Linux Audio

Check our new training course

Loading...
v3.1
 
   1/*
   2 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
   3 * All Rights Reserved.
   4 *
   5 * This program is free software; you can redistribute it and/or
   6 * modify it under the terms of the GNU General Public License as
   7 * published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope that it would be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write the Free Software Foundation,
  16 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
  17 */
  18#include "xfs.h"
  19#include "xfs_fs.h"
  20#include "xfs_types.h"
  21#include "xfs_bit.h"
  22#include "xfs_log.h"
  23#include "xfs_inum.h"
  24#include "xfs_trans.h"
  25#include "xfs_sb.h"
  26#include "xfs_ag.h"
  27#include "xfs_mount.h"
  28#include "xfs_trans_priv.h"
  29#include "xfs_bmap_btree.h"
  30#include "xfs_dinode.h"
  31#include "xfs_inode.h"
 
  32#include "xfs_inode_item.h"
  33#include "xfs_error.h"
  34#include "xfs_trace.h"
 
 
 
 
 
 
  35
 
  36
  37kmem_zone_t	*xfs_ili_zone;		/* inode log item zone */
  38
  39static inline struct xfs_inode_log_item *INODE_ITEM(struct xfs_log_item *lip)
  40{
  41	return container_of(lip, struct xfs_inode_log_item, ili_item);
  42}
  43
 
 
 
 
 
 
  44
  45/*
  46 * This returns the number of iovecs needed to log the given inode item.
 
 
 
  47 *
  48 * We need one iovec for the inode log format structure, one for the
  49 * inode core, and possibly one for the inode data/extents/b-tree root
  50 * and one for the inode attribute data/extents/b-tree root.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  51 */
  52STATIC uint
  53xfs_inode_item_size(
 
  54	struct xfs_log_item	*lip)
  55{
  56	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
  57	struct xfs_inode	*ip = iip->ili_inode;
  58	uint			nvecs = 2;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  59
  60	/*
  61	 * Only log the data/extents/b-tree root if there is something
  62	 * left to log.
 
 
  63	 */
  64	iip->ili_format.ilf_fields |= XFS_ILOG_CORE;
 
  65
  66	switch (ip->i_d.di_format) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  67	case XFS_DINODE_FMT_EXTENTS:
  68		iip->ili_format.ilf_fields &=
  69			~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
  70			  XFS_ILOG_DEV | XFS_ILOG_UUID);
  71		if ((iip->ili_format.ilf_fields & XFS_ILOG_DEXT) &&
  72		    (ip->i_d.di_nextents > 0) &&
  73		    (ip->i_df.if_bytes > 0)) {
  74			ASSERT(ip->i_df.if_u1.if_extents != NULL);
  75			nvecs++;
  76		} else {
  77			iip->ili_format.ilf_fields &= ~XFS_ILOG_DEXT;
  78		}
  79		break;
  80
  81	case XFS_DINODE_FMT_BTREE:
  82		ASSERT(ip->i_df.if_ext_max ==
  83		       XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t));
  84		iip->ili_format.ilf_fields &=
  85			~(XFS_ILOG_DDATA | XFS_ILOG_DEXT |
  86			  XFS_ILOG_DEV | XFS_ILOG_UUID);
  87		if ((iip->ili_format.ilf_fields & XFS_ILOG_DBROOT) &&
  88		    (ip->i_df.if_broot_bytes > 0)) {
  89			ASSERT(ip->i_df.if_broot != NULL);
  90			nvecs++;
  91		} else {
  92			ASSERT(!(iip->ili_format.ilf_fields &
  93				 XFS_ILOG_DBROOT));
  94#ifdef XFS_TRANS_DEBUG
  95			if (iip->ili_root_size > 0) {
  96				ASSERT(iip->ili_root_size ==
  97				       ip->i_df.if_broot_bytes);
  98				ASSERT(memcmp(iip->ili_orig_root,
  99					    ip->i_df.if_broot,
 100					    iip->ili_root_size) == 0);
 101			} else {
 102				ASSERT(ip->i_df.if_broot_bytes == 0);
 103			}
 104#endif
 105			iip->ili_format.ilf_fields &= ~XFS_ILOG_DBROOT;
 106		}
 107		break;
 108
 109	case XFS_DINODE_FMT_LOCAL:
 110		iip->ili_format.ilf_fields &=
 111			~(XFS_ILOG_DEXT | XFS_ILOG_DBROOT |
 112			  XFS_ILOG_DEV | XFS_ILOG_UUID);
 113		if ((iip->ili_format.ilf_fields & XFS_ILOG_DDATA) &&
 114		    (ip->i_df.if_bytes > 0)) {
 115			ASSERT(ip->i_df.if_u1.if_data != NULL);
 116			ASSERT(ip->i_d.di_size > 0);
 117			nvecs++;
 118		} else {
 119			iip->ili_format.ilf_fields &= ~XFS_ILOG_DDATA;
 120		}
 121		break;
 122
 123	case XFS_DINODE_FMT_DEV:
 124		iip->ili_format.ilf_fields &=
 125			~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
 126			  XFS_ILOG_DEXT | XFS_ILOG_UUID);
 127		break;
 128
 129	case XFS_DINODE_FMT_UUID:
 130		iip->ili_format.ilf_fields &=
 131			~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
 132			  XFS_ILOG_DEXT | XFS_ILOG_DEV);
 133		break;
 134
 135	default:
 136		ASSERT(0);
 137		break;
 138	}
 
 139
 140	/*
 141	 * If there are no attributes associated with this file,
 142	 * then there cannot be anything more to log.
 143	 * Clear all attribute-related log flags.
 144	 */
 145	if (!XFS_IFORK_Q(ip)) {
 146		iip->ili_format.ilf_fields &=
 147			~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT);
 148		return nvecs;
 149	}
 150
 151	/*
 152	 * Log any necessary attribute data.
 153	 */
 154	switch (ip->i_d.di_aformat) {
 155	case XFS_DINODE_FMT_EXTENTS:
 156		iip->ili_format.ilf_fields &=
 157			~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT);
 158		if ((iip->ili_format.ilf_fields & XFS_ILOG_AEXT) &&
 159		    (ip->i_d.di_anextents > 0) &&
 160		    (ip->i_afp->if_bytes > 0)) {
 161			ASSERT(ip->i_afp->if_u1.if_extents != NULL);
 162			nvecs++;
 163		} else {
 164			iip->ili_format.ilf_fields &= ~XFS_ILOG_AEXT;
 165		}
 166		break;
 167
 168	case XFS_DINODE_FMT_BTREE:
 169		iip->ili_format.ilf_fields &=
 170			~(XFS_ILOG_ADATA | XFS_ILOG_AEXT);
 171		if ((iip->ili_format.ilf_fields & XFS_ILOG_ABROOT) &&
 172		    (ip->i_afp->if_broot_bytes > 0)) {
 173			ASSERT(ip->i_afp->if_broot != NULL);
 174			nvecs++;
 175		} else {
 176			iip->ili_format.ilf_fields &= ~XFS_ILOG_ABROOT;
 177		}
 178		break;
 179
 180	case XFS_DINODE_FMT_LOCAL:
 181		iip->ili_format.ilf_fields &=
 182			~(XFS_ILOG_AEXT | XFS_ILOG_ABROOT);
 183		if ((iip->ili_format.ilf_fields & XFS_ILOG_ADATA) &&
 184		    (ip->i_afp->if_bytes > 0)) {
 185			ASSERT(ip->i_afp->if_u1.if_data != NULL);
 186			nvecs++;
 187		} else {
 188			iip->ili_format.ilf_fields &= ~XFS_ILOG_ADATA;
 189		}
 190		break;
 191
 192	default:
 193		ASSERT(0);
 194		break;
 195	}
 196
 197	return nvecs;
 198}
 199
 200/*
 201 * xfs_inode_item_format_extents - convert in-core extents to on-disk form
 202 *
 203 * For either the data or attr fork in extent format, we need to endian convert
 204 * the in-core extent as we place them into the on-disk inode. In this case, we
 205 * need to do this conversion before we write the extents into the log. Because
 206 * we don't have the disk inode to write into here, we allocate a buffer and
 207 * format the extents into it via xfs_iextents_copy(). We free the buffer in
 208 * the unlock routine after the copy for the log has been made.
 209 *
 210 * In the case of the data fork, the in-core and on-disk fork sizes can be
 211 * different due to delayed allocation extents. We only log on-disk extents
 212 * here, so always use the physical fork size to determine the size of the
 213 * buffer we need to allocate.
 214 */
 215STATIC void
 216xfs_inode_item_format_extents(
 217	struct xfs_inode	*ip,
 218	struct xfs_log_iovec	*vecp,
 219	int			whichfork,
 220	int			type)
 221{
 222	xfs_bmbt_rec_t		*ext_buffer;
 223
 224	ext_buffer = kmem_alloc(XFS_IFORK_SIZE(ip, whichfork), KM_SLEEP);
 225	if (whichfork == XFS_DATA_FORK)
 226		ip->i_itemp->ili_extents_buf = ext_buffer;
 227	else
 228		ip->i_itemp->ili_aextents_buf = ext_buffer;
 229
 230	vecp->i_addr = ext_buffer;
 231	vecp->i_len = xfs_iextents_copy(ip, ext_buffer, whichfork);
 232	vecp->i_type = type;
 
 
 
 
 233}
 234
 235/*
 236 * This is called to fill in the vector of log iovecs for the
 237 * given inode log item.  It fills the first item with an inode
 238 * log format structure, the second with the on-disk inode structure,
 239 * and a possible third and/or fourth with the inode data/extents/b-tree
 240 * root and inode attributes data/extents/b-tree root.
 241 */
 242STATIC void
 243xfs_inode_item_format(
 244	struct xfs_log_item	*lip,
 245	struct xfs_log_iovec	*vecp)
 
