Loading...
1/*
2 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18#include "xfs.h"
19#include "xfs_fs.h"
20#include "xfs_types.h"
21#include "xfs_bit.h"
22#include "xfs_log.h"
23#include "xfs_inum.h"
24#include "xfs_trans.h"
25#include "xfs_sb.h"
26#include "xfs_ag.h"
27#include "xfs_mount.h"
28#include "xfs_trans_priv.h"
29#include "xfs_bmap_btree.h"
30#include "xfs_dinode.h"
31#include "xfs_inode.h"
32#include "xfs_inode_item.h"
33#include "xfs_error.h"
34#include "xfs_trace.h"
35
36
37kmem_zone_t *xfs_ili_zone; /* inode log item zone */
38
39static inline struct xfs_inode_log_item *INODE_ITEM(struct xfs_log_item *lip)
40{
41 return container_of(lip, struct xfs_inode_log_item, ili_item);
42}
43
44
45/*
46 * This returns the number of iovecs needed to log the given inode item.
47 *
48 * We need one iovec for the inode log format structure, one for the
49 * inode core, and possibly one for the inode data/extents/b-tree root
50 * and one for the inode attribute data/extents/b-tree root.
51 */
52STATIC uint
53xfs_inode_item_size(
54 struct xfs_log_item *lip)
55{
56 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
57 struct xfs_inode *ip = iip->ili_inode;
58 uint nvecs = 2;
59
60 /*
61 * Only log the data/extents/b-tree root if there is something
62 * left to log.
63 */
64 iip->ili_format.ilf_fields |= XFS_ILOG_CORE;
65
66 switch (ip->i_d.di_format) {
67 case XFS_DINODE_FMT_EXTENTS:
68 iip->ili_format.ilf_fields &=
69 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
70 XFS_ILOG_DEV | XFS_ILOG_UUID);
71 if ((iip->ili_format.ilf_fields & XFS_ILOG_DEXT) &&
72 (ip->i_d.di_nextents > 0) &&
73 (ip->i_df.if_bytes > 0)) {
74 ASSERT(ip->i_df.if_u1.if_extents != NULL);
75 nvecs++;
76 } else {
77 iip->ili_format.ilf_fields &= ~XFS_ILOG_DEXT;
78 }
79 break;
80
81 case XFS_DINODE_FMT_BTREE:
82 ASSERT(ip->i_df.if_ext_max ==
83 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t));
84 iip->ili_format.ilf_fields &=
85 ~(XFS_ILOG_DDATA | XFS_ILOG_DEXT |
86 XFS_ILOG_DEV | XFS_ILOG_UUID);
87 if ((iip->ili_format.ilf_fields & XFS_ILOG_DBROOT) &&
88 (ip->i_df.if_broot_bytes > 0)) {
89 ASSERT(ip->i_df.if_broot != NULL);
90 nvecs++;
91 } else {
92 ASSERT(!(iip->ili_format.ilf_fields &
93 XFS_ILOG_DBROOT));
94#ifdef XFS_TRANS_DEBUG
95 if (iip->ili_root_size > 0) {
96 ASSERT(iip->ili_root_size ==
97 ip->i_df.if_broot_bytes);
98 ASSERT(memcmp(iip->ili_orig_root,
99 ip->i_df.if_broot,
100 iip->ili_root_size) == 0);
101 } else {
102 ASSERT(ip->i_df.if_broot_bytes == 0);
103 }
104#endif
105 iip->ili_format.ilf_fields &= ~XFS_ILOG_DBROOT;
106 }
107 break;
108
109 case XFS_DINODE_FMT_LOCAL:
110 iip->ili_format.ilf_fields &=
111 ~(XFS_ILOG_DEXT | XFS_ILOG_DBROOT |
112 XFS_ILOG_DEV | XFS_ILOG_UUID);
113 if ((iip->ili_format.ilf_fields & XFS_ILOG_DDATA) &&
114 (ip->i_df.if_bytes > 0)) {
115 ASSERT(ip->i_df.if_u1.if_data != NULL);
116 ASSERT(ip->i_d.di_size > 0);
117 nvecs++;
118 } else {
119 iip->ili_format.ilf_fields &= ~XFS_ILOG_DDATA;
120 }
121 break;
122
123 case XFS_DINODE_FMT_DEV:
124 iip->ili_format.ilf_fields &=
125 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
126 XFS_ILOG_DEXT | XFS_ILOG_UUID);
127 break;
128
129 case XFS_DINODE_FMT_UUID:
130 iip->ili_format.ilf_fields &=
131 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
132 XFS_ILOG_DEXT | XFS_ILOG_DEV);
133 break;
134
135 default:
136 ASSERT(0);
137 break;
138 }
139
140 /*
141 * If there are no attributes associated with this file,
142 * then there cannot be anything more to log.
143 * Clear all attribute-related log flags.
144 */
145 if (!XFS_IFORK_Q(ip)) {
146 iip->ili_format.ilf_fields &=
147 ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT);
148 return nvecs;
149 }
150
151 /*
152 * Log any necessary attribute data.
153 */
154 switch (ip->i_d.di_aformat) {
155 case XFS_DINODE_FMT_EXTENTS:
156 iip->ili_format.ilf_fields &=
157 ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT);
158 if ((iip->ili_format.ilf_fields & XFS_ILOG_AEXT) &&
159 (ip->i_d.di_anextents > 0) &&
160 (ip->i_afp->if_bytes > 0)) {
161 ASSERT(ip->i_afp->if_u1.if_extents != NULL);
162 nvecs++;
163 } else {
164 iip->ili_format.ilf_fields &= ~XFS_ILOG_AEXT;
165 }
166 break;
167
168 case XFS_DINODE_FMT_BTREE:
169 iip->ili_format.ilf_fields &=
170 ~(XFS_ILOG_ADATA | XFS_ILOG_AEXT);
171 if ((iip->ili_format.ilf_fields & XFS_ILOG_ABROOT) &&
172 (ip->i_afp->if_broot_bytes > 0)) {
173 ASSERT(ip->i_afp->if_broot != NULL);
174 nvecs++;
175 } else {
176 iip->ili_format.ilf_fields &= ~XFS_ILOG_ABROOT;
177 }
178 break;
179
180 case XFS_DINODE_FMT_LOCAL:
181 iip->ili_format.ilf_fields &=
182 ~(XFS_ILOG_AEXT | XFS_ILOG_ABROOT);
183 if ((iip->ili_format.ilf_fields & XFS_ILOG_ADATA) &&
184 (ip->i_afp->if_bytes > 0)) {
185 ASSERT(ip->i_afp->if_u1.if_data != NULL);
186 nvecs++;
187 } else {
188 iip->ili_format.ilf_fields &= ~XFS_ILOG_ADATA;
189 }
190 break;
191
192 default:
193 ASSERT(0);
194 break;
195 }
196
197 return nvecs;
198}
199
200/*
201 * xfs_inode_item_format_extents - convert in-core extents to on-disk form
202 *
203 * For either the data or attr fork in extent format, we need to endian convert
204 * the in-core extent as we place them into the on-disk inode. In this case, we
205 * need to do this conversion before we write the extents into the log. Because
206 * we don't have the disk inode to write into here, we allocate a buffer and
207 * format the extents into it via xfs_iextents_copy(). We free the buffer in
208 * the unlock routine after the copy for the log has been made.
209 *
210 * In the case of the data fork, the in-core and on-disk fork sizes can be
211 * different due to delayed allocation extents. We only log on-disk extents
212 * here, so always use the physical fork size to determine the size of the
213 * buffer we need to allocate.
214 */
215STATIC void
216xfs_inode_item_format_extents(
217 struct xfs_inode *ip,
218 struct xfs_log_iovec *vecp,
219 int whichfork,
220 int type)
221{
222 xfs_bmbt_rec_t *ext_buffer;
223
224 ext_buffer = kmem_alloc(XFS_IFORK_SIZE(ip, whichfork), KM_SLEEP);
225 if (whichfork == XFS_DATA_FORK)
226 ip->i_itemp->ili_extents_buf = ext_buffer;
227 else
228 ip->i_itemp->ili_aextents_buf = ext_buffer;
229
230 vecp->i_addr = ext_buffer;
231 vecp->i_len = xfs_iextents_copy(ip, ext_buffer, whichfork);
232 vecp->i_type = type;
233}
234
235/*
236 * This is called to fill in the vector of log iovecs for the
237 * given inode log item. It fills the first item with an inode
238 * log format structure, the second with the on-disk inode structure,
239 * and a possible third and/or fourth with the inode data/extents/b-tree
240 * root and inode attributes data/extents/b-tree root.
241 */
242STATIC void
243xfs_inode_item_format(
244 struct xfs_log_item *lip,
245 struct xfs_log_iovec *vecp)
246{
247 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
248 struct xfs_inode *ip = iip->ili_inode;
249 uint nvecs;
250 size_t data_bytes;
251 xfs_mount_t *mp;
252
253 vecp->i_addr = &iip->ili_format;
254 vecp->i_len = sizeof(xfs_inode_log_format_t);
255 vecp->i_type = XLOG_REG_TYPE_IFORMAT;
256 vecp++;
257 nvecs = 1;
258
259 /*
260 * Clear i_update_core if the timestamps (or any other
261 * non-transactional modification) need flushing/logging
262 * and we're about to log them with the rest of the core.
