14#include <linux/mm.h>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 15
 16void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
 17		unsigned long floor, unsigned long ceiling);
 18
 19static inline void set_page_count(struct page *page, int v)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 20{
 21	atomic_set(&page->_count, v);
 
 
 
 
 
 
 22}
 23
 24/*
 25 * Turn a non-refcounted page (->_count == 0) into refcounted with
 26 * a count of one.
 27 */
 28static inline void set_page_refcounted(struct page *page)
 29{
 30	VM_BUG_ON(PageTail(page));
 31	VM_BUG_ON(atomic_read(&page->_count));
 32	set_page_count(page, 1);
 33}
 34
 35static inline void __put_page(struct page *page)
 36{
 37	atomic_dec(&page->_count);
 38}
 39
 40extern unsigned long highest_memmap_pfn;
 41
 42/*
 
 
 
 
 
 
 43 * in mm/vmscan.c:
 44 */
 45extern int isolate_lru_page(struct page *page);
 46extern void putback_lru_page(struct page *page);
 47
 48/*
 
 
 
 
 
 
 
 
 
 
 49 * in mm/page_alloc.c
 50 */
 51extern void __free_pages_bootmem(struct page *page, unsigned int order);
 52extern void prep_compound_page(struct page *page, unsigned long order);
 53#ifdef CONFIG_MEMORY_FAILURE
 54extern bool is_free_buddy_page(struct page *page);
 55#endif
 56
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 57
 58/*
 59 * function for dealing with page's order in buddy system.
 60 * zone->lock is already acquired when we use these.
 61 * So, we don't need atomic page->flags operations here.
 
 
 
 62 */
 63static inline unsigned long page_order(struct page *page)
 64{
 65	/* PageBuddy() must be checked by the caller */
 66	return page_private(page);
 67}
 68
 69/* mm/util.c */
 70void __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma,
 71		struct vm_area_struct *prev, struct rb_node *rb_parent);
 
 
 
 
 
 
 
 
 
 72
 73#ifdef CONFIG_MMU
 74extern long mlock_vma_pages_range(struct vm_area_struct *vma,
 75			unsigned long start, unsigned long end);
 76extern void munlock_vma_pages_range(struct vm_area_struct *vma,
 77			unsigned long start, unsigned long end);
 78static inline void munlock_vma_pages_all(struct vm_area_struct *vma)
 
 
 79{
 80	munlock_vma_pages_range(vma, vma->vm_start, vma->vm_end);
 81}
 82
 83/*
 84 * Called only in fault path via page_evictable() for a new page
 85 * to determine if it's being mapped into a LOCKED vma.
 86 * If so, mark page as mlocked.
 
 87 */
 88static inline int is_mlocked_vma(struct vm_area_struct *vma, struct page *page)
 89{
 90	VM_BUG_ON(PageLRU(page));
 
 91
 92	if (likely((vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) != VM_LOCKED))
 93		return 0;
 
 
 
 
 
 94
 95	if (!TestSetPageMlocked(page)) {
 96		inc_zone_page_state(page, NR_MLOCK);
 97		count_vm_event(UNEVICTABLE_PGMLOCKED);
 98	}
 99	return 1;
 
 
 
 
 
 
 
 
 
 
 
100}
101
102/*
103 * must be called with vma's mmap_sem held for read or write, and page locked.
104 */
105extern void mlock_vma_page(struct page *page);
106extern void munlock_vma_page(struct page *page);
 
 
 
107
108/*
109 * Clear the page's PageMlocked().  This can be useful in a situation where
110 * we want to unconditionally remove a page from the pagecache -- e.g.,
111 * on truncation or freeing.
112 *
113 * It is legal to call this function for any page, mlocked or not.
114 * If called for a page that is still mapped by mlocked vmas, all we do
115 * is revert to lazy LRU behaviour -- semantics are not broken.
116 */
117extern void __clear_page_mlock(struct page *page);
118static inline void clear_page_mlock(struct page *page)
119{
120	if (unlikely(TestClearPageMlocked(page)))
121		__clear_page_mlock(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
122}
123
124/*
125 * mlock_migrate_page - called only from migrate_page_copy() to
126 * migrate the Mlocked page flag; update statistics.
 
