Linux Audio

Check our new training course

Loading...
v3.1
 
   1/*
   2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
   3 * All Rights Reserved.
   4 *
   5 * This program is free software; you can redistribute it and/or
   6 * modify it under the terms of the GNU General Public License as
   7 * published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope that it would be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write the Free Software Foundation,
  16 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
  17 */
  18#include <linux/log2.h>
  19
  20#include "xfs.h"
  21#include "xfs_fs.h"
  22#include "xfs_types.h"
  23#include "xfs_bit.h"
  24#include "xfs_log.h"
  25#include "xfs_inum.h"
  26#include "xfs_trans.h"
  27#include "xfs_trans_priv.h"
  28#include "xfs_sb.h"
  29#include "xfs_ag.h"
  30#include "xfs_mount.h"
  31#include "xfs_bmap_btree.h"
  32#include "xfs_alloc_btree.h"
  33#include "xfs_ialloc_btree.h"
  34#include "xfs_attr_sf.h"
  35#include "xfs_dinode.h"
  36#include "xfs_inode.h"
 
 
 
 
  37#include "xfs_buf_item.h"
  38#include "xfs_inode_item.h"
  39#include "xfs_btree.h"
  40#include "xfs_alloc.h"
  41#include "xfs_ialloc.h"
  42#include "xfs_bmap.h"
 
 
  43#include "xfs_error.h"
  44#include "xfs_utils.h"
  45#include "xfs_quota.h"
  46#include "xfs_filestream.h"
  47#include "xfs_vnodeops.h"
  48#include "xfs_trace.h"
 
 
 
 
 
 
 
 
 
 
 
  49
  50kmem_zone_t *xfs_ifork_zone;
  51kmem_zone_t *xfs_inode_zone;
 
  52
  53/*
  54 * Used in xfs_itruncate_extents().  This is the maximum number of extents
  55 * freed from a file in a single transaction.
  56 */
  57#define	XFS_ITRUNC_MAX_EXTENTS	2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  58
  59STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
  60STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int);
  61STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int);
  62STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  63
  64#ifdef DEBUG
  65/*
  66 * Make sure that the extents in the given memory buffer
  67 * are valid.
 
 
 
 
 
 
 
 
 
 
 
  68 */
  69STATIC void
  70xfs_validate_extents(
  71	xfs_ifork_t		*ifp,
  72	int			nrecs,
  73	xfs_exntfmt_t		fmt)
  74{
  75	xfs_bmbt_irec_t		irec;
  76	xfs_bmbt_rec_host_t	rec;
  77	int			i;
  78
  79	for (i = 0; i < nrecs; i++) {
  80		xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
  81		rec.l0 = get_unaligned(&ep->l0);
  82		rec.l1 = get_unaligned(&ep->l1);
  83		xfs_bmbt_get_all(&rec, &irec);
  84		if (fmt == XFS_EXTFMT_NOSTATE)
  85			ASSERT(irec.br_state == XFS_EXT_NORM);
  86	}
 
 
 
 
 
 
 
 
  87}
  88#else /* DEBUG */
  89#define xfs_validate_extents(ifp, nrecs, fmt)
  90#endif /* DEBUG */
  91
  92/*
  93 * Check that none of the inode's in the buffer have a next
  94 * unlinked field of 0.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  95 */
  96#if defined(DEBUG)
  97void
  98xfs_inobp_check(
  99	xfs_mount_t	*mp,
 100	xfs_buf_t	*bp)
 101{
 102	int		i;
 103	int		j;
 104	xfs_dinode_t	*dip;
 105
 106	j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
 107
 108	for (i = 0; i < j; i++) {
 109		dip = (xfs_dinode_t *)xfs_buf_offset(bp,
 110					i * mp->m_sb.sb_inodesize);
 111		if (!dip->di_next_unlinked)  {
 112			xfs_alert(mp,
 113	"Detected bogus zero next_unlinked field in incore inode buffer 0x%p.",
 114				bp);
 115			ASSERT(dip->di_next_unlinked);
 116		}
 117	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 118}
 119#endif
 120
 121/*
 122 * Find the buffer associated with the given inode map
 123 * We do basic validation checks on the buffer once it has been
 124 * retrieved from disk.
 
 
 
 
 
 
 
 125 */
 126STATIC int
 127xfs_imap_to_bp(
 128	xfs_mount_t	*mp,
 129	xfs_trans_t	*tp,
 130	struct xfs_imap	*imap,
 131	xfs_buf_t	**bpp,
 132	uint		buf_flags,
 133	uint		iget_flags)
 134{
 135	int		error;
 136	int		i;
 137	int		ni;
 138	xfs_buf_t	*bp;
 139
 140	error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap->im_blkno,
 141				   (int)imap->im_len, buf_flags, &bp);
 142	if (error) {
 143		if (error != EAGAIN) {
 144			xfs_warn(mp,
 145				"%s: xfs_trans_read_buf() returned error %d.",
 146				__func__, error);
 147		} else {
 148			ASSERT(buf_flags & XBF_TRYLOCK);
 149		}
 150		return error;
 151	}
 152
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 153	/*
 154	 * Validate the magic number and version of every inode in the buffer
 155	 * (if DEBUG kernel) or the first inode in the buffer, otherwise.
 156	 */
 157#ifdef DEBUG
 158	ni = BBTOB(imap->im_len) >> mp->m_sb.sb_inodelog;
 159#else	/* usual case */
 160	ni = 1;
 161#endif
 162
 163	for (i = 0; i < ni; i++) {
 164		int		di_ok;
 165		xfs_dinode_t	*dip;
 166
 167		dip = (xfs_dinode_t *)xfs_buf_offset(bp,
 168					(i << mp->m_sb.sb_inodelog));
 169		di_ok = dip->di_magic == cpu_to_be16(XFS_DINODE_MAGIC) &&
 170			    XFS_DINODE_GOOD_VERSION(dip->di_version);
 171		if (unlikely(XFS_TEST_ERROR(!di_ok, mp,
 172						XFS_ERRTAG_ITOBP_INOTOBP,
 173						XFS_RANDOM_ITOBP_INOTOBP))) {
 174			if (iget_flags & XFS_IGET_UNTRUSTED) {
 175				xfs_trans_brelse(tp, bp);
 176				return XFS_ERROR(EINVAL);
 177			}
 178			XFS_CORRUPTION_ERROR("xfs_imap_to_bp",
 179						XFS_ERRLEVEL_HIGH, mp, dip);
 180#ifdef DEBUG
 181			xfs_emerg(mp,
 182				"bad inode magic/vsn daddr %lld #%d (magic=%x)",
 183				(unsigned long long)imap->im_blkno, i,
 184				be16_to_cpu(dip->di_magic));
 185			ASSERT(0);
 
 
 
 186#endif
 187			xfs_trans_brelse(tp, bp);
 188			return XFS_ERROR(EFSCORRUPTED);
 189		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 190	}
 191
 192	xfs_inobp_check(mp, bp);
 
 
 
 193
 194	/*
 195	 * Mark the buffer as an inode buffer now that it looks good
 196	 */
 197	XFS_BUF_SET_VTYPE(bp, B_FS_INO);
 198
 199	*bpp = bp;
 200	return 0;
 201}
 202
 203/*
 204 * This routine is called to map an inode number within a file
 205 * system to the buffer containing the on-disk version of the
 206 * inode.  It returns a pointer to the buffer containing the
 207 * on-disk inode in the bpp parameter, and in the dip parameter
 208 * it returns a pointer to the on-disk inode within that buffer.
 209 *
 210 * If a non-zero error is returned, then the contents of bpp and
 211 * dipp are undefined.
 
 
 
 212 *
 213 * Use xfs_imap() to determine the size and location of the
 214 * buffer to read from disk.
 
 
 215 */
 216int
 217xfs_inotobp(
 218	xfs_mount_t	*mp,
 219	xfs_trans_t	*tp,
 220	xfs_ino_t	ino,
 221	xfs_dinode_t	**dipp,
 222	xfs_buf_t	**bpp,
 223	int		*offset,
 224	uint		imap_flags)
 225{
 226	struct xfs_imap	imap;
 227	xfs_buf_t	*bp;
 228	int		error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 229
 230	imap.im_blkno = 0;
 231	error = xfs_imap(mp, tp, ino, &imap, imap_flags);
 232	if (error)
 233		return error;
 234
 235	error = xfs_imap_to_bp(mp, tp, &imap, &bp, XBF_LOCK, imap_flags);
 236	if (error)
 237		return error;
 
 
 
 
 
 
 
 
 238
 239	*dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
 240	*bpp = bp;
 241	*offset = imap.im_boffset;
 242	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 243}
 244
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 245
 246/*
 247 * This routine is called to map an inode to the buffer containing
 248 * the on-disk version of the inode.  It returns a pointer to the
 249 * buffer containing the on-disk inode in the bpp parameter, and in
 250 * the dip parameter it returns a pointer to the on-disk inode within
 251 * that buffer.
 252 *
 253 * If a non-zero error is returned, then the contents of bpp and
 254 * dipp are undefined.
 255 *
 256 * The inode is expected to already been mapped to its buffer and read
 257 * in once, thus we can use the mapping information stored in the inode
 258 * rather than calling xfs_imap().  This allows us to avoid the overhead
 259 * of looking at the inode btree for small block file systems
 260 * (see xfs_imap()).
 261 */
 262int
 263xfs_itobp(
 264	xfs_mount_t	*mp,
 265	xfs_trans_t	*tp,
 266	xfs_inode_t	*ip,
 267	xfs_dinode_t	**dipp,
 268	xfs_buf_t	**bpp,
 269	uint		buf_flags)
 270{
 271	xfs_buf_t	*bp;
 272	int		error;
 
 
 273
 274	ASSERT(ip->i_imap.im_blkno != 0);
 
 
 
 275
 276	error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp, buf_flags, 0);
 277	if (error)
 278		return error;
 279
 280	if (!bp) {
 281		ASSERT(buf_flags & XBF_TRYLOCK);
 282		ASSERT(tp == NULL);
 283		*bpp = NULL;
 284		return EAGAIN;
 285	}
 286
 287	*dipp = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
 288	*bpp = bp;
 289	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 290}
 291
 292/*
 293 * Move inode type and inode format specific information from the
 294 * on-disk inode to the in-core inode.  For fifos, devs, and sockets
 295 * this means set if_rdev to the proper value.  For files, directories,
 296 * and symlinks this means to bring in the in-line data or extent
 297 * pointers.  For a file in B-tree format, only the root is immediately
 298 * brought in-core.  The rest will be in-lined in if_extents when it
 299 * is first referenced (see xfs_iread_extents()).
 300 */
 301STATIC int
 302xfs_iformat(
 303	xfs_inode_t		*ip,
 304	xfs_dinode_t		*dip)
 305{
 306	xfs_attr_shortform_t	*atp;
 307	int			size;
 
 
 
 
 
 
 
 
 
 
 308	int			error;
 309	xfs_fsize_t             di_size;
 310	ip->i_df.if_ext_max =
 311		XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
 312	error = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 313
 314	if (unlikely(be32_to_cpu(dip->di_nextents) +
 315		     be16_to_cpu(dip->di_anextents) >
 316		     be64_to_cpu(dip->di_nblocks))) {
 317		xfs_warn(ip->i_mount,
 318			"corrupt dinode %Lu, extent total = %d, nblocks = %Lu.",
 319			(unsigned long long)ip->i_ino,
 320			(int)(be32_to_cpu(dip->di_nextents) +
 321			      be16_to_cpu(dip->di_anextents)),
 322			(unsigned long long)
 323				be64_to_cpu(dip->di_nblocks));
 324		XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW,
 325				     ip->i_mount, dip);
 326		return XFS_ERROR(EFSCORRUPTED);
 327	}
 328
 329	if (unlikely(dip->di_forkoff > ip->i_mount->m_sb.sb_inodesize)) {
 330		xfs_warn(ip->i_mount, "corrupt dinode %Lu, forkoff = 0x%x.",
 331			(unsigned long long)ip->i_ino,
 332			dip->di_forkoff);
 333		XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW,
 334				     ip->i_mount, dip);
 335		return XFS_ERROR(EFSCORRUPTED);
 336	}
 337
 338	if (unlikely((ip->i_d.di_flags & XFS_DIFLAG_REALTIME) &&
 339		     !ip->i_mount->m_rtdev_targp)) {
 340		xfs_warn(ip->i_mount,
 341			"corrupt dinode %Lu, has realtime flag set.",
 342			ip->i_ino);
 343		XFS_CORRUPTION_ERROR("xfs_iformat(realtime)",
 344				     XFS_ERRLEVEL_LOW, ip->i_mount, dip);
 345		return XFS_ERROR(EFSCORRUPTED);
 346	}
 347
 348	switch (ip->i_d.di_mode & S_IFMT) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 349	case S_IFIFO:
 350	case S_IFCHR:
 351	case S_IFBLK:
 352	case S_IFSOCK:
 353		if (unlikely(dip->di_format != XFS_DINODE_FMT_DEV)) {
 354			XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW,
 355					      ip->i_mount, dip);
 356			return XFS_ERROR(EFSCORRUPTED);
 357		}
 358		ip->i_d.di_size = 0;
 359		ip->i_size = 0;
 360		ip->i_df.if_u2.if_rdev = xfs_dinode_get_rdev(dip);
 361		break;
 362
 363	case S_IFREG:
 364	case S_IFLNK:
 365	case S_IFDIR:
 366		switch (dip->di_format) {
 367		case XFS_DINODE_FMT_LOCAL:
 368			/*
 369			 * no local regular files yet
 370			 */
 371			if (unlikely(S_ISREG(be16_to_cpu(dip->di_mode)))) {
 372				xfs_warn(ip->i_mount,
 373			"corrupt inode %Lu (local format for regular file).",
 374					(unsigned long long) ip->i_ino);
 375				XFS_CORRUPTION_ERROR("xfs_iformat(4)",
 376						     XFS_ERRLEVEL_LOW,
 377						     ip->i_mount, dip);
 378				return XFS_ERROR(EFSCORRUPTED);
 379			}
 380
 381			di_size = be64_to_cpu(dip->di_size);
 382			if (unlikely(di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) {
 383				xfs_warn(ip->i_mount,
 384			"corrupt inode %Lu (bad size %Ld for local inode).",
 385					(unsigned long long) ip->i_ino,
 386					(long long) di_size);
 387				XFS_CORRUPTION_ERROR("xfs_iformat(5)",
 388						     XFS_ERRLEVEL_LOW,
 389						     ip->i_mount, dip);
 390				return XFS_ERROR(EFSCORRUPTED);
 391			}
 392
 393			size = (int)di_size;
 394			error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size);
 395			break;
 396		case XFS_DINODE_FMT_EXTENTS:
 397			error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK);
 398			break;
 399		case XFS_DINODE_FMT_BTREE:
 400			error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK);
 401			break;
 402		default:
 403			XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW,
 404					 ip->i_mount);
 405			return XFS_ERROR(EFSCORRUPTED);
 406		}
 407		break;
 408
 409	default:
 410		XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount);
 411		return XFS_ERROR(EFSCORRUPTED);
 412	}
 413	if (error) {
 414		return error;
 415	}
 416	if (!XFS_DFORK_Q(dip))
 417		return 0;
 418	ASSERT(ip->i_afp == NULL);
 419	ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP | KM_NOFS);
 420	ip->i_afp->if_ext_max =
 421		XFS_IFORK_ASIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
 422	switch (dip->di_aformat) {
 423	case XFS_DINODE_FMT_LOCAL:
 424		atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip);
 425		size = be16_to_cpu(atp->hdr.totsize);
 426
 427		if (unlikely(size < sizeof(struct xfs_attr_sf_hdr))) {
 428			xfs_warn(ip->i_mount,
 429				"corrupt inode %Lu (bad attr fork size %Ld).",
 430				(unsigned long long) ip->i_ino,
 431				(long long) size);
 432			XFS_CORRUPTION_ERROR("xfs_iformat(8)",
 433					     XFS_ERRLEVEL_LOW,
 434					     ip->i_mount, dip);
 435			return XFS_ERROR(EFSCORRUPTED);
 436		}
 437
 438		error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size);
 439		break;
 440	case XFS_DINODE_FMT_EXTENTS:
 441		error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK);
 442		break;
 443	case XFS_DINODE_FMT_BTREE:
 444		error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK);
 445		break;
 446	default:
 447		error = XFS_ERROR(EFSCORRUPTED);
 448		break;
 449	}
 450	if (error) {
 451		kmem_zone_free(xfs_ifork_zone, ip->i_afp);
 452		ip->i_afp = NULL;
 453		xfs_idestroy_fork(ip, XFS_DATA_FORK);
 454	}
 455	return error;
 456}
 457
 458/*
 459 * The file is in-lined in the on-disk inode.
 460 * If it fits into if_inline_data, then copy
 461 * it there, otherwise allocate a buffer for it
 462 * and copy the data there.  Either way, set
 463 * if_data to point at the data.
 464 * If we allocate a buffer for the data, make
 465 * sure that its size is a multiple of 4 and
 466 * record the real size in i_real_bytes.
 467 */
 468STATIC int
 469xfs_iformat_local(
 470	xfs_inode_t	*ip,
 471	xfs_dinode_t	*dip,
 472	int		whichfork,
 473	int		size)
 474{
 475	xfs_ifork_t	*ifp;
 476	int		real_size;
 477
 478	/*
 479	 * If the size is unreasonable, then something
 480	 * is wrong and we just bail out rather than crash in
 481	 * kmem_alloc() or memcpy() below.
 482	 */
 483	if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
 484		xfs_warn(ip->i_mount,
 485	"corrupt inode %Lu (bad size %d for local fork, size = %d).",
 486			(unsigned long long) ip->i_ino, size,
 487			XFS_DFORK_SIZE(dip, ip->i_mount, whichfork));
 488		XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW,
 489				     ip->i_mount, dip);
 490		return XFS_ERROR(EFSCORRUPTED);
 491	}
 492	ifp = XFS_IFORK_PTR(ip, whichfork);
 493	real_size = 0;
 494	if (size == 0)
 495		ifp->if_u1.if_data = NULL;
 496	else if (size <= sizeof(ifp->if_u2.if_inline_data))
 497		ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
 498	else {
 499		real_size = roundup(size, 4);
 500		ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP | KM_NOFS);
 501	}
 502	ifp->if_bytes = size;
 503	ifp->if_real_bytes = real_size;
 504	if (size)
 505		memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR(dip, whichfork), size);
 506	ifp->if_flags &= ~XFS_IFEXTENTS;
 507	ifp->if_flags |= XFS_IFINLINE;
 508	return 0;
 509}
 510
 511/*
 512 * The file consists of a set of extents all
 513 * of which fit into the on-disk inode.
 514 * If there are few enough extents to fit into
 515 * the if_inline_ext, then copy them there.
 516 * Otherwise allocate a buffer for them and copy
 517 * them into it.  Either way, set if_extents
 518 * to point at the extents.
 519 */
 520STATIC int
 521xfs_iformat_extents(
 522	xfs_inode_t	*ip,
 523	xfs_dinode_t	*dip,
 524	int		whichfork)
 525{
 526	xfs_bmbt_rec_t	*dp;
 527	xfs_ifork_t	*ifp;
 528	int		nex;
 529	int		size;
 530	int		i;
 531
 532	ifp = XFS_IFORK_PTR(ip, whichfork);
 533	nex = XFS_DFORK_NEXTENTS(dip, whichfork);
 534	size = nex * (uint)sizeof(xfs_bmbt_rec_t);
 535
 536	/*
 537	 * If the number of extents is unreasonable, then something
 538	 * is wrong and we just bail out rather than crash in
 539	 * kmem_alloc() or memcpy() below.
 540	 */
 541	if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
 542		xfs_warn(ip->i_mount, "corrupt inode %Lu ((a)extents = %d).",
 543			(unsigned long long) ip->i_ino, nex);
 544		XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW,
 545				     ip->i_mount, dip);
 546		return XFS_ERROR(EFSCORRUPTED);
 547	}
 548
 549	ifp->if_real_bytes = 0;
 550	if (nex == 0)
 551		ifp->if_u1.if_extents = NULL;
 552	else if (nex <= XFS_INLINE_EXTS)
 553		ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
 554	else
 555		xfs_iext_add(ifp, 0, nex);
 556
 557	ifp->if_bytes = size;
 558	if (size) {
 559		dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork);
 560		xfs_validate_extents(ifp, nex, XFS_EXTFMT_INODE(ip));
 561		for (i = 0; i < nex; i++, dp++) {
 562			xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
 563			ep->l0 = get_unaligned_be64(&dp->l0);
 564			ep->l1 = get_unaligned_be64(&dp->l1);
 565		}
 566		XFS_BMAP_TRACE_EXLIST(ip, nex, whichfork);
 567		if (whichfork != XFS_DATA_FORK ||
 568			XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE)
 569				if (unlikely(xfs_check_nostate_extents(
 570				    ifp, 0, nex))) {
 571					XFS_ERROR_REPORT("xfs_iformat_extents(2)",
 572							 XFS_ERRLEVEL_LOW,
 573							 ip->i_mount);
 574					return XFS_ERROR(EFSCORRUPTED);
 575				}
 576	}
 577	ifp->if_flags |= XFS_IFEXTENTS;
 578	return 0;
 
 
 
 
 
 
 
 
 579}
 580
 581/*
 582 * The file has too many extents to fit into
 583 * the inode, so they are in B-tree format.
 584 * Allocate a buffer for the root of the B-tree
 585 * and copy the root into it.  The i_extents
 586 * field will remain NULL until all of the
 587 * extents are read in (when they are needed).
 588 */
 589STATIC int
 590xfs_iformat_btree(
 591	xfs_inode_t		*ip,
 592	xfs_dinode_t		*dip,
 593	int			whichfork)
 594{
 595	xfs_bmdr_block_t	*dfp;
 596	xfs_ifork_t		*ifp;
 597	/* REFERENCED */
 598	int			nrecs;
 599	int			size;
 600
 601	ifp = XFS_IFORK_PTR(ip, whichfork);
 602	dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork);
 603	size = XFS_BMAP_BROOT_SPACE(dfp);
 604	nrecs = be16_to_cpu(dfp->bb_numrecs);
 605
 606	/*
 607	 * blow out if -- fork has less extents than can fit in
 608	 * fork (fork shouldn't be a btree format), root btree
 609	 * block has more records than can fit into the fork,
 610	 * or the number of extents is greater than the number of
 611	 * blocks.
 612	 */
 613	if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <= ifp->if_ext_max
 614	    || XFS_BMDR_SPACE_CALC(nrecs) >
 615			XFS_DFORK_SIZE(dip, ip->i_mount, whichfork)
 616	    || XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) {
 617		xfs_warn(ip->i_mount, "corrupt inode %Lu (btree).",
 618			(unsigned long long) ip->i_ino);
 619		XFS_CORRUPTION_ERROR("xfs_iformat_btree", XFS_ERRLEVEL_LOW,
 620				 ip->i_mount, dip);
 621		return XFS_ERROR(EFSCORRUPTED);
 622	}
 623
 624	ifp->if_broot_bytes = size;
 625	ifp->if_broot = kmem_alloc(size, KM_SLEEP | KM_NOFS);
 626	ASSERT(ifp->if_broot != NULL);
 627	/*
 628	 * Copy and convert from the on-disk structure
 629	 * to the in-memory structure.
 630	 */
 631	xfs_bmdr_to_bmbt(ip->i_mount, dfp,
 632			 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork),
 633			 ifp->if_broot, size);
 634	ifp->if_flags &= ~XFS_IFEXTENTS;
 635	ifp->if_flags |= XFS_IFBROOT;
 636
 637	return 0;
 
 638}
 639
 640STATIC void
 641xfs_dinode_from_disk(
 642	xfs_icdinode_t		*to,
 643	xfs_dinode_t		*from)
 644{
 645	to->di_magic = be16_to_cpu(from->di_magic);
 646	to->di_mode = be16_to_cpu(from->di_mode);
 647	to->di_version = from ->di_version;
 648	to->di_format = from->di_format;
 649	to->di_onlink = be16_to_cpu(from->di_onlink);
 650	to->di_uid = be32_to_cpu(from->di_uid);
 651	to->di_gid = be32_to_cpu(from->di_gid);
 652	to->di_nlink = be32_to_cpu(from->di_nlink);
 653	to->di_projid_lo = be16_to_cpu(from->di_projid_lo);
 654	to->di_projid_hi = be16_to_cpu(from->di_projid_hi);
 655	memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
 656	to->di_flushiter = be16_to_cpu(from->di_flushiter);
 657	to->di_atime.t_sec = be32_to_cpu(from->di_atime.t_sec);
 658	to->di_atime.t_nsec = be32_to_cpu(from->di_atime.t_nsec);
 659	to->di_mtime.t_sec = be32_to_cpu(from->di_mtime.t_sec);
 660	to->di_mtime.t_nsec = be32_to_cpu(from->di_mtime.t_nsec);
 661	to->di_ctime.t_sec = be32_to_cpu(from->di_ctime.t_sec);
 662	to->di_ctime.t_nsec = be32_to_cpu(from->di_ctime.t_nsec);
 663	to->di_size = be64_to_cpu(from->di_size);
 664	to->di_nblocks = be64_to_cpu(from->di_nblocks);
 665	to->di_extsize = be32_to_cpu(from->di_extsize);
 666	to->di_nextents = be32_to_cpu(from->di_nextents);
 667	to->di_anextents = be16_to_cpu(from->di_anextents);
 668	to->di_forkoff = from->di_forkoff;
 669	to->di_aformat	= from->di_aformat;
 670	to->di_dmevmask	= be32_to_cpu(from->di_dmevmask);
 671	to->di_dmstate	= be16_to_cpu(from->di_dmstate);
 672	to->di_flags	= be16_to_cpu(from->di_flags);
 673	to->di_gen	= be32_to_cpu(from->di_gen);
 674}
 675
 676void
 677xfs_dinode_to_disk(
 678	xfs_dinode_t		*to,
 679	xfs_icdinode_t		*from)
 680{
 681	to->di_magic = cpu_to_be16(from->di_magic);
 682	to->di_mode = cpu_to_be16(from->di_mode);
 683	to->di_version = from ->di_version;
 684	to->di_format = from->di_format;
 685	to->di_onlink = cpu_to_be16(from->di_onlink);
 686	to->di_uid = cpu_to_be32(from->di_uid);
 687	to->di_gid = cpu_to_be32(from->di_gid);
 688	to->di_nlink = cpu_to_be32(from->di_nlink);
 689	to->di_projid_lo = cpu_to_be16(from->di_projid_lo);
 690	to->di_projid_hi = cpu_to_be16(from->di_projid_hi);
 691	memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
 692	to->di_flushiter = cpu_to_be16(from->di_flushiter);
 693	to->di_atime.t_sec = cpu_to_be32(from->di_atime.t_sec);
 694	to->di_atime.t_nsec = cpu_to_be32(from->di_atime.t_nsec);
 695	to->di_mtime.t_sec = cpu_to_be32(from->di_mtime.t_sec);
 696	to->di_mtime.t_nsec = cpu_to_be32(from->di_mtime.t_nsec);
 697	to->di_ctime.t_sec = cpu_to_be32(from->di_ctime.t_sec);
 698	to->di_ctime.t_nsec = cpu_to_be32(from->di_ctime.t_nsec);
 699	to->di_size = cpu_to_be64(from->di_size);
 700	to->di_nblocks = cpu_to_be64(from->di_nblocks);
 701	to->di_extsize = cpu_to_be32(from->di_extsize);
 702	to->di_nextents = cpu_to_be32(from->di_nextents);
 703	to->di_anextents = cpu_to_be16(from->di_anextents);
 704	to->di_forkoff = from->di_forkoff;
 705	to->di_aformat = from->di_aformat;
 706	to->di_dmevmask = cpu_to_be32(from->di_dmevmask);
 707	to->di_dmstate = cpu_to_be16(from->di_dmstate);
 708	to->di_flags = cpu_to_be16(from->di_flags);
 709	to->di_gen = cpu_to_be32(from->di_gen);
 710}
 711
 712STATIC uint
 713_xfs_dic2xflags(
 714	__uint16_t		di_flags)
 715{
 716	uint			flags = 0;
 
 717
 718	if (di_flags & XFS_DIFLAG_ANY) {
 719		if (di_flags & XFS_DIFLAG_REALTIME)
 720			flags |= XFS_XFLAG_REALTIME;
 721		if (di_flags & XFS_DIFLAG_PREALLOC)
 722			flags |= XFS_XFLAG_PREALLOC;
 723		if (di_flags & XFS_DIFLAG_IMMUTABLE)
 724			flags |= XFS_XFLAG_IMMUTABLE;
 725		if (di_flags & XFS_DIFLAG_APPEND)
 726			flags |= XFS_XFLAG_APPEND;
 727		if (di_flags & XFS_DIFLAG_SYNC)
 728			flags |= XFS_XFLAG_SYNC;
 729		if (di_flags & XFS_DIFLAG_NOATIME)
 730			flags |= XFS_XFLAG_NOATIME;
 731		if (di_flags & XFS_DIFLAG_NODUMP)
 732			flags |= XFS_XFLAG_NODUMP;
 733		if (di_flags & XFS_DIFLAG_RTINHERIT)
 734			flags |= XFS_XFLAG_RTINHERIT;
 735		if (di_flags & XFS_DIFLAG_PROJINHERIT)
 736			flags |= XFS_XFLAG_PROJINHERIT;
 737		if (di_flags & XFS_DIFLAG_NOSYMLINKS)
 738			flags |= XFS_XFLAG_NOSYMLINKS;
 739		if (di_flags & XFS_DIFLAG_EXTSIZE)
 740			flags |= XFS_XFLAG_EXTSIZE;
 741		if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
 742			flags |= XFS_XFLAG_EXTSZINHERIT;
 743		if (di_flags & XFS_DIFLAG_NODEFRAG)
 744			flags |= XFS_XFLAG_NODEFRAG;
 745		if (di_flags & XFS_DIFLAG_FILESTREAM)
 746			flags |= XFS_XFLAG_FILESTREAM;
 747	}
 748
 749	return flags;
 
 750}
 751
 752uint
 753xfs_ip2xflags(
 754	xfs_inode_t		*ip)
 
 
 755{
 756	xfs_icdinode_t		*dic = &ip->i_d;
 
 757
 758	return _xfs_dic2xflags(dic->di_flags) |
 759				(XFS_IFORK_Q(ip) ? XFS_XFLAG_HASATTR : 0);
 
 
 
 
 
 760}
 761
 762uint
 763xfs_dic2xflags(
 764	xfs_dinode_t		*dip)
 
 
 765{
 766	return _xfs_dic2xflags(be16_to_cpu(dip->di_flags)) |
 767				(XFS_DFORK_Q(dip) ? XFS_XFLAG_HASATTR : 0);
 768}
 
 769
 770/*
 771 * Read the disk inode attributes into the in-core inode structure.
 772 */
 773int
 774xfs_iread(
 775	xfs_mount_t	*mp,
 776	xfs_trans_t	*tp,
 777	xfs_inode_t	*ip,
 778	uint		iget_flags)
 779{
 780	xfs_buf_t	*bp;
 781	xfs_dinode_t	*dip;
 782	int		error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 783
 784	/*
 785	 * Fill in the location information in the in-core inode.
 786	 */
 787	error = xfs_imap(mp, tp, ip->i_ino, &ip->i_imap, iget_flags);
 
 
 
 
 
 
 
 
 
 
 788	if (error)
 789		return error;
 
 
 
 790
 791	/*
 792	 * Get pointers to the on-disk inode and the buffer containing it.
 
 
 793	 */
 794	error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp,
 795			       XBF_LOCK, iget_flags);
 
 
 796	if (error)
 797		return error;
 798	dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
 799
 800	/*
 801	 * If we got something that isn't an inode it means someone
 802	 * (nfs or dmi) has a stale handle.
 
 
 
 803	 */
 804	if (dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC)) {
 805#ifdef DEBUG
 806		xfs_alert(mp,
 807			"%s: dip->di_magic (0x%x) != XFS_DINODE_MAGIC (0x%x)",
 808			__func__, be16_to_cpu(dip->di_magic), XFS_DINODE_MAGIC);
 809#endif /* DEBUG */
 810		error = XFS_ERROR(EINVAL);
 811		goto out_brelse;
 812	}
 
 
 813
 814	/*
 815	 * If the on-disk inode is already linked to a directory
 816	 * entry, copy all of the inode into the in-core inode.
 817	 * xfs_iformat() handles copying in the inode format
 818	 * specific information.
 819	 * Otherwise, just get the truly permanent information.
 820	 */
 821	if (dip->di_mode) {
 822		xfs_dinode_from_disk(&ip->i_d, dip);
 823		error = xfs_iformat(ip, dip);
 824		if (error)  {
 825#ifdef DEBUG
 826			xfs_alert(mp, "%s: xfs_iformat() returned error %d",
 827				__func__, error);
 828#endif /* DEBUG */
 829			goto out_brelse;
 830		}
 831	} else {
 832		ip->i_d.di_magic = be16_to_cpu(dip->di_magic);
 833		ip->i_d.di_version = dip->di_version;
 834		ip->i_d.di_gen = be32_to_cpu(dip->di_gen);
 835		ip->i_d.di_flushiter = be16_to_cpu(dip->di_flushiter);
 836		/*
 837		 * Make sure to pull in the mode here as well in
 838		 * case the inode is released without being used.
 839		 * This ensures that xfs_inactive() will see that
 840		 * the inode is already free and not try to mess
 841		 * with the uninitialized part of it.
 842		 */
 843		ip->i_d.di_mode = 0;
 844		/*
 845		 * Initialize the per-fork minima and maxima for a new
 846		 * inode here.  xfs_iformat will do it for old inodes.
 847		 */
 848		ip->i_df.if_ext_max =
 849			XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
 850	}
 851
 852	/*
 853	 * The inode format changed when we moved the link count and
 854	 * made it 32 bits long.  If this is an old format inode,
 855	 * convert it in memory to look like a new one.  If it gets
 856	 * flushed to disk we will convert back before flushing or
 857	 * logging it.  We zero out the new projid field and the old link
 858	 * count field.  We'll handle clearing the pad field (the remains
 859	 * of the old uuid field) when we actually convert the inode to
 860	 * the new format. We don't change the version number so that we
 861	 * can distinguish this from a real new format inode.
 862	 */
 863	if (ip->i_d.di_version == 1) {
 864		ip->i_d.di_nlink = ip->i_d.di_onlink;
 865		ip->i_d.di_onlink = 0;
 866		xfs_set_projid(ip, 0);
 867	}
 868
 869	ip->i_delayed_blks = 0;
 870	ip->i_size = ip->i_d.di_size;
 871
 872	/*
 873	 * Mark the buffer containing the inode as something to keep
 874	 * around for a while.  This helps to keep recently accessed
 875	 * meta-data in-core longer.
 876	 */
 877	xfs_buf_set_ref(bp, XFS_INO_REF);
 
 878
 879	/*
 880	 * Use xfs_trans_brelse() to release the buffer containing the
 881	 * on-disk inode, because it was acquired with xfs_trans_read_buf()
 882	 * in xfs_itobp() above.  If tp is NULL, this is just a normal
 883	 * brelse().  If we're within a transaction, then xfs_trans_brelse()
 884	 * will only release the buffer if it is not dirty within the
 885	 * transaction.  It will be OK to release the buffer in this case,
 886	 * because inodes on disk are never destroyed and we will be
 887	 * locking the new in-core inode before putting it in the hash
 888	 * table where other processes can find it.  Thus we don't have
 889	 * to worry about the inode being changed just because we released
 890	 * the buffer.
 891	 */
 892 out_brelse:
 893	xfs_trans_brelse(tp, bp);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 894	return error;
 895}
 896
 897/*
 898 * Read in extents from a btree-format inode.
 899 * Allocate and fill in if_extents.  Real work is done in xfs_bmap.c.
 900 */
 901int
 902xfs_iread_extents(
 903	xfs_trans_t	*tp,
 904	xfs_inode_t	*ip,
 905	int		whichfork)
 906{
 907	int		error;
 908	xfs_ifork_t	*ifp;
 909	xfs_extnum_t	nextents;
 910
 911	if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) {
 912		XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW,
 913				 ip->i_mount);
 914		return XFS_ERROR(EFSCORRUPTED);
 915	}
 916	nextents = XFS_IFORK_NEXTENTS(ip, whichfork);
 917	ifp = XFS_IFORK_PTR(ip, whichfork);
 918
 919	/*
 920	 * We know that the size is valid (it's checked in iformat_btree)
 921	 */
 922	ifp->if_bytes = ifp->if_real_bytes = 0;
 923	ifp->if_flags |= XFS_IFEXTENTS;
 924	xfs_iext_add(ifp, 0, nextents);
 925	error = xfs_bmap_read_extents(tp, ip, whichfork);
 926	if (error) {
 927		xfs_iext_destroy(ifp);
 928		ifp->if_flags &= ~XFS_IFEXTENTS;
 
 
 
 
 929		return error;
 930	}
 931	xfs_validate_extents(ifp, nextents, XFS_EXTFMT_INODE(ip));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 932	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 933}
 934
 935/*
 936 * Allocate an inode on disk and return a copy of its in-core version.
 937 * The in-core inode is locked exclusively.  Set mode, nlink, and rdev
 938 * appropriately within the inode.  The uid and gid for the inode are
 939 * set according to the contents of the given cred structure.
 940 *
 941 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
 942 * has a free inode available, call xfs_iget()
 943 * to obtain the in-core version of the allocated inode.  Finally,
 944 * fill in the inode and log its initial contents.  In this case,
 945 * ialloc_context would be set to NULL and call_again set to false.
 946 *
 947 * If xfs_dialloc() does not have an available inode,
 948 * it will replenish its supply by doing an allocation. Since we can
 949 * only do one allocation within a transaction without deadlocks, we
 950 * must commit the current transaction before returning the inode itself.
 951 * In this case, therefore, we will set call_again to true and return.
 952 * The caller should then commit the current transaction, start a new
 953 * transaction, and call xfs_ialloc() again to actually get the inode.
 954 *
 955 * To ensure that some other process does not grab the inode that
 956 * was allocated during the first call to xfs_ialloc(), this routine
 957 * also returns the [locked] bp pointing to the head of the freelist
 958 * as ialloc_context.  The caller should hold this buffer across
 959 * the commit and pass it back into this routine on the second call.
 960 *
 961 * If we are allocating quota inodes, we do not have a parent inode
 962 * to attach to or associate with (i.e. pip == NULL) because they
 963 * are not linked into the directory structure - they are attached
 964 * directly to the superblock - and so have no parent.
 965 */
 966int
 967xfs_ialloc(
 968	xfs_trans_t	*tp,
 969	xfs_inode_t	*pip,
 970	mode_t		mode,
 971	xfs_nlink_t	nlink,
 972	xfs_dev_t	rdev,
 973	prid_t		prid,
 974	int		okalloc,
 975	xfs_buf_t	**ialloc_context,
 976	boolean_t	*call_again,
 977	xfs_inode_t	**ipp)
 978{
 979	xfs_ino_t	ino;
 980	xfs_inode_t	*ip;
 981	uint		flags;
 982	int		error;
 983	timespec_t	tv;
 984	int		filestreams = 0;
 985
 986	/*
 987	 * Call the space management code to pick
 988	 * the on-disk inode to be allocated.
 989	 */
 990	error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
 991			    ialloc_context, call_again, &ino);
 992	if (error)
 993		return error;
 994	if (*call_again || ino == NULLFSINO) {
 995		*ipp = NULL;
 996		return 0;
 997	}
 998	ASSERT(*ialloc_context == NULL);
 999
1000	/*
1001	 * Get the in-core inode with the lock held exclusively.
1002	 * This is because we're setting fields here we need
1003	 * to prevent others from looking at until we're done.
1004	 */
1005	error = xfs_iget(tp->t_mountp, tp, ino, XFS_IGET_CREATE,
1006			 XFS_ILOCK_EXCL, &ip);
1007	if (error)
1008		return error;
1009	ASSERT(ip != NULL);
1010
1011	ip->i_d.di_mode = (__uint16_t)mode;
1012	ip->i_d.di_onlink = 0;
1013	ip->i_d.di_nlink = nlink;
1014	ASSERT(ip->i_d.di_nlink == nlink);
1015	ip->i_d.di_uid = current_fsuid();
1016	ip->i_d.di_gid = current_fsgid();
1017	xfs_set_projid(ip, prid);
1018	memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
1019
1020	/*
1021	 * If the superblock version is up to where we support new format
1022	 * inodes and this is currently an old format inode, then change
1023	 * the inode version number now.  This way we only do the conversion
1024	 * here rather than here and in the flush/logging code.
1025	 */
1026	if (xfs_sb_version_hasnlink(&tp->t_mountp->m_sb) &&
1027	    ip->i_d.di_version == 1) {
1028		ip->i_d.di_version = 2;
1029		/*
1030		 * We've already zeroed the old link count, the projid field,
1031		 * and the pad field.
 