263 *
264 * This is the same logic as xfs_iflush() but this code can't
265 * run at the same time as xfs_iflush because we're in commit
266 * processing here and so we have the inode lock held in
267 * exclusive mode. Although it doesn't really matter
268 * for the timestamps if both routines were to grab the
269 * timestamps or not. That would be ok.
270 *
271 * We clear i_update_core before copying out the data.
272 * This is for coordination with our timestamp updates
273 * that don't hold the inode lock. They will always
274 * update the timestamps BEFORE setting i_update_core,
275 * so if we clear i_update_core after they set it we
276 * are guaranteed to see their updates to the timestamps
277 * either here. Likewise, if they set it after we clear it
278 * here, we'll see it either on the next commit of this
279 * inode or the next time the inode gets flushed via
280 * xfs_iflush(). This depends on strongly ordered memory
281 * semantics, but we have that. We use the SYNCHRONIZE
282 * macro to make sure that the compiler does not reorder
283 * the i_update_core access below the data copy below.
284 */
285 if (ip->i_update_core) {
286 ip->i_update_core = 0;
287 SYNCHRONIZE();
288 }
289
290 /*
291 * Make sure to get the latest timestamps from the Linux inode.
292 */
293 xfs_synchronize_times(ip);
294
295 vecp->i_addr = &ip->i_d;
296 vecp->i_len = sizeof(struct xfs_icdinode);
297 vecp->i_type = XLOG_REG_TYPE_ICORE;
298 vecp++;
299 nvecs++;
300 iip->ili_format.ilf_fields |= XFS_ILOG_CORE;
301
302 /*
303 * If this is really an old format inode, then we need to
304 * log it as such. This means that we have to copy the link
305 * count from the new field to the old. We don't have to worry
306 * about the new fields, because nothing trusts them as long as
307 * the old inode version number is there. If the superblock already
308 * has a new version number, then we don't bother converting back.
309 */
310 mp = ip->i_mount;
311 ASSERT(ip->i_d.di_version == 1 || xfs_sb_version_hasnlink(&mp->m_sb));
312 if (ip->i_d.di_version == 1) {
313 if (!xfs_sb_version_hasnlink(&mp->m_sb)) {
314 /*
315 * Convert it back.
316 */
317 ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
318 ip->i_d.di_onlink = ip->i_d.di_nlink;
319 } else {
320 /*
321 * The superblock version has already been bumped,
322 * so just make the conversion to the new inode
323 * format permanent.
324 */
325 ip->i_d.di_version = 2;
326 ip->i_d.di_onlink = 0;
327 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
328 }
329 }
330
331 switch (ip->i_d.di_format) {
332 case XFS_DINODE_FMT_EXTENTS:
333 ASSERT(!(iip->ili_format.ilf_fields &
334 (XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
335 XFS_ILOG_DEV | XFS_ILOG_UUID)));
336 if (iip->ili_format.ilf_fields & XFS_ILOG_DEXT) {
337 ASSERT(ip->i_df.if_bytes > 0);
338 ASSERT(ip->i_df.if_u1.if_extents != NULL);
339 ASSERT(ip->i_d.di_nextents > 0);
340 ASSERT(iip->ili_extents_buf == NULL);
341 ASSERT((ip->i_df.if_bytes /
342 (uint)sizeof(xfs_bmbt_rec_t)) > 0);
343#ifdef XFS_NATIVE_HOST
344 if (ip->i_d.di_nextents == ip->i_df.if_bytes /
345 (uint)sizeof(xfs_bmbt_rec_t)) {
346 /*
347 * There are no delayed allocation
348 * extents, so just point to the
349 * real extents array.
350 */
351 vecp->i_addr = ip->i_df.if_u1.if_extents;
352 vecp->i_len = ip->i_df.if_bytes;
353 vecp->i_type = XLOG_REG_TYPE_IEXT;
354 } else
355#endif
356 {
357 xfs_inode_item_format_extents(ip, vecp,
358 XFS_DATA_FORK, XLOG_REG_TYPE_IEXT);
359 }
360 ASSERT(vecp->i_len <= ip->i_df.if_bytes);
361 iip->ili_format.ilf_dsize = vecp->i_len;
362 vecp++;
363 nvecs++;
364 }
365 break;
366
367 case XFS_DINODE_FMT_BTREE:
368 ASSERT(!(iip->ili_format.ilf_fields &
369 (XFS_ILOG_DDATA | XFS_ILOG_DEXT |
370 XFS_ILOG_DEV | XFS_ILOG_UUID)));
371 if (iip->ili_format.ilf_fields & XFS_ILOG_DBROOT) {
372 ASSERT(ip->i_df.if_broot_bytes > 0);
373 ASSERT(ip->i_df.if_broot != NULL);
374 vecp->i_addr = ip->i_df.if_broot;
375 vecp->i_len = ip->i_df.if_broot_bytes;
376 vecp->i_type = XLOG_REG_TYPE_IBROOT;
377 vecp++;
378 nvecs++;
379 iip->ili_format.ilf_dsize = ip->i_df.if_broot_bytes;
380 }
381 break;
382
383 case XFS_DINODE_FMT_LOCAL:
384 ASSERT(!(iip->ili_format.ilf_fields &
385 (XFS_ILOG_DBROOT | XFS_ILOG_DEXT |
386 XFS_ILOG_DEV | XFS_ILOG_UUID)));
387 if (iip->ili_format.ilf_fields & XFS_ILOG_DDATA) {
388 ASSERT(ip->i_df.if_bytes > 0);
389 ASSERT(ip->i_df.if_u1.if_data != NULL);
390 ASSERT(ip->i_d.di_size > 0);
391
392 vecp->i_addr = ip->i_df.if_u1.if_data;
393 /*
394 * Round i_bytes up to a word boundary.
395 * The underlying memory is guaranteed to
396 * to be there by xfs_idata_realloc().
397 */
398 data_bytes = roundup(ip->i_df.if_bytes, 4);
399 ASSERT((ip->i_df.if_real_bytes == 0) ||
400 (ip->i_df.if_real_bytes == data_bytes));
401 vecp->i_len = (int)data_bytes;
402 vecp->i_type = XLOG_REG_TYPE_ILOCAL;
403 vecp++;
404 nvecs++;
405 iip->ili_format.ilf_dsize = (unsigned)data_bytes;
406 }
407 break;
408
409 case XFS_DINODE_FMT_DEV:
410 ASSERT(!(iip->ili_format.ilf_fields &
411 (XFS_ILOG_DBROOT | XFS_ILOG_DEXT |
412 XFS_ILOG_DDATA | XFS_ILOG_UUID)));
413 if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) {
414 iip->ili_format.ilf_u.ilfu_rdev =
415 ip->i_df.if_u2.if_rdev;
416 }
417 break;
418
419 case XFS_DINODE_FMT_UUID:
420 ASSERT(!(iip->ili_format.ilf_fields &
421 (XFS_ILOG_DBROOT | XFS_ILOG_DEXT |
422 XFS_ILOG_DDATA | XFS_ILOG_DEV)));
423 if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) {
424 iip->ili_format.ilf_u.ilfu_uuid =
425 ip->i_df.if_u2.if_uuid;
426 }
427 break;
428
429 default:
430 ASSERT(0);
431 break;
432 }
433
434 /*
435 * If there are no attributes associated with the file,
436 * then we're done.
437 * Assert that no attribute-related log flags are set.
438 */
439 if (!XFS_IFORK_Q(ip)) {
440 ASSERT(nvecs == lip->li_desc->lid_size);
441 iip->ili_format.ilf_size = nvecs;
442 ASSERT(!(iip->ili_format.ilf_fields &
443 (XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT)));
444 return;
445 }
446
447 switch (ip->i_d.di_aformat) {
448 case XFS_DINODE_FMT_EXTENTS:
449 ASSERT(!(iip->ili_format.ilf_fields &
450 (XFS_ILOG_ADATA | XFS_ILOG_ABROOT)));
451 if (iip->ili_format.ilf_fields & XFS_ILOG_AEXT) {
452#ifdef DEBUG
453 int nrecs = ip->i_afp->if_bytes /
454 (uint)sizeof(xfs_bmbt_rec_t);
455 ASSERT(nrecs > 0);
456 ASSERT(nrecs == ip->i_d.di_anextents);
457 ASSERT(ip->i_afp->if_bytes > 0);
458 ASSERT(ip->i_afp->if_u1.if_extents != NULL);
459 ASSERT(ip->i_d.di_anextents > 0);
460#endif
461#ifdef XFS_NATIVE_HOST
462 /*
463 * There are not delayed allocation extents
464 * for attributes, so just point at the array.
