Loading...
1/*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18#include <linux/log2.h>
19
20#include "xfs.h"
21#include "xfs_fs.h"
22#include "xfs_types.h"
23#include "xfs_bit.h"
24#include "xfs_log.h"
25#include "xfs_inum.h"
26#include "xfs_trans.h"
27#include "xfs_trans_priv.h"
28#include "xfs_sb.h"
29#include "xfs_ag.h"
30#include "xfs_mount.h"
31#include "xfs_bmap_btree.h"
32#include "xfs_alloc_btree.h"
33#include "xfs_ialloc_btree.h"
34#include "xfs_attr_sf.h"
35#include "xfs_dinode.h"
36#include "xfs_inode.h"
37#include "xfs_buf_item.h"
38#include "xfs_inode_item.h"
39#include "xfs_btree.h"
40#include "xfs_alloc.h"
41#include "xfs_ialloc.h"
42#include "xfs_bmap.h"
43#include "xfs_error.h"
44#include "xfs_utils.h"
45#include "xfs_quota.h"
46#include "xfs_filestream.h"
47#include "xfs_vnodeops.h"
48#include "xfs_trace.h"
49
50kmem_zone_t *xfs_ifork_zone;
51kmem_zone_t *xfs_inode_zone;
52
53/*
54 * Used in xfs_itruncate_extents(). This is the maximum number of extents
55 * freed from a file in a single transaction.
56 */
57#define XFS_ITRUNC_MAX_EXTENTS 2
58
59STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
60STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int);
61STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int);
62STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int);
63
64#ifdef DEBUG
65/*
66 * Make sure that the extents in the given memory buffer
67 * are valid.
68 */
69STATIC void
70xfs_validate_extents(
71 xfs_ifork_t *ifp,
72 int nrecs,
73 xfs_exntfmt_t fmt)
74{
75 xfs_bmbt_irec_t irec;
76 xfs_bmbt_rec_host_t rec;
77 int i;
78
79 for (i = 0; i < nrecs; i++) {
80 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
81 rec.l0 = get_unaligned(&ep->l0);
82 rec.l1 = get_unaligned(&ep->l1);
83 xfs_bmbt_get_all(&rec, &irec);
84 if (fmt == XFS_EXTFMT_NOSTATE)
85 ASSERT(irec.br_state == XFS_EXT_NORM);
86 }
87}
88#else /* DEBUG */
89#define xfs_validate_extents(ifp, nrecs, fmt)
90#endif /* DEBUG */
91
92/*
93 * Check that none of the inode's in the buffer have a next
94 * unlinked field of 0.
95 */
96#if defined(DEBUG)
97void
98xfs_inobp_check(
99 xfs_mount_t *mp,
100 xfs_buf_t *bp)
101{
102 int i;
103 int j;
104 xfs_dinode_t *dip;
105
106 j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
107
108 for (i = 0; i < j; i++) {
109 dip = (xfs_dinode_t *)xfs_buf_offset(bp,
110 i * mp->m_sb.sb_inodesize);
111 if (!dip->di_next_unlinked) {
112 xfs_alert(mp,
113 "Detected bogus zero next_unlinked field in incore inode buffer 0x%p.",
114 bp);
115 ASSERT(dip->di_next_unlinked);
116 }
117 }
118}
119#endif
120
121/*
122 * Find the buffer associated with the given inode map
123 * We do basic validation checks on the buffer once it has been
124 * retrieved from disk.
125 */
126STATIC int
127xfs_imap_to_bp(
128 xfs_mount_t *mp,
129 xfs_trans_t *tp,
130 struct xfs_imap *imap,
131 xfs_buf_t **bpp,
132 uint buf_flags,
133 uint iget_flags)
134{
135 int error;
136 int i;
137 int ni;
138 xfs_buf_t *bp;
139
140 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap->im_blkno,
141 (int)imap->im_len, buf_flags, &bp);
142 if (error) {
143 if (error != EAGAIN) {
144 xfs_warn(mp,
145 "%s: xfs_trans_read_buf() returned error %d.",
146 __func__, error);
147 } else {
148 ASSERT(buf_flags & XBF_TRYLOCK);
149 }
150 return error;
151 }
152
153 /*
154 * Validate the magic number and version of every inode in the buffer
155 * (if DEBUG kernel) or the first inode in the buffer, otherwise.
156 */
157#ifdef DEBUG
158 ni = BBTOB(imap->im_len) >> mp->m_sb.sb_inodelog;
159#else /* usual case */
160 ni = 1;
161#endif
162
163 for (i = 0; i < ni; i++) {
164 int di_ok;
165 xfs_dinode_t *dip;
166
167 dip = (xfs_dinode_t *)xfs_buf_offset(bp,
168 (i << mp->m_sb.sb_inodelog));
169 di_ok = dip->di_magic == cpu_to_be16(XFS_DINODE_MAGIC) &&
170 XFS_DINODE_GOOD_VERSION(dip->di_version);
171 if (unlikely(XFS_TEST_ERROR(!di_ok, mp,
172 XFS_ERRTAG_ITOBP_INOTOBP,
173 XFS_RANDOM_ITOBP_INOTOBP))) {
174 if (iget_flags & XFS_IGET_UNTRUSTED) {
175 xfs_trans_brelse(tp, bp);
176 return XFS_ERROR(EINVAL);
177 }
178 XFS_CORRUPTION_ERROR("xfs_imap_to_bp",
179 XFS_ERRLEVEL_HIGH, mp, dip);
180#ifdef DEBUG
181 xfs_emerg(mp,
182 "bad inode magic/vsn daddr %lld #%d (magic=%x)",
183 (unsigned long long)imap->im_blkno, i,
184 be16_to_cpu(dip->di_magic));
185 ASSERT(0);
186#endif
187 xfs_trans_brelse(tp, bp);
188 return XFS_ERROR(EFSCORRUPTED);
189 }
190 }
191
192 xfs_inobp_check(mp, bp);
193
194 /*
195 * Mark the buffer as an inode buffer now that it looks good
196 */
197 XFS_BUF_SET_VTYPE(bp, B_FS_INO);
198
199 *bpp = bp;
200 return 0;
201}
202
203/*
204 * This routine is called to map an inode number within a file
205 * system to the buffer containing the on-disk version of the
206 * inode. It returns a pointer to the buffer containing the
207 * on-disk inode in the bpp parameter, and in the dip parameter
208 * it returns a pointer to the on-disk inode within that buffer.
209 *
210 * If a non-zero error is returned, then the contents of bpp and
211 * dipp are undefined.
212 *
213 * Use xfs_imap() to determine the size and location of the
214 * buffer to read from disk.
215 */
216int
217xfs_inotobp(
218 xfs_mount_t *mp,
219 xfs_trans_t *tp,
220 xfs_ino_t ino,
221 xfs_dinode_t **dipp,
222 xfs_buf_t **bpp,
223 int *offset,
224 uint imap_flags)
225{
226 struct xfs_imap imap;
227 xfs_buf_t *bp;
228 int error;
229
230 imap.im_blkno = 0;
231 error = xfs_imap(mp, tp, ino, &imap, imap_flags);
232 if (error)
233 return error;
234
235 error = xfs_imap_to_bp(mp, tp, &imap, &bp, XBF_LOCK, imap_flags);
236 if (error)
237 return error;
238
239 *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
240 *bpp = bp;
241 *offset = imap.im_boffset;
242 return 0;
243}
244
245
246/*
247 * This routine is called to map an inode to the buffer containing
248 * the on-disk version of the inode. It returns a pointer to the
249 * buffer containing the on-disk inode in the bpp parameter, and in
250 * the dip parameter it returns a pointer to the on-disk inode within
251 * that buffer.
252 *
253 * If a non-zero error is returned, then the contents of bpp and
254 * dipp are undefined.
255 *
256 * The inode is expected to already been mapped to its buffer and read
257 * in once, thus we can use the mapping information stored in the inode
258 * rather than calling xfs_imap(). This allows us to avoid the overhead
259 * of looking at the inode btree for small block file systems
260 * (see xfs_imap()).
261 */
262int
263xfs_itobp(
264 xfs_mount_t *mp,
265 xfs_trans_t *tp,
266 xfs_inode_t *ip,
267 xfs_dinode_t **dipp,
268 xfs_buf_t **bpp,
269 uint buf_flags)
270{
271 xfs_buf_t *bp;
272 int error;
273
274 ASSERT(ip->i_imap.im_blkno != 0);
275
276 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp, buf_flags, 0);
277 if (error)
278 return error;
279
280 if (!bp) {
281 ASSERT(buf_flags & XBF_TRYLOCK);
282 ASSERT(tp == NULL);
283 *bpp = NULL;
284 return EAGAIN;
285 }
286
287 *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
288 *bpp = bp;
289 return 0;
290}
291
292/*
293 * Move inode type and inode format specific information from the
294 * on-disk inode to the in-core inode. For fifos, devs, and sockets
295 * this means set if_rdev to the proper value. For files, directories,
296 * and symlinks this means to bring in the in-line data or extent
297 * pointers. For a file in B-tree format, only the root is immediately
298 * brought in-core. The rest will be in-lined in if_extents when it
299 * is first referenced (see xfs_iread_extents()).
300 */
301STATIC int
302xfs_iformat(
303 xfs_inode_t *ip,
304 xfs_dinode_t *dip)
305{
306 xfs_attr_shortform_t *atp;
307 int size;
308 int error;
309 xfs_fsize_t di_size;
310 ip->i_df.if_ext_max =
311 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
312 error = 0;
313
314 if (unlikely(be32_to_cpu(dip->di_nextents) +
315 be16_to_cpu(dip->di_anextents) >
316 be64_to_cpu(dip->di_nblocks))) {
317 xfs_warn(ip->i_mount,
318 "corrupt dinode %Lu, extent total = %d, nblocks = %Lu.",
319 (unsigned long long)ip->i_ino,
320 (int)(be32_to_cpu(dip->di_nextents) +
321 be16_to_cpu(dip->di_anextents)),
322 (unsigned long long)
323 be64_to_cpu(dip->di_nblocks));
324 XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW,
325 ip->i_mount, dip);
326 return XFS_ERROR(EFSCORRUPTED);
327 }
328
329 if (unlikely(dip->di_forkoff > ip->i_mount->m_sb.sb_inodesize)) {
330 xfs_warn(ip->i_mount, "corrupt dinode %Lu, forkoff = 0x%x.",
331 (unsigned long long)ip->i_ino,
332 dip->di_forkoff);
333 XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW,
334 ip->i_mount, dip);
335 return XFS_ERROR(EFSCORRUPTED);
336 }
337
338 if (unlikely((ip->i_d.di_flags & XFS_DIFLAG_REALTIME) &&
339 !ip->i_mount->m_rtdev_targp)) {
340 xfs_warn(ip->i_mount,
341 "corrupt dinode %Lu, has realtime flag set.",
342 ip->i_ino);
343 XFS_CORRUPTION_ERROR("xfs_iformat(realtime)",
344 XFS_ERRLEVEL_LOW, ip->i_mount, dip);
345 return XFS_ERROR(EFSCORRUPTED);
346 }
347
348 switch (ip->i_d.di_mode & S_IFMT) {
349 case S_IFIFO:
350 case S_IFCHR:
351 case S_IFBLK:
352 case S_IFSOCK:
353 if (unlikely(dip->di_format != XFS_DINODE_FMT_DEV)) {
354 XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW,
355 ip->i_mount, dip);
356 return XFS_ERROR(EFSCORRUPTED);
357 }
358 ip->i_d.di_size = 0;
359 ip->i_size = 0;
360 ip->i_df.if_u2.if_rdev = xfs_dinode_get_rdev(dip);
361 break;
362
363 case S_IFREG:
364 case S_IFLNK:
365 case S_IFDIR:
366 switch (dip->di_format) {
367 case XFS_DINODE_FMT_LOCAL:
368 /*
369 * no local regular files yet
370 */
371 if (unlikely(S_ISREG(be16_to_cpu(dip->di_mode)))) {
372 xfs_warn(ip->i_mount,
373 "corrupt inode %Lu (local format for regular file).",
374 (unsigned long long) ip->i_ino);
375 XFS_CORRUPTION_ERROR("xfs_iformat(4)",
376 XFS_ERRLEVEL_LOW,
377 ip->i_mount, dip);
378 return XFS_ERROR(EFSCORRUPTED);
379 }
380
381 di_size = be64_to_cpu(dip->di_size);
382 if (unlikely(di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) {
383 xfs_warn(ip->i_mount,
384 "corrupt inode %Lu (bad size %Ld for local inode).",
385 (unsigned long long) ip->i_ino,
386 (long long) di_size);
387 XFS_CORRUPTION_ERROR("xfs_iformat(5)",
388 XFS_ERRLEVEL_LOW,
389 ip->i_mount, dip);
390 return XFS_ERROR(EFSCORRUPTED);
391 }
392
393 size = (int)di_size;
394 error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size);
395 break;
396 case XFS_DINODE_FMT_EXTENTS:
397 error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK);
398 break;
399 case XFS_DINODE_FMT_BTREE:
400 error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK);
401 break;
402 default:
403 XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW,
404 ip->i_mount);
405 return XFS_ERROR(EFSCORRUPTED);
406 }
407 break;
408
409 default:
410 XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount);
411 return XFS_ERROR(EFSCORRUPTED);
412 }
413 if (error) {
414 return error;
415 }
416 if (!XFS_DFORK_Q(dip))
417 return 0;
418 ASSERT(ip->i_afp == NULL);
419 ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP | KM_NOFS);
420 ip->i_afp->if_ext_max =
421 XFS_IFORK_ASIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
422 switch (dip->di_aformat) {
423 case XFS_DINODE_FMT_LOCAL:
424 atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip);
425 size = be16_to_cpu(atp->hdr.totsize);
426
427 if (unlikely(size < sizeof(struct xfs_attr_sf_hdr))) {
428 xfs_warn(ip->i_mount,
429 "corrupt inode %Lu (bad attr fork size %Ld).",
430 (unsigned long long) ip->i_ino,
431 (long long) size);
432 XFS_CORRUPTION_ERROR("xfs_iformat(8)",
433 XFS_ERRLEVEL_LOW,
434 ip->i_mount, dip);
435 return XFS_ERROR(EFSCORRUPTED);
436 }
437
438 error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size);
439 break;
440 case XFS_DINODE_FMT_EXTENTS:
441 error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK);
442 break;
443 case XFS_DINODE_FMT_BTREE:
444 error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK);
445 break;
446 default:
447 error = XFS_ERROR(EFSCORRUPTED);
448 break;
449 }
450 if (error) {
451 kmem_zone_free(xfs_ifork_zone, ip->i_afp);
452 ip->i_afp = NULL;
453 xfs_idestroy_fork(ip, XFS_DATA_FORK);
454 }
455 return error;
456}
457
458/*
459 * The file is in-lined in the on-disk inode.
