Linux Audio

Check our new training course

Linux kernel drivers training

Mar 31-Apr 9, 2025, special US time zones
Register
Loading...
v3.1
 
   1/*
   2 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
   3 * All Rights Reserved.
   4 *
   5 * This program is free software; you can redistribute it and/or
   6 * modify it under the terms of the GNU General Public License as
   7 * published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope that it would be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write the Free Software Foundation,
  16 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
  17 */
  18#include "xfs.h"
  19#include "xfs_fs.h"
  20#include "xfs_types.h"
  21#include "xfs_bit.h"
  22#include "xfs_log.h"
  23#include "xfs_inum.h"
  24#include "xfs_trans.h"
  25#include "xfs_sb.h"
  26#include "xfs_ag.h"
  27#include "xfs_mount.h"
  28#include "xfs_trans_priv.h"
  29#include "xfs_bmap_btree.h"
  30#include "xfs_dinode.h"
  31#include "xfs_inode.h"
 
  32#include "xfs_inode_item.h"
  33#include "xfs_error.h"
  34#include "xfs_trace.h"
 
 
 
 
  35
 
  36
  37kmem_zone_t	*xfs_ili_zone;		/* inode log item zone */
  38
  39static inline struct xfs_inode_log_item *INODE_ITEM(struct xfs_log_item *lip)
  40{
  41	return container_of(lip, struct xfs_inode_log_item, ili_item);
  42}
  43
  44
  45/*
  46 * This returns the number of iovecs needed to log the given inode item.
  47 *
  48 * We need one iovec for the inode log format structure, one for the
  49 * inode core, and possibly one for the inode data/extents/b-tree root
  50 * and one for the inode attribute data/extents/b-tree root.
  51 */
  52STATIC uint
  53xfs_inode_item_size(
  54	struct xfs_log_item	*lip)
  55{
  56	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
  57	struct xfs_inode	*ip = iip->ili_inode;
  58	uint			nvecs = 2;
  59
  60	/*
  61	 * Only log the data/extents/b-tree root if there is something
  62	 * left to log.
  63	 */
  64	iip->ili_format.ilf_fields |= XFS_ILOG_CORE;
  65
  66	switch (ip->i_d.di_format) {
  67	case XFS_DINODE_FMT_EXTENTS:
  68		iip->ili_format.ilf_fields &=
  69			~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
  70			  XFS_ILOG_DEV | XFS_ILOG_UUID);
  71		if ((iip->ili_format.ilf_fields & XFS_ILOG_DEXT) &&
  72		    (ip->i_d.di_nextents > 0) &&
  73		    (ip->i_df.if_bytes > 0)) {
  74			ASSERT(ip->i_df.if_u1.if_extents != NULL);
  75			nvecs++;
  76		} else {
  77			iip->ili_format.ilf_fields &= ~XFS_ILOG_DEXT;
  78		}
  79		break;
  80
  81	case XFS_DINODE_FMT_BTREE:
  82		ASSERT(ip->i_df.if_ext_max ==
  83		       XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t));
  84		iip->ili_format.ilf_fields &=
  85			~(XFS_ILOG_DDATA | XFS_ILOG_DEXT |
  86			  XFS_ILOG_DEV | XFS_ILOG_UUID);
  87		if ((iip->ili_format.ilf_fields & XFS_ILOG_DBROOT) &&
  88		    (ip->i_df.if_broot_bytes > 0)) {
  89			ASSERT(ip->i_df.if_broot != NULL);
  90			nvecs++;
  91		} else {
  92			ASSERT(!(iip->ili_format.ilf_fields &
  93				 XFS_ILOG_DBROOT));
  94#ifdef XFS_TRANS_DEBUG
  95			if (iip->ili_root_size > 0) {
  96				ASSERT(iip->ili_root_size ==
  97				       ip->i_df.if_broot_bytes);
  98				ASSERT(memcmp(iip->ili_orig_root,
  99					    ip->i_df.if_broot,
 100					    iip->ili_root_size) == 0);
 101			} else {
 102				ASSERT(ip->i_df.if_broot_bytes == 0);
 103			}
 104#endif
 105			iip->ili_format.ilf_fields &= ~XFS_ILOG_DBROOT;
 106		}
 107		break;
 108
 109	case XFS_DINODE_FMT_LOCAL:
 110		iip->ili_format.ilf_fields &=
 111			~(XFS_ILOG_DEXT | XFS_ILOG_DBROOT |
 112			  XFS_ILOG_DEV | XFS_ILOG_UUID);
 113		if ((iip->ili_format.ilf_fields & XFS_ILOG_DDATA) &&
 114		    (ip->i_df.if_bytes > 0)) {
 115			ASSERT(ip->i_df.if_u1.if_data != NULL);
 116			ASSERT(ip->i_d.di_size > 0);
 117			nvecs++;
 118		} else {
 119			iip->ili_format.ilf_fields &= ~XFS_ILOG_DDATA;
 120		}
 121		break;
 122
 123	case XFS_DINODE_FMT_DEV:
 124		iip->ili_format.ilf_fields &=
 125			~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
 126			  XFS_ILOG_DEXT | XFS_ILOG_UUID);
 127		break;
 128
 129	case XFS_DINODE_FMT_UUID:
 130		iip->ili_format.ilf_fields &=
 131			~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
 132			  XFS_ILOG_DEXT | XFS_ILOG_DEV);
 133		break;
 134
 135	default:
 136		ASSERT(0);
 137		break;
 138	}
 
 139
 140	/*
 141	 * If there are no attributes associated with this file,
 142	 * then there cannot be anything more to log.
 143	 * Clear all attribute-related log flags.
 144	 */
 145	if (!XFS_IFORK_Q(ip)) {
 146		iip->ili_format.ilf_fields &=
 147			~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT);
 148		return nvecs;
 149	}
 150
 151	/*
 152	 * Log any necessary attribute data.
 153	 */
 154	switch (ip->i_d.di_aformat) {
 155	case XFS_DINODE_FMT_EXTENTS:
 156		iip->ili_format.ilf_fields &=
 157			~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT);
 158		if ((iip->ili_format.ilf_fields & XFS_ILOG_AEXT) &&
 159		    (ip->i_d.di_anextents > 0) &&
 160		    (ip->i_afp->if_bytes > 0)) {
 161			ASSERT(ip->i_afp->if_u1.if_extents != NULL);
 162			nvecs++;
 163		} else {
 164			iip->ili_format.ilf_fields &= ~XFS_ILOG_AEXT;
 165		}
 166		break;
 167
 168	case XFS_DINODE_FMT_BTREE:
 169		iip->ili_format.ilf_fields &=
 170			~(XFS_ILOG_ADATA | XFS_ILOG_AEXT);
 171		if ((iip->ili_format.ilf_fields & XFS_ILOG_ABROOT) &&
 172		    (ip->i_afp->if_broot_bytes > 0)) {
 173			ASSERT(ip->i_afp->if_broot != NULL);
 174			nvecs++;
 175		} else {
 176			iip->ili_format.ilf_fields &= ~XFS_ILOG_ABROOT;
 177		}
 178		break;
 179
 180	case XFS_DINODE_FMT_LOCAL:
 181		iip->ili_format.ilf_fields &=
 182			~(XFS_ILOG_AEXT | XFS_ILOG_ABROOT);
 183		if ((iip->ili_format.ilf_fields & XFS_ILOG_ADATA) &&
 184		    (ip->i_afp->if_bytes > 0)) {
 185			ASSERT(ip->i_afp->if_u1.if_data != NULL);
 186			nvecs++;
 187		} else {
 188			iip->ili_format.ilf_fields &= ~XFS_ILOG_ADATA;
 189		}
 190		break;
 191
 192	default:
 193		ASSERT(0);
 194		break;
 195	}
 196
 197	return nvecs;
 198}
 199
 200/*
 201 * xfs_inode_item_format_extents - convert in-core extents to on-disk form
 202 *
 203 * For either the data or attr fork in extent format, we need to endian convert
 204 * the in-core extent as we place them into the on-disk inode. In this case, we
 205 * need to do this conversion before we write the extents into the log. Because
 206 * we don't have the disk inode to write into here, we allocate a buffer and
 207 * format the extents into it via xfs_iextents_copy(). We free the buffer in
 208 * the unlock routine after the copy for the log has been made.
 209 *
 210 * In the case of the data fork, the in-core and on-disk fork sizes can be
 211 * different due to delayed allocation extents. We only log on-disk extents
 212 * here, so always use the physical fork size to determine the size of the
 213 * buffer we need to allocate.
 214 */
 215STATIC void
 216xfs_inode_item_format_extents(
 217	struct xfs_inode	*ip,
 218	struct xfs_log_iovec	*vecp,
 219	int			whichfork,
 220	int			type)
 221{
 222	xfs_bmbt_rec_t		*ext_buffer;
 223
 224	ext_buffer = kmem_alloc(XFS_IFORK_SIZE(ip, whichfork), KM_SLEEP);
 225	if (whichfork == XFS_DATA_FORK)
 226		ip->i_itemp->ili_extents_buf = ext_buffer;
 227	else
 228		ip->i_itemp->ili_aextents_buf = ext_buffer;
 229
 230	vecp->i_addr = ext_buffer;
 231	vecp->i_len = xfs_iextents_copy(ip, ext_buffer, whichfork);
 232	vecp->i_type = type;
 233}
 234
 235/*
 236 * This is called to fill in the vector of log iovecs for the
 237 * given inode log item.  It fills the first item with an inode
 238 * log format structure, the second with the on-disk inode structure,
 239 * and a possible third and/or fourth with the inode data/extents/b-tree
 240 * root and inode attributes data/extents/b-tree root.
 241 */
 242STATIC void
 243xfs_inode_item_format(
 244	struct xfs_log_item	*lip,
 245	struct xfs_log_iovec	*vecp)
 
