Linux Audio

Check our new training course

Linux debugging, profiling, tracing and performance analysis training

Mar 24-27, 2025, special US time zones
Register
Loading...
v3.1
 
   1/*
   2 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
   3 * All Rights Reserved.
   4 *
   5 * This program is free software; you can redistribute it and/or
   6 * modify it under the terms of the GNU General Public License as
   7 * published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope that it would be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write the Free Software Foundation,
  16 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
  17 */
  18#include "xfs.h"
  19#include "xfs_fs.h"
  20#include "xfs_types.h"
  21#include "xfs_bit.h"
  22#include "xfs_log.h"
  23#include "xfs_inum.h"
  24#include "xfs_trans.h"
  25#include "xfs_sb.h"
  26#include "xfs_ag.h"
  27#include "xfs_mount.h"
  28#include "xfs_trans_priv.h"
  29#include "xfs_bmap_btree.h"
  30#include "xfs_dinode.h"
  31#include "xfs_inode.h"
 
  32#include "xfs_inode_item.h"
  33#include "xfs_error.h"
  34#include "xfs_trace.h"
 
 
 
  35
 
  36
  37kmem_zone_t	*xfs_ili_zone;		/* inode log item zone */
  38
  39static inline struct xfs_inode_log_item *INODE_ITEM(struct xfs_log_item *lip)
  40{
  41	return container_of(lip, struct xfs_inode_log_item, ili_item);
  42}
  43
  44
  45/*
  46 * This returns the number of iovecs needed to log the given inode item.
  47 *
  48 * We need one iovec for the inode log format structure, one for the
  49 * inode core, and possibly one for the inode data/extents/b-tree root
  50 * and one for the inode attribute data/extents/b-tree root.
  51 */
  52STATIC uint
  53xfs_inode_item_size(
  54	struct xfs_log_item	*lip)
  55{
  56	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
  57	struct xfs_inode	*ip = iip->ili_inode;
  58	uint			nvecs = 2;
  59
  60	/*
  61	 * Only log the data/extents/b-tree root if there is something
  62	 * left to log.
  63	 */
  64	iip->ili_format.ilf_fields |= XFS_ILOG_CORE;
  65
  66	switch (ip->i_d.di_format) {
  67	case XFS_DINODE_FMT_EXTENTS:
  68		iip->ili_format.ilf_fields &=
  69			~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
  70			  XFS_ILOG_DEV | XFS_ILOG_UUID);
  71		if ((iip->ili_format.ilf_fields & XFS_ILOG_DEXT) &&
  72		    (ip->i_d.di_nextents > 0) &&
  73		    (ip->i_df.if_bytes > 0)) {
  74			ASSERT(ip->i_df.if_u1.if_extents != NULL);
  75			nvecs++;
  76		} else {
  77			iip->ili_format.ilf_fields &= ~XFS_ILOG_DEXT;
  78		}
  79		break;
  80
  81	case XFS_DINODE_FMT_BTREE:
  82		ASSERT(ip->i_df.if_ext_max ==
  83		       XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t));
  84		iip->ili_format.ilf_fields &=
  85			~(XFS_ILOG_DDATA | XFS_ILOG_DEXT |
  86			  XFS_ILOG_DEV | XFS_ILOG_UUID);
  87		if ((iip->ili_format.ilf_fields & XFS_ILOG_DBROOT) &&
  88		    (ip->i_df.if_broot_bytes > 0)) {
  89			ASSERT(ip->i_df.if_broot != NULL);
  90			nvecs++;
  91		} else {
  92			ASSERT(!(iip->ili_format.ilf_fields &
  93				 XFS_ILOG_DBROOT));
  94#ifdef XFS_TRANS_DEBUG
  95			if (iip->ili_root_size > 0) {
  96				ASSERT(iip->ili_root_size ==
  97				       ip->i_df.if_broot_bytes);
  98				ASSERT(memcmp(iip->ili_orig_root,
  99					    ip->i_df.if_broot,
 100					    iip->ili_root_size) == 0);
 101			} else {
 102				ASSERT(ip->i_df.if_broot_bytes == 0);
 103			}
 104#endif
 105			iip->ili_format.ilf_fields &= ~XFS_ILOG_DBROOT;
 106		}
 107		break;
 108
 109	case XFS_DINODE_FMT_LOCAL:
 110		iip->ili_format.ilf_fields &=
 111			~(XFS_ILOG_DEXT | XFS_ILOG_DBROOT |
 112			  XFS_ILOG_DEV | XFS_ILOG_UUID);
 113		if ((iip->ili_format.ilf_fields & XFS_ILOG_DDATA) &&
 114		    (ip->i_df.if_bytes > 0)) {
 115			ASSERT(ip->i_df.if_u1.if_data != NULL);
 116			ASSERT(ip->i_d.di_size > 0);
 117			nvecs++;
 118		} else {
 119			iip->ili_format.ilf_fields &= ~XFS_ILOG_DDATA;
 120		}
 121		break;
 122
 123	case XFS_DINODE_FMT_DEV:
 124		iip->ili_format.ilf_fields &=
 125			~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
 126			  XFS_ILOG_DEXT | XFS_ILOG_UUID);
 127		break;
 128
 129	case XFS_DINODE_FMT_UUID:
 130		iip->ili_format.ilf_fields &=
 131			~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
 132			  XFS_ILOG_DEXT | XFS_ILOG_DEV);
 133		break;
 134
 135	default:
 136		ASSERT(0);
 137		break;
 138	}
 
 139
 140	/*
 141	 * If there are no attributes associated with this file,
 142	 * then there cannot be anything more to log.
 143	 * Clear all attribute-related log flags.
 144	 */
 145	if (!XFS_IFORK_Q(ip)) {
 146		iip->ili_format.ilf_fields &=
 147			~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT);
 148		return nvecs;
 149	}
 150
 151	/*
 152	 * Log any necessary attribute data.
 153	 */
 154	switch (ip->i_d.di_aformat) {
 155	case XFS_DINODE_FMT_EXTENTS:
 156		iip->ili_format.ilf_fields &=
 157			~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT);
 158		if ((iip->ili_format.ilf_fields & XFS_ILOG_AEXT) &&
 159		    (ip->i_d.di_anextents > 0) &&
 160		    (ip->i_afp->if_bytes > 0)) {
 161			ASSERT(ip->i_afp->if_u1.if_extents != NULL);
 162			nvecs++;
 163		} else {
 164			iip->ili_format.ilf_fields &= ~XFS_ILOG_AEXT;
 165		}
 166		break;
 167
 168	case XFS_DINODE_FMT_BTREE:
 169		iip->ili_format.ilf_fields &=
 170			~(XFS_ILOG_ADATA | XFS_ILOG_AEXT);
 171		if ((iip->ili_format.ilf_fields & XFS_ILOG_ABROOT) &&
 172		    (ip->i_afp->if_broot_bytes > 0)) {
 173			ASSERT(ip->i_afp->if_broot != NULL);
 174			nvecs++;
 175		} else {
 176			iip->ili_format.ilf_fields &= ~XFS_ILOG_ABROOT;
 177		}
 178		break;
 179
 180	case XFS_DINODE_FMT_LOCAL:
 181		iip->ili_format.ilf_fields &=
 182			~(XFS_ILOG_AEXT | XFS_ILOG_ABROOT);
 183		if ((iip->ili_format.ilf_fields & XFS_ILOG_ADATA) &&
 184		    (ip->i_afp->if_bytes > 0)) {
 185			ASSERT(ip->i_afp->if_u1.if_data != NULL);
 186			nvecs++;
 187		} else {
 188			iip->ili_format.ilf_fields &= ~XFS_ILOG_ADATA;
 189		}
 190		break;
 191
 192	default:
 193		ASSERT(0);
 194		break;
 195	}
 196
 197	return nvecs;
 198}
 199
 200/*
 201 * xfs_inode_item_format_extents - convert in-core extents to on-disk form
 202 *
 203 * For either the data or attr fork in extent format, we need to endian convert
 204 * the in-core extent as we place them into the on-disk inode. In this case, we
 205 * need to do this conversion before we write the extents into the log. Because
 206 * we don't have the disk inode to write into here, we allocate a buffer and
 207 * format the extents into it via xfs_iextents_copy(). We free the buffer in
 208 * the unlock routine after the copy for the log has been made.
 209 *
 210 * In the case of the data fork, the in-core and on-disk fork sizes can be
 211 * different due to delayed allocation extents. We only log on-disk extents
 212 * here, so always use the physical fork size to determine the size of the
 213 * buffer we need to allocate.
 214 */
 215STATIC void
 216xfs_inode_item_format_extents(
 217	struct xfs_inode	*ip,
 218	struct xfs_log_iovec	*vecp,
 219	int			whichfork,
 220	int			type)
 221{
 222	xfs_bmbt_rec_t		*ext_buffer;
 223
 224	ext_buffer = kmem_alloc(XFS_IFORK_SIZE(ip, whichfork), KM_SLEEP);
 225	if (whichfork == XFS_DATA_FORK)
 226		ip->i_itemp->ili_extents_buf = ext_buffer;
 227	else
 228		ip->i_itemp->ili_aextents_buf = ext_buffer;
 229
 230	vecp->i_addr = ext_buffer;
 231	vecp->i_len = xfs_iextents_copy(ip, ext_buffer, whichfork);
 232	vecp->i_type = type;
 233}
 234
 235/*
 236 * This is called to fill in the vector of log iovecs for the
 237 * given inode log item.  It fills the first item with an inode
 238 * log format structure, the second with the on-disk inode structure,
 239 * and a possible third and/or fourth with the inode data/extents/b-tree
 240 * root and inode attributes data/extents/b-tree root.
 241 */
 242STATIC void
 243xfs_inode_item_format(
 244	struct xfs_log_item	*lip,
 245	struct xfs_log_iovec	*vecp)
 