465 */
466 vecp->i_addr = ip->i_afp->if_u1.if_extents;
467 vecp->i_len = ip->i_afp->if_bytes;
468 vecp->i_type = XLOG_REG_TYPE_IATTR_EXT;
469#else
470 ASSERT(iip->ili_aextents_buf == NULL);
471 xfs_inode_item_format_extents(ip, vecp,
472 XFS_ATTR_FORK, XLOG_REG_TYPE_IATTR_EXT);
473#endif
474 iip->ili_format.ilf_asize = vecp->i_len;
475 vecp++;
476 nvecs++;
477 }
478 break;
479
480 case XFS_DINODE_FMT_BTREE:
481 ASSERT(!(iip->ili_format.ilf_fields &
482 (XFS_ILOG_ADATA | XFS_ILOG_AEXT)));
483 if (iip->ili_format.ilf_fields & XFS_ILOG_ABROOT) {
484 ASSERT(ip->i_afp->if_broot_bytes > 0);
485 ASSERT(ip->i_afp->if_broot != NULL);
486 vecp->i_addr = ip->i_afp->if_broot;
487 vecp->i_len = ip->i_afp->if_broot_bytes;
488 vecp->i_type = XLOG_REG_TYPE_IATTR_BROOT;
489 vecp++;
490 nvecs++;
491 iip->ili_format.ilf_asize = ip->i_afp->if_broot_bytes;
492 }
493 break;
494
495 case XFS_DINODE_FMT_LOCAL:
496 ASSERT(!(iip->ili_format.ilf_fields &
497 (XFS_ILOG_ABROOT | XFS_ILOG_AEXT)));
498 if (iip->ili_format.ilf_fields & XFS_ILOG_ADATA) {
499 ASSERT(ip->i_afp->if_bytes > 0);
500 ASSERT(ip->i_afp->if_u1.if_data != NULL);
501
502 vecp->i_addr = ip->i_afp->if_u1.if_data;
503 /*
504 * Round i_bytes up to a word boundary.
505 * The underlying memory is guaranteed to
506 * to be there by xfs_idata_realloc().
507 */
508 data_bytes = roundup(ip->i_afp->if_bytes, 4);
509 ASSERT((ip->i_afp->if_real_bytes == 0) ||
510 (ip->i_afp->if_real_bytes == data_bytes));
511 vecp->i_len = (int)data_bytes;
512 vecp->i_type = XLOG_REG_TYPE_IATTR_LOCAL;
513 vecp++;
514 nvecs++;
515 iip->ili_format.ilf_asize = (unsigned)data_bytes;
516 }
517 break;
518
519 default:
520 ASSERT(0);
521 break;
522 }
523
524 ASSERT(nvecs == lip->li_desc->lid_size);
525 iip->ili_format.ilf_size = nvecs;
526}
527
528
529/*
530 * This is called to pin the inode associated with the inode log
531 * item in memory so it cannot be written out.
532 */
533STATIC void
534xfs_inode_item_pin(
535 struct xfs_log_item *lip)
536{
537 struct xfs_inode *ip = INODE_ITEM(lip)->ili_inode;
538
539 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
540
541 trace_xfs_inode_pin(ip, _RET_IP_);
542 atomic_inc(&ip->i_pincount);
543}
544
545
546/*
547 * This is called to unpin the inode associated with the inode log
548 * item which was previously pinned with a call to xfs_inode_item_pin().
549 *
550 * Also wake up anyone in xfs_iunpin_wait() if the count goes to 0.
551 */
552STATIC void
553xfs_inode_item_unpin(
554 struct xfs_log_item *lip,
555 int remove)
556{
557 struct xfs_inode *ip = INODE_ITEM(lip)->ili_inode;
558
559 trace_xfs_inode_unpin(ip, _RET_IP_);
560 ASSERT(atomic_read(&ip->i_pincount) > 0);
561 if (atomic_dec_and_test(&ip->i_pincount))
562 wake_up(&ip->i_ipin_wait);
563}
564
565/*
566 * This is called to attempt to lock the inode associated with this
567 * inode log item, in preparation for the push routine which does the actual
568 * iflush. Don't sleep on the inode lock or the flush lock.
569 *
570 * If the flush lock is already held, indicating that the inode has
571 * been or is in the process of being flushed, then (ideally) we'd like to
572 * see if the inode's buffer is still incore, and if so give it a nudge.
573 * We delay doing so until the pushbuf routine, though, to avoid holding
574 * the AIL lock across a call to the blackhole which is the buffer cache.
575 * Also we don't want to sleep in any device strategy routines, which can happen
576 * if we do the subsequent bawrite in here.
577 */
578STATIC uint
579xfs_inode_item_trylock(
580 struct xfs_log_item *lip)
581{
582 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
583 struct xfs_inode *ip = iip->ili_inode;
584
585 if (xfs_ipincount(ip) > 0)
586 return XFS_ITEM_PINNED;
587
588 if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED))
589 return XFS_ITEM_LOCKED;
590
591 if (!xfs_iflock_nowait(ip)) {
592 /*
593 * inode has already been flushed to the backing buffer,
594 * leave it locked in shared mode, pushbuf routine will
595 * unlock it.
596 */
597 return XFS_ITEM_PUSHBUF;
598 }
599
600 /* Stale items should force out the iclog */
601 if (ip->i_flags & XFS_ISTALE) {
602 xfs_ifunlock(ip);
603 /*
604 * we hold the AIL lock - notify the unlock routine of this
605 * so it doesn't try to get the lock again.
606 */
607 xfs_iunlock(ip, XFS_ILOCK_SHARED|XFS_IUNLOCK_NONOTIFY);
608 return XFS_ITEM_PINNED;
609 }
610
611#ifdef DEBUG
612 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
613 ASSERT(iip->ili_format.ilf_fields != 0);
614 ASSERT(iip->ili_logged == 0);
615 ASSERT(lip->li_flags & XFS_LI_IN_AIL);
616 }
617#endif
618 return XFS_ITEM_SUCCESS;
619}
620
621/*
622 * Unlock the inode associated with the inode log item.
623 * Clear the fields of the inode and inode log item that
624 * are specific to the current transaction. If the
625 * hold flags is set, do not unlock the inode.
626 */
627STATIC void
628xfs_inode_item_unlock(
629 struct xfs_log_item *lip)
630{
631 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
632 struct xfs_inode *ip = iip->ili_inode;
633 unsigned short lock_flags;
634
635 ASSERT(ip->i_itemp != NULL);
636 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
637
638 /*
639 * If the inode needed a separate buffer with which to log
640 * its extents, then free it now.
641 */
642 if (iip->ili_extents_buf != NULL) {
643 ASSERT(ip->i_d.di_format == XFS_DINODE_FMT_EXTENTS);
644 ASSERT(ip->i_d.di_nextents > 0);
645 ASSERT(iip->ili_format.ilf_fields & XFS_ILOG_DEXT);
646 ASSERT(ip->i_df.if_bytes > 0);
647 kmem_free(iip->ili_extents_buf);
648 iip->ili_extents_buf = NULL;
649 }
650 if (iip->ili_aextents_buf != NULL) {
651 ASSERT(ip->i_d.di_aformat == XFS_DINODE_FMT_EXTENTS);
652 ASSERT(ip->i_d.di_anextents > 0);
653 ASSERT(iip->ili_format.ilf_fields & XFS_ILOG_AEXT);
654 ASSERT(ip->i_afp->if_bytes > 0);
655 kmem_free(iip->ili_aextents_buf);
656 iip->ili_aextents_buf = NULL;
657 }
658
659 lock_flags = iip->ili_lock_flags;
660 iip->ili_lock_flags = 0;
661 if (lock_flags) {
662 xfs_iunlock(ip, lock_flags);
663 IRELE(ip);
664 }
665}
666
667/*
668 * This is called to find out where the oldest active copy of the inode log
669 * item in the on disk log resides now that the last log write of it completed
670 * at the given lsn. Since we always re-log all dirty data in an inode, the
671 * latest copy in the on disk log is the only one that matters. Therefore,
672 * simply return the given lsn.
673 *
674 * If the inode has been marked stale because the cluster is being freed, we
675 * don't want to (re-)insert this inode into the AIL. There is a race condition
676 * where the cluster buffer may be unpinned before the inode is inserted into
677 * the AIL during transaction committed processing. If the buffer is unpinned
678 * before the inode item has been committed and inserted, then it is possible
679 * for the buffer to be written and IO completes before the inode is inserted
680 * into the AIL. In that case, we'd be inserting a clean, stale inode into the
681 * AIL which will never get removed. It will, however, get reclaimed which
682 * triggers an assert in xfs_inode_free() complaining about freein an inode
683 * still in the AIL.
684 *
685 * To avoid this, just unpin the inode directly and return a LSN of -1 so the
686 * transaction committed code knows that it does not need to do any further
687 * processing on the item.