 
 246{
 247	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
 248	struct xfs_inode	*ip = iip->ili_inode;
 249	uint			nvecs;
 250	size_t			data_bytes;
 251	xfs_mount_t		*mp;
 252
 253	vecp->i_addr = &iip->ili_format;
 254	vecp->i_len  = sizeof(xfs_inode_log_format_t);
 255	vecp->i_type = XLOG_REG_TYPE_IFORMAT;
 256	vecp++;
 257	nvecs	     = 1;
 258
 259	/*
 260	 * Clear i_update_core if the timestamps (or any other
 261	 * non-transactional modification) need flushing/logging
 262	 * and we're about to log them with the rest of the core.
 263	 *
 264	 * This is the same logic as xfs_iflush() but this code can't
 265	 * run at the same time as xfs_iflush because we're in commit
 266	 * processing here and so we have the inode lock held in
 267	 * exclusive mode.  Although it doesn't really matter
 268	 * for the timestamps if both routines were to grab the
 269	 * timestamps or not.  That would be ok.
 270	 *
 271	 * We clear i_update_core before copying out the data.
 272	 * This is for coordination with our timestamp updates
 273	 * that don't hold the inode lock. They will always
 274	 * update the timestamps BEFORE setting i_update_core,
 275	 * so if we clear i_update_core after they set it we
 276	 * are guaranteed to see their updates to the timestamps
 277	 * either here.  Likewise, if they set it after we clear it
 278	 * here, we'll see it either on the next commit of this
 279	 * inode or the next time the inode gets flushed via
 280	 * xfs_iflush().  This depends on strongly ordered memory
 281	 * semantics, but we have that.  We use the SYNCHRONIZE
 282	 * macro to make sure that the compiler does not reorder
 283	 * the i_update_core access below the data copy below.
 284	 */
 285	if (ip->i_update_core)  {
 286		ip->i_update_core = 0;
 287		SYNCHRONIZE();
 288	}
 289
 290	/*
 291	 * Make sure to get the latest timestamps from the Linux inode.
 292	 */
 293	xfs_synchronize_times(ip);
 294
 295	vecp->i_addr = &ip->i_d;
 296	vecp->i_len  = sizeof(struct xfs_icdinode);
 297	vecp->i_type = XLOG_REG_TYPE_ICORE;
 298	vecp++;
 299	nvecs++;
 300	iip->ili_format.ilf_fields |= XFS_ILOG_CORE;
 301
 302	/*
 303	 * If this is really an old format inode, then we need to
 304	 * log it as such.  This means that we have to copy the link
 305	 * count from the new field to the old.  We don't have to worry
 306	 * about the new fields, because nothing trusts them as long as
 307	 * the old inode version number is there.  If the superblock already
 308	 * has a new version number, then we don't bother converting back.
 309	 */
 310	mp = ip->i_mount;
 311	ASSERT(ip->i_d.di_version == 1 || xfs_sb_version_hasnlink(&mp->m_sb));
 312	if (ip->i_d.di_version == 1) {
 313		if (!xfs_sb_version_hasnlink(&mp->m_sb)) {
 314			/*
 315			 * Convert it back.
 316			 */
 317			ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
 318			ip->i_d.di_onlink = ip->i_d.di_nlink;
 319		} else {
 320			/*
 321			 * The superblock version has already been bumped,
 322			 * so just make the conversion to the new inode
 323			 * format permanent.
 324			 */
 325			ip->i_d.di_version = 2;
 326			ip->i_d.di_onlink = 0;
 327			memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
 328		}
 329	}
 330
 331	switch (ip->i_d.di_format) {
 332	case XFS_DINODE_FMT_EXTENTS:
 333		ASSERT(!(iip->ili_format.ilf_fields &
 334			 (XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
 335			  XFS_ILOG_DEV | XFS_ILOG_UUID)));
 336		if (iip->ili_format.ilf_fields & XFS_ILOG_DEXT) {
 337			ASSERT(ip->i_df.if_bytes > 0);
 338			ASSERT(ip->i_df.if_u1.if_extents != NULL);
 339			ASSERT(ip->i_d.di_nextents > 0);
 340			ASSERT(iip->ili_extents_buf == NULL);
 341			ASSERT((ip->i_df.if_bytes /
 342				(uint)sizeof(xfs_bmbt_rec_t)) > 0);
 343#ifdef XFS_NATIVE_HOST
 344                       if (ip->i_d.di_nextents == ip->i_df.if_bytes /
 345                                               (uint)sizeof(xfs_bmbt_rec_t)) {
 346				/*
 347				 * There are no delayed allocation
 348				 * extents, so just point to the
 349				 * real extents array.
 350				 */
 351				vecp->i_addr = ip->i_df.if_u1.if_extents;
 352				vecp->i_len = ip->i_df.if_bytes;
 353				vecp->i_type = XLOG_REG_TYPE_IEXT;
 354			} else
 355#endif
 356			{
 357				xfs_inode_item_format_extents(ip, vecp,
 358					XFS_DATA_FORK, XLOG_REG_TYPE_IEXT);
 359			}
 360			ASSERT(vecp->i_len <= ip->i_df.if_bytes);
 361			iip->ili_format.ilf_dsize = vecp->i_len;
 362			vecp++;
 363			nvecs++;
 364		}
 365		break;
 366
 367	case XFS_DINODE_FMT_BTREE:
 368		ASSERT(!(iip->ili_format.ilf_fields &
 369			 (XFS_ILOG_DDATA | XFS_ILOG_DEXT |
 370			  XFS_ILOG_DEV | XFS_ILOG_UUID)));
 371		if (iip->ili_format.ilf_fields & XFS_ILOG_DBROOT) {
 372			ASSERT(ip->i_df.if_broot_bytes > 0);
 373			ASSERT(ip->i_df.if_broot != NULL);
 374			vecp->i_addr = ip->i_df.if_broot;
 375			vecp->i_len = ip->i_df.if_broot_bytes;
 376			vecp->i_type = XLOG_REG_TYPE_IBROOT;
 377			vecp++;
 378			nvecs++;
 379			iip->ili_format.ilf_dsize = ip->i_df.if_broot_bytes;
 
 
 
 380		}
 381		break;
 382
 383	case XFS_DINODE_FMT_LOCAL:
 384		ASSERT(!(iip->ili_format.ilf_fields &
 385			 (XFS_ILOG_DBROOT | XFS_ILOG_DEXT |
 386			  XFS_ILOG_DEV | XFS_ILOG_UUID)));
 387		if (iip->ili_format.ilf_fields & XFS_ILOG_DDATA) {
 388			ASSERT(ip->i_df.if_bytes > 0);
 389			ASSERT(ip->i_df.if_u1.if_data != NULL);
 390			ASSERT(ip->i_d.di_size > 0);
 391
 392			vecp->i_addr = ip->i_df.if_u1.if_data;
 393			/*
 394			 * Round i_bytes up to a word boundary.
 395			 * The underlying memory is guaranteed to
 396			 * to be there by xfs_idata_realloc().
 397			 */
 398			data_bytes = roundup(ip->i_df.if_bytes, 4);
 399			ASSERT((ip->i_df.if_real_bytes == 0) ||
 400			       (ip->i_df.if_real_bytes == data_bytes));
 401			vecp->i_len = (int)data_bytes;
 402			vecp->i_type = XLOG_REG_TYPE_ILOCAL;
 403			vecp++;
 404			nvecs++;
 405			iip->ili_format.ilf_dsize = (unsigned)data_bytes;
 
 406		}
 407		break;
 408
 409	case XFS_DINODE_FMT_DEV:
 410		ASSERT(!(iip->ili_format.ilf_fields &
 411			 (XFS_ILOG_DBROOT | XFS_ILOG_DEXT |
 412			  XFS_ILOG_DDATA | XFS_ILOG_UUID)));
 413		if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) {
 414			iip->ili_format.ilf_u.ilfu_rdev =
 415				ip->i_df.if_u2.if_rdev;
 416		}
 417		break;
 418
 419	case XFS_DINODE_FMT_UUID:
 420		ASSERT(!(iip->ili_format.ilf_fields &
 421			 (XFS_ILOG_DBROOT | XFS_ILOG_DEXT |
 422			  XFS_ILOG_DDATA | XFS_ILOG_DEV)));
 423		if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) {
 424			iip->ili_format.ilf_u.ilfu_uuid =
 425				ip->i_df.if_u2.if_uuid;
 426		}
 427		break;
 428
 429	default:
 430		ASSERT(0);
 431		break;
 432	}
 