 
 246{
 247	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
 248	struct xfs_inode	*ip = iip->ili_inode;
 249	uint			nvecs;
 250	size_t			data_bytes;
 251	xfs_mount_t		*mp;
 252
 253	vecp->i_addr = &iip->ili_format;
 254	vecp->i_len  = sizeof(xfs_inode_log_format_t);
 255	vecp->i_type = XLOG_REG_TYPE_IFORMAT;
 256	vecp++;
 257	nvecs	     = 1;
 258
 259	/*
 260	 * Clear i_update_core if the timestamps (or any other
 261	 * non-transactional modification) need flushing/logging
 262	 * and we're about to log them with the rest of the core.
 263	 *
 264	 * This is the same logic as xfs_iflush() but this code can't
 265	 * run at the same time as xfs_iflush because we're in commit
 266	 * processing here and so we have the inode lock held in
 267	 * exclusive mode.  Although it doesn't really matter
 268	 * for the timestamps if both routines were to grab the
 269	 * timestamps or not.  That would be ok.
 270	 *
 271	 * We clear i_update_core before copying out the data.
 272	 * This is for coordination with our timestamp updates
 273	 * that don't hold the inode lock. They will always
 274	 * update the timestamps BEFORE setting i_update_core,
 275	 * so if we clear i_update_core after they set it we
 276	 * are guaranteed to see their updates to the timestamps
 277	 * either here.  Likewise, if they set it after we clear it
 278	 * here, we'll see it either on the next commit of this
 279	 * inode or the next time the inode gets flushed via
 280	 * xfs_iflush().  This depends on strongly ordered memory
 281	 * semantics, but we have that.  We use the SYNCHRONIZE
 282	 * macro to make sure that the compiler does not reorder
 283	 * the i_update_core access below the data copy below.
 284	 */
 285	if (ip->i_update_core)  {
 286		ip->i_update_core = 0;
 287		SYNCHRONIZE();
 288	}
 289
 290	/*
 291	 * Make sure to get the latest timestamps from the Linux inode.
 292	 */
 293	xfs_synchronize_times(ip);
 294
 295	vecp->i_addr = &ip->i_d;
 296	vecp->i_len  = sizeof(struct xfs_icdinode);
 297	vecp->i_type = XLOG_REG_TYPE_ICORE;
 298	vecp++;
 299	nvecs++;
 300	iip->ili_format.ilf_fields |= XFS_ILOG_CORE;
 301
 302	/*
 303	 * If this is really an old format inode, then we need to
 304	 * log it as such.  This means that we have to copy the link
 305	 * count from the new field to the old.  We don't have to worry
 306	 * about the new fields, because nothing trusts them as long as
 307	 * the old inode version number is there.  If the superblock already
 308	 * has a new version number, then we don't bother converting back.
 309	 */
 310	mp = ip->i_mount;
 311	ASSERT(ip->i_d.di_version == 1 || xfs_sb_version_hasnlink(&mp->m_sb));
 312	if (ip->i_d.di_version == 1) {
 313		if (!xfs_sb_version_hasnlink(&mp->m_sb)) {
 314			/*
 315			 * Convert it back.
 316			 */
 317			ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
 318			ip->i_d.di_onlink = ip->i_d.di_nlink;
 319		} else {
 320			/*
 321			 * The superblock version has already been bumped,
 322			 * so just make the conversion to the new inode
 323			 * format permanent.
 324			 */
 325			ip->i_d.di_version = 2;
 326			ip->i_d.di_onlink = 0;
 327			memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
 328		}
 329	}
 330
 331	switch (ip->i_d.di_format) {
 332	case XFS_DINODE_FMT_EXTENTS:
 333		ASSERT(!(iip->ili_format.ilf_fields &
 334			 (XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
 335			  XFS_ILOG_DEV | XFS_ILOG_UUID)));
 336		if (iip->ili_format.ilf_fields & XFS_ILOG_DEXT) {
 337			ASSERT(ip->i_df.if_bytes > 0);
 338			ASSERT(ip->i_df.if_u1.if_extents != NULL);
 339			ASSERT(ip->i_d.di_nextents > 0);
 340			ASSERT(iip->ili_extents_buf == NULL);
 341			ASSERT((ip->i_df.if_bytes /
 342				(uint)sizeof(xfs_bmbt_rec_t)) > 0);
 343#ifdef XFS_NATIVE_HOST
 344                       if (ip->i_d.di_nextents == ip->i_df.if_bytes /
 345                                               (uint)sizeof(xfs_bmbt_rec_t)) {
 346				/*
 347				 * There are no delayed allocation
 348				 * extents, so just point to the
 349				 * real extents array.
 350				 */
 351				vecp->i_addr = ip->i_df.if_u1.if_extents;
 352				vecp->i_len = ip->i_df.if_bytes;
 353				vecp->i_type = XLOG_REG_TYPE_IEXT;
 354			} else
 355#endif
 356			{
 357				xfs_inode_item_format_extents(ip, vecp,
 358					XFS_DATA_FORK, XLOG_REG_TYPE_IEXT);
 359			}
 360			ASSERT(vecp->i_len <= ip->i_df.if_bytes);
 361			iip->ili_format.ilf_dsize = vecp->i_len;
 362			vecp++;
 363			nvecs++;
 364		}
 365		break;
 366
 367	case XFS_DINODE_FMT_BTREE:
 368		ASSERT(!(iip->ili_format.ilf_fields &
 369			 (XFS_ILOG_DDATA | XFS_ILOG_DEXT |
 370			  XFS_ILOG_DEV | XFS_ILOG_UUID)));
 371		if (iip->ili_format.ilf_fields & XFS_ILOG_DBROOT) {
 372			ASSERT(ip->i_df.if_broot_bytes > 0);
 373			ASSERT(ip->i_df.if_broot != NULL);
 374			vecp->i_addr = ip->i_df.if_broot;
 375			vecp->i_len = ip->i_df.if_broot_bytes;
 376			vecp->i_type = XLOG_REG_TYPE_IBROOT;
 377			vecp++;
 378			nvecs++;
 379			iip->ili_format.ilf_dsize = ip->i_df.if_broot_bytes;
 
 
 
 380		}
 381		break;
 382
 383	case XFS_DINODE_FMT_LOCAL:
 384		ASSERT(!(iip->ili_format.ilf_fields &
 385			 (XFS_ILOG_DBROOT | XFS_ILOG_DEXT |
 386			  XFS_ILOG_DEV | XFS_ILOG_UUID)));
 387		if (iip->ili_format.ilf_fields & XFS_ILOG_DDATA) {
 388			ASSERT(ip->i_df.if_bytes > 0);
 389			ASSERT(ip->i_df.if_u1.if_data != NULL);
 390			ASSERT(ip->i_d.di_size > 0);
 391
 392			vecp->i_addr = ip->i_df.if_u1.if_data;
 393			/*
 394			 * Round i_bytes up to a word boundary.
 395			 * The underlying memory is guaranteed to
 396			 * to be there by xfs_idata_realloc().
 397			 */
 398			data_bytes = roundup(ip->i_df.if_bytes, 4);
 399			ASSERT((ip->i_df.if_real_bytes == 0) ||
 400			       (ip->i_df.if_real_bytes == data_bytes));
 401			vecp->i_len = (int)data_bytes;
 402			vecp->i_type = XLOG_REG_TYPE_ILOCAL;
 403			vecp++;
 404			nvecs++;
 405			iip->ili_format.ilf_dsize = (unsigned)data_bytes;
 
 406		}
 407		break;
 408
 409	case XFS_DINODE_FMT_DEV:
 410		ASSERT(!(iip->ili_format.ilf_fields &
 411			 (XFS_ILOG_DBROOT | XFS_ILOG_DEXT |
 412			  XFS_ILOG_DDATA | XFS_ILOG_UUID)));
 413		if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) {
 414			iip->ili_format.ilf_u.ilfu_rdev =
 415				ip->i_df.if_u2.if_rdev;
 416		}
 417		break;
 418
 419	case XFS_DINODE_FMT_UUID:
 420		ASSERT(!(iip->ili_format.ilf_fields &
 421			 (XFS_ILOG_DBROOT | XFS_ILOG_DEXT |
 422			  XFS_ILOG_DDATA | XFS_ILOG_DEV)));
 423		if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) {
 424			iip->ili_format.ilf_u.ilfu_uuid =
 425				ip->i_df.if_u2.if_uuid;
 426		}
 427		break;
 428
 429	default:
 430		ASSERT(0);
 431		break;
 432	}
 