127 */
128static inline void mlock_migrate_page(struct page *newpage, struct page *page)
 
129{
130	if (TestClearPageMlocked(page)) {
131		unsigned long flags;
132
133		local_irq_save(flags);
134		__dec_zone_page_state(page, NR_MLOCK);
135		SetPageMlocked(newpage);
136		__inc_zone_page_state(newpage, NR_MLOCK);
137		local_irq_restore(flags);
138	}
 
139}
140
141#ifdef CONFIG_TRANSPARENT_HUGEPAGE
142extern unsigned long vma_address(struct page *page,
143				 struct vm_area_struct *vma);
144#endif
145#else /* !CONFIG_MMU */
146static inline int is_mlocked_vma(struct vm_area_struct *v, struct page *p)
147{
148	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
149}
 
 
150static inline void clear_page_mlock(struct page *page) { }
151static inline void mlock_vma_page(struct page *page) { }
152static inline void mlock_migrate_page(struct page *new, struct page *old) { }
153
 
154#endif /* !CONFIG_MMU */
155
156/*
157 * Return the mem_map entry representing the 'offset' subpage within
158 * the maximally aligned gigantic page 'base'.  Handle any discontiguity
159 * in the mem_map at MAX_ORDER_NR_PAGES boundaries.
160 */
161static inline struct page *mem_map_offset(struct page *base, int offset)
162{
163	if (unlikely(offset >= MAX_ORDER_NR_PAGES))
164		return pfn_to_page(page_to_pfn(base) + offset);
165	return base + offset;
166}
167
168/*
169 * Iterator over all subpages within the maximally aligned gigantic
170 * page 'base'.  Handle any discontiguity in the mem_map.
171 */
172static inline struct page *mem_map_next(struct page *iter,
173						struct page *base, int offset)
174{
175	if (unlikely((offset & (MAX_ORDER_NR_PAGES - 1)) == 0)) {
176		unsigned long pfn = page_to_pfn(base) + offset;
177		if (!pfn_valid(pfn))
178			return NULL;
179		return pfn_to_page(pfn);
180	}
181	return iter + 1;
182}
183
184/*
185 * FLATMEM and DISCONTIGMEM configurations use alloc_bootmem_node,
186 * so all functions starting at paging_init should be marked __init
187 * in those cases. SPARSEMEM, however, allows for memory hotplug,
188 * and alloc_bootmem_node is not used.
189 */
190#ifdef CONFIG_SPARSEMEM
191#define __paginginit __meminit
192#else
193#define __paginginit __init
194#endif
195
196/* Memory initialisation debug and verification */
197enum mminit_level {
198	MMINIT_WARNING,
199	MMINIT_VERIFY,
200	MMINIT_TRACE
201};
202
203#ifdef CONFIG_DEBUG_MEMORY_INIT
204
205extern int mminit_loglevel;
206
207#define mminit_dprintk(level, prefix, fmt, arg...) \
208do { \
209	if (level < mminit_loglevel) { \
210		printk(level <= MMINIT_WARNING ? KERN_WARNING : KERN_DEBUG); \
211		printk(KERN_CONT "mminit::" prefix " " fmt, ##arg); \
 
 
212	} \
213} while (0)
214
215extern void mminit_verify_pageflags_layout(void);
216extern void mminit_verify_page_links(struct page *page,
217		enum zone_type zone, unsigned long nid, unsigned long pfn);
218extern void mminit_verify_zonelist(void);
219
220#else
221
222static inline void mminit_dprintk(enum mminit_level level,
223				const char *prefix, const char *fmt, ...)
224{
225}
226
227static inline void mminit_verify_pageflags_layout(void)
228{
229}
230
231static inline void mminit_verify_page_links(struct page *page,
232		enum zone_type zone, unsigned long nid, unsigned long pfn)
233{
234}
235
236static inline void mminit_verify_zonelist(void)
237{
238}
239#endif /* CONFIG_DEBUG_MEMORY_INIT */
240
241/* mminit_validate_memmodel_limits is independent of CONFIG_DEBUG_MEMORY_INIT */
242#if defined(CONFIG_SPARSEMEM)
243extern void mminit_validate_memmodel_limits(unsigned long *start_pfn,
244				unsigned long *end_pfn);
245#else
246static inline void mminit_validate_memmodel_limits(unsigned long *start_pfn,
247				unsigned long *end_pfn)
248{
249}
250#endif /* CONFIG_SPARSEMEM */
251
252#define ZONE_RECLAIM_NOSCAN	-2
253#define ZONE_RECLAIM_FULL	-1
254#define ZONE_RECLAIM_SOME	0
255#define ZONE_RECLAIM_SUCCESS	1
 