 
 
 
1032		 */
 
 
 
 
 
1033	}
1034
1035	/*
1036	 * Project ids won't be stored on disk if we are using a version 1 inode.
1037	 */
1038	if ((prid != 0) && (ip->i_d.di_version == 1))
1039		xfs_bump_ino_vers2(tp, ip);
1040
1041	if (pip && XFS_INHERIT_GID(pip)) {
1042		ip->i_d.di_gid = pip->i_d.di_gid;
1043		if ((pip->i_d.di_mode & S_ISGID) && S_ISDIR(mode)) {
1044			ip->i_d.di_mode |= S_ISGID;
1045		}
1046	}
1047
1048	/*
1049	 * If the group ID of the new file does not match the effective group
1050	 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
1051	 * (and only if the irix_sgid_inherit compatibility variable is set).
1052	 */
1053	if ((irix_sgid_inherit) &&
1054	    (ip->i_d.di_mode & S_ISGID) &&
1055	    (!in_group_p((gid_t)ip->i_d.di_gid))) {
1056		ip->i_d.di_mode &= ~S_ISGID;
1057	}
1058
1059	ip->i_d.di_size = 0;
1060	ip->i_size = 0;
1061	ip->i_d.di_nextents = 0;
1062	ASSERT(ip->i_d.di_nblocks == 0);
1063
1064	nanotime(&tv);
1065	ip->i_d.di_mtime.t_sec = (__int32_t)tv.tv_sec;
1066	ip->i_d.di_mtime.t_nsec = (__int32_t)tv.tv_nsec;
1067	ip->i_d.di_atime = ip->i_d.di_mtime;
1068	ip->i_d.di_ctime = ip->i_d.di_mtime;
1069
1070	/*
1071	 * di_gen will have been taken care of in xfs_iread.
1072	 */
1073	ip->i_d.di_extsize = 0;
1074	ip->i_d.di_dmevmask = 0;
1075	ip->i_d.di_dmstate = 0;
1076	ip->i_d.di_flags = 0;
1077	flags = XFS_ILOG_CORE;
1078	switch (mode & S_IFMT) {
1079	case S_IFIFO:
1080	case S_IFCHR:
1081	case S_IFBLK:
1082	case S_IFSOCK:
1083		ip->i_d.di_format = XFS_DINODE_FMT_DEV;
1084		ip->i_df.if_u2.if_rdev = rdev;
1085		ip->i_df.if_flags = 0;
1086		flags |= XFS_ILOG_DEV;
1087		break;
1088	case S_IFREG:
1089		/*
1090		 * we can't set up filestreams until after the VFS inode
1091		 * is set up properly.
1092		 */
1093		if (pip && xfs_inode_is_filestream(pip))
1094			filestreams = 1;
1095		/* fall through */
1096	case S_IFDIR:
1097		if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
1098			uint	di_flags = 0;
1099
1100			if (S_ISDIR(mode)) {
1101				if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
1102					di_flags |= XFS_DIFLAG_RTINHERIT;
1103				if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1104					di_flags |= XFS_DIFLAG_EXTSZINHERIT;
1105					ip->i_d.di_extsize = pip->i_d.di_extsize;
1106				}
1107			} else if (S_ISREG(mode)) {
1108				if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
1109					di_flags |= XFS_DIFLAG_REALTIME;
1110				if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1111					di_flags |= XFS_DIFLAG_EXTSIZE;
1112					ip->i_d.di_extsize = pip->i_d.di_extsize;
1113				}
1114			}
1115			if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
1116			    xfs_inherit_noatime)
1117				di_flags |= XFS_DIFLAG_NOATIME;
1118			if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
1119			    xfs_inherit_nodump)
1120				di_flags |= XFS_DIFLAG_NODUMP;
1121			if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
1122			    xfs_inherit_sync)
1123				di_flags |= XFS_DIFLAG_SYNC;
1124			if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
1125			    xfs_inherit_nosymlinks)
1126				di_flags |= XFS_DIFLAG_NOSYMLINKS;
1127			if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
1128				di_flags |= XFS_DIFLAG_PROJINHERIT;
1129			if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
1130			    xfs_inherit_nodefrag)
1131				di_flags |= XFS_DIFLAG_NODEFRAG;
1132			if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
1133				di_flags |= XFS_DIFLAG_FILESTREAM;
1134			ip->i_d.di_flags |= di_flags;
1135		}
1136		/* FALLTHROUGH */
1137	case S_IFLNK:
1138		ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
1139		ip->i_df.if_flags = XFS_IFEXTENTS;
1140		ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
1141		ip->i_df.if_u1.if_extents = NULL;
1142		break;
1143	default:
1144		ASSERT(0);
1145	}
1146	/*
1147	 * Attribute fork settings for new inode.
1148	 */
1149	ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
1150	ip->i_d.di_anextents = 0;
 
 
 
 
 
1151
1152	/*
1153	 * Log the new values stuffed into the inode.
 
 
1154	 */
1155	xfs_trans_ijoin_ref(tp, ip, XFS_ILOCK_EXCL);
1156	xfs_trans_log_inode(tp, ip, flags);
1157
1158	/* now that we have an i_mode we can setup inode ops and unlock */
1159	xfs_setup_inode(ip);
1160
1161	/* now we have set up the vfs inode we can associate the filestream */
1162	if (filestreams) {
1163		error = xfs_filestream_associate(pip, ip);
1164		if (error < 0)
1165			return -error;
1166		if (!error)
1167			xfs_iflags_set(ip, XFS_IFILESTREAM);
1168	}
1169
1170	*ipp = ip;
1171	return 0;
 
 
 
 
1172}
1173
1174/*
1175 * Check to make sure that there are no blocks allocated to the
1176 * file beyond the size of the file.  We don't check this for
1177 * files with fixed size extents or real time extents, but we
1178 * at least do it for regular files.
1179 */
1180#ifdef DEBUG
1181STATIC void
1182xfs_isize_check(
1183	struct xfs_inode	*ip,
1184	xfs_fsize_t		isize)
1185{
1186	struct xfs_mount	*mp = ip->i_mount;
1187	xfs_fileoff_t		map_first;
1188	int			nimaps;
1189	xfs_bmbt_irec_t		imaps[2];
1190
1191	if (!S_ISREG(ip->i_d.di_mode))
1192		return;
1193
1194	if (XFS_IS_REALTIME_INODE(ip))
1195		return;
1196
1197	if (ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE)
1198		return;
1199
1200	nimaps = 2;
1201	map_first = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
1202	/*
1203	 * The filesystem could be shutting down, so bmapi may return
1204	 * an error.
1205	 */
1206	if (xfs_bmapi(NULL, ip, map_first,
1207			 (XFS_B_TO_FSB(mp,
1208				       (xfs_ufsize_t)XFS_MAXIOFFSET(mp)) -
1209			  map_first),
1210			 XFS_BMAPI_ENTIRE, NULL, 0, imaps, &nimaps,
1211			 NULL))
1212	    return;
1213	ASSERT(nimaps == 1);
1214	ASSERT(imaps[0].br_startblock == HOLESTARTBLOCK);
1215}
1216#else	/* DEBUG */
1217#define xfs_isize_check(ip, isize)
1218#endif	/* DEBUG */
1219
1220/*
1221 * Free up the underlying blocks past new_size.  The new size must be smaller
1222 * than the current size.  This routine can be used both for the attribute and
1223 * data fork, and does not modify the inode size, which is left to the caller.
1224 *
1225 * The transaction passed to this routine must have made a permanent log
1226 * reservation of at least XFS_ITRUNCATE_LOG_RES.  This routine may commit the
1227 * given transaction and start new ones, so make sure everything involved in
1228 * the transaction is tidy before calling here.  Some transaction will be
1229 * returned to the caller to be committed.  The incoming transaction must
1230 * already include the inode, and both inode locks must be held exclusively.
1231 * The inode must also be "held" within the transaction.  On return the inode
1232 * will be "held" within the returned transaction.  This routine does NOT
1233 * require any disk space to be reserved for it within the transaction.
1234 *
1235 * If we get an error, we must return with the inode locked and linked into the
1236 * current transaction. This keeps things simple for the higher level code,
1237 * because it always knows that the inode is locked and held in the transaction
1238 * that returns to it whether errors occur or not.  We don't mark the inode
1239 * dirty on error so that transactions can be easily aborted if possible.
1240 */
1241int
1242xfs_itruncate_extents(
1243	struct xfs_trans	**tpp,
1244	struct xfs_inode	*ip,
1245	int			whichfork,
1246	xfs_fsize_t		new_size)
 
1247{
1248	struct xfs_mount	*mp = ip->i_mount;
1249	struct xfs_trans	*tp = *tpp;
1250	struct xfs_trans	*ntp;
1251	xfs_bmap_free_t		free_list;
1252	xfs_fsblock_t		first_block;
1253	xfs_fileoff_t		first_unmap_block;
1254	xfs_fileoff_t		last_block;
1255	xfs_filblks_t		unmap_len;
1256	int			committed;
1257	int			error = 0;
1258	int			done = 0;
1259
1260	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_IOLOCK_EXCL));
1261	ASSERT(new_size <= ip->i_size);
 
 
1262	ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1263	ASSERT(ip->i_itemp != NULL);
1264	ASSERT(ip->i_itemp->ili_lock_flags == 0);
1265	ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
1266
 
 
 
 
1267	/*
1268	 * Since it is possible for space to become allocated beyond
1269	 * the end of the file (in a crash where the space is allocated
1270	 * but the inode size is not yet updated), simply remove any
1271	 * blocks which show up between the new EOF and the maximum
1272	 * possible file size.  If the first block to be removed is
1273	 * beyond the maximum file size (ie it is the same as last_block),
1274	 * then there is nothing to do.
 
1275	 */
1276	first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1277	last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_MAXIOFFSET(mp));
1278	if (first_unmap_block == last_block)
1279		return 0;
 
 
 
 
 
 
1280
1281	ASSERT(first_unmap_block < last_block);
1282	unmap_len = last_block - first_unmap_block + 1;
1283	while (!done) {
1284		xfs_bmap_init(&free_list, &first_block);
1285		error = xfs_bunmapi(tp, ip,
1286				    first_unmap_block, unmap_len,
1287				    xfs_bmapi_aflag(whichfork),
1288				    XFS_ITRUNC_MAX_EXTENTS,
1289				    &first_block, &free_list,
1290				    &done);
1291		if (error)
1292			goto out_bmap_cancel;
1293
1294		/*
1295		 * Duplicate the transaction that has the permanent
1296		 * reservation and commit the old transaction.
1297		 */
1298		error = xfs_bmap_finish(&tp, &free_list, &committed);
1299		if (committed)
1300			xfs_trans_ijoin(tp, ip);
1301		if (error)
1302			goto out_bmap_cancel;
1303
1304		if (committed) {
1305			/*
1306			 * Mark the inode dirty so it will be logged and
1307			 * moved forward in the log as part of every commit.
1308			 */
1309			xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1310		}
 
1311
1312		ntp = xfs_trans_dup(tp);
1313		error = xfs_trans_commit(tp, 0);
1314		tp = ntp;
1315
1316		xfs_trans_ijoin(tp, ip);
 
 
 
1317
1318		if (error)
1319			goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1320
 
 
 
 
 
 
 
 
 
 
1321		/*
1322		 * Transaction commit worked ok so we can drop the extra ticket
1323		 * reference that we gained in xfs_trans_dup()
 
 
 
 
 
 
 
 
 
 
1324		 */
1325		xfs_log_ticket_put(tp->t_ticket);
1326		error = xfs_trans_reserve(tp, 0,
1327					XFS_ITRUNCATE_LOG_RES(mp), 0,
1328					XFS_TRANS_PERM_LOG_RES,
1329					XFS_ITRUNCATE_LOG_COUNT);
1330		if (error)
1331			goto out;
 
 
 
 
1332	}
1333
1334out:
1335	*tpp = tp;
1336	return error;
1337out_bmap_cancel:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1338	/*
1339	 * If the bunmapi call encounters an error, return to the caller where
1340	 * the transaction can be properly aborted.  We just need to make sure
1341	 * we're not holding any resources that we were not when we came in.
1342	 */
1343	xfs_bmap_cancel(&free_list);
1344	goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1345}
1346
1347int
1348xfs_itruncate_data(
1349	struct xfs_trans	**tpp,
1350	struct xfs_inode	*ip,
1351	xfs_fsize_t		new_size)
 
 
 
1352{
 
 
1353	int			error;
1354
1355	trace_xfs_itruncate_data_start(ip, new_size);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1356
1357	/*
1358	 * The first thing we do is set the size to new_size permanently on
1359	 * disk.  This way we don't have to worry about anyone ever being able
1360	 * to look at the data being freed even in the face of a crash.
1361	 * What we're getting around here is the case where we free a block, it
1362	 * is allocated to another file, it is written to, and then we crash.
1363	 * If the new data gets written to the file but the log buffers
1364	 * containing the free and reallocation don't, then we'd end up with
1365	 * garbage in the blocks being freed.  As long as we make the new_size
1366	 * permanent before actually freeing any blocks it doesn't matter if
1367	 * they get written to.
 
 
 
 
 
 
 
 
1368	 */
1369	if (ip->i_d.di_nextents > 0) {
 
 
 
 
 
1370		/*
1371		 * If we are not changing the file size then do not update
1372		 * the on-disk file size - we may be called from
1373		 * xfs_inactive_free_eofblocks().  If we update the on-disk
1374		 * file size and then the system crashes before the contents
1375		 * of the file are flushed to disk then the files may be
1376		 * full of holes (ie NULL files bug).
1377		 */
1378		if (ip->i_size != new_size) {
1379			ip->i_d.di_size = new_size;
1380			ip->i_size = new_size;
1381			xfs_trans_log_inode(*tpp, ip, XFS_ILOG_CORE);
1382		}
 
 
1383	}
1384
1385	error = xfs_itruncate_extents(tpp, ip, XFS_DATA_FORK, new_size);
1386	if (error)
1387		return error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1388
1389	/*
1390	 * If we are not changing the file size then do not update the on-disk
1391	 * file size - we may be called from xfs_inactive_free_eofblocks().
1392	 * If we update the on-disk file size and then the system crashes
1393	 * before the contents of the file are flushed to disk then the files
1394	 * may be full of holes (ie NULL files bug).
1395	 */
1396	xfs_isize_check(ip, new_size);
1397	if (ip->i_size != new_size) {
1398		ip->i_d.di_size = new_size;
1399		ip->i_size = new_size;
1400	}
 
1401
1402	ASSERT(new_size != 0 || ip->i_delayed_blks == 0);
1403	ASSERT(new_size != 0 || ip->i_d.di_nextents == 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
1404
1405	/*
1406	 * Always re-log the inode so that our permanent transaction can keep
1407	 * on rolling it forward in the log.
 
 
 
 
 
 
1408	 */
1409	xfs_trans_log_inode(*tpp, ip, XFS_ILOG_CORE);
 
1410
1411	trace_xfs_itruncate_data_end(ip, new_size);
1412	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1413}
1414
1415/*
1416 * This is called when the inode's link count goes to 0.
1417 * We place the on-disk inode on a list in the AGI.  It
1418 * will be pulled from this list when the inode is freed.
 
 
 
1419 */
1420int
1421xfs_iunlink(
1422	xfs_trans_t	*tp,
1423	xfs_inode_t	*ip)
1424{
1425	xfs_mount_t	*mp;
1426	xfs_agi_t	*agi;
1427	xfs_dinode_t	*dip;
1428	xfs_buf_t	*agibp;
1429	xfs_buf_t	*ibp;
1430	xfs_agino_t	agino;
1431	short		bucket_index;
1432	int		offset;
1433	int		error;
1434
1435	ASSERT(ip->i_d.di_nlink == 0);
1436	ASSERT(ip->i_d.di_mode != 0);
1437
1438	mp = tp->t_mountp;
1439
1440	/*
1441	 * Get the agi buffer first.  It ensures lock ordering
1442	 * on the list.
1443	 */
1444	error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp);
1445	if (error)
1446		return error;
1447	agi = XFS_BUF_TO_AGI(agibp);
 
 
 
 
 
1448
1449	/*
1450	 * Get the index into the agi hash table for the
1451	 * list this inode will go on.
1452	 */
1453	agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1454	ASSERT(agino != 0);
1455	bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1456	ASSERT(agi->agi_unlinked[bucket_index]);
1457	ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1458
1459	if (agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO)) {
 
 
 
 
 
1460		/*
1461		 * There is already another inode in the bucket we need
1462		 * to add ourselves to.  Add us at the front of the list.
1463		 * Here we put the head pointer into our next pointer,
1464		 * and then we fall through to point the head at us.
 
 
1465		 */
1466		error = xfs_itobp(mp, tp, ip, &dip, &ibp, XBF_LOCK);
 
 
1467		if (error)
1468			return error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1469
1470		ASSERT(dip->di_next_unlinked == cpu_to_be32(NULLAGINO));
1471		dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
1472		offset = ip->i_imap.im_boffset +
1473			offsetof(xfs_dinode_t, di_next_unlinked);
1474		xfs_trans_inode_buf(tp, ibp);
1475		xfs_trans_log_buf(tp, ibp, offset,
1476				  (offset + sizeof(xfs_agino_t) - 1));
1477		xfs_inobp_check(mp, ibp);
 
 
 
 
 
 
 
 
 
 
 
1478	}
1479
1480	/*
1481	 * Point the bucket head pointer at the inode being inserted.
1482	 */
1483	ASSERT(agino != 0);
1484	agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
1485	offset = offsetof(xfs_agi_t, agi_unlinked) +
1486		(sizeof(xfs_agino_t) * bucket_index);
1487	xfs_trans_log_buf(tp, agibp, offset,
1488			  (offset + sizeof(xfs_agino_t) - 1));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1489	return 0;
1490}
1491
1492/*
1493 * Pull the on-disk inode from the AGI unlinked list.
 
1494 */
1495STATIC int
1496xfs_iunlink_remove(
1497	xfs_trans_t	*tp,
1498	xfs_inode_t	*ip)
 
 
 
1499{
1500	xfs_ino_t	next_ino;
1501	xfs_mount_t	*mp;
1502	xfs_agi_t	*agi;
1503	xfs_dinode_t	*dip;
1504	xfs_buf_t	*agibp;
1505	xfs_buf_t	*ibp;
1506	xfs_agnumber_t	agno;
1507	xfs_agino_t	agino;
1508	xfs_agino_t	next_agino;
1509	xfs_buf_t	*last_ibp;
1510	xfs_dinode_t	*last_dip = NULL;
1511	short		bucket_index;
1512	int		offset, last_offset = 0;
1513	int		error;
1514
1515	mp = tp->t_mountp;
1516	agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
 
1517
1518	/*
1519	 * Get the agi buffer first.  It ensures lock ordering
1520	 * on the list.
 
1521	 */
1522	error = xfs_read_agi(mp, tp, agno, &agibp);
1523	if (error)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1524		return error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1525
1526	agi = XFS_BUF_TO_AGI(agibp);
 
 
 
 
 
 
 
 
 
 
 
 
1527
1528	/*
1529	 * Get the index into the agi hash table for the
1530	 * list this inode will go on.
 
1531	 */
1532	agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1533	ASSERT(agino != 0);
1534	bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1535	ASSERT(agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO));
1536	ASSERT(agi->agi_unlinked[bucket_index]);
1537
1538	if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
1539		/*
1540		 * We're at the head of the list.  Get the inode's
1541		 * on-disk buffer to see if there is anyone after us
1542		 * on the list.  Only modify our next pointer if it
1543		 * is not already NULLAGINO.  This saves us the overhead
1544		 * of dealing with the buffer when there is no need to
1545		 * change it.
1546		 */
1547		error = xfs_itobp(mp, tp, ip, &dip, &ibp, XBF_LOCK);
1548		if (error) {
1549			xfs_warn(mp, "%s: xfs_itobp() returned error %d.",
1550				__func__, error);
1551			return error;
1552		}
1553		next_agino = be32_to_cpu(dip->di_next_unlinked);
1554		ASSERT(next_agino != 0);
1555		if (next_agino != NULLAGINO) {
1556			dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
1557			offset = ip->i_imap.im_boffset +
1558				offsetof(xfs_dinode_t, di_next_unlinked);
1559			xfs_trans_inode_buf(tp, ibp);
1560			xfs_trans_log_buf(tp, ibp, offset,
1561					  (offset + sizeof(xfs_agino_t) - 1));
1562			xfs_inobp_check(mp, ibp);
1563		} else {
1564			xfs_trans_brelse(tp, ibp);
1565		}
1566		/*
1567		 * Point the bucket head pointer at the next inode.
1568		 */
1569		ASSERT(next_agino != 0);
1570		ASSERT(next_agino != agino);
1571		agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
1572		offset = offsetof(xfs_agi_t, agi_unlinked) +
1573			(sizeof(xfs_agino_t) * bucket_index);
1574		xfs_trans_log_buf(tp, agibp, offset,
1575				  (offset + sizeof(xfs_agino_t) - 1));
1576	} else {
1577		/*
1578		 * We need to search the list for the inode being freed.
1579		 */
1580		next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
1581		last_ibp = NULL;
1582		while (next_agino != agino) {
1583			/*
1584			 * If the last inode wasn't the one pointing to
1585			 * us, then release its buffer since we're not
1586			 * going to do anything with it.
1587			 */
1588			if (last_ibp != NULL) {
1589				xfs_trans_brelse(tp, last_ibp);
1590			}
1591			next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
1592			error = xfs_inotobp(mp, tp, next_ino, &last_dip,
1593					    &last_ibp, &last_offset, 0);
1594			if (error) {
1595				xfs_warn(mp,
1596					"%s: xfs_inotobp() returned error %d.",
1597					__func__, error);
1598				return error;
1599			}
1600			next_agino = be32_to_cpu(last_dip->di_next_unlinked);
1601			ASSERT(next_agino != NULLAGINO);
1602			ASSERT(next_agino != 0);
1603		}
1604		/*
1605		 * Now last_ibp points to the buffer previous to us on
1606		 * the unlinked list.  Pull us from the list.
1607		 */
1608		error = xfs_itobp(mp, tp, ip, &dip, &ibp, XBF_LOCK);
1609		if (error) {
1610			xfs_warn(mp, "%s: xfs_itobp(2) returned error %d.",
1611				__func__, error);
1612			return error;
1613		}
1614		next_agino = be32_to_cpu(dip->di_next_unlinked);
1615		ASSERT(next_agino != 0);
1616		ASSERT(next_agino != agino);
1617		if (next_agino != NULLAGINO) {
1618			dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
1619			offset = ip->i_imap.im_boffset +
1620				offsetof(xfs_dinode_t, di_next_unlinked);
1621			xfs_trans_inode_buf(tp, ibp);
1622			xfs_trans_log_buf(tp, ibp, offset,
1623					  (offset + sizeof(xfs_agino_t) - 1));
1624			xfs_inobp_check(mp, ibp);
1625		} else {
1626			xfs_trans_brelse(tp, ibp);
1627		}
1628		/*
1629		 * Point the previous inode on the list to the next inode.
1630		 */
1631		last_dip->di_next_unlinked = cpu_to_be32(next_agino);
1632		ASSERT(next_agino != 0);
1633		offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
1634		xfs_trans_inode_buf(tp, last_ibp);
1635		xfs_trans_log_buf(tp, last_ibp, offset,
1636				  (offset + sizeof(xfs_agino_t) - 1));
1637		xfs_inobp_check(mp, last_ibp);
1638	}
1639	return 0;
 
 
 
1640}
1641
1642/*
1643 * A big issue when freeing the inode cluster is is that we _cannot_ skip any
1644 * inodes that are in memory - they all must be marked stale and attached to
1645 * the cluster buffer.
 
 
1646 */
1647STATIC void
1648xfs_ifree_cluster(
1649	xfs_inode_t	*free_ip,
1650	xfs_trans_t	*tp,
1651	xfs_ino_t	inum)
1652{
1653	xfs_mount_t		*mp = free_ip->i_mount;
1654	int			blks_per_cluster;
1655	int			nbufs;
1656	int			ninodes;
1657	int			i, j;
1658	xfs_daddr_t		blkno;
1659	xfs_buf_t		*bp;
1660	xfs_inode_t		*ip;
1661	xfs_inode_log_item_t	*iip;
1662	xfs_log_item_t		*lip;
1663	struct xfs_perag	*pag;
 
 
1664
1665	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum));
1666	if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) {
1667		blks_per_cluster = 1;
1668		ninodes = mp->m_sb.sb_inopblock;
1669		nbufs = XFS_IALLOC_BLOCKS(mp);
1670	} else {
1671		blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) /
1672					mp->m_sb.sb_blocksize;
1673		ninodes = blks_per_cluster * mp->m_sb.sb_inopblock;
1674		nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster;
1675	}
1676
1677	for (j = 0; j < nbufs; j++, inum += ninodes) {
1678		blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
1679					 XFS_INO_TO_AGBNO(mp, inum));
1680
1681		/*
1682		 * We obtain and lock the backing buffer first in the process
1683		 * here, as we have to ensure that any dirty inode that we
1684		 * can't get the flush lock on is attached to the buffer.
1685		 * If we scan the in-memory inodes first, then buffer IO can
1686		 * complete before we get a lock on it, and hence we may fail
1687		 * to mark all the active inodes on the buffer stale.
1688		 */
1689		bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
1690					mp->m_bsize * blks_per_cluster,
1691					XBF_LOCK);
1692
1693		/*
1694		 * Walk the inodes already attached to the buffer and mark them
1695		 * stale. These will all have the flush locks held, so an
1696		 * in-memory inode walk can't lock them. By marking them all
1697		 * stale first, we will not attempt to lock them in the loop
1698		 * below as the XFS_ISTALE flag will be set.
1699		 */
1700		lip = bp->b_fspriv;
1701		while (lip) {
1702			if (lip->li_type == XFS_LI_INODE) {
1703				iip = (xfs_inode_log_item_t *)lip;
1704				ASSERT(iip->ili_logged == 1);
1705				lip->li_cb = xfs_istale_done;
1706				xfs_trans_ail_copy_lsn(mp->m_ail,
1707							&iip->ili_flush_lsn,
1708							&iip->ili_item.li_lsn);
1709				xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
1710			}
1711			lip = lip->li_bio_list;
1712		}
1713
 
 
 
 
1714
1715		/*
1716		 * For each inode in memory attempt to add it to the inode
1717		 * buffer and set it up for being staled on buffer IO
1718		 * completion.  This is safe as we've locked out tail pushing
1719		 * and flushing by locking the buffer.
1720		 *
1721		 * We have already marked every inode that was part of a
1722		 * transaction stale above, which means there is no point in
1723		 * even trying to lock them.
1724		 */
1725		for (i = 0; i < ninodes; i++) {
1726retry:
1727			rcu_read_lock();
1728			ip = radix_tree_lookup(&pag->pag_ici_root,
1729					XFS_INO_TO_AGINO(mp, (inum + i)));
1730
1731			/* Inode not in memory, nothing to do */
1732			if (!ip) {
1733				rcu_read_unlock();
1734				continue;
1735			}
1736
1737			/*
1738			 * because this is an RCU protected lookup, we could
1739			 * find a recently freed or even reallocated inode
1740			 * during the lookup. We need to check under the
1741			 * i_flags_lock for a valid inode here. Skip it if it
1742			 * is not valid, the wrong inode or stale.
1743			 */
1744			spin_lock(&ip->i_flags_lock);
1745			if (ip->i_ino != inum + i ||
1746			    __xfs_iflags_test(ip, XFS_ISTALE)) {
1747				spin_unlock(&ip->i_flags_lock);
1748				rcu_read_unlock();
1749				continue;
1750			}
1751			spin_unlock(&ip->i_flags_lock);
1752
1753			/*
1754			 * Don't try to lock/unlock the current inode, but we
1755			 * _cannot_ skip the other inodes that we did not find
1756			 * in the list attached to the buffer and are not
1757			 * already marked stale. If we can't lock it, back off
1758			 * and retry.
1759			 */
1760			if (ip != free_ip &&
1761			    !xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
1762				rcu_read_unlock();
1763				delay(1);
1764				goto retry;
1765			}
1766			rcu_read_unlock();
1767
1768			xfs_iflock(ip);
1769			xfs_iflags_set(ip, XFS_ISTALE);
 
 
 
 
 
 
 
 
 
1770
1771			/*
1772			 * we don't need to attach clean inodes or those only
1773			 * with unlogged changes (which we throw away, anyway).
1774			 */
1775			iip = ip->i_itemp;
1776			if (!iip || xfs_inode_clean(ip)) {
1777				ASSERT(ip != free_ip);
1778				ip->i_update_core = 0;
1779				xfs_ifunlock(ip);
1780				xfs_iunlock(ip, XFS_ILOCK_EXCL);
1781				continue;
1782			}
1783
1784			iip->ili_last_fields = iip->ili_format.ilf_fields;
1785			iip->ili_format.ilf_fields = 0;
1786			iip->ili_logged = 1;
1787			xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
1788						&iip->ili_item.li_lsn);
 
 
 
 
 
 
1789
1790			xfs_buf_attach_iodone(bp, xfs_istale_done,
1791						  &iip->ili_item);
1792
1793			if (ip != free_ip)
1794				xfs_iunlock(ip, XFS_ILOCK_EXCL);
 
 
1795		}
1796
1797		xfs_trans_stale_inode_buf(tp, bp);
1798		xfs_trans_binval(tp, bp);
 
 
 
 
 
1799	}
1800
1801	xfs_perag_put(pag);
 
 
1802}
1803
1804/*
1805 * This is called to return an inode to the inode free list.
1806 * The inode should already be truncated to 0 length and have
1807 * no pages associated with it.  This routine also assumes that
1808 * the inode is already a part of the transaction.
1809 *
1810 * The on-disk copy of the inode will have been added to the list
1811 * of unlinked inodes in the AGI. We need to remove the inode from
1812 * that list atomically with respect to freeing it here.
1813 */
1814int
1815xfs_ifree(
1816	xfs_trans_t	*tp,
1817	xfs_inode_t	*ip,
1818	xfs_bmap_free_t	*flist)
1819{
 
1820	int			error;
1821	int			delete;
1822	xfs_ino_t		first_ino;
1823	xfs_dinode_t    	*dip;
1824	xfs_buf_t       	*ibp;
1825
1826	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1827	ASSERT(ip->i_d.di_nlink == 0);
1828	ASSERT(ip->i_d.di_nextents == 0);
1829	ASSERT(ip->i_d.di_anextents == 0);
1830	ASSERT((ip->i_d.di_size == 0 && ip->i_size == 0) ||
1831	       (!S_ISREG(ip->i_d.di_mode)));
1832	ASSERT(ip->i_d.di_nblocks == 0);
1833
1834	/*
1835	 * Pull the on-disk inode from the AGI unlinked list.
1836	 */
1837	error = xfs_iunlink_remove(tp, ip);
1838	if (error != 0) {
1839		return error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1840	}
1841
1842	error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
1843	if (error != 0) {
1844		return error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1845	}
1846	ip->i_d.di_mode = 0;		/* mark incore inode as free */
1847	ip->i_d.di_flags = 0;
1848	ip->i_d.di_dmevmask = 0;
1849	ip->i_d.di_forkoff = 0;		/* mark the attr fork not in use */
1850	ip->i_df.if_ext_max =
1851		XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
1852	ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
1853	ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
1854	/*
1855	 * Bump the generation count so no one will be confused
1856	 * by reincarnations of this inode.
 
1857	 */
1858	ip->i_d.di_gen++;
 
 
 
 
 
1859
1860	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
 
 
 
 
 
 
 
1861
1862	error = xfs_itobp(ip->i_mount, tp, ip, &dip, &ibp, XBF_LOCK);
1863	if (error)
1864		return error;
1865
1866        /*
1867	* Clear the on-disk di_mode. This is to prevent xfs_bulkstat
1868	* from picking up this inode when it is reclaimed (its incore state
1869	* initialzed but not flushed to disk yet). The in-core di_mode is
1870	* already cleared  and a corresponding transaction logged.
1871	* The hack here just synchronizes the in-core to on-disk
1872	* di_mode value in advance before the actual inode sync to disk.
1873	* This is OK because the inode is already unlinked and would never
1874	* change its di_mode again for this inode generation.
1875	* This is a temporary hack that would require a proper fix
1876	* in the future.
1877	*/
1878	dip->di_mode = 0;
1879
1880	if (delete) {
1881		xfs_ifree_cluster(ip, tp, first_ino);
1882	}
1883
1884	return 0;
 
 
 
 
 
1885}
1886
1887/*
1888 * Reallocate the space for if_broot based on the number of records
1889 * being added or deleted as indicated in rec_diff.  Move the records
1890 * and pointers in if_broot to fit the new size.  When shrinking this
1891 * will eliminate holes between the records and pointers created by
1892 * the caller.  When growing this will create holes to be filled in
1893 * by the caller.
1894 *
1895 * The caller must not request to add more records than would fit in
1896 * the on-disk inode root.  If the if_broot is currently NULL, then
1897 * if we adding records one will be allocated.  The caller must also
1898 * not request that the number of records go below zero, although
1899 * it can go to zero.
1900 *
1901 * ip -- the inode whose if_broot area is changing
1902 * ext_diff -- the change in the number of records, positive or negative,
1903 *	 requested for the if_broot array.
1904 */
1905void
1906xfs_iroot_realloc(
1907	xfs_inode_t		*ip,
1908	int			rec_diff,
1909	int			whichfork)
1910{
1911	struct xfs_mount	*mp = ip->i_mount;
1912	int			cur_max;
1913	xfs_ifork_t		*ifp;
1914	struct xfs_btree_block	*new_broot;
1915	int			new_max;
1916	size_t			new_size;
1917	char			*np;
1918	char			*op;
 
 
1919
1920	/*
1921	 * Handle the degenerate case quietly.
1922	 */
1923	if (rec_diff == 0) {
1924		return;
1925	}
1926
1927	ifp = XFS_IFORK_PTR(ip, whichfork);
1928	if (rec_diff > 0) {
1929		/*
1930		 * If there wasn't any memory allocated before, just
1931		 * allocate it now and get out.
 