 433
 434	/*
 435	 * If there are no attributes associated with the file,
 436	 * then we're done.
 437	 * Assert that no attribute-related log flags are set.
 438	 */
 439	if (!XFS_IFORK_Q(ip)) {
 440		ASSERT(nvecs == lip->li_desc->lid_size);
 441		iip->ili_format.ilf_size = nvecs;
 442		ASSERT(!(iip->ili_format.ilf_fields &
 443			 (XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT)));
 444		return;
 445	}
 446
 447	switch (ip->i_d.di_aformat) {
 448	case XFS_DINODE_FMT_EXTENTS:
 449		ASSERT(!(iip->ili_format.ilf_fields &
 450			 (XFS_ILOG_ADATA | XFS_ILOG_ABROOT)));
 451		if (iip->ili_format.ilf_fields & XFS_ILOG_AEXT) {
 452#ifdef DEBUG
 453			int nrecs = ip->i_afp->if_bytes /
 454				(uint)sizeof(xfs_bmbt_rec_t);
 455			ASSERT(nrecs > 0);
 456			ASSERT(nrecs == ip->i_d.di_anextents);
 457			ASSERT(ip->i_afp->if_bytes > 0);
 458			ASSERT(ip->i_afp->if_u1.if_extents != NULL);
 459			ASSERT(ip->i_d.di_anextents > 0);
 460#endif
 461#ifdef XFS_NATIVE_HOST
 462			/*
 463			 * There are not delayed allocation extents
 464			 * for attributes, so just point at the array.
 465			 */
 466			vecp->i_addr = ip->i_afp->if_u1.if_extents;
 467			vecp->i_len = ip->i_afp->if_bytes;
 468			vecp->i_type = XLOG_REG_TYPE_IATTR_EXT;
 469#else
 470			ASSERT(iip->ili_aextents_buf == NULL);
 471			xfs_inode_item_format_extents(ip, vecp,
 472					XFS_ATTR_FORK, XLOG_REG_TYPE_IATTR_EXT);
 473#endif
 474			iip->ili_format.ilf_asize = vecp->i_len;
 475			vecp++;
 476			nvecs++;
 477		}
 478		break;
 479
 480	case XFS_DINODE_FMT_BTREE:
 481		ASSERT(!(iip->ili_format.ilf_fields &
 482			 (XFS_ILOG_ADATA | XFS_ILOG_AEXT)));
 483		if (iip->ili_format.ilf_fields & XFS_ILOG_ABROOT) {
 484			ASSERT(ip->i_afp->if_broot_bytes > 0);
 
 485			ASSERT(ip->i_afp->if_broot != NULL);
 486			vecp->i_addr = ip->i_afp->if_broot;
 487			vecp->i_len = ip->i_afp->if_broot_bytes;
 488			vecp->i_type = XLOG_REG_TYPE_IATTR_BROOT;
 489			vecp++;
 490			nvecs++;
 491			iip->ili_format.ilf_asize = ip->i_afp->if_broot_bytes;
 
 
 492		}
 493		break;
 494
 495	case XFS_DINODE_FMT_LOCAL:
 496		ASSERT(!(iip->ili_format.ilf_fields &
 497			 (XFS_ILOG_ABROOT | XFS_ILOG_AEXT)));
 498		if (iip->ili_format.ilf_fields & XFS_ILOG_ADATA) {
 499			ASSERT(ip->i_afp->if_bytes > 0);
 500			ASSERT(ip->i_afp->if_u1.if_data != NULL);
 501
 502			vecp->i_addr = ip->i_afp->if_u1.if_data;
 
 503			/*
 504			 * Round i_bytes up to a word boundary.
 505			 * The underlying memory is guaranteed to
 506			 * to be there by xfs_idata_realloc().
 507			 */
 508			data_bytes = roundup(ip->i_afp->if_bytes, 4);
 509			ASSERT((ip->i_afp->if_real_bytes == 0) ||
 510			       (ip->i_afp->if_real_bytes == data_bytes));
 511			vecp->i_len = (int)data_bytes;
 512			vecp->i_type = XLOG_REG_TYPE_IATTR_LOCAL;
 513			vecp++;
 514			nvecs++;
 515			iip->ili_format.ilf_asize = (unsigned)data_bytes;
 
 516		}
 517		break;
 518
 519	default:
 520		ASSERT(0);
 521		break;
 522	}
 
 523
 524	ASSERT(nvecs == lip->li_desc->lid_size);
 525	iip->ili_format.ilf_size = nvecs;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 526}
 527
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 528
 529/*
 530 * This is called to pin the inode associated with the inode log
 531 * item in memory so it cannot be written out.
 532 */
 533STATIC void
 534xfs_inode_item_pin(
 535	struct xfs_log_item	*lip)
 536{
 537	struct xfs_inode	*ip = INODE_ITEM(lip)->ili_inode;
 538
 539	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
 540
 541	trace_xfs_inode_pin(ip, _RET_IP_);
 542	atomic_inc(&ip->i_pincount);
 543}
 544
 545
 546/*
 547 * This is called to unpin the inode associated with the inode log
 548 * item which was previously pinned with a call to xfs_inode_item_pin().
 549 *
 550 * Also wake up anyone in xfs_iunpin_wait() if the count goes to 0.
 551 */
 552STATIC void
 553xfs_inode_item_unpin(
 554	struct xfs_log_item	*lip,
 555	int			remove)
 556{
 557	struct xfs_inode	*ip = INODE_ITEM(lip)->ili_inode;
 558
 559	trace_xfs_inode_unpin(ip, _RET_IP_);
 560	ASSERT(atomic_read(&ip->i_pincount) > 0);
 561	if (atomic_dec_and_test(&ip->i_pincount))
 562		wake_up(&ip->i_ipin_wait);
 563}
 564
 565/*
 566 * This is called to attempt to lock the inode associated with this
 567 * inode log item, in preparation for the push routine which does the actual
 568 * iflush.  Don't sleep on the inode lock or the flush lock.
 569 *
 570 * If the flush lock is already held, indicating that the inode has
 571 * been or is in the process of being flushed, then (ideally) we'd like to
 572 * see if the inode's buffer is still incore, and if so give it a nudge.
 573 * We delay doing so until the pushbuf routine, though, to avoid holding
 574 * the AIL lock across a call to the blackhole which is the buffer cache.
 575 * Also we don't want to sleep in any device strategy routines, which can happen
 576 * if we do the subsequent bawrite in here.
 577 */
 
 
 
 
 
 
 
 
 
 578STATIC uint
 579xfs_inode_item_trylock(
 580	struct xfs_log_item	*lip)
 
 
 
 581{
 582	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
 583	struct xfs_inode	*ip = iip->ili_inode;
 
 
 
 584
 585	if (xfs_ipincount(ip) > 0)
 586		return XFS_ITEM_PINNED;
 587
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 588	if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED))
 589		return XFS_ITEM_LOCKED;
 590
 591	if (!xfs_iflock_nowait(ip)) {
 592		/*
 593		 * inode has already been flushed to the backing buffer,
 594		 * leave it locked in shared mode, pushbuf routine will
 595		 * unlock it.
 596		 */
 597		return XFS_ITEM_PUSHBUF;
 598	}
 599
 600	/* Stale items should force out the iclog */
 
 
 601	if (ip->i_flags & XFS_ISTALE) {
 602		xfs_ifunlock(ip);
 603		/*
 604		 * we hold the AIL lock - notify the unlock routine of this
 605		 * so it doesn't try to get the lock again.
 606		 */
 607		xfs_iunlock(ip, XFS_ILOCK_SHARED|XFS_IUNLOCK_NONOTIFY);
 608		return XFS_ITEM_PINNED;
 609	}
 610
 611#ifdef DEBUG
 612	if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
 613		ASSERT(iip->ili_format.ilf_fields != 0);
 614		ASSERT(iip->ili_logged == 0);
 615		ASSERT(lip->li_flags & XFS_LI_IN_AIL);
 
 
 