460 * If it fits into if_inline_data, then copy
461 * it there, otherwise allocate a buffer for it
462 * and copy the data there. Either way, set
463 * if_data to point at the data.
464 * If we allocate a buffer for the data, make
465 * sure that its size is a multiple of 4 and
466 * record the real size in i_real_bytes.
467 */
468STATIC int
469xfs_iformat_local(
470 xfs_inode_t *ip,
471 xfs_dinode_t *dip,
472 int whichfork,
473 int size)
474{
475 xfs_ifork_t *ifp;
476 int real_size;
477
478 /*
479 * If the size is unreasonable, then something
480 * is wrong and we just bail out rather than crash in
481 * kmem_alloc() or memcpy() below.
482 */
483 if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
484 xfs_warn(ip->i_mount,
485 "corrupt inode %Lu (bad size %d for local fork, size = %d).",
486 (unsigned long long) ip->i_ino, size,
487 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork));
488 XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW,
489 ip->i_mount, dip);
490 return XFS_ERROR(EFSCORRUPTED);
491 }
492 ifp = XFS_IFORK_PTR(ip, whichfork);
493 real_size = 0;
494 if (size == 0)
495 ifp->if_u1.if_data = NULL;
496 else if (size <= sizeof(ifp->if_u2.if_inline_data))
497 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
498 else {
499 real_size = roundup(size, 4);
500 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP | KM_NOFS);
501 }
502 ifp->if_bytes = size;
503 ifp->if_real_bytes = real_size;
504 if (size)
505 memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR(dip, whichfork), size);
506 ifp->if_flags &= ~XFS_IFEXTENTS;
507 ifp->if_flags |= XFS_IFINLINE;
508 return 0;
509}
510
511/*
512 * The file consists of a set of extents all
513 * of which fit into the on-disk inode.
514 * If there are few enough extents to fit into
515 * the if_inline_ext, then copy them there.
516 * Otherwise allocate a buffer for them and copy
517 * them into it. Either way, set if_extents
518 * to point at the extents.
519 */
520STATIC int
521xfs_iformat_extents(
522 xfs_inode_t *ip,
523 xfs_dinode_t *dip,
524 int whichfork)
525{
526 xfs_bmbt_rec_t *dp;
527 xfs_ifork_t *ifp;
528 int nex;
529 int size;
530 int i;
531
532 ifp = XFS_IFORK_PTR(ip, whichfork);
533 nex = XFS_DFORK_NEXTENTS(dip, whichfork);
534 size = nex * (uint)sizeof(xfs_bmbt_rec_t);
535
536 /*
537 * If the number of extents is unreasonable, then something
538 * is wrong and we just bail out rather than crash in
539 * kmem_alloc() or memcpy() below.
540 */
541 if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
542 xfs_warn(ip->i_mount, "corrupt inode %Lu ((a)extents = %d).",
543 (unsigned long long) ip->i_ino, nex);
544 XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW,
545 ip->i_mount, dip);
546 return XFS_ERROR(EFSCORRUPTED);
547 }
548
549 ifp->if_real_bytes = 0;
550 if (nex == 0)
551 ifp->if_u1.if_extents = NULL;
552 else if (nex <= XFS_INLINE_EXTS)
553 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
554 else
555 xfs_iext_add(ifp, 0, nex);
556
557 ifp->if_bytes = size;
558 if (size) {
559 dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork);
560 xfs_validate_extents(ifp, nex, XFS_EXTFMT_INODE(ip));
561 for (i = 0; i < nex; i++, dp++) {
562 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
563 ep->l0 = get_unaligned_be64(&dp->l0);
564 ep->l1 = get_unaligned_be64(&dp->l1);
565 }
566 XFS_BMAP_TRACE_EXLIST(ip, nex, whichfork);
567 if (whichfork != XFS_DATA_FORK ||
568 XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE)
569 if (unlikely(xfs_check_nostate_extents(
570 ifp, 0, nex))) {
571 XFS_ERROR_REPORT("xfs_iformat_extents(2)",
572 XFS_ERRLEVEL_LOW,
573 ip->i_mount);
574 return XFS_ERROR(EFSCORRUPTED);
575 }
576 }
577 ifp->if_flags |= XFS_IFEXTENTS;
578 return 0;
579}
580
581/*
582 * The file has too many extents to fit into
583 * the inode, so they are in B-tree format.
584 * Allocate a buffer for the root of the B-tree
585 * and copy the root into it. The i_extents
586 * field will remain NULL until all of the
587 * extents are read in (when they are needed).
588 */
589STATIC int
590xfs_iformat_btree(
591 xfs_inode_t *ip,
592 xfs_dinode_t *dip,
593 int whichfork)
594{
595 xfs_bmdr_block_t *dfp;
596 xfs_ifork_t *ifp;
597 /* REFERENCED */
598 int nrecs;
599 int size;
600
601 ifp = XFS_IFORK_PTR(ip, whichfork);
602 dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork);
603 size = XFS_BMAP_BROOT_SPACE(dfp);
604 nrecs = be16_to_cpu(dfp->bb_numrecs);
605
606 /*
607 * blow out if -- fork has less extents than can fit in
608 * fork (fork shouldn't be a btree format), root btree
609 * block has more records than can fit into the fork,
610 * or the number of extents is greater than the number of
611 * blocks.
612 */
613 if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <= ifp->if_ext_max
614 || XFS_BMDR_SPACE_CALC(nrecs) >
615 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork)
616 || XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) {
617 xfs_warn(ip->i_mount, "corrupt inode %Lu (btree).",
618 (unsigned long long) ip->i_ino);
619 XFS_CORRUPTION_ERROR("xfs_iformat_btree", XFS_ERRLEVEL_LOW,
620 ip->i_mount, dip);
621 return XFS_ERROR(EFSCORRUPTED);
622 }
623
624 ifp->if_broot_bytes = size;
625 ifp->if_broot = kmem_alloc(size, KM_SLEEP | KM_NOFS);
626 ASSERT(ifp->if_broot != NULL);
627 /*
628 * Copy and convert from the on-disk structure
629 * to the in-memory structure.
630 */
631 xfs_bmdr_to_bmbt(ip->i_mount, dfp,
632 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork),
633 ifp->if_broot, size);
634 ifp->if_flags &= ~XFS_IFEXTENTS;
635 ifp->if_flags |= XFS_IFBROOT;
636
637 return 0;
638}
639
640STATIC void
641xfs_dinode_from_disk(
642 xfs_icdinode_t *to,
643 xfs_dinode_t *from)
644{
645 to->di_magic = be16_to_cpu(from->di_magic);
646 to->di_mode = be16_to_cpu(from->di_mode);
647 to->di_version = from ->di_version;
648 to->di_format = from->di_format;
649 to->di_onlink = be16_to_cpu(from->di_onlink);
650 to->di_uid = be32_to_cpu(from->di_uid);
651 to->di_gid = be32_to_cpu(from->di_gid);
652 to->di_nlink = be32_to_cpu(from->di_nlink);
653 to->di_projid_lo = be16_to_cpu(from->di_projid_lo);
654 to->di_projid_hi = be16_to_cpu(from->di_projid_hi);
655 memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
656 to->di_flushiter = be16_to_cpu(from->di_flushiter);
657 to->di_atime.t_sec = be32_to_cpu(from->di_atime.t_sec);
658 to->di_atime.t_nsec = be32_to_cpu(from->di_atime.t_nsec);
659 to->di_mtime.t_sec = be32_to_cpu(from->di_mtime.t_sec);
660 to->di_mtime.t_nsec = be32_to_cpu(from->di_mtime.t_nsec);
661 to->di_ctime.t_sec = be32_to_cpu(from->di_ctime.t_sec);
662 to->di_ctime.t_nsec = be32_to_cpu(from->di_ctime.t_nsec);
663 to->di_size = be64_to_cpu(from->di_size);
664 to->di_nblocks = be64_to_cpu(from->di_nblocks);
665 to->di_extsize = be32_to_cpu(from->di_extsize);
666 to->di_nextents = be32_to_cpu(from->di_nextents);
667 to->di_anextents = be16_to_cpu(from->di_anextents);
668 to->di_forkoff = from->di_forkoff;
669 to->di_aformat = from->di_aformat;
670 to->di_dmevmask = be32_to_cpu(from->di_dmevmask);
671 to->di_dmstate = be16_to_cpu(from->di_dmstate);
672 to->di_flags = be16_to_cpu(from->di_flags);
673 to->di_gen = be32_to_cpu(from->di_gen);
674}
675
676void
677xfs_dinode_to_disk(
678 xfs_dinode_t *to,
679 xfs_icdinode_t *from)
680{
681 to->di_magic = cpu_to_be16(from->di_magic);
682 to->di_mode = cpu_to_be16(from->di_mode);
683 to->di_version = from ->di_version;
684 to->di_format = from->di_format;
685 to->di_onlink = cpu_to_be16(from->di_onlink);
686 to->di_uid = cpu_to_be32(from->di_uid);
687 to->di_gid = cpu_to_be32(from->di_gid);
688 to->di_nlink = cpu_to_be32(from->di_nlink);
689 to->di_projid_lo = cpu_to_be16(from->di_projid_lo);
690 to->di_projid_hi = cpu_to_be16(from->di_projid_hi);
691 memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
692 to->di_flushiter = cpu_to_be16(from->di_flushiter);
693 to->di_atime.t_sec = cpu_to_be32(from->di_atime.t_sec);
694 to->di_atime.t_nsec = cpu_to_be32(from->di_atime.t_nsec);
695 to->di_mtime.t_sec = cpu_to_be32(from->di_mtime.t_sec);
696 to->di_mtime.t_nsec = cpu_to_be32(from->di_mtime.t_nsec);
697 to->di_ctime.t_sec = cpu_to_be32(from->di_ctime.t_sec);
698 to->di_ctime.t_nsec = cpu_to_be32(from->di_ctime.t_nsec);
699 to->di_size = cpu_to_be64(from->di_size);
700 to->di_nblocks = cpu_to_be64(from->di_nblocks);
701 to->di_extsize = cpu_to_be32(from->di_extsize);
702 to->di_nextents = cpu_to_be32(from->di_nextents);
703 to->di_anextents = cpu_to_be16(from->di_anextents);
704 to->di_forkoff = from->di_forkoff;
705 to->di_aformat = from->di_aformat;
706 to->di_dmevmask = cpu_to_be32(from->di_dmevmask);
707 to->di_dmstate = cpu_to_be16(from->di_dmstate);
708 to->di_flags = cpu_to_be16(from->di_flags);
709 to->di_gen = cpu_to_be32(from->di_gen);
710}
711
712STATIC uint
713_xfs_dic2xflags(
714 __uint16_t di_flags)
715{
716 uint flags = 0;
717
718 if (di_flags & XFS_DIFLAG_ANY) {
719 if (di_flags & XFS_DIFLAG_REALTIME)
720 flags |= XFS_XFLAG_REALTIME;
721 if (di_flags & XFS_DIFLAG_PREALLOC)
722 flags |= XFS_XFLAG_PREALLOC;
723 if (di_flags & XFS_DIFLAG_IMMUTABLE)
724 flags |= XFS_XFLAG_IMMUTABLE;
725 if (di_flags & XFS_DIFLAG_APPEND)
726 flags |= XFS_XFLAG_APPEND;
727 if (di_flags & XFS_DIFLAG_SYNC)
728 flags |= XFS_XFLAG_SYNC;
729 if (di_flags & XFS_DIFLAG_NOATIME)
730 flags |= XFS_XFLAG_NOATIME;
731 if (di_flags & XFS_DIFLAG_NODUMP)
732 flags |= XFS_XFLAG_NODUMP;
733 if (di_flags & XFS_DIFLAG_RTINHERIT)
734 flags |= XFS_XFLAG_RTINHERIT;
735 if (di_flags & XFS_DIFLAG_PROJINHERIT)
736 flags |= XFS_XFLAG_PROJINHERIT;
737 if (di_flags & XFS_DIFLAG_NOSYMLINKS)
738 flags |= XFS_XFLAG_NOSYMLINKS;
739 if (di_flags & XFS_DIFLAG_EXTSIZE)
740 flags |= XFS_XFLAG_EXTSIZE;
741 if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
742 flags |= XFS_XFLAG_EXTSZINHERIT;
743 if (di_flags & XFS_DIFLAG_NODEFRAG)
744 flags |= XFS_XFLAG_NODEFRAG;
745 if (di_flags & XFS_DIFLAG_FILESTREAM)
746 flags |= XFS_XFLAG_FILESTREAM;
747 }
748
749 return flags;
750}
751
752uint
753xfs_ip2xflags(
754 xfs_inode_t *ip)
755{
756 xfs_icdinode_t *dic = &ip->i_d;
757
758 return _xfs_dic2xflags(dic->di_flags) |
759 (XFS_IFORK_Q(ip) ? XFS_XFLAG_HASATTR : 0);
760}
761
762uint
763xfs_dic2xflags(
764 xfs_dinode_t *dip)
765{
766 return _xfs_dic2xflags(be16_to_cpu(dip->di_flags)) |
767 (XFS_DFORK_Q(dip) ? XFS_XFLAG_HASATTR : 0);
768}
769
770/*
771 * Read the disk inode attributes into the in-core inode structure.