 433
 434	/*
 435	 * If there are no attributes associated with the file,
 436	 * then we're done.
 437	 * Assert that no attribute-related log flags are set.
 438	 */
 439	if (!XFS_IFORK_Q(ip)) {
 440		ASSERT(nvecs == lip->li_desc->lid_size);
 441		iip->ili_format.ilf_size = nvecs;
 442		ASSERT(!(iip->ili_format.ilf_fields &
 443			 (XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT)));
 444		return;
 445	}
 446
 447	switch (ip->i_d.di_aformat) {
 448	case XFS_DINODE_FMT_EXTENTS:
 449		ASSERT(!(iip->ili_format.ilf_fields &
 450			 (XFS_ILOG_ADATA | XFS_ILOG_ABROOT)));
 451		if (iip->ili_format.ilf_fields & XFS_ILOG_AEXT) {
 452#ifdef DEBUG
 453			int nrecs = ip->i_afp->if_bytes /
 454				(uint)sizeof(xfs_bmbt_rec_t);
 455			ASSERT(nrecs > 0);
 456			ASSERT(nrecs == ip->i_d.di_anextents);
 457			ASSERT(ip->i_afp->if_bytes > 0);
 458			ASSERT(ip->i_afp->if_u1.if_extents != NULL);
 459			ASSERT(ip->i_d.di_anextents > 0);
 460#endif
 461#ifdef XFS_NATIVE_HOST
 462			/*
 463			 * There are not delayed allocation extents
 464			 * for attributes, so just point at the array.
 465			 */
 466			vecp->i_addr = ip->i_afp->if_u1.if_extents;
 467			vecp->i_len = ip->i_afp->if_bytes;
 468			vecp->i_type = XLOG_REG_TYPE_IATTR_EXT;
 469#else
 470			ASSERT(iip->ili_aextents_buf == NULL);
 471			xfs_inode_item_format_extents(ip, vecp,
 472					XFS_ATTR_FORK, XLOG_REG_TYPE_IATTR_EXT);
 473#endif
 474			iip->ili_format.ilf_asize = vecp->i_len;
 475			vecp++;
 476			nvecs++;
 477		}
 478		break;
 479
 480	case XFS_DINODE_FMT_BTREE:
 481		ASSERT(!(iip->ili_format.ilf_fields &
 482			 (XFS_ILOG_ADATA | XFS_ILOG_AEXT)));
 483		if (iip->ili_format.ilf_fields & XFS_ILOG_ABROOT) {
 484			ASSERT(ip->i_afp->if_broot_bytes > 0);
 
 485			ASSERT(ip->i_afp->if_broot != NULL);
 486			vecp->i_addr = ip->i_afp->if_broot;
 487			vecp->i_len = ip->i_afp->if_broot_bytes;
 488			vecp->i_type = XLOG_REG_TYPE_IATTR_BROOT;
 489			vecp++;
 490			nvecs++;
 491			iip->ili_format.ilf_asize = ip->i_afp->if_broot_bytes;
 
 
 492		}
 493		break;
 494
 495	case XFS_DINODE_FMT_LOCAL:
 496		ASSERT(!(iip->ili_format.ilf_fields &
 497			 (XFS_ILOG_ABROOT | XFS_ILOG_AEXT)));
 498		if (iip->ili_format.ilf_fields & XFS_ILOG_ADATA) {
 499			ASSERT(ip->i_afp->if_bytes > 0);
 500			ASSERT(ip->i_afp->if_u1.if_data != NULL);
 501
 502			vecp->i_addr = ip->i_afp->if_u1.if_data;
 
 503			/*
 504			 * Round i_bytes up to a word boundary.
 505			 * The underlying memory is guaranteed to
 506			 * to be there by xfs_idata_realloc().
 507			 */
 508			data_bytes = roundup(ip->i_afp->if_bytes, 4);
 509			ASSERT((ip->i_afp->if_real_bytes == 0) ||
 510			       (ip->i_afp->if_real_bytes == data_bytes));
 511			vecp->i_len = (int)data_bytes;
 512			vecp->i_type = XLOG_REG_TYPE_IATTR_LOCAL;
 513			vecp++;
 514			nvecs++;
 515			iip->ili_format.ilf_asize = (unsigned)data_bytes;
 
 516		}
 517		break;
 518
 519	default:
 520		ASSERT(0);
 521		break;
 522	}
 
 523
 524	ASSERT(nvecs == lip->li_desc->lid_size);
 525	iip->ili_format.ilf_size = nvecs;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 526}
 527
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 528
 529/*
 530 * This is called to pin the inode associated with the inode log
 531 * item in memory so it cannot be written out.
 532 */
 533STATIC void
 534xfs_inode_item_pin(
 535	struct xfs_log_item	*lip)
 536{
 537	struct xfs_inode	*ip = INODE_ITEM(lip)->ili_inode;
 538
 539	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
 
 540
 541	trace_xfs_inode_pin(ip, _RET_IP_);
 542	atomic_inc(&ip->i_pincount);
 543}
 544
 545
 546/*
 547 * This is called to unpin the inode associated with the inode log
 548 * item which was previously pinned with a call to xfs_inode_item_pin().
 549 *
 550 * Also wake up anyone in xfs_iunpin_wait() if the count goes to 0.
 
 
 
 
 
 
 551 */
 552STATIC void
 553xfs_inode_item_unpin(
 554	struct xfs_log_item	*lip,
 555	int			remove)
 556{
 557	struct xfs_inode	*ip = INODE_ITEM(lip)->ili_inode;
 558
 559	trace_xfs_inode_unpin(ip, _RET_IP_);
 
 560	ASSERT(atomic_read(&ip->i_pincount) > 0);
 561	if (atomic_dec_and_test(&ip->i_pincount))
 562		wake_up(&ip->i_ipin_wait);
 563}
 564
 565/*
 566 * This is called to attempt to lock the inode associated with this
 567 * inode log item, in preparation for the push routine which does the actual
 568 * iflush.  Don't sleep on the inode lock or the flush lock.
 569 *
 570 * If the flush lock is already held, indicating that the inode has
 571 * been or is in the process of being flushed, then (ideally) we'd like to
 572 * see if the inode's buffer is still incore, and if so give it a nudge.
 573 * We delay doing so until the pushbuf routine, though, to avoid holding
 574 * the AIL lock across a call to the blackhole which is the buffer cache.
 575 * Also we don't want to sleep in any device strategy routines, which can happen
 576 * if we do the subsequent bawrite in here.
 577 */
 578STATIC uint
 579xfs_inode_item_trylock(
 580	struct xfs_log_item	*lip)
 
 
 
 581{
 582	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
 583	struct xfs_inode	*ip = iip->ili_inode;
 
 
 
 584
 585	if (xfs_ipincount(ip) > 0)
 
 
 
 586		return XFS_ITEM_PINNED;
 587
 588	if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED))
 
 
 
 
 589		return XFS_ITEM_LOCKED;
 590
 591	if (!xfs_iflock_nowait(ip)) {
 592		/*
 593		 * inode has already been flushed to the backing buffer,
 594		 * leave it locked in shared mode, pushbuf routine will
 595		 * unlock it.
 596		 */
 597		return XFS_ITEM_PUSHBUF;
 598	}
 599
 600	/* Stale items should force out the iclog */
 601	if (ip->i_flags & XFS_ISTALE) {
 602		xfs_ifunlock(ip);
 
 
 
 
 
 
 
 
 
 
 603		/*
 604		 * we hold the AIL lock - notify the unlock routine of this
 605		 * so it doesn't try to get the lock again.
 606		 */
 607		xfs_iunlock(ip, XFS_ILOCK_SHARED|XFS_IUNLOCK_NONOTIFY);
 608		return XFS_ITEM_PINNED;
 