 616	}
 617#endif
 618	return XFS_ITEM_SUCCESS;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 619}
 620
 621/*
 622 * Unlock the inode associated with the inode log item.
 623 * Clear the fields of the inode and inode log item that
 624 * are specific to the current transaction.  If the
 625 * hold flags is set, do not unlock the inode.
 626 */
 627STATIC void
 628xfs_inode_item_unlock(
 629	struct xfs_log_item	*lip)
 630{
 631	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
 632	struct xfs_inode	*ip = iip->ili_inode;
 633	unsigned short		lock_flags;
 634
 635	ASSERT(ip->i_itemp != NULL);
 636	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
 637
 638	/*
 639	 * If the inode needed a separate buffer with which to log
 640	 * its extents, then free it now.
 641	 */
 642	if (iip->ili_extents_buf != NULL) {
 643		ASSERT(ip->i_d.di_format == XFS_DINODE_FMT_EXTENTS);
 644		ASSERT(ip->i_d.di_nextents > 0);
 645		ASSERT(iip->ili_format.ilf_fields & XFS_ILOG_DEXT);
 646		ASSERT(ip->i_df.if_bytes > 0);
 647		kmem_free(iip->ili_extents_buf);
 648		iip->ili_extents_buf = NULL;
 649	}
 650	if (iip->ili_aextents_buf != NULL) {
 651		ASSERT(ip->i_d.di_aformat == XFS_DINODE_FMT_EXTENTS);
 652		ASSERT(ip->i_d.di_anextents > 0);
 653		ASSERT(iip->ili_format.ilf_fields & XFS_ILOG_AEXT);
 654		ASSERT(ip->i_afp->if_bytes > 0);
 655		kmem_free(iip->ili_aextents_buf);
 656		iip->ili_aextents_buf = NULL;
 657	}
 658
 659	lock_flags = iip->ili_lock_flags;
 660	iip->ili_lock_flags = 0;
 661	if (lock_flags) {
 662		xfs_iunlock(ip, lock_flags);
 663		IRELE(ip);
 664	}
 665}
 666
 667/*
 668 * This is called to find out where the oldest active copy of the inode log
 669 * item in the on disk log resides now that the last log write of it completed
 670 * at the given lsn.  Since we always re-log all dirty data in an inode, the
 671 * latest copy in the on disk log is the only one that matters.  Therefore,
 672 * simply return the given lsn.
 673 *
 674 * If the inode has been marked stale because the cluster is being freed, we
 675 * don't want to (re-)insert this inode into the AIL. There is a race condition
 676 * where the cluster buffer may be unpinned before the inode is inserted into
 677 * the AIL during transaction committed processing. If the buffer is unpinned
 678 * before the inode item has been committed and inserted, then it is possible
 679 * for the buffer to be written and IO completes before the inode is inserted
 680 * into the AIL. In that case, we'd be inserting a clean, stale inode into the
 681 * AIL which will never get removed. It will, however, get reclaimed which
 682 * triggers an assert in xfs_inode_free() complaining about freein an inode
 683 * still in the AIL.
 684 *
 685 * To avoid this, just unpin the inode directly and return a LSN of -1 so the
 686 * transaction committed code knows that it does not need to do any further
 687 * processing on the item.
 688 */
 689STATIC xfs_lsn_t
 690xfs_inode_item_committed(
 691	struct xfs_log_item	*lip,
 692	xfs_lsn_t		lsn)
 693{
 694	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
 695	struct xfs_inode	*ip = iip->ili_inode;
 696
 697	if (xfs_iflags_test(ip, XFS_ISTALE)) {
 698		xfs_inode_item_unpin(lip, 0);
 699		return -1;
 700	}
 701	return lsn;
 702}
 703
 704/*
 705 * This gets called by xfs_trans_push_ail(), when IOP_TRYLOCK
 706 * failed to get the inode flush lock but did get the inode locked SHARED.
 707 * Here we're trying to see if the inode buffer is incore, and if so whether it's
 708 * marked delayed write. If that's the case, we'll promote it and that will
 709 * allow the caller to write the buffer by triggering the xfsbufd to run.
 710 */
 711STATIC bool
 712xfs_inode_item_pushbuf(
 713	struct xfs_log_item	*lip)
 714{
 715	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
 716	struct xfs_inode	*ip = iip->ili_inode;
 717	struct xfs_buf		*bp;
 718	bool			ret = true;
 719
 720	ASSERT(xfs_isilocked(ip, XFS_ILOCK_SHARED));
 721
 722	/*
 723	 * If a flush is not in progress anymore, chances are that the
 724	 * inode was taken off the AIL. So, just get out.
 725	 */
 726	if (completion_done(&ip->i_flush) ||
 727	    !(lip->li_flags & XFS_LI_IN_AIL)) {
 728		xfs_iunlock(ip, XFS_ILOCK_SHARED);
 729		return true;
 730	}
 731
 732	bp = xfs_incore(ip->i_mount->m_ddev_targp, iip->ili_format.ilf_blkno,
 733			iip->ili_format.ilf_len, XBF_TRYLOCK);
 734
 735	xfs_iunlock(ip, XFS_ILOCK_SHARED);
 736	if (!bp)
 737		return true;
 738	if (XFS_BUF_ISDELAYWRITE(bp))
 739		xfs_buf_delwri_promote(bp);
 740	if (xfs_buf_ispinned(bp))
 741		ret = false;
 742	xfs_buf_relse(bp);
 743	return ret;
 744}
 745
 746/*
 747 * This is called to asynchronously write the inode associated with this
 748 * inode log item out to disk. The inode will already have been locked by
 749 * a successful call to xfs_inode_item_trylock().
 750 */
 751STATIC void
 752xfs_inode_item_push(
 753	struct xfs_log_item	*lip)
 754{
 755	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
 756	struct xfs_inode	*ip = iip->ili_inode;
 757
 758	ASSERT(xfs_isilocked(ip, XFS_ILOCK_SHARED));
 759	ASSERT(!completion_done(&ip->i_flush));
 760
 761	/*
 762	 * Since we were able to lock the inode's flush lock and
 763	 * we found it on the AIL, the inode must be dirty.  This
 764	 * is because the inode is removed from the AIL while still
 765	 * holding the flush lock in xfs_iflush_done().  Thus, if
 766	 * we found it in the AIL and were able to obtain the flush
 767	 * lock without sleeping, then there must not have been
 768	 * anyone in the process of flushing the inode.
 769	 */
 770	ASSERT(XFS_FORCED_SHUTDOWN(ip->i_mount) ||
 771	       iip->ili_format.ilf_fields != 0);
 772
 773	/*
 774	 * Push the inode to it's backing buffer. This will not remove the
 775	 * inode from the AIL - a further push will be required to trigger a
 776	 * buffer push. However, this allows all the dirty inodes to be pushed
 777	 * to the buffer before it is pushed to disk. The buffer IO completion
 778	 * will pull the inode from the AIL, mark it clean and unlock the flush
 779	 * lock.
 780	 */
 781	(void) xfs_iflush(ip, SYNC_TRYLOCK);
 782	xfs_iunlock(ip, XFS_ILOCK_SHARED);
 783}
 784
 785/*
 786 * XXX rcc - this one really has to do something.  Probably needs
 787 * to stamp in a new field in the incore inode.
 788 */
 789STATIC void
 790xfs_inode_item_committing(
 791	struct xfs_log_item	*lip,
 792	xfs_lsn_t		lsn)
 793{
 794	INODE_ITEM(lip)->ili_last_lsn = lsn;
 
 795}
 796
 797/*
 798 * This is the ops vector shared by all buf log items.
 799 */
 800static struct xfs_item_ops xfs_inode_item_ops = {
 801	.iop_size	= xfs_inode_item_size,
 802	.iop_format	= xfs_inode_item_format,
 803	.iop_pin	= xfs_inode_item_pin,
 804	.iop_unpin	= xfs_inode_item_unpin,
 805	.iop_trylock	= xfs_inode_item_trylock,
 806	.iop_unlock	= xfs_inode_item_unlock,
 807	.iop_committed	= xfs_inode_item_committed,
 808	.iop_push	= xfs_inode_item_push,
 809	.iop_pushbuf	= xfs_inode_item_pushbuf,
 810	.iop_committing = xfs_inode_item_committing
 811};
 812
 813
 814/*
 815 * Initialize the inode log item for a newly allocated (in-core) inode.
 816 */
 817void
 818xfs_inode_item_init(
 819	struct xfs_inode	*ip,
 820	struct xfs_mount	*mp)
 821{
 822	struct xfs_inode_log_item *iip;
 823
 824	ASSERT(ip->i_itemp == NULL);
 825	iip = ip->i_itemp = kmem_zone_zalloc(xfs_ili_zone, KM_SLEEP);
 826
 827	iip->ili_inode = ip;
 828	xfs_log_item_init(mp, &iip->ili_item, XFS_LI_INODE,
 829						&xfs_inode_item_ops);
 830	iip->ili_format.ilf_type = XFS_LI_INODE;
 831	iip->ili_format.ilf_ino = ip->i_ino;
 832	iip->ili_format.ilf_blkno = ip->i_imap.im_blkno;
 833	iip->ili_format.ilf_len = ip->i_imap.im_len;
 834	iip->ili_format.ilf_boffset = ip->i_imap.im_boffset;
 835}
 836
 837/*
 838 * Free the inode log item and any memory hanging off of it.
 839 */
 840void
 841xfs_inode_item_destroy(
 842	xfs_inode_t	*ip)
 843{
 844#ifdef XFS_TRANS_DEBUG
 845	if (ip->i_itemp->ili_root_size != 0) {
 846		kmem_free(ip->i_itemp->ili_orig_root);
 847	}
 848#endif
 849	kmem_zone_free(xfs_ili_zone, ip->i_itemp);
 850}
 851
 852
 853/*
 854 * This is the inode flushing I/O completion routine.  It is called
 855 * from interrupt level when the buffer containing the inode is
 856 * flushed to disk.  It is responsible for removing the inode item
 857 * from the AIL if it has not been re-logged, and unlocking the inode's
 858 * flush lock.
 859 *
 860 * To reduce AIL lock traffic as much as possible, we scan the buffer log item
 861 * list for other inodes that will run this function. We remove them from the
 862 * buffer list so we can process all the inode IO completions in one AIL lock
 863 * traversal.
 864 */
 865void
 866xfs_iflush_done(
 867	struct xfs_buf		*bp,
 868	struct xfs_log_item	*lip)
 869{
 870	struct xfs_inode_log_item *iip;
 871	struct xfs_log_item	*blip;
 872	struct xfs_log_item	*next;
 873	struct xfs_log_item	*prev;
 874	struct xfs_ail		*ailp = lip->li_ailp;
 875	int			need_ail = 0;
 
 876
 877	/*
 878	 * Scan the buffer IO completions for other inodes being completed and
 879	 * attach them to the current inode log item.
 880	 */
 881	blip = bp->b_fspriv;
 882	prev = NULL;
 883	while (blip != NULL) {
 884		if (lip->li_cb != xfs_iflush_done) {
 885			prev = blip;
 886			blip = blip->li_bio_list;
 887			continue;
 888		}
 889
 890		/* remove from list */
 891		next = blip->li_bio_list;
 892		if (!prev) {
 893			bp->b_fspriv = next;
 894		} else {
 895			prev->li_bio_list = next;
 896		}
 897
 898		/* add to current list */
 899		blip->li_bio_list = lip->li_bio_list;
 900		lip->li_bio_list = blip;
 901
 
 902		/*
 903		 * while we have the item, do the unlocked check for needing
 904		 * the AIL lock.
 905		 */
 906		iip = INODE_ITEM(blip);
 907		if (iip->ili_logged && blip->li_lsn == iip->ili_flush_lsn)
 
 908			need_ail++;
 909
 910		blip = next;
 911	}
 912
 913	/* make sure we capture the state of the initial inode. */
 914	iip = INODE_ITEM(lip);
 915	if (iip->ili_logged && lip->li_lsn == iip->ili_flush_lsn)
 
 916		need_ail++;
 917
 918	/*
 919	 * We only want to pull the item from the AIL if it is
 920	 * actually there and its location in the log has not
 921	 * changed since we started the flush.  Thus, we only bother
 922	 * if the ili_logged flag is set and the inode's lsn has not
 923	 * changed.  First we check the lsn outside
 924	 * the lock since it's cheaper, and then we recheck while
 925	 * holding the lock before removing the inode from the AIL.
 926	 */
 927	if (need_ail) {
 928		struct xfs_log_item *log_items[need_ail];
 929		int i = 0;
 930		spin_lock(&ailp->xa_lock);
 931		for (blip = lip; blip; blip = blip->li_bio_list) {
 932			iip = INODE_ITEM(blip);
 933			if (iip->ili_logged &&
 934			    blip->li_lsn == iip->ili_flush_lsn) {
 935				log_items[i++] = blip;
 