 
 
 
 
 
 
 
 
256#endif
257
258extern int hwpoison_filter(struct page *p);
259
260extern u32 hwpoison_filter_dev_major;
261extern u32 hwpoison_filter_dev_minor;
262extern u64 hwpoison_filter_flags_mask;
263extern u64 hwpoison_filter_flags_value;
264extern u64 hwpoison_filter_memcg;
265extern u32 hwpoison_filter_enable;
v5.14.15
  1/* SPDX-License-Identifier: GPL-2.0-or-later */
  2/* internal.h: mm/ internal definitions
  3 *
  4 * Copyright (C) 2004 Red Hat, Inc. All Rights Reserved.
  5 * Written by David Howells (dhowells@redhat.com)
 
 
 
 
 
  6 */
  7#ifndef __MM_INTERNAL_H
  8#define __MM_INTERNAL_H
  9
 10#include <linux/fs.h>
 11#include <linux/mm.h>
 12#include <linux/pagemap.h>
 13#include <linux/tracepoint-defs.h>
 14
 15/*
 16 * The set of flags that only affect watermark checking and reclaim
 17 * behaviour. This is used by the MM to obey the caller constraints
 18 * about IO, FS and watermark checking while ignoring placement
 19 * hints such as HIGHMEM usage.
 20 */
 21#define GFP_RECLAIM_MASK (__GFP_RECLAIM|__GFP_HIGH|__GFP_IO|__GFP_FS|\
 22			__GFP_NOWARN|__GFP_RETRY_MAYFAIL|__GFP_NOFAIL|\
 23			__GFP_NORETRY|__GFP_MEMALLOC|__GFP_NOMEMALLOC|\
 24			__GFP_ATOMIC)
 25
 26/* The GFP flags allowed during early boot */
 27#define GFP_BOOT_MASK (__GFP_BITS_MASK & ~(__GFP_RECLAIM|__GFP_IO|__GFP_FS))
 28
 29/* Control allocation cpuset and node placement constraints */
 30#define GFP_CONSTRAINT_MASK (__GFP_HARDWALL|__GFP_THISNODE)
 31
 32/* Do not use these with a slab allocator */
 33#define GFP_SLAB_BUG_MASK (__GFP_DMA32|__GFP_HIGHMEM|~__GFP_BITS_MASK)
 34
 35void page_writeback_init(void);
 36
 37vm_fault_t do_swap_page(struct vm_fault *vmf);
 38
 39void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
 40		unsigned long floor, unsigned long ceiling);
 41
 42static inline bool can_madv_lru_vma(struct vm_area_struct *vma)
 43{
 44	return !(vma->vm_flags & (VM_LOCKED|VM_HUGETLB|VM_PFNMAP));
 45}
 46
 47void unmap_page_range(struct mmu_gather *tlb,
 48			     struct vm_area_struct *vma,
 49			     unsigned long addr, unsigned long end,
 50			     struct zap_details *details);
 51
 52void do_page_cache_ra(struct readahead_control *, unsigned long nr_to_read,
 53		unsigned long lookahead_size);
 54void force_page_cache_ra(struct readahead_control *, unsigned long nr);
 55static inline void force_page_cache_readahead(struct address_space *mapping,
 56		struct file *file, pgoff_t index, unsigned long nr_to_read)
 57{
 58	DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, index);
 59	force_page_cache_ra(&ractl, nr_to_read);
 60}
 61
 62unsigned find_lock_entries(struct address_space *mapping, pgoff_t start,
 63		pgoff_t end, struct pagevec *pvec, pgoff_t *indices);
 64
 65/**
 66 * page_evictable - test whether a page is evictable
 67 * @page: the page to test
 68 *
 69 * Test whether page is evictable--i.e., should be placed on active/inactive
 70 * lists vs unevictable list.
 71 *
 72 * Reasons page might not be evictable:
 73 * (1) page's mapping marked unevictable
 74 * (2) page is part of an mlocked VMA
 75 *
 76 */
 77static inline bool page_evictable(struct page *page)
 78{
 79	bool ret;
 80
 81	/* Prevent address_space of inode and swap cache from being freed */
 82	rcu_read_lock();
 83	ret = !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
 84	rcu_read_unlock();
 85	return ret;
 86}
 87
 88/*
 89 * Turn a non-refcounted page (->_refcount == 0) into refcounted with
 90 * a count of one.
 91 */
 92static inline void set_page_refcounted(struct page *page)
 93{
 94	VM_BUG_ON_PAGE(PageTail(page), page);
 95	VM_BUG_ON_PAGE(page_ref_count(page), page);
 96	set_page_count(page, 1);
 97}
 98
 