1932		 */
1933		if (ifp->if_broot_bytes == 0) {
1934			new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff);
1935			ifp->if_broot = kmem_alloc(new_size, KM_SLEEP | KM_NOFS);
1936			ifp->if_broot_bytes = (int)new_size;
1937			return;
1938		}
1939
1940		/*
1941		 * If there is already an existing if_broot, then we need
1942		 * to realloc() it and shift the pointers to their new
1943		 * location.  The records don't change location because
1944		 * they are kept butted up against the btree block header.
1945		 */
1946		cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
1947		new_max = cur_max + rec_diff;
1948		new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
1949		ifp->if_broot = kmem_realloc(ifp->if_broot, new_size,
1950				(size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max), /* old size */
1951				KM_SLEEP | KM_NOFS);
1952		op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
1953						     ifp->if_broot_bytes);
1954		np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
1955						     (int)new_size);
1956		ifp->if_broot_bytes = (int)new_size;
1957		ASSERT(ifp->if_broot_bytes <=
1958			XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
1959		memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t));
1960		return;
1961	}
1962
1963	/*
1964	 * rec_diff is less than 0.  In this case, we are shrinking the
1965	 * if_broot buffer.  It must already exist.  If we go to zero
1966	 * records, just get rid of the root and clear the status bit.
1967	 */
1968	ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0));
1969	cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
1970	new_max = cur_max + rec_diff;
1971	ASSERT(new_max >= 0);
1972	if (new_max > 0)
1973		new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
1974	else
1975		new_size = 0;
1976	if (new_size > 0) {
1977		new_broot = kmem_alloc(new_size, KM_SLEEP | KM_NOFS);
1978		/*
1979		 * First copy over the btree block header.
 
 
 
 
 
 
1980		 */
1981		memcpy(new_broot, ifp->if_broot, XFS_BTREE_LBLOCK_LEN);
1982	} else {
1983		new_broot = NULL;
1984		ifp->if_flags &= ~XFS_IFBROOT;
1985	}
1986
1987	/*
1988	 * Only copy the records and pointers if there are any.
1989	 */
1990	if (new_max > 0) {
1991		/*
1992		 * First copy the records.
 
 
 
 
 
 
 
 
 
 
 
 
 
1993		 */
1994		op = (char *)XFS_BMBT_REC_ADDR(mp, ifp->if_broot, 1);
1995		np = (char *)XFS_BMBT_REC_ADDR(mp, new_broot, 1);
1996		memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t));
1997
1998		/*
1999		 * Then copy the pointers.
2000		 */
2001		op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
2002						     ifp->if_broot_bytes);
2003		np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, new_broot, 1,
2004						     (int)new_size);
2005		memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t));
2006	}
2007	kmem_free(ifp->if_broot);
2008	ifp->if_broot = new_broot;
2009	ifp->if_broot_bytes = (int)new_size;
2010	ASSERT(ifp->if_broot_bytes <=
2011		XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
2012	return;
2013}
2014
2015
2016/*
2017 * This is called when the amount of space needed for if_data
2018 * is increased or decreased.  The change in size is indicated by
2019 * the number of bytes that need to be added or deleted in the
2020 * byte_diff parameter.
2021 *
2022 * If the amount of space needed has decreased below the size of the
2023 * inline buffer, then switch to using the inline buffer.  Otherwise,
2024 * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
2025 * to what is needed.
2026 *
2027 * ip -- the inode whose if_data area is changing
2028 * byte_diff -- the change in the number of bytes, positive or negative,
2029 *	 requested for the if_data array.
2030 */
2031void
2032xfs_idata_realloc(
2033	xfs_inode_t	*ip,
2034	int		byte_diff,
2035	int		whichfork)
2036{
2037	xfs_ifork_t	*ifp;
2038	int		new_size;
2039	int		real_size;
 
2040
2041	if (byte_diff == 0) {
2042		return;
2043	}
 
 
2044
2045	ifp = XFS_IFORK_PTR(ip, whichfork);
2046	new_size = (int)ifp->if_bytes + byte_diff;
2047	ASSERT(new_size >= 0);
2048
2049	if (new_size == 0) {
2050		if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2051			kmem_free(ifp->if_u1.if_data);
2052		}
2053		ifp->if_u1.if_data = NULL;
2054		real_size = 0;
2055	} else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) {
2056		/*
2057		 * If the valid extents/data can fit in if_inline_ext/data,
2058		 * copy them from the malloc'd vector and free it.
2059		 */
2060		if (ifp->if_u1.if_data == NULL) {
2061			ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2062		} else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2063			ASSERT(ifp->if_real_bytes != 0);
2064			memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data,
2065			      new_size);
2066			kmem_free(ifp->if_u1.if_data);
2067			ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2068		}
2069		real_size = 0;
2070	} else {
2071		/*
2072		 * Stuck with malloc/realloc.
2073		 * For inline data, the underlying buffer must be
2074		 * a multiple of 4 bytes in size so that it can be
2075		 * logged and stay on word boundaries.  We enforce
2076		 * that here.
2077		 */
2078		real_size = roundup(new_size, 4);
2079		if (ifp->if_u1.if_data == NULL) {
2080			ASSERT(ifp->if_real_bytes == 0);
2081			ifp->if_u1.if_data = kmem_alloc(real_size,
2082							KM_SLEEP | KM_NOFS);
2083		} else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2084			/*
2085			 * Only do the realloc if the underlying size
2086			 * is really changing.
2087			 */
2088			if (ifp->if_real_bytes != real_size) {
2089				ifp->if_u1.if_data =
2090					kmem_realloc(ifp->if_u1.if_data,
2091							real_size,
2092							ifp->if_real_bytes,
2093							KM_SLEEP | KM_NOFS);
2094			}
2095		} else {
2096			ASSERT(ifp->if_real_bytes == 0);
2097			ifp->if_u1.if_data = kmem_alloc(real_size,
2098							KM_SLEEP | KM_NOFS);
2099			memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data,
2100				ifp->if_bytes);
2101		}
2102	}
2103	ifp->if_real_bytes = real_size;
2104	ifp->if_bytes = new_size;
2105	ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2106}
2107
2108void
2109xfs_idestroy_fork(
2110	xfs_inode_t	*ip,
2111	int		whichfork)
2112{
2113	xfs_ifork_t	*ifp;
2114
2115	ifp = XFS_IFORK_PTR(ip, whichfork);
2116	if (ifp->if_broot != NULL) {
2117		kmem_free(ifp->if_broot);
2118		ifp->if_broot = NULL;
2119	}
 
2120
2121	/*
2122	 * If the format is local, then we can't have an extents
2123	 * array so just look for an inline data array.  If we're
2124	 * not local then we may or may not have an extents list,
2125	 * so check and free it up if we do.
2126	 */
2127	if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) {
2128		if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) &&
2129		    (ifp->if_u1.if_data != NULL)) {
2130			ASSERT(ifp->if_real_bytes != 0);
2131			kmem_free(ifp->if_u1.if_data);
2132			ifp->if_u1.if_data = NULL;
2133			ifp->if_real_bytes = 0;
2134		}
2135	} else if ((ifp->if_flags & XFS_IFEXTENTS) &&
2136		   ((ifp->if_flags & XFS_IFEXTIREC) ||
2137		    ((ifp->if_u1.if_extents != NULL) &&
2138		     (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)))) {
2139		ASSERT(ifp->if_real_bytes != 0);
2140		xfs_iext_destroy(ifp);
2141	}
2142	ASSERT(ifp->if_u1.if_extents == NULL ||
2143	       ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext);
2144	ASSERT(ifp->if_real_bytes == 0);
2145	if (whichfork == XFS_ATTR_FORK) {
2146		kmem_zone_free(xfs_ifork_zone, ip->i_afp);
2147		ip->i_afp = NULL;
2148	}
 
 
 
 
 
 
 
 
2149}
2150
2151/*
2152 * This is called to unpin an inode.  The caller must have the inode locked
2153 * in at least shared mode so that the buffer cannot be subsequently pinned
2154 * once someone is waiting for it to be unpinned.
2155 */
2156static void
2157xfs_iunpin_nowait(
2158	struct xfs_inode	*ip)
2159{
2160	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2161
2162	trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
2163
2164	/* Give the log a push to start the unpinning I/O */
2165	xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0);
 
 
 
 
 
 
 
 
 
 
 
2166
 
 
 
 
 
 
2167}
2168
2169void
2170xfs_iunpin_wait(
2171	struct xfs_inode	*ip)
2172{
2173	if (xfs_ipincount(ip)) {
2174		xfs_iunpin_nowait(ip);
2175		wait_event(ip->i_ipin_wait, (xfs_ipincount(ip) == 0));
2176	}
2177}
2178
2179/*
2180 * xfs_iextents_copy()
2181 *
2182 * This is called to copy the REAL extents (as opposed to the delayed
2183 * allocation extents) from the inode into the given buffer.  It
2184 * returns the number of bytes copied into the buffer.
2185 *
2186 * If there are no delayed allocation extents, then we can just
2187 * memcpy() the extents into the buffer.  Otherwise, we need to
2188 * examine each extent in turn and skip those which are delayed.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2189 */
2190int
2191xfs_iextents_copy(
2192	xfs_inode_t		*ip,
2193	xfs_bmbt_rec_t		*dp,
2194	int			whichfork)
2195{
2196	int			copied;
2197	int			i;
2198	xfs_ifork_t		*ifp;
2199	int			nrecs;
2200	xfs_fsblock_t		start_block;
2201
2202	ifp = XFS_IFORK_PTR(ip, whichfork);
2203	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2204	ASSERT(ifp->if_bytes > 0);
2205
2206	nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
2207	XFS_BMAP_TRACE_EXLIST(ip, nrecs, whichfork);
2208	ASSERT(nrecs > 0);
2209
2210	/*
2211	 * There are some delayed allocation extents in the
2212	 * inode, so copy the extents one at a time and skip
2213	 * the delayed ones.  There must be at least one
2214	 * non-delayed extent.
2215	 */
2216	copied = 0;
2217	for (i = 0; i < nrecs; i++) {
2218		xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
2219		start_block = xfs_bmbt_get_startblock(ep);
2220		if (isnullstartblock(start_block)) {
2221			/*
2222			 * It's a delayed allocation extent, so skip it.
2223			 */
2224			continue;
2225		}
2226
2227		/* Translate to on disk format */
2228		put_unaligned(cpu_to_be64(ep->l0), &dp->l0);
2229		put_unaligned(cpu_to_be64(ep->l1), &dp->l1);
2230		dp++;
2231		copied++;
2232	}
2233	ASSERT(copied != 0);
2234	xfs_validate_extents(ifp, copied, XFS_EXTFMT_INODE(ip));
2235
2236	return (copied * (uint)sizeof(xfs_bmbt_rec_t));
2237}
 
2238
2239/*
2240 * Each of the following cases stores data into the same region
2241 * of the on-disk inode, so only one of them can be valid at
2242 * any given time. While it is possible to have conflicting formats
2243 * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
2244 * in EXTENTS format, this can only happen when the fork has
2245 * changed formats after being modified but before being flushed.
2246 * In these cases, the format always takes precedence, because the
2247 * format indicates the current state of the fork.
2248 */
2249/*ARGSUSED*/
2250STATIC void
2251xfs_iflush_fork(
2252	xfs_inode_t		*ip,
2253	xfs_dinode_t		*dip,
2254	xfs_inode_log_item_t	*iip,
2255	int			whichfork,
2256	xfs_buf_t		*bp)
2257{
2258	char			*cp;
2259	xfs_ifork_t		*ifp;
2260	xfs_mount_t		*mp;
2261#ifdef XFS_TRANS_DEBUG
2262	int			first;
2263#endif
2264	static const short	brootflag[2] =
2265		{ XFS_ILOG_DBROOT, XFS_ILOG_ABROOT };
2266	static const short	dataflag[2] =
2267		{ XFS_ILOG_DDATA, XFS_ILOG_ADATA };
2268	static const short	extflag[2] =
2269		{ XFS_ILOG_DEXT, XFS_ILOG_AEXT };
2270
2271	if (!iip)
2272		return;
2273	ifp = XFS_IFORK_PTR(ip, whichfork);
2274	/*
2275	 * This can happen if we gave up in iformat in an error path,
2276	 * for the attribute fork.
2277	 */
2278	if (!ifp) {
2279		ASSERT(whichfork == XFS_ATTR_FORK);
2280		return;
2281	}
2282	cp = XFS_DFORK_PTR(dip, whichfork);
2283	mp = ip->i_mount;
2284	switch (XFS_IFORK_FORMAT(ip, whichfork)) {
2285	case XFS_DINODE_FMT_LOCAL:
2286		if ((iip->ili_format.ilf_fields & dataflag[whichfork]) &&
2287		    (ifp->if_bytes > 0)) {
2288			ASSERT(ifp->if_u1.if_data != NULL);
2289			ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2290			memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes);
2291		}
2292		break;
2293
2294	case XFS_DINODE_FMT_EXTENTS:
2295		ASSERT((ifp->if_flags & XFS_IFEXTENTS) ||
2296		       !(iip->ili_format.ilf_fields & extflag[whichfork]));
2297		if ((iip->ili_format.ilf_fields & extflag[whichfork]) &&
2298		    (ifp->if_bytes > 0)) {
2299			ASSERT(xfs_iext_get_ext(ifp, 0));
2300			ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0);
2301			(void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp,
2302				whichfork);
2303		}
2304		break;
2305
2306	case XFS_DINODE_FMT_BTREE:
2307		if ((iip->ili_format.ilf_fields & brootflag[whichfork]) &&
2308		    (ifp->if_broot_bytes > 0)) {
2309			ASSERT(ifp->if_broot != NULL);
2310			ASSERT(ifp->if_broot_bytes <=
2311			       (XFS_IFORK_SIZE(ip, whichfork) +
2312				XFS_BROOT_SIZE_ADJ));
2313			xfs_bmbt_to_bmdr(mp, ifp->if_broot, ifp->if_broot_bytes,
2314				(xfs_bmdr_block_t *)cp,
2315				XFS_DFORK_SIZE(dip, mp, whichfork));
2316		}
2317		break;
2318
2319	case XFS_DINODE_FMT_DEV:
2320		if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) {
2321			ASSERT(whichfork == XFS_DATA_FORK);
2322			xfs_dinode_put_rdev(dip, ip->i_df.if_u2.if_rdev);
2323		}
2324		break;
2325
2326	case XFS_DINODE_FMT_UUID:
2327		if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) {
2328			ASSERT(whichfork == XFS_DATA_FORK);
2329			memcpy(XFS_DFORK_DPTR(dip),
2330			       &ip->i_df.if_u2.if_uuid,
2331			       sizeof(uuid_t));
 
 
 
 
 
2332		}
2333		break;
 
 
 
 
 
 
 
 
2334
2335	default:
2336		ASSERT(0);
2337		break;
 
 
 
 
 
 
2338	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2339}
2340
2341STATIC int
2342xfs_iflush_cluster(
2343	xfs_inode_t	*ip,
2344	xfs_buf_t	*bp)
 
 
 
 
 
 
 
 
 
2345{
2346	xfs_mount_t		*mp = ip->i_mount;
2347	struct xfs_perag	*pag;
2348	unsigned long		first_index, mask;
2349	unsigned long		inodes_per_cluster;
2350	int			ilist_size;
2351	xfs_inode_t		**ilist;
2352	xfs_inode_t		*iq;
2353	int			nr_found;
2354	int			clcount = 0;
2355	int			bufwasdelwri;
2356	int			i;
2357
2358	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
 
2359
2360	inodes_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog;
2361	ilist_size = inodes_per_cluster * sizeof(xfs_inode_t *);
2362	ilist = kmem_alloc(ilist_size, KM_MAYFAIL|KM_NOFS);
2363	if (!ilist)
2364		goto out_put;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2365
2366	mask = ~(((XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog)) - 1);
2367	first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
2368	rcu_read_lock();
2369	/* really need a gang lookup range call here */
2370	nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)ilist,
2371					first_index, inodes_per_cluster);
2372	if (nr_found == 0)
2373		goto out_free;
2374
2375	for (i = 0; i < nr_found; i++) {
2376		iq = ilist[i];
2377		if (iq == ip)
2378			continue;
2379
2380		/*
2381		 * because this is an RCU protected lookup, we could find a
2382		 * recently freed or even reallocated inode during the lookup.
2383		 * We need to check under the i_flags_lock for a valid inode
2384		 * here. Skip it if it is not valid or the wrong inode.
2385		 */
2386		spin_lock(&ip->i_flags_lock);
2387		if (!ip->i_ino ||
2388		    (XFS_INO_TO_AGINO(mp, iq->i_ino) & mask) != first_index) {
2389			spin_unlock(&ip->i_flags_lock);
2390			continue;
2391		}
2392		spin_unlock(&ip->i_flags_lock);
2393
2394		/*
2395		 * Do an un-protected check to see if the inode is dirty and
2396		 * is a candidate for flushing.  These checks will be repeated
2397		 * later after the appropriate locks are acquired.
2398		 */
2399		if (xfs_inode_clean(iq) && xfs_ipincount(iq) == 0)
2400			continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
2401
2402		/*
2403		 * Try to get locks.  If any are unavailable or it is pinned,
2404		 * then this inode cannot be flushed and is skipped.
2405		 */
2406
2407		if (!xfs_ilock_nowait(iq, XFS_ILOCK_SHARED))
2408			continue;
2409		if (!xfs_iflock_nowait(iq)) {
2410			xfs_iunlock(iq, XFS_ILOCK_SHARED);
2411			continue;
2412		}
2413		if (xfs_ipincount(iq)) {
2414			xfs_ifunlock(iq);
2415			xfs_iunlock(iq, XFS_ILOCK_SHARED);
2416			continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2417		}
2418
2419		/*
2420		 * arriving here means that this inode can be flushed.  First
2421		 * re-check that it's dirty before flushing.
2422		 */
2423		if (!xfs_inode_clean(iq)) {
2424			int	error;
2425			error = xfs_iflush_int(iq, bp);
2426			if (error) {
2427				xfs_iunlock(iq, XFS_ILOCK_SHARED);
2428				goto cluster_corrupt_out;
 
 
2429			}
2430			clcount++;
2431		} else {
2432			xfs_ifunlock(iq);
 
 
 
 
 
 
2433		}
2434		xfs_iunlock(iq, XFS_ILOCK_SHARED);
2435	}
2436
2437	if (clcount) {
2438		XFS_STATS_INC(xs_icluster_flushcnt);
2439		XFS_STATS_ADD(xs_icluster_flushinode, clcount);
2440	}
 
 
 
 
 
 
 
 
 
 
2441
2442out_free:
2443	rcu_read_unlock();
2444	kmem_free(ilist);
2445out_put:
2446	xfs_perag_put(pag);
2447	return 0;
2448
2449
2450cluster_corrupt_out:
2451	/*
2452	 * Corruption detected in the clustering loop.  Invalidate the
2453	 * inode buffer and shut down the filesystem.
 
 
 
 
2454	 */
2455	rcu_read_unlock();
2456	/*
2457	 * Clean up the buffer.  If it was B_DELWRI, just release it --
2458	 * brelse can handle it with no problems.  If not, shut down the
2459	 * filesystem before releasing the buffer.
2460	 */
2461	bufwasdelwri = XFS_BUF_ISDELAYWRITE(bp);
2462	if (bufwasdelwri)
2463		xfs_buf_relse(bp);
2464
2465	xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
2466
2467	if (!bufwasdelwri) {
2468		/*
2469		 * Just like incore_relse: if we have b_iodone functions,
2470		 * mark the buffer as an error and call them.  Otherwise
2471		 * mark it as stale and brelse.
2472		 */
2473		if (bp->b_iodone) {
2474			XFS_BUF_UNDONE(bp);
2475			XFS_BUF_STALE(bp);
2476			xfs_buf_ioerror(bp, EIO);
2477			xfs_buf_ioend(bp, 0);
2478		} else {
2479			XFS_BUF_STALE(bp);
2480			xfs_buf_relse(bp);
2481		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2482	}
2483
2484	/*
2485	 * Unlocks the flush lock
2486	 */
2487	xfs_iflush_abort(iq);
2488	kmem_free(ilist);
2489	xfs_perag_put(pag);
2490	return XFS_ERROR(EFSCORRUPTED);
 
 
 
 
2491}
2492
2493/*
2494 * xfs_iflush() will write a modified inode's changes out to the
2495 * inode's on disk home.  The caller must have the inode lock held
2496 * in at least shared mode and the inode flush completion must be
2497 * active as well.  The inode lock will still be held upon return from
2498 * the call and the caller is free to unlock it.
2499 * The inode flush will be completed when the inode reaches the disk.
2500 * The flags indicate how the inode's buffer should be written out.
2501 */
2502int
2503xfs_iflush(
2504	xfs_inode_t		*ip,
2505	uint			flags)
2506{
2507	xfs_inode_log_item_t	*iip;
2508	xfs_buf_t		*bp;
2509	xfs_dinode_t		*dip;
2510	xfs_mount_t		*mp;
2511	int			error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2512
2513	XFS_STATS_INC(xs_iflush_count);
 
 
2514
2515	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2516	ASSERT(!completion_done(&ip->i_flush));
2517	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
2518	       ip->i_d.di_nextents > ip->i_df.if_ext_max);
2519
2520	iip = ip->i_itemp;
2521	mp = ip->i_mount;
 
 
 
 
 
 
 
 
 
 
2522
2523	/*
2524	 * We can't flush the inode until it is unpinned, so wait for it if we
2525	 * are allowed to block.  We know no one new can pin it, because we are
2526	 * holding the inode lock shared and you need to hold it exclusively to
2527	 * pin the inode.
2528	 *
2529	 * If we are not allowed to block, force the log out asynchronously so
2530	 * that when we come back the inode will be unpinned. If other inodes
2531	 * in the same cluster are dirty, they will probably write the inode
2532	 * out for us if they occur after the log force completes.
2533	 */
2534	if (!(flags & SYNC_WAIT) && xfs_ipincount(ip)) {
2535		xfs_iunpin_nowait(ip);
2536		xfs_ifunlock(ip);
2537		return EAGAIN;
2538	}
2539	xfs_iunpin_wait(ip);
2540
2541	/*
2542	 * For stale inodes we cannot rely on the backing buffer remaining
2543	 * stale in cache for the remaining life of the stale inode and so
2544	 * xfs_itobp() below may give us a buffer that no longer contains
2545	 * inodes below. We have to check this after ensuring the inode is
2546	 * unpinned so that it is safe to reclaim the stale inode after the
2547	 * flush call.
2548	 */
2549	if (xfs_iflags_test(ip, XFS_ISTALE)) {
2550		xfs_ifunlock(ip);
2551		return 0;
2552	}
2553
2554	/*
2555	 * This may have been unpinned because the filesystem is shutting
2556	 * down forcibly. If that's the case we must not write this inode
2557	 * to disk, because the log record didn't make it to disk!
 
2558	 */
2559	if (XFS_FORCED_SHUTDOWN(mp)) {
2560		ip->i_update_core = 0;
2561		if (iip)
2562			iip->ili_format.ilf_fields = 0;
2563		xfs_ifunlock(ip);
2564		return XFS_ERROR(EIO);
2565	}
2566
2567	/*
2568	 * Get the buffer containing the on-disk inode.
 
 
2569	 */
2570	error = xfs_itobp(mp, NULL, ip, &dip, &bp,
2571				(flags & SYNC_TRYLOCK) ? XBF_TRYLOCK : XBF_LOCK);
2572	if (error || !bp) {
2573		xfs_ifunlock(ip);
2574		return error;
 
 
 
 
 
 
 
 
 
 
 
 
 
2575	}
2576
 
 
 
 
 
 
2577	/*
2578	 * First flush out the inode that xfs_iflush was called with.
 
 
 
2579	 */
2580	error = xfs_iflush_int(ip, bp);
2581	if (error)
2582		goto corrupt_out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2583
2584	/*
2585	 * If the buffer is pinned then push on the log now so we won't
2586	 * get stuck waiting in the write for too long.
2587	 */
2588	if (xfs_buf_ispinned(bp))
2589		xfs_log_force(mp, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2590
2591	/*
2592	 * inode clustering:
2593	 * see if other inodes can be gathered into this write
 
 
 
 
 
 
2594	 */
2595	error = xfs_iflush_cluster(ip, bp);
2596	if (error)
2597		goto cluster_corrupt_out;
 
 
 
 
 
 
 
 
 
 
 
 
2598
2599	if (flags & SYNC_WAIT)
2600		error = xfs_bwrite(mp, bp);
2601	else
2602		xfs_bdwrite(mp, bp);
2603	return error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2604
2605corrupt_out:
2606	xfs_buf_relse(bp);
2607	xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
2608cluster_corrupt_out:
2609	/*
2610	 * Unlocks the flush lock
2611	 */
2612	xfs_iflush_abort(ip);
2613	return XFS_ERROR(EFSCORRUPTED);
2614}
 
 
 
 
 
 
 
2615
 
 
2616
2617STATIC int
2618xfs_iflush_int(
2619	xfs_inode_t		*ip,
2620	xfs_buf_t		*bp)
2621{
2622	xfs_inode_log_item_t	*iip;
2623	xfs_dinode_t		*dip;
2624	xfs_mount_t		*mp;
2625#ifdef XFS_TRANS_DEBUG
2626	int			first;
2627#endif
 
 
 
 
 
 
2628
2629	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2630	ASSERT(!completion_done(&ip->i_flush));
2631	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
2632	       ip->i_d.di_nextents > ip->i_df.if_ext_max);
2633
2634	iip = ip->i_itemp;
2635	mp = ip->i_mount;
 
 
 
 
 
2636
2637	/* set *dip = inode's place in the buffer */
2638	dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2639
2640	/*
2641	 * Clear i_update_core before copying out the data.
2642	 * This is for coordination with our timestamp updates
2643	 * that don't hold the inode lock. They will always
2644	 * update the timestamps BEFORE setting i_update_core,
2645	 * so if we clear i_update_core after they set it we
2646	 * are guaranteed to see their updates to the timestamps.
2647	 * I believe that this depends on strongly ordered memory
2648	 * semantics, but we have that.  We use the SYNCHRONIZE
2649	 * macro to make sure that the compiler does not reorder
2650	 * the i_update_core access below the data copy below.
2651	 */
2652	ip->i_update_core = 0;
2653	SYNCHRONIZE();
 
 
 
 
 
 
 
 
2654
2655	/*
2656	 * Make sure to get the latest timestamps from the Linux inode.
 
 
2657	 */
2658	xfs_synchronize_times(ip);
 
 
 
 
 
 
 
 
2659
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2660	if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
2661			       mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
2662		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2663			"%s: Bad inode %Lu magic number 0x%x, ptr 0x%p",
2664			__func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
2665		goto corrupt_out;
2666	}
2667	if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
2668				mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
2669		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2670			"%s: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
2671			__func__, ip->i_ino, ip, ip->i_d.di_magic);
2672		goto corrupt_out;
2673	}
2674	if (S_ISREG(ip->i_d.di_mode)) {
2675		if (XFS_TEST_ERROR(
2676		    (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
2677		    (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
2678		    mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
2679			xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2680				"%s: Bad regular inode %Lu, ptr 0x%p",
2681				__func__, ip->i_ino, ip);
2682			goto corrupt_out;
2683		}
2684	} else if (S_ISDIR(ip->i_d.di_mode)) {
2685		if (XFS_TEST_ERROR(
2686		    (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
2687		    (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
2688		    (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
2689		    mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
2690			xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2691				"%s: Bad directory inode %Lu, ptr 0x%p",
2692				__func__, ip->i_ino, ip);
2693			goto corrupt_out;
2694		}
2695	}
2696	if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
2697				ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
2698				XFS_RANDOM_IFLUSH_5)) {
2699		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2700			"%s: detected corrupt incore inode %Lu, "
2701			"total extents = %d, nblocks = %Ld, ptr 0x%p",
2702			__func__, ip->i_ino,
2703			ip->i_d.di_nextents + ip->i_d.di_anextents,
2704			ip->i_d.di_nblocks, ip);
2705		goto corrupt_out;
2706	}
2707	if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
2708				mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
2709		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2710			"%s: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
2711			__func__, ip->i_ino, ip->i_d.di_forkoff, ip);
2712		goto corrupt_out;
2713	}
 
2714	/*
2715	 * bump the flush iteration count, used to detect flushes which
2716	 * postdate a log record during recovery.
 
 
 
 
2717	 */
2718
2719	ip->i_d.di_flushiter++;
2720
2721	/*
2722	 * Copy the dirty parts of the inode into the on-disk
2723	 * inode.  We always copy out the core of the inode,
2724	 * because if the inode is dirty at all the core must
2725	 * be.
2726	 */
2727	xfs_dinode_to_disk(dip, &ip->i_d);
2728
2729	/* Wrap, we never let the log put out DI_MAX_FLUSH */
2730	if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
2731		ip->i_d.di_flushiter = 0;
 
 
2732
2733	/*
2734	 * If this is really an old format inode and the superblock version
2735	 * has not been updated to support only new format inodes, then
2736	 * convert back to the old inode format.  If the superblock version
2737	 * has been updated, then make the conversion permanent.
2738	 */
2739	ASSERT(ip->i_d.di_version == 1 || xfs_sb_version_hasnlink(&mp->m_sb));
2740	if (ip->i_d.di_version == 1) {
2741		if (!xfs_sb_version_hasnlink(&mp->m_sb)) {
2742			/*
2743			 * Convert it back.
2744			 */
2745			ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
2746			dip->di_onlink = cpu_to_be16(ip->i_d.di_nlink);
2747		} else {
2748			/*
2749			 * The superblock version has already been bumped,
2750			 * so just make the conversion to the new inode
2751			 * format permanent.
2752			 */
2753			ip->i_d.di_version = 2;
2754			dip->di_version = 2;
2755			ip->i_d.di_onlink = 0;
2756			dip->di_onlink = 0;
2757			memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
2758			memset(&(dip->di_pad[0]), 0,
2759			      sizeof(dip->di_pad));
2760			ASSERT(xfs_get_projid(ip) == 0);
2761		}
2762	}
2763
2764	xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp);
2765	if (XFS_IFORK_Q(ip))
2766		xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp);
2767	xfs_inobp_check(mp, bp);
2768
2769	/*
2770	 * We've recorded everything logged in the inode, so we'd
2771	 * like to clear the ilf_fields bits so we don't log and
2772	 * flush things unnecessarily.  However, we can't stop
2773	 * logging all this information until the data we've copied
2774	 * into the disk buffer is written to disk.  If we did we might
2775	 * overwrite the copy of the inode in the log with all the
2776	 * data after re-logging only part of it, and in the face of
2777	 * a crash we wouldn't have all the data we need to recover.
2778	 *
2779	 * What we do is move the bits to the ili_last_fields field.
2780	 * When logging the inode, these bits are moved back to the
2781	 * ilf_fields field.  In the xfs_iflush_done() routine we
2782	 * clear ili_last_fields, since we know that the information
2783	 * those bits represent is permanently on disk.  As long as
2784	 * the flush completes before the inode is logged again, then
2785	 * both ilf_fields and ili_last_fields will be cleared.
2786	 *
2787	 * We can play with the ilf_fields bits here, because the inode
2788	 * lock must be held exclusively in order to set bits there
2789	 * and the flush lock protects the ili_last_fields bits.
2790	 * Set ili_logged so the flush done
2791	 * routine can tell whether or not to look in the AIL.
2792	 * Also, store the current LSN of the inode so that we can tell
2793	 * whether the item has moved in the AIL from xfs_iflush_done().
2794	 * In order to read the lsn we need the AIL lock, because
2795	 * it is a 64 bit value that cannot be read atomically.
2796	 */
2797	if (iip != NULL && iip->ili_format.ilf_fields != 0) {
2798		iip->ili_last_fields = iip->ili_format.ilf_fields;
2799		iip->ili_format.ilf_fields = 0;
2800		iip->ili_logged = 1;
2801
2802		xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
2803					&iip->ili_item.li_lsn);
2804
2805		/*
2806		 * Attach the function xfs_iflush_done to the inode's
2807		 * buffer.  This will remove the inode from the AIL
2808		 * and unlock the inode's flush lock when the inode is
2809		 * completely written to disk.
2810		 */
2811		xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item);
2812
2813		ASSERT(bp->b_fspriv != NULL);
2814		ASSERT(bp->b_iodone != NULL);
2815	} else {
2816		/*
2817		 * We're flushing an inode which is not in the AIL and has
2818		 * not been logged but has i_update_core set.  For this
2819		 * case we can use a B_DELWRI flush and immediately drop
2820		 * the inode flush lock because we can avoid the whole
2821		 * AIL state thing.  It's OK to drop the flush lock now,
2822		 * because we've already locked the buffer and to do anything
2823		 * you really need both.
2824		 */
2825		if (iip != NULL) {
2826			ASSERT(iip->ili_logged == 0);
2827			ASSERT(iip->ili_last_fields == 0);
2828			ASSERT((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0);
2829		}
2830		xfs_ifunlock(ip);
2831	}
2832
2833	return 0;
 
 
 
 
 
2834
2835corrupt_out:
2836	return XFS_ERROR(EFSCORRUPTED);
 
 
 
2837}
2838
2839/*
2840 * Return a pointer to the extent record at file index idx.
 