688 */
689STATIC xfs_lsn_t
690xfs_inode_item_committed(
691 struct xfs_log_item *lip,
692 xfs_lsn_t lsn)
693{
694 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
695 struct xfs_inode *ip = iip->ili_inode;
696
697 if (xfs_iflags_test(ip, XFS_ISTALE)) {
698 xfs_inode_item_unpin(lip, 0);
699 return -1;
700 }
701 return lsn;
702}
703
704/*
705 * This gets called by xfs_trans_push_ail(), when IOP_TRYLOCK
706 * failed to get the inode flush lock but did get the inode locked SHARED.
707 * Here we're trying to see if the inode buffer is incore, and if so whether it's
708 * marked delayed write. If that's the case, we'll promote it and that will
709 * allow the caller to write the buffer by triggering the xfsbufd to run.
710 */
711STATIC bool
712xfs_inode_item_pushbuf(
713 struct xfs_log_item *lip)
714{
715 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
716 struct xfs_inode *ip = iip->ili_inode;
717 struct xfs_buf *bp;
718 bool ret = true;
719
720 ASSERT(xfs_isilocked(ip, XFS_ILOCK_SHARED));
721
722 /*
723 * If a flush is not in progress anymore, chances are that the
724 * inode was taken off the AIL. So, just get out.
725 */
726 if (completion_done(&ip->i_flush) ||
727 !(lip->li_flags & XFS_LI_IN_AIL)) {
728 xfs_iunlock(ip, XFS_ILOCK_SHARED);
729 return true;
730 }
731
732 bp = xfs_incore(ip->i_mount->m_ddev_targp, iip->ili_format.ilf_blkno,
733 iip->ili_format.ilf_len, XBF_TRYLOCK);
734
735 xfs_iunlock(ip, XFS_ILOCK_SHARED);
736 if (!bp)
737 return true;
738 if (XFS_BUF_ISDELAYWRITE(bp))
739 xfs_buf_delwri_promote(bp);
740 if (xfs_buf_ispinned(bp))
741 ret = false;
742 xfs_buf_relse(bp);
743 return ret;
744}
745
746/*
747 * This is called to asynchronously write the inode associated with this
748 * inode log item out to disk. The inode will already have been locked by
749 * a successful call to xfs_inode_item_trylock().
750 */
751STATIC void
752xfs_inode_item_push(
753 struct xfs_log_item *lip)
754{
755 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
756 struct xfs_inode *ip = iip->ili_inode;
757
758 ASSERT(xfs_isilocked(ip, XFS_ILOCK_SHARED));
759 ASSERT(!completion_done(&ip->i_flush));
760
761 /*
762 * Since we were able to lock the inode's flush lock and
763 * we found it on the AIL, the inode must be dirty. This
764 * is because the inode is removed from the AIL while still
765 * holding the flush lock in xfs_iflush_done(). Thus, if
766 * we found it in the AIL and were able to obtain the flush
767 * lock without sleeping, then there must not have been
768 * anyone in the process of flushing the inode.
769 */
770 ASSERT(XFS_FORCED_SHUTDOWN(ip->i_mount) ||
771 iip->ili_format.ilf_fields != 0);
772
773 /*
774 * Push the inode to it's backing buffer. This will not remove the
775 * inode from the AIL - a further push will be required to trigger a
776 * buffer push. However, this allows all the dirty inodes to be pushed
777 * to the buffer before it is pushed to disk. The buffer IO completion
778 * will pull the inode from the AIL, mark it clean and unlock the flush
779 * lock.
780 */
781 (void) xfs_iflush(ip, SYNC_TRYLOCK);
782 xfs_iunlock(ip, XFS_ILOCK_SHARED);
783}
784
785/*
786 * XXX rcc - this one really has to do something. Probably needs
787 * to stamp in a new field in the incore inode.
788 */
789STATIC void
790xfs_inode_item_committing(
791 struct xfs_log_item *lip,
792 xfs_lsn_t lsn)
793{
794 INODE_ITEM(lip)->ili_last_lsn = lsn;
795}
796
797/*
798 * This is the ops vector shared by all buf log items.
799 */
800static struct xfs_item_ops xfs_inode_item_ops = {
801 .iop_size = xfs_inode_item_size,
802 .iop_format = xfs_inode_item_format,
803 .iop_pin = xfs_inode_item_pin,
804 .iop_unpin = xfs_inode_item_unpin,
805 .iop_trylock = xfs_inode_item_trylock,
806 .iop_unlock = xfs_inode_item_unlock,
807 .iop_committed = xfs_inode_item_committed,
808 .iop_push = xfs_inode_item_push,
809 .iop_pushbuf = xfs_inode_item_pushbuf,
810 .iop_committing = xfs_inode_item_committing
811};
812
813
814/*
815 * Initialize the inode log item for a newly allocated (in-core) inode.
816 */
817void
818xfs_inode_item_init(
819 struct xfs_inode *ip,
820 struct xfs_mount *mp)
821{
822 struct xfs_inode_log_item *iip;
823
824 ASSERT(ip->i_itemp == NULL);
825 iip = ip->i_itemp = kmem_zone_zalloc(xfs_ili_zone, KM_SLEEP);
826
827 iip->ili_inode = ip;
828 xfs_log_item_init(mp, &iip->ili_item, XFS_LI_INODE,
829 &xfs_inode_item_ops);
830 iip->ili_format.ilf_type = XFS_LI_INODE;
831 iip->ili_format.ilf_ino = ip->i_ino;
832 iip->ili_format.ilf_blkno = ip->i_imap.im_blkno;
833 iip->ili_format.ilf_len = ip->i_imap.im_len;
834 iip->ili_format.ilf_boffset = ip->i_imap.im_boffset;
835}
836
837/*
838 * Free the inode log item and any memory hanging off of it.
839 */
840void
841xfs_inode_item_destroy(
842 xfs_inode_t *ip)
843{
844#ifdef XFS_TRANS_DEBUG
845 if (ip->i_itemp->ili_root_size != 0) {
846 kmem_free(ip->i_itemp->ili_orig_root);
847 }
848#endif
849 kmem_zone_free(xfs_ili_zone, ip->i_itemp);
850}
851
852
853/*
854 * This is the inode flushing I/O completion routine. It is called
855 * from interrupt level when the buffer containing the inode is
856 * flushed to disk. It is responsible for removing the inode item
857 * from the AIL if it has not been re-logged, and unlocking the inode's
858 * flush lock.
859 *
860 * To reduce AIL lock traffic as much as possible, we scan the buffer log item
861 * list for other inodes that will run this function. We remove them from the
862 * buffer list so we can process all the inode IO completions in one AIL lock
863 * traversal.
864 */
865void
866xfs_iflush_done(
867 struct xfs_buf *bp,
868 struct xfs_log_item *lip)
869{
870 struct xfs_inode_log_item *iip;
871 struct xfs_log_item *blip;
872 struct xfs_log_item *next;
873 struct xfs_log_item *prev;
874 struct xfs_ail *ailp = lip->li_ailp;
875 int need_ail = 0;
876
877 /*
878 * Scan the buffer IO completions for other inodes being completed and
879 * attach them to the current inode log item.
880 */
881 blip = bp->b_fspriv;
882 prev = NULL;
883 while (blip != NULL) {
884 if (lip->li_cb != xfs_iflush_done) {
885 prev = blip;
886 blip = blip->li_bio_list;
887 continue;
888 }
889
890 /* remove from list */
891 next = blip->li_bio_list;
892 if (!prev) {
893 bp->b_fspriv = next;
894 } else {
895 prev->li_bio_list = next;
896 }
897
898 /* add to current list */
899 blip->li_bio_list = lip->li_bio_list;
900 lip->li_bio_list = blip;
901
902 /*
903 * while we have the item, do the unlocked check for needing
904 * the AIL lock.
905 */
906 iip = INODE_ITEM(blip);
907 if (iip->ili_logged && blip->li_lsn == iip->ili_flush_lsn)
908 need_ail++;
909
910 blip = next;
911 }
912
913 /* make sure we capture the state of the initial inode. */
914 iip = INODE_ITEM(lip);
915 if (iip->ili_logged && lip->li_lsn == iip->ili_flush_lsn)
916 need_ail++;
917
918 /*
919 * We only want to pull the item from the AIL if it is
920 * actually there and its location in the log has not
921 * changed since we started the flush. Thus, we only bother
922 * if the ili_logged flag is set and the inode's lsn has not
923 * changed. First we check the lsn outside
924 * the lock since it's cheaper, and then we recheck while
925 * holding the lock before removing the inode from the AIL.
926 */
927 if (need_ail) {
928 struct xfs_log_item *log_items[need_ail];
929 int i = 0;
930 spin_lock(&ailp->xa_lock);
931 for (blip = lip; blip; blip = blip->li_bio_list) {
932 iip = INODE_ITEM(blip);
933 if (iip->ili_logged &&
934 blip->li_lsn == iip->ili_flush_lsn) {
935 log_items[i++] = blip;
936 }
937 ASSERT(i <= need_ail);
938 }
939 /* xfs_trans_ail_delete_bulk() drops the AIL lock. */
940 xfs_trans_ail_delete_bulk(ailp, log_items, i);
941 }
942
943
944 /*
945 * clean up and unlock the flush lock now we are done. We can clear the
946 * ili_last_fields bits now that we know that the data corresponding to
947 * them is safely on disk.