 
 
 
 
 99extern unsigned long highest_memmap_pfn;
100
101/*
102 * Maximum number of reclaim retries without progress before the OOM
103 * killer is consider the only way forward.
104 */
105#define MAX_RECLAIM_RETRIES 16
106
107/*
108 * in mm/vmscan.c:
109 */
110extern int isolate_lru_page(struct page *page);
111extern void putback_lru_page(struct page *page);
112
113/*
114 * in mm/rmap.c:
115 */
116extern pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address);
117
118/*
119 * in mm/memcontrol.c:
120 */
121extern bool cgroup_memory_nokmem;
122
123/*
124 * in mm/page_alloc.c
125 */
 
 
 
 
 
126
127/*
128 * Structure for holding the mostly immutable allocation parameters passed
129 * between functions involved in allocations, including the alloc_pages*
130 * family of functions.
131 *
132 * nodemask, migratetype and highest_zoneidx are initialized only once in
133 * __alloc_pages() and then never change.
134 *
135 * zonelist, preferred_zone and highest_zoneidx are set first in
136 * __alloc_pages() for the fast path, and might be later changed
137 * in __alloc_pages_slowpath(). All other functions pass the whole structure
138 * by a const pointer.
139 */
140struct alloc_context {
141	struct zonelist *zonelist;
142	nodemask_t *nodemask;
143	struct zoneref *preferred_zoneref;
144	int migratetype;
145
146	/*
147	 * highest_zoneidx represents highest usable zone index of
148	 * the allocation request. Due to the nature of the zone,
149	 * memory on lower zone than the highest_zoneidx will be
150	 * protected by lowmem_reserve[highest_zoneidx].
151	 *
152	 * highest_zoneidx is also used by reclaim/compaction to limit
153	 * the target zone since higher zone than this index cannot be
154	 * usable for this allocation request.
155	 */
156	enum zone_type highest_zoneidx;
157	bool spread_dirty_pages;
158};
159
160/*
161 * Locate the struct page for both the matching buddy in our
162 * pair (buddy1) and the combined O(n+1) page they form (page).
163 *
164 * 1) Any buddy B1 will have an order O twin B2 which satisfies
165 * the following equation:
166 *     B2 = B1 ^ (1 << O)
167 * For example, if the starting buddy (buddy2) is #8 its order
168 * 1 buddy is #10:
169 *     B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
170 *
171 * 2) Any buddy B will have an order O+1 parent P which
172 * satisfies the following equation:
173 *     P = B & ~(1 << O)
174 *
175 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
176 */
177static inline unsigned long
178__find_buddy_pfn(unsigned long page_pfn, unsigned int order)
179{
180	return page_pfn ^ (1 << order);
181}
182
183extern struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
184				unsigned long end_pfn, struct zone *zone);
185
186static inline struct page *pageblock_pfn_to_page(unsigned long start_pfn,
187				unsigned long end_pfn, struct zone *zone)
188{
189	if (zone->contiguous)
190		return pfn_to_page(start_pfn);
191
192	return __pageblock_pfn_to_page(start_pfn, end_pfn, zone);
193}
194
195extern int __isolate_free_page(struct page *page, unsigned int order);
196extern void __putback_isolated_page(struct page *page, unsigned int order,
197				    int mt);
198extern void memblock_free_pages(struct page *page, unsigned long pfn,
199					unsigned int order);
200extern void __free_pages_core(struct page *page, unsigned int order);
201extern void prep_compound_page(struct page *page, unsigned int order);
202extern void post_alloc_hook(struct page *page, unsigned int order,
203					gfp_t gfp_flags);
204extern int user_min_free_kbytes;
205
206extern void free_unref_page(struct page *page, unsigned int order);
207extern void free_unref_page_list(struct list_head *list);
208
209extern void zone_pcp_update(struct zone *zone, int cpu_online);
210extern void zone_pcp_reset(struct zone *zone);
211extern void zone_pcp_disable(struct zone *zone);
212extern void zone_pcp_enable(struct zone *zone);
213
214#if defined CONFIG_COMPACTION || defined CONFIG_CMA
215
216/*
217 * in mm/compaction.c
218 */
219/*
220 * compact_control is used to track pages being migrated and the free pages
221 * they are being migrated to during memory compaction. The free_pfn starts