 
 
 
 
 
 
 
 
 
2841 */
2842xfs_bmbt_rec_host_t *
2843xfs_iext_get_ext(
2844	xfs_ifork_t	*ifp,		/* inode fork pointer */
2845	xfs_extnum_t	idx)		/* index of target extent */
2846{
2847	ASSERT(idx >= 0);
2848	ASSERT(idx < ifp->if_bytes / sizeof(xfs_bmbt_rec_t));
 
 
 
 
2849
2850	if ((ifp->if_flags & XFS_IFEXTIREC) && (idx == 0)) {
2851		return ifp->if_u1.if_ext_irec->er_extbuf;
2852	} else if (ifp->if_flags & XFS_IFEXTIREC) {
2853		xfs_ext_irec_t	*erp;		/* irec pointer */
2854		int		erp_idx = 0;	/* irec index */
2855		xfs_extnum_t	page_idx = idx;	/* ext index in target list */
 
2856
2857		erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
2858		return &erp->er_extbuf[page_idx];
2859	} else if (ifp->if_bytes) {
2860		return &ifp->if_u1.if_extents[idx];
2861	} else {
2862		return NULL;
2863	}
2864}
2865
2866/*
2867 * Insert new item(s) into the extent records for incore inode
2868 * fork 'ifp'.  'count' new items are inserted at index 'idx'.
2869 */
2870void
2871xfs_iext_insert(
2872	xfs_inode_t	*ip,		/* incore inode pointer */
2873	xfs_extnum_t	idx,		/* starting index of new items */
2874	xfs_extnum_t	count,		/* number of inserted items */
2875	xfs_bmbt_irec_t	*new,		/* items to insert */
2876	int		state)		/* type of extent conversion */
2877{
2878	xfs_ifork_t	*ifp = (state & BMAP_ATTRFORK) ? ip->i_afp : &ip->i_df;
2879	xfs_extnum_t	i;		/* extent record index */
2880
2881	trace_xfs_iext_insert(ip, idx, new, state, _RET_IP_);
2882
2883	ASSERT(ifp->if_flags & XFS_IFEXTENTS);
2884	xfs_iext_add(ifp, idx, count);
2885	for (i = idx; i < idx + count; i++, new++)
2886		xfs_bmbt_set_all(xfs_iext_get_ext(ifp, i), new);
2887}
2888
2889/*
2890 * This is called when the amount of space required for incore file
2891 * extents needs to be increased. The ext_diff parameter stores the
2892 * number of new extents being added and the idx parameter contains
2893 * the extent index where the new extents will be added. If the new
2894 * extents are being appended, then we just need to (re)allocate and
2895 * initialize the space. Otherwise, if the new extents are being
2896 * inserted into the middle of the existing entries, a bit more work
2897 * is required to make room for the new extents to be inserted. The
2898 * caller is responsible for filling in the new extent entries upon
2899 * return.
2900 */
2901void
2902xfs_iext_add(
2903	xfs_ifork_t	*ifp,		/* inode fork pointer */
2904	xfs_extnum_t	idx,		/* index to begin adding exts */
2905	int		ext_diff)	/* number of extents to add */
2906{
2907	int		byte_diff;	/* new bytes being added */
2908	int		new_size;	/* size of extents after adding */
2909	xfs_extnum_t	nextents;	/* number of extents in file */
2910
2911	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
2912	ASSERT((idx >= 0) && (idx <= nextents));
2913	byte_diff = ext_diff * sizeof(xfs_bmbt_rec_t);
2914	new_size = ifp->if_bytes + byte_diff;
2915	/*
2916	 * If the new number of extents (nextents + ext_diff)
2917	 * fits inside the inode, then continue to use the inline
2918	 * extent buffer.
2919	 */
2920	if (nextents + ext_diff <= XFS_INLINE_EXTS) {
2921		if (idx < nextents) {
2922			memmove(&ifp->if_u2.if_inline_ext[idx + ext_diff],
2923				&ifp->if_u2.if_inline_ext[idx],
2924				(nextents - idx) * sizeof(xfs_bmbt_rec_t));
2925			memset(&ifp->if_u2.if_inline_ext[idx], 0, byte_diff);
2926		}
2927		ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
2928		ifp->if_real_bytes = 0;
2929	}
2930	/*
2931	 * Otherwise use a linear (direct) extent list.
2932	 * If the extents are currently inside the inode,
2933	 * xfs_iext_realloc_direct will switch us from
2934	 * inline to direct extent allocation mode.
2935	 */
2936	else if (nextents + ext_diff <= XFS_LINEAR_EXTS) {
2937		xfs_iext_realloc_direct(ifp, new_size);
2938		if (idx < nextents) {
2939			memmove(&ifp->if_u1.if_extents[idx + ext_diff],
2940				&ifp->if_u1.if_extents[idx],
2941				(nextents - idx) * sizeof(xfs_bmbt_rec_t));
2942			memset(&ifp->if_u1.if_extents[idx], 0, byte_diff);
2943		}
2944	}
2945	/* Indirection array */
2946	else {
2947		xfs_ext_irec_t	*erp;
2948		int		erp_idx = 0;
2949		int		page_idx = idx;
2950
2951		ASSERT(nextents + ext_diff > XFS_LINEAR_EXTS);
2952		if (ifp->if_flags & XFS_IFEXTIREC) {
2953			erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 1);
2954		} else {
2955			xfs_iext_irec_init(ifp);
2956			ASSERT(ifp->if_flags & XFS_IFEXTIREC);
2957			erp = ifp->if_u1.if_ext_irec;
2958		}
2959		/* Extents fit in target extent page */
2960		if (erp && erp->er_extcount + ext_diff <= XFS_LINEAR_EXTS) {
2961			if (page_idx < erp->er_extcount) {
2962				memmove(&erp->er_extbuf[page_idx + ext_diff],
2963					&erp->er_extbuf[page_idx],
2964					(erp->er_extcount - page_idx) *
2965					sizeof(xfs_bmbt_rec_t));
2966				memset(&erp->er_extbuf[page_idx], 0, byte_diff);
2967			}
2968			erp->er_extcount += ext_diff;
2969			xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
2970		}
2971		/* Insert a new extent page */
2972		else if (erp) {
2973			xfs_iext_add_indirect_multi(ifp,
2974				erp_idx, page_idx, ext_diff);
2975		}
2976		/*
2977		 * If extent(s) are being appended to the last page in
2978		 * the indirection array and the new extent(s) don't fit
2979		 * in the page, then erp is NULL and erp_idx is set to
2980		 * the next index needed in the indirection array.
2981		 */
2982		else {
2983			int	count = ext_diff;
2984
2985			while (count) {
2986				erp = xfs_iext_irec_new(ifp, erp_idx);
2987				erp->er_extcount = count;
2988				count -= MIN(count, (int)XFS_LINEAR_EXTS);
2989				if (count) {
2990					erp_idx++;
2991				}
2992			}
2993		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2994	}
2995	ifp->if_bytes = new_size;
2996}
2997
2998/*
2999 * This is called when incore extents are being added to the indirection
3000 * array and the new extents do not fit in the target extent list. The
3001 * erp_idx parameter contains the irec index for the target extent list
3002 * in the indirection array, and the idx parameter contains the extent
3003 * index within the list. The number of extents being added is stored
3004 * in the count parameter.
3005 *
3006 *    |-------|   |-------|
3007 *    |       |   |       |    idx - number of extents before idx
3008 *    |  idx  |   | count |
3009 *    |       |   |       |    count - number of extents being inserted at idx
3010 *    |-------|   |-------|
3011 *    | count |   | nex2  |    nex2 - number of extents after idx + count
3012 *    |-------|   |-------|
3013 */
3014void
3015xfs_iext_add_indirect_multi(
3016	xfs_ifork_t	*ifp,			/* inode fork pointer */
3017	int		erp_idx,		/* target extent irec index */
3018	xfs_extnum_t	idx,			/* index within target list */
3019	int		count)			/* new extents being added */
3020{
3021	int		byte_diff;		/* new bytes being added */
3022	xfs_ext_irec_t	*erp;			/* pointer to irec entry */
3023	xfs_extnum_t	ext_diff;		/* number of extents to add */
3024	xfs_extnum_t	ext_cnt;		/* new extents still needed */
3025	xfs_extnum_t	nex2;			/* extents after idx + count */
3026	xfs_bmbt_rec_t	*nex2_ep = NULL;	/* temp list for nex2 extents */
3027	int		nlists;			/* number of irec's (lists) */
3028
3029	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3030	erp = &ifp->if_u1.if_ext_irec[erp_idx];
3031	nex2 = erp->er_extcount - idx;
3032	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3033
3034	/*
3035	 * Save second part of target extent list
3036	 * (all extents past */
3037	if (nex2) {
3038		byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
3039		nex2_ep = (xfs_bmbt_rec_t *) kmem_alloc(byte_diff, KM_NOFS);
3040		memmove(nex2_ep, &erp->er_extbuf[idx], byte_diff);
3041		erp->er_extcount -= nex2;
3042		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -nex2);
3043		memset(&erp->er_extbuf[idx], 0, byte_diff);
3044	}
3045
3046	/*
3047	 * Add the new extents to the end of the target
3048	 * list, then allocate new irec record(s) and
3049	 * extent buffer(s) as needed to store the rest
3050	 * of the new extents.
3051	 */
3052	ext_cnt = count;
3053	ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS - erp->er_extcount);
3054	if (ext_diff) {
3055		erp->er_extcount += ext_diff;
3056		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3057		ext_cnt -= ext_diff;
3058	}
3059	while (ext_cnt) {
3060		erp_idx++;
3061		erp = xfs_iext_irec_new(ifp, erp_idx);
3062		ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS);
3063		erp->er_extcount = ext_diff;
3064		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3065		ext_cnt -= ext_diff;
3066	}
3067
3068	/* Add nex2 extents back to indirection array */
3069	if (nex2) {
3070		xfs_extnum_t	ext_avail;
3071		int		i;
3072
3073		byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
3074		ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
3075		i = 0;
3076		/*
3077		 * If nex2 extents fit in the current page, append
3078		 * nex2_ep after the new extents.
3079		 */
3080		if (nex2 <= ext_avail) {
3081			i = erp->er_extcount;
3082		}
3083		/*
3084		 * Otherwise, check if space is available in the
3085		 * next page.
3086		 */
3087		else if ((erp_idx < nlists - 1) &&
3088			 (nex2 <= (ext_avail = XFS_LINEAR_EXTS -
3089			  ifp->if_u1.if_ext_irec[erp_idx+1].er_extcount))) {
3090			erp_idx++;
3091			erp++;
3092			/* Create a hole for nex2 extents */
3093			memmove(&erp->er_extbuf[nex2], erp->er_extbuf,
3094				erp->er_extcount * sizeof(xfs_bmbt_rec_t));
3095		}
3096		/*
3097		 * Final choice, create a new extent page for
3098		 * nex2 extents.
3099		 */
3100		else {
3101			erp_idx++;
3102			erp = xfs_iext_irec_new(ifp, erp_idx);
3103		}
3104		memmove(&erp->er_extbuf[i], nex2_ep, byte_diff);
3105		kmem_free(nex2_ep);
3106		erp->er_extcount += nex2;
3107		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, nex2);
3108	}
3109}
3110
3111/*
3112 * This is called when the amount of space required for incore file
3113 * extents needs to be decreased. The ext_diff parameter stores the
3114 * number of extents to be removed and the idx parameter contains
3115 * the extent index where the extents will be removed from.
3116 *
3117 * If the amount of space needed has decreased below the linear
3118 * limit, XFS_IEXT_BUFSZ, then switch to using the contiguous
3119 * extent array.  Otherwise, use kmem_realloc() to adjust the
3120 * size to what is needed.
3121 */
3122void
3123xfs_iext_remove(
3124	xfs_inode_t	*ip,		/* incore inode pointer */
3125	xfs_extnum_t	idx,		/* index to begin removing exts */
3126	int		ext_diff,	/* number of extents to remove */
3127	int		state)		/* type of extent conversion */
3128{
3129	xfs_ifork_t	*ifp = (state & BMAP_ATTRFORK) ? ip->i_afp : &ip->i_df;
3130	xfs_extnum_t	nextents;	/* number of extents in file */
3131	int		new_size;	/* size of extents after removal */
3132
3133	trace_xfs_iext_remove(ip, idx, state, _RET_IP_);
3134
3135	ASSERT(ext_diff > 0);
3136	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3137	new_size = (nextents - ext_diff) * sizeof(xfs_bmbt_rec_t);
3138
3139	if (new_size == 0) {
3140		xfs_iext_destroy(ifp);
3141	} else if (ifp->if_flags & XFS_IFEXTIREC) {
3142		xfs_iext_remove_indirect(ifp, idx, ext_diff);
3143	} else if (ifp->if_real_bytes) {
3144		xfs_iext_remove_direct(ifp, idx, ext_diff);
3145	} else {
3146		xfs_iext_remove_inline(ifp, idx, ext_diff);
3147	}
3148	ifp->if_bytes = new_size;
 
 
 
 
 
 
 
3149}
3150
3151/*
3152 * This removes ext_diff extents from the inline buffer, beginning
3153 * at extent index idx.
3154 */
3155void
3156xfs_iext_remove_inline(
3157	xfs_ifork_t	*ifp,		/* inode fork pointer */
3158	xfs_extnum_t	idx,		/* index to begin removing exts */
3159	int		ext_diff)	/* number of extents to remove */
3160{
3161	int		nextents;	/* number of extents in file */
3162
3163	ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
3164	ASSERT(idx < XFS_INLINE_EXTS);
3165	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3166	ASSERT(((nextents - ext_diff) > 0) &&
3167		(nextents - ext_diff) < XFS_INLINE_EXTS);
3168
3169	if (idx + ext_diff < nextents) {
3170		memmove(&ifp->if_u2.if_inline_ext[idx],
3171			&ifp->if_u2.if_inline_ext[idx + ext_diff],
3172			(nextents - (idx + ext_diff)) *
3173			 sizeof(xfs_bmbt_rec_t));
3174		memset(&ifp->if_u2.if_inline_ext[nextents - ext_diff],
3175			0, ext_diff * sizeof(xfs_bmbt_rec_t));
3176	} else {
3177		memset(&ifp->if_u2.if_inline_ext[idx], 0,
3178			ext_diff * sizeof(xfs_bmbt_rec_t));
3179	}
3180}
3181
3182/*
3183 * This removes ext_diff extents from a linear (direct) extent list,
3184 * beginning at extent index idx. If the extents are being removed
3185 * from the end of the list (ie. truncate) then we just need to re-
3186 * allocate the list to remove the extra space. Otherwise, if the
3187 * extents are being removed from the middle of the existing extent
3188 * entries, then we first need to move the extent records beginning
3189 * at idx + ext_diff up in the list to overwrite the records being
3190 * removed, then remove the extra space via kmem_realloc.
3191 */
3192void
3193xfs_iext_remove_direct(
3194	xfs_ifork_t	*ifp,		/* inode fork pointer */
3195	xfs_extnum_t	idx,		/* index to begin removing exts */
3196	int		ext_diff)	/* number of extents to remove */
3197{
3198	xfs_extnum_t	nextents;	/* number of extents in file */
3199	int		new_size;	/* size of extents after removal */
3200
3201	ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
3202	new_size = ifp->if_bytes -
3203		(ext_diff * sizeof(xfs_bmbt_rec_t));
3204	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3205
3206	if (new_size == 0) {
3207		xfs_iext_destroy(ifp);
3208		return;
3209	}
3210	/* Move extents up in the list (if needed) */
3211	if (idx + ext_diff < nextents) {
3212		memmove(&ifp->if_u1.if_extents[idx],
3213			&ifp->if_u1.if_extents[idx + ext_diff],
3214			(nextents - (idx + ext_diff)) *
3215			 sizeof(xfs_bmbt_rec_t));
3216	}
3217	memset(&ifp->if_u1.if_extents[nextents - ext_diff],
3218		0, ext_diff * sizeof(xfs_bmbt_rec_t));
3219	/*
3220	 * Reallocate the direct extent list. If the extents
3221	 * will fit inside the inode then xfs_iext_realloc_direct
3222	 * will switch from direct to inline extent allocation
3223	 * mode for us.
3224	 */
3225	xfs_iext_realloc_direct(ifp, new_size);
3226	ifp->if_bytes = new_size;
3227}
3228
3229/*
3230 * This is called when incore extents are being removed from the
3231 * indirection array and the extents being removed span multiple extent
3232 * buffers. The idx parameter contains the file extent index where we
3233 * want to begin removing extents, and the count parameter contains
3234 * how many extents need to be removed.
3235 *
3236 *    |-------|   |-------|
3237 *    | nex1  |   |       |    nex1 - number of extents before idx
3238 *    |-------|   | count |
3239 *    |       |   |       |    count - number of extents being removed at idx
3240 *    | count |   |-------|
3241 *    |       |   | nex2  |    nex2 - number of extents after idx + count
3242 *    |-------|   |-------|
3243 */
3244void
3245xfs_iext_remove_indirect(
3246	xfs_ifork_t	*ifp,		/* inode fork pointer */
3247	xfs_extnum_t	idx,		/* index to begin removing extents */
3248	int		count)		/* number of extents to remove */
3249{
3250	xfs_ext_irec_t	*erp;		/* indirection array pointer */
3251	int		erp_idx = 0;	/* indirection array index */
3252	xfs_extnum_t	ext_cnt;	/* extents left to remove */
3253	xfs_extnum_t	ext_diff;	/* extents to remove in current list */
3254	xfs_extnum_t	nex1;		/* number of extents before idx */
3255	xfs_extnum_t	nex2;		/* extents after idx + count */
3256	int		page_idx = idx;	/* index in target extent list */
3257
3258	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3259	erp = xfs_iext_idx_to_irec(ifp,  &page_idx, &erp_idx, 0);
3260	ASSERT(erp != NULL);
3261	nex1 = page_idx;
3262	ext_cnt = count;
3263	while (ext_cnt) {
3264		nex2 = MAX((erp->er_extcount - (nex1 + ext_cnt)), 0);
3265		ext_diff = MIN(ext_cnt, (erp->er_extcount - nex1));
3266		/*
3267		 * Check for deletion of entire list;
3268		 * xfs_iext_irec_remove() updates extent offsets.
3269		 */
3270		if (ext_diff == erp->er_extcount) {
3271			xfs_iext_irec_remove(ifp, erp_idx);
3272			ext_cnt -= ext_diff;
3273			nex1 = 0;
3274			if (ext_cnt) {
3275				ASSERT(erp_idx < ifp->if_real_bytes /
3276					XFS_IEXT_BUFSZ);
3277				erp = &ifp->if_u1.if_ext_irec[erp_idx];
3278				nex1 = 0;
3279				continue;
3280			} else {
3281				break;
3282			}
3283		}
3284		/* Move extents up (if needed) */
3285		if (nex2) {
3286			memmove(&erp->er_extbuf[nex1],
3287				&erp->er_extbuf[nex1 + ext_diff],
3288				nex2 * sizeof(xfs_bmbt_rec_t));
3289		}
3290		/* Zero out rest of page */
3291		memset(&erp->er_extbuf[nex1 + nex2], 0, (XFS_IEXT_BUFSZ -
3292			((nex1 + nex2) * sizeof(xfs_bmbt_rec_t))));
3293		/* Update remaining counters */
3294		erp->er_extcount -= ext_diff;
3295		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -ext_diff);
3296		ext_cnt -= ext_diff;
3297		nex1 = 0;
3298		erp_idx++;
3299		erp++;
3300	}
3301	ifp->if_bytes -= count * sizeof(xfs_bmbt_rec_t);
3302	xfs_iext_irec_compact(ifp);
3303}
3304
3305/*
3306 * Create, destroy, or resize a linear (direct) block of extents.
 
 
 
 
3307 */
3308void
3309xfs_iext_realloc_direct(
3310	xfs_ifork_t	*ifp,		/* inode fork pointer */
3311	int		new_size)	/* new size of extents */
3312{
3313	int		rnew_size;	/* real new size of extents */
3314
3315	rnew_size = new_size;
3316
3317	ASSERT(!(ifp->if_flags & XFS_IFEXTIREC) ||
3318		((new_size >= 0) && (new_size <= XFS_IEXT_BUFSZ) &&
3319		 (new_size != ifp->if_real_bytes)));
3320
3321	/* Free extent records */
3322	if (new_size == 0) {
3323		xfs_iext_destroy(ifp);
3324	}
3325	/* Resize direct extent list and zero any new bytes */
3326	else if (ifp->if_real_bytes) {
3327		/* Check if extents will fit inside the inode */
3328		if (new_size <= XFS_INLINE_EXTS * sizeof(xfs_bmbt_rec_t)) {
3329			xfs_iext_direct_to_inline(ifp, new_size /
3330				(uint)sizeof(xfs_bmbt_rec_t));
3331			ifp->if_bytes = new_size;
3332			return;
3333		}
3334		if (!is_power_of_2(new_size)){
3335			rnew_size = roundup_pow_of_two(new_size);
3336		}
3337		if (rnew_size != ifp->if_real_bytes) {
3338			ifp->if_u1.if_extents =
3339				kmem_realloc(ifp->if_u1.if_extents,
3340						rnew_size,
3341						ifp->if_real_bytes, KM_NOFS);
3342		}
3343		if (rnew_size > ifp->if_real_bytes) {
3344			memset(&ifp->if_u1.if_extents[ifp->if_bytes /
3345				(uint)sizeof(xfs_bmbt_rec_t)], 0,
3346				rnew_size - ifp->if_real_bytes);
3347		}
3348	}
3349	/*
3350	 * Switch from the inline extent buffer to a direct
3351	 * extent list. Be sure to include the inline extent
3352	 * bytes in new_size.
3353	 */
3354	else {
3355		new_size += ifp->if_bytes;
3356		if (!is_power_of_2(new_size)) {
3357			rnew_size = roundup_pow_of_two(new_size);
3358		}
3359		xfs_iext_inline_to_direct(ifp, rnew_size);
3360	}
3361	ifp->if_real_bytes = rnew_size;
3362	ifp->if_bytes = new_size;
3363}
3364
3365/*
3366 * Switch from linear (direct) extent records to inline buffer.
3367 */
3368void
3369xfs_iext_direct_to_inline(
3370	xfs_ifork_t	*ifp,		/* inode fork pointer */
3371	xfs_extnum_t	nextents)	/* number of extents in file */
3372{
3373	ASSERT(ifp->if_flags & XFS_IFEXTENTS);
3374	ASSERT(nextents <= XFS_INLINE_EXTS);
3375	/*
3376	 * The inline buffer was zeroed when we switched
3377	 * from inline to direct extent allocation mode,
3378	 * so we don't need to clear it here.
3379	 */
3380	memcpy(ifp->if_u2.if_inline_ext, ifp->if_u1.if_extents,
3381		nextents * sizeof(xfs_bmbt_rec_t));
3382	kmem_free(ifp->if_u1.if_extents);
3383	ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
3384	ifp->if_real_bytes = 0;
3385}
3386
3387/*
3388 * Switch from inline buffer to linear (direct) extent records.
3389 * new_size should already be rounded up to the next power of 2
3390 * by the caller (when appropriate), so use new_size as it is.
3391 * However, since new_size may be rounded up, we can't update
3392 * if_bytes here. It is the caller's responsibility to update
3393 * if_bytes upon return.
3394 */
3395void
3396xfs_iext_inline_to_direct(
3397	xfs_ifork_t	*ifp,		/* inode fork pointer */
3398	int		new_size)	/* number of extents in file */
3399{
3400	ifp->if_u1.if_extents = kmem_alloc(new_size, KM_NOFS);
3401	memset(ifp->if_u1.if_extents, 0, new_size);
3402	if (ifp->if_bytes) {
3403		memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext,
3404			ifp->if_bytes);
3405		memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
3406			sizeof(xfs_bmbt_rec_t));
3407	}
3408	ifp->if_real_bytes = new_size;
3409}
3410
3411/*
3412 * Resize an extent indirection array to new_size bytes.
3413 */
3414STATIC void
3415xfs_iext_realloc_indirect(
3416	xfs_ifork_t	*ifp,		/* inode fork pointer */
3417	int		new_size)	/* new indirection array size */
3418{
3419	int		nlists;		/* number of irec's (ex lists) */
3420	int		size;		/* current indirection array size */
3421
3422	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3423	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3424	size = nlists * sizeof(xfs_ext_irec_t);
3425	ASSERT(ifp->if_real_bytes);
3426	ASSERT((new_size >= 0) && (new_size != size));
3427	if (new_size == 0) {
3428		xfs_iext_destroy(ifp);
3429	} else {
3430		ifp->if_u1.if_ext_irec = (xfs_ext_irec_t *)
3431			kmem_realloc(ifp->if_u1.if_ext_irec,
3432				new_size, size, KM_NOFS);
3433	}
3434}
3435
3436/*
3437 * Switch from indirection array to linear (direct) extent allocations.
3438 */
3439STATIC void
3440xfs_iext_indirect_to_direct(
3441	 xfs_ifork_t	*ifp)		/* inode fork pointer */
3442{
3443	xfs_bmbt_rec_host_t *ep;	/* extent record pointer */
3444	xfs_extnum_t	nextents;	/* number of extents in file */
3445	int		size;		/* size of file extents */
 
 
 
3446
3447	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3448	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3449	ASSERT(nextents <= XFS_LINEAR_EXTS);
3450	size = nextents * sizeof(xfs_bmbt_rec_t);
 
 
 
 
 
 
 
3451
3452	xfs_iext_irec_compact_pages(ifp);
3453	ASSERT(ifp->if_real_bytes == XFS_IEXT_BUFSZ);
3454
3455	ep = ifp->if_u1.if_ext_irec->er_extbuf;
3456	kmem_free(ifp->if_u1.if_ext_irec);
3457	ifp->if_flags &= ~XFS_IFEXTIREC;
3458	ifp->if_u1.if_extents = ep;
3459	ifp->if_bytes = size;
3460	if (nextents < XFS_LINEAR_EXTS) {
3461		xfs_iext_realloc_direct(ifp, size);
 
 
 
 
 
3462	}
 
 
3463}
3464
3465/*
3466 * Free incore file extents.
 
3467 */
3468void
3469xfs_iext_destroy(
3470	xfs_ifork_t	*ifp)		/* inode fork pointer */
3471{
3472	if (ifp->if_flags & XFS_IFEXTIREC) {
3473		int	erp_idx;
3474		int	nlists;
3475
3476		nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3477		for (erp_idx = nlists - 1; erp_idx >= 0 ; erp_idx--) {
3478			xfs_iext_irec_remove(ifp, erp_idx);
3479		}
3480		ifp->if_flags &= ~XFS_IFEXTIREC;
3481	} else if (ifp->if_real_bytes) {
3482		kmem_free(ifp->if_u1.if_extents);
3483	} else if (ifp->if_bytes) {
3484		memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
3485			sizeof(xfs_bmbt_rec_t));
3486	}
3487	ifp->if_u1.if_extents = NULL;
3488	ifp->if_real_bytes = 0;
3489	ifp->if_bytes = 0;
3490}
3491
3492/*
3493 * Return a pointer to the extent record for file system block bno.
3494 */
3495xfs_bmbt_rec_host_t *			/* pointer to found extent record */
3496xfs_iext_bno_to_ext(
3497	xfs_ifork_t	*ifp,		/* inode fork pointer */
3498	xfs_fileoff_t	bno,		/* block number to search for */
3499	xfs_extnum_t	*idxp)		/* index of target extent */
3500{
3501	xfs_bmbt_rec_host_t *base;	/* pointer to first extent */
3502	xfs_filblks_t	blockcount = 0;	/* number of blocks in extent */
3503	xfs_bmbt_rec_host_t *ep = NULL;	/* pointer to target extent */
3504	xfs_ext_irec_t	*erp = NULL;	/* indirection array pointer */
3505	int		high;		/* upper boundary in search */
3506	xfs_extnum_t	idx = 0;	/* index of target extent */
3507	int		low;		/* lower boundary in search */
3508	xfs_extnum_t	nextents;	/* number of file extents */
3509	xfs_fileoff_t	startoff = 0;	/* start offset of extent */
3510
3511	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3512	if (nextents == 0) {
3513		*idxp = 0;
3514		return NULL;
3515	}
3516	low = 0;
3517	if (ifp->if_flags & XFS_IFEXTIREC) {
3518		/* Find target extent list */
3519		int	erp_idx = 0;
3520		erp = xfs_iext_bno_to_irec(ifp, bno, &erp_idx);
3521		base = erp->er_extbuf;
3522		high = erp->er_extcount - 1;
3523	} else {
3524		base = ifp->if_u1.if_extents;
3525		high = nextents - 1;
3526	}
3527	/* Binary search extent records */
3528	while (low <= high) {
3529		idx = (low + high) >> 1;
3530		ep = base + idx;
3531		startoff = xfs_bmbt_get_startoff(ep);
3532		blockcount = xfs_bmbt_get_blockcount(ep);
3533		if (bno < startoff) {
3534			high = idx - 1;
3535		} else if (bno >= startoff + blockcount) {
3536			low = idx + 1;
3537		} else {
3538			/* Convert back to file-based extent index */
3539			if (ifp->if_flags & XFS_IFEXTIREC) {
3540				idx += erp->er_extoff;
3541			}
3542			*idxp = idx;
3543			return ep;
3544		}
3545	}
3546	/* Convert back to file-based extent index */
3547	if (ifp->if_flags & XFS_IFEXTIREC) {
3548		idx += erp->er_extoff;
3549	}
3550	if (bno >= startoff + blockcount) {
3551		if (++idx == nextents) {
3552			ep = NULL;
3553		} else {
3554			ep = xfs_iext_get_ext(ifp, idx);
3555		}
3556	}
3557	*idxp = idx;
3558	return ep;
3559}
3560
3561/*
3562 * Return a pointer to the indirection array entry containing the
3563 * extent record for filesystem block bno. Store the index of the
3564 * target irec in *erp_idxp.
3565 */
3566xfs_ext_irec_t *			/* pointer to found extent record */
3567xfs_iext_bno_to_irec(
3568	xfs_ifork_t	*ifp,		/* inode fork pointer */
3569	xfs_fileoff_t	bno,		/* block number to search for */
3570	int		*erp_idxp)	/* irec index of target ext list */
3571{
3572	xfs_ext_irec_t	*erp = NULL;	/* indirection array pointer */
3573	xfs_ext_irec_t	*erp_next;	/* next indirection array entry */
3574	int		erp_idx;	/* indirection array index */
3575	int		nlists;		/* number of extent irec's (lists) */
3576	int		high;		/* binary search upper limit */
3577	int		low;		/* binary search lower limit */
3578
3579	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3580	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3581	erp_idx = 0;
3582	low = 0;
3583	high = nlists - 1;
3584	while (low <= high) {
3585		erp_idx = (low + high) >> 1;
3586		erp = &ifp->if_u1.if_ext_irec[erp_idx];
3587		erp_next = erp_idx < nlists - 1 ? erp + 1 : NULL;
3588		if (bno < xfs_bmbt_get_startoff(erp->er_extbuf)) {
3589			high = erp_idx - 1;
3590		} else if (erp_next && bno >=
3591			   xfs_bmbt_get_startoff(erp_next->er_extbuf)) {
3592			low = erp_idx + 1;
3593		} else {
3594			break;
3595		}
3596	}
3597	*erp_idxp = erp_idx;
3598	return erp;
3599}
3600
3601/*
3602 * Return a pointer to the indirection array entry containing the
3603 * extent record at file extent index *idxp. Store the index of the
3604 * target irec in *erp_idxp and store the page index of the target
3605 * extent record in *idxp.
3606 */
3607xfs_ext_irec_t *
3608xfs_iext_idx_to_irec(
3609	xfs_ifork_t	*ifp,		/* inode fork pointer */
3610	xfs_extnum_t	*idxp,		/* extent index (file -> page) */
3611	int		*erp_idxp,	/* pointer to target irec */
3612	int		realloc)	/* new bytes were just added */
3613{
3614	xfs_ext_irec_t	*prev;		/* pointer to previous irec */
3615	xfs_ext_irec_t	*erp = NULL;	/* pointer to current irec */
3616	int		erp_idx;	/* indirection array index */
3617	int		nlists;		/* number of irec's (ex lists) */
3618	int		high;		/* binary search upper limit */
3619	int		low;		/* binary search lower limit */
3620	xfs_extnum_t	page_idx = *idxp; /* extent index in target list */
3621
3622	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3623	ASSERT(page_idx >= 0);
3624	ASSERT(page_idx <= ifp->if_bytes / sizeof(xfs_bmbt_rec_t));
3625	ASSERT(page_idx < ifp->if_bytes / sizeof(xfs_bmbt_rec_t) || realloc);
3626
3627	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3628	erp_idx = 0;
3629	low = 0;
3630	high = nlists - 1;
3631
3632	/* Binary search extent irec's */
3633	while (low <= high) {
3634		erp_idx = (low + high) >> 1;
3635		erp = &ifp->if_u1.if_ext_irec[erp_idx];
3636		prev = erp_idx > 0 ? erp - 1 : NULL;
3637		if (page_idx < erp->er_extoff || (page_idx == erp->er_extoff &&
3638		     realloc && prev && prev->er_extcount < XFS_LINEAR_EXTS)) {
3639			high = erp_idx - 1;
3640		} else if (page_idx > erp->er_extoff + erp->er_extcount ||
3641			   (page_idx == erp->er_extoff + erp->er_extcount &&
3642			    !realloc)) {
3643			low = erp_idx + 1;
3644		} else if (page_idx == erp->er_extoff + erp->er_extcount &&
3645			   erp->er_extcount == XFS_LINEAR_EXTS) {
3646			ASSERT(realloc);
3647			page_idx = 0;
3648			erp_idx++;
3649			erp = erp_idx < nlists ? erp + 1 : NULL;
3650			break;
3651		} else {
3652			page_idx -= erp->er_extoff;
3653			break;
3654		}
3655	}
3656	*idxp = page_idx;
3657	*erp_idxp = erp_idx;
3658	return(erp);
3659}
3660
3661/*
3662 * Allocate and initialize an indirection array once the space needed
3663 * for incore extents increases above XFS_IEXT_BUFSZ.
3664 */
3665void
3666xfs_iext_irec_init(
3667	xfs_ifork_t	*ifp)		/* inode fork pointer */
 
3668{
3669	xfs_ext_irec_t	*erp;		/* indirection array pointer */
3670	xfs_extnum_t	nextents;	/* number of extents in file */
3671
3672	ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
3673	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3674	ASSERT(nextents <= XFS_LINEAR_EXTS);
3675
3676	erp = kmem_alloc(sizeof(xfs_ext_irec_t), KM_NOFS);
3677
3678	if (nextents == 0) {
3679		ifp->if_u1.if_extents = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS);
3680	} else if (!ifp->if_real_bytes) {
3681		xfs_iext_inline_to_direct(ifp, XFS_IEXT_BUFSZ);
3682	} else if (ifp->if_real_bytes < XFS_IEXT_BUFSZ) {
3683		xfs_iext_realloc_direct(ifp, XFS_IEXT_BUFSZ);
3684	}
3685	erp->er_extbuf = ifp->if_u1.if_extents;
3686	erp->er_extcount = nextents;
3687	erp->er_extoff = 0;
3688
3689	ifp->if_flags |= XFS_IFEXTIREC;
3690	ifp->if_real_bytes = XFS_IEXT_BUFSZ;
3691	ifp->if_bytes = nextents * sizeof(xfs_bmbt_rec_t);
3692	ifp->if_u1.if_ext_irec = erp;
3693
3694	return;
 
 
3695}
3696
3697/*
3698 * Allocate and initialize a new entry in the indirection array.
 
 
3699 */
3700xfs_ext_irec_t *
3701xfs_iext_irec_new(
3702	xfs_ifork_t	*ifp,		/* inode fork pointer */
3703	int		erp_idx)	/* index for new irec */
3704{
3705	xfs_ext_irec_t	*erp;		/* indirection array pointer */
3706	int		i;		/* loop counter */
3707	int		nlists;		/* number of irec's (ex lists) */
 
 
 
 
 
 
 
3708
3709	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3710	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
 
 
 
 
3711
3712	/* Resize indirection array */
3713	xfs_iext_realloc_indirect(ifp, ++nlists *
3714				  sizeof(xfs_ext_irec_t));
3715	/*
3716	 * Move records down in the array so the
3717	 * new page can use erp_idx.
 
3718	 */
3719	erp = ifp->if_u1.if_ext_irec;
3720	for (i = nlists - 1; i > erp_idx; i--) {
3721		memmove(&erp[i], &erp[i-1], sizeof(xfs_ext_irec_t));
3722	}
3723	ASSERT(i == erp_idx);
3724
3725	/* Initialize new extent record */
3726	erp = ifp->if_u1.if_ext_irec;
3727	erp[erp_idx].er_extbuf = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS);
3728	ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
3729	memset(erp[erp_idx].er_extbuf, 0, XFS_IEXT_BUFSZ);
3730	erp[erp_idx].er_extcount = 0;
3731	erp[erp_idx].er_extoff = erp_idx > 0 ?
3732		erp[erp_idx-1].er_extoff + erp[erp_idx-1].er_extcount : 0;
3733	return (&erp[erp_idx]);
3734}
3735
3736/*
3737 * Remove a record from the indirection array.
3738 */
3739void
3740xfs_iext_irec_remove(
3741	xfs_ifork_t	*ifp,		/* inode fork pointer */
3742	int		erp_idx)	/* irec index to remove */
3743{
3744	xfs_ext_irec_t	*erp;		/* indirection array pointer */
3745	int		i;		/* loop counter */
3746	int		nlists;		/* number of irec's (ex lists) */
3747
3748	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3749	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3750	erp = &ifp->if_u1.if_ext_irec[erp_idx];
3751	if (erp->er_extbuf) {
3752		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1,
3753			-erp->er_extcount);
3754		kmem_free(erp->er_extbuf);
3755	}
3756	/* Compact extent records */
3757	erp = ifp->if_u1.if_ext_irec;
3758	for (i = erp_idx; i < nlists - 1; i++) {
3759		memmove(&erp[i], &erp[i+1], sizeof(xfs_ext_irec_t));
3760	}
3761	/*
3762	 * Manually free the last extent record from the indirection
3763	 * array.  A call to xfs_iext_realloc_indirect() with a size
3764	 * of zero would result in a call to xfs_iext_destroy() which
3765	 * would in turn call this function again, creating a nasty
3766	 * infinite loop.
3767	 */
3768	if (--nlists) {
3769		xfs_iext_realloc_indirect(ifp,
3770			nlists * sizeof(xfs_ext_irec_t));
3771	} else {
3772		kmem_free(ifp->if_u1.if_ext_irec);
 
 
 
 
 
3773	}
3774	ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
 
 
 
 
 
 
3775}
3776
3777/*
3778 * This is called to clean up large amounts of unused memory allocated
3779 * by the indirection array.  Before compacting anything though, verify
3780 * that the indirection array is still needed and switch back to the
3781 * linear extent list (or even the inline buffer) if possible.  The
3782 * compaction policy is as follows:
3783 *
3784 *    Full Compaction: Extents fit into a single page (or inline buffer)
3785 * Partial Compaction: Extents occupy less than 50% of allocated space
3786 *      No Compaction: Extents occupy at least 50% of allocated space
3787 */
3788void
3789xfs_iext_irec_compact(
3790	xfs_ifork_t	*ifp)		/* inode fork pointer */
3791{
3792	xfs_extnum_t	nextents;	/* number of extents in file */
3793	int		nlists;		/* number of irec's (ex lists) */
 
 
 
 
3794
3795	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3796	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3797	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
 
 
3798
3799	if (nextents == 0) {
3800		xfs_iext_destroy(ifp);
3801	} else if (nextents <= XFS_INLINE_EXTS) {
3802		xfs_iext_indirect_to_direct(ifp);
3803		xfs_iext_direct_to_inline(ifp, nextents);
3804	} else if (nextents <= XFS_LINEAR_EXTS) {
3805		xfs_iext_indirect_to_direct(ifp);
3806	} else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 1) {
3807		xfs_iext_irec_compact_pages(ifp);
3808	}
3809}
3810
3811/*
3812 * Combine extents from neighboring extent pages.
3813 */
3814void
3815xfs_iext_irec_compact_pages(
3816	xfs_ifork_t	*ifp)		/* inode fork pointer */
3817{
3818	xfs_ext_irec_t	*erp, *erp_next;/* pointers to irec entries */
3819	int		erp_idx = 0;	/* indirection array index */
3820	int		nlists;		/* number of irec's (ex lists) */
3821
3822	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3823	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3824	while (erp_idx < nlists - 1) {
3825		erp = &ifp->if_u1.if_ext_irec[erp_idx];
3826		erp_next = erp + 1;
3827		if (erp_next->er_extcount <=
3828		    (XFS_LINEAR_EXTS - erp->er_extcount)) {
3829			memcpy(&erp->er_extbuf[erp->er_extcount],
3830				erp_next->er_extbuf, erp_next->er_extcount *
3831				sizeof(xfs_bmbt_rec_t));
3832			erp->er_extcount += erp_next->er_extcount;
3833			/*
3834			 * Free page before removing extent record
3835			 * so er_extoffs don't get modified in
3836			 * xfs_iext_irec_remove.
3837			 */
3838			kmem_free(erp_next->er_extbuf);
3839			erp_next->er_extbuf = NULL;
3840			xfs_iext_irec_remove(ifp, erp_idx + 1);
3841			nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3842		} else {
3843			erp_idx++;
3844		}
 
 
 
 
 
3845	}
3846}
3847
3848/*
3849 * This is called to update the er_extoff field in the indirection
3850 * array when extents have been added or removed from one of the
3851 * extent lists. erp_idx contains the irec index to begin updating
3852 * at and ext_diff contains the number of extents that were added
3853 * or removed.
3854 */
3855void
3856xfs_iext_irec_update_extoffs(
3857	xfs_ifork_t	*ifp,		/* inode fork pointer */
3858	int		erp_idx,	/* irec index to update */
3859	int		ext_diff)	/* number of new extents */
3860{
3861	int		i;		/* loop counter */
3862	int		nlists;		/* number of irec's (ex lists */
3863
3864	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3865	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3866	for (i = erp_idx; i < nlists; i++) {
3867		ifp->if_u1.if_ext_irec[i].er_extoff += ext_diff;
3868	}
3869}
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
   4 * All Rights Reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
   5 */
   6#include <linux/iversion.h>
   7
   8#include "xfs.h"
   9#include "xfs_fs.h"
  10#include "xfs_shared.h"
  11#include "xfs_format.h"
  12#include "xfs_log_format.h"
  13#include "xfs_trans_resv.h"
 