772 */
773int
774xfs_iread(
775 xfs_mount_t *mp,
776 xfs_trans_t *tp,
777 xfs_inode_t *ip,
778 uint iget_flags)
779{
780 xfs_buf_t *bp;
781 xfs_dinode_t *dip;
782 int error;
783
784 /*
785 * Fill in the location information in the in-core inode.
786 */
787 error = xfs_imap(mp, tp, ip->i_ino, &ip->i_imap, iget_flags);
788 if (error)
789 return error;
790
791 /*
792 * Get pointers to the on-disk inode and the buffer containing it.
793 */
794 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp,
795 XBF_LOCK, iget_flags);
796 if (error)
797 return error;
798 dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
799
800 /*
801 * If we got something that isn't an inode it means someone
802 * (nfs or dmi) has a stale handle.
803 */
804 if (dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC)) {
805#ifdef DEBUG
806 xfs_alert(mp,
807 "%s: dip->di_magic (0x%x) != XFS_DINODE_MAGIC (0x%x)",
808 __func__, be16_to_cpu(dip->di_magic), XFS_DINODE_MAGIC);
809#endif /* DEBUG */
810 error = XFS_ERROR(EINVAL);
811 goto out_brelse;
812 }
813
814 /*
815 * If the on-disk inode is already linked to a directory
816 * entry, copy all of the inode into the in-core inode.
817 * xfs_iformat() handles copying in the inode format
818 * specific information.
819 * Otherwise, just get the truly permanent information.
820 */
821 if (dip->di_mode) {
822 xfs_dinode_from_disk(&ip->i_d, dip);
823 error = xfs_iformat(ip, dip);
824 if (error) {
825#ifdef DEBUG
826 xfs_alert(mp, "%s: xfs_iformat() returned error %d",
827 __func__, error);
828#endif /* DEBUG */
829 goto out_brelse;
830 }
831 } else {
832 ip->i_d.di_magic = be16_to_cpu(dip->di_magic);
833 ip->i_d.di_version = dip->di_version;
834 ip->i_d.di_gen = be32_to_cpu(dip->di_gen);
835 ip->i_d.di_flushiter = be16_to_cpu(dip->di_flushiter);
836 /*
837 * Make sure to pull in the mode here as well in
838 * case the inode is released without being used.
839 * This ensures that xfs_inactive() will see that
840 * the inode is already free and not try to mess
841 * with the uninitialized part of it.
842 */
843 ip->i_d.di_mode = 0;
844 /*
845 * Initialize the per-fork minima and maxima for a new
846 * inode here. xfs_iformat will do it for old inodes.
847 */
848 ip->i_df.if_ext_max =
849 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
850 }
851
852 /*
853 * The inode format changed when we moved the link count and
854 * made it 32 bits long. If this is an old format inode,
855 * convert it in memory to look like a new one. If it gets
856 * flushed to disk we will convert back before flushing or
857 * logging it. We zero out the new projid field and the old link
858 * count field. We'll handle clearing the pad field (the remains
859 * of the old uuid field) when we actually convert the inode to
860 * the new format. We don't change the version number so that we
861 * can distinguish this from a real new format inode.
862 */
863 if (ip->i_d.di_version == 1) {
864 ip->i_d.di_nlink = ip->i_d.di_onlink;
865 ip->i_d.di_onlink = 0;
866 xfs_set_projid(ip, 0);
867 }
868
869 ip->i_delayed_blks = 0;
870 ip->i_size = ip->i_d.di_size;
871
872 /*
873 * Mark the buffer containing the inode as something to keep
874 * around for a while. This helps to keep recently accessed
875 * meta-data in-core longer.
876 */
877 xfs_buf_set_ref(bp, XFS_INO_REF);
878
879 /*
880 * Use xfs_trans_brelse() to release the buffer containing the
881 * on-disk inode, because it was acquired with xfs_trans_read_buf()
882 * in xfs_itobp() above. If tp is NULL, this is just a normal
883 * brelse(). If we're within a transaction, then xfs_trans_brelse()
884 * will only release the buffer if it is not dirty within the
885 * transaction. It will be OK to release the buffer in this case,
886 * because inodes on disk are never destroyed and we will be
887 * locking the new in-core inode before putting it in the hash
888 * table where other processes can find it. Thus we don't have
889 * to worry about the inode being changed just because we released
890 * the buffer.
891 */
892 out_brelse:
893 xfs_trans_brelse(tp, bp);
894 return error;
895}
896
897/*
898 * Read in extents from a btree-format inode.
899 * Allocate and fill in if_extents. Real work is done in xfs_bmap.c.
900 */
901int
902xfs_iread_extents(
903 xfs_trans_t *tp,
904 xfs_inode_t *ip,
905 int whichfork)
906{
907 int error;
908 xfs_ifork_t *ifp;
909 xfs_extnum_t nextents;
910
911 if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) {
912 XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW,
913 ip->i_mount);
914 return XFS_ERROR(EFSCORRUPTED);
915 }
916 nextents = XFS_IFORK_NEXTENTS(ip, whichfork);
917 ifp = XFS_IFORK_PTR(ip, whichfork);
918
919 /*
920 * We know that the size is valid (it's checked in iformat_btree)
921 */
922 ifp->if_bytes = ifp->if_real_bytes = 0;
923 ifp->if_flags |= XFS_IFEXTENTS;
924 xfs_iext_add(ifp, 0, nextents);
925 error = xfs_bmap_read_extents(tp, ip, whichfork);
926 if (error) {
927 xfs_iext_destroy(ifp);
928 ifp->if_flags &= ~XFS_IFEXTENTS;
929 return error;
930 }
931 xfs_validate_extents(ifp, nextents, XFS_EXTFMT_INODE(ip));
932 return 0;
933}
934
935/*
936 * Allocate an inode on disk and return a copy of its in-core version.
937 * The in-core inode is locked exclusively. Set mode, nlink, and rdev
938 * appropriately within the inode. The uid and gid for the inode are
939 * set according to the contents of the given cred structure.
940 *
941 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
942 * has a free inode available, call xfs_iget()
943 * to obtain the in-core version of the allocated inode. Finally,
944 * fill in the inode and log its initial contents. In this case,
945 * ialloc_context would be set to NULL and call_again set to false.
946 *
947 * If xfs_dialloc() does not have an available inode,
948 * it will replenish its supply by doing an allocation. Since we can
949 * only do one allocation within a transaction without deadlocks, we
950 * must commit the current transaction before returning the inode itself.
951 * In this case, therefore, we will set call_again to true and return.
952 * The caller should then commit the current transaction, start a new
953 * transaction, and call xfs_ialloc() again to actually get the inode.
954 *
955 * To ensure that some other process does not grab the inode that
956 * was allocated during the first call to xfs_ialloc(), this routine
957 * also returns the [locked] bp pointing to the head of the freelist
958 * as ialloc_context. The caller should hold this buffer across
959 * the commit and pass it back into this routine on the second call.
960 *
961 * If we are allocating quota inodes, we do not have a parent inode
962 * to attach to or associate with (i.e. pip == NULL) because they
963 * are not linked into the directory structure - they are attached
964 * directly to the superblock - and so have no parent.
965 */
966int
967xfs_ialloc(
968 xfs_trans_t *tp,
969 xfs_inode_t *pip,
970 mode_t mode,
971 xfs_nlink_t nlink,
972 xfs_dev_t rdev,
973 prid_t prid,
974 int okalloc,
975 xfs_buf_t **ialloc_context,
976 boolean_t *call_again,
977 xfs_inode_t **ipp)
978{
979 xfs_ino_t ino;
980 xfs_inode_t *ip;
981 uint flags;
982 int error;
983 timespec_t tv;
984 int filestreams = 0;
985
986 /*
987 * Call the space management code to pick
988 * the on-disk inode to be allocated.
989 */
990 error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
991 ialloc_context, call_again, &ino);
992 if (error)
993 return error;
994 if (*call_again || ino == NULLFSINO) {
995 *ipp = NULL;
996 return 0;
997 }
998 ASSERT(*ialloc_context == NULL);
999
1000 /*
1001 * Get the in-core inode with the lock held exclusively.
1002 * This is because we're setting fields here we need
1003 * to prevent others from looking at until we're done.
1004 */
1005 error = xfs_iget(tp->t_mountp, tp, ino, XFS_IGET_CREATE,
1006 XFS_ILOCK_EXCL, &ip);
1007 if (error)
1008 return error;
1009 ASSERT(ip != NULL);
1010
1011 ip->i_d.di_mode = (__uint16_t)mode;
1012 ip->i_d.di_onlink = 0;
1013 ip->i_d.di_nlink = nlink;
1014 ASSERT(ip->i_d.di_nlink == nlink);
1015 ip->i_d.di_uid = current_fsuid();
1016 ip->i_d.di_gid = current_fsgid();
1017 xfs_set_projid(ip, prid);
1018 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
1019
1020 /*
1021 * If the superblock version is up to where we support new format
1022 * inodes and this is currently an old format inode, then change
1023 * the inode version number now. This way we only do the conversion
1024 * here rather than here and in the flush/logging code.
1025 */
1026 if (xfs_sb_version_hasnlink(&tp->t_mountp->m_sb) &&
1027 ip->i_d.di_version == 1) {
1028 ip->i_d.di_version = 2;
1029 /*
1030 * We've already zeroed the old link count, the projid field,
1031 * and the pad field.
1032 */
1033 }
1034
1035 /*
1036 * Project ids won't be stored on disk if we are using a version 1 inode.
1037 */
1038 if ((prid != 0) && (ip->i_d.di_version == 1))
1039 xfs_bump_ino_vers2(tp, ip);
1040
1041 if (pip && XFS_INHERIT_GID(pip)) {
1042 ip->i_d.di_gid = pip->i_d.di_gid;
1043 if ((pip->i_d.di_mode & S_ISGID) && S_ISDIR(mode)) {
1044 ip->i_d.di_mode |= S_ISGID;
1045 }
1046 }
1047
1048 /*
1049 * If the group ID of the new file does not match the effective group
1050 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
1051 * (and only if the irix_sgid_inherit compatibility variable is set).
1052 */
1053 if ((irix_sgid_inherit) &&
1054 (ip->i_d.di_mode & S_ISGID) &&
1055 (!in_group_p((gid_t)ip->i_d.di_gid))) {
1056 ip->i_d.di_mode &= ~S_ISGID;
1057 }
1058
1059 ip->i_d.di_size = 0;
1060 ip->i_size = 0;
1061 ip->i_d.di_nextents = 0;
1062 ASSERT(ip->i_d.di_nblocks == 0);
1063
1064 nanotime(&tv);
1065 ip->i_d.di_mtime.t_sec = (__int32_t)tv.tv_sec;
1066 ip->i_d.di_mtime.t_nsec = (__int32_t)tv.tv_nsec;
1067 ip->i_d.di_atime = ip->i_d.di_mtime;
1068 ip->i_d.di_ctime = ip->i_d.di_mtime;
1069
1070 /*
1071 * di_gen will have been taken care of in xfs_iread.
1072 */
1073 ip->i_d.di_extsize = 0;
1074 ip->i_d.di_dmevmask = 0;
1075 ip->i_d.di_dmstate = 0;
1076 ip->i_d.di_flags = 0;
1077 flags = XFS_ILOG_CORE;
1078 switch (mode & S_IFMT) {
1079 case S_IFIFO:
1080 case S_IFCHR:
1081 case S_IFBLK:
1082 case S_IFSOCK:
1083 ip->i_d.di_format = XFS_DINODE_FMT_DEV;
1084 ip->i_df.if_u2.if_rdev = rdev;
1085 ip->i_df.if_flags = 0;
1086 flags |= XFS_ILOG_DEV;
1087 break;
1088 case S_IFREG:
1089 /*
1090 * we can't set up filestreams until after the VFS inode
1091 * is set up properly.
1092 */
1093 if (pip && xfs_inode_is_filestream(pip))
1094 filestreams = 1;
1095 /* fall through */
1096 case S_IFDIR:
1097 if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
1098 uint di_flags = 0;
1099
1100 if (S_ISDIR(mode)) {
1101 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
1102 di_flags |= XFS_DIFLAG_RTINHERIT;
1103 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1104 di_flags |= XFS_DIFLAG_EXTSZINHERIT;
1105 ip->i_d.di_extsize = pip->i_d.di_extsize;
1106 }
1107 } else if (S_ISREG(mode)) {
1108 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
1109 di_flags |= XFS_DIFLAG_REALTIME;
1110 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1111 di_flags |= XFS_DIFLAG_EXTSIZE;
1112 ip->i_d.di_extsize = pip->i_d.di_extsize;
1113 }
1114 }
1115 if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
1116 xfs_inherit_noatime)
1117 di_flags |= XFS_DIFLAG_NOATIME;
1118 if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
1119 xfs_inherit_nodump)
1120 di_flags |= XFS_DIFLAG_NODUMP;
1121 if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
1122 xfs_inherit_sync)
1123 di_flags |= XFS_DIFLAG_SYNC;
1124 if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
1125 xfs_inherit_nosymlinks)
1126 di_flags |= XFS_DIFLAG_NOSYMLINKS;
1127 if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
1128 di_flags |= XFS_DIFLAG_PROJINHERIT;
1129 if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
1130 xfs_inherit_nodefrag)
1131 di_flags |= XFS_DIFLAG_NODEFRAG;
1132 if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
1133 di_flags |= XFS_DIFLAG_FILESTREAM;
1134 ip->i_d.di_flags |= di_flags;
1135 }
1136 /* FALLTHROUGH */
1137 case S_IFLNK:
1138 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
1139 ip->i_df.if_flags = XFS_IFEXTENTS;
1140 ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
1141 ip->i_df.if_u1.if_extents = NULL;
1142 break;
1143 default:
1144 ASSERT(0);
1145 }
1146 /*
1147 * Attribute fork settings for new inode.