222 * at the end of a zone and migrate_pfn begins at the start. Movable pages
223 * are moved to the end of a zone during a compaction run and the run
224 * completes when free_pfn <= migrate_pfn
225 */
226struct compact_control {
227	struct list_head freepages;	/* List of free pages to migrate to */
228	struct list_head migratepages;	/* List of pages being migrated */
229	unsigned int nr_freepages;	/* Number of isolated free pages */
230	unsigned int nr_migratepages;	/* Number of pages to migrate */
231	unsigned long free_pfn;		/* isolate_freepages search base */
232	/*
233	 * Acts as an in/out parameter to page isolation for migration.
234	 * isolate_migratepages uses it as a search base.
235	 * isolate_migratepages_block will update the value to the next pfn
236	 * after the last isolated one.
237	 */
238	unsigned long migrate_pfn;
239	unsigned long fast_start_pfn;	/* a pfn to start linear scan from */
240	struct zone *zone;
241	unsigned long total_migrate_scanned;
242	unsigned long total_free_scanned;
243	unsigned short fast_search_fail;/* failures to use free list searches */
244	short search_order;		/* order to start a fast search at */
245	const gfp_t gfp_mask;		/* gfp mask of a direct compactor */
246	int order;			/* order a direct compactor needs */
247	int migratetype;		/* migratetype of direct compactor */
248	const unsigned int alloc_flags;	/* alloc flags of a direct compactor */
249	const int highest_zoneidx;	/* zone index of a direct compactor */
250	enum migrate_mode mode;		/* Async or sync migration mode */
251	bool ignore_skip_hint;		/* Scan blocks even if marked skip */
252	bool no_set_skip_hint;		/* Don't mark blocks for skipping */
253	bool ignore_block_suitable;	/* Scan blocks considered unsuitable */
254	bool direct_compaction;		/* False from kcompactd or /proc/... */
255	bool proactive_compaction;	/* kcompactd proactive compaction */
256	bool whole_zone;		/* Whole zone should/has been scanned */
257	bool contended;			/* Signal lock or sched contention */
258	bool rescan;			/* Rescanning the same pageblock */
259	bool alloc_contig;		/* alloc_contig_range allocation */
260};
261
262/*
263 * Used in direct compaction when a page should be taken from the freelists
264 * immediately when one is created during the free path.
265 */
266struct capture_control {
267	struct compact_control *cc;
268	struct page *page;
269};
270
271unsigned long
272isolate_freepages_range(struct compact_control *cc,
273			unsigned long start_pfn, unsigned long end_pfn);
274int
275isolate_migratepages_range(struct compact_control *cc,
276			   unsigned long low_pfn, unsigned long end_pfn);
277#endif
278int find_suitable_fallback(struct free_area *area, unsigned int order,
279			int migratetype, bool only_stealable, bool *can_steal);
280
281/*
282 * This function returns the order of a free page in the buddy system. In
283 * general, page_zone(page)->lock must be held by the caller to prevent the
284 * page from being allocated in parallel and returning garbage as the order.
285 * If a caller does not hold page_zone(page)->lock, it must guarantee that the
286 * page cannot be allocated or merged in parallel. Alternatively, it must
287 * handle invalid values gracefully, and use buddy_order_unsafe() below.
288 */
289static inline unsigned int buddy_order(struct page *page)
290{
291	/* PageBuddy() must be checked by the caller */
292	return page_private(page);
293}
294
295/*
296 * Like buddy_order(), but for callers who cannot afford to hold the zone lock.
297 * PageBuddy() should be checked first by the caller to minimize race window,
298 * and invalid values must be handled gracefully.
299 *
300 * READ_ONCE is used so that if the caller assigns the result into a local
301 * variable and e.g. tests it for valid range before using, the compiler cannot
302 * decide to remove the variable and inline the page_private(page) multiple
303 * times, potentially observing different values in the tests and the actual
304 * use of the result.
305 */
306#define buddy_order_unsafe(page)	READ_ONCE(page_private(page))
307
308/*
309 * These three helpers classifies VMAs for virtual memory accounting.
310 */
311
312/*