 
 246{
 247	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
 248	struct xfs_inode	*ip = iip->ili_inode;
 249	uint			nvecs;
 250	size_t			data_bytes;
 251	xfs_mount_t		*mp;
 252
 253	vecp->i_addr = &iip->ili_format;
 254	vecp->i_len  = sizeof(xfs_inode_log_format_t);
 255	vecp->i_type = XLOG_REG_TYPE_IFORMAT;
 256	vecp++;
 257	nvecs	     = 1;
 258
 259	/*
 260	 * Clear i_update_core if the timestamps (or any other
 261	 * non-transactional modification) need flushing/logging
 262	 * and we're about to log them with the rest of the core.
 263	 *
 264	 * This is the same logic as xfs_iflush() but this code can't
 265	 * run at the same time as xfs_iflush because we're in commit
 266	 * processing here and so we have the inode lock held in
 267	 * exclusive mode.  Although it doesn't really matter
 268	 * for the timestamps if both routines were to grab the
 269	 * timestamps or not.  That would be ok.
 270	 *
 271	 * We clear i_update_core before copying out the data.
 272	 * This is for coordination with our timestamp updates
 273	 * that don't hold the inode lock. They will always
 274	 * update the timestamps BEFORE setting i_update_core,
 275	 * so if we clear i_update_core after they set it we
 276	 * are guaranteed to see their updates to the timestamps
 277	 * either here.  Likewise, if they set it after we clear it
 278	 * here, we'll see it either on the next commit of this
 279	 * inode or the next time the inode gets flushed via
 280	 * xfs_iflush().  This depends on strongly ordered memory
 281	 * semantics, but we have that.  We use the SYNCHRONIZE
 282	 * macro to make sure that the compiler does not reorder
 283	 * the i_update_core access below the data copy below.
 284	 */
 285	if (ip->i_update_core)  {
 286		ip->i_update_core = 0;
 287		SYNCHRONIZE();
 288	}
 289
 290	/*
 291	 * Make sure to get the latest timestamps from the Linux inode.
 292	 */
 293	xfs_synchronize_times(ip);
 294
 295	vecp->i_addr = &ip->i_d;
 296	vecp->i_len  = sizeof(struct xfs_icdinode);
 297	vecp->i_type = XLOG_REG_TYPE_ICORE;
 298	vecp++;
 299	nvecs++;
 300	iip->ili_format.ilf_fields |= XFS_ILOG_CORE;
 301
 302	/*
 303	 * If this is really an old format inode, then we need to
 304	 * log it as such.  This means that we have to copy the link
 305	 * count from the new field to the old.  We don't have to worry
 306	 * about the new fields, because nothing trusts them as long as
 307	 * the old inode version number is there.  If the superblock already
 308	 * has a new version number, then we don't bother converting back.
 309	 */
 310	mp = ip->i_mount;
 311	ASSERT(ip->i_d.di_version == 1 || xfs_sb_version_hasnlink(&mp->m_sb));
 312	if (ip->i_d.di_version == 1) {
 313		if (!xfs_sb_version_hasnlink(&mp->m_sb)) {
 314			/*
 315			 * Convert it back.
 316			 */
 317			ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
 318			ip->i_d.di_onlink = ip->i_d.di_nlink;
 319		} else {
 320			/*
 321			 * The superblock version has already been bumped,
 322			 * so just make the conversion to the new inode
 323			 * format permanent.
 324			 */
 325			ip->i_d.di_version = 2;
 326			ip->i_d.di_onlink = 0;
 327			memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
 328		}
 329	}
 330
 331	switch (ip->i_d.di_format) {
 332	case XFS_DINODE_FMT_EXTENTS:
 333		ASSERT(!(iip->ili_format.ilf_fields &
 334			 (XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
 335			  XFS_ILOG_DEV | XFS_ILOG_UUID)));
 336		if (iip->ili_format.ilf_fields & XFS_ILOG_DEXT) {
 337			ASSERT(ip->i_df.if_bytes > 0);
 338			ASSERT(ip->i_df.if_u1.if_extents != NULL);
 339			ASSERT(ip->i_d.di_nextents > 0);
 340			ASSERT(iip->ili_extents_buf == NULL);
 341			ASSERT((ip->i_df.if_bytes /
 342				(uint)sizeof(xfs_bmbt_rec_t)) > 0);
 343#ifdef XFS_NATIVE_HOST
 344                       if (ip->i_d.di_nextents == ip->i_df.if_bytes /
 345                                               (uint)sizeof(xfs_bmbt_rec_t)) {
 346				/*
 347				 * There are no delayed allocation
 348				 * extents, so just point to the
 349				 * real extents array.
 350				 */
 351				vecp->i_addr = ip->i_df.if_u1.if_extents;
 352				vecp->i_len = ip->i_df.if_bytes;
 353				vecp->i_type = XLOG_REG_TYPE_IEXT;
 354			} else
 355#endif
 356			{
 357				xfs_inode_item_format_extents(ip, vecp,
 358					XFS_DATA_FORK, XLOG_REG_TYPE_IEXT);
 359			}
 360			ASSERT(vecp->i_len <= ip->i_df.if_bytes);
 361			iip->ili_format.ilf_dsize = vecp->i_len;
 362			vecp++;
 363			nvecs++;
 364		}
 365		break;
 366
 367	case XFS_DINODE_FMT_BTREE:
 368		ASSERT(!(iip->ili_format.ilf_fields &
 369			 (XFS_ILOG_DDATA | XFS_ILOG_DEXT |
 370			  XFS_ILOG_DEV | XFS_ILOG_UUID)));
 371		if (iip->ili_format.ilf_fields & XFS_ILOG_DBROOT) {
 372			ASSERT(ip->i_df.if_broot_bytes > 0);
 373			ASSERT(ip->i_df.if_broot != NULL);
 374			vecp->i_addr = ip->i_df.if_broot;
 375			vecp->i_len = ip->i_df.if_broot_bytes;
 376			vecp->i_type = XLOG_REG_TYPE_IBROOT;
 377			vecp++;
 378			nvecs++;
 379			iip->ili_format.ilf_dsize = ip->i_df.if_broot_bytes;
 
 
 
 380		}
 381		break;
 382
 383	case XFS_DINODE_FMT_LOCAL:
 384		ASSERT(!(iip->ili_format.ilf_fields &
 385			 (XFS_ILOG_DBROOT | XFS_ILOG_DEXT |
 386			  XFS_ILOG_DEV | XFS_ILOG_UUID)));
 387		if (iip->ili_format.ilf_fields & XFS_ILOG_DDATA) {
 388			ASSERT(ip->i_df.if_bytes > 0);
 389			ASSERT(ip->i_df.if_u1.if_data != NULL);
 390			ASSERT(ip->i_d.di_size > 0);
 391
 392			vecp->i_addr = ip->i_df.if_u1.if_data;
 393			/*
 394			 * Round i_bytes up to a word boundary.
 395			 * The underlying memory is guaranteed to
 396			 * to be there by xfs_idata_realloc().
 397			 */
 398			data_bytes = roundup(ip->i_df.if_bytes, 4);
 399			ASSERT((ip->i_df.if_real_bytes == 0) ||
 400			       (ip->i_df.if_real_bytes == data_bytes));
 401			vecp->i_len = (int)data_bytes;
 402			vecp->i_type = XLOG_REG_TYPE_ILOCAL;
 403			vecp++;
 404			nvecs++;
 405			iip->ili_format.ilf_dsize = (unsigned)data_bytes;
 406		}
 407		break;
 408
 409	case XFS_DINODE_FMT_DEV:
 410		ASSERT(!(iip->ili_format.ilf_fields &
 411			 (XFS_ILOG_DBROOT | XFS_ILOG_DEXT |
 412			  XFS_ILOG_DDATA | XFS_ILOG_UUID)));
 413		if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) {
 414			iip->ili_format.ilf_u.ilfu_rdev =
 415				ip->i_df.if_u2.if_rdev;
 416		}
 417		break;
 418
 419	case XFS_DINODE_FMT_UUID:
 420		ASSERT(!(iip->ili_format.ilf_fields &
 421			 (XFS_ILOG_DBROOT | XFS_ILOG_DEXT |
 422			  XFS_ILOG_DDATA | XFS_ILOG_DEV)));
 423		if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) {
 424			iip->ili_format.ilf_u.ilfu_uuid =
 425				ip->i_df.if_u2.if_uuid;
 426		}
 427		break;
 428
 429	default:
 430		ASSERT(0);
 431		break;
 432	}
 
 433
 434	/*
 435	 * If there are no attributes associated with the file,
 436	 * then we're done.
 437	 * Assert that no attribute-related log flags are set.
 438	 */
 439	if (!XFS_IFORK_Q(ip)) {
 440		ASSERT(nvecs == lip->li_desc->lid_size);
 441		iip->ili_format.ilf_size = nvecs;
 442		ASSERT(!(iip->ili_format.ilf_fields &
 443			 (XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT)));
 444		return;
 445	}
 446
 447	switch (ip->i_d.di_aformat) {
 448	case XFS_DINODE_FMT_EXTENTS:
 449		ASSERT(!(iip->ili_format.ilf_fields &
 450			 (XFS_ILOG_ADATA | XFS_ILOG_ABROOT)));
 451		if (iip->ili_format.ilf_fields & XFS_ILOG_AEXT) {
 452#ifdef DEBUG
 453			int nrecs = ip->i_afp->if_bytes /
 454				(uint)sizeof(xfs_bmbt_rec_t);
 455			ASSERT(nrecs > 0);
 456			ASSERT(nrecs == ip->i_d.di_anextents);
 457			ASSERT(ip->i_afp->if_bytes > 0);
 458			ASSERT(ip->i_afp->if_u1.if_extents != NULL);
 459			ASSERT(ip->i_d.di_anextents > 0);
 460#endif
 461#ifdef XFS_NATIVE_HOST
 462			/*
 463			 * There are not delayed allocation extents
 464			 * for attributes, so just point at the array.
 465			 */
 466			vecp->i_addr = ip->i_afp->if_u1.if_extents;
 467			vecp->i_len = ip->i_afp->if_bytes;
 468			vecp->i_type = XLOG_REG_TYPE_IATTR_EXT;
 469#else
 470			ASSERT(iip->ili_aextents_buf == NULL);
 471			xfs_inode_item_format_extents(ip, vecp,
 472					XFS_ATTR_FORK, XLOG_REG_TYPE_IATTR_EXT);
 473#endif
 474			iip->ili_format.ilf_asize = vecp->i_len;
 475			vecp++;
 476			nvecs++;
 477		}
 478		break;
 479
 480	case XFS_DINODE_FMT_BTREE:
 481		ASSERT(!(iip->ili_format.ilf_fields &
 482			 (XFS_ILOG_ADATA | XFS_ILOG_AEXT)));
 483		if (iip->ili_format.ilf_fields & XFS_ILOG_ABROOT) {
 484			ASSERT(ip->i_afp->if_broot_bytes > 0);
 485			ASSERT(ip->i_afp->if_broot != NULL);
 486			vecp->i_addr = ip->i_afp->if_broot;
 487			vecp->i_len = ip->i_afp->if_broot_bytes;
 488			vecp->i_type = XLOG_REG_TYPE_IATTR_BROOT;
 489			vecp++;
 490			nvecs++;
 491			iip->ili_format.ilf_asize = ip->i_afp->if_broot_bytes;
 
 
 
 492		}
 493		break;
 494
 495	case XFS_DINODE_FMT_LOCAL:
 496		ASSERT(!(iip->ili_format.ilf_fields &
 497			 (XFS_ILOG_ABROOT | XFS_ILOG_AEXT)));
 498		if (iip->ili_format.ilf_fields & XFS_ILOG_ADATA) {
 499			ASSERT(ip->i_afp->if_bytes > 0);
 500			ASSERT(ip->i_afp->if_u1.if_data != NULL);
 501
 502			vecp->i_addr = ip->i_afp->if_u1.if_data;
 503			/*
 504			 * Round i_bytes up to a word boundary.
 505			 * The underlying memory is guaranteed to
 506			 * to be there by xfs_idata_realloc().
 507			 */
 508			data_bytes = roundup(ip->i_afp->if_bytes, 4);
 509			ASSERT((ip->i_afp->if_real_bytes == 0) ||
 510			       (ip->i_afp->if_real_bytes == data_bytes));
 511			vecp->i_len = (int)data_bytes;
 512			vecp->i_type = XLOG_REG_TYPE_IATTR_LOCAL;
 513			vecp++;
 514			nvecs++;
 515			iip->ili_format.ilf_asize = (unsigned)data_bytes;
 516		}
 517		break;
 518
 519	default:
 520		ASSERT(0);
 521		break;
 522	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 523
 524	ASSERT(nvecs == lip->li_desc->lid_size);
 525	iip->ili_format.ilf_size = nvecs;
 526}
 527
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 528
 529/*
 530 * This is called to pin the inode associated with the inode log
 531 * item in memory so it cannot be written out.
 532 */
 533STATIC void
 534xfs_inode_item_pin(
 535	struct xfs_log_item	*lip)
 536{
 537	struct xfs_inode	*ip = INODE_ITEM(lip)->ili_inode;
 538
 539	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
 
 540
 541	trace_xfs_inode_pin(ip, _RET_IP_);
 542	atomic_inc(&ip->i_pincount);
 543}
 544
 545
 546/*
 547 * This is called to unpin the inode associated with the inode log
 548 * item which was previously pinned with a call to xfs_inode_item_pin().
 549 *
 550 * Also wake up anyone in xfs_iunpin_wait() if the count goes to 0.
 