948 */
949 for (blip = lip; blip; blip = next) {
950 next = blip->li_bio_list;
951 blip->li_bio_list = NULL;
952
953 iip = INODE_ITEM(blip);
954 iip->ili_logged = 0;
955 iip->ili_last_fields = 0;
956 xfs_ifunlock(iip->ili_inode);
957 }
958}
959
960/*
961 * This is the inode flushing abort routine. It is called
962 * from xfs_iflush when the filesystem is shutting down to clean
963 * up the inode state.
964 * It is responsible for removing the inode item
965 * from the AIL if it has not been re-logged, and unlocking the inode's
966 * flush lock.
967 */
968void
969xfs_iflush_abort(
970 xfs_inode_t *ip)
971{
972 xfs_inode_log_item_t *iip = ip->i_itemp;
973
974 if (iip) {
975 struct xfs_ail *ailp = iip->ili_item.li_ailp;
976 if (iip->ili_item.li_flags & XFS_LI_IN_AIL) {
977 spin_lock(&ailp->xa_lock);
978 if (iip->ili_item.li_flags & XFS_LI_IN_AIL) {
979 /* xfs_trans_ail_delete() drops the AIL lock. */
980 xfs_trans_ail_delete(ailp, (xfs_log_item_t *)iip);
981 } else
982 spin_unlock(&ailp->xa_lock);
983 }
984 iip->ili_logged = 0;
985 /*
986 * Clear the ili_last_fields bits now that we know that the
987 * data corresponding to them is safely on disk.
988 */
989 iip->ili_last_fields = 0;
990 /*
991 * Clear the inode logging fields so no more flushes are
992 * attempted.
993 */
994 iip->ili_format.ilf_fields = 0;
995 }
996 /*
997 * Release the inode's flush lock since we're done with it.
998 */
999 xfs_ifunlock(ip);
1000}
1001
1002void
1003xfs_istale_done(
1004 struct xfs_buf *bp,
1005 struct xfs_log_item *lip)
1006{
1007 xfs_iflush_abort(INODE_ITEM(lip)->ili_inode);
1008}
1009
1010/*
1011 * convert an xfs_inode_log_format struct from either 32 or 64 bit versions
1012 * (which can have different field alignments) to the native version
1013 */
1014int
1015xfs_inode_item_format_convert(
1016 xfs_log_iovec_t *buf,
1017 xfs_inode_log_format_t *in_f)
1018{
1019 if (buf->i_len == sizeof(xfs_inode_log_format_32_t)) {
1020 xfs_inode_log_format_32_t *in_f32 = buf->i_addr;
1021
1022 in_f->ilf_type = in_f32->ilf_type;
1023 in_f->ilf_size = in_f32->ilf_size;
1024 in_f->ilf_fields = in_f32->ilf_fields;
1025 in_f->ilf_asize = in_f32->ilf_asize;
1026 in_f->ilf_dsize = in_f32->ilf_dsize;
1027 in_f->ilf_ino = in_f32->ilf_ino;
1028 /* copy biggest field of ilf_u */
1029 memcpy(in_f->ilf_u.ilfu_uuid.__u_bits,
1030 in_f32->ilf_u.ilfu_uuid.__u_bits,
1031 sizeof(uuid_t));
1032 in_f->ilf_blkno = in_f32->ilf_blkno;
1033 in_f->ilf_len = in_f32->ilf_len;
1034 in_f->ilf_boffset = in_f32->ilf_boffset;
1035 return 0;
1036 } else if (buf->i_len == sizeof(xfs_inode_log_format_64_t)){
1037 xfs_inode_log_format_64_t *in_f64 = buf->i_addr;
1038
1039 in_f->ilf_type = in_f64->ilf_type;
1040 in_f->ilf_size = in_f64->ilf_size;
1041 in_f->ilf_fields = in_f64->ilf_fields;
1042 in_f->ilf_asize = in_f64->ilf_asize;
1043 in_f->ilf_dsize = in_f64->ilf_dsize;
1044 in_f->ilf_ino = in_f64->ilf_ino;
1045 /* copy biggest field of ilf_u */
1046 memcpy(in_f->ilf_u.ilfu_uuid.__u_bits,
1047 in_f64->ilf_u.ilfu_uuid.__u_bits,
1048 sizeof(uuid_t));
1049 in_f->ilf_blkno = in_f64->ilf_blkno;
1050 in_f->ilf_len = in_f64->ilf_len;
1051 in_f->ilf_boffset = in_f64->ilf_boffset;
1052 return 0;
1053 }
1054 return EFSCORRUPTED;
1055}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6#include "xfs.h"
7#include "xfs_fs.h"
8#include "xfs_shared.h"
9#include "xfs_format.h"
10#include "xfs_log_format.h"
11#include "xfs_trans_resv.h"
12#include "xfs_mount.h"
13#include "xfs_inode.h"
14#include "xfs_trans.h"
15#include "xfs_inode_item.h"
16#include "xfs_trace.h"
17#include "xfs_trans_priv.h"
18#include "xfs_buf_item.h"
19#include "xfs_log.h"
20#include "xfs_error.h"
21
22#include <linux/iversion.h>
23
24kmem_zone_t *xfs_ili_zone; /* inode log item zone */
25
26static inline struct xfs_inode_log_item *INODE_ITEM(struct xfs_log_item *lip)
27{
28 return container_of(lip, struct xfs_inode_log_item, ili_item);
29}
30
31STATIC void
32xfs_inode_item_data_fork_size(
33 struct xfs_inode_log_item *iip,
34 int *nvecs,
35 int *nbytes)
36{
37 struct xfs_inode *ip = iip->ili_inode;
38
39 switch (ip->i_df.if_format) {
40 case XFS_DINODE_FMT_EXTENTS:
41 if ((iip->ili_fields & XFS_ILOG_DEXT) &&
42 ip->i_df.if_nextents > 0 &&
43 ip->i_df.if_bytes > 0) {
44 /* worst case, doesn't subtract delalloc extents */
45 *nbytes += XFS_IFORK_DSIZE(ip);
46 *nvecs += 1;
47 }
48 break;
49 case XFS_DINODE_FMT_BTREE:
50 if ((iip->ili_fields & XFS_ILOG_DBROOT) &&
51 ip->i_df.if_broot_bytes > 0) {
52 *nbytes += ip->i_df.if_broot_bytes;
53 *nvecs += 1;
54 }
55 break;
56 case XFS_DINODE_FMT_LOCAL:
57 if ((iip->ili_fields & XFS_ILOG_DDATA) &&
58 ip->i_df.if_bytes > 0) {
59 *nbytes += roundup(ip->i_df.if_bytes, 4);
60 *nvecs += 1;
61 }
62 break;
63
64 case XFS_DINODE_FMT_DEV:
65 break;
66 default:
67 ASSERT(0);
68 break;
69 }
70}
71
72STATIC void
73xfs_inode_item_attr_fork_size(
74 struct xfs_inode_log_item *iip,
75 int *nvecs,
76 int *nbytes)
77{
78 struct xfs_inode *ip = iip->ili_inode;
79
80 switch (ip->i_afp->if_format) {
81 case XFS_DINODE_FMT_EXTENTS:
82 if ((iip->ili_fields & XFS_ILOG_AEXT) &&
83 ip->i_afp->if_nextents > 0 &&
84 ip->i_afp->if_bytes > 0) {
85 /* worst case, doesn't subtract unused space */
86 *nbytes += XFS_IFORK_ASIZE(ip);
87 *nvecs += 1;
88 }
89 break;
90 case XFS_DINODE_FMT_BTREE:
91 if ((iip->ili_fields & XFS_ILOG_ABROOT) &&
92 ip->i_afp->if_broot_bytes > 0) {
93 *nbytes += ip->i_afp->if_broot_bytes;
94 *nvecs += 1;
95 }
96 break;
97 case XFS_DINODE_FMT_LOCAL:
98 if ((iip->ili_fields & XFS_ILOG_ADATA) &&
99 ip->i_afp->if_bytes > 0) {
100 *nbytes += roundup(ip->i_afp->if_bytes, 4);
101 *nvecs += 1;
102 }
103 break;
104 default:
105 ASSERT(0);
106 break;
107 }
108}
109
110/*
111 * This returns the number of iovecs needed to log the given inode item.
112 *
113 * We need one iovec for the inode log format structure, one for the
114 * inode core, and possibly one for the inode data/extents/b-tree root
115 * and one for the inode attribute data/extents/b-tree root.