 
 936			}
 937			ASSERT(i <= need_ail);
 938		}
 939		/* xfs_trans_ail_delete_bulk() drops the AIL lock. */
 940		xfs_trans_ail_delete_bulk(ailp, log_items, i);
 941	}
 942
 
 
 
 
 
 
 
 
 
 
 
 943
 944	/*
 945	 * clean up and unlock the flush lock now we are done. We can clear the
 946	 * ili_last_fields bits now that we know that the data corresponding to
 947	 * them is safely on disk.
 948	 */
 949	for (blip = lip; blip; blip = next) {
 950		next = blip->li_bio_list;
 951		blip->li_bio_list = NULL;
 952
 953		iip = INODE_ITEM(blip);
 954		iip->ili_logged = 0;
 955		iip->ili_last_fields = 0;
 956		xfs_ifunlock(iip->ili_inode);
 957	}
 
 958}
 959
 960/*
 961 * This is the inode flushing abort routine.  It is called
 962 * from xfs_iflush when the filesystem is shutting down to clean
 963 * up the inode state.
 964 * It is responsible for removing the inode item
 965 * from the AIL if it has not been re-logged, and unlocking the inode's
 966 * flush lock.
 967 */
 968void
 969xfs_iflush_abort(
 970	xfs_inode_t		*ip)
 
 971{
 972	xfs_inode_log_item_t	*iip = ip->i_itemp;
 973
 974	if (iip) {
 975		struct xfs_ail	*ailp = iip->ili_item.li_ailp;
 976		if (iip->ili_item.li_flags & XFS_LI_IN_AIL) {
 977			spin_lock(&ailp->xa_lock);
 978			if (iip->ili_item.li_flags & XFS_LI_IN_AIL) {
 979				/* xfs_trans_ail_delete() drops the AIL lock. */
 980				xfs_trans_ail_delete(ailp, (xfs_log_item_t *)iip);
 981			} else
 982				spin_unlock(&ailp->xa_lock);
 983		}
 984		iip->ili_logged = 0;
 985		/*
 986		 * Clear the ili_last_fields bits now that we know that the
 987		 * data corresponding to them is safely on disk.
 988		 */
 989		iip->ili_last_fields = 0;
 990		/*
 991		 * Clear the inode logging fields so no more flushes are
 992		 * attempted.
 993		 */
 994		iip->ili_format.ilf_fields = 0;
 
 995	}
 996	/*
 997	 * Release the inode's flush lock since we're done with it.
 998	 */
 999	xfs_ifunlock(ip);
1000}
1001
1002void
1003xfs_istale_done(
1004	struct xfs_buf		*bp,
1005	struct xfs_log_item	*lip)
1006{
1007	xfs_iflush_abort(INODE_ITEM(lip)->ili_inode);
1008}
1009
1010/*
1011 * convert an xfs_inode_log_format struct from either 32 or 64 bit versions
1012 * (which can have different field alignments) to the native version
1013 */
1014int
1015xfs_inode_item_format_convert(
1016	xfs_log_iovec_t		*buf,
1017	xfs_inode_log_format_t	*in_f)
1018{
1019	if (buf->i_len == sizeof(xfs_inode_log_format_32_t)) {
1020		xfs_inode_log_format_32_t *in_f32 = buf->i_addr;
1021
1022		in_f->ilf_type = in_f32->ilf_type;
1023		in_f->ilf_size = in_f32->ilf_size;
1024		in_f->ilf_fields = in_f32->ilf_fields;
1025		in_f->ilf_asize = in_f32->ilf_asize;
1026		in_f->ilf_dsize = in_f32->ilf_dsize;
1027		in_f->ilf_ino = in_f32->ilf_ino;
1028		/* copy biggest field of ilf_u */
1029		memcpy(in_f->ilf_u.ilfu_uuid.__u_bits,
1030		       in_f32->ilf_u.ilfu_uuid.__u_bits,
1031		       sizeof(uuid_t));
1032		in_f->ilf_blkno = in_f32->ilf_blkno;
1033		in_f->ilf_len = in_f32->ilf_len;
1034		in_f->ilf_boffset = in_f32->ilf_boffset;
1035		return 0;
1036	} else if (buf->i_len == sizeof(xfs_inode_log_format_64_t)){
1037		xfs_inode_log_format_64_t *in_f64 = buf->i_addr;
1038
1039		in_f->ilf_type = in_f64->ilf_type;
1040		in_f->ilf_size = in_f64->ilf_size;
1041		in_f->ilf_fields = in_f64->ilf_fields;
1042		in_f->ilf_asize = in_f64->ilf_asize;
1043		in_f->ilf_dsize = in_f64->ilf_dsize;
1044		in_f->ilf_ino = in_f64->ilf_ino;
1045		/* copy biggest field of ilf_u */
1046		memcpy(in_f->ilf_u.ilfu_uuid.__u_bits,
1047		       in_f64->ilf_u.ilfu_uuid.__u_bits,
1048		       sizeof(uuid_t));
1049		in_f->ilf_blkno = in_f64->ilf_blkno;
1050		in_f->ilf_len = in_f64->ilf_len;
1051		in_f->ilf_boffset = in_f64->ilf_boffset;
1052		return 0;
1053	}
1054	return EFSCORRUPTED;
1055}
v5.4
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
  4 * All Rights Reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
  5 */
  6#include "xfs.h"
  7#include "xfs_fs.h"
  8#include "xfs_shared.h"
  9#include "xfs_format.h"
 10#include "xfs_log_format.h"
 11#include "xfs_trans_resv.h"
 
 
 
 12#include "xfs_mount.h"
 
 
 
 13#include "xfs_inode.h"
 14#include "xfs_trans.h"
 15#include "xfs_inode_item.h"
 
 16#include "xfs_trace.h"
 17#include "xfs_trans_priv.h"
 18#include "xfs_buf_item.h"
 19#include "xfs_log.h"
 20
 21#include <linux/iversion.h>
 22
 23kmem_zone_t	*xfs_ili_zone;		/* inode log item zone */
 24
 25static inline struct xfs_inode_log_item *INODE_ITEM(struct xfs_log_item *lip)
 26{
 27	return container_of(lip, struct xfs_inode_log_item, ili_item);
 28}
 29
 30STATIC void
 31xfs_inode_item_data_fork_size(
 32	struct xfs_inode_log_item *iip,
 33	int			*nvecs,
 34	int			*nbytes)
 
 
 
 
 
 
 35{
 
 36	struct xfs_inode	*ip = iip->ili_inode;
 
 
 
 
 
 
 
 37
 38	switch (ip->i_d.di_format) {
 39	case XFS_DINODE_FMT_EXTENTS:
 40		if ((iip->ili_fields & XFS_ILOG_DEXT) &&
 41		    ip->i_d.di_nextents > 0 &&
 42		    ip->i_df.if_bytes > 0) {
 43			/* worst case, doesn't subtract delalloc extents */
 44			*nbytes += XFS_IFORK_DSIZE(ip);
 45			*nvecs += 1;
 
 
 
 
 46		}
 47		break;
 
 48	case XFS_DINODE_FMT_BTREE:
 49		if ((iip->ili_fields & XFS_ILOG_DBROOT) &&
 50		    ip->i_df.if_broot_bytes > 0) {
 51			*nbytes += ip->i_df.if_broot_bytes;
 52			*nvecs += 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 53		}
 54		break;
 
 55	case XFS_DINODE_FMT_LOCAL:
 56		if ((iip->ili_fields & XFS_ILOG_DDATA) &&
 57		    ip->i_df.if_bytes > 0) {
 58			*nbytes += roundup(ip->i_df.if_bytes, 4);
 59			*nvecs += 1;
 
 
 
 
 
 
 60		}
 61		break;
 62
 63	case XFS_DINODE_FMT_DEV:
 
 
 
 64		break;
 
 
 
 
 
 
 
 65	default:
 66		ASSERT(0);
 67		break;
 68	}
 69}
 70
 71STATIC void
 72xfs_inode_item_attr_fork_size(
 73	struct xfs_inode_log_item *iip,
 74	int			*nvecs,
 75	int			*nbytes)
 76{
 77	struct xfs_inode	*ip = iip->ili_inode;
 
 
 
 78
 
 
 
 79	switch (ip->i_d.di_aformat) {
 80	case XFS_DINODE_FMT_EXTENTS:
 81		if ((iip->ili_fields & XFS_ILOG_AEXT) &&
 82		    ip->i_d.di_anextents > 0 &&
 83		    ip->i_afp->if_bytes > 0) {
 84			/* worst case, doesn't subtract unused space */
 85			*nbytes += XFS_IFORK_ASIZE(ip);
 86			*nvecs += 1;
 
 
 
 87		}
 88		break;
 
 89	case XFS_DINODE_FMT_BTREE:
 90		if ((iip->ili_fields & XFS_ILOG_ABROOT) &&
 91		    ip->i_afp->if_broot_bytes > 0) {
 92			*nbytes += ip->i_afp->if_broot_bytes;
 93			*nvecs += 1;
 
 
 
 
 94		}
 95		break;
 
 96	case XFS_DINODE_FMT_LOCAL:
 97		if ((iip->ili_fields & XFS_ILOG_ADATA) &&
 98		    ip->i_afp->if_bytes > 0) {
 99			*nbytes += roundup(ip->i_afp->if_bytes, 4);
100			*nvecs += 1;
 
 
 
 
101		}
102		break;
 
103	default:
104		ASSERT(0);
105		break;
106	}
 
 
107}
108
109/*
110 * This returns the number of iovecs needed to log the given inode item.
 