 
 
 
 
 
 551 */
 552STATIC void
 553xfs_inode_item_unpin(
 554	struct xfs_log_item	*lip,
 555	int			remove)
 556{
 557	struct xfs_inode	*ip = INODE_ITEM(lip)->ili_inode;
 558
 559	trace_xfs_inode_unpin(ip, _RET_IP_);
 
 560	ASSERT(atomic_read(&ip->i_pincount) > 0);
 561	if (atomic_dec_and_test(&ip->i_pincount))
 562		wake_up(&ip->i_ipin_wait);
 563}
 564
 565/*
 566 * This is called to attempt to lock the inode associated with this
 567 * inode log item, in preparation for the push routine which does the actual
 568 * iflush.  Don't sleep on the inode lock or the flush lock.
 569 *
 570 * If the flush lock is already held, indicating that the inode has
 571 * been or is in the process of being flushed, then (ideally) we'd like to
 572 * see if the inode's buffer is still incore, and if so give it a nudge.
 573 * We delay doing so until the pushbuf routine, though, to avoid holding
 574 * the AIL lock across a call to the blackhole which is the buffer cache.
 575 * Also we don't want to sleep in any device strategy routines, which can happen
 576 * if we do the subsequent bawrite in here.
 577 */
 578STATIC uint
 579xfs_inode_item_trylock(
 580	struct xfs_log_item	*lip)
 
 
 
 581{
 582	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
 583	struct xfs_inode	*ip = iip->ili_inode;
 
 
 
 584
 585	if (xfs_ipincount(ip) > 0)
 
 
 
 
 
 
 
 
 
 
 586		return XFS_ITEM_PINNED;
 587
 588	if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED))
 
 
 
 589		return XFS_ITEM_LOCKED;
 590
 591	if (!xfs_iflock_nowait(ip)) {
 592		/*
 593		 * inode has already been flushed to the backing buffer,
 594		 * leave it locked in shared mode, pushbuf routine will
 595		 * unlock it.
 596		 */
 597		return XFS_ITEM_PUSHBUF;
 598	}
 599
 600	/* Stale items should force out the iclog */
 601	if (ip->i_flags & XFS_ISTALE) {
 602		xfs_ifunlock(ip);
 
 
 
 
 
 
 
 
 
 
 603		/*
 604		 * we hold the AIL lock - notify the unlock routine of this
 605		 * so it doesn't try to get the lock again.
 606		 */
 607		xfs_iunlock(ip, XFS_ILOCK_SHARED|XFS_IUNLOCK_NONOTIFY);
 608		return XFS_ITEM_PINNED;
 
 609	}
 610
 611#ifdef DEBUG
 612	if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
 613		ASSERT(iip->ili_format.ilf_fields != 0);
 614		ASSERT(iip->ili_logged == 0);
 615		ASSERT(lip->li_flags & XFS_LI_IN_AIL);
 616	}
 617#endif
 618	return XFS_ITEM_SUCCESS;
 619}
 620
 621/*
 622 * Unlock the inode associated with the inode log item.
 623 * Clear the fields of the inode and inode log item that
 624 * are specific to the current transaction.  If the
 625 * hold flags is set, do not unlock the inode.
 626 */
 627STATIC void
 628xfs_inode_item_unlock(
 629	struct xfs_log_item	*lip)
 630{
 631	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
 632	struct xfs_inode	*ip = iip->ili_inode;
 633	unsigned short		lock_flags;
 634
 635	ASSERT(ip->i_itemp != NULL);
 636	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
 637
 638	/*
 639	 * If the inode needed a separate buffer with which to log
 640	 * its extents, then free it now.
 641	 */
 642	if (iip->ili_extents_buf != NULL) {
 643		ASSERT(ip->i_d.di_format == XFS_DINODE_FMT_EXTENTS);
 644		ASSERT(ip->i_d.di_nextents > 0);
 645		ASSERT(iip->ili_format.ilf_fields & XFS_ILOG_DEXT);
 646		ASSERT(ip->i_df.if_bytes > 0);
 647		kmem_free(iip->ili_extents_buf);
 648		iip->ili_extents_buf = NULL;
 649	}
 650	if (iip->ili_aextents_buf != NULL) {
 651		ASSERT(ip->i_d.di_aformat == XFS_DINODE_FMT_EXTENTS);
 652		ASSERT(ip->i_d.di_anextents > 0);
 653		ASSERT(iip->ili_format.ilf_fields & XFS_ILOG_AEXT);
 654		ASSERT(ip->i_afp->if_bytes > 0);
 655		kmem_free(iip->ili_aextents_buf);
 656		iip->ili_aextents_buf = NULL;
 657	}
 658
 659	lock_flags = iip->ili_lock_flags;
 660	iip->ili_lock_flags = 0;
 661	if (lock_flags) {
 662		xfs_iunlock(ip, lock_flags);
 663		IRELE(ip);
 664	}
 665}
 666
 667/*
 668 * This is called to find out where the oldest active copy of the inode log
 669 * item in the on disk log resides now that the last log write of it completed
 670 * at the given lsn.  Since we always re-log all dirty data in an inode, the
 671 * latest copy in the on disk log is the only one that matters.  Therefore,
 672 * simply return the given lsn.
 673 *
 674 * If the inode has been marked stale because the cluster is being freed, we
 675 * don't want to (re-)insert this inode into the AIL. There is a race condition
 676 * where the cluster buffer may be unpinned before the inode is inserted into
 677 * the AIL during transaction committed processing. If the buffer is unpinned
 678 * before the inode item has been committed and inserted, then it is possible
 679 * for the buffer to be written and IO completes before the inode is inserted
 680 * into the AIL. In that case, we'd be inserting a clean, stale inode into the
 681 * AIL which will never get removed. It will, however, get reclaimed which
 682 * triggers an assert in xfs_inode_free() complaining about freein an inode
 683 * still in the AIL.
 684 *
 685 * To avoid this, just unpin the inode directly and return a LSN of -1 so the
 686 * transaction committed code knows that it does not need to do any further
 687 * processing on the item.
 688 */
 689STATIC xfs_lsn_t
 690xfs_inode_item_committed(
 691	struct xfs_log_item	*lip,
 692	xfs_lsn_t		lsn)
 693{
 694	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
 695	struct xfs_inode	*ip = iip->ili_inode;
 696
 697	if (xfs_iflags_test(ip, XFS_ISTALE)) {
 698		xfs_inode_item_unpin(lip, 0);
 699		return -1;
 700	}
 701	return lsn;
 702}
 703
 704/*
 705 * This gets called by xfs_trans_push_ail(), when IOP_TRYLOCK
 706 * failed to get the inode flush lock but did get the inode locked SHARED.
 707 * Here we're trying to see if the inode buffer is incore, and if so whether it's
 708 * marked delayed write. If that's the case, we'll promote it and that will
 709 * allow the caller to write the buffer by triggering the xfsbufd to run.
 710 */
 711STATIC bool
 712xfs_inode_item_pushbuf(
 713	struct xfs_log_item	*lip)
 714{
 715	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
 716	struct xfs_inode	*ip = iip->ili_inode;
 717	struct xfs_buf		*bp;
 718	bool			ret = true;
 719
 720	ASSERT(xfs_isilocked(ip, XFS_ILOCK_SHARED));
 721
 722	/*
 723	 * If a flush is not in progress anymore, chances are that the
 724	 * inode was taken off the AIL. So, just get out.
 725	 */
 726	if (completion_done(&ip->i_flush) ||
 727	    !(lip->li_flags & XFS_LI_IN_AIL)) {
 728		xfs_iunlock(ip, XFS_ILOCK_SHARED);
 729		return true;
 730	}
 731
 732	bp = xfs_incore(ip->i_mount->m_ddev_targp, iip->ili_format.ilf_blkno,
 733			iip->ili_format.ilf_len, XBF_TRYLOCK);
 734
 735	xfs_iunlock(ip, XFS_ILOCK_SHARED);
 736	if (!bp)
 737		return true;
 738	if (XFS_BUF_ISDELAYWRITE(bp))
 739		xfs_buf_delwri_promote(bp);
 740	if (xfs_buf_ispinned(bp))
 741		ret = false;
 742	xfs_buf_relse(bp);
 743	return ret;
 744}
 745
 746/*
 747 * This is called to asynchronously write the inode associated with this
 748 * inode log item out to disk. The inode will already have been locked by
 749 * a successful call to xfs_inode_item_trylock().
 750 */
 751STATIC void
 752xfs_inode_item_push(
 753	struct xfs_log_item	*lip)
 754{
 755	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
 756	struct xfs_inode	*ip = iip->ili_inode;
 757
 758	ASSERT(xfs_isilocked(ip, XFS_ILOCK_SHARED));
 759	ASSERT(!completion_done(&ip->i_flush));
 760
 761	/*
 762	 * Since we were able to lock the inode's flush lock and
 763	 * we found it on the AIL, the inode must be dirty.  This
 764	 * is because the inode is removed from the AIL while still
 765	 * holding the flush lock in xfs_iflush_done().  Thus, if
 766	 * we found it in the AIL and were able to obtain the flush
 767	 * lock without sleeping, then there must not have been
 768	 * anyone in the process of flushing the inode.
 769	 */
 770	ASSERT(XFS_FORCED_SHUTDOWN(ip->i_mount) ||
 771	       iip->ili_format.ilf_fields != 0);
 772
 773	/*
 774	 * Push the inode to it's backing buffer. This will not remove the
 775	 * inode from the AIL - a further push will be required to trigger a
 776	 * buffer push. However, this allows all the dirty inodes to be pushed
 777	 * to the buffer before it is pushed to disk. The buffer IO completion
 778	 * will pull the inode from the AIL, mark it clean and unlock the flush
 779	 * lock.
 780	 */
 781	(void) xfs_iflush(ip, SYNC_TRYLOCK);
 782	xfs_iunlock(ip, XFS_ILOCK_SHARED);
 783}
 784
 785/*
 786 * XXX rcc - this one really has to do something.  Probably needs
 787 * to stamp in a new field in the incore inode.
 788 */
 789STATIC void
 790xfs_inode_item_committing(
 791	struct xfs_log_item	*lip,
 792	xfs_lsn_t		lsn)
 793{
 794	INODE_ITEM(lip)->ili_last_lsn = lsn;
 
 795}
 796
 797/*
 798 * This is the ops vector shared by all buf log items.
 799 */
 800static struct xfs_item_ops xfs_inode_item_ops = {
 801	.iop_size	= xfs_inode_item_size,
 802	.iop_format	= xfs_inode_item_format,
 803	.iop_pin	= xfs_inode_item_pin,
 804	.iop_unpin	= xfs_inode_item_unpin,
 805	.iop_trylock	= xfs_inode_item_trylock,
 806	.iop_unlock	= xfs_inode_item_unlock,
 807	.iop_committed	= xfs_inode_item_committed,
 808	.iop_push	= xfs_inode_item_push,
 809	.iop_pushbuf	= xfs_inode_item_pushbuf,
 810	.iop_committing = xfs_inode_item_committing
 811};
 812
 813
 814/*
 815 * Initialize the inode log item for a newly allocated (in-core) inode.
 816 */
 817void
 818xfs_inode_item_init(
 819	struct xfs_inode	*ip,
 820	struct xfs_mount	*mp)
 821{
 822	struct xfs_inode_log_item *iip;
 823
 824	ASSERT(ip->i_itemp == NULL);
 825	iip = ip->i_itemp = kmem_zone_zalloc(xfs_ili_zone, KM_SLEEP);
 
 826
 827	iip->ili_inode = ip;
 