313 * Executable code area - executable, not writable, not stack
314 */
315static inline bool is_exec_mapping(vm_flags_t flags)
316{
317	return (flags & (VM_EXEC | VM_WRITE | VM_STACK)) == VM_EXEC;
318}
319
320/*
321 * Stack area - automatically grows in one direction
322 *
323 * VM_GROWSUP / VM_GROWSDOWN VMAs are always private anonymous:
324 * do_mmap() forbids all other combinations.
325 */
326static inline bool is_stack_mapping(vm_flags_t flags)
327{
328	return (flags & VM_STACK) == VM_STACK;
329}
330
331/*
332 * Data area - private, writable, not stack
333 */
334static inline bool is_data_mapping(vm_flags_t flags)
335{
336	return (flags & (VM_WRITE | VM_SHARED | VM_STACK)) == VM_WRITE;
337}
338
339/* mm/util.c */
340void __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma,
341		struct vm_area_struct *prev);
342void __vma_unlink_list(struct mm_struct *mm, struct vm_area_struct *vma);
343
344#ifdef CONFIG_MMU
345extern long populate_vma_page_range(struct vm_area_struct *vma,
346		unsigned long start, unsigned long end, int *locked);
347extern long faultin_vma_page_range(struct vm_area_struct *vma,
348				   unsigned long start, unsigned long end,
349				   bool write, int *locked);
350extern void munlock_vma_pages_range(struct vm_area_struct *vma,
351			unsigned long start, unsigned long end);
352static inline void munlock_vma_pages_all(struct vm_area_struct *vma)
353{
354	munlock_vma_pages_range(vma, vma->vm_start, vma->vm_end);
355}
356
357/*
358 * must be called with vma's mmap_lock held for read or write, and page locked.
359 */
360extern void mlock_vma_page(struct page *page);
361extern unsigned int munlock_vma_page(struct page *page);
362
363extern int mlock_future_check(struct mm_struct *mm, unsigned long flags,
364			      unsigned long len);
365
366/*
367 * Clear the page's PageMlocked().  This can be useful in a situation where
368 * we want to unconditionally remove a page from the pagecache -- e.g.,
369 * on truncation or freeing.
370 *
371 * It is legal to call this function for any page, mlocked or not.
372 * If called for a page that is still mapped by mlocked vmas, all we do
373 * is revert to lazy LRU behaviour -- semantics are not broken.
374 */
375extern void clear_page_mlock(struct page *page);
376
377extern pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma);
378
379/*
380 * At what user virtual address is page expected in vma?
381 * Returns -EFAULT if all of the page is outside the range of vma.
382 * If page is a compound head, the entire compound page is considered.
383 */
384static inline unsigned long
385vma_address(struct page *page, struct vm_area_struct *vma)
386{
387	pgoff_t pgoff;
388	unsigned long address;
389
390	VM_BUG_ON_PAGE(PageKsm(page), page);	/* KSM page->index unusable */
391	pgoff = page_to_pgoff(page);
392	if (pgoff >= vma->vm_pgoff) {
393		address = vma->vm_start +
394			((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
395		/* Check for address beyond vma (or wrapped through 0?) */
396		if (address < vma->vm_start || address >= vma->vm_end)
397			address = -EFAULT;
398	} else if (PageHead(page) &&
399		   pgoff + compound_nr(page) - 1 >= vma->vm_pgoff) {
400		/* Test above avoids possibility of wrap to 0 on 32-bit */
401		address = vma->vm_start;
402	} else {
403		address = -EFAULT;
404	}
405	return address;
406}
407
408/*
409 * Then at what user virtual address will none of the page be found in vma?
410 * Assumes that vma_address() already returned a good starting address.
411 * If page is a compound head, the entire compound page is considered.
412 */
413static inline unsigned long
414vma_address_end(struct page *page, struct vm_area_struct *vma)
415{
416	pgoff_t pgoff;
417	unsigned long address;
418
419	VM_BUG_ON_PAGE(PageKsm(page), page);	/* KSM page->index unusable */
420	pgoff = page_to_pgoff(page) + compound_nr(page);
421	address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
422	/* Check for address beyond vma (or wrapped through 0?) */
423	if (address < vma->vm_start || address > vma->vm_end)
424		address = vma->vm_end;
425	return address;
426}
427
428static inline struct file *maybe_unlock_mmap_for_io(struct vm_fault *vmf,
429						    struct file *fpin)
 