 609	}
 610
 611#ifdef DEBUG
 612	if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
 613		ASSERT(iip->ili_format.ilf_fields != 0);
 614		ASSERT(iip->ili_logged == 0);
 615		ASSERT(lip->li_flags & XFS_LI_IN_AIL);
 616	}
 617#endif
 618	return XFS_ITEM_SUCCESS;
 619}
 620
 621/*
 622 * Unlock the inode associated with the inode log item.
 623 * Clear the fields of the inode and inode log item that
 624 * are specific to the current transaction.  If the
 625 * hold flags is set, do not unlock the inode.
 626 */
 627STATIC void
 628xfs_inode_item_unlock(
 629	struct xfs_log_item	*lip)
 630{
 631	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
 632	struct xfs_inode	*ip = iip->ili_inode;
 633	unsigned short		lock_flags;
 634
 635	ASSERT(ip->i_itemp != NULL);
 636	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
 637
 638	/*
 639	 * If the inode needed a separate buffer with which to log
 640	 * its extents, then free it now.
 641	 */
 642	if (iip->ili_extents_buf != NULL) {
 643		ASSERT(ip->i_d.di_format == XFS_DINODE_FMT_EXTENTS);
 644		ASSERT(ip->i_d.di_nextents > 0);
 645		ASSERT(iip->ili_format.ilf_fields & XFS_ILOG_DEXT);
 646		ASSERT(ip->i_df.if_bytes > 0);
 647		kmem_free(iip->ili_extents_buf);
 648		iip->ili_extents_buf = NULL;
 649	}
 650	if (iip->ili_aextents_buf != NULL) {
 651		ASSERT(ip->i_d.di_aformat == XFS_DINODE_FMT_EXTENTS);
 652		ASSERT(ip->i_d.di_anextents > 0);
 653		ASSERT(iip->ili_format.ilf_fields & XFS_ILOG_AEXT);
 654		ASSERT(ip->i_afp->if_bytes > 0);
 655		kmem_free(iip->ili_aextents_buf);
 656		iip->ili_aextents_buf = NULL;
 657	}
 658
 659	lock_flags = iip->ili_lock_flags;
 660	iip->ili_lock_flags = 0;
 661	if (lock_flags) {
 662		xfs_iunlock(ip, lock_flags);
 663		IRELE(ip);
 664	}
 665}
 666
 667/*
 668 * This is called to find out where the oldest active copy of the inode log
 669 * item in the on disk log resides now that the last log write of it completed
 670 * at the given lsn.  Since we always re-log all dirty data in an inode, the
 671 * latest copy in the on disk log is the only one that matters.  Therefore,
 672 * simply return the given lsn.
 673 *
 674 * If the inode has been marked stale because the cluster is being freed, we
 675 * don't want to (re-)insert this inode into the AIL. There is a race condition
 676 * where the cluster buffer may be unpinned before the inode is inserted into
 677 * the AIL during transaction committed processing. If the buffer is unpinned
 678 * before the inode item has been committed and inserted, then it is possible
 679 * for the buffer to be written and IO completes before the inode is inserted
 680 * into the AIL. In that case, we'd be inserting a clean, stale inode into the
 681 * AIL which will never get removed. It will, however, get reclaimed which
 682 * triggers an assert in xfs_inode_free() complaining about freein an inode
 683 * still in the AIL.
 684 *
 685 * To avoid this, just unpin the inode directly and return a LSN of -1 so the
 686 * transaction committed code knows that it does not need to do any further
 687 * processing on the item.
 688 */
 689STATIC xfs_lsn_t
 690xfs_inode_item_committed(
 691	struct xfs_log_item	*lip,
 692	xfs_lsn_t		lsn)
 693{
 694	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
 695	struct xfs_inode	*ip = iip->ili_inode;
 696
 697	if (xfs_iflags_test(ip, XFS_ISTALE)) {
 698		xfs_inode_item_unpin(lip, 0);
 699		return -1;
 700	}
 701	return lsn;
 702}
 703
 704/*
 705 * This gets called by xfs_trans_push_ail(), when IOP_TRYLOCK
 706 * failed to get the inode flush lock but did get the inode locked SHARED.
 707 * Here we're trying to see if the inode buffer is incore, and if so whether it's
 708 * marked delayed write. If that's the case, we'll promote it and that will
 709 * allow the caller to write the buffer by triggering the xfsbufd to run.
 710 */
 711STATIC bool
 712xfs_inode_item_pushbuf(
 713	struct xfs_log_item	*lip)
 714{
 715	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
 716	struct xfs_inode	*ip = iip->ili_inode;
 717	struct xfs_buf		*bp;
 718	bool			ret = true;
 719
 720	ASSERT(xfs_isilocked(ip, XFS_ILOCK_SHARED));
 721
 722	/*
 723	 * If a flush is not in progress anymore, chances are that the
 724	 * inode was taken off the AIL. So, just get out.
 725	 */
 726	if (completion_done(&ip->i_flush) ||
 727	    !(lip->li_flags & XFS_LI_IN_AIL)) {
 728		xfs_iunlock(ip, XFS_ILOCK_SHARED);
 729		return true;
 730	}
 731
 732	bp = xfs_incore(ip->i_mount->m_ddev_targp, iip->ili_format.ilf_blkno,
 733			iip->ili_format.ilf_len, XBF_TRYLOCK);
 734
 735	xfs_iunlock(ip, XFS_ILOCK_SHARED);
 736	if (!bp)
 737		return true;
 738	if (XFS_BUF_ISDELAYWRITE(bp))
 739		xfs_buf_delwri_promote(bp);
 740	if (xfs_buf_ispinned(bp))
 741		ret = false;
 742	xfs_buf_relse(bp);
 743	return ret;
 744}
 745
 746/*
 747 * This is called to asynchronously write the inode associated with this
 748 * inode log item out to disk. The inode will already have been locked by
 749 * a successful call to xfs_inode_item_trylock().
 750 */
 751STATIC void
 752xfs_inode_item_push(
 753	struct xfs_log_item	*lip)
 754{
 755	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
 756	struct xfs_inode	*ip = iip->ili_inode;
 757
 758	ASSERT(xfs_isilocked(ip, XFS_ILOCK_SHARED));
 759	ASSERT(!completion_done(&ip->i_flush));
 760
 761	/*
 762	 * Since we were able to lock the inode's flush lock and
 763	 * we found it on the AIL, the inode must be dirty.  This
 764	 * is because the inode is removed from the AIL while still
 765	 * holding the flush lock in xfs_iflush_done().  Thus, if
 766	 * we found it in the AIL and were able to obtain the flush
 767	 * lock without sleeping, then there must not have been
 768	 * anyone in the process of flushing the inode.
 769	 */
 770	ASSERT(XFS_FORCED_SHUTDOWN(ip->i_mount) ||
 771	       iip->ili_format.ilf_fields != 0);
 772
 773	/*
 774	 * Push the inode to it's backing buffer. This will not remove the
 775	 * inode from the AIL - a further push will be required to trigger a
 776	 * buffer push. However, this allows all the dirty inodes to be pushed
 777	 * to the buffer before it is pushed to disk. The buffer IO completion
 778	 * will pull the inode from the AIL, mark it clean and unlock the flush
 779	 * lock.
 780	 */
 781	(void) xfs_iflush(ip, SYNC_TRYLOCK);
 782	xfs_iunlock(ip, XFS_ILOCK_SHARED);
 783}
 784
 785/*
 786 * XXX rcc - this one really has to do something.  Probably needs
 787 * to stamp in a new field in the incore inode.
 788 */
 789STATIC void
 790xfs_inode_item_committing(
 791	struct xfs_log_item	*lip,
 792	xfs_lsn_t		lsn)
 793{
 794	INODE_ITEM(lip)->ili_last_lsn = lsn;
 
 795}
 796
 797/*
 798 * This is the ops vector shared by all buf log items.
 799 */
 800static struct xfs_item_ops xfs_inode_item_ops = {
 801	.iop_size	= xfs_inode_item_size,
 802	.iop_format	= xfs_inode_item_format,
 803	.iop_pin	= xfs_inode_item_pin,
 804	.iop_unpin	= xfs_inode_item_unpin,
 805	.iop_trylock	= xfs_inode_item_trylock,
 806	.iop_unlock	= xfs_inode_item_unlock,
 807	.iop_committed	= xfs_inode_item_committed,
 808	.iop_push	= xfs_inode_item_push,
 809	.iop_pushbuf	= xfs_inode_item_pushbuf,
 810	.iop_committing = xfs_inode_item_committing
 811};
 812
 813
 814/*
 815 * Initialize the inode log item for a newly allocated (in-core) inode.
 816 */
 817void
 818xfs_inode_item_init(
 819	struct xfs_inode	*ip,
 820	struct xfs_mount	*mp)
 821{
 822	struct xfs_inode_log_item *iip;
 823
 824	ASSERT(ip->i_itemp == NULL);
 825	iip = ip->i_itemp = kmem_zone_zalloc(xfs_ili_zone, KM_SLEEP);
 
 826
 827	iip->ili_inode = ip;
 
 828	xfs_log_item_init(mp, &iip->ili_item, XFS_LI_INODE,
 829						&xfs_inode_item_ops);
 830	iip->ili_format.ilf_type = XFS_LI_INODE;
 831	iip->ili_format.ilf_ino = ip->i_ino;
 832	iip->ili_format.ilf_blkno = ip->i_imap.im_blkno;
 833	iip->ili_format.ilf_len = ip->i_imap.im_len;
 834	iip->ili_format.ilf_boffset = ip->i_imap.im_boffset;
 835}
 836
 837/*
 838 * Free the inode log item and any memory hanging off of it.
 839 */
 840void
 841xfs_inode_item_destroy(
 842	xfs_inode_t	*ip)
 843{
 844#ifdef XFS_TRANS_DEBUG
 845	if (ip->i_itemp->ili_root_size != 0) {
 846		kmem_free(ip->i_itemp->ili_orig_root);
 847	}
 848#endif
 849	kmem_zone_free(xfs_ili_zone, ip->i_itemp);
 
 850}
 851
 852
 853/*
 854 * This is the inode flushing I/O completion routine.  It is called
 855 * from interrupt level when the buffer containing the inode is
 856 * flushed to disk.  It is responsible for removing the inode item
 857 * from the AIL if it has not been re-logged, and unlocking the inode's
 858 * flush lock.
 859 *
 860 * To reduce AIL lock traffic as much as possible, we scan the buffer log item
 861 * list for other inodes that will run this function. We remove them from the
 862 * buffer list so we can process all the inode IO completions in one AIL lock
 863 * traversal.
 864 */
 865void
 866xfs_iflush_done(
 867	struct xfs_buf		*bp,
 868	struct xfs_log_item	*lip)
 869{
 870	struct xfs_inode_log_item *iip;
 871	struct xfs_log_item	*blip;
 872	struct xfs_log_item	*next;
 873	struct xfs_log_item	*prev;
 874	struct xfs_ail		*ailp = lip->li_ailp;
 875	int			need_ail = 0;
 876
 877	/*
 878	 * Scan the buffer IO completions for other inodes being completed and
 879	 * attach them to the current inode log item.
 880	 */
 881	blip = bp->b_fspriv;
 882	prev = NULL;
 883	while (blip != NULL) {
 884		if (lip->li_cb != xfs_iflush_done) {
 885			prev = blip;
 886			blip = blip->li_bio_list;
 887			continue;
 888		}
 889
 890		/* remove from list */
 891		next = blip->li_bio_list;
 892		if (!prev) {
 893			bp->b_fspriv = next;
 894		} else {
 895			prev->li_bio_list = next;
 896		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 897
 898		/* add to current list */
 899		blip->li_bio_list = lip->li_bio_list;
 900		lip->li_bio_list = blip;
 901
 902		/*
 903		 * while we have the item, do the unlocked check for needing
 904		 * the AIL lock.
 