1148 */
1149 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
1150 ip->i_d.di_anextents = 0;
1151
1152 /*
1153 * Log the new values stuffed into the inode.
1154 */
1155 xfs_trans_ijoin_ref(tp, ip, XFS_ILOCK_EXCL);
1156 xfs_trans_log_inode(tp, ip, flags);
1157
1158 /* now that we have an i_mode we can setup inode ops and unlock */
1159 xfs_setup_inode(ip);
1160
1161 /* now we have set up the vfs inode we can associate the filestream */
1162 if (filestreams) {
1163 error = xfs_filestream_associate(pip, ip);
1164 if (error < 0)
1165 return -error;
1166 if (!error)
1167 xfs_iflags_set(ip, XFS_IFILESTREAM);
1168 }
1169
1170 *ipp = ip;
1171 return 0;
1172}
1173
1174/*
1175 * Check to make sure that there are no blocks allocated to the
1176 * file beyond the size of the file. We don't check this for
1177 * files with fixed size extents or real time extents, but we
1178 * at least do it for regular files.
1179 */
1180#ifdef DEBUG
1181STATIC void
1182xfs_isize_check(
1183 struct xfs_inode *ip,
1184 xfs_fsize_t isize)
1185{
1186 struct xfs_mount *mp = ip->i_mount;
1187 xfs_fileoff_t map_first;
1188 int nimaps;
1189 xfs_bmbt_irec_t imaps[2];
1190
1191 if (!S_ISREG(ip->i_d.di_mode))
1192 return;
1193
1194 if (XFS_IS_REALTIME_INODE(ip))
1195 return;
1196
1197 if (ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE)
1198 return;
1199
1200 nimaps = 2;
1201 map_first = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
1202 /*
1203 * The filesystem could be shutting down, so bmapi may return
1204 * an error.
1205 */
1206 if (xfs_bmapi(NULL, ip, map_first,
1207 (XFS_B_TO_FSB(mp,
1208 (xfs_ufsize_t)XFS_MAXIOFFSET(mp)) -
1209 map_first),
1210 XFS_BMAPI_ENTIRE, NULL, 0, imaps, &nimaps,
1211 NULL))
1212 return;
1213 ASSERT(nimaps == 1);
1214 ASSERT(imaps[0].br_startblock == HOLESTARTBLOCK);
1215}
1216#else /* DEBUG */
1217#define xfs_isize_check(ip, isize)
1218#endif /* DEBUG */
1219
1220/*
1221 * Free up the underlying blocks past new_size. The new size must be smaller
1222 * than the current size. This routine can be used both for the attribute and
1223 * data fork, and does not modify the inode size, which is left to the caller.
1224 *
1225 * The transaction passed to this routine must have made a permanent log
1226 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the
1227 * given transaction and start new ones, so make sure everything involved in
1228 * the transaction is tidy before calling here. Some transaction will be
1229 * returned to the caller to be committed. The incoming transaction must
1230 * already include the inode, and both inode locks must be held exclusively.
1231 * The inode must also be "held" within the transaction. On return the inode
1232 * will be "held" within the returned transaction. This routine does NOT
1233 * require any disk space to be reserved for it within the transaction.
1234 *
1235 * If we get an error, we must return with the inode locked and linked into the
1236 * current transaction. This keeps things simple for the higher level code,
1237 * because it always knows that the inode is locked and held in the transaction
1238 * that returns to it whether errors occur or not. We don't mark the inode
1239 * dirty on error so that transactions can be easily aborted if possible.
1240 */
1241int
1242xfs_itruncate_extents(
1243 struct xfs_trans **tpp,
1244 struct xfs_inode *ip,
1245 int whichfork,
1246 xfs_fsize_t new_size)
1247{
1248 struct xfs_mount *mp = ip->i_mount;
1249 struct xfs_trans *tp = *tpp;
1250 struct xfs_trans *ntp;
1251 xfs_bmap_free_t free_list;
1252 xfs_fsblock_t first_block;
1253 xfs_fileoff_t first_unmap_block;
1254 xfs_fileoff_t last_block;
1255 xfs_filblks_t unmap_len;
1256 int committed;
1257 int error = 0;
1258 int done = 0;
1259
1260 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_IOLOCK_EXCL));
1261 ASSERT(new_size <= ip->i_size);
1262 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1263 ASSERT(ip->i_itemp != NULL);
1264 ASSERT(ip->i_itemp->ili_lock_flags == 0);
1265 ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
1266
1267 /*
1268 * Since it is possible for space to become allocated beyond
1269 * the end of the file (in a crash where the space is allocated
1270 * but the inode size is not yet updated), simply remove any
1271 * blocks which show up between the new EOF and the maximum
1272 * possible file size. If the first block to be removed is
1273 * beyond the maximum file size (ie it is the same as last_block),
1274 * then there is nothing to do.
1275 */
1276 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1277 last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_MAXIOFFSET(mp));
1278 if (first_unmap_block == last_block)
1279 return 0;
1280
1281 ASSERT(first_unmap_block < last_block);
1282 unmap_len = last_block - first_unmap_block + 1;
1283 while (!done) {
1284 xfs_bmap_init(&free_list, &first_block);
1285 error = xfs_bunmapi(tp, ip,
1286 first_unmap_block, unmap_len,
1287 xfs_bmapi_aflag(whichfork),
1288 XFS_ITRUNC_MAX_EXTENTS,
1289 &first_block, &free_list,
1290 &done);
1291 if (error)
1292 goto out_bmap_cancel;
1293
1294 /*
1295 * Duplicate the transaction that has the permanent
1296 * reservation and commit the old transaction.
1297 */
1298 error = xfs_bmap_finish(&tp, &free_list, &committed);
1299 if (committed)
1300 xfs_trans_ijoin(tp, ip);
1301 if (error)
1302 goto out_bmap_cancel;
1303
1304 if (committed) {
1305 /*
1306 * Mark the inode dirty so it will be logged and
1307 * moved forward in the log as part of every commit.
1308 */
1309 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1310 }
1311
1312 ntp = xfs_trans_dup(tp);
1313 error = xfs_trans_commit(tp, 0);
1314 tp = ntp;
1315
1316 xfs_trans_ijoin(tp, ip);
1317
1318 if (error)
1319 goto out;
1320
1321 /*
1322 * Transaction commit worked ok so we can drop the extra ticket
1323 * reference that we gained in xfs_trans_dup()
1324 */
1325 xfs_log_ticket_put(tp->t_ticket);
1326 error = xfs_trans_reserve(tp, 0,
1327 XFS_ITRUNCATE_LOG_RES(mp), 0,
1328 XFS_TRANS_PERM_LOG_RES,
1329 XFS_ITRUNCATE_LOG_COUNT);
1330 if (error)
1331 goto out;
1332 }
1333
1334out:
1335 *tpp = tp;
1336 return error;
1337out_bmap_cancel:
1338 /*
1339 * If the bunmapi call encounters an error, return to the caller where
1340 * the transaction can be properly aborted. We just need to make sure
1341 * we're not holding any resources that we were not when we came in.
1342 */
1343 xfs_bmap_cancel(&free_list);
1344 goto out;
1345}
1346
1347int
1348xfs_itruncate_data(
1349 struct xfs_trans **tpp,
1350 struct xfs_inode *ip,
1351 xfs_fsize_t new_size)
1352{
1353 int error;
1354
1355 trace_xfs_itruncate_data_start(ip, new_size);
1356
1357 /*
1358 * The first thing we do is set the size to new_size permanently on
1359 * disk. This way we don't have to worry about anyone ever being able
1360 * to look at the data being freed even in the face of a crash.
1361 * What we're getting around here is the case where we free a block, it
1362 * is allocated to another file, it is written to, and then we crash.
1363 * If the new data gets written to the file but the log buffers
1364 * containing the free and reallocation don't, then we'd end up with
1365 * garbage in the blocks being freed. As long as we make the new_size
1366 * permanent before actually freeing any blocks it doesn't matter if
1367 * they get written to.
1368 */
1369 if (ip->i_d.di_nextents > 0) {
1370 /*
1371 * If we are not changing the file size then do not update
1372 * the on-disk file size - we may be called from
1373 * xfs_inactive_free_eofblocks(). If we update the on-disk
1374 * file size and then the system crashes before the contents
1375 * of the file are flushed to disk then the files may be
1376 * full of holes (ie NULL files bug).
1377 */
1378 if (ip->i_size != new_size) {
1379 ip->i_d.di_size = new_size;
1380 ip->i_size = new_size;
1381 xfs_trans_log_inode(*tpp, ip, XFS_ILOG_CORE);
1382 }
1383 }
1384
1385 error = xfs_itruncate_extents(tpp, ip, XFS_DATA_FORK, new_size);
1386 if (error)
1387 return error;
1388
1389 /*
1390 * If we are not changing the file size then do not update the on-disk
1391 * file size - we may be called from xfs_inactive_free_eofblocks().
1392 * If we update the on-disk file size and then the system crashes
1393 * before the contents of the file are flushed to disk then the files
1394 * may be full of holes (ie NULL files bug).
1395 */
1396 xfs_isize_check(ip, new_size);
1397 if (ip->i_size != new_size) {
1398 ip->i_d.di_size = new_size;
1399 ip->i_size = new_size;
1400 }
1401
1402 ASSERT(new_size != 0 || ip->i_delayed_blks == 0);
1403 ASSERT(new_size != 0 || ip->i_d.di_nextents == 0);
1404
1405 /*
1406 * Always re-log the inode so that our permanent transaction can keep
1407 * on rolling it forward in the log.
1408 */
1409 xfs_trans_log_inode(*tpp, ip, XFS_ILOG_CORE);
1410
1411 trace_xfs_itruncate_data_end(ip, new_size);
1412 return 0;
1413}
1414
1415/*
1416 * This is called when the inode's link count goes to 0.
1417 * We place the on-disk inode on a list in the AGI. It
1418 * will be pulled from this list when the inode is freed.
1419 */
1420int
1421xfs_iunlink(
1422 xfs_trans_t *tp,
1423 xfs_inode_t *ip)
1424{
1425 xfs_mount_t *mp;
1426 xfs_agi_t *agi;
1427 xfs_dinode_t *dip;
1428 xfs_buf_t *agibp;
1429 xfs_buf_t *ibp;
1430 xfs_agino_t agino;
1431 short bucket_index;
1432 int offset;
1433 int error;
1434
1435 ASSERT(ip->i_d.di_nlink == 0);
1436 ASSERT(ip->i_d.di_mode != 0);
1437
1438 mp = tp->t_mountp;
1439
1440 /*
1441 * Get the agi buffer first. It ensures lock ordering
1442 * on the list.
1443 */
1444 error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp);
1445 if (error)
1446 return error;
1447 agi = XFS_BUF_TO_AGI(agibp);
1448
1449 /*
1450 * Get the index into the agi hash table for the
1451 * list this inode will go on.
1452 */
1453 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1454 ASSERT(agino != 0);
1455 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1456 ASSERT(agi->agi_unlinked[bucket_index]);
1457 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
1458
1459 if (agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO)) {
1460 /*
1461 * There is already another inode in the bucket we need
1462 * to add ourselves to. Add us at the front of the list.
1463 * Here we put the head pointer into our next pointer,
1464 * and then we fall through to point the head at us.
1465 */
1466 error = xfs_itobp(mp, tp, ip, &dip, &ibp, XBF_LOCK);
1467 if (error)
1468 return error;
1469
1470 ASSERT(dip->di_next_unlinked == cpu_to_be32(NULLAGINO));
1471 dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
1472 offset = ip->i_imap.im_boffset +
1473 offsetof(xfs_dinode_t, di_next_unlinked);
1474 xfs_trans_inode_buf(tp, ibp);
1475 xfs_trans_log_buf(tp, ibp, offset,
1476 (offset + sizeof(xfs_agino_t) - 1));
1477 xfs_inobp_check(mp, ibp);
1478 }
1479
1480 /*
1481 * Point the bucket head pointer at the inode being inserted.
1482 */
1483 ASSERT(agino != 0);
1484 agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
1485 offset = offsetof(xfs_agi_t, agi_unlinked) +
1486 (sizeof(xfs_agino_t) * bucket_index);
1487 xfs_trans_log_buf(tp, agibp, offset,
1488 (offset + sizeof(xfs_agino_t) - 1));
1489 return 0;
1490}
1491
1492/*
1493 * Pull the on-disk inode from the AGI unlinked list.
1494 */
1495STATIC int
1496xfs_iunlink_remove(
1497 xfs_trans_t *tp,
1498 xfs_inode_t *ip)
1499{
1500 xfs_ino_t next_ino;
1501 xfs_mount_t *mp;
1502 xfs_agi_t *agi;
1503 xfs_dinode_t *dip;
1504 xfs_buf_t *agibp;
1505 xfs_buf_t *ibp;
1506 xfs_agnumber_t agno;
1507 xfs_agino_t agino;
1508 xfs_agino_t next_agino;
1509 xfs_buf_t *last_ibp;
1510 xfs_dinode_t *last_dip = NULL;
1511 short bucket_index;
1512 int offset, last_offset = 0;
1513 int error;
1514
1515 mp = tp->t_mountp;
1516 agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
1517
1518 /*
1519 * Get the agi buffer first. It ensures lock ordering
1520 * on the list.
1521 */
1522 error = xfs_read_agi(mp, tp, agno, &agibp);
1523 if (error)
1524 return error;
1525
1526 agi = XFS_BUF_TO_AGI(agibp);
1527
1528 /*
1529 * Get the index into the agi hash table for the
1530 * list this inode will go on.
1531 */
1532 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1533 ASSERT(agino != 0);
1534 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1535 ASSERT(agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO));
1536 ASSERT(agi->agi_unlinked[bucket_index]);
1537
1538 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
1539 /*
1540 * We're at the head of the list. Get the inode's
1541 * on-disk buffer to see if there is anyone after us
1542 * on the list. Only modify our next pointer if it
1543 * is not already NULLAGINO. This saves us the overhead
1544 * of dealing with the buffer when there is no need to
1545 * change it.