116 */
117STATIC void
118xfs_inode_item_size(
119 struct xfs_log_item *lip,
120 int *nvecs,
121 int *nbytes)
122{
123 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
124 struct xfs_inode *ip = iip->ili_inode;
125
126 *nvecs += 2;
127 *nbytes += sizeof(struct xfs_inode_log_format) +
128 xfs_log_dinode_size(ip->i_mount);
129
130 xfs_inode_item_data_fork_size(iip, nvecs, nbytes);
131 if (XFS_IFORK_Q(ip))
132 xfs_inode_item_attr_fork_size(iip, nvecs, nbytes);
133}
134
135STATIC void
136xfs_inode_item_format_data_fork(
137 struct xfs_inode_log_item *iip,
138 struct xfs_inode_log_format *ilf,
139 struct xfs_log_vec *lv,
140 struct xfs_log_iovec **vecp)
141{
142 struct xfs_inode *ip = iip->ili_inode;
143 size_t data_bytes;
144
145 switch (ip->i_df.if_format) {
146 case XFS_DINODE_FMT_EXTENTS:
147 iip->ili_fields &=
148 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | XFS_ILOG_DEV);
149
150 if ((iip->ili_fields & XFS_ILOG_DEXT) &&
151 ip->i_df.if_nextents > 0 &&
152 ip->i_df.if_bytes > 0) {
153 struct xfs_bmbt_rec *p;
154
155 ASSERT(xfs_iext_count(&ip->i_df) > 0);
156
157 p = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_IEXT);
158 data_bytes = xfs_iextents_copy(ip, p, XFS_DATA_FORK);
159 xlog_finish_iovec(lv, *vecp, data_bytes);
160
161 ASSERT(data_bytes <= ip->i_df.if_bytes);
162
163 ilf->ilf_dsize = data_bytes;
164 ilf->ilf_size++;
165 } else {
166 iip->ili_fields &= ~XFS_ILOG_DEXT;
167 }
168 break;
169 case XFS_DINODE_FMT_BTREE:
170 iip->ili_fields &=
171 ~(XFS_ILOG_DDATA | XFS_ILOG_DEXT | XFS_ILOG_DEV);
172
173 if ((iip->ili_fields & XFS_ILOG_DBROOT) &&
174 ip->i_df.if_broot_bytes > 0) {
175 ASSERT(ip->i_df.if_broot != NULL);
176 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IBROOT,
177 ip->i_df.if_broot,
178 ip->i_df.if_broot_bytes);
179 ilf->ilf_dsize = ip->i_df.if_broot_bytes;
180 ilf->ilf_size++;
181 } else {
182 ASSERT(!(iip->ili_fields &
183 XFS_ILOG_DBROOT));
184 iip->ili_fields &= ~XFS_ILOG_DBROOT;
185 }
186 break;
187 case XFS_DINODE_FMT_LOCAL:
188 iip->ili_fields &=
189 ~(XFS_ILOG_DEXT | XFS_ILOG_DBROOT | XFS_ILOG_DEV);
190 if ((iip->ili_fields & XFS_ILOG_DDATA) &&
191 ip->i_df.if_bytes > 0) {
192 /*
193 * Round i_bytes up to a word boundary.
194 * The underlying memory is guaranteed
195 * to be there by xfs_idata_realloc().
196 */
197 data_bytes = roundup(ip->i_df.if_bytes, 4);
198 ASSERT(ip->i_df.if_u1.if_data != NULL);
199 ASSERT(ip->i_d.di_size > 0);
200 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_ILOCAL,
201 ip->i_df.if_u1.if_data, data_bytes);
202 ilf->ilf_dsize = (unsigned)data_bytes;
203 ilf->ilf_size++;
204 } else {
205 iip->ili_fields &= ~XFS_ILOG_DDATA;
206 }
207 break;
208 case XFS_DINODE_FMT_DEV:
209 iip->ili_fields &=
210 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | XFS_ILOG_DEXT);
211 if (iip->ili_fields & XFS_ILOG_DEV)
212 ilf->ilf_u.ilfu_rdev = sysv_encode_dev(VFS_I(ip)->i_rdev);
213 break;
214 default:
215 ASSERT(0);
216 break;
217 }
218}
219
220STATIC void
221xfs_inode_item_format_attr_fork(
222 struct xfs_inode_log_item *iip,
223 struct xfs_inode_log_format *ilf,
224 struct xfs_log_vec *lv,
225 struct xfs_log_iovec **vecp)
226{
227 struct xfs_inode *ip = iip->ili_inode;
228 size_t data_bytes;
229
230 switch (ip->i_afp->if_format) {
231 case XFS_DINODE_FMT_EXTENTS:
232 iip->ili_fields &=
233 ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT);
234
235 if ((iip->ili_fields & XFS_ILOG_AEXT) &&
236 ip->i_afp->if_nextents > 0 &&
237 ip->i_afp->if_bytes > 0) {
238 struct xfs_bmbt_rec *p;
239
240 ASSERT(xfs_iext_count(ip->i_afp) ==
241 ip->i_afp->if_nextents);
242
243 p = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_EXT);
244 data_bytes = xfs_iextents_copy(ip, p, XFS_ATTR_FORK);
245 xlog_finish_iovec(lv, *vecp, data_bytes);
246
247 ilf->ilf_asize = data_bytes;
248 ilf->ilf_size++;
249 } else {
250 iip->ili_fields &= ~XFS_ILOG_AEXT;
251 }
252 break;
253 case XFS_DINODE_FMT_BTREE:
254 iip->ili_fields &=
255 ~(XFS_ILOG_ADATA | XFS_ILOG_AEXT);
256
257 if ((iip->ili_fields & XFS_ILOG_ABROOT) &&
258 ip->i_afp->if_broot_bytes > 0) {
259 ASSERT(ip->i_afp->if_broot != NULL);
260
261 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_BROOT,
262 ip->i_afp->if_broot,
263 ip->i_afp->if_broot_bytes);
264 ilf->ilf_asize = ip->i_afp->if_broot_bytes;
265 ilf->ilf_size++;
266 } else {
267 iip->ili_fields &= ~XFS_ILOG_ABROOT;
268 }
269 break;
270 case XFS_DINODE_FMT_LOCAL:
271 iip->ili_fields &=
272 ~(XFS_ILOG_AEXT | XFS_ILOG_ABROOT);
273
274 if ((iip->ili_fields & XFS_ILOG_ADATA) &&
275 ip->i_afp->if_bytes > 0) {
276 /*
277 * Round i_bytes up to a word boundary.
278 * The underlying memory is guaranteed
279 * to be there by xfs_idata_realloc().
280 */
281 data_bytes = roundup(ip->i_afp->if_bytes, 4);
282 ASSERT(ip->i_afp->if_u1.if_data != NULL);
283 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_LOCAL,
284 ip->i_afp->if_u1.if_data,
285 data_bytes);
286 ilf->ilf_asize = (unsigned)data_bytes;
287 ilf->ilf_size++;
288 } else {
289 iip->ili_fields &= ~XFS_ILOG_ADATA;
290 }
291 break;
292 default:
293 ASSERT(0);
294 break;
295 }
296}
297
298static void
299xfs_inode_to_log_dinode(
300 struct xfs_inode *ip,
301 struct xfs_log_dinode *to,
302 xfs_lsn_t lsn)
303{
304 struct xfs_icdinode *from = &ip->i_d;
305 struct inode *inode = VFS_I(ip);
306
307 to->di_magic = XFS_DINODE_MAGIC;
308 to->di_format = xfs_ifork_format(&ip->i_df);
309 to->di_uid = i_uid_read(inode);
310 to->di_gid = i_gid_read(inode);
311 to->di_projid_lo = from->di_projid & 0xffff;
312 to->di_projid_hi = from->di_projid >> 16;
313
314 memset(to->di_pad, 0, sizeof(to->di_pad));
315 memset(to->di_pad3, 0, sizeof(to->di_pad3));
316 to->di_atime.t_sec = inode->i_atime.tv_sec;
317 to->di_atime.t_nsec = inode->i_atime.tv_nsec;
318 to->di_mtime.t_sec = inode->i_mtime.tv_sec;
319 to->di_mtime.t_nsec = inode->i_mtime.tv_nsec;
320 to->di_ctime.t_sec = inode->i_ctime.tv_sec;
321 to->di_ctime.t_nsec = inode->i_ctime.tv_nsec;
322 to->di_nlink = inode->i_nlink;
323 to->di_gen = inode->i_generation;
324 to->di_mode = inode->i_mode;
325
326 to->di_size = from->di_size;
327 to->di_nblocks = from->di_nblocks;
328 to->di_extsize = from->di_extsize;
329 to->di_nextents = xfs_ifork_nextents(&ip->i_df);
330 to->di_anextents = xfs_ifork_nextents(ip->i_afp);
331 to->di_forkoff = from->di_forkoff;
332 to->di_aformat = xfs_ifork_format(ip->i_afp);
333 to->di_dmevmask = from->di_dmevmask;
334 to->di_dmstate = from->di_dmstate;
335 to->di_flags = from->di_flags;
336
337 /* log a dummy value to ensure log structure is fully initialised */
338 to->di_next_unlinked = NULLAGINO;
339
340 if (xfs_sb_version_has_v3inode(&ip->i_mount->m_sb)) {
341 to->di_version = 3;
342 to->di_changecount = inode_peek_iversion(inode);
343 to->di_crtime.t_sec = from->di_crtime.tv_sec;
344 to->di_crtime.t_nsec = from->di_crtime.tv_nsec;
345 to->di_flags2 = from->di_flags2;
346 to->di_cowextsize = from->di_cowextsize;
347 to->di_ino = ip->i_ino;
348 to->di_lsn = lsn;
349 memset(to->di_pad2, 0, sizeof(to->di_pad2));
350 uuid_copy(&to->di_uuid, &ip->i_mount->m_sb.sb_meta_uuid);
351 to->di_flushiter = 0;
352 } else {
353 to->di_version = 2;
354 to->di_flushiter = from->di_flushiter;
355 }
356}
357
358/*
359 * Format the inode core. Current timestamp data is only in the VFS inode
360 * fields, so we need to grab them from there. Hence rather than just copying
361 * the XFS inode core structure, format the fields directly into the iovec.