 828	xfs_log_item_init(mp, &iip->ili_item, XFS_LI_INODE,
 829						&xfs_inode_item_ops);
 830	iip->ili_format.ilf_type = XFS_LI_INODE;
 831	iip->ili_format.ilf_ino = ip->i_ino;
 832	iip->ili_format.ilf_blkno = ip->i_imap.im_blkno;
 833	iip->ili_format.ilf_len = ip->i_imap.im_len;
 834	iip->ili_format.ilf_boffset = ip->i_imap.im_boffset;
 835}
 836
 837/*
 838 * Free the inode log item and any memory hanging off of it.
 839 */
 840void
 841xfs_inode_item_destroy(
 842	xfs_inode_t	*ip)
 843{
 844#ifdef XFS_TRANS_DEBUG
 845	if (ip->i_itemp->ili_root_size != 0) {
 846		kmem_free(ip->i_itemp->ili_orig_root);
 847	}
 848#endif
 849	kmem_zone_free(xfs_ili_zone, ip->i_itemp);
 
 850}
 851
 852
 853/*
 854 * This is the inode flushing I/O completion routine.  It is called
 855 * from interrupt level when the buffer containing the inode is
 856 * flushed to disk.  It is responsible for removing the inode item
 857 * from the AIL if it has not been re-logged, and unlocking the inode's
 858 * flush lock.
 859 *
 860 * To reduce AIL lock traffic as much as possible, we scan the buffer log item
 861 * list for other inodes that will run this function. We remove them from the
 862 * buffer list so we can process all the inode IO completions in one AIL lock
 863 * traversal.
 864 */
 865void
 866xfs_iflush_done(
 867	struct xfs_buf		*bp,
 868	struct xfs_log_item	*lip)
 869{
 870	struct xfs_inode_log_item *iip;
 871	struct xfs_log_item	*blip;
 872	struct xfs_log_item	*next;
 873	struct xfs_log_item	*prev;
 874	struct xfs_ail		*ailp = lip->li_ailp;
 875	int			need_ail = 0;
 876
 877	/*
 878	 * Scan the buffer IO completions for other inodes being completed and
 879	 * attach them to the current inode log item.
 880	 */
 881	blip = bp->b_fspriv;
 882	prev = NULL;
 883	while (blip != NULL) {
 884		if (lip->li_cb != xfs_iflush_done) {
 885			prev = blip;
 886			blip = blip->li_bio_list;
 887			continue;
 888		}
 889
 890		/* remove from list */
 891		next = blip->li_bio_list;
 892		if (!prev) {
 893			bp->b_fspriv = next;
 894		} else {
 895			prev->li_bio_list = next;
 
 
 
 896		}
 897
 898		/* add to current list */
 899		blip->li_bio_list = lip->li_bio_list;
 900		lip->li_bio_list = blip;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 901
 902		/*
 903		 * while we have the item, do the unlocked check for needing
 904		 * the AIL lock.
 
 905		 */
 906		iip = INODE_ITEM(blip);
 907		if (iip->ili_logged && blip->li_lsn == iip->ili_flush_lsn)
 908			need_ail++;
 909
 910		blip = next;
 
 
 
 
 
 
 
 911	}
 
 912
 913	/* make sure we capture the state of the initial inode. */
 914	iip = INODE_ITEM(lip);
 915	if (iip->ili_logged && lip->li_lsn == iip->ili_flush_lsn)
 916		need_ail++;
 
 
 
 
 
 
 
 
 917
 918	/*
 919	 * We only want to pull the item from the AIL if it is
 920	 * actually there and its location in the log has not
 921	 * changed since we started the flush.  Thus, we only bother
 922	 * if the ili_logged flag is set and the inode's lsn has not
 923	 * changed.  First we check the lsn outside
 924	 * the lock since it's cheaper, and then we recheck while
 925	 * holding the lock before removing the inode from the AIL.
 926	 */
 927	if (need_ail) {
 928		struct xfs_log_item *log_items[need_ail];
 929		int i = 0;
 930		spin_lock(&ailp->xa_lock);
 931		for (blip = lip; blip; blip = blip->li_bio_list) {
 932			iip = INODE_ITEM(blip);
 933			if (iip->ili_logged &&
 934			    blip->li_lsn == iip->ili_flush_lsn) {
 935				log_items[i++] = blip;
 936			}
 937			ASSERT(i <= need_ail);
 938		}
 939		/* xfs_trans_ail_delete_bulk() drops the AIL lock. */
 940		xfs_trans_ail_delete_bulk(ailp, log_items, i);
 941	}
 942
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 943
 944	/*
 945	 * clean up and unlock the flush lock now we are done. We can clear the
 946	 * ili_last_fields bits now that we know that the data corresponding to
 947	 * them is safely on disk.
 948	 */
 949	for (blip = lip; blip; blip = next) {
 950		next = blip->li_bio_list;
 951		blip->li_bio_list = NULL;
 952
 953		iip = INODE_ITEM(blip);
 954		iip->ili_logged = 0;
 955		iip->ili_last_fields = 0;
 956		xfs_ifunlock(iip->ili_inode);
 957	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 958}
 959
 960/*
 961 * This is the inode flushing abort routine.  It is called
 962 * from xfs_iflush when the filesystem is shutting down to clean
 963 * up the inode state.
 964 * It is responsible for removing the inode item
 965 * from the AIL if it has not been re-logged, and unlocking the inode's
 966 * flush lock.
 
 
 
 
 967 */
 968void
 969xfs_iflush_abort(
 970	xfs_inode_t		*ip)
 971{
 972	xfs_inode_log_item_t	*iip = ip->i_itemp;
 
 973
 974	if (iip) {
 975		struct xfs_ail	*ailp = iip->ili_item.li_ailp;
 976		if (iip->ili_item.li_flags & XFS_LI_IN_AIL) {
 977			spin_lock(&ailp->xa_lock);
 978			if (iip->ili_item.li_flags & XFS_LI_IN_AIL) {
 979				/* xfs_trans_ail_delete() drops the AIL lock. */
 980				xfs_trans_ail_delete(ailp, (xfs_log_item_t *)iip);
 981			} else
 982				spin_unlock(&ailp->xa_lock);
 983		}
 984		iip->ili_logged = 0;
 985		/*
 986		 * Clear the ili_last_fields bits now that we know that the
 987		 * data corresponding to them is safely on disk.
 988		 */
 989		iip->ili_last_fields = 0;
 990		/*
 991		 * Clear the inode logging fields so no more flushes are
 992		 * attempted.
 993		 */
 994		iip->ili_format.ilf_fields = 0;
 995	}
 
 996	/*
 997	 * Release the inode's flush lock since we're done with it.
 
 
 
 
 
 
 
 
 998	 */
 999	xfs_ifunlock(ip);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1000}
1001
 
 
 
 
 
 
1002void
1003xfs_istale_done(
1004	struct xfs_buf		*bp,
1005	struct xfs_log_item	*lip)
1006{
1007	xfs_iflush_abort(INODE_ITEM(lip)->ili_inode);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1008}
1009
 
1010/*
1011 * convert an xfs_inode_log_format struct from either 32 or 64 bit versions
1012 * (which can have different field alignments) to the native version
1013 */
1014int
1015xfs_inode_item_format_convert(
1016	xfs_log_iovec_t		*buf,
1017	xfs_inode_log_format_t	*in_f)
1018{
1019	if (buf->i_len == sizeof(xfs_inode_log_format_32_t)) {
1020		xfs_inode_log_format_32_t *in_f32 = buf->i_addr;
1021
1022		in_f->ilf_type = in_f32->ilf_type;
1023		in_f->ilf_size = in_f32->ilf_size;
1024		in_f->ilf_fields = in_f32->ilf_fields;
1025		in_f->ilf_asize = in_f32->ilf_asize;
1026		in_f->ilf_dsize = in_f32->ilf_dsize;
1027		in_f->ilf_ino = in_f32->ilf_ino;
1028		/* copy biggest field of ilf_u */
1029		memcpy(in_f->ilf_u.ilfu_uuid.__u_bits,
1030		       in_f32->ilf_u.ilfu_uuid.__u_bits,
1031		       sizeof(uuid_t));
1032		in_f->ilf_blkno = in_f32->ilf_blkno;
1033		in_f->ilf_len = in_f32->ilf_len;
1034		in_f->ilf_boffset = in_f32->ilf_boffset;
1035		return 0;
1036	} else if (buf->i_len == sizeof(xfs_inode_log_format_64_t)){
1037		xfs_inode_log_format_64_t *in_f64 = buf->i_addr;
1038
1039		in_f->ilf_type = in_f64->ilf_type;
1040		in_f->ilf_size = in_f64->ilf_size;
1041		in_f->ilf_fields = in_f64->ilf_fields;
1042		in_f->ilf_asize = in_f64->ilf_asize;
1043		in_f->ilf_dsize = in_f64->ilf_dsize;
1044		in_f->ilf_ino = in_f64->ilf_ino;
1045		/* copy biggest field of ilf_u */
1046		memcpy(in_f->ilf_u.ilfu_uuid.__u_bits,
1047		       in_f64->ilf_u.ilfu_uuid.__u_bits,
1048		       sizeof(uuid_t));
1049		in_f->ilf_blkno = in_f64->ilf_blkno;
1050		in_f->ilf_len = in_f64->ilf_len;
1051		in_f->ilf_boffset = in_f64->ilf_boffset;
1052		return 0;
1053	}
1054	return EFSCORRUPTED;
1055}
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
   4 * All Rights Reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
   5 */
   6#include "xfs.h"
   7#include "xfs_fs.h"
   8#include "xfs_shared.h"
   9#include "xfs_format.h"
  10#include "xfs_log_format.h"
  11#include "xfs_trans_resv.h"
 
 
 
  12#include "xfs_mount.h"
 
 
 
  13#include "xfs_inode.h"
  14#include "xfs_trans.h"
  15#include "xfs_inode_item.h"
 