 
 
 
  14#include "xfs_mount.h"
  15#include "xfs_defer.h"
 
 
 
 
  16#include "xfs_inode.h"
  17#include "xfs_dir2.h"
  18#include "xfs_attr.h"
  19#include "xfs_trans_space.h"
  20#include "xfs_trans.h"
  21#include "xfs_buf_item.h"
  22#include "xfs_inode_item.h"
  23#include "xfs_iunlink_item.h"
 
  24#include "xfs_ialloc.h"
  25#include "xfs_bmap.h"
  26#include "xfs_bmap_util.h"
  27#include "xfs_errortag.h"
  28#include "xfs_error.h"
 
  29#include "xfs_quota.h"
  30#include "xfs_filestream.h"
 
  31#include "xfs_trace.h"
  32#include "xfs_icache.h"
  33#include "xfs_symlink.h"
  34#include "xfs_trans_priv.h"
  35#include "xfs_log.h"
  36#include "xfs_bmap_btree.h"
  37#include "xfs_reflink.h"
  38#include "xfs_ag.h"
  39#include "xfs_log_priv.h"
  40#include "xfs_health.h"
  41
  42struct kmem_cache *xfs_inode_cache;
  43
  44STATIC int xfs_iunlink(struct xfs_trans *, struct xfs_inode *);
  45STATIC int xfs_iunlink_remove(struct xfs_trans *tp, struct xfs_perag *pag,
  46	struct xfs_inode *);
  47
  48/*
  49 * helper function to extract extent size hint from inode
 
  50 */
  51xfs_extlen_t
  52xfs_get_extsz_hint(
  53	struct xfs_inode	*ip)
  54{
  55	/*
  56	 * No point in aligning allocations if we need to COW to actually
  57	 * write to them.
  58	 */
  59	if (xfs_is_always_cow_inode(ip))
  60		return 0;
  61	if ((ip->i_diflags & XFS_DIFLAG_EXTSIZE) && ip->i_extsize)
  62		return ip->i_extsize;
  63	if (XFS_IS_REALTIME_INODE(ip))
  64		return ip->i_mount->m_sb.sb_rextsize;
  65	return 0;
  66}
  67
  68/*
  69 * Helper function to extract CoW extent size hint from inode.
  70 * Between the extent size hint and the CoW extent size hint, we
  71 * return the greater of the two.  If the value is zero (automatic),
  72 * use the default size.
  73 */
  74xfs_extlen_t
  75xfs_get_cowextsz_hint(
  76	struct xfs_inode	*ip)
  77{
  78	xfs_extlen_t		a, b;
  79
  80	a = 0;
  81	if (ip->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE)
  82		a = ip->i_cowextsize;
  83	b = xfs_get_extsz_hint(ip);
  84
  85	a = max(a, b);
  86	if (a == 0)
  87		return XFS_DEFAULT_COWEXTSZ_HINT;
  88	return a;
  89}
  90
 
  91/*
  92 * These two are wrapper routines around the xfs_ilock() routine used to
  93 * centralize some grungy code.  They are used in places that wish to lock the
  94 * inode solely for reading the extents.  The reason these places can't just
  95 * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to
  96 * bringing in of the extents from disk for a file in b-tree format.  If the
  97 * inode is in b-tree format, then we need to lock the inode exclusively until
  98 * the extents are read in.  Locking it exclusively all the time would limit
  99 * our parallelism unnecessarily, though.  What we do instead is check to see
 100 * if the extents have been read in yet, and only lock the inode exclusively
 101 * if they have not.
 102 *
 103 * The functions return a value which should be given to the corresponding
 104 * xfs_iunlock() call.
 105 */
 106uint
 107xfs_ilock_data_map_shared(
 108	struct xfs_inode	*ip)
 
 
 109{
 110	uint			lock_mode = XFS_ILOCK_SHARED;
 
 
 111
 112	if (xfs_need_iread_extents(&ip->i_df))
 113		lock_mode = XFS_ILOCK_EXCL;
 114	xfs_ilock(ip, lock_mode);
 115	return lock_mode;
 116}
 117
 118uint
 119xfs_ilock_attr_map_shared(
 120	struct xfs_inode	*ip)
 121{
 122	uint			lock_mode = XFS_ILOCK_SHARED;
 123
 124	if (xfs_inode_has_attr_fork(ip) && xfs_need_iread_extents(&ip->i_af))
 125		lock_mode = XFS_ILOCK_EXCL;
 126	xfs_ilock(ip, lock_mode);
 127	return lock_mode;
 128}
 
 
 
 129
 130/*
 131 * You can't set both SHARED and EXCL for the same lock,
 132 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_MMAPLOCK_SHARED,
 133 * XFS_MMAPLOCK_EXCL, XFS_ILOCK_SHARED, XFS_ILOCK_EXCL are valid values
 134 * to set in lock_flags.
 135 */
 136static inline void
 137xfs_lock_flags_assert(
 138	uint		lock_flags)
 139{
 140	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
 141		(XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
 142	ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
 143		(XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
 144	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
 145		(XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
 146	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
 147	ASSERT(lock_flags != 0);
 148}
 149
 150/*
 151 * In addition to i_rwsem in the VFS inode, the xfs inode contains 2
 152 * multi-reader locks: invalidate_lock and the i_lock.  This routine allows
 153 * various combinations of the locks to be obtained.
 154 *
 155 * The 3 locks should always be ordered so that the IO lock is obtained first,
 156 * the mmap lock second and the ilock last in order to prevent deadlock.
 157 *
 158 * Basic locking order:
 159 *
 160 * i_rwsem -> invalidate_lock -> page_lock -> i_ilock
 161 *
 162 * mmap_lock locking order:
 163 *
 164 * i_rwsem -> page lock -> mmap_lock
 165 * mmap_lock -> invalidate_lock -> page_lock
 166 *
 167 * The difference in mmap_lock locking order mean that we cannot hold the
 168 * invalidate_lock over syscall based read(2)/write(2) based IO. These IO paths
 169 * can fault in pages during copy in/out (for buffered IO) or require the
 170 * mmap_lock in get_user_pages() to map the user pages into the kernel address
 171 * space for direct IO. Similarly the i_rwsem cannot be taken inside a page
 172 * fault because page faults already hold the mmap_lock.
 173 *
 174 * Hence to serialise fully against both syscall and mmap based IO, we need to
 175 * take both the i_rwsem and the invalidate_lock. These locks should *only* be
 176 * both taken in places where we need to invalidate the page cache in a race
 177 * free manner (e.g. truncate, hole punch and other extent manipulation
 178 * functions).
 179 */
 
 180void
 181xfs_ilock(
 182	xfs_inode_t		*ip,
 183	uint			lock_flags)
 184{
 185	trace_xfs_ilock(ip, lock_flags, _RET_IP_);
 186
 187	xfs_lock_flags_assert(lock_flags);
 188
 189	if (lock_flags & XFS_IOLOCK_EXCL) {
 190		down_write_nested(&VFS_I(ip)->i_rwsem,
 191				  XFS_IOLOCK_DEP(lock_flags));
 192	} else if (lock_flags & XFS_IOLOCK_SHARED) {
 193		down_read_nested(&VFS_I(ip)->i_rwsem,
 194				 XFS_IOLOCK_DEP(lock_flags));
 
 
 
 
 
 195	}
 196
 197	if (lock_flags & XFS_MMAPLOCK_EXCL) {
 198		down_write_nested(&VFS_I(ip)->i_mapping->invalidate_lock,
 199				  XFS_MMAPLOCK_DEP(lock_flags));
 200	} else if (lock_flags & XFS_MMAPLOCK_SHARED) {
 201		down_read_nested(&VFS_I(ip)->i_mapping->invalidate_lock,
 202				 XFS_MMAPLOCK_DEP(lock_flags));
 203	}
 204
 205	if (lock_flags & XFS_ILOCK_EXCL)
 206		down_write_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
 207	else if (lock_flags & XFS_ILOCK_SHARED)
 208		down_read_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
 209}
 
 210
 211/*
 212 * This is just like xfs_ilock(), except that the caller
 213 * is guaranteed not to sleep.  It returns 1 if it gets
 214 * the requested locks and 0 otherwise.  If the IO lock is
 215 * obtained but the inode lock cannot be, then the IO lock
 216 * is dropped before returning.
 217 *
 218 * ip -- the inode being locked
 219 * lock_flags -- this parameter indicates the inode's locks to be
 220 *       to be locked.  See the comment for xfs_ilock() for a list
 221 *	 of valid values.
 222 */
 223int
 224xfs_ilock_nowait(
 225	xfs_inode_t		*ip,
 226	uint			lock_flags)
 227{
 228	trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_);
 
 
 
 
 
 
 
 229
 230	xfs_lock_flags_assert(lock_flags);
 231
 232	if (lock_flags & XFS_IOLOCK_EXCL) {
 233		if (!down_write_trylock(&VFS_I(ip)->i_rwsem))
 234			goto out;
 235	} else if (lock_flags & XFS_IOLOCK_SHARED) {
 236		if (!down_read_trylock(&VFS_I(ip)->i_rwsem))
 237			goto out;
 
 
 
 238	}
 239
 240	if (lock_flags & XFS_MMAPLOCK_EXCL) {
 241		if (!down_write_trylock(&VFS_I(ip)->i_mapping->invalidate_lock))
 242			goto out_undo_iolock;
 243	} else if (lock_flags & XFS_MMAPLOCK_SHARED) {
 244		if (!down_read_trylock(&VFS_I(ip)->i_mapping->invalidate_lock))
 245			goto out_undo_iolock;
 246	}
 247
 248	if (lock_flags & XFS_ILOCK_EXCL) {
 249		if (!down_write_trylock(&ip->i_lock))
 250			goto out_undo_mmaplock;
 251	} else if (lock_flags & XFS_ILOCK_SHARED) {
 252		if (!down_read_trylock(&ip->i_lock))
 253			goto out_undo_mmaplock;
 254	}
 255	return 1;
 256
 257out_undo_mmaplock:
 258	if (lock_flags & XFS_MMAPLOCK_EXCL)
 259		up_write(&VFS_I(ip)->i_mapping->invalidate_lock);
 260	else if (lock_flags & XFS_MMAPLOCK_SHARED)
 261		up_read(&VFS_I(ip)->i_mapping->invalidate_lock);
 262out_undo_iolock:
 263	if (lock_flags & XFS_IOLOCK_EXCL)
 264		up_write(&VFS_I(ip)->i_rwsem);
 265	else if (lock_flags & XFS_IOLOCK_SHARED)
 266		up_read(&VFS_I(ip)->i_rwsem);
 267out:
 268	return 0;
 269}
 270
 271/*
 272 * xfs_iunlock() is used to drop the inode locks acquired with
 273 * xfs_ilock() and xfs_ilock_nowait().  The caller must pass
 274 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
 275 * that we know which locks to drop.
 276 *
 277 * ip -- the inode being unlocked
 278 * lock_flags -- this parameter indicates the inode's locks to be
 279 *       to be unlocked.  See the comment for xfs_ilock() for a list
 280 *	 of valid values for this parameter.
 281 *
 282 */
 283void
 284xfs_iunlock(
 285	xfs_inode_t		*ip,
 286	uint			lock_flags)
 287{
 288	xfs_lock_flags_assert(lock_flags);
 289
 290	if (lock_flags & XFS_IOLOCK_EXCL)
 291		up_write(&VFS_I(ip)->i_rwsem);
 292	else if (lock_flags & XFS_IOLOCK_SHARED)
 293		up_read(&VFS_I(ip)->i_rwsem);
 294
 295	if (lock_flags & XFS_MMAPLOCK_EXCL)
 296		up_write(&VFS_I(ip)->i_mapping->invalidate_lock);
 297	else if (lock_flags & XFS_MMAPLOCK_SHARED)
 298		up_read(&VFS_I(ip)->i_mapping->invalidate_lock);
 299
 300	if (lock_flags & XFS_ILOCK_EXCL)
 301		up_write(&ip->i_lock);
 302	else if (lock_flags & XFS_ILOCK_SHARED)
 303		up_read(&ip->i_lock);
 304
 305	trace_xfs_iunlock(ip, lock_flags, _RET_IP_);
 306}
 307
 308/*
 309 * give up write locks.  the i/o lock cannot be held nested
 310 * if it is being demoted.
 311 */
 312void
 313xfs_ilock_demote(
 314	xfs_inode_t		*ip,
 315	uint			lock_flags)
 316{
 317	ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL));
 318	ASSERT((lock_flags &
 319		~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
 320
 321	if (lock_flags & XFS_ILOCK_EXCL)
 322		downgrade_write(&ip->i_lock);
 323	if (lock_flags & XFS_MMAPLOCK_EXCL)
 324		downgrade_write(&VFS_I(ip)->i_mapping->invalidate_lock);
 325	if (lock_flags & XFS_IOLOCK_EXCL)
 326		downgrade_write(&VFS_I(ip)->i_rwsem);
 327
 328	trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_);
 329}
 330
 331void
 332xfs_assert_ilocked(
 333	struct xfs_inode	*ip,
 334	uint			lock_flags)
 335{
 336	/*
 337	 * Sometimes we assert the ILOCK is held exclusively, but we're in
 338	 * a workqueue, so lockdep doesn't know we're the owner.
 339	 */
 340	if (lock_flags & XFS_ILOCK_SHARED)
 341		rwsem_assert_held(&ip->i_lock);
 342	else if (lock_flags & XFS_ILOCK_EXCL)
 343		rwsem_assert_held_write_nolockdep(&ip->i_lock);
 
 344
 345	if (lock_flags & XFS_MMAPLOCK_SHARED)
 346		rwsem_assert_held(&VFS_I(ip)->i_mapping->invalidate_lock);
 347	else if (lock_flags & XFS_MMAPLOCK_EXCL)
 348		rwsem_assert_held_write(&VFS_I(ip)->i_mapping->invalidate_lock);
 349
 350	if (lock_flags & XFS_IOLOCK_SHARED)
 351		rwsem_assert_held(&VFS_I(ip)->i_rwsem);
 352	else if (lock_flags & XFS_IOLOCK_EXCL)
 353		rwsem_assert_held_write(&VFS_I(ip)->i_rwsem);
 354}
 355
 356/*
 357 * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when
 358 * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined
 359 * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build
 360 * errors and warnings.
 361 */
 362#if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP)
 363static bool
 364xfs_lockdep_subclass_ok(
 365	int subclass)
 366{
 367	return subclass < MAX_LOCKDEP_SUBCLASSES;
 368}
 369#else
 370#define xfs_lockdep_subclass_ok(subclass)	(true)
 371#endif
 372
 373/*
 374 * Bump the subclass so xfs_lock_inodes() acquires each lock with a different
 375 * value. This can be called for any type of inode lock combination, including
 376 * parent locking. Care must be taken to ensure we don't overrun the subclass
 377 * storage fields in the class mask we build.
 378 */
 379static inline uint
 380xfs_lock_inumorder(
 381	uint	lock_mode,
 382	uint	subclass)
 383{
 384	uint	class = 0;
 385
 386	ASSERT(!(lock_mode & (XFS_ILOCK_PARENT | XFS_ILOCK_RTBITMAP |
 387			      XFS_ILOCK_RTSUM)));
 388	ASSERT(xfs_lockdep_subclass_ok(subclass));
 389
 390	if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) {
 391		ASSERT(subclass <= XFS_IOLOCK_MAX_SUBCLASS);
 392		class += subclass << XFS_IOLOCK_SHIFT;
 393	}
 394
 395	if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) {
 396		ASSERT(subclass <= XFS_MMAPLOCK_MAX_SUBCLASS);
 397		class += subclass << XFS_MMAPLOCK_SHIFT;
 398	}
 399
 400	if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) {
 401		ASSERT(subclass <= XFS_ILOCK_MAX_SUBCLASS);
 402		class += subclass << XFS_ILOCK_SHIFT;
 403	}
 404
 405	return (lock_mode & ~XFS_LOCK_SUBCLASS_MASK) | class;
 
 406}
 407
 408/*
 409 * The following routine will lock n inodes in exclusive mode.  We assume the
 410 * caller calls us with the inodes in i_ino order.
 
 
 
 411 *
 412 * We need to detect deadlock where an inode that we lock is in the AIL and we
 413 * start waiting for another inode that is locked by a thread in a long running
 414 * transaction (such as truncate). This can result in deadlock since the long
 415 * running trans might need to wait for the inode we just locked in order to
 416 * push the tail and free space in the log.
 417 *
 418 * xfs_lock_inodes() can only be used to lock one type of lock at a time -
 419 * the iolock, the mmaplock or the ilock, but not more than one at a time. If we
 420 * lock more than one at a time, lockdep will report false positives saying we
 421 * have violated locking orders.
 422 */
 423static void
 424xfs_lock_inodes(
 425	struct xfs_inode	**ips,
 426	int			inodes,
 427	uint			lock_mode)
 428{
 429	int			attempts = 0;
 430	uint			i;
 431	int			j;
 432	bool			try_lock;
 433	struct xfs_log_item	*lp;
 434
 435	/*
 436	 * Currently supports between 2 and 5 inodes with exclusive locking.  We
 437	 * support an arbitrary depth of locking here, but absolute limits on
 438	 * inodes depend on the type of locking and the limits placed by
 439	 * lockdep annotations in xfs_lock_inumorder.  These are all checked by
 440	 * the asserts.
 441	 */
 442	ASSERT(ips && inodes >= 2 && inodes <= 5);
 443	ASSERT(lock_mode & (XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL |
 444			    XFS_ILOCK_EXCL));
 445	ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED | XFS_MMAPLOCK_SHARED |
 446			      XFS_ILOCK_SHARED)));
 447	ASSERT(!(lock_mode & XFS_MMAPLOCK_EXCL) ||
 448		inodes <= XFS_MMAPLOCK_MAX_SUBCLASS + 1);
 449	ASSERT(!(lock_mode & XFS_ILOCK_EXCL) ||
 450		inodes <= XFS_ILOCK_MAX_SUBCLASS + 1);
 451
 452	if (lock_mode & XFS_IOLOCK_EXCL) {
 453		ASSERT(!(lock_mode & (XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL)));
 454	} else if (lock_mode & XFS_MMAPLOCK_EXCL)
 455		ASSERT(!(lock_mode & XFS_ILOCK_EXCL));
 456
 457again:
 458	try_lock = false;
 459	i = 0;
 460	for (; i < inodes; i++) {
 461		ASSERT(ips[i]);
 462
 463		if (i && (ips[i] == ips[i - 1]))	/* Already locked */
 464			continue;
 
 
 465
 466		/*
 467		 * If try_lock is not set yet, make sure all locked inodes are
 468		 * not in the AIL.  If any are, set try_lock to be used later.
 469		 */
 470		if (!try_lock) {
 471			for (j = (i - 1); j >= 0 && !try_lock; j--) {
 472				lp = &ips[j]->i_itemp->ili_item;
 473				if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags))
 474					try_lock = true;
 475			}
 476		}
 477
 478		/*
 479		 * If any of the previous locks we have locked is in the AIL,
 480		 * we must TRY to get the second and subsequent locks. If
 481		 * we can't get any, we must release all we have
 482		 * and try again.
 483		 */
 484		if (!try_lock) {
 485			xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i));
 486			continue;
 487		}
 488
 489		/* try_lock means we have an inode locked that is in the AIL. */
 490		ASSERT(i != 0);
 491		if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i)))
 492			continue;
 493
 494		/*
 495		 * Unlock all previous guys and try again.  xfs_iunlock will try
 496		 * to push the tail if the inode is in the AIL.
 497		 */
 498		attempts++;
 499		for (j = i - 1; j >= 0; j--) {
 500			/*
 501			 * Check to see if we've already unlocked this one.  Not
 502			 * the first one going back, and the inode ptr is the
 503			 * same.
 504			 */
 505			if (j != (i - 1) && ips[j] == ips[j + 1])
 506				continue;
 507
 508			xfs_iunlock(ips[j], lock_mode);
 509		}
 510
 511		if ((attempts % 5) == 0) {
 512			delay(1); /* Don't just spin the CPU */
 513		}
 514		goto again;
 515	}
 516}
 517
 518/*
 519 * xfs_lock_two_inodes() can only be used to lock ilock. The iolock and
 520 * mmaplock must be double-locked separately since we use i_rwsem and
 521 * invalidate_lock for that. We now support taking one lock EXCL and the
 522 * other SHARED.
 523 */
 524void
 525xfs_lock_two_inodes(
 526	struct xfs_inode	*ip0,
 527	uint			ip0_mode,
 528	struct xfs_inode	*ip1,
 529	uint			ip1_mode)
 530{
 531	int			attempts = 0;
 532	struct xfs_log_item	*lp;
 533
 534	ASSERT(hweight32(ip0_mode) == 1);
 535	ASSERT(hweight32(ip1_mode) == 1);
 536	ASSERT(!(ip0_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
 537	ASSERT(!(ip1_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
 538	ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)));
 539	ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)));
 540	ASSERT(ip0->i_ino != ip1->i_ino);
 541
 542	if (ip0->i_ino > ip1->i_ino) {
 543		swap(ip0, ip1);
 544		swap(ip0_mode, ip1_mode);
 545	}
 546
 547 again:
 548	xfs_ilock(ip0, xfs_lock_inumorder(ip0_mode, 0));
 549
 550	/*
 551	 * If the first lock we have locked is in the AIL, we must TRY to get
 552	 * the second lock. If we can't get it, we must release the first one
 553	 * and try again.
 554	 */
 555	lp = &ip0->i_itemp->ili_item;
 556	if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags)) {
 557		if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(ip1_mode, 1))) {
 558			xfs_iunlock(ip0, ip0_mode);
 559			if ((++attempts % 5) == 0)
 560				delay(1); /* Don't just spin the CPU */
 561			goto again;
 562		}
 563	} else {
 564		xfs_ilock(ip1, xfs_lock_inumorder(ip1_mode, 1));
 565	}
 566}
 567
 568uint
 569xfs_ip2xflags(
 570	struct xfs_inode	*ip)
 571{
 572	uint			flags = 0;
 573
 574	if (ip->i_diflags & XFS_DIFLAG_ANY) {
 575		if (ip->i_diflags & XFS_DIFLAG_REALTIME)
 576			flags |= FS_XFLAG_REALTIME;
 577		if (ip->i_diflags & XFS_DIFLAG_PREALLOC)
 578			flags |= FS_XFLAG_PREALLOC;
 579		if (ip->i_diflags & XFS_DIFLAG_IMMUTABLE)
 580			flags |= FS_XFLAG_IMMUTABLE;
 581		if (ip->i_diflags & XFS_DIFLAG_APPEND)
 582			flags |= FS_XFLAG_APPEND;
 583		if (ip->i_diflags & XFS_DIFLAG_SYNC)
 584			flags |= FS_XFLAG_SYNC;
 585		if (ip->i_diflags & XFS_DIFLAG_NOATIME)
 586			flags |= FS_XFLAG_NOATIME;
 587		if (ip->i_diflags & XFS_DIFLAG_NODUMP)
 588			flags |= FS_XFLAG_NODUMP;
 589		if (ip->i_diflags & XFS_DIFLAG_RTINHERIT)
 590			flags |= FS_XFLAG_RTINHERIT;
 591		if (ip->i_diflags & XFS_DIFLAG_PROJINHERIT)
 592			flags |= FS_XFLAG_PROJINHERIT;
 593		if (ip->i_diflags & XFS_DIFLAG_NOSYMLINKS)
 594			flags |= FS_XFLAG_NOSYMLINKS;
 595		if (ip->i_diflags & XFS_DIFLAG_EXTSIZE)
 596			flags |= FS_XFLAG_EXTSIZE;
 597		if (ip->i_diflags & XFS_DIFLAG_EXTSZINHERIT)
 598			flags |= FS_XFLAG_EXTSZINHERIT;
 599		if (ip->i_diflags & XFS_DIFLAG_NODEFRAG)
 600			flags |= FS_XFLAG_NODEFRAG;
 601		if (ip->i_diflags & XFS_DIFLAG_FILESTREAM)
 602			flags |= FS_XFLAG_FILESTREAM;
 603	}
 604
 605	if (ip->i_diflags2 & XFS_DIFLAG2_ANY) {
 606		if (ip->i_diflags2 & XFS_DIFLAG2_DAX)
 607			flags |= FS_XFLAG_DAX;
 608		if (ip->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE)
 609			flags |= FS_XFLAG_COWEXTSIZE;
 610	}
 611
 612	if (xfs_inode_has_attr_fork(ip))
 613		flags |= FS_XFLAG_HASATTR;
 614	return flags;
 615}
 616
 617/*
 618 * Lookups up an inode from "name". If ci_name is not NULL, then a CI match
 619 * is allowed, otherwise it has to be an exact match. If a CI match is found,
 620 * ci_name->name will point to a the actual name (caller must free) or
 621 * will be set to NULL if an exact match is found.
 
 
 
 
 
 
 
 
 
 
 622 */
 623int
 624xfs_lookup(
 625	struct xfs_inode	*dp,
 626	const struct xfs_name	*name,
 627	struct xfs_inode	**ipp,
 628	struct xfs_name		*ci_name)
 
 
 629{
 630	xfs_ino_t		inum;
 631	int			error;
 632
 633	trace_xfs_lookup(dp, name);
 634
 635	if (xfs_is_shutdown(dp->i_mount))
 636		return -EIO;
 637	if (xfs_ifork_zapped(dp, XFS_DATA_FORK))
 638		return -EIO;
 639
 640	error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name);
 641	if (error)
 642		goto out_unlock;
 643
 644	error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp);
 645	if (error)
 646		goto out_free_name;
 
 
 
 647
 
 
 648	return 0;
 649
 650out_free_name:
 651	if (ci_name)
 652		kfree(ci_name->name);
 653out_unlock:
 654	*ipp = NULL;
 655	return error;
 656}
 657
 658/* Propagate di_flags from a parent inode to a child inode. */
 659static void
 660xfs_inode_inherit_flags(
 661	struct xfs_inode	*ip,
 662	const struct xfs_inode	*pip)
 663{
 664	unsigned int		di_flags = 0;
 665	xfs_failaddr_t		failaddr;
 666	umode_t			mode = VFS_I(ip)->i_mode;
 667
 668	if (S_ISDIR(mode)) {
 669		if (pip->i_diflags & XFS_DIFLAG_RTINHERIT)
 670			di_flags |= XFS_DIFLAG_RTINHERIT;
 671		if (pip->i_diflags & XFS_DIFLAG_EXTSZINHERIT) {
 672			di_flags |= XFS_DIFLAG_EXTSZINHERIT;
 673			ip->i_extsize = pip->i_extsize;
 674		}
 675		if (pip->i_diflags & XFS_DIFLAG_PROJINHERIT)
 676			di_flags |= XFS_DIFLAG_PROJINHERIT;
 677	} else if (S_ISREG(mode)) {
 678		if ((pip->i_diflags & XFS_DIFLAG_RTINHERIT) &&
 679		    xfs_has_realtime(ip->i_mount))
 680			di_flags |= XFS_DIFLAG_REALTIME;
 681		if (pip->i_diflags & XFS_DIFLAG_EXTSZINHERIT) {
 682			di_flags |= XFS_DIFLAG_EXTSIZE;
 683			ip->i_extsize = pip->i_extsize;
 684		}
 685	}
 686	if ((pip->i_diflags & XFS_DIFLAG_NOATIME) &&
 687	    xfs_inherit_noatime)
 688		di_flags |= XFS_DIFLAG_NOATIME;
 689	if ((pip->i_diflags & XFS_DIFLAG_NODUMP) &&
 690	    xfs_inherit_nodump)
 691		di_flags |= XFS_DIFLAG_NODUMP;
 692	if ((pip->i_diflags & XFS_DIFLAG_SYNC) &&
 693	    xfs_inherit_sync)
 694		di_flags |= XFS_DIFLAG_SYNC;
 695	if ((pip->i_diflags & XFS_DIFLAG_NOSYMLINKS) &&
 696	    xfs_inherit_nosymlinks)
 697		di_flags |= XFS_DIFLAG_NOSYMLINKS;
 698	if ((pip->i_diflags & XFS_DIFLAG_NODEFRAG) &&
 699	    xfs_inherit_nodefrag)
 700		di_flags |= XFS_DIFLAG_NODEFRAG;
 701	if (pip->i_diflags & XFS_DIFLAG_FILESTREAM)
 702		di_flags |= XFS_DIFLAG_FILESTREAM;
 703
 704	ip->i_diflags |= di_flags;
 705
 706	/*
 707	 * Inode verifiers on older kernels only check that the extent size
 708	 * hint is an integer multiple of the rt extent size on realtime files.
 709	 * They did not check the hint alignment on a directory with both
 710	 * rtinherit and extszinherit flags set.  If the misaligned hint is
 711	 * propagated from a directory into a new realtime file, new file
 712	 * allocations will fail due to math errors in the rt allocator and/or
 713	 * trip the verifiers.  Validate the hint settings in the new file so
 714	 * that we don't let broken hints propagate.
 715	 */
 716	failaddr = xfs_inode_validate_extsize(ip->i_mount, ip->i_extsize,
 717			VFS_I(ip)->i_mode, ip->i_diflags);
 718	if (failaddr) {
 719		ip->i_diflags &= ~(XFS_DIFLAG_EXTSIZE |
 720				   XFS_DIFLAG_EXTSZINHERIT);
 721		ip->i_extsize = 0;
 722	}
 723}
 724
 725/* Propagate di_flags2 from a parent inode to a child inode. */
 726static void
 727xfs_inode_inherit_flags2(
 728	struct xfs_inode	*ip,
 729	const struct xfs_inode	*pip)
 730{
 731	xfs_failaddr_t		failaddr;
 732
 733	if (pip->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE) {
 734		ip->i_diflags2 |= XFS_DIFLAG2_COWEXTSIZE;
 735		ip->i_cowextsize = pip->i_cowextsize;
 736	}
 737	if (pip->i_diflags2 & XFS_DIFLAG2_DAX)
 738		ip->i_diflags2 |= XFS_DIFLAG2_DAX;
 739
 740	/* Don't let invalid cowextsize hints propagate. */
 741	failaddr = xfs_inode_validate_cowextsize(ip->i_mount, ip->i_cowextsize,
 742			VFS_I(ip)->i_mode, ip->i_diflags, ip->i_diflags2);
 743	if (failaddr) {
 744		ip->i_diflags2 &= ~XFS_DIFLAG2_COWEXTSIZE;
 745		ip->i_cowextsize = 0;
 746	}
 747}
 748
 749/*
 750 * Initialise a newly allocated inode and return the in-core inode to the
 751 * caller locked exclusively.
 
 
 
 
 
 752 */
 753int
 754xfs_init_new_inode(
 755	struct mnt_idmap	*idmap,
 756	struct xfs_trans	*tp,
 757	struct xfs_inode	*pip,
 758	xfs_ino_t		ino,
 759	umode_t			mode,
 760	xfs_nlink_t		nlink,
 761	dev_t			rdev,
 762	prid_t			prid,
 763	bool			init_xattrs,
 764	struct xfs_inode	**ipp)
 765{
 766	struct inode		*dir = pip ? VFS_I(pip) : NULL;
 767	struct xfs_mount	*mp = tp->t_mountp;
 768	struct xfs_inode	*ip;
 769	unsigned int		flags;
 770	int			error;
 771	struct timespec64	tv;
 772	struct inode		*inode;
 773
 774	/*
 775	 * Protect against obviously corrupt allocation btree records. Later
 776	 * xfs_iget checks will catch re-allocation of other active in-memory
 777	 * and on-disk inodes. If we don't catch reallocating the parent inode
 778	 * here we will deadlock in xfs_iget() so we have to do these checks
 779	 * first.
 780	 */
 781	if ((pip && ino == pip->i_ino) || !xfs_verify_dir_ino(mp, ino)) {
 782		xfs_alert(mp, "Allocated a known in-use inode 0x%llx!", ino);
 783		xfs_agno_mark_sick(mp, XFS_INO_TO_AGNO(mp, ino),
 784				XFS_SICK_AG_INOBT);
 785		return -EFSCORRUPTED;
 786	}
 787
 788	/*
 789	 * Get the in-core inode with the lock held exclusively to prevent
 790	 * others from looking at until we're done.
 791	 */
 792	error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE, XFS_ILOCK_EXCL, &ip);
 793	if (error)
 794		return error;
 795
 796	ASSERT(ip != NULL);
 797	inode = VFS_I(ip);
 798	set_nlink(inode, nlink);
 799	inode->i_rdev = rdev;
 800	ip->i_projid = prid;
 801
 802	if (dir && !(dir->i_mode & S_ISGID) && xfs_has_grpid(mp)) {
 803		inode_fsuid_set(inode, idmap);
 804		inode->i_gid = dir->i_gid;
 805		inode->i_mode = mode;
 806	} else {
 807		inode_init_owner(idmap, inode, dir, mode);
 
 
 
 
 
 
 
 
 
 
 
 
 808	}
 809
 810	/*
 811	 * If the group ID of the new file does not match the effective group
 812	 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
 813	 * (and only if the irix_sgid_inherit compatibility variable is set).
 814	 */
 815	if (irix_sgid_inherit && (inode->i_mode & S_ISGID) &&
 816	    !vfsgid_in_group_p(i_gid_into_vfsgid(idmap, inode)))
 817		inode->i_mode &= ~S_ISGID;
 818
 819	ip->i_disk_size = 0;
 820	ip->i_df.if_nextents = 0;
 821	ASSERT(ip->i_nblocks == 0);
 822
 823	tv = inode_set_ctime_current(inode);
 824	inode_set_mtime_to_ts(inode, tv);
 825	inode_set_atime_to_ts(inode, tv);
 826
 827	ip->i_extsize = 0;
 828	ip->i_diflags = 0;
 829
 830	if (xfs_has_v3inodes(mp)) {
 831		inode_set_iversion(inode, 1);
 832		ip->i_cowextsize = 0;
 833		ip->i_crtime = tv;
 834	}
 835
 836	flags = XFS_ILOG_CORE;
 837	switch (mode & S_IFMT) {
 838	case S_IFIFO:
 839	case S_IFCHR:
 840	case S_IFBLK:
 841	case S_IFSOCK:
 842		ip->i_df.if_format = XFS_DINODE_FMT_DEV;
 843		flags |= XFS_ILOG_DEV;
 
 
 
 
 
 
 844		break;
 
 845	case S_IFREG:
 
 846	case S_IFDIR:
 847		if (pip && (pip->i_diflags & XFS_DIFLAG_ANY))
 848			xfs_inode_inherit_flags(ip, pip);
 849		if (pip && (pip->i_diflags2 & XFS_DIFLAG2_ANY))
 850			xfs_inode_inherit_flags2(ip, pip);
 851		fallthrough;
 852	case S_IFLNK:
 853		ip->i_df.if_format = XFS_DINODE_FMT_EXTENTS;
 854		ip->i_df.if_bytes = 0;
 855		ip->i_df.if_data = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 856		break;
 
 857	default:
 858		ASSERT(0);
 
 
 
 
 859	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 860
 861	/*
 862	 * If we need to create attributes immediately after allocating the
 863	 * inode, initialise an empty attribute fork right now. We use the
 864	 * default fork offset for attributes here as we don't know exactly what
 865	 * size or how many attributes we might be adding. We can do this
 866	 * safely here because we know the data fork is completely empty and
 867	 * this saves us from needing to run a separate transaction to set the
 868	 * fork offset in the immediate future.
 869	 */
 870	if (init_xattrs && xfs_has_attr(mp)) {
 871		ip->i_forkoff = xfs_default_attroffset(ip) >> 3;
 872		xfs_ifork_init_attr(ip, XFS_DINODE_FMT_EXTENTS, 0);
 
 
 
 
 873	}
 
 
 874
 875	/*
 876	 * Log the new values stuffed into the inode.
 877	 */
 878	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
 879	xfs_trans_log_inode(tp, ip, flags);
 880
 881	/* now that we have an i_mode we can setup the inode structure */
 882	xfs_setup_inode(ip);
 883
 884	*ipp = ip;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 885	return 0;
 886}
 887
 888/*
 889 * Decrement the link count on an inode & log the change.  If this causes the
 890 * link count to go to zero, move the inode to AGI unlinked list so that it can
 891 * be freed when the last active reference goes away via xfs_inactive().
 
 
 
 
 892 */
 893static int			/* error */
 894xfs_droplink(
 895	xfs_trans_t *tp,
 896	xfs_inode_t *ip)
 897{
 898	if (VFS_I(ip)->i_nlink == 0) {
 899		xfs_alert(ip->i_mount,
 900			  "%s: Attempt to drop inode (%llu) with nlink zero.",
 901			  __func__, ip->i_ino);
 902		return -EFSCORRUPTED;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 903	}
 904
 905	xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
 906
 907	drop_nlink(VFS_I(ip));
 908	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
 909
 910	if (VFS_I(ip)->i_nlink)
 911		return 0;
 912
 913	return xfs_iunlink(tp, ip);
 914}
 915
 916/*
 917 * Increment the link count on an inode & log the change.
 