 905		 */
 906		iip = INODE_ITEM(blip);
 907		if (iip->ili_logged && blip->li_lsn == iip->ili_flush_lsn)
 908			need_ail++;
 909
 910		blip = next;
 
 
 
 
 
 
 
 911	}
 
 912
 913	/* make sure we capture the state of the initial inode. */
 914	iip = INODE_ITEM(lip);
 915	if (iip->ili_logged && lip->li_lsn == iip->ili_flush_lsn)
 916		need_ail++;
 
 
 
 
 
 
 
 
 917
 918	/*
 919	 * We only want to pull the item from the AIL if it is
 920	 * actually there and its location in the log has not
 921	 * changed since we started the flush.  Thus, we only bother
 922	 * if the ili_logged flag is set and the inode's lsn has not
 923	 * changed.  First we check the lsn outside
 924	 * the lock since it's cheaper, and then we recheck while
 925	 * holding the lock before removing the inode from the AIL.
 926	 */
 927	if (need_ail) {
 928		struct xfs_log_item *log_items[need_ail];
 929		int i = 0;
 930		spin_lock(&ailp->xa_lock);
 931		for (blip = lip; blip; blip = blip->li_bio_list) {
 932			iip = INODE_ITEM(blip);
 933			if (iip->ili_logged &&
 934			    blip->li_lsn == iip->ili_flush_lsn) {
 935				log_items[i++] = blip;
 936			}
 937			ASSERT(i <= need_ail);
 938		}
 939		/* xfs_trans_ail_delete_bulk() drops the AIL lock. */
 940		xfs_trans_ail_delete_bulk(ailp, log_items, i);
 941	}
 942
 
 
 
 
 
 
 943
 944	/*
 945	 * clean up and unlock the flush lock now we are done. We can clear the
 946	 * ili_last_fields bits now that we know that the data corresponding to
 947	 * them is safely on disk.
 948	 */
 949	for (blip = lip; blip; blip = next) {
 950		next = blip->li_bio_list;
 951		blip->li_bio_list = NULL;
 952
 953		iip = INODE_ITEM(blip);
 954		iip->ili_logged = 0;
 955		iip->ili_last_fields = 0;
 956		xfs_ifunlock(iip->ili_inode);
 957	}
 
 
 
 
 958}
 959
 960/*
 961 * This is the inode flushing abort routine.  It is called
 962 * from xfs_iflush when the filesystem is shutting down to clean
 963 * up the inode state.
 964 * It is responsible for removing the inode item
 965 * from the AIL if it has not been re-logged, and unlocking the inode's
 966 * flush lock.
 967 */
 968void
 969xfs_iflush_abort(
 970	xfs_inode_t		*ip)
 971{
 972	xfs_inode_log_item_t	*iip = ip->i_itemp;
 
 973
 974	if (iip) {
 975		struct xfs_ail	*ailp = iip->ili_item.li_ailp;
 976		if (iip->ili_item.li_flags & XFS_LI_IN_AIL) {
 977			spin_lock(&ailp->xa_lock);
 978			if (iip->ili_item.li_flags & XFS_LI_IN_AIL) {
 979				/* xfs_trans_ail_delete() drops the AIL lock. */
 980				xfs_trans_ail_delete(ailp, (xfs_log_item_t *)iip);
 981			} else
 982				spin_unlock(&ailp->xa_lock);
 983		}
 984		iip->ili_logged = 0;
 985		/*
 986		 * Clear the ili_last_fields bits now that we know that the
 987		 * data corresponding to them is safely on disk.
 
 988		 */
 989		iip->ili_last_fields = 0;
 
 
 990		/*
 991		 * Clear the inode logging fields so no more flushes are
 992		 * attempted.
 993		 */
 994		iip->ili_format.ilf_fields = 0;
 
 
 
 
 
 
 
 
 995	}
 996	/*
 997	 * Release the inode's flush lock since we're done with it.
 998	 */
 999	xfs_ifunlock(ip);
1000}
1001
1002void
1003xfs_istale_done(
1004	struct xfs_buf		*bp,
1005	struct xfs_log_item	*lip)
1006{
1007	xfs_iflush_abort(INODE_ITEM(lip)->ili_inode);
1008}
1009
1010/*
1011 * convert an xfs_inode_log_format struct from either 32 or 64 bit versions
1012 * (which can have different field alignments) to the native version
1013 */
1014int
1015xfs_inode_item_format_convert(
1016	xfs_log_iovec_t		*buf,
1017	xfs_inode_log_format_t	*in_f)
1018{
1019	if (buf->i_len == sizeof(xfs_inode_log_format_32_t)) {
1020		xfs_inode_log_format_32_t *in_f32 = buf->i_addr;
1021
1022		in_f->ilf_type = in_f32->ilf_type;
1023		in_f->ilf_size = in_f32->ilf_size;
1024		in_f->ilf_fields = in_f32->ilf_fields;
1025		in_f->ilf_asize = in_f32->ilf_asize;
1026		in_f->ilf_dsize = in_f32->ilf_dsize;
1027		in_f->ilf_ino = in_f32->ilf_ino;
1028		/* copy biggest field of ilf_u */
1029		memcpy(in_f->ilf_u.ilfu_uuid.__u_bits,
1030		       in_f32->ilf_u.ilfu_uuid.__u_bits,
1031		       sizeof(uuid_t));
1032		in_f->ilf_blkno = in_f32->ilf_blkno;
1033		in_f->ilf_len = in_f32->ilf_len;
1034		in_f->ilf_boffset = in_f32->ilf_boffset;
1035		return 0;
1036	} else if (buf->i_len == sizeof(xfs_inode_log_format_64_t)){
1037		xfs_inode_log_format_64_t *in_f64 = buf->i_addr;
1038
1039		in_f->ilf_type = in_f64->ilf_type;
1040		in_f->ilf_size = in_f64->ilf_size;
1041		in_f->ilf_fields = in_f64->ilf_fields;
1042		in_f->ilf_asize = in_f64->ilf_asize;
1043		in_f->ilf_dsize = in_f64->ilf_dsize;
1044		in_f->ilf_ino = in_f64->ilf_ino;
1045		/* copy biggest field of ilf_u */
1046		memcpy(in_f->ilf_u.ilfu_uuid.__u_bits,
1047		       in_f64->ilf_u.ilfu_uuid.__u_bits,
1048		       sizeof(uuid_t));
1049		in_f->ilf_blkno = in_f64->ilf_blkno;
1050		in_f->ilf_len = in_f64->ilf_len;
1051		in_f->ilf_boffset = in_f64->ilf_boffset;
1052		return 0;
1053	}
1054	return EFSCORRUPTED;
1055}
v5.9
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
  4 * All Rights Reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
  5 */
  6#include "xfs.h"
  7#include "xfs_fs.h"
  8#include "xfs_shared.h"
  9#include "xfs_format.h"
 10#include "xfs_log_format.h"
 11#include "xfs_trans_resv.h"
 
 
 
 12#include "xfs_mount.h"
 
 
 
 13#include "xfs_inode.h"
 14#include "xfs_trans.h"
 15#include "xfs_inode_item.h"
 
 16#include "xfs_trace.h"
 17#include "xfs_trans_priv.h"
 18#include "xfs_buf_item.h"
 19#include "xfs_log.h"
 20#include "xfs_error.h"
 21
 22#include <linux/iversion.h>
 23
 24kmem_zone_t	*xfs_ili_zone;		/* inode log item zone */
 25
 26static inline struct xfs_inode_log_item *INODE_ITEM(struct xfs_log_item *lip)
 27{
 28	return container_of(lip, struct xfs_inode_log_item, ili_item);
 29}
 30
 31STATIC void
 32xfs_inode_item_data_fork_size(
 33	struct xfs_inode_log_item *iip,
 34	int			*nvecs,
 35	int			*nbytes)
 
 
 
 
 
 
 36{
 
 37	struct xfs_inode	*ip = iip->ili_inode;
 
 
 
 
 
 
 
 38
 39	switch (ip->i_df.if_format) {
 40	case XFS_DINODE_FMT_EXTENTS:
 41		if ((iip->ili_fields & XFS_ILOG_DEXT) &&
 42		    ip->i_df.if_nextents > 0 &&
 43		    ip->i_df.if_bytes > 0) {
 44			/* worst case, doesn't subtract delalloc extents */
 45			*nbytes += XFS_IFORK_DSIZE(ip);
 46			*nvecs += 1;
 
 
 
 
 47		}
 48		break;
 
 49	case XFS_DINODE_FMT_BTREE:
 50		if ((iip->ili_fields & XFS_ILOG_DBROOT) &&
 51		    ip->i_df.if_broot_bytes > 0) {
 52			*nbytes += ip->i_df.if_broot_bytes;
 53			*nvecs += 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 54		}
 55		break;
 
 56	case XFS_DINODE_FMT_LOCAL:
 57		if ((iip->ili_fields & XFS_ILOG_DDATA) &&
 58		    ip->i_df.if_bytes > 0) {
 59			*nbytes += roundup(ip->i_df.if_bytes, 4);
 60			*nvecs += 1;
 
 
 
 
 
 
 61		}
 62		break;
 63
 64	case XFS_DINODE_FMT_DEV:
 
 
 
 
 
 
 
 
 
 65		break;
 
 66	default:
 67		ASSERT(0);
 68		break;
 69	}
 70}
 71
 72STATIC void
 73xfs_inode_item_attr_fork_size(
 74	struct xfs_inode_log_item *iip,
 75	int			*nvecs,
 76	int			*nbytes)
 77{
 78	struct xfs_inode	*ip = iip->ili_inode;
 
 
 
 79
 80	switch (ip->i_afp->if_format) {
 
 
 
 81	case XFS_DINODE_FMT_EXTENTS:
 82		if ((iip->ili_fields & XFS_ILOG_AEXT) &&
 83		    ip->i_afp->if_nextents > 0 &&
 84		    ip->i_afp->if_bytes > 0) {
 85			/* worst case, doesn't subtract unused space */
 86			*nbytes += XFS_IFORK_ASIZE(ip);
 87			*nvecs += 1;
 
 
 
 88		}
 89		break;
 
 90	case XFS_DINODE_FMT_BTREE:
 91		if ((iip->ili_fields & XFS_ILOG_ABROOT) &&
 92		    ip->i_afp->if_broot_bytes > 0) {
 93			*nbytes += ip->i_afp->if_broot_bytes;
 94			*nvecs += 1;
 
 
 
 
 95		}
 96		break;
 
 97	case XFS_DINODE_FMT_LOCAL:
 98		if ((iip->ili_fields & XFS_ILOG_ADATA) &&
 99		    ip->i_afp->if_bytes > 0) {
100			*nbytes += roundup(ip->i_afp->if_bytes, 4);
101			*nvecs += 1;
 
 
 
 
102		}
103		break;
 
104	default:
105		ASSERT(0);
106		break;
107	}
 
 
108}
109
110/*
111 * This returns the number of iovecs needed to log the given inode item.
 