 
 
 
 
 
 
111 *
112 * We need one iovec for the inode log format structure, one for the
113 * inode core, and possibly one for the inode data/extents/b-tree root
114 * and one for the inode attribute data/extents/b-tree root.
 
115 */
116STATIC void
117xfs_inode_item_size(
118	struct xfs_log_item	*lip,
119	int			*nvecs,
120	int			*nbytes)
121{
122	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
123	struct xfs_inode	*ip = iip->ili_inode;
124
125	*nvecs += 2;
126	*nbytes += sizeof(struct xfs_inode_log_format) +
127		   xfs_log_dinode_size(ip->i_d.di_version);
128
129	xfs_inode_item_data_fork_size(iip, nvecs, nbytes);
130	if (XFS_IFORK_Q(ip))
131		xfs_inode_item_attr_fork_size(iip, nvecs, nbytes);
 
 
132}
133
 
 
 
 
 
 
 
134STATIC void
135xfs_inode_item_format_data_fork(
136	struct xfs_inode_log_item *iip,
137	struct xfs_inode_log_format *ilf,
138	struct xfs_log_vec	*lv,
139	struct xfs_log_iovec	**vecp)
140{
 
141	struct xfs_inode	*ip = iip->ili_inode;
 
142	size_t			data_bytes;
 
143
144	switch (ip->i_d.di_format) {
145	case XFS_DINODE_FMT_EXTENTS:
146		iip->ili_fields &=
147			~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | XFS_ILOG_DEV);
 
148
149		if ((iip->ili_fields & XFS_ILOG_DEXT) &&
150		    ip->i_d.di_nextents > 0 &&
151		    ip->i_df.if_bytes > 0) {
152			struct xfs_bmbt_rec *p;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
153
154			ASSERT(xfs_iext_count(&ip->i_df) > 0);
 
 
 
155
156			p = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_IEXT);
157			data_bytes = xfs_iextents_copy(ip, p, XFS_DATA_FORK);
158			xlog_finish_iovec(lv, *vecp, data_bytes);
 
 
 
159
160			ASSERT(data_bytes <= ip->i_df.if_bytes);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
161
162			ilf->ilf_dsize = data_bytes;
163			ilf->ilf_size++;
164		} else {
165			iip->ili_fields &= ~XFS_ILOG_DEXT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
166		}
167		break;
 
168	case XFS_DINODE_FMT_BTREE:
169		iip->ili_fields &=
170			~(XFS_ILOG_DDATA | XFS_ILOG_DEXT | XFS_ILOG_DEV);
171
172		if ((iip->ili_fields & XFS_ILOG_DBROOT) &&
173		    ip->i_df.if_broot_bytes > 0) {
174			ASSERT(ip->i_df.if_broot != NULL);
175			xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IBROOT,
176					ip->i_df.if_broot,
177					ip->i_df.if_broot_bytes);
178			ilf->ilf_dsize = ip->i_df.if_broot_bytes;
179			ilf->ilf_size++;
180		} else {
181			ASSERT(!(iip->ili_fields &
182				 XFS_ILOG_DBROOT));
183			iip->ili_fields &= ~XFS_ILOG_DBROOT;
184		}
185		break;
 
186	case XFS_DINODE_FMT_LOCAL:
187		iip->ili_fields &=
188			~(XFS_ILOG_DEXT | XFS_ILOG_DBROOT | XFS_ILOG_DEV);
189		if ((iip->ili_fields & XFS_ILOG_DDATA) &&
190		    ip->i_df.if_bytes > 0) {
 
 
 
 
 
191			/*
192			 * Round i_bytes up to a word boundary.
193			 * The underlying memory is guaranteed to
194			 * to be there by xfs_idata_realloc().
195			 */
196			data_bytes = roundup(ip->i_df.if_bytes, 4);
197			ASSERT(ip->i_df.if_u1.if_data != NULL);
198			ASSERT(ip->i_d.di_size > 0);
199			xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_ILOCAL,
200					ip->i_df.if_u1.if_data, data_bytes);
201			ilf->ilf_dsize = (unsigned)data_bytes;
202			ilf->ilf_size++;
203		} else {
204			iip->ili_fields &= ~XFS_ILOG_DDATA;
205		}
206		break;
 
207	case XFS_DINODE_FMT_DEV:
208		iip->ili_fields &=
209			~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | XFS_ILOG_DEXT);
210		if (iip->ili_fields & XFS_ILOG_DEV)
211			ilf->ilf_u.ilfu_rdev = sysv_encode_dev(VFS_I(ip)->i_rdev);
 
 
 
 
 
 
 
 
 
 
 
 
 
212		break;
 
213	default:
214		ASSERT(0);
215		break;
216	}
217}
218
219STATIC void
220xfs_inode_item_format_attr_fork(
221	struct xfs_inode_log_item *iip,
222	struct xfs_inode_log_format *ilf,
223	struct xfs_log_vec	*lv,
224	struct xfs_log_iovec	**vecp)
225{
226	struct xfs_inode	*ip = iip->ili_inode;
227	size_t			data_bytes;
 
 
 
228
229	switch (ip->i_d.di_aformat) {
230	case XFS_DINODE_FMT_EXTENTS:
231		iip->ili_fields &=
232			~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT);
233
234		if ((iip->ili_fields & XFS_ILOG_AEXT) &&
235		    ip->i_d.di_anextents > 0 &&
236		    ip->i_afp->if_bytes > 0) {
237			struct xfs_bmbt_rec *p;
238
239			ASSERT(xfs_iext_count(ip->i_afp) ==
240				ip->i_d.di_anextents);
241
242			p = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_EXT);
243			data_bytes = xfs_iextents_copy(ip, p, XFS_ATTR_FORK);
244			xlog_finish_iovec(lv, *vecp, data_bytes);
245
246			ilf->ilf_asize = data_bytes;
247			ilf->ilf_size++;
248		} else {
249			iip->ili_fields &= ~XFS_ILOG_AEXT;
 
 
 
 
 
 
 
 
 
250		}
251		break;
 
252	case XFS_DINODE_FMT_BTREE:
253		iip->ili_fields &=
254			~(XFS_ILOG_ADATA | XFS_ILOG_AEXT);
255
256		if ((iip->ili_fields & XFS_ILOG_ABROOT) &&
257		    ip->i_afp->if_broot_bytes > 0) {
258			ASSERT(ip->i_afp->if_broot != NULL);
259
260			xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_BROOT,
261					ip->i_afp->if_broot,
262					ip->i_afp->if_broot_bytes);
263			ilf->ilf_asize = ip->i_afp->if_broot_bytes;
264			ilf->ilf_size++;
265		} else {
266			iip->ili_fields &= ~XFS_ILOG_ABROOT;
267		}
268		break;
 
269	case XFS_DINODE_FMT_LOCAL:
270		iip->ili_fields &=
271			~(XFS_ILOG_AEXT | XFS_ILOG_ABROOT);
 
 
 
272
273		if ((iip->ili_fields & XFS_ILOG_ADATA) &&
274		    ip->i_afp->if_bytes > 0) {
275			/*
276			 * Round i_bytes up to a word boundary.
277			 * The underlying memory is guaranteed to
278			 * to be there by xfs_idata_realloc().
279			 */
280			data_bytes = roundup(ip->i_afp->if_bytes, 4);
281			ASSERT(ip->i_afp->if_u1.if_data != NULL);
282			xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_LOCAL,
283					ip->i_afp->if_u1.if_data,
284					data_bytes);
285			ilf->ilf_asize = (unsigned)data_bytes;
286			ilf->ilf_size++;
287		} else {
288			iip->ili_fields &= ~XFS_ILOG_ADATA;
289		}
290		break;
 