362 */
363static void
364xfs_inode_item_format_core(
365 struct xfs_inode *ip,
366 struct xfs_log_vec *lv,
367 struct xfs_log_iovec **vecp)
368{
369 struct xfs_log_dinode *dic;
370
371 dic = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_ICORE);
372 xfs_inode_to_log_dinode(ip, dic, ip->i_itemp->ili_item.li_lsn);
373 xlog_finish_iovec(lv, *vecp, xfs_log_dinode_size(ip->i_mount));
374}
375
376/*
377 * This is called to fill in the vector of log iovecs for the given inode
378 * log item. It fills the first item with an inode log format structure,
379 * the second with the on-disk inode structure, and a possible third and/or
380 * fourth with the inode data/extents/b-tree root and inode attributes
381 * data/extents/b-tree root.
382 *
383 * Note: Always use the 64 bit inode log format structure so we don't
384 * leave an uninitialised hole in the format item on 64 bit systems. Log
385 * recovery on 32 bit systems handles this just fine, so there's no reason
386 * for not using an initialising the properly padded structure all the time.
387 */
388STATIC void
389xfs_inode_item_format(
390 struct xfs_log_item *lip,
391 struct xfs_log_vec *lv)
392{
393 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
394 struct xfs_inode *ip = iip->ili_inode;
395 struct xfs_log_iovec *vecp = NULL;
396 struct xfs_inode_log_format *ilf;
397
398 ilf = xlog_prepare_iovec(lv, &vecp, XLOG_REG_TYPE_IFORMAT);
399 ilf->ilf_type = XFS_LI_INODE;
400 ilf->ilf_ino = ip->i_ino;
401 ilf->ilf_blkno = ip->i_imap.im_blkno;
402 ilf->ilf_len = ip->i_imap.im_len;
403 ilf->ilf_boffset = ip->i_imap.im_boffset;
404 ilf->ilf_fields = XFS_ILOG_CORE;
405 ilf->ilf_size = 2; /* format + core */
406
407 /*
408 * make sure we don't leak uninitialised data into the log in the case
409 * when we don't log every field in the inode.
410 */
411 ilf->ilf_dsize = 0;
412 ilf->ilf_asize = 0;
413 ilf->ilf_pad = 0;
414 memset(&ilf->ilf_u, 0, sizeof(ilf->ilf_u));
415
416 xlog_finish_iovec(lv, vecp, sizeof(*ilf));
417
418 xfs_inode_item_format_core(ip, lv, &vecp);
419 xfs_inode_item_format_data_fork(iip, ilf, lv, &vecp);
420 if (XFS_IFORK_Q(ip)) {
421 xfs_inode_item_format_attr_fork(iip, ilf, lv, &vecp);
422 } else {
423 iip->ili_fields &=
424 ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT);
425 }
426
427 /* update the format with the exact fields we actually logged */
428 ilf->ilf_fields |= (iip->ili_fields & ~XFS_ILOG_TIMESTAMP);
429}
430
431/*
432 * This is called to pin the inode associated with the inode log
433 * item in memory so it cannot be written out.
434 */
435STATIC void
436xfs_inode_item_pin(
437 struct xfs_log_item *lip)
438{
439 struct xfs_inode *ip = INODE_ITEM(lip)->ili_inode;
440
441 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
442 ASSERT(lip->li_buf);
443
444 trace_xfs_inode_pin(ip, _RET_IP_);
445 atomic_inc(&ip->i_pincount);
446}
447
448
449/*
450 * This is called to unpin the inode associated with the inode log
451 * item which was previously pinned with a call to xfs_inode_item_pin().
452 *
453 * Also wake up anyone in xfs_iunpin_wait() if the count goes to 0.
454 *
455 * Note that unpin can race with inode cluster buffer freeing marking the buffer
456 * stale. In that case, flush completions are run from the buffer unpin call,
457 * which may happen before the inode is unpinned. If we lose the race, there
458 * will be no buffer attached to the log item, but the inode will be marked
459 * XFS_ISTALE.
460 */
461STATIC void
462xfs_inode_item_unpin(
463 struct xfs_log_item *lip,
464 int remove)
465{
466 struct xfs_inode *ip = INODE_ITEM(lip)->ili_inode;
467
468 trace_xfs_inode_unpin(ip, _RET_IP_);
469 ASSERT(lip->li_buf || xfs_iflags_test(ip, XFS_ISTALE));
470 ASSERT(atomic_read(&ip->i_pincount) > 0);
471 if (atomic_dec_and_test(&ip->i_pincount))
472 wake_up_bit(&ip->i_flags, __XFS_IPINNED_BIT);
473}
474
475STATIC uint
476xfs_inode_item_push(
477 struct xfs_log_item *lip,
478 struct list_head *buffer_list)
479 __releases(&lip->li_ailp->ail_lock)
480 __acquires(&lip->li_ailp->ail_lock)
481{
482 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
483 struct xfs_inode *ip = iip->ili_inode;
484 struct xfs_buf *bp = lip->li_buf;
485 uint rval = XFS_ITEM_SUCCESS;
486 int error;
487
488 ASSERT(iip->ili_item.li_buf);
489
490 if (xfs_ipincount(ip) > 0 || xfs_buf_ispinned(bp) ||
491 (ip->i_flags & XFS_ISTALE))
492 return XFS_ITEM_PINNED;
493
494 /* If the inode is already flush locked, we're already flushing. */
495 if (xfs_isiflocked(ip))
496 return XFS_ITEM_FLUSHING;
497
498 if (!xfs_buf_trylock(bp))
499 return XFS_ITEM_LOCKED;
500
501 spin_unlock(&lip->li_ailp->ail_lock);
502
503 /*
504 * We need to hold a reference for flushing the cluster buffer as it may
505 * fail the buffer without IO submission. In which case, we better get a
506 * reference for that completion because otherwise we don't get a
507 * reference for IO until we queue the buffer for delwri submission.
508 */
509 xfs_buf_hold(bp);
510 error = xfs_iflush_cluster(bp);
511 if (!error) {
512 if (!xfs_buf_delwri_queue(bp, buffer_list))
513 rval = XFS_ITEM_FLUSHING;
514 xfs_buf_relse(bp);
515 } else {
516 /*
517 * Release the buffer if we were unable to flush anything. On
518 * any other error, the buffer has already been released.
519 */
520 if (error == -EAGAIN)
521 xfs_buf_relse(bp);
522 rval = XFS_ITEM_LOCKED;
523 }
524
525 spin_lock(&lip->li_ailp->ail_lock);
526 return rval;
527}
528
529/*
530 * Unlock the inode associated with the inode log item.
531 */
532STATIC void
533xfs_inode_item_release(
534 struct xfs_log_item *lip)
535{
536 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
537 struct xfs_inode *ip = iip->ili_inode;
538 unsigned short lock_flags;
539
540 ASSERT(ip->i_itemp != NULL);
541 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
542
543 lock_flags = iip->ili_lock_flags;
544 iip->ili_lock_flags = 0;
545 if (lock_flags)
546 xfs_iunlock(ip, lock_flags);
547}
548
549/*
550 * This is called to find out where the oldest active copy of the inode log
551 * item in the on disk log resides now that the last log write of it completed
552 * at the given lsn. Since we always re-log all dirty data in an inode, the
553 * latest copy in the on disk log is the only one that matters. Therefore,
554 * simply return the given lsn.
555 *
556 * If the inode has been marked stale because the cluster is being freed, we
557 * don't want to (re-)insert this inode into the AIL. There is a race condition
558 * where the cluster buffer may be unpinned before the inode is inserted into
559 * the AIL during transaction committed processing. If the buffer is unpinned
560 * before the inode item has been committed and inserted, then it is possible
561 * for the buffer to be written and IO completes before the inode is inserted
562 * into the AIL. In that case, we'd be inserting a clean, stale inode into the
563 * AIL which will never get removed. It will, however, get reclaimed which
564 * triggers an assert in xfs_inode_free() complaining about freein an inode
565 * still in the AIL.
566 *
567 * To avoid this, just unpin the inode directly and return a LSN of -1 so the
568 * transaction committed code knows that it does not need to do any further
569 * processing on the item.