 
 
 
 
 918 */
 919static void
 920xfs_bumplink(
 921	xfs_trans_t *tp,
 922	xfs_inode_t *ip)
 
 923{
 924	xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 925
 926	inc_nlink(VFS_I(ip));
 927	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
 928}
 929
 930#ifdef CONFIG_XFS_LIVE_HOOKS
 931/*
 932 * Use a static key here to reduce the overhead of directory live update hooks.
 933 * If the compiler supports jump labels, the static branch will be replaced by
 934 * a nop sled when there are no hook users.  Online fsck is currently the only
 935 * caller, so this is a reasonable tradeoff.
 936 *
 937 * Note: Patching the kernel code requires taking the cpu hotplug lock.  Other
 938 * parts of the kernel allocate memory with that lock held, which means that
 939 * XFS callers cannot hold any locks that might be used by memory reclaim or
 940 * writeback when calling the static_branch_{inc,dec} functions.
 941 */
 942DEFINE_STATIC_XFS_HOOK_SWITCH(xfs_dir_hooks_switch);
 943
 944void
 945xfs_dir_hook_disable(void)
 946{
 947	xfs_hooks_switch_off(&xfs_dir_hooks_switch);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 948}
 949
 950void
 951xfs_dir_hook_enable(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 952{
 953	xfs_hooks_switch_on(&xfs_dir_hooks_switch);
 954}
 955
 956/* Call hooks for a directory update relating to a child dirent update. */
 957inline void
 958xfs_dir_update_hook(
 959	struct xfs_inode		*dp,
 960	struct xfs_inode		*ip,
 961	int				delta,
 962	const struct xfs_name		*name)
 963{
 964	if (xfs_hooks_switched_on(&xfs_dir_hooks_switch)) {
 965		struct xfs_dir_update_params	p = {
 966			.dp		= dp,
 967			.ip		= ip,
 968			.delta		= delta,
 969			.name		= name,
 970		};
 971		struct xfs_mount	*mp = ip->i_mount;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 972
 973		xfs_hooks_call(&mp->m_dir_update_hooks, 0, &p);
 974	}
 975}
 976
 977/* Call the specified function during a directory update. */
 978int
 979xfs_dir_hook_add(
 980	struct xfs_mount	*mp,
 981	struct xfs_dir_hook	*hook)
 982{
 983	return xfs_hooks_add(&mp->m_dir_update_hooks, &hook->dirent_hook);
 984}
 985
 986/* Stop calling the specified function during a directory update. */
 987void
 988xfs_dir_hook_del(
 989	struct xfs_mount	*mp,
 990	struct xfs_dir_hook	*hook)
 991{
 992	xfs_hooks_del(&mp->m_dir_update_hooks, &hook->dirent_hook);
 993}
 994
 995/* Configure directory update hook functions. */
 996void
 997xfs_dir_hook_setup(
 998	struct xfs_dir_hook	*hook,
 999	notifier_fn_t		mod_fn)
1000{
1001	xfs_hook_setup(&hook->dirent_hook, mod_fn);
 
1002}
1003#endif /* CONFIG_XFS_LIVE_HOOKS */
1004
 
 
 
1005int
1006xfs_create(
1007	struct mnt_idmap	*idmap,
1008	xfs_inode_t		*dp,
1009	struct xfs_name		*name,
1010	umode_t			mode,
1011	dev_t			rdev,
1012	bool			init_xattrs,
1013	xfs_inode_t		**ipp)
1014{
1015	int			is_dir = S_ISDIR(mode);
1016	struct xfs_mount	*mp = dp->i_mount;
1017	struct xfs_inode	*ip = NULL;
1018	struct xfs_trans	*tp = NULL;
1019	int			error;
1020	bool                    unlock_dp_on_error = false;
1021	prid_t			prid;
1022	struct xfs_dquot	*udqp = NULL;
1023	struct xfs_dquot	*gdqp = NULL;
1024	struct xfs_dquot	*pdqp = NULL;
1025	struct xfs_trans_res	*tres;
1026	uint			resblks;
1027	xfs_ino_t		ino;
1028
1029	trace_xfs_create(dp, name);
1030
1031	if (xfs_is_shutdown(mp))
1032		return -EIO;
1033	if (xfs_ifork_zapped(dp, XFS_DATA_FORK))
1034		return -EIO;
1035
1036	prid = xfs_get_initial_prid(dp);
1037
1038	/*
1039	 * Make sure that we have allocated dquot(s) on disk.
1040	 */
1041	error = xfs_qm_vop_dqalloc(dp, mapped_fsuid(idmap, &init_user_ns),
1042			mapped_fsgid(idmap, &init_user_ns), prid,
1043			XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1044			&udqp, &gdqp, &pdqp);
1045	if (error)
1046		return error;
1047
1048	if (is_dir) {
1049		resblks = XFS_MKDIR_SPACE_RES(mp, name->len);
1050		tres = &M_RES(mp)->tr_mkdir;
1051	} else {
1052		resblks = XFS_CREATE_SPACE_RES(mp, name->len);
1053		tres = &M_RES(mp)->tr_create;
1054	}
1055
1056	/*
1057	 * Initially assume that the file does not exist and
1058	 * reserve the resources for that case.  If that is not
1059	 * the case we'll drop the one we have and get a more
1060	 * appropriate transaction later.
1061	 */
1062	error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp, resblks,
1063			&tp);
1064	if (error == -ENOSPC) {
1065		/* flush outstanding delalloc blocks and retry */
1066		xfs_flush_inodes(mp);
1067		error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp,
1068				resblks, &tp);
1069	}
1070	if (error)
1071		goto out_release_dquots;
1072
1073	xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT);
1074	unlock_dp_on_error = true;
1075
1076	/*
1077	 * A newly created regular or special file just has one directory
1078	 * entry pointing to them, but a directory also the "." entry
1079	 * pointing to itself.
1080	 */
1081	error = xfs_dialloc(&tp, dp->i_ino, mode, &ino);
1082	if (!error)
1083		error = xfs_init_new_inode(idmap, tp, dp, ino, mode,
1084				is_dir ? 2 : 1, rdev, prid, init_xattrs, &ip);
1085	if (error)
1086		goto out_trans_cancel;
 
1087
1088	/*
1089	 * Now we join the directory inode to the transaction.  We do not do it
1090	 * earlier because xfs_dialloc might commit the previous transaction
1091	 * (and release all the locks).  An error from here on will result in
1092	 * the transaction cancel unlocking dp so don't do it explicitly in the
1093	 * error path.
1094	 */
1095	xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
1096	unlock_dp_on_error = false;
1097
1098	error = xfs_dir_createname(tp, dp, name, ip->i_ino,
1099					resblks - XFS_IALLOC_SPACE_RES(mp));
1100	if (error) {
1101		ASSERT(error != -ENOSPC);
1102		goto out_trans_cancel;
1103	}
1104	xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1105	xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
1106
1107	if (is_dir) {
1108		error = xfs_dir_init(tp, ip, dp);
1109		if (error)
1110			goto out_trans_cancel;
1111
1112		xfs_bumplink(tp, dp);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1113	}
1114
1115	/*
1116	 * Create ip with a reference from dp, and add '.' and '..' references
1117	 * if it's a directory.
 
 
 
 
 
 
 
1118	 */
1119	xfs_dir_update_hook(dp, ip, 1, name);
 
 
 
 
 
 
 
1120
1121	/*
1122	 * If this is a synchronous mount, make sure that the
1123	 * create transaction goes to disk before returning to
1124	 * the user.
1125	 */
1126	if (xfs_has_wsync(mp) || xfs_has_dirsync(mp))
1127		xfs_trans_set_sync(tp);
1128
1129	/*
1130	 * Attach the dquot(s) to the inodes and modify them incore.
1131	 * These ids of the inode couldn't have changed since the new
1132	 * inode has been locked ever since it was created.
 
 
 
 
 
 
 
 
1133	 */
1134	xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1135
1136	error = xfs_trans_commit(tp);
1137	if (error)
1138		goto out_release_inode;
1139
1140	xfs_qm_dqrele(udqp);
1141	xfs_qm_dqrele(gdqp);
1142	xfs_qm_dqrele(pdqp);
1143
1144	*ipp = ip;
1145	return 0;
1146
1147 out_trans_cancel:
1148	xfs_trans_cancel(tp);
1149 out_release_inode:
1150	/*
1151	 * Wait until after the current transaction is aborted to finish the
1152	 * setup of the inode and release the inode.  This prevents recursive
1153	 * transactions and deadlocks from xfs_inactive.
1154	 */
1155	if (ip) {
1156		xfs_finish_inode_setup(ip);
1157		xfs_irele(ip);
1158	}
1159 out_release_dquots:
1160	xfs_qm_dqrele(udqp);
1161	xfs_qm_dqrele(gdqp);
1162	xfs_qm_dqrele(pdqp);
1163
1164	if (unlock_dp_on_error)
1165		xfs_iunlock(dp, XFS_ILOCK_EXCL);
1166	return error;
1167}
1168
 
 
 
 
1169int
1170xfs_create_tmpfile(
1171	struct mnt_idmap	*idmap,
1172	struct xfs_inode	*dp,
1173	umode_t			mode,
1174	struct xfs_inode	**ipp)
1175{
1176	struct xfs_mount	*mp = dp->i_mount;
1177	struct xfs_inode	*ip = NULL;
1178	struct xfs_trans	*tp = NULL;
1179	int			error;
1180	prid_t                  prid;
1181	struct xfs_dquot	*udqp = NULL;
1182	struct xfs_dquot	*gdqp = NULL;
1183	struct xfs_dquot	*pdqp = NULL;
1184	struct xfs_trans_res	*tres;
1185	uint			resblks;
1186	xfs_ino_t		ino;
1187
1188	if (xfs_is_shutdown(mp))
1189		return -EIO;
1190
1191	prid = xfs_get_initial_prid(dp);
1192
1193	/*
1194	 * Make sure that we have allocated dquot(s) on disk.
1195	 */
1196	error = xfs_qm_vop_dqalloc(dp, mapped_fsuid(idmap, &init_user_ns),
1197			mapped_fsgid(idmap, &init_user_ns), prid,
1198			XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1199			&udqp, &gdqp, &pdqp);
1200	if (error)
1201		return error;
1202
1203	resblks = XFS_IALLOC_SPACE_RES(mp);
1204	tres = &M_RES(mp)->tr_create_tmpfile;
1205
1206	error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp, resblks,
1207			&tp);
1208	if (error)
1209		goto out_release_dquots;
1210
1211	error = xfs_dialloc(&tp, dp->i_ino, mode, &ino);
1212	if (!error)
1213		error = xfs_init_new_inode(idmap, tp, dp, ino, mode,
1214				0, 0, prid, false, &ip);
1215	if (error)
1216		goto out_trans_cancel;
1217
1218	if (xfs_has_wsync(mp))
1219		xfs_trans_set_sync(tp);
1220
1221	/*
1222	 * Attach the dquot(s) to the inodes and modify them incore.
1223	 * These ids of the inode couldn't have changed since the new
1224	 * inode has been locked ever since it was created.
1225	 */
1226	xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1227
1228	error = xfs_iunlink(tp, ip);
1229	if (error)
1230		goto out_trans_cancel;
1231
1232	error = xfs_trans_commit(tp);
1233	if (error)
1234		goto out_release_inode;
1235
1236	xfs_qm_dqrele(udqp);
1237	xfs_qm_dqrele(gdqp);
1238	xfs_qm_dqrele(pdqp);
1239
1240	*ipp = ip;
1241	return 0;
1242
1243 out_trans_cancel:
1244	xfs_trans_cancel(tp);
1245 out_release_inode:
1246	/*
1247	 * Wait until after the current transaction is aborted to finish the
1248	 * setup of the inode and release the inode.  This prevents recursive
1249	 * transactions and deadlocks from xfs_inactive.
1250	 */
1251	if (ip) {
1252		xfs_finish_inode_setup(ip);
1253		xfs_irele(ip);
1254	}
1255 out_release_dquots:
1256	xfs_qm_dqrele(udqp);
1257	xfs_qm_dqrele(gdqp);
1258	xfs_qm_dqrele(pdqp);
1259
1260	return error;
1261}
1262
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1263int
1264xfs_link(
1265	xfs_inode_t		*tdp,
1266	xfs_inode_t		*sip,
1267	struct xfs_name		*target_name)
1268{
1269	xfs_mount_t		*mp = tdp->i_mount;
1270	xfs_trans_t		*tp;
1271	int			error, nospace_error = 0;
1272	int			resblks;
1273
1274	trace_xfs_link(tdp, target_name);
1275
1276	ASSERT(!S_ISDIR(VFS_I(sip)->i_mode));
1277
1278	if (xfs_is_shutdown(mp))
1279		return -EIO;
1280	if (xfs_ifork_zapped(tdp, XFS_DATA_FORK))
1281		return -EIO;
1282
1283	error = xfs_qm_dqattach(sip);
 
 
 
 
 
1284	if (error)
1285		goto std_return;
 
 
 
 
 
1286
1287	error = xfs_qm_dqattach(tdp);
 
 
 
 
 
 
1288	if (error)
1289		goto std_return;
 
1290
1291	resblks = XFS_LINK_SPACE_RES(mp, target_name->len);
1292	error = xfs_trans_alloc_dir(tdp, &M_RES(mp)->tr_link, sip, &resblks,
1293			&tp, &nospace_error);
1294	if (error)
1295		goto std_return;
 
 
 
1296
1297	/*
1298	 * If we are using project inheritance, we only allow hard link
1299	 * creation in our tree when the project IDs are the same; else
1300	 * the tree quota mechanism could be circumvented.
 
1301	 */
1302	if (unlikely((tdp->i_diflags & XFS_DIFLAG_PROJINHERIT) &&
1303		     tdp->i_projid != sip->i_projid)) {
 
1304		/*
1305		 * Project quota setup skips special files which can
1306		 * leave inodes in a PROJINHERIT directory without a
1307		 * project ID set. We need to allow links to be made
1308		 * to these "project-less" inodes because userspace
1309		 * expects them to succeed after project ID setup,
1310		 * but everything else should be rejected.
1311		 */
1312		if (!special_file(VFS_I(sip)->i_mode) ||
1313		    sip->i_projid != 0) {
1314			error = -EXDEV;
1315			goto error_return;
1316		}
1317	}
1318
1319	if (!resblks) {
1320		error = xfs_dir_canenter(tp, tdp, target_name);
1321		if (error)
1322			goto error_return;
 
 
 
 
 
 
 
1323	}
1324
1325	/*
1326	 * Handle initial link state of O_TMPFILE inode
 
 
1327	 */
1328	if (VFS_I(sip)->i_nlink == 0) {
1329		struct xfs_perag	*pag;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1330
1331		pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, sip->i_ino));
1332		error = xfs_iunlink_remove(tp, pag, sip);
1333		xfs_perag_put(pag);
1334		if (error)
1335			goto error_return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1336	}
1337
1338	error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino,
1339				   resblks);
1340	if (error)
1341		goto error_return;
1342	xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1343	xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE);
1344
1345	xfs_bumplink(tp, sip);
1346	xfs_dir_update_hook(tdp, sip, 1, target_name);
1347
1348	/*
1349	 * If this is a synchronous mount, make sure that the
1350	 * link transaction goes to disk before returning to
1351	 * the user.
1352	 */
1353	if (xfs_has_wsync(mp) || xfs_has_dirsync(mp))
1354		xfs_trans_set_sync(tp);
1355
1356	return xfs_trans_commit(tp);
 
 
 
 
 
 
 
 
 
 
1357
1358 error_return:
1359	xfs_trans_cancel(tp);
1360 std_return:
1361	if (error == -ENOSPC && nospace_error)
1362		error = nospace_error;
1363	return error;
1364}
1365
1366/* Clear the reflink flag and the cowblocks tag if possible. */
1367static void
1368xfs_itruncate_clear_reflink_flags(
1369	struct xfs_inode	*ip)
 
 
 
 
 
 
 
1370{
1371	struct xfs_ifork	*dfork;
1372	struct xfs_ifork	*cfork;
 
 
1373
1374	if (!xfs_is_reflink_inode(ip))
1375		return;
1376	dfork = xfs_ifork_ptr(ip, XFS_DATA_FORK);
1377	cfork = xfs_ifork_ptr(ip, XFS_COW_FORK);
1378	if (dfork->if_bytes == 0 && cfork->if_bytes == 0)
1379		ip->i_diflags2 &= ~XFS_DIFLAG2_REFLINK;
1380	if (cfork->if_bytes == 0)
1381		xfs_inode_clear_cowblocks_tag(ip);
1382}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1383
1384/*
1385 * Free up the underlying blocks past new_size.  The new size must be smaller
1386 * than the current size.  This routine can be used both for the attribute and
1387 * data fork, and does not modify the inode size, which is left to the caller.
1388 *
1389 * The transaction passed to this routine must have made a permanent log
1390 * reservation of at least XFS_ITRUNCATE_LOG_RES.  This routine may commit the
1391 * given transaction and start new ones, so make sure everything involved in
1392 * the transaction is tidy before calling here.  Some transaction will be
1393 * returned to the caller to be committed.  The incoming transaction must
1394 * already include the inode, and both inode locks must be held exclusively.
1395 * The inode must also be "held" within the transaction.  On return the inode
1396 * will be "held" within the returned transaction.  This routine does NOT
1397 * require any disk space to be reserved for it within the transaction.
1398 *
1399 * If we get an error, we must return with the inode locked and linked into the
1400 * current transaction. This keeps things simple for the higher level code,
1401 * because it always knows that the inode is locked and held in the transaction
1402 * that returns to it whether errors occur or not.  We don't mark the inode
1403 * dirty on error so that transactions can be easily aborted if possible.
1404 */
1405int
1406xfs_itruncate_extents_flags(
1407	struct xfs_trans	**tpp,
1408	struct xfs_inode	*ip,
1409	int			whichfork,
1410	xfs_fsize_t		new_size,
1411	int			flags)
1412{
1413	struct xfs_mount	*mp = ip->i_mount;
1414	struct xfs_trans	*tp = *tpp;
 
 
 
1415	xfs_fileoff_t		first_unmap_block;
 
 
 
1416	int			error = 0;
 
1417
1418	xfs_assert_ilocked(ip, XFS_ILOCK_EXCL);
1419	if (atomic_read(&VFS_I(ip)->i_count))
1420		xfs_assert_ilocked(ip, XFS_IOLOCK_EXCL);
1421	ASSERT(new_size <= XFS_ISIZE(ip));
1422	ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1423	ASSERT(ip->i_itemp != NULL);
1424	ASSERT(ip->i_itemp->ili_lock_flags == 0);
1425	ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
1426
1427	trace_xfs_itruncate_extents_start(ip, new_size);
1428
1429	flags |= xfs_bmapi_aflag(whichfork);
1430
1431	/*
1432	 * Since it is possible for space to become allocated beyond
1433	 * the end of the file (in a crash where the space is allocated
1434	 * but the inode size is not yet updated), simply remove any
1435	 * blocks which show up between the new EOF and the maximum
1436	 * possible file size.
1437	 *
1438	 * We have to free all the blocks to the bmbt maximum offset, even if
1439	 * the page cache can't scale that far.
1440	 */
1441	first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1442	if (!xfs_verify_fileoff(mp, first_unmap_block)) {
1443		WARN_ON_ONCE(first_unmap_block > XFS_MAX_FILEOFF);
1444		return 0;
1445	}
1446
1447	error = xfs_bunmapi_range(&tp, ip, flags, first_unmap_block,
1448			XFS_MAX_FILEOFF);
1449	if (error)
1450		goto out;
1451
1452	if (whichfork == XFS_DATA_FORK) {
1453		/* Remove all pending CoW reservations. */
1454		error = xfs_reflink_cancel_cow_blocks(ip, &tp,
1455				first_unmap_block, XFS_MAX_FILEOFF, true);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1456		if (error)
1457			goto out;
1458
1459		xfs_itruncate_clear_reflink_flags(ip);
1460	}
1461
1462	/*
1463	 * Always re-log the inode so that our permanent transaction can keep
1464	 * on rolling it forward in the log.
1465	 */
1466	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1467
1468	trace_xfs_itruncate_extents_end(ip, new_size);
 
 
1469
1470out:
1471	*tpp = tp;
1472	return error;
1473}
1474
1475int
1476xfs_release(
1477	xfs_inode_t	*ip)
1478{
1479	xfs_mount_t	*mp = ip->i_mount;
1480	int		error = 0;
1481
1482	if (!S_ISREG(VFS_I(ip)->i_mode) || (VFS_I(ip)->i_mode == 0))
1483		return 0;
1484
1485	/* If this is a read-only mount, don't do this (would generate I/O) */
1486	if (xfs_is_readonly(mp))
1487		return 0;
1488
1489	if (!xfs_is_shutdown(mp)) {
1490		int truncated;
1491
1492		/*
1493		 * If we previously truncated this file and removed old data
1494		 * in the process, we want to initiate "early" writeout on
1495		 * the last close.  This is an attempt to combat the notorious
1496		 * NULL files problem which is particularly noticeable from a
1497		 * truncate down, buffered (re-)write (delalloc), followed by
1498		 * a crash.  What we are effectively doing here is
1499		 * significantly reducing the time window where we'd otherwise
1500		 * be exposed to that problem.
1501		 */
1502		truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED);
1503		if (truncated) {
1504			xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE);
1505			if (ip->i_delayed_blks > 0) {
1506				error = filemap_flush(VFS_I(ip)->i_mapping);
1507				if (error)
1508					return error;
1509			}
1510		}
1511	}
1512
1513	if (VFS_I(ip)->i_nlink == 0)
1514		return 0;
1515
1516	/*
1517	 * If we can't get the iolock just skip truncating the blocks past EOF
1518	 * because we could deadlock with the mmap_lock otherwise. We'll get
1519	 * another chance to drop them once the last reference to the inode is
1520	 * dropped, so we'll never leak blocks permanently.
1521	 */
1522	if (!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL))
1523		return 0;
1524
1525	if (xfs_can_free_eofblocks(ip, false)) {
1526		/*
1527		 * Check if the inode is being opened, written and closed
1528		 * frequently and we have delayed allocation blocks outstanding
1529		 * (e.g. streaming writes from the NFS server), truncating the
1530		 * blocks past EOF will cause fragmentation to occur.
1531		 *
1532		 * In this case don't do the truncation, but we have to be
1533		 * careful how we detect this case. Blocks beyond EOF show up as
1534		 * i_delayed_blks even when the inode is clean, so we need to
1535		 * truncate them away first before checking for a dirty release.
1536		 * Hence on the first dirty close we will still remove the
1537		 * speculative allocation, but after that we will leave it in
1538		 * place.
1539		 */
1540		if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE))
1541			goto out_unlock;
1542
1543		error = xfs_free_eofblocks(ip);
 
1544		if (error)
1545			goto out_unlock;
1546
1547		/* delalloc blocks after truncation means it really is dirty */
1548		if (ip->i_delayed_blks)
1549			xfs_iflags_set(ip, XFS_IDIRTY_RELEASE);
1550	}
1551
1552out_unlock:
1553	xfs_iunlock(ip, XFS_IOLOCK_EXCL);
1554	return error;
1555}
1556
1557/*
1558 * xfs_inactive_truncate
1559 *
1560 * Called to perform a truncate when an inode becomes unlinked.
1561 */
1562STATIC int
1563xfs_inactive_truncate(
1564	struct xfs_inode *ip)
1565{
1566	struct xfs_mount	*mp = ip->i_mount;
1567	struct xfs_trans	*tp;
1568	int			error;
1569
1570	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp);
1571	if (error) {
1572		ASSERT(xfs_is_shutdown(mp));
1573		return error;
1574	}
1575	xfs_ilock(ip, XFS_ILOCK_EXCL);
1576	xfs_trans_ijoin(tp, ip, 0);
1577
1578	/*
1579	 * Log the inode size first to prevent stale data exposure in the event
1580	 * of a system crash before the truncate completes. See the related
1581	 * comment in xfs_vn_setattr_size() for details.
1582	 */
1583	ip->i_disk_size = 0;
1584	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1585
1586	error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0);
1587	if (error)
1588		goto error_trans_cancel;
1589
1590	ASSERT(ip->i_df.if_nextents == 0);
1591
1592	error = xfs_trans_commit(tp);
1593	if (error)
1594		goto error_unlock;
1595
1596	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1597	return 0;
1598
1599error_trans_cancel:
1600	xfs_trans_cancel(tp);
1601error_unlock:
1602	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1603	return error;
1604}
1605
1606/*
1607 * xfs_inactive_ifree()
1608 *
1609 * Perform the inode free when an inode is unlinked.
1610 */
1611STATIC int
1612xfs_inactive_ifree(
1613	struct xfs_inode *ip)
1614{
1615	struct xfs_mount	*mp = ip->i_mount;
1616	struct xfs_trans	*tp;
1617	int			error;
1618
1619	/*
1620	 * We try to use a per-AG reservation for any block needed by the finobt
1621	 * tree, but as the finobt feature predates the per-AG reservation
1622	 * support a degraded file system might not have enough space for the
1623	 * reservation at mount time.  In that case try to dip into the reserved
1624	 * pool and pray.
1625	 *
1626	 * Send a warning if the reservation does happen to fail, as the inode
1627	 * now remains allocated and sits on the unlinked list until the fs is
1628	 * repaired.
1629	 */
1630	if (unlikely(mp->m_finobt_nores)) {
1631		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree,
1632				XFS_IFREE_SPACE_RES(mp), 0, XFS_TRANS_RESERVE,
1633				&tp);
1634	} else {
1635		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 0, 0, 0, &tp);
1636	}
1637	if (error) {
1638		if (error == -ENOSPC) {
1639			xfs_warn_ratelimited(mp,
1640			"Failed to remove inode(s) from unlinked list. "
1641			"Please free space, unmount and run xfs_repair.");
1642		} else {
1643			ASSERT(xfs_is_shutdown(mp));
1644		}
1645		return error;
1646	}
1647
1648	/*
1649	 * We do not hold the inode locked across the entire rolling transaction
1650	 * here. We only need to hold it for the first transaction that
1651	 * xfs_ifree() builds, which may mark the inode XFS_ISTALE if the
1652	 * underlying cluster buffer is freed. Relogging an XFS_ISTALE inode
1653	 * here breaks the relationship between cluster buffer invalidation and
1654	 * stale inode invalidation on cluster buffer item journal commit
1655	 * completion, and can result in leaving dirty stale inodes hanging
1656	 * around in memory.
1657	 *
1658	 * We have no need for serialising this inode operation against other
1659	 * operations - we freed the inode and hence reallocation is required
1660	 * and that will serialise on reallocating the space the deferops need
1661	 * to free. Hence we can unlock the inode on the first commit of
1662	 * the transaction rather than roll it right through the deferops. This
1663	 * avoids relogging the XFS_ISTALE inode.
1664	 *
1665	 * We check that xfs_ifree() hasn't grown an internal transaction roll
1666	 * by asserting that the inode is still locked when it returns.
1667	 */
1668	xfs_ilock(ip, XFS_ILOCK_EXCL);
1669	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
1670
1671	error = xfs_ifree(tp, ip);
1672	xfs_assert_ilocked(ip, XFS_ILOCK_EXCL);
1673	if (error) {
1674		/*
1675		 * If we fail to free the inode, shut down.  The cancel
1676		 * might do that, we need to make sure.  Otherwise the
1677		 * inode might be lost for a long time or forever.
 
 
 
1678		 */
1679		if (!xfs_is_shutdown(mp)) {
1680			xfs_notice(mp, "%s: xfs_ifree returned error %d",
1681				__func__, error);
1682			xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1683		}
1684		xfs_trans_cancel(tp);
1685		return error;
1686	}
1687
1688	/*
1689	 * Credit the quota account(s). The inode is gone.
1690	 */
1691	xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1);
1692
1693	return xfs_trans_commit(tp);
1694}
1695
1696/*
1697 * Returns true if we need to update the on-disk metadata before we can free
1698 * the memory used by this inode.  Updates include freeing post-eof
1699 * preallocations; freeing COW staging extents; and marking the inode free in
1700 * the inobt if it is on the unlinked list.
1701 */
1702bool
1703xfs_inode_needs_inactive(
1704	struct xfs_inode	*ip)
1705{
1706	struct xfs_mount	*mp = ip->i_mount;
1707	struct xfs_ifork	*cow_ifp = xfs_ifork_ptr(ip, XFS_COW_FORK);
1708
1709	/*
1710	 * If the inode is already free, then there can be nothing
1711	 * to clean up here.
1712	 */
1713	if (VFS_I(ip)->i_mode == 0)
1714		return false;
1715
1716	/*
1717	 * If this is a read-only mount, don't do this (would generate I/O)
1718	 * unless we're in log recovery and cleaning the iunlinked list.
1719	 */
1720	if (xfs_is_readonly(mp) && !xlog_recovery_needed(mp->m_log))
1721		return false;
1722
1723	/* If the log isn't running, push inodes straight to reclaim. */
1724	if (xfs_is_shutdown(mp) || xfs_has_norecovery(mp))
1725		return false;
1726
1727	/* Metadata inodes require explicit resource cleanup. */
1728	if (xfs_is_metadata_inode(ip))
1729		return false;
1730
1731	/* Want to clean out the cow blocks if there are any. */
1732	if (cow_ifp && cow_ifp->if_bytes > 0)
1733		return true;
1734
1735	/* Unlinked files must be freed. */
1736	if (VFS_I(ip)->i_nlink == 0)
1737		return true;
1738
1739	/*
1740	 * This file isn't being freed, so check if there are post-eof blocks
1741	 * to free.  @force is true because we are evicting an inode from the
1742	 * cache.  Post-eof blocks must be freed, lest we end up with broken
1743	 * free space accounting.
1744	 *
1745	 * Note: don't bother with iolock here since lockdep complains about
1746	 * acquiring it in reclaim context. We have the only reference to the
1747	 * inode at this point anyways.
1748	 */
1749	return xfs_can_free_eofblocks(ip, true);
1750}
1751
1752/*
1753 * Save health status somewhere, if we're dumping an inode with uncorrected
1754 * errors and online repair isn't running.
1755 */
1756static inline void
1757xfs_inactive_health(
1758	struct xfs_inode	*ip)
1759{
1760	struct xfs_mount	*mp = ip->i_mount;
1761	struct xfs_perag	*pag;
1762	unsigned int		sick;
1763	unsigned int		checked;
1764
1765	xfs_inode_measure_sickness(ip, &sick, &checked);
1766	if (!sick)
1767		return;
1768
1769	trace_xfs_inode_unfixed_corruption(ip, sick);
1770
1771	if (sick & XFS_SICK_INO_FORGET)
1772		return;
1773
1774	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1775	if (!pag) {
1776		/* There had better still be a perag structure! */
1777		ASSERT(0);
1778		return;
1779	}
1780
1781	xfs_ag_mark_sick(pag, XFS_SICK_AG_INODES);
1782	xfs_perag_put(pag);
1783}
1784
1785/*
1786 * xfs_inactive
1787 *
1788 * This is called when the vnode reference count for the vnode
1789 * goes to zero.  If the file has been unlinked, then it must
1790 * now be truncated.  Also, we clear all of the read-ahead state
1791 * kept for the inode here since the file is now closed.
1792 */
1793int
1794xfs_inactive(
 
1795	xfs_inode_t	*ip)
1796{
1797	struct xfs_mount	*mp;
1798	int			error = 0;
1799	int			truncate = 0;
 
 
 
 
 
 
 
 
 
 
 
1800
1801	/*
1802	 * If the inode is already free, then there can be nothing
1803	 * to clean up here.
1804	 */
1805	if (VFS_I(ip)->i_mode == 0) {
1806		ASSERT(ip->i_df.if_broot_bytes == 0);
1807		goto out;
1808	}
1809
1810	mp = ip->i_mount;
1811	ASSERT(!xfs_iflags_test(ip, XFS_IRECOVERY));
1812
1813	xfs_inactive_health(ip);
1814
1815	/*
1816	 * If this is a read-only mount, don't do this (would generate I/O)
1817	 * unless we're in log recovery and cleaning the iunlinked list.
1818	 */
1819	if (xfs_is_readonly(mp) && !xlog_recovery_needed(mp->m_log))
1820		goto out;
1821
1822	/* Metadata inodes require explicit resource cleanup. */
1823	if (xfs_is_metadata_inode(ip))
1824		goto out;
1825
1826	/* Try to clean out the cow blocks if there are any. */
1827	if (xfs_inode_has_cow_data(ip))
1828		xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, true);
1829
1830	if (VFS_I(ip)->i_nlink != 0) {
1831		/*
1832		 * force is true because we are evicting an inode from the
1833		 * cache. Post-eof blocks must be freed, lest we end up with
1834		 * broken free space accounting.
1835		 *
1836		 * Note: don't bother with iolock here since lockdep complains
1837		 * about acquiring it in reclaim context. We have the only
1838		 * reference to the inode at this point anyways.
1839		 */
1840		if (xfs_can_free_eofblocks(ip, true))
1841			error = xfs_free_eofblocks(ip);
1842
1843		goto out;
1844	}
1845
1846	if (S_ISREG(VFS_I(ip)->i_mode) &&
1847	    (ip->i_disk_size != 0 || XFS_ISIZE(ip) != 0 ||
1848	     ip->i_df.if_nextents > 0 || ip->i_delayed_blks > 0))
1849		truncate = 1;
1850
1851	if (xfs_iflags_test(ip, XFS_IQUOTAUNCHECKED)) {
1852		/*
1853		 * If this inode is being inactivated during a quotacheck and
1854		 * has not yet been scanned by quotacheck, we /must/ remove
1855		 * the dquots from the inode before inactivation changes the
1856		 * block and inode counts.  Most probably this is a result of
1857		 * reloading the incore iunlinked list to purge unrecovered
1858		 * unlinked inodes.
1859		 */
1860		xfs_qm_dqdetach(ip);
1861	} else {
1862		error = xfs_qm_dqattach(ip);
1863		if (error)
1864			goto out;
1865	}
1866
1867	if (S_ISLNK(VFS_I(ip)->i_mode))
1868		error = xfs_inactive_symlink(ip);
1869	else if (truncate)
1870		error = xfs_inactive_truncate(ip);
1871	if (error)
1872		goto out;
1873
1874	/*
1875	 * If there are attributes associated with the file then blow them away
1876	 * now.  The code calls a routine that recursively deconstructs the
1877	 * attribute fork. If also blows away the in-core attribute fork.
1878	 */
1879	if (xfs_inode_has_attr_fork(ip)) {
1880		error = xfs_attr_inactive(ip);
1881		if (error)
1882			goto out;
1883	}
1884
1885	ASSERT(ip->i_forkoff == 0);
1886
1887	/*
1888	 * Free the inode.
1889	 */
1890	error = xfs_inactive_ifree(ip);
1891
1892out:
1893	/*
1894	 * We're done making metadata updates for this inode, so we can release
1895	 * the attached dquots.
1896	 */
1897	xfs_qm_dqdetach(ip);
1898	return error;
1899}
1900
1901/*
1902 * In-Core Unlinked List Lookups
1903 * =============================
1904 *
1905 * Every inode is supposed to be reachable from some other piece of metadata
1906 * with the exception of the root directory.  Inodes with a connection to a
1907 * file descriptor but not linked from anywhere in the on-disk directory tree
1908 * are collectively known as unlinked inodes, though the filesystem itself
1909 * maintains links to these inodes so that on-disk metadata are consistent.
1910 *
1911 * XFS implements a per-AG on-disk hash table of unlinked inodes.  The AGI
1912 * header contains a number of buckets that point to an inode, and each inode
1913 * record has a pointer to the next inode in the hash chain.  This
1914 * singly-linked list causes scaling problems in the iunlink remove function
1915 * because we must walk that list to find the inode that points to the inode
1916 * being removed from the unlinked hash bucket list.
1917 *
1918 * Hence we keep an in-memory double linked list to link each inode on an
1919 * unlinked list. Because there are 64 unlinked lists per AGI, keeping pointer
1920 * based lists would require having 64 list heads in the perag, one for each
1921 * list. This is expensive in terms of memory (think millions of AGs) and cache
1922 * misses on lookups. Instead, use the fact that inodes on the unlinked list
1923 * must be referenced at the VFS level to keep them on the list and hence we
1924 * have an existence guarantee for inodes on the unlinked list.
1925 *
1926 * Given we have an existence guarantee, we can use lockless inode cache lookups
1927 * to resolve aginos to xfs inodes. This means we only need 8 bytes per inode
1928 * for the double linked unlinked list, and we don't need any extra locking to
1929 * keep the list safe as all manipulations are done under the AGI buffer lock.
1930 * Keeping the list up to date does not require memory allocation, just finding
1931 * the XFS inode and updating the next/prev unlinked list aginos.
1932 */
1933
1934/*
1935 * Find an inode on the unlinked list. This does not take references to the
1936 * inode as we have existence guarantees by holding the AGI buffer lock and that
1937 * only unlinked, referenced inodes can be on the unlinked inode list.  If we
1938 * don't find the inode in cache, then let the caller handle the situation.
1939 */
1940static struct xfs_inode *
1941xfs_iunlink_lookup(
1942	struct xfs_perag	*pag,
1943	xfs_agino_t		agino)
1944{
1945	struct xfs_inode	*ip;
1946
1947	rcu_read_lock();
1948	ip = radix_tree_lookup(&pag->pag_ici_root, agino);
1949	if (!ip) {
1950		/* Caller can handle inode not being in memory. */
1951		rcu_read_unlock();
1952		return NULL;
1953	}
1954
1955	/*
1956	 * Inode in RCU freeing limbo should not happen.  Warn about this and
1957	 * let the caller handle the failure.
1958	 */
1959	if (WARN_ON_ONCE(!ip->i_ino)) {
1960		rcu_read_unlock();
1961		return NULL;
1962	}
1963	ASSERT(!xfs_iflags_test(ip, XFS_IRECLAIMABLE | XFS_IRECLAIM));
1964	rcu_read_unlock();
1965	return ip;
1966}
1967
1968/*
1969 * Update the prev pointer of the next agino.  Returns -ENOLINK if the inode
1970 * is not in cache.
1971 */
1972static int
1973xfs_iunlink_update_backref(
1974	struct xfs_perag	*pag,
1975	xfs_agino_t		prev_agino,
1976	xfs_agino_t		next_agino)
1977{
1978	struct xfs_inode	*ip;
1979
1980	/* No update necessary if we are at the end of the list. */
1981	if (next_agino == NULLAGINO)
1982		return 0;
1983
1984	ip = xfs_iunlink_lookup(pag, next_agino);
1985	if (!ip)
1986		return -ENOLINK;
1987
1988	ip->i_prev_unlinked = prev_agino;
1989	return 0;
1990}
1991
1992/*
1993 * Point the AGI unlinked bucket at an inode and log the results.  The caller
1994 * is responsible for validating the old value.
1995 */
1996STATIC int
1997xfs_iunlink_update_bucket(
1998	struct xfs_trans	*tp,
1999	struct xfs_perag	*pag,
2000	struct xfs_buf		*agibp,
2001	unsigned int		bucket_index,
2002	xfs_agino_t		new_agino)
2003{
2004	struct xfs_agi		*agi = agibp->b_addr;
2005	xfs_agino_t		old_value;
2006	int			offset;
2007
2008	ASSERT(xfs_verify_agino_or_null(pag, new_agino));
 