291	default:
292		ASSERT(0);
293		break;
294	}
295}
296
297static void
298xfs_inode_to_log_dinode(
299	struct xfs_inode	*ip,
300	struct xfs_log_dinode	*to,
301	xfs_lsn_t		lsn)
302{
303	struct xfs_icdinode	*from = &ip->i_d;
304	struct inode		*inode = VFS_I(ip);
305
306	to->di_magic = XFS_DINODE_MAGIC;
307
308	to->di_version = from->di_version;
309	to->di_format = from->di_format;
310	to->di_uid = from->di_uid;
311	to->di_gid = from->di_gid;
312	to->di_projid_lo = from->di_projid_lo;
313	to->di_projid_hi = from->di_projid_hi;
314
315	memset(to->di_pad, 0, sizeof(to->di_pad));
316	memset(to->di_pad3, 0, sizeof(to->di_pad3));
317	to->di_atime.t_sec = inode->i_atime.tv_sec;
318	to->di_atime.t_nsec = inode->i_atime.tv_nsec;
319	to->di_mtime.t_sec = inode->i_mtime.tv_sec;
320	to->di_mtime.t_nsec = inode->i_mtime.tv_nsec;
321	to->di_ctime.t_sec = inode->i_ctime.tv_sec;
322	to->di_ctime.t_nsec = inode->i_ctime.tv_nsec;
323	to->di_nlink = inode->i_nlink;
324	to->di_gen = inode->i_generation;
325	to->di_mode = inode->i_mode;
326
327	to->di_size = from->di_size;
328	to->di_nblocks = from->di_nblocks;
329	to->di_extsize = from->di_extsize;
330	to->di_nextents = from->di_nextents;
331	to->di_anextents = from->di_anextents;
332	to->di_forkoff = from->di_forkoff;
333	to->di_aformat = from->di_aformat;
334	to->di_dmevmask = from->di_dmevmask;
335	to->di_dmstate = from->di_dmstate;
336	to->di_flags = from->di_flags;
337
338	/* log a dummy value to ensure log structure is fully initialised */
339	to->di_next_unlinked = NULLAGINO;
340
341	if (from->di_version == 3) {
342		to->di_changecount = inode_peek_iversion(inode);
343		to->di_crtime.t_sec = from->di_crtime.t_sec;
344		to->di_crtime.t_nsec = from->di_crtime.t_nsec;
345		to->di_flags2 = from->di_flags2;
346		to->di_cowextsize = from->di_cowextsize;
347		to->di_ino = ip->i_ino;
348		to->di_lsn = lsn;
349		memset(to->di_pad2, 0, sizeof(to->di_pad2));
350		uuid_copy(&to->di_uuid, &ip->i_mount->m_sb.sb_meta_uuid);
351		to->di_flushiter = 0;
352	} else {
353		to->di_flushiter = from->di_flushiter;
354	}
355}
356
357/*
358 * Format the inode core. Current timestamp data is only in the VFS inode
359 * fields, so we need to grab them from there. Hence rather than just copying
360 * the XFS inode core structure, format the fields directly into the iovec.
361 */
362static void
363xfs_inode_item_format_core(
364	struct xfs_inode	*ip,
365	struct xfs_log_vec	*lv,
366	struct xfs_log_iovec	**vecp)
367{
368	struct xfs_log_dinode	*dic;
369
370	dic = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_ICORE);
371	xfs_inode_to_log_dinode(ip, dic, ip->i_itemp->ili_item.li_lsn);
372	xlog_finish_iovec(lv, *vecp, xfs_log_dinode_size(ip->i_d.di_version));
373}
374
375/*
376 * This is called to fill in the vector of log iovecs for the given inode
377 * log item.  It fills the first item with an inode log format structure,
378 * the second with the on-disk inode structure, and a possible third and/or
379 * fourth with the inode data/extents/b-tree root and inode attributes
380 * data/extents/b-tree root.
381 *
382 * Note: Always use the 64 bit inode log format structure so we don't
383 * leave an uninitialised hole in the format item on 64 bit systems. Log
384 * recovery on 32 bit systems handles this just fine, so there's no reason
385 * for not using an initialising the properly padded structure all the time.
386 */
387STATIC void
388xfs_inode_item_format(
389	struct xfs_log_item	*lip,
390	struct xfs_log_vec	*lv)
391{
392	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
393	struct xfs_inode	*ip = iip->ili_inode;
394	struct xfs_log_iovec	*vecp = NULL;
395	struct xfs_inode_log_format *ilf;
396
397	ASSERT(ip->i_d.di_version > 1);
398
399	ilf = xlog_prepare_iovec(lv, &vecp, XLOG_REG_TYPE_IFORMAT);
400	ilf->ilf_type = XFS_LI_INODE;
401	ilf->ilf_ino = ip->i_ino;
402	ilf->ilf_blkno = ip->i_imap.im_blkno;
403	ilf->ilf_len = ip->i_imap.im_len;
404	ilf->ilf_boffset = ip->i_imap.im_boffset;
405	ilf->ilf_fields = XFS_ILOG_CORE;
406	ilf->ilf_size = 2; /* format + core */
407
408	/*
409	 * make sure we don't leak uninitialised data into the log in the case
410	 * when we don't log every field in the inode.
411	 */
412	ilf->ilf_dsize = 0;
413	ilf->ilf_asize = 0;
414	ilf->ilf_pad = 0;
415	memset(&ilf->ilf_u, 0, sizeof(ilf->ilf_u));
416
417	xlog_finish_iovec(lv, vecp, sizeof(*ilf));
418
419	xfs_inode_item_format_core(ip, lv, &vecp);
420	xfs_inode_item_format_data_fork(iip, ilf, lv, &vecp);
421	if (XFS_IFORK_Q(ip)) {
422		xfs_inode_item_format_attr_fork(iip, ilf, lv, &vecp);
423	} else {
424		iip->ili_fields &=
425			~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT);
426	}
427
428	/* update the format with the exact fields we actually logged */
429	ilf->ilf_fields |= (iip->ili_fields & ~XFS_ILOG_TIMESTAMP);
430}
431
432/*
433 * This is called to pin the inode associated with the inode log
434 * item in memory so it cannot be written out.
435 */
436STATIC void
437xfs_inode_item_pin(
438	struct xfs_log_item	*lip)
439{
440	struct xfs_inode	*ip = INODE_ITEM(lip)->ili_inode;
441
442	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
443
444	trace_xfs_inode_pin(ip, _RET_IP_);
445	atomic_inc(&ip->i_pincount);
446}
447
448
449/*
450 * This is called to unpin the inode associated with the inode log
451 * item which was previously pinned with a call to xfs_inode_item_pin().
452 *
453 * Also wake up anyone in xfs_iunpin_wait() if the count goes to 0.
454 */
455STATIC void
456xfs_inode_item_unpin(
457	struct xfs_log_item	*lip,
458	int			remove)
459{
460	struct xfs_inode	*ip = INODE_ITEM(lip)->ili_inode;
461
462	trace_xfs_inode_unpin(ip, _RET_IP_);
463	ASSERT(atomic_read(&ip->i_pincount) > 0);
464	if (atomic_dec_and_test(&ip->i_pincount))
465		wake_up_bit(&ip->i_flags, __XFS_IPINNED_BIT);
466}
467
468/*
469 * Callback used to mark a buffer with XFS_LI_FAILED when items in the buffer
470 * have been failed during writeback
 
471 *
472 * This informs the AIL that the inode is already flush locked on the next push,
473 * and acquires a hold on the buffer to ensure that it isn't reclaimed before
474 * dirty data makes it to disk.
 
 
 
 
475 */
476STATIC void
477xfs_inode_item_error(
478	struct xfs_log_item	*lip,
479	struct xfs_buf		*bp)
480{
481	ASSERT(xfs_isiflocked(INODE_ITEM(lip)->ili_inode));
482	xfs_set_li_failed(lip, bp);
483}
484
485STATIC uint
486xfs_inode_item_push(
487	struct xfs_log_item	*lip,
488	struct list_head	*buffer_list)
489		__releases(&lip->li_ailp->ail_lock)
490		__acquires(&lip->li_ailp->ail_lock)
491{
492	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
493	struct xfs_inode	*ip = iip->ili_inode;
494	struct xfs_buf		*bp = lip->li_buf;
495	uint			rval = XFS_ITEM_SUCCESS;
496	int			error;
497
498	if (xfs_ipincount(ip) > 0)
499		return XFS_ITEM_PINNED;
500
501	/*
502	 * The buffer containing this item failed to be written back
503	 * previously. Resubmit the buffer for IO.
504	 */
505	if (test_bit(XFS_LI_FAILED, &lip->li_flags)) {
506		if (!xfs_buf_trylock(bp))
507			return XFS_ITEM_LOCKED;
508
509		if (!xfs_buf_resubmit_failed_buffers(bp, buffer_list))
510			rval = XFS_ITEM_FLUSHING;
511
512		xfs_buf_unlock(bp);
513		return rval;
514	}
515
516	if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED))
517		return XFS_ITEM_LOCKED;
518
519	/*
520	 * Re-check the pincount now that we stabilized the value by
521	 * taking the ilock.
522	 */
523	if (xfs_ipincount(ip) > 0) {
524		rval = XFS_ITEM_PINNED;
525		goto out_unlock;
526	}
527
528	/*
529	 * Stale inode items should force out the iclog.
530	 */
531	if (ip->i_flags & XFS_ISTALE) {
532		rval = XFS_ITEM_PINNED;
533		goto out_unlock;
 
 
 
 
 
534	}
535
536	/*
537	 * Someone else is already flushing the inode.  Nothing we can do
538	 * here but wait for the flush to finish and remove the item from
539	 * the AIL.
540	 */
541	if (!xfs_iflock_nowait(ip)) {
542		rval = XFS_ITEM_FLUSHING;
543		goto out_unlock;
544	}
545
546	ASSERT(iip->ili_fields != 0 || XFS_FORCED_SHUTDOWN(ip->i_mount));
547	ASSERT(iip->ili_logged == 0 || XFS_FORCED_SHUTDOWN(ip->i_mount));
548
549	spin_unlock(&lip->li_ailp->ail_lock);
550
551	error = xfs_iflush(ip, &bp);
552	if (!error) {
553		if (!xfs_buf_delwri_queue(bp, buffer_list))
554			rval = XFS_ITEM_FLUSHING;
555		xfs_buf_relse(bp);
556	}
557
558	spin_lock(&lip->li_ailp->ail_lock);
559out_unlock:
560	xfs_iunlock(ip, XFS_ILOCK_SHARED);
561	return rval;
562}
563
564/*
565 * Unlock the inode associated with the inode log item.
 