 
 
 
430{
431	int flags = vmf->flags;
432
433	if (fpin)
434		return fpin;
435
436	/*
437	 * FAULT_FLAG_RETRY_NOWAIT means we don't want to wait on page locks or
438	 * anything, so we only pin the file and drop the mmap_lock if only
439	 * FAULT_FLAG_ALLOW_RETRY is set, while this is the first attempt.
440	 */
441	if (fault_flag_allow_retry_first(flags) &&
442	    !(flags & FAULT_FLAG_RETRY_NOWAIT)) {
443		fpin = get_file(vmf->vma->vm_file);
444		mmap_read_unlock(vmf->vma->vm_mm);
445	}
446	return fpin;
447}
448
449#else /* !CONFIG_MMU */
450static inline void clear_page_mlock(struct page *page) { }
451static inline void mlock_vma_page(struct page *page) { }
452static inline void vunmap_range_noflush(unsigned long start, unsigned long end)
453{
454}
455#endif /* !CONFIG_MMU */
456
457/*
458 * Return the mem_map entry representing the 'offset' subpage within
459 * the maximally aligned gigantic page 'base'.  Handle any discontiguity
460 * in the mem_map at MAX_ORDER_NR_PAGES boundaries.
461 */
462static inline struct page *mem_map_offset(struct page *base, int offset)
463{
464	if (unlikely(offset >= MAX_ORDER_NR_PAGES))
465		return nth_page(base, offset);
466	return base + offset;
467}
468
469/*
470 * Iterator over all subpages within the maximally aligned gigantic
471 * page 'base'.  Handle any discontiguity in the mem_map.
472 */
473static inline struct page *mem_map_next(struct page *iter,
474						struct page *base, int offset)
475{
476	if (unlikely((offset & (MAX_ORDER_NR_PAGES - 1)) == 0)) {
477		unsigned long pfn = page_to_pfn(base) + offset;
478		if (!pfn_valid(pfn))
479			return NULL;
480		return pfn_to_page(pfn);
481	}
482	return iter + 1;
483}
484
 
 
 
 
 
 
 
 
 
 
 
 
485/* Memory initialisation debug and verification */
486enum mminit_level {
487	MMINIT_WARNING,
488	MMINIT_VERIFY,
489	MMINIT_TRACE
490};
491
492#ifdef CONFIG_DEBUG_MEMORY_INIT
493
494extern int mminit_loglevel;
495
496#define mminit_dprintk(level, prefix, fmt, arg...) \
497do { \
498	if (level < mminit_loglevel) { \
499		if (level <= MMINIT_WARNING) \
500			pr_warn("mminit::" prefix " " fmt, ##arg);	\
501		else \
502			printk(KERN_DEBUG "mminit::" prefix " " fmt, ##arg); \
503	} \
504} while (0)
505
506extern void mminit_verify_pageflags_layout(void);
 
 
507extern void mminit_verify_zonelist(void);
 
508#else
509
510static inline void mminit_dprintk(enum mminit_level level,
511				const char *prefix, const char *fmt, ...)
512{
513}
514
515static inline void mminit_verify_pageflags_layout(void)
516{
517}
518
 
 
 
 
 