 
 
 
 
 
 
 
 
2009
2010	old_value = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2011	trace_xfs_iunlink_update_bucket(tp->t_mountp, pag->pag_agno, bucket_index,
2012			old_value, new_agino);
2013
2014	/*
2015	 * We should never find the head of the list already set to the value
2016	 * passed in because either we're adding or removing ourselves from the
2017	 * head of the list.
2018	 */
2019	if (old_value == new_agino) {
2020		xfs_buf_mark_corrupt(agibp);
2021		xfs_ag_mark_sick(pag, XFS_SICK_AG_AGI);
2022		return -EFSCORRUPTED;
2023	}
2024
2025	agi->agi_unlinked[bucket_index] = cpu_to_be32(new_agino);
2026	offset = offsetof(struct xfs_agi, agi_unlinked) +
2027			(sizeof(xfs_agino_t) * bucket_index);
2028	xfs_trans_log_buf(tp, agibp, offset, offset + sizeof(xfs_agino_t) - 1);
2029	return 0;
2030}
2031
2032/*
2033 * Load the inode @next_agino into the cache and set its prev_unlinked pointer
2034 * to @prev_agino.  Caller must hold the AGI to synchronize with other changes
2035 * to the unlinked list.
2036 */
2037STATIC int
2038xfs_iunlink_reload_next(
2039	struct xfs_trans	*tp,
2040	struct xfs_buf		*agibp,
2041	xfs_agino_t		prev_agino,
2042	xfs_agino_t		next_agino)
2043{
2044	struct xfs_perag	*pag = agibp->b_pag;
2045	struct xfs_mount	*mp = pag->pag_mount;
2046	struct xfs_inode	*next_ip = NULL;
2047	xfs_ino_t		ino;
2048	int			error;
2049
2050	ASSERT(next_agino != NULLAGINO);
2051
2052#ifdef DEBUG
2053	rcu_read_lock();
2054	next_ip = radix_tree_lookup(&pag->pag_ici_root, next_agino);
2055	ASSERT(next_ip == NULL);
2056	rcu_read_unlock();
2057#endif
2058
2059	xfs_info_ratelimited(mp,
2060 "Found unrecovered unlinked inode 0x%x in AG 0x%x.  Initiating recovery.",
2061			next_agino, pag->pag_agno);
2062
2063	/*
2064	 * Use an untrusted lookup just to be cautious in case the AGI has been
2065	 * corrupted and now points at a free inode.  That shouldn't happen,
2066	 * but we'd rather shut down now since we're already running in a weird
2067	 * situation.
2068	 */
2069	ino = XFS_AGINO_TO_INO(mp, pag->pag_agno, next_agino);
2070	error = xfs_iget(mp, tp, ino, XFS_IGET_UNTRUSTED, 0, &next_ip);
2071	if (error) {
2072		xfs_ag_mark_sick(pag, XFS_SICK_AG_AGI);
2073		return error;
2074	}
2075
2076	/* If this is not an unlinked inode, something is very wrong. */
2077	if (VFS_I(next_ip)->i_nlink != 0) {
2078		xfs_ag_mark_sick(pag, XFS_SICK_AG_AGI);
2079		error = -EFSCORRUPTED;
2080		goto rele;
2081	}
2082
2083	next_ip->i_prev_unlinked = prev_agino;
2084	trace_xfs_iunlink_reload_next(next_ip);
2085rele:
2086	ASSERT(!(VFS_I(next_ip)->i_state & I_DONTCACHE));
2087	if (xfs_is_quotacheck_running(mp) && next_ip)
2088		xfs_iflags_set(next_ip, XFS_IQUOTAUNCHECKED);
2089	xfs_irele(next_ip);
2090	return error;
2091}
2092
2093static int
2094xfs_iunlink_insert_inode(
2095	struct xfs_trans	*tp,
2096	struct xfs_perag	*pag,
2097	struct xfs_buf		*agibp,
2098	struct xfs_inode	*ip)
2099{
2100	struct xfs_mount	*mp = tp->t_mountp;
2101	struct xfs_agi		*agi = agibp->b_addr;
2102	xfs_agino_t		next_agino;
2103	xfs_agino_t		agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2104	short			bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2105	int			error;
2106
2107	/*
2108	 * Get the index into the agi hash table for the list this inode will
2109	 * go on.  Make sure the pointer isn't garbage and that this inode
2110	 * isn't already on the list.
2111	 */
2112	next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2113	if (next_agino == agino ||
2114	    !xfs_verify_agino_or_null(pag, next_agino)) {
2115		xfs_buf_mark_corrupt(agibp);
2116		xfs_ag_mark_sick(pag, XFS_SICK_AG_AGI);
2117		return -EFSCORRUPTED;
2118	}
2119
2120	/*
2121	 * Update the prev pointer in the next inode to point back to this
2122	 * inode.
2123	 */
2124	error = xfs_iunlink_update_backref(pag, agino, next_agino);
2125	if (error == -ENOLINK)
2126		error = xfs_iunlink_reload_next(tp, agibp, agino, next_agino);
2127	if (error)
2128		return error;
2129
2130	if (next_agino != NULLAGINO) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2131		/*
2132		 * There is already another inode in the bucket, so point this
2133		 * inode to the current head of the list.
2134		 */
2135		error = xfs_iunlink_log_inode(tp, ip, pag, next_agino);
2136		if (error)
 
 
2137			return error;
2138		ip->i_next_unlinked = next_agino;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2139	}
2140
2141	/* Point the head of the list to point to this inode. */
2142	ip->i_prev_unlinked = NULLAGINO;
2143	return xfs_iunlink_update_bucket(tp, pag, agibp, bucket_index, agino);
2144}
2145
2146/*
2147 * This is called when the inode's link count has gone to 0 or we are creating
2148 * a tmpfile via O_TMPFILE.  The inode @ip must have nlink == 0.
2149 *
2150 * We place the on-disk inode on a list in the AGI.  It will be pulled from this
2151 * list when the inode is freed.
2152 */
2153STATIC int
2154xfs_iunlink(
2155	struct xfs_trans	*tp,
2156	struct xfs_inode	*ip)
 
2157{
2158	struct xfs_mount	*mp = tp->t_mountp;
 
 
 
 
 
 
 
 
 
2159	struct xfs_perag	*pag;
2160	struct xfs_buf		*agibp;
2161	int			error;
2162
2163	ASSERT(VFS_I(ip)->i_nlink == 0);
2164	ASSERT(VFS_I(ip)->i_mode != 0);
2165	trace_xfs_iunlink(ip);
 
 
 
 
 
 
 
 
2166
2167	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2168
2169	/* Get the agi buffer first.  It ensures lock ordering on the list. */
2170	error = xfs_read_agi(pag, tp, &agibp);
2171	if (error)
2172		goto out;
2173
2174	error = xfs_iunlink_insert_inode(tp, pag, agibp, ip);
2175out:
2176	xfs_perag_put(pag);
2177	return error;
2178}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2179
2180static int
2181xfs_iunlink_remove_inode(
2182	struct xfs_trans	*tp,
2183	struct xfs_perag	*pag,
2184	struct xfs_buf		*agibp,
2185	struct xfs_inode	*ip)
2186{
2187	struct xfs_mount	*mp = tp->t_mountp;
2188	struct xfs_agi		*agi = agibp->b_addr;
2189	xfs_agino_t		agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2190	xfs_agino_t		head_agino;
2191	short			bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2192	int			error;
 
 
2193
2194	trace_xfs_iunlink_remove(ip);
 
 
 
 
 
 
 
 
 
 
 
 
 
2195
2196	/*
2197	 * Get the index into the agi hash table for the list this inode will
2198	 * go on.  Make sure the head pointer isn't garbage.
2199	 */
2200	head_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2201	if (!xfs_verify_agino(pag, head_agino)) {
2202		XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
2203				agi, sizeof(*agi));
2204		xfs_ag_mark_sick(pag, XFS_SICK_AG_AGI);
2205		return -EFSCORRUPTED;
2206	}
2207
2208	/*
2209	 * Set our inode's next_unlinked pointer to NULL and then return
2210	 * the old pointer value so that we can update whatever was previous
2211	 * to us in the list to point to whatever was next in the list.
2212	 */
2213	error = xfs_iunlink_log_inode(tp, ip, pag, NULLAGINO);
2214	if (error)
2215		return error;
 
 
 
 
2216
2217	/*
2218	 * Update the prev pointer in the next inode to point back to previous
2219	 * inode in the chain.
2220	 */
2221	error = xfs_iunlink_update_backref(pag, ip->i_prev_unlinked,
2222			ip->i_next_unlinked);
2223	if (error == -ENOLINK)
2224		error = xfs_iunlink_reload_next(tp, agibp, ip->i_prev_unlinked,
2225				ip->i_next_unlinked);
2226	if (error)
2227		return error;
2228
2229	if (head_agino != agino) {
2230		struct xfs_inode	*prev_ip;
2231
2232		prev_ip = xfs_iunlink_lookup(pag, ip->i_prev_unlinked);
2233		if (!prev_ip) {
2234			xfs_inode_mark_sick(ip, XFS_SICK_INO_CORE);
2235			return -EFSCORRUPTED;
2236		}
2237
2238		error = xfs_iunlink_log_inode(tp, prev_ip, pag,
2239				ip->i_next_unlinked);
2240		prev_ip->i_next_unlinked = ip->i_next_unlinked;
2241	} else {
2242		/* Point the head of the list to the next unlinked inode. */
2243		error = xfs_iunlink_update_bucket(tp, pag, agibp, bucket_index,
2244				ip->i_next_unlinked);
2245	}
2246
2247	ip->i_next_unlinked = NULLAGINO;
2248	ip->i_prev_unlinked = 0;
2249	return error;
2250}
2251
2252/*
2253 * Pull the on-disk inode from the AGI unlinked list.
 
 
 
 
 
 
 
2254 */
2255STATIC int
2256xfs_iunlink_remove(
2257	struct xfs_trans	*tp,
2258	struct xfs_perag	*pag,
2259	struct xfs_inode	*ip)
2260{
2261	struct xfs_buf		*agibp;
2262	int			error;
 
 
 
 
 
 
 
 
 
 
 
 
2263
2264	trace_xfs_iunlink_remove(ip);
2265
2266	/* Get the agi buffer first.  It ensures lock ordering on the list. */
2267	error = xfs_read_agi(pag, tp, &agibp);
2268	if (error)
2269		return error;
2270
2271	return xfs_iunlink_remove_inode(tp, pag, agibp, ip);
2272}
2273
2274/*
2275 * Look up the inode number specified and if it is not already marked XFS_ISTALE
2276 * mark it stale. We should only find clean inodes in this lookup that aren't
2277 * already stale.
2278 */
2279static void
2280xfs_ifree_mark_inode_stale(
2281	struct xfs_perag	*pag,
2282	struct xfs_inode	*free_ip,
2283	xfs_ino_t		inum)
2284{
2285	struct xfs_mount	*mp = pag->pag_mount;
2286	struct xfs_inode_log_item *iip;
2287	struct xfs_inode	*ip;
2288
2289retry:
2290	rcu_read_lock();
2291	ip = radix_tree_lookup(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, inum));
2292
2293	/* Inode not in memory, nothing to do */
2294	if (!ip) {
2295		rcu_read_unlock();
2296		return;
2297	}
2298
2299	/*
2300	 * because this is an RCU protected lookup, we could find a recently
2301	 * freed or even reallocated inode during the lookup. We need to check
2302	 * under the i_flags_lock for a valid inode here. Skip it if it is not
2303	 * valid, the wrong inode or stale.
2304	 */
2305	spin_lock(&ip->i_flags_lock);
2306	if (ip->i_ino != inum || __xfs_iflags_test(ip, XFS_ISTALE))
2307		goto out_iflags_unlock;
2308
2309	/*
2310	 * Don't try to lock/unlock the current inode, but we _cannot_ skip the
2311	 * other inodes that we did not find in the list attached to the buffer
2312	 * and are not already marked stale. If we can't lock it, back off and
2313	 * retry.
2314	 */
2315	if (ip != free_ip) {
2316		if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2317			spin_unlock(&ip->i_flags_lock);
2318			rcu_read_unlock();
2319			delay(1);
2320			goto retry;
2321		}
2322	}
2323	ip->i_flags |= XFS_ISTALE;
2324
 
 
 
 
 
 
2325	/*
2326	 * If the inode is flushing, it is already attached to the buffer.  All
2327	 * we needed to do here is mark the inode stale so buffer IO completion
2328	 * will remove it from the AIL.
2329	 */
2330	iip = ip->i_itemp;
2331	if (__xfs_iflags_test(ip, XFS_IFLUSHING)) {
2332		ASSERT(!list_empty(&iip->ili_item.li_bio_list));
2333		ASSERT(iip->ili_last_fields);
2334		goto out_iunlock;
2335	}
2336
2337	/*
2338	 * Inodes not attached to the buffer can be released immediately.
2339	 * Everything else has to go through xfs_iflush_abort() on journal
2340	 * commit as the flock synchronises removal of the inode from the
2341	 * cluster buffer against inode reclaim.
2342	 */
2343	if (!iip || list_empty(&iip->ili_item.li_bio_list))
2344		goto out_iunlock;
2345
2346	__xfs_iflags_set(ip, XFS_IFLUSHING);
2347	spin_unlock(&ip->i_flags_lock);
2348	rcu_read_unlock();
2349
2350	/* we have a dirty inode in memory that has not yet been flushed. */
2351	spin_lock(&iip->ili_lock);
2352	iip->ili_last_fields = iip->ili_fields;
2353	iip->ili_fields = 0;
2354	iip->ili_fsync_fields = 0;
2355	spin_unlock(&iip->ili_lock);
2356	ASSERT(iip->ili_last_fields);
 
 
 
 
 
 
2357
2358	if (ip != free_ip)
2359		xfs_iunlock(ip, XFS_ILOCK_EXCL);
2360	return;
2361
2362out_iunlock:
2363	if (ip != free_ip)
2364		xfs_iunlock(ip, XFS_ILOCK_EXCL);
2365out_iflags_unlock:
2366	spin_unlock(&ip->i_flags_lock);
2367	rcu_read_unlock();
2368}
2369
2370/*
2371 * A big issue when freeing the inode cluster is that we _cannot_ skip any
2372 * inodes that are in memory - they all must be marked stale and attached to
2373 * the cluster buffer.
 
 
 
 
 
 
 
 
 
 
 
 
 
2374 */
2375static int
2376xfs_ifree_cluster(
2377	struct xfs_trans	*tp,
2378	struct xfs_perag	*pag,
2379	struct xfs_inode	*free_ip,
2380	struct xfs_icluster	*xic)
2381{
2382	struct xfs_mount	*mp = free_ip->i_mount;
2383	struct xfs_ino_geometry	*igeo = M_IGEO(mp);
2384	struct xfs_buf		*bp;
2385	xfs_daddr_t		blkno;
2386	xfs_ino_t		inum = xic->first_ino;
2387	int			nbufs;
2388	int			i, j;
2389	int			ioffset;
2390	int			error;
2391
2392	nbufs = igeo->ialloc_blks / igeo->blocks_per_cluster;
 
 
 
 
 
2393
2394	for (j = 0; j < nbufs; j++, inum += igeo->inodes_per_cluster) {
 
2395		/*
2396		 * The allocation bitmap tells us which inodes of the chunk were
2397		 * physically allocated. Skip the cluster if an inode falls into
2398		 * a sparse region.
2399		 */
2400		ioffset = inum - xic->first_ino;
2401		if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) {
2402			ASSERT(ioffset % igeo->inodes_per_cluster == 0);
2403			continue;
 
2404		}
2405
2406		blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2407					 XFS_INO_TO_AGBNO(mp, inum));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2408
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2409		/*
2410		 * We obtain and lock the backing buffer first in the process
2411		 * here to ensure dirty inodes attached to the buffer remain in
2412		 * the flushing state while we mark them stale.
2413		 *
2414		 * If we scan the in-memory inodes first, then buffer IO can
2415		 * complete before we get a lock on it, and hence we may fail
2416		 * to mark all the active inodes on the buffer stale.
2417		 */
2418		error = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2419				mp->m_bsize * igeo->blocks_per_cluster,
2420				XBF_UNMAPPED, &bp);
2421		if (error)
2422			return error;
2423
 
 
 
 
2424		/*
2425		 * This buffer may not have been correctly initialised as we
2426		 * didn't read it from disk. That's not important because we are
2427		 * only using to mark the buffer as stale in the log, and to
2428		 * attach stale cached inodes on it. That means it will never be
2429		 * dispatched for IO. If it is, we want to know about it, and we
2430		 * want it to fail. We can acheive this by adding a write
2431		 * verifier to the buffer.
2432		 */
2433		bp->b_ops = &xfs_inode_buf_ops;
2434
2435		/*
2436		 * Now we need to set all the cached clean inodes as XFS_ISTALE,
2437		 * too. This requires lookups, and will skip inodes that we've
2438		 * already marked XFS_ISTALE.
2439		 */
2440		for (i = 0; i < igeo->inodes_per_cluster; i++)
2441			xfs_ifree_mark_inode_stale(pag, free_ip, inum + i);
 
2442
2443		xfs_trans_stale_inode_buf(tp, bp);
2444		xfs_trans_binval(tp, bp);
 
 
 
 
 
 
2445	}
2446	return 0;
 
 
 
 
 
2447}
2448
 
2449/*
2450 * This is called to return an inode to the inode free list.  The inode should
2451 * already be truncated to 0 length and have no pages associated with it.  This
2452 * routine also assumes that the inode is already a part of the transaction.
2453 *
2454 * The on-disk copy of the inode will have been added to the list of unlinked
2455 * inodes in the AGI. We need to remove the inode from that list atomically with
2456 * respect to freeing it here.
 
 
 
 
 
 
2457 */
2458int
2459xfs_ifree(
2460	struct xfs_trans	*tp,
2461	struct xfs_inode	*ip)
2462{
2463	struct xfs_mount	*mp = ip->i_mount;
2464	struct xfs_perag	*pag;
2465	struct xfs_icluster	xic = { 0 };
2466	struct xfs_inode_log_item *iip = ip->i_itemp;
2467	int			error;
2468
2469	xfs_assert_ilocked(ip, XFS_ILOCK_EXCL);
2470	ASSERT(VFS_I(ip)->i_nlink == 0);
2471	ASSERT(ip->i_df.if_nextents == 0);
2472	ASSERT(ip->i_disk_size == 0 || !S_ISREG(VFS_I(ip)->i_mode));
2473	ASSERT(ip->i_nblocks == 0);
2474
2475	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2476
2477	/*
2478	 * Free the inode first so that we guarantee that the AGI lock is going
2479	 * to be taken before we remove the inode from the unlinked list. This
2480	 * makes the AGI lock -> unlinked list modification order the same as
2481	 * used in O_TMPFILE creation.
2482	 */
2483	error = xfs_difree(tp, pag, ip->i_ino, &xic);
2484	if (error)
2485		goto out;
2486
2487	error = xfs_iunlink_remove(tp, pag, ip);
2488	if (error)
2489		goto out;
2490
2491	/*
2492	 * Free any local-format data sitting around before we reset the
2493	 * data fork to extents format.  Note that the attr fork data has
2494	 * already been freed by xfs_attr_inactive.
2495	 */
2496	if (ip->i_df.if_format == XFS_DINODE_FMT_LOCAL) {
2497		kfree(ip->i_df.if_data);
2498		ip->i_df.if_data = NULL;
2499		ip->i_df.if_bytes = 0;
2500	}
2501
2502	VFS_I(ip)->i_mode = 0;		/* mark incore inode as free */
2503	ip->i_diflags = 0;
2504	ip->i_diflags2 = mp->m_ino_geo.new_diflags2;
2505	ip->i_forkoff = 0;		/* mark the attr fork not in use */
2506	ip->i_df.if_format = XFS_DINODE_FMT_EXTENTS;
2507	if (xfs_iflags_test(ip, XFS_IPRESERVE_DM_FIELDS))
2508		xfs_iflags_clear(ip, XFS_IPRESERVE_DM_FIELDS);
2509
2510	/* Don't attempt to replay owner changes for a deleted inode */
2511	spin_lock(&iip->ili_lock);
2512	iip->ili_fields &= ~(XFS_ILOG_AOWNER | XFS_ILOG_DOWNER);
2513	spin_unlock(&iip->ili_lock);
2514
2515	/*
2516	 * Bump the generation count so no one will be confused
2517	 * by reincarnations of this inode.
2518	 */
2519	VFS_I(ip)->i_generation++;
2520	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2521
2522	if (xic.deleted)
2523		error = xfs_ifree_cluster(tp, pag, ip, &xic);
2524out:
2525	xfs_perag_put(pag);
2526	return error;
2527}
2528
2529/*
2530 * This is called to unpin an inode.  The caller must have the inode locked
2531 * in at least shared mode so that the buffer cannot be subsequently pinned
2532 * once someone is waiting for it to be unpinned.
2533 */
2534static void
2535xfs_iunpin(
2536	struct xfs_inode	*ip)
2537{
2538	xfs_assert_ilocked(ip, XFS_ILOCK_EXCL | XFS_ILOCK_SHARED);
2539
2540	trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
2541
2542	/* Give the log a push to start the unpinning I/O */
2543	xfs_log_force_seq(ip->i_mount, ip->i_itemp->ili_commit_seq, 0, NULL);
2544
2545}
2546
2547static void
2548__xfs_iunpin_wait(
2549	struct xfs_inode	*ip)
2550{
2551	wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT);
2552	DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT);
2553
2554	xfs_iunpin(ip);
2555
2556	do {
2557		prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2558		if (xfs_ipincount(ip))
2559			io_schedule();
2560	} while (xfs_ipincount(ip));
2561	finish_wait(wq, &wait.wq_entry);
2562}
2563
2564void
2565xfs_iunpin_wait(
2566	struct xfs_inode	*ip)
2567{
2568	if (xfs_ipincount(ip))
2569		__xfs_iunpin_wait(ip);
 
 
2570}
2571
2572/*
2573 * Removing an inode from the namespace involves removing the directory entry
2574 * and dropping the link count on the inode. Removing the directory entry can
2575 * result in locking an AGF (directory blocks were freed) and removing a link
2576 * count can result in placing the inode on an unlinked list which results in
2577 * locking an AGI.
2578 *
2579 * The big problem here is that we have an ordering constraint on AGF and AGI
2580 * locking - inode allocation locks the AGI, then can allocate a new extent for
2581 * new inodes, locking the AGF after the AGI. Similarly, freeing the inode
2582 * removes the inode from the unlinked list, requiring that we lock the AGI
2583 * first, and then freeing the inode can result in an inode chunk being freed
2584 * and hence freeing disk space requiring that we lock an AGF.
2585 *
2586 * Hence the ordering that is imposed by other parts of the code is AGI before
2587 * AGF. This means we cannot remove the directory entry before we drop the inode
2588 * reference count and put it on the unlinked list as this results in a lock
2589 * order of AGF then AGI, and this can deadlock against inode allocation and
2590 * freeing. Therefore we must drop the link counts before we remove the
2591 * directory entry.
2592 *
2593 * This is still safe from a transactional point of view - it is not until we
2594 * get to xfs_defer_finish() that we have the possibility of multiple
2595 * transactions in this operation. Hence as long as we remove the directory
2596 * entry and drop the link count in the first transaction of the remove
2597 * operation, there are no transactional constraints on the ordering here.
2598 */
2599int
2600xfs_remove(
2601	xfs_inode_t             *dp,
2602	struct xfs_name		*name,
2603	xfs_inode_t		*ip)
2604{
2605	xfs_mount_t		*mp = dp->i_mount;
2606	xfs_trans_t             *tp = NULL;
2607	int			is_dir = S_ISDIR(VFS_I(ip)->i_mode);
2608	int			dontcare;
2609	int                     error = 0;
2610	uint			resblks;
2611
2612	trace_xfs_remove(dp, name);
2613
2614	if (xfs_is_shutdown(mp))
2615		return -EIO;
2616	if (xfs_ifork_zapped(dp, XFS_DATA_FORK))
2617		return -EIO;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2618
2619	error = xfs_qm_dqattach(dp);
2620	if (error)
2621		goto std_return;
 
 
 
 
 
2622
2623	error = xfs_qm_dqattach(ip);
2624	if (error)
2625		goto std_return;
2626
2627	/*
2628	 * We try to get the real space reservation first, allowing for
2629	 * directory btree deletion(s) implying possible bmap insert(s).  If we
2630	 * can't get the space reservation then we use 0 instead, and avoid the
2631	 * bmap btree insert(s) in the directory code by, if the bmap insert
2632	 * tries to happen, instead trimming the LAST block from the directory.
2633	 *
2634	 * Ignore EDQUOT and ENOSPC being returned via nospace_error because
2635	 * the directory code can handle a reservationless update and we don't
2636	 * want to prevent a user from trying to free space by deleting things.
2637	 */
2638	resblks = XFS_REMOVE_SPACE_RES(mp);
2639	error = xfs_trans_alloc_dir(dp, &M_RES(mp)->tr_remove, ip, &resblks,
2640			&tp, &dontcare);
2641	if (error) {
2642		ASSERT(error != -ENOSPC);
2643		goto std_return;
2644	}
 
 
 
 
 
 
 
 
 
 
 
 
 
2645
 
 
 
2646	/*
2647	 * If we're removing a directory perform some additional validation.
 
2648	 */
2649	if (is_dir) {
2650		ASSERT(VFS_I(ip)->i_nlink >= 2);
2651		if (VFS_I(ip)->i_nlink != 2) {
2652			error = -ENOTEMPTY;
2653			goto out_trans_cancel;
 
 
 
 
 
 
 
 
2654		}
2655		if (!xfs_dir_isempty(ip)) {
2656			error = -ENOTEMPTY;
2657			goto out_trans_cancel;
 
 
 
 
 
 
 
 
2658		}
 
2659
2660		/* Drop the link from ip's "..".  */
2661		error = xfs_droplink(tp, dp);
2662		if (error)
2663			goto out_trans_cancel;
 
 
 
 
 
 
 
 
2664
2665		/* Drop the "." link from ip to self.  */
2666		error = xfs_droplink(tp, ip);
2667		if (error)
2668			goto out_trans_cancel;
 
 
2669
2670		/*
2671		 * Point the unlinked child directory's ".." entry to the root
2672		 * directory to eliminate back-references to inodes that may
2673		 * get freed before the child directory is closed.  If the fs
2674		 * gets shrunk, this can lead to dirent inode validation errors.
2675		 */
2676		if (dp->i_ino != tp->t_mountp->m_sb.sb_rootino) {
2677			error = xfs_dir_replace(tp, ip, &xfs_name_dotdot,
2678					tp->t_mountp->m_sb.sb_rootino, 0);
2679			if (error)
2680				goto out_trans_cancel;
2681		}
2682	} else {
2683		/*
2684		 * When removing a non-directory we need to log the parent
2685		 * inode here.  For a directory this is done implicitly
2686		 * by the xfs_droplink call for the ".." entry.
2687		 */
2688		xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
2689	}
2690	xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2691
2692	/* Drop the link from dp to ip. */
2693	error = xfs_droplink(tp, ip);
2694	if (error)
2695		goto out_trans_cancel;
2696
2697	error = xfs_dir_removename(tp, dp, name, ip->i_ino, resblks);
2698	if (error) {
2699		ASSERT(error != -ENOENT);
2700		goto out_trans_cancel;
2701	}
2702
2703	/*
2704	 * Drop the link from dp to ip, and if ip was a directory, remove the
2705	 * '.' and '..' references since we freed the directory.
2706	 */
2707	xfs_dir_update_hook(dp, ip, -1, name);
2708
2709	/*
2710	 * If this is a synchronous mount, make sure that the
2711	 * remove transaction goes to disk before returning to
2712	 * the user.
2713	 */
2714	if (xfs_has_wsync(mp) || xfs_has_dirsync(mp))
2715		xfs_trans_set_sync(tp);
2716
2717	error = xfs_trans_commit(tp);
2718	if (error)
2719		goto std_return;
2720
2721	if (is_dir && xfs_inode_is_filestream(ip))
2722		xfs_filestream_deassociate(ip);
2723
2724	return 0;
2725
2726 out_trans_cancel:
2727	xfs_trans_cancel(tp);
2728 std_return:
2729	return error;
2730}
2731
2732/*
2733 * Enter all inodes for a rename transaction into a sorted array.
2734 */
2735#define __XFS_SORT_INODES	5
2736STATIC void
2737xfs_sort_for_rename(
2738	struct xfs_inode	*dp1,	/* in: old (source) directory inode */
2739	struct xfs_inode	*dp2,	/* in: new (target) directory inode */
2740	struct xfs_inode	*ip1,	/* in: inode of old entry */
2741	struct xfs_inode	*ip2,	/* in: inode of new entry */
2742	struct xfs_inode	*wip,	/* in: whiteout inode */
2743	struct xfs_inode	**i_tab,/* out: sorted array of inodes */
2744	int			*num_inodes)  /* in/out: inodes in array */
2745{
2746	int			i, j;
 
 
 
 
 
 
 
 
 
 
2747
2748	ASSERT(*num_inodes == __XFS_SORT_INODES);
2749	memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *));
2750
2751	/*
2752	 * i_tab contains a list of pointers to inodes.  We initialize
2753	 * the table here & we'll sort it.  We will then use it to
2754	 * order the acquisition of the inode locks.
2755	 *
2756	 * Note that the table may contain duplicates.  e.g., dp1 == dp2.
2757	 */
2758	i = 0;
2759	i_tab[i++] = dp1;
2760	i_tab[i++] = dp2;
2761	i_tab[i++] = ip1;
2762	if (ip2)
2763		i_tab[i++] = ip2;
2764	if (wip)
2765		i_tab[i++] = wip;
2766	*num_inodes = i;
2767
2768	/*
2769	 * Sort the elements via bubble sort.  (Remember, there are at
2770	 * most 5 elements to sort, so this is adequate.)
2771	 */
2772	for (i = 0; i < *num_inodes; i++) {
2773		for (j = 1; j < *num_inodes; j++) {
2774			if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) {
2775				struct xfs_inode *temp = i_tab[j];
2776				i_tab[j] = i_tab[j-1];
2777				i_tab[j-1] = temp;
2778			}
2779		}
2780	}
2781}
2782
2783static int
2784xfs_finish_rename(
2785	struct xfs_trans	*tp)
2786{
2787	/*
2788	 * If this is a synchronous mount, make sure that the rename transaction
2789	 * goes to disk before returning to the user.
2790	 */
2791	if (xfs_has_wsync(tp->t_mountp) || xfs_has_dirsync(tp->t_mountp))
2792		xfs_trans_set_sync(tp);
 
 
 
2793
2794	return xfs_trans_commit(tp);
2795}
 
 
 
 
 
 
 
 
 
 
 
2796
2797/*
2798 * xfs_cross_rename()
2799 *
2800 * responsible for handling RENAME_EXCHANGE flag in renameat2() syscall
2801 */
2802STATIC int
2803xfs_cross_rename(
2804	struct xfs_trans	*tp,
2805	struct xfs_inode	*dp1,
2806	struct xfs_name		*name1,
2807	struct xfs_inode	*ip1,
2808	struct xfs_inode	*dp2,
2809	struct xfs_name		*name2,
2810	struct xfs_inode	*ip2,
2811	int			spaceres)
2812{
2813	int		error = 0;
2814	int		ip1_flags = 0;
2815	int		ip2_flags = 0;
2816	int		dp2_flags = 0;
2817
2818	/* Swap inode number for dirent in first parent */
2819	error = xfs_dir_replace(tp, dp1, name1, ip2->i_ino, spaceres);
2820	if (error)
2821		goto out_trans_abort;
2822
2823	/* Swap inode number for dirent in second parent */
2824	error = xfs_dir_replace(tp, dp2, name2, ip1->i_ino, spaceres);
2825	if (error)
2826		goto out_trans_abort;
2827
2828	/*
2829	 * If we're renaming one or more directories across different parents,
2830	 * update the respective ".." entries (and link counts) to match the new
2831	 * parents.
2832	 */
2833	if (dp1 != dp2) {
2834		dp2_flags = XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2835
2836		if (S_ISDIR(VFS_I(ip2)->i_mode)) {
2837			error = xfs_dir_replace(tp, ip2, &xfs_name_dotdot,
2838						dp1->i_ino, spaceres);
2839			if (error)
2840				goto out_trans_abort;
2841
2842			/* transfer ip2 ".." reference to dp1 */
2843			if (!S_ISDIR(VFS_I(ip1)->i_mode)) {
2844				error = xfs_droplink(tp, dp2);
2845				if (error)
2846					goto out_trans_abort;
2847				xfs_bumplink(tp, dp1);
2848			}
2849
2850			/*
2851			 * Although ip1 isn't changed here, userspace needs
2852			 * to be warned about the change, so that applications
2853			 * relying on it (like backup ones), will properly
2854			 * notify the change
2855			 */
2856			ip1_flags |= XFS_ICHGTIME_CHG;
2857			ip2_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2858		}
2859
2860		if (S_ISDIR(VFS_I(ip1)->i_mode)) {
2861			error = xfs_dir_replace(tp, ip1, &xfs_name_dotdot,
2862						dp2->i_ino, spaceres);
2863			if (error)
2864				goto out_trans_abort;
2865
2866			/* transfer ip1 ".." reference to dp2 */
2867			if (!S_ISDIR(VFS_I(ip2)->i_mode)) {
2868				error = xfs_droplink(tp, dp1);
2869				if (error)
2870					goto out_trans_abort;
2871				xfs_bumplink(tp, dp2);
2872			}
2873
2874			/*
2875			 * Although ip2 isn't changed here, userspace needs
2876			 * to be warned about the change, so that applications
2877			 * relying on it (like backup ones), will properly
2878			 * notify the change
2879			 */
2880			ip1_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2881			ip2_flags |= XFS_ICHGTIME_CHG;
2882		}
 
2883	}
2884
2885	if (ip1_flags) {
2886		xfs_trans_ichgtime(tp, ip1, ip1_flags);
2887		xfs_trans_log_inode(tp, ip1, XFS_ILOG_CORE);
2888	}
2889	if (ip2_flags) {
2890		xfs_trans_ichgtime(tp, ip2, ip2_flags);
2891		xfs_trans_log_inode(tp, ip2, XFS_ILOG_CORE);
2892	}
2893	if (dp2_flags) {
2894		xfs_trans_ichgtime(tp, dp2, dp2_flags);
2895		xfs_trans_log_inode(tp, dp2, XFS_ILOG_CORE);
2896	}
2897	xfs_trans_ichgtime(tp, dp1, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2898	xfs_trans_log_inode(tp, dp1, XFS_ILOG_CORE);
2899
 
 
 
 
 
 
 
 
 
2900	/*
2901	 * Inform our hook clients that we've finished an exchange operation as
2902	 * follows: removed the source and target files from their directories;
2903	 * added the target to the source directory; and added the source to
2904	 * the target directory.  All inodes are locked, so it's ok to model a
2905	 * rename this way so long as we say we deleted entries before we add
2906	 * new ones.
2907	 */
2908	xfs_dir_update_hook(dp1, ip1, -1, name1);
2909	xfs_dir_update_hook(dp2, ip2, -1, name2);
2910	xfs_dir_update_hook(dp1, ip2, 1, name1);
2911	xfs_dir_update_hook(dp2, ip1, 1, name2);
2912
2913	return xfs_finish_rename(tp);
2914
2915out_trans_abort:
2916	xfs_trans_cancel(tp);
2917	return error;
2918}
2919
2920/*
2921 * xfs_rename_alloc_whiteout()
2922 *
2923 * Return a referenced, unlinked, unlocked inode that can be used as a
2924 * whiteout in a rename transaction. We use a tmpfile inode here so that if we
2925 * crash between allocating the inode and linking it into the rename transaction
2926 * recovery will free the inode and we won't leak it.
2927 */
2928static int
2929xfs_rename_alloc_whiteout(
2930	struct mnt_idmap	*idmap,
2931	struct xfs_name		*src_name,
2932	struct xfs_inode	*dp,
2933	struct xfs_inode	**wip)
2934{
2935	struct xfs_inode	*tmpfile;
2936	struct qstr		name;
2937	int			error;
2938
2939	error = xfs_create_tmpfile(idmap, dp, S_IFCHR | WHITEOUT_MODE,
2940				   &tmpfile);
2941	if (error)
2942		return error;
2943
2944	name.name = src_name->name;
2945	name.len = src_name->len;
2946	error = xfs_inode_init_security(VFS_I(tmpfile), VFS_I(dp), &name);
2947	if (error) {
2948		xfs_finish_inode_setup(tmpfile);
2949		xfs_irele(tmpfile);
2950		return error;
2951	}
2952
2953	/*
2954	 * Prepare the tmpfile inode as if it were created through the VFS.
2955	 * Complete the inode setup and flag it as linkable.  nlink is already
2956	 * zero, so we can skip the drop_nlink.
2957	 */
2958	xfs_setup_iops(tmpfile);
2959	xfs_finish_inode_setup(tmpfile);
2960	VFS_I(tmpfile)->i_state |= I_LINKABLE;
2961
2962	*wip = tmpfile;
2963	return 0;
2964}
2965
2966/*
2967 * xfs_rename
 