 
 
 
 
 
 
112 *
113 * We need one iovec for the inode log format structure, one for the
114 * inode core, and possibly one for the inode data/extents/b-tree root
115 * and one for the inode attribute data/extents/b-tree root.
 
116 */
117STATIC void
118xfs_inode_item_size(
119	struct xfs_log_item	*lip,
120	int			*nvecs,
121	int			*nbytes)
122{
123	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
124	struct xfs_inode	*ip = iip->ili_inode;
125
126	*nvecs += 2;
127	*nbytes += sizeof(struct xfs_inode_log_format) +
128		   xfs_log_dinode_size(ip->i_mount);
129
130	xfs_inode_item_data_fork_size(iip, nvecs, nbytes);
131	if (XFS_IFORK_Q(ip))
132		xfs_inode_item_attr_fork_size(iip, nvecs, nbytes);
 
 
133}
134
 
 
 
 
 
 
 
135STATIC void
136xfs_inode_item_format_data_fork(
137	struct xfs_inode_log_item *iip,
138	struct xfs_inode_log_format *ilf,
139	struct xfs_log_vec	*lv,
140	struct xfs_log_iovec	**vecp)
141{
 
142	struct xfs_inode	*ip = iip->ili_inode;
 
143	size_t			data_bytes;
 
144
145	switch (ip->i_df.if_format) {
146	case XFS_DINODE_FMT_EXTENTS:
147		iip->ili_fields &=
148			~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | XFS_ILOG_DEV);
 
149
150		if ((iip->ili_fields & XFS_ILOG_DEXT) &&
151		    ip->i_df.if_nextents > 0 &&
152		    ip->i_df.if_bytes > 0) {
153			struct xfs_bmbt_rec *p;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
154
155			ASSERT(xfs_iext_count(&ip->i_df) > 0);
 
 
 
156
157			p = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_IEXT);
158			data_bytes = xfs_iextents_copy(ip, p, XFS_DATA_FORK);
159			xlog_finish_iovec(lv, *vecp, data_bytes);
 
 
 
160
161			ASSERT(data_bytes <= ip->i_df.if_bytes);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
162
163			ilf->ilf_dsize = data_bytes;
164			ilf->ilf_size++;
165		} else {
166			iip->ili_fields &= ~XFS_ILOG_DEXT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
167		}
168		break;
 
169	case XFS_DINODE_FMT_BTREE:
170		iip->ili_fields &=
171			~(XFS_ILOG_DDATA | XFS_ILOG_DEXT | XFS_ILOG_DEV);
172
173		if ((iip->ili_fields & XFS_ILOG_DBROOT) &&
174		    ip->i_df.if_broot_bytes > 0) {
175			ASSERT(ip->i_df.if_broot != NULL);
176			xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IBROOT,
177					ip->i_df.if_broot,
178					ip->i_df.if_broot_bytes);
179			ilf->ilf_dsize = ip->i_df.if_broot_bytes;
180			ilf->ilf_size++;
181		} else {
182			ASSERT(!(iip->ili_fields &
183				 XFS_ILOG_DBROOT));
184			iip->ili_fields &= ~XFS_ILOG_DBROOT;
185		}
186		break;
 
187	case XFS_DINODE_FMT_LOCAL:
188		iip->ili_fields &=
189			~(XFS_ILOG_DEXT | XFS_ILOG_DBROOT | XFS_ILOG_DEV);
190		if ((iip->ili_fields & XFS_ILOG_DDATA) &&
191		    ip->i_df.if_bytes > 0) {
 
 
 
 
 
192			/*
193			 * Round i_bytes up to a word boundary.
194			 * The underlying memory is guaranteed
195			 * to be there by xfs_idata_realloc().
196			 */
197			data_bytes = roundup(ip->i_df.if_bytes, 4);
198			ASSERT(ip->i_df.if_u1.if_data != NULL);
199			ASSERT(ip->i_d.di_size > 0);
200			xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_ILOCAL,
201					ip->i_df.if_u1.if_data, data_bytes);
202			ilf->ilf_dsize = (unsigned)data_bytes;
203			ilf->ilf_size++;
204		} else {
205			iip->ili_fields &= ~XFS_ILOG_DDATA;
206		}
207		break;
 
208	case XFS_DINODE_FMT_DEV:
209		iip->ili_fields &=
210			~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | XFS_ILOG_DEXT);
211		if (iip->ili_fields & XFS_ILOG_DEV)
212			ilf->ilf_u.ilfu_rdev = sysv_encode_dev(VFS_I(ip)->i_rdev);
 
 
 
213		break;
 
 
 
 
 
 
 
 
 
 
 
214	default:
215		ASSERT(0);
216		break;
217	}
218}
219
220STATIC void
221xfs_inode_item_format_attr_fork(
222	struct xfs_inode_log_item *iip,
223	struct xfs_inode_log_format *ilf,
224	struct xfs_log_vec	*lv,
225	struct xfs_log_iovec	**vecp)
226{
227	struct xfs_inode	*ip = iip->ili_inode;
228	size_t			data_bytes;
 
 
 
229
230	switch (ip->i_afp->if_format) {
231	case XFS_DINODE_FMT_EXTENTS:
232		iip->ili_fields &=
233			~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT);
234
235		if ((iip->ili_fields & XFS_ILOG_AEXT) &&
236		    ip->i_afp->if_nextents > 0 &&
237		    ip->i_afp->if_bytes > 0) {
238			struct xfs_bmbt_rec *p;
239
240			ASSERT(xfs_iext_count(ip->i_afp) ==
241				ip->i_afp->if_nextents);
242
243			p = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_EXT);
244			data_bytes = xfs_iextents_copy(ip, p, XFS_ATTR_FORK);
245			xlog_finish_iovec(lv, *vecp, data_bytes);
246
247			ilf->ilf_asize = data_bytes;
248			ilf->ilf_size++;
249		} else {
250			iip->ili_fields &= ~XFS_ILOG_AEXT;
 
 
 
 
 
 
 
 
 
251		}
252		break;
 
253	case XFS_DINODE_FMT_BTREE:
254		iip->ili_fields &=
255			~(XFS_ILOG_ADATA | XFS_ILOG_AEXT);
256
257		if ((iip->ili_fields & XFS_ILOG_ABROOT) &&
258		    ip->i_afp->if_broot_bytes > 0) {
259			ASSERT(ip->i_afp->if_broot != NULL);
260
261			xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_BROOT,
262					ip->i_afp->if_broot,
263					ip->i_afp->if_broot_bytes);
264			ilf->ilf_asize = ip->i_afp->if_broot_bytes;
265			ilf->ilf_size++;
266		} else {
267			iip->ili_fields &= ~XFS_ILOG_ABROOT;
268		}
269		break;
 
270	case XFS_DINODE_FMT_LOCAL:
271		iip->ili_fields &=
272			~(XFS_ILOG_AEXT | XFS_ILOG_ABROOT);
 
 
 
273
274		if ((iip->ili_fields & XFS_ILOG_ADATA) &&
275		    ip->i_afp->if_bytes > 0) {
276			/*
277			 * Round i_bytes up to a word boundary.
278			 * The underlying memory is guaranteed
279			 * to be there by xfs_idata_realloc().
280			 */
281			data_bytes = roundup(ip->i_afp->if_bytes, 4);
282			ASSERT(ip->i_afp->if_u1.if_data != NULL);
283			xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_LOCAL,
284					ip->i_afp->if_u1.if_data,
285					data_bytes);
286			ilf->ilf_asize = (unsigned)data_bytes;
287			ilf->ilf_size++;
288		} else {
289			iip->ili_fields &= ~XFS_ILOG_ADATA;
290		}
291		break;
 