1546 */
1547 error = xfs_itobp(mp, tp, ip, &dip, &ibp, XBF_LOCK);
1548 if (error) {
1549 xfs_warn(mp, "%s: xfs_itobp() returned error %d.",
1550 __func__, error);
1551 return error;
1552 }
1553 next_agino = be32_to_cpu(dip->di_next_unlinked);
1554 ASSERT(next_agino != 0);
1555 if (next_agino != NULLAGINO) {
1556 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
1557 offset = ip->i_imap.im_boffset +
1558 offsetof(xfs_dinode_t, di_next_unlinked);
1559 xfs_trans_inode_buf(tp, ibp);
1560 xfs_trans_log_buf(tp, ibp, offset,
1561 (offset + sizeof(xfs_agino_t) - 1));
1562 xfs_inobp_check(mp, ibp);
1563 } else {
1564 xfs_trans_brelse(tp, ibp);
1565 }
1566 /*
1567 * Point the bucket head pointer at the next inode.
1568 */
1569 ASSERT(next_agino != 0);
1570 ASSERT(next_agino != agino);
1571 agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
1572 offset = offsetof(xfs_agi_t, agi_unlinked) +
1573 (sizeof(xfs_agino_t) * bucket_index);
1574 xfs_trans_log_buf(tp, agibp, offset,
1575 (offset + sizeof(xfs_agino_t) - 1));
1576 } else {
1577 /*
1578 * We need to search the list for the inode being freed.
1579 */
1580 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
1581 last_ibp = NULL;
1582 while (next_agino != agino) {
1583 /*
1584 * If the last inode wasn't the one pointing to
1585 * us, then release its buffer since we're not
1586 * going to do anything with it.
1587 */
1588 if (last_ibp != NULL) {
1589 xfs_trans_brelse(tp, last_ibp);
1590 }
1591 next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
1592 error = xfs_inotobp(mp, tp, next_ino, &last_dip,
1593 &last_ibp, &last_offset, 0);
1594 if (error) {
1595 xfs_warn(mp,
1596 "%s: xfs_inotobp() returned error %d.",
1597 __func__, error);
1598 return error;
1599 }
1600 next_agino = be32_to_cpu(last_dip->di_next_unlinked);
1601 ASSERT(next_agino != NULLAGINO);
1602 ASSERT(next_agino != 0);
1603 }
1604 /*
1605 * Now last_ibp points to the buffer previous to us on
1606 * the unlinked list. Pull us from the list.
1607 */
1608 error = xfs_itobp(mp, tp, ip, &dip, &ibp, XBF_LOCK);
1609 if (error) {
1610 xfs_warn(mp, "%s: xfs_itobp(2) returned error %d.",
1611 __func__, error);
1612 return error;
1613 }
1614 next_agino = be32_to_cpu(dip->di_next_unlinked);
1615 ASSERT(next_agino != 0);
1616 ASSERT(next_agino != agino);
1617 if (next_agino != NULLAGINO) {
1618 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
1619 offset = ip->i_imap.im_boffset +
1620 offsetof(xfs_dinode_t, di_next_unlinked);
1621 xfs_trans_inode_buf(tp, ibp);
1622 xfs_trans_log_buf(tp, ibp, offset,
1623 (offset + sizeof(xfs_agino_t) - 1));
1624 xfs_inobp_check(mp, ibp);
1625 } else {
1626 xfs_trans_brelse(tp, ibp);
1627 }
1628 /*
1629 * Point the previous inode on the list to the next inode.
1630 */
1631 last_dip->di_next_unlinked = cpu_to_be32(next_agino);
1632 ASSERT(next_agino != 0);
1633 offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
1634 xfs_trans_inode_buf(tp, last_ibp);
1635 xfs_trans_log_buf(tp, last_ibp, offset,
1636 (offset + sizeof(xfs_agino_t) - 1));
1637 xfs_inobp_check(mp, last_ibp);
1638 }
1639 return 0;
1640}
1641
1642/*
1643 * A big issue when freeing the inode cluster is is that we _cannot_ skip any
1644 * inodes that are in memory - they all must be marked stale and attached to
1645 * the cluster buffer.
1646 */
1647STATIC void
1648xfs_ifree_cluster(
1649 xfs_inode_t *free_ip,
1650 xfs_trans_t *tp,
1651 xfs_ino_t inum)
1652{
1653 xfs_mount_t *mp = free_ip->i_mount;
1654 int blks_per_cluster;
1655 int nbufs;
1656 int ninodes;
1657 int i, j;
1658 xfs_daddr_t blkno;
1659 xfs_buf_t *bp;
1660 xfs_inode_t *ip;
1661 xfs_inode_log_item_t *iip;
1662 xfs_log_item_t *lip;
1663 struct xfs_perag *pag;
1664
1665 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum));
1666 if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) {
1667 blks_per_cluster = 1;
1668 ninodes = mp->m_sb.sb_inopblock;
1669 nbufs = XFS_IALLOC_BLOCKS(mp);
1670 } else {
1671 blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) /
1672 mp->m_sb.sb_blocksize;
1673 ninodes = blks_per_cluster * mp->m_sb.sb_inopblock;
1674 nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster;
1675 }
1676
1677 for (j = 0; j < nbufs; j++, inum += ninodes) {
1678 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
1679 XFS_INO_TO_AGBNO(mp, inum));
1680
1681 /*
1682 * We obtain and lock the backing buffer first in the process
1683 * here, as we have to ensure that any dirty inode that we
1684 * can't get the flush lock on is attached to the buffer.
1685 * If we scan the in-memory inodes first, then buffer IO can
1686 * complete before we get a lock on it, and hence we may fail
1687 * to mark all the active inodes on the buffer stale.
1688 */
1689 bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
1690 mp->m_bsize * blks_per_cluster,
1691 XBF_LOCK);
1692
1693 /*
1694 * Walk the inodes already attached to the buffer and mark them
1695 * stale. These will all have the flush locks held, so an
1696 * in-memory inode walk can't lock them. By marking them all
1697 * stale first, we will not attempt to lock them in the loop
1698 * below as the XFS_ISTALE flag will be set.
1699 */
1700 lip = bp->b_fspriv;
1701 while (lip) {
1702 if (lip->li_type == XFS_LI_INODE) {
1703 iip = (xfs_inode_log_item_t *)lip;
1704 ASSERT(iip->ili_logged == 1);
1705 lip->li_cb = xfs_istale_done;
1706 xfs_trans_ail_copy_lsn(mp->m_ail,
1707 &iip->ili_flush_lsn,
1708 &iip->ili_item.li_lsn);
1709 xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
1710 }
1711 lip = lip->li_bio_list;
1712 }
1713
1714
1715 /*
1716 * For each inode in memory attempt to add it to the inode
1717 * buffer and set it up for being staled on buffer IO
1718 * completion. This is safe as we've locked out tail pushing
1719 * and flushing by locking the buffer.
1720 *
1721 * We have already marked every inode that was part of a
1722 * transaction stale above, which means there is no point in
1723 * even trying to lock them.
1724 */
1725 for (i = 0; i < ninodes; i++) {
1726retry:
1727 rcu_read_lock();
1728 ip = radix_tree_lookup(&pag->pag_ici_root,
1729 XFS_INO_TO_AGINO(mp, (inum + i)));
1730
1731 /* Inode not in memory, nothing to do */
1732 if (!ip) {
1733 rcu_read_unlock();
1734 continue;
1735 }
1736
1737 /*
1738 * because this is an RCU protected lookup, we could
1739 * find a recently freed or even reallocated inode
1740 * during the lookup. We need to check under the
1741 * i_flags_lock for a valid inode here. Skip it if it
1742 * is not valid, the wrong inode or stale.
1743 */
1744 spin_lock(&ip->i_flags_lock);
1745 if (ip->i_ino != inum + i ||
1746 __xfs_iflags_test(ip, XFS_ISTALE)) {
1747 spin_unlock(&ip->i_flags_lock);
1748 rcu_read_unlock();
1749 continue;
1750 }
1751 spin_unlock(&ip->i_flags_lock);
1752
1753 /*
1754 * Don't try to lock/unlock the current inode, but we
1755 * _cannot_ skip the other inodes that we did not find
1756 * in the list attached to the buffer and are not
1757 * already marked stale. If we can't lock it, back off
1758 * and retry.
1759 */
1760 if (ip != free_ip &&
1761 !xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
1762 rcu_read_unlock();
1763 delay(1);
1764 goto retry;
1765 }
1766 rcu_read_unlock();
1767
1768 xfs_iflock(ip);
1769 xfs_iflags_set(ip, XFS_ISTALE);
1770
1771 /*
1772 * we don't need to attach clean inodes or those only
1773 * with unlogged changes (which we throw away, anyway).
1774 */
1775 iip = ip->i_itemp;
1776 if (!iip || xfs_inode_clean(ip)) {
1777 ASSERT(ip != free_ip);
1778 ip->i_update_core = 0;
1779 xfs_ifunlock(ip);
1780 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1781 continue;
1782 }
1783
1784 iip->ili_last_fields = iip->ili_format.ilf_fields;
1785 iip->ili_format.ilf_fields = 0;
1786 iip->ili_logged = 1;
1787 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
1788 &iip->ili_item.li_lsn);
1789
1790 xfs_buf_attach_iodone(bp, xfs_istale_done,
1791 &iip->ili_item);
1792
1793 if (ip != free_ip)
1794 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1795 }
1796
1797 xfs_trans_stale_inode_buf(tp, bp);
1798 xfs_trans_binval(tp, bp);
1799 }
1800
1801 xfs_perag_put(pag);
1802}
1803
1804/*
1805 * This is called to return an inode to the inode free list.
1806 * The inode should already be truncated to 0 length and have
1807 * no pages associated with it. This routine also assumes that
1808 * the inode is already a part of the transaction.
1809 *
1810 * The on-disk copy of the inode will have been added to the list
1811 * of unlinked inodes in the AGI. We need to remove the inode from
1812 * that list atomically with respect to freeing it here.
1813 */
1814int
1815xfs_ifree(
1816 xfs_trans_t *tp,
1817 xfs_inode_t *ip,
1818 xfs_bmap_free_t *flist)
1819{
1820 int error;
1821 int delete;
1822 xfs_ino_t first_ino;
1823 xfs_dinode_t *dip;
1824 xfs_buf_t *ibp;
1825
1826 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1827 ASSERT(ip->i_d.di_nlink == 0);
1828 ASSERT(ip->i_d.di_nextents == 0);
1829 ASSERT(ip->i_d.di_anextents == 0);
1830 ASSERT((ip->i_d.di_size == 0 && ip->i_size == 0) ||
1831 (!S_ISREG(ip->i_d.di_mode)));
1832 ASSERT(ip->i_d.di_nblocks == 0);
1833
1834 /*
1835 * Pull the on-disk inode from the AGI unlinked list.
1836 */
1837 error = xfs_iunlink_remove(tp, ip);
1838 if (error != 0) {
1839 return error;
1840 }
1841
1842 error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
1843 if (error != 0) {
1844 return error;
1845 }
1846 ip->i_d.di_mode = 0; /* mark incore inode as free */
1847 ip->i_d.di_flags = 0;
1848 ip->i_d.di_dmevmask = 0;
1849 ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */
1850 ip->i_df.if_ext_max =
1851 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
1852 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
1853 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
1854 /*
1855 * Bump the generation count so no one will be confused
1856 * by reincarnations of this inode.
1857 */
1858 ip->i_d.di_gen++;
1859
1860 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1861
1862 error = xfs_itobp(ip->i_mount, tp, ip, &dip, &ibp, XBF_LOCK);
1863 if (error)
1864 return error;
1865
1866 /*
1867 * Clear the on-disk di_mode. This is to prevent xfs_bulkstat
1868 * from picking up this inode when it is reclaimed (its incore state
1869 * initialzed but not flushed to disk yet). The in-core di_mode is
1870 * already cleared and a corresponding transaction logged.
1871 * The hack here just synchronizes the in-core to on-disk
1872 * di_mode value in advance before the actual inode sync to disk.
1873 * This is OK because the inode is already unlinked and would never
1874 * change its di_mode again for this inode generation.
1875 * This is a temporary hack that would require a proper fix
1876 * in the future.
1877 */
1878 dip->di_mode = 0;
1879
1880 if (delete) {
1881 xfs_ifree_cluster(ip, tp, first_ino);
1882 }
1883
1884 return 0;
1885}
1886
1887/*
1888 * Reallocate the space for if_broot based on the number of records
1889 * being added or deleted as indicated in rec_diff. Move the records
1890 * and pointers in if_broot to fit the new size. When shrinking this
1891 * will eliminate holes between the records and pointers created by
1892 * the caller. When growing this will create holes to be filled in
1893 * by the caller.
1894 *
1895 * The caller must not request to add more records than would fit in
1896 * the on-disk inode root. If the if_broot is currently NULL, then
1897 * if we adding records one will be allocated. The caller must also
1898 * not request that the number of records go below zero, although
1899 * it can go to zero.
1900 *
1901 * ip -- the inode whose if_broot area is changing
1902 * ext_diff -- the change in the number of records, positive or negative,
1903 * requested for the if_broot array.
1904 */
1905void
1906xfs_iroot_realloc(
1907 xfs_inode_t *ip,
1908 int rec_diff,
1909 int whichfork)
1910{
1911 struct xfs_mount *mp = ip->i_mount;
1912 int cur_max;
1913 xfs_ifork_t *ifp;
1914 struct xfs_btree_block *new_broot;
1915 int new_max;
1916 size_t new_size;
1917 char *np;
1918 char *op;
1919
1920 /*
1921 * Handle the degenerate case quietly.
1922 */
1923 if (rec_diff == 0) {
1924 return;
1925 }
1926
1927 ifp = XFS_IFORK_PTR(ip, whichfork);
1928 if (rec_diff > 0) {
1929 /*
1930 * If there wasn't any memory allocated before, just
1931 * allocate it now and get out.