  16#include "xfs_trace.h"
  17#include "xfs_trans_priv.h"
  18#include "xfs_buf_item.h"
  19#include "xfs_log.h"
  20#include "xfs_log_priv.h"
  21#include "xfs_error.h"
  22#include "xfs_rtbitmap.h"
  23
  24#include <linux/iversion.h>
  25
  26struct kmem_cache	*xfs_ili_cache;		/* inode log item */
  27
  28static inline struct xfs_inode_log_item *INODE_ITEM(struct xfs_log_item *lip)
  29{
  30	return container_of(lip, struct xfs_inode_log_item, ili_item);
  31}
  32
  33static uint64_t
  34xfs_inode_item_sort(
  35	struct xfs_log_item	*lip)
  36{
  37	return INODE_ITEM(lip)->ili_inode->i_ino;
  38}
  39
  40/*
  41 * Prior to finally logging the inode, we have to ensure that all the
  42 * per-modification inode state changes are applied. This includes VFS inode
  43 * state updates, format conversions, verifier state synchronisation and
  44 * ensuring the inode buffer remains in memory whilst the inode is dirty.
  45 *
  46 * We have to be careful when we grab the inode cluster buffer due to lock
  47 * ordering constraints. The unlinked inode modifications (xfs_iunlink_item)
  48 * require AGI -> inode cluster buffer lock order. The inode cluster buffer is
  49 * not locked until ->precommit, so it happens after everything else has been
  50 * modified.
  51 *
  52 * Further, we have AGI -> AGF lock ordering, and with O_TMPFILE handling we
  53 * have AGI -> AGF -> iunlink item -> inode cluster buffer lock order. Hence we
  54 * cannot safely lock the inode cluster buffer in xfs_trans_log_inode() because
  55 * it can be called on a inode (e.g. via bumplink/droplink) before we take the
  56 * AGF lock modifying directory blocks.
  57 *
  58 * Rather than force a complete rework of all the transactions to call
  59 * xfs_trans_log_inode() once and once only at the end of every transaction, we
  60 * move the pinning of the inode cluster buffer to a ->precommit operation. This
  61 * matches how the xfs_iunlink_item locks the inode cluster buffer, and it
  62 * ensures that the inode cluster buffer locking is always done last in a
  63 * transaction. i.e. we ensure the lock order is always AGI -> AGF -> inode
  64 * cluster buffer.
  65 *
  66 * If we return the inode number as the precommit sort key then we'll also
  67 * guarantee that the order all inode cluster buffer locking is the same all the
  68 * inodes and unlink items in the transaction.
  69 */
  70static int
  71xfs_inode_item_precommit(
  72	struct xfs_trans	*tp,
  73	struct xfs_log_item	*lip)
  74{
  75	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
  76	struct xfs_inode	*ip = iip->ili_inode;
  77	struct inode		*inode = VFS_I(ip);
  78	unsigned int		flags = iip->ili_dirty_flags;
  79
  80	/*
  81	 * Don't bother with i_lock for the I_DIRTY_TIME check here, as races
  82	 * don't matter - we either will need an extra transaction in 24 hours
  83	 * to log the timestamps, or will clear already cleared fields in the
  84	 * worst case.
  85	 */
  86	if (inode->i_state & I_DIRTY_TIME) {
  87		spin_lock(&inode->i_lock);
  88		inode->i_state &= ~I_DIRTY_TIME;
  89		spin_unlock(&inode->i_lock);
  90	}
  91
  92	/*
  93	 * If we're updating the inode core or the timestamps and it's possible
  94	 * to upgrade this inode to bigtime format, do so now.
  95	 */
  96	if ((flags & (XFS_ILOG_CORE | XFS_ILOG_TIMESTAMP)) &&
  97	    xfs_has_bigtime(ip->i_mount) &&
  98	    !xfs_inode_has_bigtime(ip)) {
  99		ip->i_diflags2 |= XFS_DIFLAG2_BIGTIME;
 100		flags |= XFS_ILOG_CORE;
 101	}
 102
 103	/*
 104	 * Inode verifiers do not check that the extent size hint is an integer
 105	 * multiple of the rt extent size on a directory with both rtinherit
 106	 * and extszinherit flags set.  If we're logging a directory that is
 107	 * misconfigured in this way, clear the hint.
 108	 */
 109	if ((ip->i_diflags & XFS_DIFLAG_RTINHERIT) &&
 110	    (ip->i_diflags & XFS_DIFLAG_EXTSZINHERIT) &&
 111	    xfs_extlen_to_rtxmod(ip->i_mount, ip->i_extsize) > 0) {
 112		ip->i_diflags &= ~(XFS_DIFLAG_EXTSIZE |
 113				   XFS_DIFLAG_EXTSZINHERIT);
 114		ip->i_extsize = 0;
 115		flags |= XFS_ILOG_CORE;
 116	}
 117
 118	/*
 119	 * Record the specific change for fdatasync optimisation. This allows
 120	 * fdatasync to skip log forces for inodes that are only timestamp
 121	 * dirty. Once we've processed the XFS_ILOG_IVERSION flag, convert it
 122	 * to XFS_ILOG_CORE so that the actual on-disk dirty tracking
 123	 * (ili_fields) correctly tracks that the version has changed.
 124	 */
 125	spin_lock(&iip->ili_lock);
 126	iip->ili_fsync_fields |= (flags & ~XFS_ILOG_IVERSION);
 127	if (flags & XFS_ILOG_IVERSION)
 128		flags = ((flags & ~XFS_ILOG_IVERSION) | XFS_ILOG_CORE);
 129
 130	if (!iip->ili_item.li_buf) {
 131		struct xfs_buf	*bp;
 132		int		error;
 133
 134		/*
 135		 * We hold the ILOCK here, so this inode is not going to be
 136		 * flushed while we are here. Further, because there is no
 137		 * buffer attached to the item, we know that there is no IO in
 138		 * progress, so nothing will clear the ili_fields while we read
 139		 * in the buffer. Hence we can safely drop the spin lock and
 140		 * read the buffer knowing that the state will not change from
 141		 * here.
 142		 */
 143		spin_unlock(&iip->ili_lock);
 144		error = xfs_imap_to_bp(ip->i_mount, tp, &ip->i_imap, &bp);
 145		if (error)
 146			return error;
 147
 148		/*
 149		 * We need an explicit buffer reference for the log item but
 150		 * don't want the buffer to remain attached to the transaction.
 151		 * Hold the buffer but release the transaction reference once
 152		 * we've attached the inode log item to the buffer log item
 153		 * list.
 154		 */
 155		xfs_buf_hold(bp);
 156		spin_lock(&iip->ili_lock);
 157		iip->ili_item.li_buf = bp;
 158		bp->b_flags |= _XBF_INODES;
 159		list_add_tail(&iip->ili_item.li_bio_list, &bp->b_li_list);
 160		xfs_trans_brelse(tp, bp);
 161	}
 162
 163	/*
 164	 * Always OR in the bits from the ili_last_fields field.  This is to
 165	 * coordinate with the xfs_iflush() and xfs_buf_inode_iodone() routines
 166	 * in the eventual clearing of the ili_fields bits.  See the big comment
 167	 * in xfs_iflush() for an explanation of this coordination mechanism.
 168	 */
 169	iip->ili_fields |= (flags | iip->ili_last_fields);
 170	spin_unlock(&iip->ili_lock);
 171
 172	/*
 173	 * We are done with the log item transaction dirty state, so clear it so
 174	 * that it doesn't pollute future transactions.
 175	 */
 176	iip->ili_dirty_flags = 0;
 177	return 0;
 178}
 179
 180/*
 181 * The logged size of an inode fork is always the current size of the inode
 182 * fork. This means that when an inode fork is relogged, the size of the logged
 183 * region is determined by the current state, not the combination of the
 184 * previously logged state + the current state. This is different relogging
 185 * behaviour to most other log items which will retain the size of the
 186 * previously logged changes when smaller regions are relogged.
 187 *
 188 * Hence operations that remove data from the inode fork (e.g. shortform
 189 * dir/attr remove, extent form extent removal, etc), the size of the relogged
 190 * inode gets -smaller- rather than stays the same size as the previously logged
 191 * size and this can result in the committing transaction reducing the amount of
 192 * space being consumed by the CIL.
 193 */
 194STATIC void
 195xfs_inode_item_data_fork_size(
 196	struct xfs_inode_log_item *iip,
 197	int			*nvecs,
 198	int			*nbytes)
 199{
 200	struct xfs_inode	*ip = iip->ili_inode;
 201
 202	switch (ip->i_df.if_format) {
 203	case XFS_DINODE_FMT_EXTENTS:
 204		if ((iip->ili_fields & XFS_ILOG_DEXT) &&
 205		    ip->i_df.if_nextents > 0 &&
 206		    ip->i_df.if_bytes > 0) {
 207			/* worst case, doesn't subtract delalloc extents */
 208			*nbytes += xfs_inode_data_fork_size(ip);
 209			*nvecs += 1;
 
 
 
 
 210		}
 211		break;
 
 212	case XFS_DINODE_FMT_BTREE:
 213		if ((iip->ili_fields & XFS_ILOG_DBROOT) &&
 214		    ip->i_df.if_broot_bytes > 0) {
 215			*nbytes += ip->i_df.if_broot_bytes;
 216			*nvecs += 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 217		}
 218		break;
 
 219	case XFS_DINODE_FMT_LOCAL:
 220		if ((iip->ili_fields & XFS_ILOG_DDATA) &&
 221		    ip->i_df.if_bytes > 0) {
 222			*nbytes += xlog_calc_iovec_len(ip->i_df.if_bytes);
 223			*nvecs += 1;
 
 
 
 
 
 
 224		}
 225		break;
 226
 227	case XFS_DINODE_FMT_DEV:
 
 
 
 
 
 
 
 
 
 228		break;
 
 229	default:
 230		ASSERT(0);
 231		break;
 232	}
 233}
 234
 235STATIC void
 236xfs_inode_item_attr_fork_size(
 237	struct xfs_inode_log_item *iip,
 238	int			*nvecs,
 239	int			*nbytes)
 240{
 241	struct xfs_inode	*ip = iip->ili_inode;
 
 
 
 242
 243	switch (ip->i_af.if_format) {
 
 
 
 244	case XFS_DINODE_FMT_EXTENTS:
 245		if ((iip->ili_fields & XFS_ILOG_AEXT) &&
 246		    ip->i_af.if_nextents > 0 &&
 247		    ip->i_af.if_bytes > 0) {
 248			/* worst case, doesn't subtract unused space */
 249			*nbytes += xfs_inode_attr_fork_size(ip);
 250			*nvecs += 1;
 
 
 
 251		}
 252		break;
 
 253	case XFS_DINODE_FMT_BTREE:
 254		if ((iip->ili_fields & XFS_ILOG_ABROOT) &&
 255		    ip->i_af.if_broot_bytes > 0) {
 256			*nbytes += ip->i_af.if_broot_bytes;
 257			*nvecs += 1;
 
 
 
 
 258		}
 259		break;
 
 260	case XFS_DINODE_FMT_LOCAL:
 261		if ((iip->ili_fields & XFS_ILOG_ADATA) &&
 262		    ip->i_af.if_bytes > 0) {
 263			*nbytes += xlog_calc_iovec_len(ip->i_af.if_bytes);
 264			*nvecs += 1;
 
 
 
 
 265		}
 266		break;
 
 267	default:
 268		ASSERT(0);
 269		break;
 270	}
 
 
 271}
 272
 273/*
 274 * This returns the number of iovecs needed to log the given inode item.
 
 
 
 
 
 
 
 275 *
 276 * We need one iovec for the inode log format structure, one for the
 277 * inode core, and possibly one for the inode data/extents/b-tree root
 278 * and one for the inode attribute data/extents/b-tree root.
 
 279 */
 280STATIC void
 281xfs_inode_item_size(
 282	struct xfs_log_item	*lip,
 283	int			*nvecs,
 284	int			*nbytes)
 
 285{
 286	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
 287	struct xfs_inode	*ip = iip->ili_inode;
 
 
 
 
 
 288
 289	*nvecs += 2;
 290	*nbytes += sizeof(struct xfs_inode_log_format) +
 291		   xfs_log_dinode_size(ip->i_mount);
 292
 293	xfs_inode_item_data_fork_size(iip, nvecs, nbytes);
 294	if (xfs_inode_has_attr_fork(ip))
 295		xfs_inode_item_attr_fork_size(iip, nvecs, nbytes);
 296}
 297
 
 
 
 
 
 
 
 298STATIC void
 299xfs_inode_item_format_data_fork(
 300	struct xfs_inode_log_item *iip,
 301	struct xfs_inode_log_format *ilf,
 302	struct xfs_log_vec	*lv,
 303	struct xfs_log_iovec	**vecp)
 304{
 
 305	struct xfs_inode	*ip = iip->ili_inode;
 
 306	size_t			data_bytes;
 
 307
 308	switch (ip->i_df.if_format) {
 309	case XFS_DINODE_FMT_EXTENTS:
 310		iip->ili_fields &=
 311			~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | XFS_ILOG_DEV);
 
 312
 313		if ((iip->ili_fields & XFS_ILOG_DEXT) &&
 314		    ip->i_df.if_nextents > 0 &&
 315		    ip->i_df.if_bytes > 0) {
 316			struct xfs_bmbt_rec *p;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 317
 318			ASSERT(xfs_iext_count(&ip->i_df) > 0);
 
 
 
 319
 320			p = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_IEXT);
 321			data_bytes = xfs_iextents_copy(ip, p, XFS_DATA_FORK);
 322			xlog_finish_iovec(lv, *vecp, data_bytes);
 
 
 
 323
 324			ASSERT(data_bytes <= ip->i_df.if_bytes);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 325
 326			ilf->ilf_dsize = data_bytes;
 327			ilf->ilf_size++;
 328		} else {
 329			iip->ili_fields &= ~XFS_ILOG_DEXT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 330		}
 331		break;
 