292	default:
293		ASSERT(0);
294		break;
295	}
296}
297
298static void
299xfs_inode_to_log_dinode(
300	struct xfs_inode	*ip,
301	struct xfs_log_dinode	*to,
302	xfs_lsn_t		lsn)
303{
304	struct xfs_icdinode	*from = &ip->i_d;
305	struct inode		*inode = VFS_I(ip);
306
307	to->di_magic = XFS_DINODE_MAGIC;
308	to->di_format = xfs_ifork_format(&ip->i_df);
309	to->di_uid = i_uid_read(inode);
310	to->di_gid = i_gid_read(inode);
311	to->di_projid_lo = from->di_projid & 0xffff;
312	to->di_projid_hi = from->di_projid >> 16;
313
314	memset(to->di_pad, 0, sizeof(to->di_pad));
315	memset(to->di_pad3, 0, sizeof(to->di_pad3));
316	to->di_atime.t_sec = inode->i_atime.tv_sec;
317	to->di_atime.t_nsec = inode->i_atime.tv_nsec;
318	to->di_mtime.t_sec = inode->i_mtime.tv_sec;
319	to->di_mtime.t_nsec = inode->i_mtime.tv_nsec;
320	to->di_ctime.t_sec = inode->i_ctime.tv_sec;
321	to->di_ctime.t_nsec = inode->i_ctime.tv_nsec;
322	to->di_nlink = inode->i_nlink;
323	to->di_gen = inode->i_generation;
324	to->di_mode = inode->i_mode;
325
326	to->di_size = from->di_size;
327	to->di_nblocks = from->di_nblocks;
328	to->di_extsize = from->di_extsize;
329	to->di_nextents = xfs_ifork_nextents(&ip->i_df);
330	to->di_anextents = xfs_ifork_nextents(ip->i_afp);
331	to->di_forkoff = from->di_forkoff;
332	to->di_aformat = xfs_ifork_format(ip->i_afp);
333	to->di_dmevmask = from->di_dmevmask;
334	to->di_dmstate = from->di_dmstate;
335	to->di_flags = from->di_flags;
336
337	/* log a dummy value to ensure log structure is fully initialised */
338	to->di_next_unlinked = NULLAGINO;
339
340	if (xfs_sb_version_has_v3inode(&ip->i_mount->m_sb)) {
341		to->di_version = 3;
342		to->di_changecount = inode_peek_iversion(inode);
343		to->di_crtime.t_sec = from->di_crtime.tv_sec;
344		to->di_crtime.t_nsec = from->di_crtime.tv_nsec;
345		to->di_flags2 = from->di_flags2;
346		to->di_cowextsize = from->di_cowextsize;
347		to->di_ino = ip->i_ino;
348		to->di_lsn = lsn;
349		memset(to->di_pad2, 0, sizeof(to->di_pad2));
350		uuid_copy(&to->di_uuid, &ip->i_mount->m_sb.sb_meta_uuid);
351		to->di_flushiter = 0;
352	} else {
353		to->di_version = 2;
354		to->di_flushiter = from->di_flushiter;
355	}
356}
357
358/*
359 * Format the inode core. Current timestamp data is only in the VFS inode
360 * fields, so we need to grab them from there. Hence rather than just copying
361 * the XFS inode core structure, format the fields directly into the iovec.
362 */
363static void
364xfs_inode_item_format_core(
365	struct xfs_inode	*ip,
366	struct xfs_log_vec	*lv,
367	struct xfs_log_iovec	**vecp)
368{
369	struct xfs_log_dinode	*dic;
370
371	dic = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_ICORE);
372	xfs_inode_to_log_dinode(ip, dic, ip->i_itemp->ili_item.li_lsn);
373	xlog_finish_iovec(lv, *vecp, xfs_log_dinode_size(ip->i_mount));
374}
375
376/*
377 * This is called to fill in the vector of log iovecs for the given inode
378 * log item.  It fills the first item with an inode log format structure,
379 * the second with the on-disk inode structure, and a possible third and/or
380 * fourth with the inode data/extents/b-tree root and inode attributes
381 * data/extents/b-tree root.
382 *
383 * Note: Always use the 64 bit inode log format structure so we don't
384 * leave an uninitialised hole in the format item on 64 bit systems. Log
385 * recovery on 32 bit systems handles this just fine, so there's no reason
386 * for not using an initialising the properly padded structure all the time.
387 */
388STATIC void
389xfs_inode_item_format(
390	struct xfs_log_item	*lip,
391	struct xfs_log_vec	*lv)
392{
393	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
394	struct xfs_inode	*ip = iip->ili_inode;
395	struct xfs_log_iovec	*vecp = NULL;
396	struct xfs_inode_log_format *ilf;
397
398	ilf = xlog_prepare_iovec(lv, &vecp, XLOG_REG_TYPE_IFORMAT);
399	ilf->ilf_type = XFS_LI_INODE;
400	ilf->ilf_ino = ip->i_ino;
401	ilf->ilf_blkno = ip->i_imap.im_blkno;
402	ilf->ilf_len = ip->i_imap.im_len;
403	ilf->ilf_boffset = ip->i_imap.im_boffset;
404	ilf->ilf_fields = XFS_ILOG_CORE;
405	ilf->ilf_size = 2; /* format + core */
406
407	/*
408	 * make sure we don't leak uninitialised data into the log in the case
409	 * when we don't log every field in the inode.
410	 */
411	ilf->ilf_dsize = 0;
412	ilf->ilf_asize = 0;
413	ilf->ilf_pad = 0;
414	memset(&ilf->ilf_u, 0, sizeof(ilf->ilf_u));
415
416	xlog_finish_iovec(lv, vecp, sizeof(*ilf));
417
418	xfs_inode_item_format_core(ip, lv, &vecp);
419	xfs_inode_item_format_data_fork(iip, ilf, lv, &vecp);
420	if (XFS_IFORK_Q(ip)) {
421		xfs_inode_item_format_attr_fork(iip, ilf, lv, &vecp);
422	} else {
423		iip->ili_fields &=
424			~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT);
425	}
426
427	/* update the format with the exact fields we actually logged */
428	ilf->ilf_fields |= (iip->ili_fields & ~XFS_ILOG_TIMESTAMP);
429}
430
431/*
432 * This is called to pin the inode associated with the inode log
433 * item in memory so it cannot be written out.
434 */
435STATIC void
436xfs_inode_item_pin(
437	struct xfs_log_item	*lip)
438{
439	struct xfs_inode	*ip = INODE_ITEM(lip)->ili_inode;
440
441	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
442	ASSERT(lip->li_buf);
443
444	trace_xfs_inode_pin(ip, _RET_IP_);
445	atomic_inc(&ip->i_pincount);
446}
447
448
449/*
450 * This is called to unpin the inode associated with the inode log
451 * item which was previously pinned with a call to xfs_inode_item_pin().
452 *
453 * Also wake up anyone in xfs_iunpin_wait() if the count goes to 0.
454 *
455 * Note that unpin can race with inode cluster buffer freeing marking the buffer
456 * stale. In that case, flush completions are run from the buffer unpin call,
457 * which may happen before the inode is unpinned. If we lose the race, there
458 * will be no buffer attached to the log item, but the inode will be marked
459 * XFS_ISTALE.
460 */
461STATIC void
462xfs_inode_item_unpin(
463	struct xfs_log_item	*lip,
464	int			remove)
465{
466	struct xfs_inode	*ip = INODE_ITEM(lip)->ili_inode;
467
468	trace_xfs_inode_unpin(ip, _RET_IP_);
469	ASSERT(lip->li_buf || xfs_iflags_test(ip, XFS_ISTALE));
470	ASSERT(atomic_read(&ip->i_pincount) > 0);
471	if (atomic_dec_and_test(&ip->i_pincount))
472		wake_up_bit(&ip->i_flags, __XFS_IPINNED_BIT);
473}
474
 
 
 
 
 
 
 
 
 
 
 
 
 
475STATIC uint
476xfs_inode_item_push(
477	struct xfs_log_item	*lip,
478	struct list_head	*buffer_list)
479		__releases(&lip->li_ailp->ail_lock)
480		__acquires(&lip->li_ailp->ail_lock)
481{
482	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
483	struct xfs_inode	*ip = iip->ili_inode;
484	struct xfs_buf		*bp = lip->li_buf;
485	uint			rval = XFS_ITEM_SUCCESS;
486	int			error;
487
488	ASSERT(iip->ili_item.li_buf);
489
490	if (xfs_ipincount(ip) > 0 || xfs_buf_ispinned(bp) ||
491	    (ip->i_flags & XFS_ISTALE))
492		return XFS_ITEM_PINNED;
493
494	/* If the inode is already flush locked, we're already flushing. */
495	if (xfs_isiflocked(ip))
496		return XFS_ITEM_FLUSHING;
497
498	if (!xfs_buf_trylock(bp))
499		return XFS_ITEM_LOCKED;
500
501	spin_unlock(&lip->li_ailp->ail_lock);
 
 
 
 
 
 
 
502
503	/*
504	 * We need to hold a reference for flushing the cluster buffer as it may
505	 * fail the buffer without IO submission. In which case, we better get a
506	 * reference for that completion because otherwise we don't get a
507	 * reference for IO until we queue the buffer for delwri submission.
508	 */
509	xfs_buf_hold(bp);
510	error = xfs_iflush_cluster(bp);
511	if (!error) {
512		if (!xfs_buf_delwri_queue(bp, buffer_list))
513			rval = XFS_ITEM_FLUSHING;
514		xfs_buf_relse(bp);
515	} else {
516		/*
517		 * Release the buffer if we were unable to flush anything. On
518		 * any other error, the buffer has already been released.
519		 */
520		if (error == -EAGAIN)
521			xfs_buf_relse(bp);
522		rval = XFS_ITEM_LOCKED;
523	}
524
525	spin_lock(&lip->li_ailp->ail_lock);
526	return rval;
 
 
 
 
 
 
527}
528
529/*
530 * Unlock the inode associated with the inode log item.
 
 
 
531 */
532STATIC void
533xfs_inode_item_release(
534	struct xfs_log_item	*lip)
535{
536	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
537	struct xfs_inode	*ip = iip->ili_inode;
538	unsigned short		lock_flags;
539
540	ASSERT(ip->i_itemp != NULL);
541	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
542
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
543	lock_flags = iip->ili_lock_flags;
544	iip->ili_lock_flags = 0;
545	if (lock_flags)
546		xfs_iunlock(ip, lock_flags);
 
 
547}
548
549/*
550 * This is called to find out where the oldest active copy of the inode log
551 * item in the on disk log resides now that the last log write of it completed
552 * at the given lsn.  Since we always re-log all dirty data in an inode, the
553 * latest copy in the on disk log is the only one that matters.  Therefore,
554 * simply return the given lsn.
555 *
556 * If the inode has been marked stale because the cluster is being freed, we
557 * don't want to (re-)insert this inode into the AIL. There is a race condition
558 * where the cluster buffer may be unpinned before the inode is inserted into
559 * the AIL during transaction committed processing. If the buffer is unpinned
560 * before the inode item has been committed and inserted, then it is possible
561 * for the buffer to be written and IO completes before the inode is inserted
562 * into the AIL. In that case, we'd be inserting a clean, stale inode into the
563 * AIL which will never get removed. It will, however, get reclaimed which
564 * triggers an assert in xfs_inode_free() complaining about freein an inode
565 * still in the AIL.
566 *
567 * To avoid this, just unpin the inode directly and return a LSN of -1 so the
568 * transaction committed code knows that it does not need to do any further
569 * processing on the item.
570 */
571STATIC xfs_lsn_t
572xfs_inode_item_committed(
573	struct xfs_log_item	*lip,
574	xfs_lsn_t		lsn)
575{
576	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
577	struct xfs_inode	*ip = iip->ili_inode;
578
579	if (xfs_iflags_test(ip, XFS_ISTALE)) {
580		xfs_inode_item_unpin(lip, 0);
581		return -1;
582	}
583	return lsn;
584}
585
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
586STATIC void
587xfs_inode_item_committing(
588	struct xfs_log_item	*lip,
589	xfs_lsn_t		commit_lsn)
590{
591	INODE_ITEM(lip)->ili_last_lsn = commit_lsn;
592	return xfs_inode_item_release(lip);
593}
594
595static const struct xfs_item_ops xfs_inode_item_ops = {
 