1932 */
1933 if (ifp->if_broot_bytes == 0) {
1934 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff);
1935 ifp->if_broot = kmem_alloc(new_size, KM_SLEEP | KM_NOFS);
1936 ifp->if_broot_bytes = (int)new_size;
1937 return;
1938 }
1939
1940 /*
1941 * If there is already an existing if_broot, then we need
1942 * to realloc() it and shift the pointers to their new
1943 * location. The records don't change location because
1944 * they are kept butted up against the btree block header.
1945 */
1946 cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
1947 new_max = cur_max + rec_diff;
1948 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
1949 ifp->if_broot = kmem_realloc(ifp->if_broot, new_size,
1950 (size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max), /* old size */
1951 KM_SLEEP | KM_NOFS);
1952 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
1953 ifp->if_broot_bytes);
1954 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
1955 (int)new_size);
1956 ifp->if_broot_bytes = (int)new_size;
1957 ASSERT(ifp->if_broot_bytes <=
1958 XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
1959 memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t));
1960 return;
1961 }
1962
1963 /*
1964 * rec_diff is less than 0. In this case, we are shrinking the
1965 * if_broot buffer. It must already exist. If we go to zero
1966 * records, just get rid of the root and clear the status bit.
1967 */
1968 ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0));
1969 cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
1970 new_max = cur_max + rec_diff;
1971 ASSERT(new_max >= 0);
1972 if (new_max > 0)
1973 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
1974 else
1975 new_size = 0;
1976 if (new_size > 0) {
1977 new_broot = kmem_alloc(new_size, KM_SLEEP | KM_NOFS);
1978 /*
1979 * First copy over the btree block header.
1980 */
1981 memcpy(new_broot, ifp->if_broot, XFS_BTREE_LBLOCK_LEN);
1982 } else {
1983 new_broot = NULL;
1984 ifp->if_flags &= ~XFS_IFBROOT;
1985 }
1986
1987 /*
1988 * Only copy the records and pointers if there are any.
1989 */
1990 if (new_max > 0) {
1991 /*
1992 * First copy the records.
1993 */
1994 op = (char *)XFS_BMBT_REC_ADDR(mp, ifp->if_broot, 1);
1995 np = (char *)XFS_BMBT_REC_ADDR(mp, new_broot, 1);
1996 memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t));
1997
1998 /*
1999 * Then copy the pointers.
2000 */
2001 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
2002 ifp->if_broot_bytes);
2003 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, new_broot, 1,
2004 (int)new_size);
2005 memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t));
2006 }
2007 kmem_free(ifp->if_broot);
2008 ifp->if_broot = new_broot;
2009 ifp->if_broot_bytes = (int)new_size;
2010 ASSERT(ifp->if_broot_bytes <=
2011 XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
2012 return;
2013}
2014
2015
2016/*
2017 * This is called when the amount of space needed for if_data
2018 * is increased or decreased. The change in size is indicated by
2019 * the number of bytes that need to be added or deleted in the
2020 * byte_diff parameter.
2021 *
2022 * If the amount of space needed has decreased below the size of the
2023 * inline buffer, then switch to using the inline buffer. Otherwise,
2024 * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
2025 * to what is needed.
2026 *
2027 * ip -- the inode whose if_data area is changing
2028 * byte_diff -- the change in the number of bytes, positive or negative,
2029 * requested for the if_data array.
2030 */
2031void
2032xfs_idata_realloc(
2033 xfs_inode_t *ip,
2034 int byte_diff,
2035 int whichfork)
2036{
2037 xfs_ifork_t *ifp;
2038 int new_size;
2039 int real_size;
2040
2041 if (byte_diff == 0) {
2042 return;
2043 }
2044
2045 ifp = XFS_IFORK_PTR(ip, whichfork);
2046 new_size = (int)ifp->if_bytes + byte_diff;
2047 ASSERT(new_size >= 0);
2048
2049 if (new_size == 0) {
2050 if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2051 kmem_free(ifp->if_u1.if_data);
2052 }
2053 ifp->if_u1.if_data = NULL;
2054 real_size = 0;
2055 } else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) {
2056 /*
2057 * If the valid extents/data can fit in if_inline_ext/data,
2058 * copy them from the malloc'd vector and free it.
2059 */
2060 if (ifp->if_u1.if_data == NULL) {
2061 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2062 } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2063 ASSERT(ifp->if_real_bytes != 0);
2064 memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data,
2065 new_size);
2066 kmem_free(ifp->if_u1.if_data);
2067 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2068 }
2069 real_size = 0;
2070 } else {
2071 /*
2072 * Stuck with malloc/realloc.
2073 * For inline data, the underlying buffer must be
2074 * a multiple of 4 bytes in size so that it can be
2075 * logged and stay on word boundaries. We enforce
2076 * that here.
2077 */
2078 real_size = roundup(new_size, 4);
2079 if (ifp->if_u1.if_data == NULL) {
2080 ASSERT(ifp->if_real_bytes == 0);
2081 ifp->if_u1.if_data = kmem_alloc(real_size,
2082 KM_SLEEP | KM_NOFS);
2083 } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2084 /*
2085 * Only do the realloc if the underlying size
2086 * is really changing.
2087 */
2088 if (ifp->if_real_bytes != real_size) {
2089 ifp->if_u1.if_data =
2090 kmem_realloc(ifp->if_u1.if_data,
2091 real_size,
2092 ifp->if_real_bytes,
2093 KM_SLEEP | KM_NOFS);
2094 }
2095 } else {
2096 ASSERT(ifp->if_real_bytes == 0);
2097 ifp->if_u1.if_data = kmem_alloc(real_size,
2098 KM_SLEEP | KM_NOFS);
2099 memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data,
2100 ifp->if_bytes);
2101 }
2102 }
2103 ifp->if_real_bytes = real_size;
2104 ifp->if_bytes = new_size;
2105 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2106}
2107
2108void
2109xfs_idestroy_fork(
2110 xfs_inode_t *ip,
2111 int whichfork)
2112{
2113 xfs_ifork_t *ifp;
2114
2115 ifp = XFS_IFORK_PTR(ip, whichfork);
2116 if (ifp->if_broot != NULL) {
2117 kmem_free(ifp->if_broot);
2118 ifp->if_broot = NULL;
2119 }
2120
2121 /*
2122 * If the format is local, then we can't have an extents
2123 * array so just look for an inline data array. If we're
2124 * not local then we may or may not have an extents list,
2125 * so check and free it up if we do.
2126 */
2127 if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) {
2128 if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) &&
2129 (ifp->if_u1.if_data != NULL)) {
2130 ASSERT(ifp->if_real_bytes != 0);
2131 kmem_free(ifp->if_u1.if_data);
2132 ifp->if_u1.if_data = NULL;
2133 ifp->if_real_bytes = 0;
2134 }
2135 } else if ((ifp->if_flags & XFS_IFEXTENTS) &&
2136 ((ifp->if_flags & XFS_IFEXTIREC) ||
2137 ((ifp->if_u1.if_extents != NULL) &&
2138 (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)))) {
2139 ASSERT(ifp->if_real_bytes != 0);
2140 xfs_iext_destroy(ifp);
2141 }
2142 ASSERT(ifp->if_u1.if_extents == NULL ||
2143 ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext);
2144 ASSERT(ifp->if_real_bytes == 0);
2145 if (whichfork == XFS_ATTR_FORK) {
2146 kmem_zone_free(xfs_ifork_zone, ip->i_afp);
2147 ip->i_afp = NULL;
2148 }
2149}
2150
2151/*
2152 * This is called to unpin an inode. The caller must have the inode locked
2153 * in at least shared mode so that the buffer cannot be subsequently pinned
2154 * once someone is waiting for it to be unpinned.
2155 */
2156static void
2157xfs_iunpin_nowait(
2158 struct xfs_inode *ip)
2159{
2160 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2161
2162 trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
2163
2164 /* Give the log a push to start the unpinning I/O */
2165 xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0);
2166
2167}
2168
2169void
2170xfs_iunpin_wait(
2171 struct xfs_inode *ip)
2172{
2173 if (xfs_ipincount(ip)) {
2174 xfs_iunpin_nowait(ip);
2175 wait_event(ip->i_ipin_wait, (xfs_ipincount(ip) == 0));
2176 }
2177}
2178
2179/*
2180 * xfs_iextents_copy()
2181 *
2182 * This is called to copy the REAL extents (as opposed to the delayed
2183 * allocation extents) from the inode into the given buffer. It
2184 * returns the number of bytes copied into the buffer.
2185 *
2186 * If there are no delayed allocation extents, then we can just
2187 * memcpy() the extents into the buffer. Otherwise, we need to
2188 * examine each extent in turn and skip those which are delayed.
2189 */
2190int
2191xfs_iextents_copy(
2192 xfs_inode_t *ip,
2193 xfs_bmbt_rec_t *dp,
2194 int whichfork)
2195{
2196 int copied;
2197 int i;
2198 xfs_ifork_t *ifp;
2199 int nrecs;
2200 xfs_fsblock_t start_block;
2201
2202 ifp = XFS_IFORK_PTR(ip, whichfork);
2203 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2204 ASSERT(ifp->if_bytes > 0);
2205
2206 nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
2207 XFS_BMAP_TRACE_EXLIST(ip, nrecs, whichfork);
2208 ASSERT(nrecs > 0);
2209
2210 /*
2211 * There are some delayed allocation extents in the
2212 * inode, so copy the extents one at a time and skip
2213 * the delayed ones. There must be at least one
2214 * non-delayed extent.
2215 */
2216 copied = 0;
2217 for (i = 0; i < nrecs; i++) {
2218 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
2219 start_block = xfs_bmbt_get_startblock(ep);
2220 if (isnullstartblock(start_block)) {
2221 /*
2222 * It's a delayed allocation extent, so skip it.
2223 */
2224 continue;
2225 }
2226
2227 /* Translate to on disk format */
2228 put_unaligned(cpu_to_be64(ep->l0), &dp->l0);
2229 put_unaligned(cpu_to_be64(ep->l1), &dp->l1);
2230 dp++;
2231 copied++;
2232 }
2233 ASSERT(copied != 0);
2234 xfs_validate_extents(ifp, copied, XFS_EXTFMT_INODE(ip));
2235
2236 return (copied * (uint)sizeof(xfs_bmbt_rec_t));
2237}
2238
2239/*
2240 * Each of the following cases stores data into the same region
2241 * of the on-disk inode, so only one of them can be valid at
2242 * any given time. While it is possible to have conflicting formats
2243 * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
2244 * in EXTENTS format, this can only happen when the fork has
2245 * changed formats after being modified but before being flushed.
2246 * In these cases, the format always takes precedence, because the
2247 * format indicates the current state of the fork.
2248 */
2249/*ARGSUSED*/
2250STATIC void
2251xfs_iflush_fork(
2252 xfs_inode_t *ip,
2253 xfs_dinode_t *dip,
2254 xfs_inode_log_item_t *iip,
2255 int whichfork,
2256 xfs_buf_t *bp)
2257{
2258 char *cp;
2259 xfs_ifork_t *ifp;
2260 xfs_mount_t *mp;
2261#ifdef XFS_TRANS_DEBUG
2262 int first;
2263#endif
2264 static const short brootflag[2] =
2265 { XFS_ILOG_DBROOT, XFS_ILOG_ABROOT };
2266 static const short dataflag[2] =
2267 { XFS_ILOG_DDATA, XFS_ILOG_ADATA };
2268 static const short extflag[2] =
2269 { XFS_ILOG_DEXT, XFS_ILOG_AEXT };
2270
2271 if (!iip)
2272 return;
2273 ifp = XFS_IFORK_PTR(ip, whichfork);
2274 /*
2275 * This can happen if we gave up in iformat in an error path,
2276 * for the attribute fork.
2277 */
2278 if (!ifp) {
2279 ASSERT(whichfork == XFS_ATTR_FORK);
2280 return;
2281 }
2282 cp = XFS_DFORK_PTR(dip, whichfork);
2283 mp = ip->i_mount;
2284 switch (XFS_IFORK_FORMAT(ip, whichfork)) {
2285 case XFS_DINODE_FMT_LOCAL:
2286 if ((iip->ili_format.ilf_fields & dataflag[whichfork]) &&
2287 (ifp->if_bytes > 0)) {
2288 ASSERT(ifp->if_u1.if_data != NULL);
2289 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2290 memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes);
2291 }
2292 break;
2293
2294 case XFS_DINODE_FMT_EXTENTS:
2295 ASSERT((ifp->if_flags & XFS_IFEXTENTS) ||
2296 !(iip->ili_format.ilf_fields & extflag[whichfork]));
2297 if ((iip->ili_format.ilf_fields & extflag[whichfork]) &&
2298 (ifp->if_bytes > 0)) {
2299 ASSERT(xfs_iext_get_ext(ifp, 0));
2300 ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0);
2301 (void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp,
2302 whichfork);
2303 }
2304 break;
2305
2306 case XFS_DINODE_FMT_BTREE:
2307 if ((iip->ili_format.ilf_fields & brootflag[whichfork]) &&
2308 (ifp->if_broot_bytes > 0)) {
2309 ASSERT(ifp->if_broot != NULL);
2310 ASSERT(ifp->if_broot_bytes <=
2311 (XFS_IFORK_SIZE(ip, whichfork) +
2312 XFS_BROOT_SIZE_ADJ));
2313 xfs_bmbt_to_bmdr(mp, ifp->if_broot, ifp->if_broot_bytes,
2314 (xfs_bmdr_block_t *)cp,
2315 XFS_DFORK_SIZE(dip, mp, whichfork));
2316 }
2317 break;
2318
2319 case XFS_DINODE_FMT_DEV:
2320 if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) {
2321 ASSERT(whichfork == XFS_DATA_FORK);
2322 xfs_dinode_put_rdev(dip, ip->i_df.if_u2.if_rdev);
2323 }
2324 break;
2325
2326 case XFS_DINODE_FMT_UUID:
2327 if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) {
2328 ASSERT(whichfork == XFS_DATA_FORK);
2329 memcpy(XFS_DFORK_DPTR(dip),
2330 &ip->i_df.if_u2.if_uuid,
2331 sizeof(uuid_t));
2332 }
2333 break;
2334
2335 default:
2336 ASSERT(0);
2337 break;
2338 }
2339}
2340
2341STATIC int
2342xfs_iflush_cluster(
2343 xfs_inode_t *ip,
2344 xfs_buf_t *bp)
2345{
2346 xfs_mount_t *mp = ip->i_mount;
2347 struct xfs_perag *pag;
2348 unsigned long first_index, mask;
2349 unsigned long inodes_per_cluster;
2350 int ilist_size;
2351 xfs_inode_t **ilist;
2352 xfs_inode_t *iq;
2353 int nr_found;
2354 int clcount = 0;
2355 int bufwasdelwri;
2356 int i;
2357
2358 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
2359
2360 inodes_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog;
2361 ilist_size = inodes_per_cluster * sizeof(xfs_inode_t *);
2362 ilist = kmem_alloc(ilist_size, KM_MAYFAIL|KM_NOFS);
2363 if (!ilist)
2364 goto out_put;
2365
2366 mask = ~(((XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog)) - 1);
2367 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
2368 rcu_read_lock();
2369 /* really need a gang lookup range call here */
2370 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)ilist,
2371 first_index, inodes_per_cluster);
2372 if (nr_found == 0)
2373 goto out_free;
2374
2375 for (i = 0; i < nr_found; i++) {
2376 iq = ilist[i];
2377 if (iq == ip)
2378 continue;
2379
2380 /*
2381 * because this is an RCU protected lookup, we could find a
2382 * recently freed or even reallocated inode during the lookup.