 332	case XFS_DINODE_FMT_BTREE:
 333		iip->ili_fields &=
 334			~(XFS_ILOG_DDATA | XFS_ILOG_DEXT | XFS_ILOG_DEV);
 335
 336		if ((iip->ili_fields & XFS_ILOG_DBROOT) &&
 337		    ip->i_df.if_broot_bytes > 0) {
 338			ASSERT(ip->i_df.if_broot != NULL);
 339			xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IBROOT,
 340					ip->i_df.if_broot,
 341					ip->i_df.if_broot_bytes);
 342			ilf->ilf_dsize = ip->i_df.if_broot_bytes;
 343			ilf->ilf_size++;
 344		} else {
 345			ASSERT(!(iip->ili_fields &
 346				 XFS_ILOG_DBROOT));
 347			iip->ili_fields &= ~XFS_ILOG_DBROOT;
 348		}
 349		break;
 
 350	case XFS_DINODE_FMT_LOCAL:
 351		iip->ili_fields &=
 352			~(XFS_ILOG_DEXT | XFS_ILOG_DBROOT | XFS_ILOG_DEV);
 353		if ((iip->ili_fields & XFS_ILOG_DDATA) &&
 354		    ip->i_df.if_bytes > 0) {
 355			ASSERT(ip->i_df.if_data != NULL);
 356			ASSERT(ip->i_disk_size > 0);
 357			xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_ILOCAL,
 358					ip->i_df.if_data, ip->i_df.if_bytes);
 359			ilf->ilf_dsize = (unsigned)ip->i_df.if_bytes;
 360			ilf->ilf_size++;
 361		} else {
 362			iip->ili_fields &= ~XFS_ILOG_DDATA;
 
 
 
 
 
 
 
 
 
 
 363		}
 364		break;
 
 365	case XFS_DINODE_FMT_DEV:
 366		iip->ili_fields &=
 367			~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | XFS_ILOG_DEXT);
 368		if (iip->ili_fields & XFS_ILOG_DEV)
 369			ilf->ilf_u.ilfu_rdev = sysv_encode_dev(VFS_I(ip)->i_rdev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 370		break;
 
 371	default:
 372		ASSERT(0);
 373		break;
 374	}
 375}
 376
 377STATIC void
 378xfs_inode_item_format_attr_fork(
 379	struct xfs_inode_log_item *iip,
 380	struct xfs_inode_log_format *ilf,
 381	struct xfs_log_vec	*lv,
 382	struct xfs_log_iovec	**vecp)
 383{
 384	struct xfs_inode	*ip = iip->ili_inode;
 385	size_t			data_bytes;
 
 
 
 386
 387	switch (ip->i_af.if_format) {
 388	case XFS_DINODE_FMT_EXTENTS:
 389		iip->ili_fields &=
 390			~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT);
 391
 392		if ((iip->ili_fields & XFS_ILOG_AEXT) &&
 393		    ip->i_af.if_nextents > 0 &&
 394		    ip->i_af.if_bytes > 0) {
 395			struct xfs_bmbt_rec *p;
 396
 397			ASSERT(xfs_iext_count(&ip->i_af) ==
 398				ip->i_af.if_nextents);
 399
 400			p = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_EXT);
 401			data_bytes = xfs_iextents_copy(ip, p, XFS_ATTR_FORK);
 402			xlog_finish_iovec(lv, *vecp, data_bytes);
 403
 404			ilf->ilf_asize = data_bytes;
 405			ilf->ilf_size++;
 406		} else {
 407			iip->ili_fields &= ~XFS_ILOG_AEXT;
 
 
 
 
 
 
 
 
 
 408		}
 409		break;
 
 410	case XFS_DINODE_FMT_BTREE:
 411		iip->ili_fields &=
 412			~(XFS_ILOG_ADATA | XFS_ILOG_AEXT);
 413
 414		if ((iip->ili_fields & XFS_ILOG_ABROOT) &&
 415		    ip->i_af.if_broot_bytes > 0) {
 416			ASSERT(ip->i_af.if_broot != NULL);
 417
 418			xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_BROOT,
 419					ip->i_af.if_broot,
 420					ip->i_af.if_broot_bytes);
 421			ilf->ilf_asize = ip->i_af.if_broot_bytes;
 422			ilf->ilf_size++;
 423		} else {
 424			iip->ili_fields &= ~XFS_ILOG_ABROOT;
 425		}
 426		break;
 
 427	case XFS_DINODE_FMT_LOCAL:
 428		iip->ili_fields &=
 429			~(XFS_ILOG_AEXT | XFS_ILOG_ABROOT);
 430
 431		if ((iip->ili_fields & XFS_ILOG_ADATA) &&
 432		    ip->i_af.if_bytes > 0) {
 433			ASSERT(ip->i_af.if_data != NULL);
 434			xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_LOCAL,
 435					ip->i_af.if_data, ip->i_af.if_bytes);
 436			ilf->ilf_asize = (unsigned)ip->i_af.if_bytes;
 437			ilf->ilf_size++;
 438		} else {
 439			iip->ili_fields &= ~XFS_ILOG_ADATA;
 
 
 
 
 
 
 
 
 440		}
 441		break;
 
 442	default:
 443		ASSERT(0);
 444		break;
 445	}
 446}
 447
 448/*
 449 * Convert an incore timestamp to a log timestamp.  Note that the log format
 450 * specifies host endian format!
 451 */
 452static inline xfs_log_timestamp_t
 453xfs_inode_to_log_dinode_ts(
 454	struct xfs_inode		*ip,
 455	const struct timespec64		tv)
 456{
 457	struct xfs_log_legacy_timestamp	*lits;
 458	xfs_log_timestamp_t		its;
 459
 460	if (xfs_inode_has_bigtime(ip))
 461		return xfs_inode_encode_bigtime(tv);
 462
 463	lits = (struct xfs_log_legacy_timestamp *)&its;
 464	lits->t_sec = tv.tv_sec;
 465	lits->t_nsec = tv.tv_nsec;
 466
 467	return its;
 468}
 469
 470/*
 471 * The legacy DMAPI fields are only present in the on-disk and in-log inodes,
 472 * but not in the in-memory one.  But we are guaranteed to have an inode buffer
 473 * in memory when logging an inode, so we can just copy it from the on-disk
 474 * inode to the in-log inode here so that recovery of file system with these
 475 * fields set to non-zero values doesn't lose them.  For all other cases we zero
 476 * the fields.
 477 */
 478static void
 479xfs_copy_dm_fields_to_log_dinode(
 480	struct xfs_inode	*ip,
 481	struct xfs_log_dinode	*to)
 482{
 483	struct xfs_dinode	*dip;
 484
 485	dip = xfs_buf_offset(ip->i_itemp->ili_item.li_buf,
 486			     ip->i_imap.im_boffset);
 487
 488	if (xfs_iflags_test(ip, XFS_IPRESERVE_DM_FIELDS)) {
 489		to->di_dmevmask = be32_to_cpu(dip->di_dmevmask);
 490		to->di_dmstate = be16_to_cpu(dip->di_dmstate);
 491	} else {
 492		to->di_dmevmask = 0;
 493		to->di_dmstate = 0;
 494	}
 495}
 496
 497static inline void
 498xfs_inode_to_log_dinode_iext_counters(
 499	struct xfs_inode	*ip,
 500	struct xfs_log_dinode	*to)
 501{
 502	if (xfs_inode_has_large_extent_counts(ip)) {
 503		to->di_big_nextents = xfs_ifork_nextents(&ip->i_df);
 504		to->di_big_anextents = xfs_ifork_nextents(&ip->i_af);
 505		to->di_nrext64_pad = 0;
 506	} else {
 507		to->di_nextents = xfs_ifork_nextents(&ip->i_df);
 508		to->di_anextents = xfs_ifork_nextents(&ip->i_af);
 509	}
 510}
 511
 512static void
 513xfs_inode_to_log_dinode(
 514	struct xfs_inode	*ip,
 515	struct xfs_log_dinode	*to,
 516	xfs_lsn_t		lsn)
 517{
 518	struct inode		*inode = VFS_I(ip);
 519
 520	to->di_magic = XFS_DINODE_MAGIC;
 521	to->di_format = xfs_ifork_format(&ip->i_df);
 522	to->di_uid = i_uid_read(inode);
 523	to->di_gid = i_gid_read(inode);
 524	to->di_projid_lo = ip->i_projid & 0xffff;
 525	to->di_projid_hi = ip->i_projid >> 16;
 526
 527	memset(to->di_pad3, 0, sizeof(to->di_pad3));
 528	to->di_atime = xfs_inode_to_log_dinode_ts(ip, inode_get_atime(inode));
 529	to->di_mtime = xfs_inode_to_log_dinode_ts(ip, inode_get_mtime(inode));
 530	to->di_ctime = xfs_inode_to_log_dinode_ts(ip, inode_get_ctime(inode));
 531	to->di_nlink = inode->i_nlink;
 532	to->di_gen = inode->i_generation;
 533	to->di_mode = inode->i_mode;
 534
 535	to->di_size = ip->i_disk_size;
 536	to->di_nblocks = ip->i_nblocks;
 537	to->di_extsize = ip->i_extsize;
 538	to->di_forkoff = ip->i_forkoff;
 539	to->di_aformat = xfs_ifork_format(&ip->i_af);
 540	to->di_flags = ip->i_diflags;
 541
 542	xfs_copy_dm_fields_to_log_dinode(ip, to);
 543
 544	/* log a dummy value to ensure log structure is fully initialised */
 545	to->di_next_unlinked = NULLAGINO;
 546
 547	if (xfs_has_v3inodes(ip->i_mount)) {
 548		to->di_version = 3;
 549		to->di_changecount = inode_peek_iversion(inode);
 550		to->di_crtime = xfs_inode_to_log_dinode_ts(ip, ip->i_crtime);
 551		to->di_flags2 = ip->i_diflags2;
 552		to->di_cowextsize = ip->i_cowextsize;
 553		to->di_ino = ip->i_ino;
 554		to->di_lsn = lsn;
 555		memset(to->di_pad2, 0, sizeof(to->di_pad2));
 556		uuid_copy(&to->di_uuid, &ip->i_mount->m_sb.sb_meta_uuid);
 557		to->di_v3_pad = 0;
 558
 559		/* dummy value for initialisation */
 560		to->di_crc = 0;
 561	} else {
 562		to->di_version = 2;
 563		to->di_flushiter = ip->i_flushiter;
 564		memset(to->di_v2_pad, 0, sizeof(to->di_v2_pad));
 565	}
 566
 567	xfs_inode_to_log_dinode_iext_counters(ip, to);
 