519static inline void mminit_verify_zonelist(void)
520{
521}
522#endif /* CONFIG_DEBUG_MEMORY_INIT */
523
524/* mminit_validate_memmodel_limits is independent of CONFIG_DEBUG_MEMORY_INIT */
525#if defined(CONFIG_SPARSEMEM)
526extern void mminit_validate_memmodel_limits(unsigned long *start_pfn,
527				unsigned long *end_pfn);
528#else
529static inline void mminit_validate_memmodel_limits(unsigned long *start_pfn,
530				unsigned long *end_pfn)
531{
532}
533#endif /* CONFIG_SPARSEMEM */
534
535#define NODE_RECLAIM_NOSCAN	-2
536#define NODE_RECLAIM_FULL	-1
537#define NODE_RECLAIM_SOME	0
538#define NODE_RECLAIM_SUCCESS	1
539
540#ifdef CONFIG_NUMA
541extern int node_reclaim(struct pglist_data *, gfp_t, unsigned int);
542#else
543static inline int node_reclaim(struct pglist_data *pgdat, gfp_t mask,
544				unsigned int order)
545{
546	return NODE_RECLAIM_NOSCAN;
547}
548#endif
549
550extern int hwpoison_filter(struct page *p);
551
552extern u32 hwpoison_filter_dev_major;
553extern u32 hwpoison_filter_dev_minor;
554extern u64 hwpoison_filter_flags_mask;
555extern u64 hwpoison_filter_flags_value;
556extern u64 hwpoison_filter_memcg;
557extern u32 hwpoison_filter_enable;
558
559extern unsigned long  __must_check vm_mmap_pgoff(struct file *, unsigned long,
560        unsigned long, unsigned long,
561        unsigned long, unsigned long);
562
563extern void set_pageblock_order(void);
564unsigned int reclaim_clean_pages_from_list(struct zone *zone,
565					    struct list_head *page_list);
566/* The ALLOC_WMARK bits are used as an index to zone->watermark */
567#define ALLOC_WMARK_MIN		WMARK_MIN
568#define ALLOC_WMARK_LOW		WMARK_LOW
569#define ALLOC_WMARK_HIGH	WMARK_HIGH
570#define ALLOC_NO_WATERMARKS	0x04 /* don't check watermarks at all */
571
572/* Mask to get the watermark bits */
573#define ALLOC_WMARK_MASK	(ALLOC_NO_WATERMARKS-1)
574
575/*
576 * Only MMU archs have async oom victim reclaim - aka oom_reaper so we
577 * cannot assume a reduced access to memory reserves is sufficient for
578 * !MMU
579 */
580#ifdef CONFIG_MMU
581#define ALLOC_OOM		0x08
582#else
583#define ALLOC_OOM		ALLOC_NO_WATERMARKS
584#endif
585
586#define ALLOC_HARDER		 0x10 /* try to alloc harder */
587#define ALLOC_HIGH		 0x20 /* __GFP_HIGH set */
588#define ALLOC_CPUSET		 0x40 /* check for correct cpuset */
589#define ALLOC_CMA		 0x80 /* allow allocations from CMA areas */
590#ifdef CONFIG_ZONE_DMA32
591#define ALLOC_NOFRAGMENT	0x100 /* avoid mixing pageblock types */
592#else
593#define ALLOC_NOFRAGMENT	  0x0
594#endif
595#define ALLOC_KSWAPD		0x800 /* allow waking of kswapd, __GFP_KSWAPD_RECLAIM set */
596
597enum ttu_flags;
598struct tlbflush_unmap_batch;
599
600
601/*
602 * only for MM internal work items which do not depend on
603 * any allocations or locks which might depend on allocations
604 */
605extern struct workqueue_struct *mm_percpu_wq;
606
607#ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
608void try_to_unmap_flush(void);
609void try_to_unmap_flush_dirty(void);
610void flush_tlb_batched_pending(struct mm_struct *mm);
611#else
612static inline void try_to_unmap_flush(void)
613{
614}
615static inline void try_to_unmap_flush_dirty(void)
616{
617}
618static inline void flush_tlb_batched_pending(struct mm_struct *mm)
619{
620}
621#endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
622
623extern const struct trace_print_flags pageflag_names[];
624extern const struct trace_print_flags vmaflag_names[];
625extern const struct trace_print_flags gfpflag_names[];
626
627static inline bool is_migrate_highatomic(enum migratetype migratetype)
628{
629	return migratetype == MIGRATE_HIGHATOMIC;
630}
631
632static inline bool is_migrate_highatomic_page(struct page *page)
633{
634	return get_pageblock_migratetype(page) == MIGRATE_HIGHATOMIC;
635}
636
637void setup_zone_pageset(struct zone *zone);
638
639struct migration_target_control {
640	int nid;		/* preferred node id */
641	nodemask_t *nmask;
642	gfp_t gfp_mask;
643};
644
645/*
646 * mm/vmalloc.c
647 */
648#ifdef CONFIG_MMU
649int vmap_pages_range_noflush(unsigned long addr, unsigned long end,
650                pgprot_t prot, struct page **pages, unsigned int page_shift);
651#else
652static inline
653int vmap_pages_range_noflush(unsigned long addr, unsigned long end,
654                pgprot_t prot, struct page **pages, unsigned int page_shift)
655{
656	return -EINVAL;
657}
658#endif
659
660void vunmap_range_noflush(unsigned long start, unsigned long end);
661
662int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
663		      unsigned long addr, int page_nid, int *flags);
664
665#endif	/* __MM_INTERNAL_H */