2383 * We need to check under the i_flags_lock for a valid inode
2384 * here. Skip it if it is not valid or the wrong inode.
2385 */
2386 spin_lock(&ip->i_flags_lock);
2387 if (!ip->i_ino ||
2388 (XFS_INO_TO_AGINO(mp, iq->i_ino) & mask) != first_index) {
2389 spin_unlock(&ip->i_flags_lock);
2390 continue;
2391 }
2392 spin_unlock(&ip->i_flags_lock);
2393
2394 /*
2395 * Do an un-protected check to see if the inode is dirty and
2396 * is a candidate for flushing. These checks will be repeated
2397 * later after the appropriate locks are acquired.
2398 */
2399 if (xfs_inode_clean(iq) && xfs_ipincount(iq) == 0)
2400 continue;
2401
2402 /*
2403 * Try to get locks. If any are unavailable or it is pinned,
2404 * then this inode cannot be flushed and is skipped.
2405 */
2406
2407 if (!xfs_ilock_nowait(iq, XFS_ILOCK_SHARED))
2408 continue;
2409 if (!xfs_iflock_nowait(iq)) {
2410 xfs_iunlock(iq, XFS_ILOCK_SHARED);
2411 continue;
2412 }
2413 if (xfs_ipincount(iq)) {
2414 xfs_ifunlock(iq);
2415 xfs_iunlock(iq, XFS_ILOCK_SHARED);
2416 continue;
2417 }
2418
2419 /*
2420 * arriving here means that this inode can be flushed. First
2421 * re-check that it's dirty before flushing.
2422 */
2423 if (!xfs_inode_clean(iq)) {
2424 int error;
2425 error = xfs_iflush_int(iq, bp);
2426 if (error) {
2427 xfs_iunlock(iq, XFS_ILOCK_SHARED);
2428 goto cluster_corrupt_out;
2429 }
2430 clcount++;
2431 } else {
2432 xfs_ifunlock(iq);
2433 }
2434 xfs_iunlock(iq, XFS_ILOCK_SHARED);
2435 }
2436
2437 if (clcount) {
2438 XFS_STATS_INC(xs_icluster_flushcnt);
2439 XFS_STATS_ADD(xs_icluster_flushinode, clcount);
2440 }
2441
2442out_free:
2443 rcu_read_unlock();
2444 kmem_free(ilist);
2445out_put:
2446 xfs_perag_put(pag);
2447 return 0;
2448
2449
2450cluster_corrupt_out:
2451 /*
2452 * Corruption detected in the clustering loop. Invalidate the
2453 * inode buffer and shut down the filesystem.
2454 */
2455 rcu_read_unlock();
2456 /*
2457 * Clean up the buffer. If it was B_DELWRI, just release it --
2458 * brelse can handle it with no problems. If not, shut down the
2459 * filesystem before releasing the buffer.
2460 */
2461 bufwasdelwri = XFS_BUF_ISDELAYWRITE(bp);
2462 if (bufwasdelwri)
2463 xfs_buf_relse(bp);
2464
2465 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
2466
2467 if (!bufwasdelwri) {
2468 /*
2469 * Just like incore_relse: if we have b_iodone functions,
2470 * mark the buffer as an error and call them. Otherwise
2471 * mark it as stale and brelse.
2472 */
2473 if (bp->b_iodone) {
2474 XFS_BUF_UNDONE(bp);
2475 XFS_BUF_STALE(bp);
2476 xfs_buf_ioerror(bp, EIO);
2477 xfs_buf_ioend(bp, 0);
2478 } else {
2479 XFS_BUF_STALE(bp);
2480 xfs_buf_relse(bp);
2481 }
2482 }
2483
2484 /*
2485 * Unlocks the flush lock
2486 */
2487 xfs_iflush_abort(iq);
2488 kmem_free(ilist);
2489 xfs_perag_put(pag);
2490 return XFS_ERROR(EFSCORRUPTED);
2491}
2492
2493/*
2494 * xfs_iflush() will write a modified inode's changes out to the
2495 * inode's on disk home. The caller must have the inode lock held
2496 * in at least shared mode and the inode flush completion must be
2497 * active as well. The inode lock will still be held upon return from
2498 * the call and the caller is free to unlock it.
2499 * The inode flush will be completed when the inode reaches the disk.
2500 * The flags indicate how the inode's buffer should be written out.
2501 */
2502int
2503xfs_iflush(
2504 xfs_inode_t *ip,
2505 uint flags)
2506{
2507 xfs_inode_log_item_t *iip;
2508 xfs_buf_t *bp;
2509 xfs_dinode_t *dip;
2510 xfs_mount_t *mp;
2511 int error;
2512
2513 XFS_STATS_INC(xs_iflush_count);
2514
2515 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2516 ASSERT(!completion_done(&ip->i_flush));
2517 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
2518 ip->i_d.di_nextents > ip->i_df.if_ext_max);
2519
2520 iip = ip->i_itemp;
2521 mp = ip->i_mount;
2522
2523 /*
2524 * We can't flush the inode until it is unpinned, so wait for it if we
2525 * are allowed to block. We know no one new can pin it, because we are
2526 * holding the inode lock shared and you need to hold it exclusively to
2527 * pin the inode.
2528 *
2529 * If we are not allowed to block, force the log out asynchronously so
2530 * that when we come back the inode will be unpinned. If other inodes
2531 * in the same cluster are dirty, they will probably write the inode
2532 * out for us if they occur after the log force completes.
2533 */
2534 if (!(flags & SYNC_WAIT) && xfs_ipincount(ip)) {
2535 xfs_iunpin_nowait(ip);
2536 xfs_ifunlock(ip);
2537 return EAGAIN;
2538 }
2539 xfs_iunpin_wait(ip);
2540
2541 /*
2542 * For stale inodes we cannot rely on the backing buffer remaining
2543 * stale in cache for the remaining life of the stale inode and so
2544 * xfs_itobp() below may give us a buffer that no longer contains
2545 * inodes below. We have to check this after ensuring the inode is
2546 * unpinned so that it is safe to reclaim the stale inode after the
2547 * flush call.
2548 */
2549 if (xfs_iflags_test(ip, XFS_ISTALE)) {
2550 xfs_ifunlock(ip);
2551 return 0;
2552 }
2553
2554 /*
2555 * This may have been unpinned because the filesystem is shutting
2556 * down forcibly. If that's the case we must not write this inode
2557 * to disk, because the log record didn't make it to disk!
2558 */
2559 if (XFS_FORCED_SHUTDOWN(mp)) {
2560 ip->i_update_core = 0;
2561 if (iip)
2562 iip->ili_format.ilf_fields = 0;
2563 xfs_ifunlock(ip);
2564 return XFS_ERROR(EIO);
2565 }
2566
2567 /*
2568 * Get the buffer containing the on-disk inode.
2569 */
2570 error = xfs_itobp(mp, NULL, ip, &dip, &bp,
2571 (flags & SYNC_TRYLOCK) ? XBF_TRYLOCK : XBF_LOCK);
2572 if (error || !bp) {
2573 xfs_ifunlock(ip);
2574 return error;
2575 }
2576
2577 /*
2578 * First flush out the inode that xfs_iflush was called with.
2579 */
2580 error = xfs_iflush_int(ip, bp);
2581 if (error)
2582 goto corrupt_out;
2583
2584 /*
2585 * If the buffer is pinned then push on the log now so we won't
2586 * get stuck waiting in the write for too long.
2587 */
2588 if (xfs_buf_ispinned(bp))
2589 xfs_log_force(mp, 0);
2590
2591 /*
2592 * inode clustering:
2593 * see if other inodes can be gathered into this write
2594 */
2595 error = xfs_iflush_cluster(ip, bp);
2596 if (error)
2597 goto cluster_corrupt_out;
2598
2599 if (flags & SYNC_WAIT)
2600 error = xfs_bwrite(mp, bp);
2601 else
2602 xfs_bdwrite(mp, bp);
2603 return error;
2604
2605corrupt_out:
2606 xfs_buf_relse(bp);
2607 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
2608cluster_corrupt_out:
2609 /*
2610 * Unlocks the flush lock
2611 */
2612 xfs_iflush_abort(ip);
2613 return XFS_ERROR(EFSCORRUPTED);
2614}
2615
2616
2617STATIC int
2618xfs_iflush_int(
2619 xfs_inode_t *ip,
2620 xfs_buf_t *bp)
2621{
2622 xfs_inode_log_item_t *iip;
2623 xfs_dinode_t *dip;
2624 xfs_mount_t *mp;
2625#ifdef XFS_TRANS_DEBUG
2626 int first;
2627#endif
2628
2629 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2630 ASSERT(!completion_done(&ip->i_flush));
2631 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
2632 ip->i_d.di_nextents > ip->i_df.if_ext_max);
2633
2634 iip = ip->i_itemp;
2635 mp = ip->i_mount;
2636
2637 /* set *dip = inode's place in the buffer */
2638 dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
2639
2640 /*
2641 * Clear i_update_core before copying out the data.
2642 * This is for coordination with our timestamp updates
2643 * that don't hold the inode lock. They will always
2644 * update the timestamps BEFORE setting i_update_core,
2645 * so if we clear i_update_core after they set it we
2646 * are guaranteed to see their updates to the timestamps.
2647 * I believe that this depends on strongly ordered memory
2648 * semantics, but we have that. We use the SYNCHRONIZE
2649 * macro to make sure that the compiler does not reorder
2650 * the i_update_core access below the data copy below.
2651 */
2652 ip->i_update_core = 0;
2653 SYNCHRONIZE();
2654
2655 /*
2656 * Make sure to get the latest timestamps from the Linux inode.
2657 */
2658 xfs_synchronize_times(ip);
2659
2660 if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
2661 mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
2662 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2663 "%s: Bad inode %Lu magic number 0x%x, ptr 0x%p",
2664 __func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
2665 goto corrupt_out;
2666 }
2667 if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
2668 mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
2669 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2670 "%s: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
2671 __func__, ip->i_ino, ip, ip->i_d.di_magic);
2672 goto corrupt_out;
2673 }
2674 if (S_ISREG(ip->i_d.di_mode)) {
2675 if (XFS_TEST_ERROR(
2676 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
2677 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
2678 mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
2679 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2680 "%s: Bad regular inode %Lu, ptr 0x%p",
2681 __func__, ip->i_ino, ip);
2682 goto corrupt_out;
2683 }
2684 } else if (S_ISDIR(ip->i_d.di_mode)) {
2685 if (XFS_TEST_ERROR(
2686 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
2687 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
2688 (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
2689 mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
2690 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2691 "%s: Bad directory inode %Lu, ptr 0x%p",
2692 __func__, ip->i_ino, ip);
2693 goto corrupt_out;
2694 }
2695 }
2696 if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
2697 ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
2698 XFS_RANDOM_IFLUSH_5)) {
2699 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2700 "%s: detected corrupt incore inode %Lu, "
2701 "total extents = %d, nblocks = %Ld, ptr 0x%p",
2702 __func__, ip->i_ino,
2703 ip->i_d.di_nextents + ip->i_d.di_anextents,
2704 ip->i_d.di_nblocks, ip);
2705 goto corrupt_out;
2706 }
2707 if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
2708 mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
2709 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2710 "%s: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
2711 __func__, ip->i_ino, ip->i_d.di_forkoff, ip);
2712 goto corrupt_out;
2713 }
2714 /*
2715 * bump the flush iteration count, used to detect flushes which
2716 * postdate a log record during recovery.
2717 */
2718
2719 ip->i_d.di_flushiter++;
2720
2721 /*
2722 * Copy the dirty parts of the inode into the on-disk
2723 * inode. We always copy out the core of the inode,
2724 * because if the inode is dirty at all the core must
2725 * be.
2726 */
2727 xfs_dinode_to_disk(dip, &ip->i_d);
2728
2729 /* Wrap, we never let the log put out DI_MAX_FLUSH */
2730 if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
2731 ip->i_d.di_flushiter = 0;
2732
2733 /*
2734 * If this is really an old format inode and the superblock version
2735 * has not been updated to support only new format inodes, then
2736 * convert back to the old inode format. If the superblock version
2737 * has been updated, then make the conversion permanent.