 568}
 569
 570/*
 571 * Format the inode core. Current timestamp data is only in the VFS inode
 572 * fields, so we need to grab them from there. Hence rather than just copying
 573 * the XFS inode core structure, format the fields directly into the iovec.
 574 */
 575static void
 576xfs_inode_item_format_core(
 577	struct xfs_inode	*ip,
 578	struct xfs_log_vec	*lv,
 579	struct xfs_log_iovec	**vecp)
 580{
 581	struct xfs_log_dinode	*dic;
 582
 583	dic = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_ICORE);
 584	xfs_inode_to_log_dinode(ip, dic, ip->i_itemp->ili_item.li_lsn);
 585	xlog_finish_iovec(lv, *vecp, xfs_log_dinode_size(ip->i_mount));
 586}
 587
 588/*
 589 * This is called to fill in the vector of log iovecs for the given inode
 590 * log item.  It fills the first item with an inode log format structure,
 591 * the second with the on-disk inode structure, and a possible third and/or
 592 * fourth with the inode data/extents/b-tree root and inode attributes
 593 * data/extents/b-tree root.
 594 *
 595 * Note: Always use the 64 bit inode log format structure so we don't
 596 * leave an uninitialised hole in the format item on 64 bit systems. Log
 597 * recovery on 32 bit systems handles this just fine, so there's no reason
 598 * for not using an initialising the properly padded structure all the time.
 599 */
 600STATIC void
 601xfs_inode_item_format(
 602	struct xfs_log_item	*lip,
 603	struct xfs_log_vec	*lv)
 604{
 605	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
 606	struct xfs_inode	*ip = iip->ili_inode;
 607	struct xfs_log_iovec	*vecp = NULL;
 608	struct xfs_inode_log_format *ilf;
 609
 610	ilf = xlog_prepare_iovec(lv, &vecp, XLOG_REG_TYPE_IFORMAT);
 611	ilf->ilf_type = XFS_LI_INODE;
 612	ilf->ilf_ino = ip->i_ino;
 613	ilf->ilf_blkno = ip->i_imap.im_blkno;
 614	ilf->ilf_len = ip->i_imap.im_len;
 615	ilf->ilf_boffset = ip->i_imap.im_boffset;
 616	ilf->ilf_fields = XFS_ILOG_CORE;
 617	ilf->ilf_size = 2; /* format + core */
 618
 619	/*
 620	 * make sure we don't leak uninitialised data into the log in the case
 621	 * when we don't log every field in the inode.
 622	 */
 623	ilf->ilf_dsize = 0;
 624	ilf->ilf_asize = 0;
 625	ilf->ilf_pad = 0;
 626	memset(&ilf->ilf_u, 0, sizeof(ilf->ilf_u));
 627
 628	xlog_finish_iovec(lv, vecp, sizeof(*ilf));
 629
 630	xfs_inode_item_format_core(ip, lv, &vecp);
 631	xfs_inode_item_format_data_fork(iip, ilf, lv, &vecp);
 632	if (xfs_inode_has_attr_fork(ip)) {
 633		xfs_inode_item_format_attr_fork(iip, ilf, lv, &vecp);
 634	} else {
 635		iip->ili_fields &=
 636			~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT);
 637	}
 638
 639	/* update the format with the exact fields we actually logged */
 640	ilf->ilf_fields |= (iip->ili_fields & ~XFS_ILOG_TIMESTAMP);
 641}
 642
 643/*
 644 * This is called to pin the inode associated with the inode log
 645 * item in memory so it cannot be written out.
 646 */
 647STATIC void
 648xfs_inode_item_pin(
 649	struct xfs_log_item	*lip)
 650{
 651	struct xfs_inode	*ip = INODE_ITEM(lip)->ili_inode;
 652
 653	xfs_assert_ilocked(ip, XFS_ILOCK_EXCL);
 654	ASSERT(lip->li_buf);
 655
 656	trace_xfs_inode_pin(ip, _RET_IP_);
 657	atomic_inc(&ip->i_pincount);
 658}
 659
 660
 661/*
 662 * This is called to unpin the inode associated with the inode log
 663 * item which was previously pinned with a call to xfs_inode_item_pin().
 664 *
 665 * Also wake up anyone in xfs_iunpin_wait() if the count goes to 0.
 666 *
 667 * Note that unpin can race with inode cluster buffer freeing marking the buffer
 668 * stale. In that case, flush completions are run from the buffer unpin call,
 669 * which may happen before the inode is unpinned. If we lose the race, there
 670 * will be no buffer attached to the log item, but the inode will be marked
 671 * XFS_ISTALE.
 672 */
 673STATIC void
 674xfs_inode_item_unpin(
 675	struct xfs_log_item	*lip,
 676	int			remove)
 677{
 678	struct xfs_inode	*ip = INODE_ITEM(lip)->ili_inode;
 679
 680	trace_xfs_inode_unpin(ip, _RET_IP_);
 681	ASSERT(lip->li_buf || xfs_iflags_test(ip, XFS_ISTALE));
 682	ASSERT(atomic_read(&ip->i_pincount) > 0);
 683	if (atomic_dec_and_test(&ip->i_pincount))
 684		wake_up_bit(&ip->i_flags, __XFS_IPINNED_BIT);
 685}
 686
 
 
 
 
 
 
 
 
 
 
 
 
 
 687STATIC uint
 688xfs_inode_item_push(
 689	struct xfs_log_item	*lip,
 690	struct list_head	*buffer_list)
 691		__releases(&lip->li_ailp->ail_lock)
 692		__acquires(&lip->li_ailp->ail_lock)
 693{
 694	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
 695	struct xfs_inode	*ip = iip->ili_inode;
 696	struct xfs_buf		*bp = lip->li_buf;
 697	uint			rval = XFS_ITEM_SUCCESS;
 698	int			error;
 699
 700	if (!bp || (ip->i_flags & XFS_ISTALE)) {
 701		/*
 702		 * Inode item/buffer is being aborted due to cluster
 703		 * buffer deletion. Trigger a log force to have that operation
 704		 * completed and items removed from the AIL before the next push
 705		 * attempt.
 706		 */
 707		return XFS_ITEM_PINNED;
 708	}
 709
 710	if (xfs_ipincount(ip) > 0 || xfs_buf_ispinned(bp))
 711		return XFS_ITEM_PINNED;
 712
 713	if (xfs_iflags_test(ip, XFS_IFLUSHING))
 714		return XFS_ITEM_FLUSHING;
 715
 716	if (!xfs_buf_trylock(bp))
 717		return XFS_ITEM_LOCKED;
 718
 719	spin_unlock(&lip->li_ailp->ail_lock);
 
 
 
 
 
 
 
 720
 721	/*
 722	 * We need to hold a reference for flushing the cluster buffer as it may
 723	 * fail the buffer without IO submission. In which case, we better get a
 724	 * reference for that completion because otherwise we don't get a
 725	 * reference for IO until we queue the buffer for delwri submission.
 726	 */
 727	xfs_buf_hold(bp);
 728	error = xfs_iflush_cluster(bp);
 729	if (!error) {
 730		if (!xfs_buf_delwri_queue(bp, buffer_list))
 731			rval = XFS_ITEM_FLUSHING;
 732		xfs_buf_relse(bp);
 733	} else {
 734		/*
 735		 * Release the buffer if we were unable to flush anything. On
 736		 * any other error, the buffer has already been released.
 737		 */
 738		if (error == -EAGAIN)
 739			xfs_buf_relse(bp);
 740		rval = XFS_ITEM_LOCKED;
 741	}
 742
 743	spin_lock(&lip->li_ailp->ail_lock);
 744	return rval;
 
 
 
 
 
 
 745}
 746
 747/*
 748 * Unlock the inode associated with the inode log item.
 
 
 
 749 */
 750STATIC void
 751xfs_inode_item_release(
 752	struct xfs_log_item	*lip)
 753{
 754	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
 755	struct xfs_inode	*ip = iip->ili_inode;
 756	unsigned short		lock_flags;
 757
 758	ASSERT(ip->i_itemp != NULL);
 759	xfs_assert_ilocked(ip, XFS_ILOCK_EXCL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 760
 761	lock_flags = iip->ili_lock_flags;
 762	iip->ili_lock_flags = 0;
 763	if (lock_flags)
 764		xfs_iunlock(ip, lock_flags);
 
 
 765}
 766
 767/*
 768 * This is called to find out where the oldest active copy of the inode log
 769 * item in the on disk log resides now that the last log write of it completed
 770 * at the given lsn.  Since we always re-log all dirty data in an inode, the
 771 * latest copy in the on disk log is the only one that matters.  Therefore,
 772 * simply return the given lsn.
 773 *
 774 * If the inode has been marked stale because the cluster is being freed, we
 775 * don't want to (re-)insert this inode into the AIL. There is a race condition
 776 * where the cluster buffer may be unpinned before the inode is inserted into
 777 * the AIL during transaction committed processing. If the buffer is unpinned
 778 * before the inode item has been committed and inserted, then it is possible
 779 * for the buffer to be written and IO completes before the inode is inserted
 780 * into the AIL. In that case, we'd be inserting a clean, stale inode into the
 781 * AIL which will never get removed. It will, however, get reclaimed which
 782 * triggers an assert in xfs_inode_free() complaining about freein an inode
 783 * still in the AIL.
 784 *
 785 * To avoid this, just unpin the inode directly and return a LSN of -1 so the
 786 * transaction committed code knows that it does not need to do any further
 787 * processing on the item.
 788 */
 789STATIC xfs_lsn_t
 790xfs_inode_item_committed(
 791	struct xfs_log_item	*lip,
 792	xfs_lsn_t		lsn)
 793{
 794	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
 795	struct xfs_inode	*ip = iip->ili_inode;
 796
 797	if (xfs_iflags_test(ip, XFS_ISTALE)) {
 798		xfs_inode_item_unpin(lip, 0);
 799		return -1;
 800	}
 801	return lsn;
 802}
 803
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 804STATIC void
 805xfs_inode_item_committing(
 806	struct xfs_log_item	*lip,
 807	xfs_csn_t		seq)
 808{
 809	INODE_ITEM(lip)->ili_commit_seq = seq;
 810	return xfs_inode_item_release(lip);
 811}
 812
 813static const struct xfs_item_ops xfs_inode_item_ops = {
 814	.iop_sort	= xfs_inode_item_sort,
 815	.iop_precommit	= xfs_inode_item_precommit,
 
 816	.iop_size	= xfs_inode_item_size,
 817	.iop_format	= xfs_inode_item_format,
 818	.iop_pin	= xfs_inode_item_pin,
 819	.iop_unpin	= xfs_inode_item_unpin,
 820	.iop_release	= xfs_inode_item_release,
 
 821	.iop_committed	= xfs_inode_item_committed,
 822	.iop_push	= xfs_inode_item_push,
 823	.iop_committing	= xfs_inode_item_committing,
 
 824};
 825
 826
 827/*
 828 * Initialize the inode log item for a newly allocated (in-core) inode.
 829 */
 830void
 831xfs_inode_item_init(
 832	struct xfs_inode	*ip,
 833	struct xfs_mount	*mp)
 834{
 835	struct xfs_inode_log_item *iip;
 836
 837	ASSERT(ip->i_itemp == NULL);
 838	iip = ip->i_itemp = kmem_cache_zalloc(xfs_ili_cache,
 839					      GFP_KERNEL | __GFP_NOFAIL);
 840
 841	iip->ili_inode = ip;
 842	spin_lock_init(&iip->ili_lock);
 843	xfs_log_item_init(mp, &iip->ili_item, XFS_LI_INODE,
 844						&xfs_inode_item_ops);
 
 
 
 
 
 845}
 846
 847/*
 848 * Free the inode log item and any memory hanging off of it.
 849 */
 850void
 851xfs_inode_item_destroy(
 852	struct xfs_inode	*ip)
 853{
 854	struct xfs_inode_log_item *iip = ip->i_itemp;
 855
 856	ASSERT(iip->ili_item.li_buf == NULL);
 857
 858	ip->i_itemp = NULL;
 859	kvfree(iip->ili_item.li_lv_shadow);
 860	kmem_cache_free(xfs_ili_cache, iip);
 861}
 862
 863
 864/*
 865 * We only want to pull the item from the AIL if it is actually there
 866 * and its location in the log has not changed since we started the
 867 * flush.  Thus, we only bother if the inode's lsn has not changed.
 