570 */
571STATIC xfs_lsn_t
572xfs_inode_item_committed(
573 struct xfs_log_item *lip,
574 xfs_lsn_t lsn)
575{
576 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
577 struct xfs_inode *ip = iip->ili_inode;
578
579 if (xfs_iflags_test(ip, XFS_ISTALE)) {
580 xfs_inode_item_unpin(lip, 0);
581 return -1;
582 }
583 return lsn;
584}
585
586STATIC void
587xfs_inode_item_committing(
588 struct xfs_log_item *lip,
589 xfs_lsn_t commit_lsn)
590{
591 INODE_ITEM(lip)->ili_last_lsn = commit_lsn;
592 return xfs_inode_item_release(lip);
593}
594
595static const struct xfs_item_ops xfs_inode_item_ops = {
596 .iop_size = xfs_inode_item_size,
597 .iop_format = xfs_inode_item_format,
598 .iop_pin = xfs_inode_item_pin,
599 .iop_unpin = xfs_inode_item_unpin,
600 .iop_release = xfs_inode_item_release,
601 .iop_committed = xfs_inode_item_committed,
602 .iop_push = xfs_inode_item_push,
603 .iop_committing = xfs_inode_item_committing,
604};
605
606
607/*
608 * Initialize the inode log item for a newly allocated (in-core) inode.
609 */
610void
611xfs_inode_item_init(
612 struct xfs_inode *ip,
613 struct xfs_mount *mp)
614{
615 struct xfs_inode_log_item *iip;
616
617 ASSERT(ip->i_itemp == NULL);
618 iip = ip->i_itemp = kmem_cache_zalloc(xfs_ili_zone,
619 GFP_KERNEL | __GFP_NOFAIL);
620
621 iip->ili_inode = ip;
622 spin_lock_init(&iip->ili_lock);
623 xfs_log_item_init(mp, &iip->ili_item, XFS_LI_INODE,
624 &xfs_inode_item_ops);
625}
626
627/*
628 * Free the inode log item and any memory hanging off of it.
629 */
630void
631xfs_inode_item_destroy(
632 struct xfs_inode *ip)
633{
634 struct xfs_inode_log_item *iip = ip->i_itemp;
635
636 ASSERT(iip->ili_item.li_buf == NULL);
637
638 ip->i_itemp = NULL;
639 kmem_free(iip->ili_item.li_lv_shadow);
640 kmem_cache_free(xfs_ili_zone, iip);
641}
642
643
644/*
645 * We only want to pull the item from the AIL if it is actually there
646 * and its location in the log has not changed since we started the
647 * flush. Thus, we only bother if the inode's lsn has not changed.
648 */
649static void
650xfs_iflush_ail_updates(
651 struct xfs_ail *ailp,
652 struct list_head *list)
653{
654 struct xfs_log_item *lip;
655 xfs_lsn_t tail_lsn = 0;
656
657 /* this is an opencoded batch version of xfs_trans_ail_delete */
658 spin_lock(&ailp->ail_lock);
659 list_for_each_entry(lip, list, li_bio_list) {
660 xfs_lsn_t lsn;
661
662 clear_bit(XFS_LI_FAILED, &lip->li_flags);
663 if (INODE_ITEM(lip)->ili_flush_lsn != lip->li_lsn)
664 continue;
665
666 lsn = xfs_ail_delete_one(ailp, lip);
667 if (!tail_lsn && lsn)
668 tail_lsn = lsn;
669 }
670 xfs_ail_update_finish(ailp, tail_lsn);
671}
672
673/*
674 * Walk the list of inodes that have completed their IOs. If they are clean
675 * remove them from the list and dissociate them from the buffer. Buffers that
676 * are still dirty remain linked to the buffer and on the list. Caller must
677 * handle them appropriately.
678 */
679static void
680xfs_iflush_finish(
681 struct xfs_buf *bp,
682 struct list_head *list)
683{
684 struct xfs_log_item *lip, *n;
685
686 list_for_each_entry_safe(lip, n, list, li_bio_list) {
687 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
688 bool drop_buffer = false;
689
690 spin_lock(&iip->ili_lock);
691
692 /*
693 * Remove the reference to the cluster buffer if the inode is
694 * clean in memory and drop the buffer reference once we've
695 * dropped the locks we hold.
696 */
697 ASSERT(iip->ili_item.li_buf == bp);
698 if (!iip->ili_fields) {
699 iip->ili_item.li_buf = NULL;
700 list_del_init(&lip->li_bio_list);
701 drop_buffer = true;
702 }
703 iip->ili_last_fields = 0;
704 iip->ili_flush_lsn = 0;
705 spin_unlock(&iip->ili_lock);
706 xfs_ifunlock(iip->ili_inode);
707 if (drop_buffer)
708 xfs_buf_rele(bp);
709 }
710}
711
712/*
713 * Inode buffer IO completion routine. It is responsible for removing inodes
714 * attached to the buffer from the AIL if they have not been re-logged, as well
715 * as completing the flush and unlocking the inode.
716 */
717void
718xfs_iflush_done(
719 struct xfs_buf *bp)
720{
721 struct xfs_log_item *lip, *n;
722 LIST_HEAD(flushed_inodes);
723 LIST_HEAD(ail_updates);
724
725 /*
726 * Pull the attached inodes from the buffer one at a time and take the
727 * appropriate action on them.
728 */
729 list_for_each_entry_safe(lip, n, &bp->b_li_list, li_bio_list) {
730 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
731
732 if (xfs_iflags_test(iip->ili_inode, XFS_ISTALE)) {
733 xfs_iflush_abort(iip->ili_inode);
734 continue;
735 }
736 if (!iip->ili_last_fields)
737 continue;
738
739 /* Do an unlocked check for needing the AIL lock. */
740 if (iip->ili_flush_lsn == lip->li_lsn ||
741 test_bit(XFS_LI_FAILED, &lip->li_flags))
742 list_move_tail(&lip->li_bio_list, &ail_updates);
743 else
744 list_move_tail(&lip->li_bio_list, &flushed_inodes);
745 }
746
747 if (!list_empty(&ail_updates)) {
748 xfs_iflush_ail_updates(bp->b_mount->m_ail, &ail_updates);
749 list_splice_tail(&ail_updates, &flushed_inodes);
750 }
751
752 xfs_iflush_finish(bp, &flushed_inodes);
753 if (!list_empty(&flushed_inodes))
754 list_splice_tail(&flushed_inodes, &bp->b_li_list);
755}
756
757/*
758 * This is the inode flushing abort routine. It is called from xfs_iflush when
759 * the filesystem is shutting down to clean up the inode state. It is
760 * responsible for removing the inode item from the AIL if it has not been
761 * re-logged, and unlocking the inode's flush lock.
762 */
763void
764xfs_iflush_abort(
765 struct xfs_inode *ip)
766{
767 struct xfs_inode_log_item *iip = ip->i_itemp;
768 struct xfs_buf *bp = NULL;
769
770 if (iip) {
771 /*
772 * Clear the failed bit before removing the item from the AIL so
773 * xfs_trans_ail_delete() doesn't try to clear and release the
774 * buffer attached to the log item before we are done with it.
775 */
776 clear_bit(XFS_LI_FAILED, &iip->ili_item.li_flags);
777 xfs_trans_ail_delete(&iip->ili_item, 0);
778
779 /*
780 * Clear the inode logging fields so no more flushes are
781 * attempted.
782 */
783 spin_lock(&iip->ili_lock);
784 iip->ili_last_fields = 0;
785 iip->ili_fields = 0;
786 iip->ili_fsync_fields = 0;
787 iip->ili_flush_lsn = 0;
788 bp = iip->ili_item.li_buf;
789 iip->ili_item.li_buf = NULL;
790 list_del_init(&iip->ili_item.li_bio_list);
791 spin_unlock(&iip->ili_lock);
792 }
793 xfs_ifunlock(ip);
794 if (bp)
795 xfs_buf_rele(bp);
796}
797
798/*
799 * convert an xfs_inode_log_format struct from the old 32 bit version
800 * (which can have different field alignments) to the native 64 bit version
801 */
802int
803xfs_inode_item_format_convert(
804 struct xfs_log_iovec *buf,
805 struct xfs_inode_log_format *in_f)
806{
807 struct xfs_inode_log_format_32 *in_f32 = buf->i_addr;
808
809 if (buf->i_len != sizeof(*in_f32)) {
810 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, NULL);
811 return -EFSCORRUPTED;
812 }
813
814 in_f->ilf_type = in_f32->ilf_type;
815 in_f->ilf_size = in_f32->ilf_size;
816 in_f->ilf_fields = in_f32->ilf_fields;
817 in_f->ilf_asize = in_f32->ilf_asize;
818 in_f->ilf_dsize = in_f32->ilf_dsize;
819 in_f->ilf_ino = in_f32->ilf_ino;
820 memcpy(&in_f->ilf_u, &in_f32->ilf_u, sizeof(in_f->ilf_u));
821 in_f->ilf_blkno = in_f32->ilf_blkno;
822 in_f->ilf_len = in_f32->ilf_len;
823 in_f->ilf_boffset = in_f32->ilf_boffset;
824 return 0;
825}