 
 
 
 
 
2968 */
2969int
2970xfs_rename(
2971	struct mnt_idmap	*idmap,
2972	struct xfs_inode	*src_dp,
2973	struct xfs_name		*src_name,
2974	struct xfs_inode	*src_ip,
2975	struct xfs_inode	*target_dp,
2976	struct xfs_name		*target_name,
2977	struct xfs_inode	*target_ip,
2978	unsigned int		flags)
2979{
2980	struct xfs_mount	*mp = src_dp->i_mount;
2981	struct xfs_trans	*tp;
2982	struct xfs_inode	*wip = NULL;		/* whiteout inode */
2983	struct xfs_inode	*inodes[__XFS_SORT_INODES];
2984	int			i;
2985	int			num_inodes = __XFS_SORT_INODES;
2986	bool			new_parent = (src_dp != target_dp);
2987	bool			src_is_directory = S_ISDIR(VFS_I(src_ip)->i_mode);
2988	int			spaceres;
2989	bool			retried = false;
2990	int			error, nospace_error = 0;
2991
2992	trace_xfs_rename(src_dp, target_dp, src_name, target_name);
2993
2994	if ((flags & RENAME_EXCHANGE) && !target_ip)
2995		return -EINVAL;
2996
2997	/*
2998	 * If we are doing a whiteout operation, allocate the whiteout inode
2999	 * we will be placing at the target and ensure the type is set
3000	 * appropriately.
3001	 */
3002	if (flags & RENAME_WHITEOUT) {
3003		error = xfs_rename_alloc_whiteout(idmap, src_name,
3004						  target_dp, &wip);
3005		if (error)
3006			return error;
3007
3008		/* setup target dirent info as whiteout */
3009		src_name->type = XFS_DIR3_FT_CHRDEV;
3010	}
3011
3012	xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, wip,
3013				inodes, &num_inodes);
 
 
3014
3015retry:
3016	nospace_error = 0;
3017	spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len);
3018	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, spaceres, 0, 0, &tp);
3019	if (error == -ENOSPC) {
3020		nospace_error = error;
3021		spaceres = 0;
3022		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, 0, 0, 0,
3023				&tp);
3024	}
3025	if (error)
3026		goto out_release_wip;
3027
3028	/*
3029	 * Attach the dquots to the inodes
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3030	 */
3031	error = xfs_qm_vop_rename_dqattach(inodes);
3032	if (error)
3033		goto out_trans_cancel;
 
3034
3035	/*
3036	 * Lock all the participating inodes. Depending upon whether
3037	 * the target_name exists in the target directory, and
3038	 * whether the target directory is the same as the source
3039	 * directory, we can lock from 2 to 5 inodes.
3040	 */
3041	xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL);
 
 
 
 
 
 
3042
3043	/*
3044	 * Join all the inodes to the transaction. From this point on,
3045	 * we can rely on either trans_commit or trans_cancel to unlock
3046	 * them.
3047	 */
3048	xfs_trans_ijoin(tp, src_dp, XFS_ILOCK_EXCL);
3049	if (new_parent)
3050		xfs_trans_ijoin(tp, target_dp, XFS_ILOCK_EXCL);
3051	xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL);
3052	if (target_ip)
3053		xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL);
3054	if (wip)
3055		xfs_trans_ijoin(tp, wip, XFS_ILOCK_EXCL);
3056
3057	/*
3058	 * If we are using project inheritance, we only allow renames
3059	 * into our tree when the project IDs are the same; else the
3060	 * tree quota mechanism would be circumvented.
3061	 */
3062	if (unlikely((target_dp->i_diflags & XFS_DIFLAG_PROJINHERIT) &&
3063		     target_dp->i_projid != src_ip->i_projid)) {
3064		error = -EXDEV;
3065		goto out_trans_cancel;
3066	}
3067
3068	/* RENAME_EXCHANGE is unique from here on. */
3069	if (flags & RENAME_EXCHANGE)
3070		return xfs_cross_rename(tp, src_dp, src_name, src_ip,
3071					target_dp, target_name, target_ip,
3072					spaceres);
3073
3074	/*
3075	 * Try to reserve quota to handle an expansion of the target directory.
3076	 * We'll allow the rename to continue in reservationless mode if we hit
3077	 * a space usage constraint.  If we trigger reservationless mode, save
3078	 * the errno if there isn't any free space in the target directory.
3079	 */
3080	if (spaceres != 0) {
3081		error = xfs_trans_reserve_quota_nblks(tp, target_dp, spaceres,
3082				0, false);
3083		if (error == -EDQUOT || error == -ENOSPC) {
3084			if (!retried) {
3085				xfs_trans_cancel(tp);
3086				xfs_blockgc_free_quota(target_dp, 0);
3087				retried = true;
3088				goto retry;
3089			}
3090
3091			nospace_error = error;
3092			spaceres = 0;
3093			error = 0;
3094		}
3095		if (error)
3096			goto out_trans_cancel;
3097	}
3098
3099	/*
3100	 * Check for expected errors before we dirty the transaction
3101	 * so we can return an error without a transaction abort.
3102	 */
3103	if (target_ip == NULL) {
3104		/*
3105		 * If there's no space reservation, check the entry will
3106		 * fit before actually inserting it.
3107		 */
3108		if (!spaceres) {
3109			error = xfs_dir_canenter(tp, target_dp, target_name);
3110			if (error)
3111				goto out_trans_cancel;
3112		}
3113	} else {
3114		/*
3115		 * If target exists and it's a directory, check that whether
3116		 * it can be destroyed.
3117		 */
3118		if (S_ISDIR(VFS_I(target_ip)->i_mode) &&
3119		    (!xfs_dir_isempty(target_ip) ||
3120		     (VFS_I(target_ip)->i_nlink > 2))) {
3121			error = -EEXIST;
3122			goto out_trans_cancel;
3123		}
3124	}
3125
3126	/*
3127	 * Lock the AGI buffers we need to handle bumping the nlink of the
3128	 * whiteout inode off the unlinked list and to handle dropping the
3129	 * nlink of the target inode.  Per locking order rules, do this in
3130	 * increasing AG order and before directory block allocation tries to
3131	 * grab AGFs because we grab AGIs before AGFs.
3132	 *
3133	 * The (vfs) caller must ensure that if src is a directory then
3134	 * target_ip is either null or an empty directory.
3135	 */
3136	for (i = 0; i < num_inodes && inodes[i] != NULL; i++) {
3137		if (inodes[i] == wip ||
3138		    (inodes[i] == target_ip &&
3139		     (VFS_I(target_ip)->i_nlink == 1 || src_is_directory))) {
3140			struct xfs_perag	*pag;
3141			struct xfs_buf		*bp;
3142
3143			pag = xfs_perag_get(mp,
3144					XFS_INO_TO_AGNO(mp, inodes[i]->i_ino));
3145			error = xfs_read_agi(pag, tp, &bp);
3146			xfs_perag_put(pag);
3147			if (error)
3148				goto out_trans_cancel;
3149		}
3150	}
3151
3152	/*
3153	 * Directory entry creation below may acquire the AGF. Remove
3154	 * the whiteout from the unlinked list first to preserve correct
3155	 * AGI/AGF locking order. This dirties the transaction so failures
3156	 * after this point will abort and log recovery will clean up the
3157	 * mess.
3158	 *
3159	 * For whiteouts, we need to bump the link count on the whiteout
3160	 * inode. After this point, we have a real link, clear the tmpfile
3161	 * state flag from the inode so it doesn't accidentally get misused
3162	 * in future.
3163	 */
3164	if (wip) {
3165		struct xfs_perag	*pag;
3166
3167		ASSERT(VFS_I(wip)->i_nlink == 0);
3168
3169		pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, wip->i_ino));
3170		error = xfs_iunlink_remove(tp, pag, wip);
3171		xfs_perag_put(pag);
3172		if (error)
3173			goto out_trans_cancel;
3174
3175		xfs_bumplink(tp, wip);
3176		VFS_I(wip)->i_state &= ~I_LINKABLE;
3177	}
3178
 
 
 
 
3179	/*
3180	 * Set up the target.
3181	 */
3182	if (target_ip == NULL) {
3183		/*
3184		 * If target does not exist and the rename crosses
3185		 * directories, adjust the target directory link count
3186		 * to account for the ".." reference from the new entry.
3187		 */
3188		error = xfs_dir_createname(tp, target_dp, target_name,
3189					   src_ip->i_ino, spaceres);
3190		if (error)
3191			goto out_trans_cancel;
3192
3193		xfs_trans_ichgtime(tp, target_dp,
3194					XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3195
3196		if (new_parent && src_is_directory) {
3197			xfs_bumplink(tp, target_dp);
3198		}
3199	} else { /* target_ip != NULL */
3200		/*
3201		 * Link the source inode under the target name.
3202		 * If the source inode is a directory and we are moving
3203		 * it across directories, its ".." entry will be
3204		 * inconsistent until we replace that down below.
3205		 *
3206		 * In case there is already an entry with the same
3207		 * name at the destination directory, remove it first.
3208		 */
3209		error = xfs_dir_replace(tp, target_dp, target_name,
3210					src_ip->i_ino, spaceres);
3211		if (error)
3212			goto out_trans_cancel;
3213
3214		xfs_trans_ichgtime(tp, target_dp,
3215					XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
 
 
3216
3217		/*
3218		 * Decrement the link count on the target since the target
3219		 * dir no longer points to it.
3220		 */
3221		error = xfs_droplink(tp, target_ip);
3222		if (error)
3223			goto out_trans_cancel;
3224
3225		if (src_is_directory) {
3226			/*
3227			 * Drop the link from the old "." entry.
3228			 */
3229			error = xfs_droplink(tp, target_ip);
3230			if (error)
3231				goto out_trans_cancel;
3232		}
3233	} /* target_ip != NULL */
3234
3235	/*
3236	 * Remove the source.
3237	 */
3238	if (new_parent && src_is_directory) {
3239		/*
3240		 * Rewrite the ".." entry to point to the new
3241		 * directory.
3242		 */
3243		error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot,
3244					target_dp->i_ino, spaceres);
3245		ASSERT(error != -EEXIST);
3246		if (error)
3247			goto out_trans_cancel;
3248	}
3249
3250	/*
3251	 * We always want to hit the ctime on the source inode.
3252	 *
3253	 * This isn't strictly required by the standards since the source
3254	 * inode isn't really being changed, but old unix file systems did
3255	 * it and some incremental backup programs won't work without it.
3256	 */
3257	xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG);
3258	xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE);
3259
3260	/*
3261	 * Adjust the link count on src_dp.  This is necessary when
3262	 * renaming a directory, either within one parent when
3263	 * the target existed, or across two parent directories.
 
 
 
 
 
 
 
3264	 */
3265	if (src_is_directory && (new_parent || target_ip != NULL)) {
3266
3267		/*
3268		 * Decrement link count on src_directory since the
3269		 * entry that's moved no longer points to it.
3270		 */
3271		error = xfs_droplink(tp, src_dp);
3272		if (error)
3273			goto out_trans_cancel;
3274	}
3275
3276	/*
3277	 * For whiteouts, we only need to update the source dirent with the
3278	 * inode number of the whiteout inode rather than removing it
3279	 * altogether.
3280	 */
3281	if (wip)
3282		error = xfs_dir_replace(tp, src_dp, src_name, wip->i_ino,
3283					spaceres);
3284	else
3285		error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino,
3286					   spaceres);
3287
3288	if (error)
3289		goto out_trans_cancel;
3290
3291	xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3292	xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE);
3293	if (new_parent)
3294		xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE);
3295
3296	/*
3297	 * Inform our hook clients that we've finished a rename operation as
3298	 * follows: removed the source and target files from their directories;
3299	 * that we've added the source to the target directory; and finally
3300	 * that we've added the whiteout, if there was one.  All inodes are
3301	 * locked, so it's ok to model a rename this way so long as we say we
3302	 * deleted entries before we add new ones.
3303	 */
3304	if (target_ip)
3305		xfs_dir_update_hook(target_dp, target_ip, -1, target_name);
3306	xfs_dir_update_hook(src_dp, src_ip, -1, src_name);
3307	xfs_dir_update_hook(target_dp, src_ip, 1, target_name);
3308	if (wip)
3309		xfs_dir_update_hook(src_dp, wip, 1, src_name);
3310
3311	error = xfs_finish_rename(tp);
3312	if (wip)
3313		xfs_irele(wip);
3314	return error;
3315
3316out_trans_cancel:
3317	xfs_trans_cancel(tp);
3318out_release_wip:
3319	if (wip)
3320		xfs_irele(wip);
3321	if (error == -ENOSPC && nospace_error)
3322		error = nospace_error;
3323	return error;
3324}
3325
3326static int
3327xfs_iflush(
3328	struct xfs_inode	*ip,
3329	struct xfs_buf		*bp)
3330{
3331	struct xfs_inode_log_item *iip = ip->i_itemp;
3332	struct xfs_dinode	*dip;
3333	struct xfs_mount	*mp = ip->i_mount;
3334	int			error;
3335
3336	xfs_assert_ilocked(ip, XFS_ILOCK_EXCL | XFS_ILOCK_SHARED);
3337	ASSERT(xfs_iflags_test(ip, XFS_IFLUSHING));
3338	ASSERT(ip->i_df.if_format != XFS_DINODE_FMT_BTREE ||
3339	       ip->i_df.if_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
3340	ASSERT(iip->ili_item.li_buf == bp);
3341
3342	dip = xfs_buf_offset(bp, ip->i_imap.im_boffset);
3343
3344	/*
3345	 * We don't flush the inode if any of the following checks fail, but we
3346	 * do still update the log item and attach to the backing buffer as if
3347	 * the flush happened. This is a formality to facilitate predictable
3348	 * error handling as the caller will shutdown and fail the buffer.
3349	 */
3350	error = -EFSCORRUPTED;
3351	if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
3352			       mp, XFS_ERRTAG_IFLUSH_1)) {
3353		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3354			"%s: Bad inode %llu magic number 0x%x, ptr "PTR_FMT,
3355			__func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
3356		goto flush_out;
 
 
 
 
 
 
 
3357	}
3358	if (S_ISREG(VFS_I(ip)->i_mode)) {
3359		if (XFS_TEST_ERROR(
3360		    ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS &&
3361		    ip->i_df.if_format != XFS_DINODE_FMT_BTREE,
3362		    mp, XFS_ERRTAG_IFLUSH_3)) {
3363			xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3364				"%s: Bad regular inode %llu, ptr "PTR_FMT,
3365				__func__, ip->i_ino, ip);
3366			goto flush_out;
3367		}
3368	} else if (S_ISDIR(VFS_I(ip)->i_mode)) {
3369		if (XFS_TEST_ERROR(
3370		    ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS &&
3371		    ip->i_df.if_format != XFS_DINODE_FMT_BTREE &&
3372		    ip->i_df.if_format != XFS_DINODE_FMT_LOCAL,
3373		    mp, XFS_ERRTAG_IFLUSH_4)) {
3374			xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3375				"%s: Bad directory inode %llu, ptr "PTR_FMT,
3376				__func__, ip->i_ino, ip);
3377			goto flush_out;
3378		}
3379	}
3380	if (XFS_TEST_ERROR(ip->i_df.if_nextents + xfs_ifork_nextents(&ip->i_af) >
3381				ip->i_nblocks, mp, XFS_ERRTAG_IFLUSH_5)) {
 
3382		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3383			"%s: detected corrupt incore inode %llu, "
3384			"total extents = %llu nblocks = %lld, ptr "PTR_FMT,
3385			__func__, ip->i_ino,
3386			ip->i_df.if_nextents + xfs_ifork_nextents(&ip->i_af),
3387			ip->i_nblocks, ip);
3388		goto flush_out;
3389	}
3390	if (XFS_TEST_ERROR(ip->i_forkoff > mp->m_sb.sb_inodesize,
3391				mp, XFS_ERRTAG_IFLUSH_6)) {
3392		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3393			"%s: bad inode %llu, forkoff 0x%x, ptr "PTR_FMT,
3394			__func__, ip->i_ino, ip->i_forkoff, ip);
3395		goto flush_out;
3396	}
3397
3398	/*
3399	 * Inode item log recovery for v2 inodes are dependent on the flushiter
3400	 * count for correct sequencing.  We bump the flush iteration count so
3401	 * we can detect flushes which postdate a log record during recovery.
3402	 * This is redundant as we now log every change and hence this can't
3403	 * happen but we need to still do it to ensure backwards compatibility
3404	 * with old kernels that predate logging all inode changes.
3405	 */
3406	if (!xfs_has_v3inodes(mp))
3407		ip->i_flushiter++;
3408
3409	/*
3410	 * If there are inline format data / attr forks attached to this inode,
3411	 * make sure they are not corrupt.
 
 
3412	 */
3413	if (ip->i_df.if_format == XFS_DINODE_FMT_LOCAL &&
3414	    xfs_ifork_verify_local_data(ip))
3415		goto flush_out;
3416	if (xfs_inode_has_attr_fork(ip) &&
3417	    ip->i_af.if_format == XFS_DINODE_FMT_LOCAL &&
3418	    xfs_ifork_verify_local_attr(ip))
3419		goto flush_out;
3420
3421	/*
3422	 * Copy the dirty parts of the inode into the on-disk inode.  We always
3423	 * copy out the core of the inode, because if the inode is dirty at all
3424	 * the core must be.
3425	 */
3426	xfs_inode_to_disk(ip, dip, iip->ili_item.li_lsn);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3427
3428	/* Wrap, we never let the log put out DI_MAX_FLUSH */
3429	if (!xfs_has_v3inodes(mp)) {
3430		if (ip->i_flushiter == DI_MAX_FLUSH)
3431			ip->i_flushiter = 0;
3432	}
3433
3434	xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK);
3435	if (xfs_inode_has_attr_fork(ip))
3436		xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK);
3437
3438	/*
3439	 * We've recorded everything logged in the inode, so we'd like to clear
3440	 * the ili_fields bits so we don't log and flush things unnecessarily.
3441	 * However, we can't stop logging all this information until the data
3442	 * we've copied into the disk buffer is written to disk.  If we did we
3443	 * might overwrite the copy of the inode in the log with all the data
3444	 * after re-logging only part of it, and in the face of a crash we
3445	 * wouldn't have all the data we need to recover.
 
 
 
 
3446	 *
3447	 * What we do is move the bits to the ili_last_fields field.  When
3448	 * logging the inode, these bits are moved back to the ili_fields field.
3449	 * In the xfs_buf_inode_iodone() routine we clear ili_last_fields, since
3450	 * we know that the information those bits represent is permanently on
3451	 * disk.  As long as the flush completes before the inode is logged
3452	 * again, then both ili_fields and ili_last_fields will be cleared.
3453	 */
3454	error = 0;
3455flush_out:
3456	spin_lock(&iip->ili_lock);
3457	iip->ili_last_fields = iip->ili_fields;
3458	iip->ili_fields = 0;
3459	iip->ili_fsync_fields = 0;
3460	spin_unlock(&iip->ili_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3461
3462	/*
3463	 * Store the current LSN of the inode so that we can tell whether the
3464	 * item has moved in the AIL from xfs_buf_inode_iodone().
3465	 */
3466	xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
3467				&iip->ili_item.li_lsn);
3468
3469	/* generate the checksum. */
3470	xfs_dinode_calc_crc(mp, dip);
3471	if (error)
3472		xfs_inode_mark_sick(ip, XFS_SICK_INO_CORE);
3473	return error;
3474}
3475
3476/*
3477 * Non-blocking flush of dirty inode metadata into the backing buffer.
3478 *
3479 * The caller must have a reference to the inode and hold the cluster buffer
3480 * locked. The function will walk across all the inodes on the cluster buffer it
3481 * can find and lock without blocking, and flush them to the cluster buffer.
3482 *
3483 * On successful flushing of at least one inode, the caller must write out the
3484 * buffer and release it. If no inodes are flushed, -EAGAIN will be returned and
3485 * the caller needs to release the buffer. On failure, the filesystem will be
3486 * shut down, the buffer will have been unlocked and released, and EFSCORRUPTED
3487 * will be returned.
3488 */
3489int
3490xfs_iflush_cluster(
3491	struct xfs_buf		*bp)
 
3492{
3493	struct xfs_mount	*mp = bp->b_mount;
3494	struct xfs_log_item	*lip, *n;
3495	struct xfs_inode	*ip;
3496	struct xfs_inode_log_item *iip;
3497	int			clcount = 0;
3498	int			error = 0;
3499
3500	/*
3501	 * We must use the safe variant here as on shutdown xfs_iflush_abort()
3502	 * will remove itself from the list.
3503	 */
3504	list_for_each_entry_safe(lip, n, &bp->b_li_list, li_bio_list) {
3505		iip = (struct xfs_inode_log_item *)lip;
3506		ip = iip->ili_inode;
3507
3508		/*
3509		 * Quick and dirty check to avoid locks if possible.
3510		 */
3511		if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLUSHING))
3512			continue;
3513		if (xfs_ipincount(ip))
3514			continue;
 
3515
3516		/*
3517		 * The inode is still attached to the buffer, which means it is
3518		 * dirty but reclaim might try to grab it. Check carefully for
3519		 * that, and grab the ilock while still holding the i_flags_lock
3520		 * to guarantee reclaim will not be able to reclaim this inode
3521		 * once we drop the i_flags_lock.
3522		 */
3523		spin_lock(&ip->i_flags_lock);
3524		ASSERT(!__xfs_iflags_test(ip, XFS_ISTALE));
3525		if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLUSHING)) {
3526			spin_unlock(&ip->i_flags_lock);
3527			continue;
3528		}
 
 
 
 
 
 
 
 
 
3529
3530		/*
3531		 * ILOCK will pin the inode against reclaim and prevent
3532		 * concurrent transactions modifying the inode while we are
3533		 * flushing the inode. If we get the lock, set the flushing
3534		 * state before we drop the i_flags_lock.
3535		 */
3536		if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) {
3537			spin_unlock(&ip->i_flags_lock);
3538			continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3539		}
3540		__xfs_iflags_set(ip, XFS_IFLUSHING);
3541		spin_unlock(&ip->i_flags_lock);
3542
3543		/*
3544		 * Abort flushing this inode if we are shut down because the
3545		 * inode may not currently be in the AIL. This can occur when
3546		 * log I/O failure unpins the inode without inserting into the
3547		 * AIL, leaving a dirty/unpinned inode attached to the buffer
3548		 * that otherwise looks like it should be flushed.
3549		 */
3550		if (xlog_is_shutdown(mp->m_log)) {
3551			xfs_iunpin_wait(ip);
3552			xfs_iflush_abort(ip);
3553			xfs_iunlock(ip, XFS_ILOCK_SHARED);
3554			error = -EIO;
3555			continue;
 
 
 
 
 
 
3556		}
3557
3558		/* don't block waiting on a log force to unpin dirty inodes */
3559		if (xfs_ipincount(ip)) {
3560			xfs_iflags_clear(ip, XFS_IFLUSHING);
3561			xfs_iunlock(ip, XFS_ILOCK_SHARED);
3562			continue;
3563		}
3564
3565		if (!xfs_inode_clean(ip))
3566			error = xfs_iflush(ip, bp);
3567		else
3568			xfs_iflags_clear(ip, XFS_IFLUSHING);
3569		xfs_iunlock(ip, XFS_ILOCK_SHARED);
3570		if (error)
3571			break;
3572		clcount++;
3573	}
 
 
3574
3575	if (error) {
3576		/*
3577		 * Shutdown first so we kill the log before we release this
3578		 * buffer. If it is an INODE_ALLOC buffer and pins the tail
3579		 * of the log, failing it before the _log_ is shut down can
3580		 * result in the log tail being moved forward in the journal
3581		 * on disk because log writes can still be taking place. Hence
3582		 * unpinning the tail will allow the ICREATE intent to be
3583		 * removed from the log an recovery will fail with uninitialised
3584		 * inode cluster buffers.
3585		 */
3586		xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3587		bp->b_flags |= XBF_ASYNC;
3588		xfs_buf_ioend_fail(bp);
3589		return error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3590	}
3591
3592	if (!clcount)
3593		return -EAGAIN;
3594
3595	XFS_STATS_INC(mp, xs_icluster_flushcnt);
3596	XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount);
3597	return 0;
3598
3599}
3600
3601/* Release an inode. */
 
 
 
3602void
3603xfs_irele(
3604	struct xfs_inode	*ip)
3605{
3606	trace_xfs_irele(ip, _RET_IP_);
3607	iput(VFS_I(ip));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3608}
3609
3610/*
3611 * Ensure all commited transactions touching the inode are written to the log.
 
 
 
 
 
 
 
3612 */
3613int
3614xfs_log_force_inode(
3615	struct xfs_inode	*ip)
3616{
3617	xfs_csn_t		seq = 0;
 
 
 
 
 
 
 
 
3618
3619	xfs_ilock(ip, XFS_ILOCK_SHARED);
3620	if (xfs_ipincount(ip))
3621		seq = ip->i_itemp->ili_commit_seq;
3622	xfs_iunlock(ip, XFS_ILOCK_SHARED);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3623
3624	if (!seq)
3625		return 0;
3626	return xfs_log_force_seq(ip->i_mount, seq, XFS_LOG_SYNC, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3627}
3628
3629/*
3630 * Grab the exclusive iolock for a data copy from src to dest, making sure to
3631 * abide vfs locking order (lowest pointer value goes first) and breaking the
3632 * layout leases before proceeding.  The loop is needed because we cannot call
3633 * the blocking break_layout() with the iolocks held, and therefore have to
3634 * back out both locks.
3635 */
3636static int
3637xfs_iolock_two_inodes_and_break_layout(
3638	struct inode		*src,
3639	struct inode		*dest)
3640{
3641	int			error;
 
 
3642
3643	if (src > dest)
3644		swap(src, dest);
 
3645
3646retry:
3647	/* Wait to break both inodes' layouts before we start locking. */
3648	error = break_layout(src, true);
3649	if (error)
3650		return error;
3651	if (src != dest) {
3652		error = break_layout(dest, true);
3653		if (error)
3654			return error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3655	}
3656
3657	/* Lock one inode and make sure nobody got in and leased it. */
3658	inode_lock(src);
3659	error = break_layout(src, false);
3660	if (error) {
3661		inode_unlock(src);
3662		if (error == -EWOULDBLOCK)
3663			goto retry;
3664		return error;
 
 
3665	}
 
 
 
3666
3667	if (src == dest)
3668		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3669
3670	/* Lock the other inode and make sure nobody got in and leased it. */
3671	inode_lock_nested(dest, I_MUTEX_NONDIR2);
3672	error = break_layout(dest, false);
3673	if (error) {
3674		inode_unlock(src);
3675		inode_unlock(dest);
3676		if (error == -EWOULDBLOCK)
3677			goto retry;
3678		return error;
 
 
 
 
 
 
 
 
 
 
 
3679	}
 
 
3680
3681	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3682}
3683
3684static int
3685xfs_mmaplock_two_inodes_and_break_dax_layout(
3686	struct xfs_inode	*ip1,
3687	struct xfs_inode	*ip2)
 
 
3688{
3689	int			error;
3690	bool			retry;
3691	struct page		*page;
3692
3693	if (ip1->i_ino > ip2->i_ino)
3694		swap(ip1, ip2);
3695
3696again:
3697	retry = false;
3698	/* Lock the first inode */
3699	xfs_ilock(ip1, XFS_MMAPLOCK_EXCL);
3700	error = xfs_break_dax_layouts(VFS_I(ip1), &retry);
3701	if (error || retry) {
3702		xfs_iunlock(ip1, XFS_MMAPLOCK_EXCL);
3703		if (error == 0 && retry)
3704			goto again;
3705		return error;
3706	}
3707
3708	if (ip1 == ip2)
3709		return 0;
3710
3711	/* Nested lock the second inode */
3712	xfs_ilock(ip2, xfs_lock_inumorder(XFS_MMAPLOCK_EXCL, 1));
3713	/*
3714	 * We cannot use xfs_break_dax_layouts() directly here because it may
3715	 * need to unlock & lock the XFS_MMAPLOCK_EXCL which is not suitable
3716	 * for this nested lock case.
3717	 */
3718	page = dax_layout_busy_page(VFS_I(ip2)->i_mapping);
3719	if (page && page_ref_count(page) != 1) {
3720		xfs_iunlock(ip2, XFS_MMAPLOCK_EXCL);
3721		xfs_iunlock(ip1, XFS_MMAPLOCK_EXCL);
3722		goto again;
3723	}
3724
3725	return 0;
3726}
3727
3728/*
3729 * Lock two inodes so that userspace cannot initiate I/O via file syscalls or
3730 * mmap activity.
3731 */
3732int
3733xfs_ilock2_io_mmap(
3734	struct xfs_inode	*ip1,
3735	struct xfs_inode	*ip2)
3736{
3737	int			ret;
3738
3739	ret = xfs_iolock_two_inodes_and_break_layout(VFS_I(ip1), VFS_I(ip2));
3740	if (ret)
3741		return ret;
3742
3743	if (IS_DAX(VFS_I(ip1)) && IS_DAX(VFS_I(ip2))) {
3744		ret = xfs_mmaplock_two_inodes_and_break_dax_layout(ip1, ip2);
3745		if (ret) {
3746			inode_unlock(VFS_I(ip2));
3747			if (ip1 != ip2)
3748				inode_unlock(VFS_I(ip1));
3749			return ret;
3750		}
3751	} else
3752		filemap_invalidate_lock_two(VFS_I(ip1)->i_mapping,
3753					    VFS_I(ip2)->i_mapping);
 
3754
3755	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3756}
3757
3758/* Unlock both inodes to allow IO and mmap activity. */
3759void
3760xfs_iunlock2_io_mmap(
3761	struct xfs_inode	*ip1,
3762	struct xfs_inode	*ip2)
3763{
3764	if (IS_DAX(VFS_I(ip1)) && IS_DAX(VFS_I(ip2))) {
3765		xfs_iunlock(ip2, XFS_MMAPLOCK_EXCL);
3766		if (ip1 != ip2)
3767			xfs_iunlock(ip1, XFS_MMAPLOCK_EXCL);
3768	} else
3769		filemap_invalidate_unlock_two(VFS_I(ip1)->i_mapping,
3770					      VFS_I(ip2)->i_mapping);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3771
3772	inode_unlock(VFS_I(ip2));
3773	if (ip1 != ip2)
3774		inode_unlock(VFS_I(ip1));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3775}
3776
3777/* Drop the MMAPLOCK and the IOLOCK after a remap completes. */
 
 
 
3778void
3779xfs_iunlock2_remapping(
3780	struct xfs_inode	*ip1,
3781	struct xfs_inode	*ip2)
3782{
3783	xfs_iflags_clear(ip1, XFS_IREMAPPING);
 
3784
3785	if (ip1 != ip2)
3786		xfs_iunlock(ip1, XFS_MMAPLOCK_SHARED);
3787	xfs_iunlock(ip2, XFS_MMAPLOCK_EXCL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3788
3789	if (ip1 != ip2)
3790		inode_unlock_shared(VFS_I(ip1));
3791	inode_unlock(VFS_I(ip2));
3792}
3793
3794/*
3795 * Reload the incore inode list for this inode.  Caller should ensure that
3796 * the link count cannot change, either by taking ILOCK_SHARED or otherwise
3797 * preventing other threads from executing.
3798 */
3799int
3800xfs_inode_reload_unlinked_bucket(
3801	struct xfs_trans	*tp,
3802	struct xfs_inode	*ip)
3803{
3804	struct xfs_mount	*mp = tp->t_mountp;
3805	struct xfs_buf		*agibp;
3806	struct xfs_agi		*agi;
3807	struct xfs_perag	*pag;
3808	xfs_agnumber_t		agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
3809	xfs_agino_t		agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
3810	xfs_agino_t		prev_agino, next_agino;
3811	unsigned int		bucket;
3812	bool			foundit = false;
3813	int			error;
3814
3815	/* Grab the first inode in the list */
3816	pag = xfs_perag_get(mp, agno);
3817	error = xfs_ialloc_read_agi(pag, tp, &agibp);
3818	xfs_perag_put(pag);
3819	if (error)
3820		return error;
3821
 
 
 
3822	/*
3823	 * We've taken ILOCK_SHARED and the AGI buffer lock to stabilize the
3824	 * incore unlinked list pointers for this inode.  Check once more to
3825	 * see if we raced with anyone else to reload the unlinked list.
3826	 */
3827	if (!xfs_inode_unlinked_incomplete(ip)) {
3828		foundit = true;
3829		goto out_agibp;
3830	}
 
3831
3832	bucket = agino % XFS_AGI_UNLINKED_BUCKETS;
3833	agi = agibp->b_addr;
 
 
 
 
 
 
 
 
3834
3835	trace_xfs_inode_reload_unlinked_bucket(ip);
3836
3837	xfs_info_ratelimited(mp,
3838 "Found unrecovered unlinked inode 0x%x in AG 0x%x.  Initiating list recovery.",
3839			agino, agno);
3840
3841	prev_agino = NULLAGINO;
3842	next_agino = be32_to_cpu(agi->agi_unlinked[bucket]);
3843	while (next_agino != NULLAGINO) {
3844		struct xfs_inode	*next_ip = NULL;
3845
3846		/* Found this caller's inode, set its backlink. */
3847		if (next_agino == agino) {
3848			next_ip = ip;
3849			next_ip->i_prev_unlinked = prev_agino;
3850			foundit = true;
3851			goto next_inode;
3852		}
3853
3854		/* Try in-memory lookup first. */
3855		next_ip = xfs_iunlink_lookup(pag, next_agino);
3856		if (next_ip)
3857			goto next_inode;
3858
3859		/* Inode not in memory, try reloading it. */
3860		error = xfs_iunlink_reload_next(tp, agibp, prev_agino,
3861				next_agino);
3862		if (error)
3863			break;
3864
3865		/* Grab the reloaded inode. */
3866		next_ip = xfs_iunlink_lookup(pag, next_agino);
3867		if (!next_ip) {
3868			/* No incore inode at all?  We reloaded it... */
3869			ASSERT(next_ip != NULL);
3870			error = -EFSCORRUPTED;
3871			break;
3872		}
3873
3874next_inode:
3875		prev_agino = next_agino;
3876		next_agino = next_ip->i_next_unlinked;
3877	}
3878
3879out_agibp:
3880	xfs_trans_brelse(tp, agibp);
3881	/* Should have found this inode somewhere in the iunlinked bucket. */
3882	if (!error && !foundit)
3883		error = -EFSCORRUPTED;
3884	return error;
3885}
3886
3887/* Decide if this inode is missing its unlinked list and reload it. */
3888int
3889xfs_inode_reload_unlinked(
3890	struct xfs_inode	*ip)
 
 
 
 
 
 
 
 
 
 
3891{
3892	struct xfs_trans	*tp;
3893	int			error;
3894
3895	error = xfs_trans_alloc_empty(ip->i_mount, &tp);
3896	if (error)
3897		return error;
3898
3899	xfs_ilock(ip, XFS_ILOCK_SHARED);
3900	if (xfs_inode_unlinked_incomplete(ip))
3901		error = xfs_inode_reload_unlinked_bucket(tp, ip);
3902	xfs_iunlock(ip, XFS_ILOCK_SHARED);
3903	xfs_trans_cancel(tp);
3904
3905	return error;
 
 
 
 
 
 
 
 
 
3906}
3907
3908/* Has this inode fork been zapped by repair? */
3909bool
3910xfs_ifork_zapped(
3911	const struct xfs_inode	*ip,
3912	int			whichfork)
 
3913{
3914	unsigned int		datamask = 0;
3915
3916	switch (whichfork) {
3917	case XFS_DATA_FORK:
3918		switch (ip->i_vnode.i_mode & S_IFMT) {
3919		case S_IFDIR:
3920			datamask = XFS_SICK_INO_DIR_ZAPPED;
3921			break;
3922		case S_IFLNK:
3923			datamask = XFS_SICK_INO_SYMLINK_ZAPPED;
3924			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3925		}
3926		return ip->i_sick & (XFS_SICK_INO_BMBTD_ZAPPED | datamask);
3927	case XFS_ATTR_FORK:
3928		return ip->i_sick & XFS_SICK_INO_BMBTA_ZAPPED;
3929	default:
3930		return false;
3931	}
3932}
3933
3934/* Compute the number of data and realtime blocks used by a file. */
 
 
 
 
 
 
3935void
3936xfs_inode_count_blocks(
3937	struct xfs_trans	*tp,
3938	struct xfs_inode	*ip,
3939	xfs_filblks_t		*dblocks,
3940	xfs_filblks_t		*rblocks)
3941{
3942	struct xfs_ifork	*ifp = xfs_ifork_ptr(ip, XFS_DATA_FORK);
3943
3944	*rblocks = 0;
3945	if (XFS_IS_REALTIME_INODE(ip))
3946		xfs_bmap_count_leaves(ifp, rblocks);
3947	*dblocks = ip->i_nblocks - *rblocks;
 
3948}