 
 
566 */
567STATIC void
568xfs_inode_item_release(
569	struct xfs_log_item	*lip)
570{
571	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
572	struct xfs_inode	*ip = iip->ili_inode;
573	unsigned short		lock_flags;
574
575	ASSERT(ip->i_itemp != NULL);
576	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
577
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
578	lock_flags = iip->ili_lock_flags;
579	iip->ili_lock_flags = 0;
580	if (lock_flags)
581		xfs_iunlock(ip, lock_flags);
 
 
582}
583
584/*
585 * This is called to find out where the oldest active copy of the inode log
586 * item in the on disk log resides now that the last log write of it completed
587 * at the given lsn.  Since we always re-log all dirty data in an inode, the
588 * latest copy in the on disk log is the only one that matters.  Therefore,
589 * simply return the given lsn.
590 *
591 * If the inode has been marked stale because the cluster is being freed, we
592 * don't want to (re-)insert this inode into the AIL. There is a race condition
593 * where the cluster buffer may be unpinned before the inode is inserted into
594 * the AIL during transaction committed processing. If the buffer is unpinned
595 * before the inode item has been committed and inserted, then it is possible
596 * for the buffer to be written and IO completes before the inode is inserted
597 * into the AIL. In that case, we'd be inserting a clean, stale inode into the
598 * AIL which will never get removed. It will, however, get reclaimed which
599 * triggers an assert in xfs_inode_free() complaining about freein an inode
600 * still in the AIL.
601 *
602 * To avoid this, just unpin the inode directly and return a LSN of -1 so the
603 * transaction committed code knows that it does not need to do any further
604 * processing on the item.
605 */
606STATIC xfs_lsn_t
607xfs_inode_item_committed(
608	struct xfs_log_item	*lip,
609	xfs_lsn_t		lsn)
610{
611	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
612	struct xfs_inode	*ip = iip->ili_inode;
613
614	if (xfs_iflags_test(ip, XFS_ISTALE)) {
615		xfs_inode_item_unpin(lip, 0);
616		return -1;
617	}
618	return lsn;
619}
620
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
621STATIC void
622xfs_inode_item_committing(
623	struct xfs_log_item	*lip,
624	xfs_lsn_t		commit_lsn)
625{
626	INODE_ITEM(lip)->ili_last_lsn = commit_lsn;
627	return xfs_inode_item_release(lip);
628}
629
630static const struct xfs_item_ops xfs_inode_item_ops = {
 
 
 
631	.iop_size	= xfs_inode_item_size,
632	.iop_format	= xfs_inode_item_format,
633	.iop_pin	= xfs_inode_item_pin,
634	.iop_unpin	= xfs_inode_item_unpin,
635	.iop_release	= xfs_inode_item_release,
 
636	.iop_committed	= xfs_inode_item_committed,
637	.iop_push	= xfs_inode_item_push,
638	.iop_committing	= xfs_inode_item_committing,
639	.iop_error	= xfs_inode_item_error
640};
641
642
643/*
644 * Initialize the inode log item for a newly allocated (in-core) inode.
645 */
646void
647xfs_inode_item_init(
648	struct xfs_inode	*ip,
649	struct xfs_mount	*mp)
650{
651	struct xfs_inode_log_item *iip;
652
653	ASSERT(ip->i_itemp == NULL);
654	iip = ip->i_itemp = kmem_zone_zalloc(xfs_ili_zone, 0);
655
656	iip->ili_inode = ip;
657	xfs_log_item_init(mp, &iip->ili_item, XFS_LI_INODE,
658						&xfs_inode_item_ops);
 
 
 
 
 
659}
660
661/*
662 * Free the inode log item and any memory hanging off of it.
663 */
664void
665xfs_inode_item_destroy(
666	xfs_inode_t	*ip)
667{
668	kmem_free(ip->i_itemp->ili_item.li_lv_shadow);
 
 
 
 
669	kmem_zone_free(xfs_ili_zone, ip->i_itemp);
670}
671
672
673/*
674 * This is the inode flushing I/O completion routine.  It is called
675 * from interrupt level when the buffer containing the inode is
676 * flushed to disk.  It is responsible for removing the inode item
677 * from the AIL if it has not been re-logged, and unlocking the inode's
678 * flush lock.
679 *
680 * To reduce AIL lock traffic as much as possible, we scan the buffer log item
681 * list for other inodes that will run this function. We remove them from the
682 * buffer list so we can process all the inode IO completions in one AIL lock
683 * traversal.
684 */
685void
686xfs_iflush_done(
687	struct xfs_buf		*bp,
688	struct xfs_log_item	*lip)
689{
690	struct xfs_inode_log_item *iip;
691	struct xfs_log_item	*blip, *n;
 
 
692	struct xfs_ail		*ailp = lip->li_ailp;
693	int			need_ail = 0;
694	LIST_HEAD(tmp);
695
696	/*
697	 * Scan the buffer IO completions for other inodes being completed and
698	 * attach them to the current inode log item.
699	 */
 
 
 
 
 
 
 
 
700
701	list_add_tail(&lip->li_bio_list, &tmp);
 
 
 
 
 
 
702
703	list_for_each_entry_safe(blip, n, &bp->b_li_list, li_bio_list) {
704		if (lip->li_cb != xfs_iflush_done)
705			continue;
706
707		list_move_tail(&blip->li_bio_list, &tmp);
708		/*
709		 * while we have the item, do the unlocked check for needing
710		 * the AIL lock.
711		 */
712		iip = INODE_ITEM(blip);
713		if ((iip->ili_logged && blip->li_lsn == iip->ili_flush_lsn) ||
714		    test_bit(XFS_LI_FAILED, &blip->li_flags))
715			need_ail++;
 
 
716	}
717
718	/* make sure we capture the state of the initial inode. */
719	iip = INODE_ITEM(lip);
720	if ((iip->ili_logged && lip->li_lsn == iip->ili_flush_lsn) ||
721	    test_bit(XFS_LI_FAILED, &lip->li_flags))
722		need_ail++;
723
724	/*
725	 * We only want to pull the item from the AIL if it is
726	 * actually there and its location in the log has not
727	 * changed since we started the flush.  Thus, we only bother
728	 * if the ili_logged flag is set and the inode's lsn has not
729	 * changed.  First we check the lsn outside
730	 * the lock since it's cheaper, and then we recheck while
731	 * holding the lock before removing the inode from the AIL.
732	 */
733	if (need_ail) {
734		bool			mlip_changed = false;
735
736		/* this is an opencoded batch version of xfs_trans_ail_delete */
737		spin_lock(&ailp->ail_lock);
738		list_for_each_entry(blip, &tmp, li_bio_list) {
739			if (INODE_ITEM(blip)->ili_logged &&
740			    blip->li_lsn == INODE_ITEM(blip)->ili_flush_lsn)
741				mlip_changed |= xfs_ail_delete_one(ailp, blip);
742			else {
743				xfs_clear_li_failed(blip);
744			}
 
745		}
 
 
 
746
747		if (mlip_changed) {
748			if (!XFS_FORCED_SHUTDOWN(ailp->ail_mount))
749				xlog_assign_tail_lsn_locked(ailp->ail_mount);
750			if (list_empty(&ailp->ail_head))
751				wake_up_all(&ailp->ail_empty);
752		}
753		spin_unlock(&ailp->ail_lock);
754
755		if (mlip_changed)
756			xfs_log_space_wake(ailp->ail_mount);
757	}
758
759	/*
760	 * clean up and unlock the flush lock now we are done. We can clear the
761	 * ili_last_fields bits now that we know that the data corresponding to
762	 * them is safely on disk.
763	 */
764	list_for_each_entry_safe(blip, n, &tmp, li_bio_list) {
765		list_del_init(&blip->li_bio_list);
 
 
766		iip = INODE_ITEM(blip);
767		iip->ili_logged = 0;
768		iip->ili_last_fields = 0;
769		xfs_ifunlock(iip->ili_inode);
770	}
771	list_del(&tmp);
772}
773
774/*
775 * This is the inode flushing abort routine.  It is called from xfs_iflush when
776 * the filesystem is shutting down to clean up the inode state.  It is
777 * responsible for removing the inode item from the AIL if it has not been
778 * re-logged, and unlocking the inode's flush lock.
 
 
779 */
780void
781xfs_iflush_abort(
782	xfs_inode_t		*ip,
783	bool			stale)
784{
785	xfs_inode_log_item_t	*iip = ip->i_itemp;
786
787	if (iip) {
788		if (test_bit(XFS_LI_IN_AIL, &iip->ili_item.li_flags)) {
789			xfs_trans_ail_remove(&iip->ili_item,
790					     stale ? SHUTDOWN_LOG_IO_ERROR :
791						     SHUTDOWN_CORRUPT_INCORE);
 
 
 
 
792		}
793		iip->ili_logged = 0;
794		/*
795		 * Clear the ili_last_fields bits now that we know that the
796		 * data corresponding to them is safely on disk.
797		 */
798		iip->ili_last_fields = 0;
799		/*
800		 * Clear the inode logging fields so no more flushes are
801		 * attempted.
802		 */
803		iip->ili_fields = 0;
804		iip->ili_fsync_fields = 0;
805	}
806	/*
807	 * Release the inode's flush lock since we're done with it.
808	 */
809	xfs_ifunlock(ip);
810}
811
812void
813xfs_istale_done(
814	struct xfs_buf		*bp,
815	struct xfs_log_item	*lip)
816{
817	xfs_iflush_abort(INODE_ITEM(lip)->ili_inode, true);
818}
819
820/*
821 * convert an xfs_inode_log_format struct from the old 32 bit version
822 * (which can have different field alignments) to the native 64 bit version
823 */
824int
825xfs_inode_item_format_convert(
826	struct xfs_log_iovec		*buf,
827	struct xfs_inode_log_format	*in_f)
828{
829	struct xfs_inode_log_format_32	*in_f32 = buf->i_addr;
 
830
831	if (buf->i_len != sizeof(*in_f32))
832		return -EFSCORRUPTED;
833
834	in_f->ilf_type = in_f32->ilf_type;
835	in_f->ilf_size = in_f32->ilf_size;
836	in_f->ilf_fields = in_f32->ilf_fields;
837	in_f->ilf_asize = in_f32->ilf_asize;
838	in_f->ilf_dsize = in_f32->ilf_dsize;
839	in_f->ilf_ino = in_f32->ilf_ino;
840	memcpy(&in_f->ilf_u, &in_f32->ilf_u, sizeof(in_f->ilf_u));
841	in_f->ilf_blkno = in_f32->ilf_blkno;
842	in_f->ilf_len = in_f32->ilf_len;
843	in_f->ilf_boffset = in_f32->ilf_boffset;
844	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
845}