 
 
596	.iop_size	= xfs_inode_item_size,
597	.iop_format	= xfs_inode_item_format,
598	.iop_pin	= xfs_inode_item_pin,
599	.iop_unpin	= xfs_inode_item_unpin,
600	.iop_release	= xfs_inode_item_release,
 
601	.iop_committed	= xfs_inode_item_committed,
602	.iop_push	= xfs_inode_item_push,
603	.iop_committing	= xfs_inode_item_committing,
 
604};
605
606
607/*
608 * Initialize the inode log item for a newly allocated (in-core) inode.
609 */
610void
611xfs_inode_item_init(
612	struct xfs_inode	*ip,
613	struct xfs_mount	*mp)
614{
615	struct xfs_inode_log_item *iip;
616
617	ASSERT(ip->i_itemp == NULL);
618	iip = ip->i_itemp = kmem_cache_zalloc(xfs_ili_zone,
619					      GFP_KERNEL | __GFP_NOFAIL);
620
621	iip->ili_inode = ip;
622	spin_lock_init(&iip->ili_lock);
623	xfs_log_item_init(mp, &iip->ili_item, XFS_LI_INODE,
624						&xfs_inode_item_ops);
 
 
 
 
 
625}
626
627/*
628 * Free the inode log item and any memory hanging off of it.
629 */
630void
631xfs_inode_item_destroy(
632	struct xfs_inode	*ip)
633{
634	struct xfs_inode_log_item *iip = ip->i_itemp;
635
636	ASSERT(iip->ili_item.li_buf == NULL);
637
638	ip->i_itemp = NULL;
639	kmem_free(iip->ili_item.li_lv_shadow);
640	kmem_cache_free(xfs_ili_zone, iip);
641}
642
643
644/*
645 * We only want to pull the item from the AIL if it is actually there
646 * and its location in the log has not changed since we started the
647 * flush.  Thus, we only bother if the inode's lsn has not changed.
 
 
 
 
 
 
 
648 */
649static void
650xfs_iflush_ail_updates(
651	struct xfs_ail		*ailp,
652	struct list_head	*list)
653{
654	struct xfs_log_item	*lip;
655	xfs_lsn_t		tail_lsn = 0;
 
 
 
 
656
657	/* this is an opencoded batch version of xfs_trans_ail_delete */
658	spin_lock(&ailp->ail_lock);
659	list_for_each_entry(lip, list, li_bio_list) {
660		xfs_lsn_t	lsn;
661
662		clear_bit(XFS_LI_FAILED, &lip->li_flags);
663		if (INODE_ITEM(lip)->ili_flush_lsn != lip->li_lsn)
 
 
 
664			continue;
 
665
666		lsn = xfs_ail_delete_one(ailp, lip);
667		if (!tail_lsn && lsn)
668			tail_lsn = lsn;
669	}
670	xfs_ail_update_finish(ailp, tail_lsn);
671}
672
673/*
674 * Walk the list of inodes that have completed their IOs. If they are clean
675 * remove them from the list and dissociate them from the buffer. Buffers that
676 * are still dirty remain linked to the buffer and on the list. Caller must
677 * handle them appropriately.
678 */
679static void
680xfs_iflush_finish(
681	struct xfs_buf		*bp,
682	struct list_head	*list)
683{
684	struct xfs_log_item	*lip, *n;
685
686	list_for_each_entry_safe(lip, n, list, li_bio_list) {
687		struct xfs_inode_log_item *iip = INODE_ITEM(lip);
688		bool	drop_buffer = false;
689
690		spin_lock(&iip->ili_lock);
 
 
691
692		/*
693		 * Remove the reference to the cluster buffer if the inode is
694		 * clean in memory and drop the buffer reference once we've
695		 * dropped the locks we hold.
696		 */
697		ASSERT(iip->ili_item.li_buf == bp);
698		if (!iip->ili_fields) {
699			iip->ili_item.li_buf = NULL;
700			list_del_init(&lip->li_bio_list);
701			drop_buffer = true;
702		}
703		iip->ili_last_fields = 0;
704		iip->ili_flush_lsn = 0;
705		spin_unlock(&iip->ili_lock);
706		xfs_ifunlock(iip->ili_inode);
707		if (drop_buffer)
708			xfs_buf_rele(bp);
709	}
710}
711
712/*
713 * Inode buffer IO completion routine.  It is responsible for removing inodes
714 * attached to the buffer from the AIL if they have not been re-logged, as well
715 * as completing the flush and unlocking the inode.
716 */
717void
718xfs_iflush_done(
719	struct xfs_buf		*bp)
720{
721	struct xfs_log_item	*lip, *n;
722	LIST_HEAD(flushed_inodes);
723	LIST_HEAD(ail_updates);
724
725	/*
726	 * Pull the attached inodes from the buffer one at a time and take the
727	 * appropriate action on them.
 
 
 
 
 
728	 */
729	list_for_each_entry_safe(lip, n, &bp->b_li_list, li_bio_list) {
730		struct xfs_inode_log_item *iip = INODE_ITEM(lip);
 
 
 
 
 
 
 
 
 
 
 
 
 
731
732		if (xfs_iflags_test(iip->ili_inode, XFS_ISTALE)) {
733			xfs_iflush_abort(iip->ili_inode);
734			continue;
735		}
736		if (!iip->ili_last_fields)
737			continue;
738
739		/* Do an unlocked check for needing the AIL lock. */
740		if (iip->ili_flush_lsn == lip->li_lsn ||
741		    test_bit(XFS_LI_FAILED, &lip->li_flags))
742			list_move_tail(&lip->li_bio_list, &ail_updates);
743		else
744			list_move_tail(&lip->li_bio_list, &flushed_inodes);
745	}
 
746
747	if (!list_empty(&ail_updates)) {
748		xfs_iflush_ail_updates(bp->b_mount->m_ail, &ail_updates);
749		list_splice_tail(&ail_updates, &flushed_inodes);
 
750	}
751
752	xfs_iflush_finish(bp, &flushed_inodes);
753	if (!list_empty(&flushed_inodes))
754		list_splice_tail(&flushed_inodes, &bp->b_li_list);
755}
756
757/*
758 * This is the inode flushing abort routine.  It is called from xfs_iflush when
759 * the filesystem is shutting down to clean up the inode state.  It is
760 * responsible for removing the inode item from the AIL if it has not been
761 * re-logged, and unlocking the inode's flush lock.
 
 
762 */
763void
764xfs_iflush_abort(
765	struct xfs_inode	*ip)
766{
767	struct xfs_inode_log_item *iip = ip->i_itemp;
768	struct xfs_buf		*bp = NULL;
769
770	if (iip) {
 
 
 
 
 
 
 
 
 
 
771		/*
772		 * Clear the failed bit before removing the item from the AIL so
773		 * xfs_trans_ail_delete() doesn't try to clear and release the
774		 * buffer attached to the log item before we are done with it.
775		 */
776		clear_bit(XFS_LI_FAILED, &iip->ili_item.li_flags);
777		xfs_trans_ail_delete(&iip->ili_item, 0);
778
779		/*
780		 * Clear the inode logging fields so no more flushes are
781		 * attempted.
782		 */
783		spin_lock(&iip->ili_lock);
784		iip->ili_last_fields = 0;
785		iip->ili_fields = 0;
786		iip->ili_fsync_fields = 0;
787		iip->ili_flush_lsn = 0;
788		bp = iip->ili_item.li_buf;
789		iip->ili_item.li_buf = NULL;
790		list_del_init(&iip->ili_item.li_bio_list);
791		spin_unlock(&iip->ili_lock);
792	}
 
 
 
793	xfs_ifunlock(ip);
794	if (bp)
795		xfs_buf_rele(bp);
 
 
 
 
 
 
796}
797
798/*
799 * convert an xfs_inode_log_format struct from the old 32 bit version
800 * (which can have different field alignments) to the native 64 bit version
801 */
802int
803xfs_inode_item_format_convert(
804	struct xfs_log_iovec		*buf,
805	struct xfs_inode_log_format	*in_f)
806{
807	struct xfs_inode_log_format_32	*in_f32 = buf->i_addr;
 
808
809	if (buf->i_len != sizeof(*in_f32)) {
810		XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, NULL);
811		return -EFSCORRUPTED;
812	}
813
814	in_f->ilf_type = in_f32->ilf_type;
815	in_f->ilf_size = in_f32->ilf_size;
816	in_f->ilf_fields = in_f32->ilf_fields;
817	in_f->ilf_asize = in_f32->ilf_asize;
818	in_f->ilf_dsize = in_f32->ilf_dsize;
819	in_f->ilf_ino = in_f32->ilf_ino;
820	memcpy(&in_f->ilf_u, &in_f32->ilf_u, sizeof(in_f->ilf_u));
821	in_f->ilf_blkno = in_f32->ilf_blkno;
822	in_f->ilf_len = in_f32->ilf_len;
823	in_f->ilf_boffset = in_f32->ilf_boffset;
824	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
825}