 
 
 
 
 
 
 868 */
 869static void
 870xfs_iflush_ail_updates(
 871	struct xfs_ail		*ailp,
 872	struct list_head	*list)
 873{
 874	struct xfs_log_item	*lip;
 875	xfs_lsn_t		tail_lsn = 0;
 
 
 
 
 876
 877	/* this is an opencoded batch version of xfs_trans_ail_delete */
 878	spin_lock(&ailp->ail_lock);
 879	list_for_each_entry(lip, list, li_bio_list) {
 880		xfs_lsn_t	lsn;
 881
 882		clear_bit(XFS_LI_FAILED, &lip->li_flags);
 883		if (INODE_ITEM(lip)->ili_flush_lsn != lip->li_lsn)
 
 
 
 884			continue;
 
 885
 886		/*
 887		 * dgc: Not sure how this happens, but it happens very
 888		 * occassionaly via generic/388.  xfs_iflush_abort() also
 889		 * silently handles this same "under writeback but not in AIL at
 890		 * shutdown" condition via xfs_trans_ail_delete().
 891		 */
 892		if (!test_bit(XFS_LI_IN_AIL, &lip->li_flags)) {
 893			ASSERT(xlog_is_shutdown(lip->li_log));
 894			continue;
 895		}
 896
 897		lsn = xfs_ail_delete_one(ailp, lip);
 898		if (!tail_lsn && lsn)
 899			tail_lsn = lsn;
 900	}
 901	xfs_ail_update_finish(ailp, tail_lsn);
 902}
 903
 904/*
 905 * Walk the list of inodes that have completed their IOs. If they are clean
 906 * remove them from the list and dissociate them from the buffer. Buffers that
 907 * are still dirty remain linked to the buffer and on the list. Caller must
 908 * handle them appropriately.
 909 */
 910static void
 911xfs_iflush_finish(
 912	struct xfs_buf		*bp,
 913	struct list_head	*list)
 914{
 915	struct xfs_log_item	*lip, *n;
 916
 917	list_for_each_entry_safe(lip, n, list, li_bio_list) {
 918		struct xfs_inode_log_item *iip = INODE_ITEM(lip);
 919		bool	drop_buffer = false;
 920
 921		spin_lock(&iip->ili_lock);
 922
 923		/*
 924		 * Remove the reference to the cluster buffer if the inode is
 925		 * clean in memory and drop the buffer reference once we've
 926		 * dropped the locks we hold.
 927		 */
 928		ASSERT(iip->ili_item.li_buf == bp);
 929		if (!iip->ili_fields) {
 930			iip->ili_item.li_buf = NULL;
 931			list_del_init(&lip->li_bio_list);
 932			drop_buffer = true;
 933		}
 934		iip->ili_last_fields = 0;
 935		iip->ili_flush_lsn = 0;
 936		spin_unlock(&iip->ili_lock);
 937		xfs_iflags_clear(iip->ili_inode, XFS_IFLUSHING);
 938		if (drop_buffer)
 939			xfs_buf_rele(bp);
 940	}
 941}
 942
 943/*
 944 * Inode buffer IO completion routine.  It is responsible for removing inodes
 945 * attached to the buffer from the AIL if they have not been re-logged and
 946 * completing the inode flush.
 947 */
 948void
 949xfs_buf_inode_iodone(
 950	struct xfs_buf		*bp)
 951{
 952	struct xfs_log_item	*lip, *n;
 953	LIST_HEAD(flushed_inodes);
 954	LIST_HEAD(ail_updates);
 955
 956	/*
 957	 * Pull the attached inodes from the buffer one at a time and take the
 958	 * appropriate action on them.
 
 
 
 
 
 959	 */
 960	list_for_each_entry_safe(lip, n, &bp->b_li_list, li_bio_list) {
 961		struct xfs_inode_log_item *iip = INODE_ITEM(lip);
 962
 963		if (xfs_iflags_test(iip->ili_inode, XFS_ISTALE)) {
 964			xfs_iflush_abort(iip->ili_inode);
 965			continue;
 
 
 
 
 
 966		}
 967		if (!iip->ili_last_fields)
 968			continue;
 
 969
 970		/* Do an unlocked check for needing the AIL lock. */
 971		if (iip->ili_flush_lsn == lip->li_lsn ||
 972		    test_bit(XFS_LI_FAILED, &lip->li_flags))
 973			list_move_tail(&lip->li_bio_list, &ail_updates);
 974		else
 975			list_move_tail(&lip->li_bio_list, &flushed_inodes);
 976	}
 977
 978	if (!list_empty(&ail_updates)) {
 979		xfs_iflush_ail_updates(bp->b_mount->m_ail, &ail_updates);
 980		list_splice_tail(&ail_updates, &flushed_inodes);
 981	}
 982
 983	xfs_iflush_finish(bp, &flushed_inodes);
 984	if (!list_empty(&flushed_inodes))
 985		list_splice_tail(&flushed_inodes, &bp->b_li_list);
 986}
 987
 988void
 989xfs_buf_inode_io_fail(
 990	struct xfs_buf		*bp)
 991{
 992	struct xfs_log_item	*lip;
 
 
 
 993
 994	list_for_each_entry(lip, &bp->b_li_list, li_bio_list)
 995		set_bit(XFS_LI_FAILED, &lip->li_flags);
 996}
 997
 998/*
 999 * Clear the inode logging fields so no more flushes are attempted.  If we are
1000 * on a buffer list, it is now safe to remove it because the buffer is
1001 * guaranteed to be locked. The caller will drop the reference to the buffer
1002 * the log item held.
1003 */
1004static void
1005xfs_iflush_abort_clean(
1006	struct xfs_inode_log_item *iip)
1007{
1008	iip->ili_last_fields = 0;
1009	iip->ili_fields = 0;
1010	iip->ili_fsync_fields = 0;
1011	iip->ili_flush_lsn = 0;
1012	iip->ili_item.li_buf = NULL;
1013	list_del_init(&iip->ili_item.li_bio_list);
1014}
1015
1016/*
1017 * Abort flushing the inode from a context holding the cluster buffer locked.
1018 *
1019 * This is the normal runtime method of aborting writeback of an inode that is
1020 * attached to a cluster buffer. It occurs when the inode and the backing
1021 * cluster buffer have been freed (i.e. inode is XFS_ISTALE), or when cluster
1022 * flushing or buffer IO completion encounters a log shutdown situation.
1023 *
1024 * If we need to abort inode writeback and we don't already hold the buffer
1025 * locked, call xfs_iflush_shutdown_abort() instead as this should only ever be
1026 * necessary in a shutdown situation.
1027 */
1028void
1029xfs_iflush_abort(
1030	struct xfs_inode	*ip)
1031{
1032	struct xfs_inode_log_item *iip = ip->i_itemp;
1033	struct xfs_buf		*bp;
1034
1035	if (!iip) {
1036		/* clean inode, nothing to do */
1037		xfs_iflags_clear(ip, XFS_IFLUSHING);
1038		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1039	}
1040
1041	/*
1042	 * Remove the inode item from the AIL before we clear its internal
1043	 * state. Whilst the inode is in the AIL, it should have a valid buffer
1044	 * pointer for push operations to access - it is only safe to remove the
1045	 * inode from the buffer once it has been removed from the AIL.
1046	 *
1047	 * We also clear the failed bit before removing the item from the AIL
1048	 * as xfs_trans_ail_delete()->xfs_clear_li_failed() will release buffer
1049	 * references the inode item owns and needs to hold until we've fully
1050	 * aborted the inode log item and detached it from the buffer.
1051	 */
1052	clear_bit(XFS_LI_FAILED, &iip->ili_item.li_flags);
1053	xfs_trans_ail_delete(&iip->ili_item, 0);
1054
1055	/*
1056	 * Grab the inode buffer so can we release the reference the inode log
1057	 * item holds on it.
1058	 */
1059	spin_lock(&iip->ili_lock);
1060	bp = iip->ili_item.li_buf;
1061	xfs_iflush_abort_clean(iip);
1062	spin_unlock(&iip->ili_lock);
1063
1064	xfs_iflags_clear(ip, XFS_IFLUSHING);
1065	if (bp)
1066		xfs_buf_rele(bp);
1067}
1068
1069/*
1070 * Abort an inode flush in the case of a shutdown filesystem. This can be called
1071 * from anywhere with just an inode reference and does not require holding the
1072 * inode cluster buffer locked. If the inode is attached to a cluster buffer,
1073 * it will grab and lock it safely, then abort the inode flush.
1074 */
1075void
1076xfs_iflush_shutdown_abort(
1077	struct xfs_inode	*ip)
 
1078{
1079	struct xfs_inode_log_item *iip = ip->i_itemp;
1080	struct xfs_buf		*bp;
1081
1082	if (!iip) {
1083		/* clean inode, nothing to do */
1084		xfs_iflags_clear(ip, XFS_IFLUSHING);
1085		return;
1086	}
1087
1088	spin_lock(&iip->ili_lock);
1089	bp = iip->ili_item.li_buf;
1090	if (!bp) {
1091		spin_unlock(&iip->ili_lock);
1092		xfs_iflush_abort(ip);
1093		return;
1094	}
1095
1096	/*
1097	 * We have to take a reference to the buffer so that it doesn't get
1098	 * freed when we drop the ili_lock and then wait to lock the buffer.
1099	 * We'll clean up the extra reference after we pick up the ili_lock
1100	 * again.
1101	 */
1102	xfs_buf_hold(bp);
1103	spin_unlock(&iip->ili_lock);
1104	xfs_buf_lock(bp);
1105
1106	spin_lock(&iip->ili_lock);
1107	if (!iip->ili_item.li_buf) {
1108		/*
1109		 * Raced with another removal, hold the only reference
1110		 * to bp now. Inode should not be in the AIL now, so just clean
1111		 * up and return;
1112		 */
1113		ASSERT(list_empty(&iip->ili_item.li_bio_list));
1114		ASSERT(!test_bit(XFS_LI_IN_AIL, &iip->ili_item.li_flags));
1115		xfs_iflush_abort_clean(iip);
1116		spin_unlock(&iip->ili_lock);
1117		xfs_iflags_clear(ip, XFS_IFLUSHING);
1118		xfs_buf_relse(bp);
1119		return;
1120	}
1121
1122	/*
1123	 * Got two references to bp. The first will get dropped by
1124	 * xfs_iflush_abort() when the item is removed from the buffer list, but
1125	 * we can't drop our reference until _abort() returns because we have to
1126	 * unlock the buffer as well. Hence we abort and then unlock and release
1127	 * our reference to the buffer.
1128	 */
1129	ASSERT(iip->ili_item.li_buf == bp);
1130	spin_unlock(&iip->ili_lock);
1131	xfs_iflush_abort(ip);
1132	xfs_buf_relse(bp);
1133}
1134
1135
1136/*
1137 * convert an xfs_inode_log_format struct from the old 32 bit version
1138 * (which can have different field alignments) to the native 64 bit version
1139 */
1140int
1141xfs_inode_item_format_convert(
1142	struct xfs_log_iovec		*buf,
1143	struct xfs_inode_log_format	*in_f)
1144{
1145	struct xfs_inode_log_format_32	*in_f32 = buf->i_addr;
 
1146
1147	if (buf->i_len != sizeof(*in_f32)) {
1148		XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, NULL);
1149		return -EFSCORRUPTED;
1150	}
1151
1152	in_f->ilf_type = in_f32->ilf_type;
1153	in_f->ilf_size = in_f32->ilf_size;
1154	in_f->ilf_fields = in_f32->ilf_fields;
1155	in_f->ilf_asize = in_f32->ilf_asize;
1156	in_f->ilf_dsize = in_f32->ilf_dsize;
1157	in_f->ilf_ino = in_f32->ilf_ino;
1158	memcpy(&in_f->ilf_u, &in_f32->ilf_u, sizeof(in_f->ilf_u));
1159	in_f->ilf_blkno = in_f32->ilf_blkno;
1160	in_f->ilf_len = in_f32->ilf_len;
1161	in_f->ilf_boffset = in_f32->ilf_boffset;
1162	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1163}