2738 */
2739 ASSERT(ip->i_d.di_version == 1 || xfs_sb_version_hasnlink(&mp->m_sb));
2740 if (ip->i_d.di_version == 1) {
2741 if (!xfs_sb_version_hasnlink(&mp->m_sb)) {
2742 /*
2743 * Convert it back.
2744 */
2745 ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
2746 dip->di_onlink = cpu_to_be16(ip->i_d.di_nlink);
2747 } else {
2748 /*
2749 * The superblock version has already been bumped,
2750 * so just make the conversion to the new inode
2751 * format permanent.
2752 */
2753 ip->i_d.di_version = 2;
2754 dip->di_version = 2;
2755 ip->i_d.di_onlink = 0;
2756 dip->di_onlink = 0;
2757 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
2758 memset(&(dip->di_pad[0]), 0,
2759 sizeof(dip->di_pad));
2760 ASSERT(xfs_get_projid(ip) == 0);
2761 }
2762 }
2763
2764 xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp);
2765 if (XFS_IFORK_Q(ip))
2766 xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp);
2767 xfs_inobp_check(mp, bp);
2768
2769 /*
2770 * We've recorded everything logged in the inode, so we'd
2771 * like to clear the ilf_fields bits so we don't log and
2772 * flush things unnecessarily. However, we can't stop
2773 * logging all this information until the data we've copied
2774 * into the disk buffer is written to disk. If we did we might
2775 * overwrite the copy of the inode in the log with all the
2776 * data after re-logging only part of it, and in the face of
2777 * a crash we wouldn't have all the data we need to recover.
2778 *
2779 * What we do is move the bits to the ili_last_fields field.
2780 * When logging the inode, these bits are moved back to the
2781 * ilf_fields field. In the xfs_iflush_done() routine we
2782 * clear ili_last_fields, since we know that the information
2783 * those bits represent is permanently on disk. As long as
2784 * the flush completes before the inode is logged again, then
2785 * both ilf_fields and ili_last_fields will be cleared.
2786 *
2787 * We can play with the ilf_fields bits here, because the inode
2788 * lock must be held exclusively in order to set bits there
2789 * and the flush lock protects the ili_last_fields bits.
2790 * Set ili_logged so the flush done
2791 * routine can tell whether or not to look in the AIL.
2792 * Also, store the current LSN of the inode so that we can tell
2793 * whether the item has moved in the AIL from xfs_iflush_done().
2794 * In order to read the lsn we need the AIL lock, because
2795 * it is a 64 bit value that cannot be read atomically.
2796 */
2797 if (iip != NULL && iip->ili_format.ilf_fields != 0) {
2798 iip->ili_last_fields = iip->ili_format.ilf_fields;
2799 iip->ili_format.ilf_fields = 0;
2800 iip->ili_logged = 1;
2801
2802 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
2803 &iip->ili_item.li_lsn);
2804
2805 /*
2806 * Attach the function xfs_iflush_done to the inode's
2807 * buffer. This will remove the inode from the AIL
2808 * and unlock the inode's flush lock when the inode is
2809 * completely written to disk.
2810 */
2811 xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item);
2812
2813 ASSERT(bp->b_fspriv != NULL);
2814 ASSERT(bp->b_iodone != NULL);
2815 } else {
2816 /*
2817 * We're flushing an inode which is not in the AIL and has
2818 * not been logged but has i_update_core set. For this
2819 * case we can use a B_DELWRI flush and immediately drop
2820 * the inode flush lock because we can avoid the whole
2821 * AIL state thing. It's OK to drop the flush lock now,
2822 * because we've already locked the buffer and to do anything
2823 * you really need both.
2824 */
2825 if (iip != NULL) {
2826 ASSERT(iip->ili_logged == 0);
2827 ASSERT(iip->ili_last_fields == 0);
2828 ASSERT((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0);
2829 }
2830 xfs_ifunlock(ip);
2831 }
2832
2833 return 0;
2834
2835corrupt_out:
2836 return XFS_ERROR(EFSCORRUPTED);
2837}
2838
2839/*
2840 * Return a pointer to the extent record at file index idx.
2841 */
2842xfs_bmbt_rec_host_t *
2843xfs_iext_get_ext(
2844 xfs_ifork_t *ifp, /* inode fork pointer */
2845 xfs_extnum_t idx) /* index of target extent */
2846{
2847 ASSERT(idx >= 0);
2848 ASSERT(idx < ifp->if_bytes / sizeof(xfs_bmbt_rec_t));
2849
2850 if ((ifp->if_flags & XFS_IFEXTIREC) && (idx == 0)) {
2851 return ifp->if_u1.if_ext_irec->er_extbuf;
2852 } else if (ifp->if_flags & XFS_IFEXTIREC) {
2853 xfs_ext_irec_t *erp; /* irec pointer */
2854 int erp_idx = 0; /* irec index */
2855 xfs_extnum_t page_idx = idx; /* ext index in target list */
2856
2857 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
2858 return &erp->er_extbuf[page_idx];
2859 } else if (ifp->if_bytes) {
2860 return &ifp->if_u1.if_extents[idx];
2861 } else {
2862 return NULL;
2863 }
2864}
2865
2866/*
2867 * Insert new item(s) into the extent records for incore inode
2868 * fork 'ifp'. 'count' new items are inserted at index 'idx'.
2869 */
2870void
2871xfs_iext_insert(
2872 xfs_inode_t *ip, /* incore inode pointer */
2873 xfs_extnum_t idx, /* starting index of new items */
2874 xfs_extnum_t count, /* number of inserted items */
2875 xfs_bmbt_irec_t *new, /* items to insert */
2876 int state) /* type of extent conversion */
2877{
2878 xfs_ifork_t *ifp = (state & BMAP_ATTRFORK) ? ip->i_afp : &ip->i_df;
2879 xfs_extnum_t i; /* extent record index */
2880
2881 trace_xfs_iext_insert(ip, idx, new, state, _RET_IP_);
2882
2883 ASSERT(ifp->if_flags & XFS_IFEXTENTS);
2884 xfs_iext_add(ifp, idx, count);
2885 for (i = idx; i < idx + count; i++, new++)
2886 xfs_bmbt_set_all(xfs_iext_get_ext(ifp, i), new);
2887}
2888
2889/*
2890 * This is called when the amount of space required for incore file
2891 * extents needs to be increased. The ext_diff parameter stores the
2892 * number of new extents being added and the idx parameter contains
2893 * the extent index where the new extents will be added. If the new
2894 * extents are being appended, then we just need to (re)allocate and
2895 * initialize the space. Otherwise, if the new extents are being
2896 * inserted into the middle of the existing entries, a bit more work
2897 * is required to make room for the new extents to be inserted. The
2898 * caller is responsible for filling in the new extent entries upon
2899 * return.
2900 */
2901void
2902xfs_iext_add(
2903 xfs_ifork_t *ifp, /* inode fork pointer */
2904 xfs_extnum_t idx, /* index to begin adding exts */
2905 int ext_diff) /* number of extents to add */
2906{
2907 int byte_diff; /* new bytes being added */
2908 int new_size; /* size of extents after adding */
2909 xfs_extnum_t nextents; /* number of extents in file */
2910
2911 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
2912 ASSERT((idx >= 0) && (idx <= nextents));
2913 byte_diff = ext_diff * sizeof(xfs_bmbt_rec_t);
2914 new_size = ifp->if_bytes + byte_diff;
2915 /*
2916 * If the new number of extents (nextents + ext_diff)
2917 * fits inside the inode, then continue to use the inline
2918 * extent buffer.
2919 */
2920 if (nextents + ext_diff <= XFS_INLINE_EXTS) {
2921 if (idx < nextents) {
2922 memmove(&ifp->if_u2.if_inline_ext[idx + ext_diff],
2923 &ifp->if_u2.if_inline_ext[idx],
2924 (nextents - idx) * sizeof(xfs_bmbt_rec_t));
2925 memset(&ifp->if_u2.if_inline_ext[idx], 0, byte_diff);
2926 }
2927 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
2928 ifp->if_real_bytes = 0;
2929 }
2930 /*
2931 * Otherwise use a linear (direct) extent list.
2932 * If the extents are currently inside the inode,
2933 * xfs_iext_realloc_direct will switch us from
2934 * inline to direct extent allocation mode.
2935 */
2936 else if (nextents + ext_diff <= XFS_LINEAR_EXTS) {
2937 xfs_iext_realloc_direct(ifp, new_size);
2938 if (idx < nextents) {
2939 memmove(&ifp->if_u1.if_extents[idx + ext_diff],
2940 &ifp->if_u1.if_extents[idx],
2941 (nextents - idx) * sizeof(xfs_bmbt_rec_t));
2942 memset(&ifp->if_u1.if_extents[idx], 0, byte_diff);
2943 }
2944 }
2945 /* Indirection array */
2946 else {
2947 xfs_ext_irec_t *erp;
2948 int erp_idx = 0;
2949 int page_idx = idx;
2950
2951 ASSERT(nextents + ext_diff > XFS_LINEAR_EXTS);
2952 if (ifp->if_flags & XFS_IFEXTIREC) {
2953 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 1);
2954 } else {
2955 xfs_iext_irec_init(ifp);
2956 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
2957 erp = ifp->if_u1.if_ext_irec;
2958 }
2959 /* Extents fit in target extent page */
2960 if (erp && erp->er_extcount + ext_diff <= XFS_LINEAR_EXTS) {
2961 if (page_idx < erp->er_extcount) {
2962 memmove(&erp->er_extbuf[page_idx + ext_diff],
2963 &erp->er_extbuf[page_idx],
2964 (erp->er_extcount - page_idx) *
2965 sizeof(xfs_bmbt_rec_t));
2966 memset(&erp->er_extbuf[page_idx], 0, byte_diff);
2967 }
2968 erp->er_extcount += ext_diff;
2969 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
2970 }
2971 /* Insert a new extent page */
2972 else if (erp) {
2973 xfs_iext_add_indirect_multi(ifp,
2974 erp_idx, page_idx, ext_diff);
2975 }
2976 /*
2977 * If extent(s) are being appended to the last page in
2978 * the indirection array and the new extent(s) don't fit
2979 * in the page, then erp is NULL and erp_idx is set to
2980 * the next index needed in the indirection array.
2981 */
2982 else {
2983 int count = ext_diff;
2984
2985 while (count) {
2986 erp = xfs_iext_irec_new(ifp, erp_idx);
2987 erp->er_extcount = count;
2988 count -= MIN(count, (int)XFS_LINEAR_EXTS);
2989 if (count) {
2990 erp_idx++;
2991 }
2992 }
2993 }
2994 }
2995 ifp->if_bytes = new_size;
2996}
2997
2998/*
2999 * This is called when incore extents are being added to the indirection
3000 * array and the new extents do not fit in the target extent list. The
3001 * erp_idx parameter contains the irec index for the target extent list
3002 * in the indirection array, and the idx parameter contains the extent
3003 * index within the list. The number of extents being added is stored
3004 * in the count parameter.
3005 *
3006 * |-------| |-------|
3007 * | | | | idx - number of extents before idx
3008 * | idx | | count |
3009 * | | | | count - number of extents being inserted at idx
3010 * |-------| |-------|
3011 * | count | | nex2 | nex2 - number of extents after idx + count
3012 * |-------| |-------|
3013 */
3014void
3015xfs_iext_add_indirect_multi(
3016 xfs_ifork_t *ifp, /* inode fork pointer */
3017 int erp_idx, /* target extent irec index */
3018 xfs_extnum_t idx, /* index within target list */
3019 int count) /* new extents being added */
3020{
3021 int byte_diff; /* new bytes being added */
3022 xfs_ext_irec_t *erp; /* pointer to irec entry */
3023 xfs_extnum_t ext_diff; /* number of extents to add */
3024 xfs_extnum_t ext_cnt; /* new extents still needed */
3025 xfs_extnum_t nex2; /* extents after idx + count */
3026 xfs_bmbt_rec_t *nex2_ep = NULL; /* temp list for nex2 extents */
3027 int nlists; /* number of irec's (lists) */
3028
3029 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3030 erp = &ifp->if_u1.if_ext_irec[erp_idx];
3031 nex2 = erp->er_extcount - idx;
3032 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3033
3034 /*
3035 * Save second part of target extent list
3036 * (all extents past */
3037 if (nex2) {
3038 byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
3039 nex2_ep = (xfs_bmbt_rec_t *) kmem_alloc(byte_diff, KM_NOFS);
3040 memmove(nex2_ep, &erp->er_extbuf[idx], byte_diff);
3041 erp->er_extcount -= nex2;
3042 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -nex2);
3043 memset(&erp->er_extbuf[idx], 0, byte_diff);
3044 }
3045
3046 /*
3047 * Add the new extents to the end of the target
3048 * list, then allocate new irec record(s) and
3049 * extent buffer(s) as needed to store the rest
3050 * of the new extents.
3051 */
3052 ext_cnt = count;
3053 ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS - erp->er_extcount);
3054 if (ext_diff) {
3055 erp->er_extcount += ext_diff;
3056 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3057 ext_cnt -= ext_diff;
3058 }
3059 while (ext_cnt) {
3060 erp_idx++;
3061 erp = xfs_iext_irec_new(ifp, erp_idx);
3062 ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS);
3063 erp->er_extcount = ext_diff;
3064 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3065 ext_cnt -= ext_diff;
3066 }
3067
3068 /* Add nex2 extents back to indirection array */
3069 if (nex2) {
3070 xfs_extnum_t ext_avail;
3071 int i;
3072
3073 byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
3074 ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
3075 i = 0;
3076 /*
3077 * If nex2 extents fit in the current page, append
3078 * nex2_ep after the new extents.
3079 */
3080 if (nex2 <= ext_avail) {
3081 i = erp->er_extcount;
3082 }
3083 /*
3084 * Otherwise, check if space is available in the
3085 * next page.
3086 */
3087 else if ((erp_idx < nlists - 1) &&
3088 (nex2 <= (ext_avail = XFS_LINEAR_EXTS -
3089 ifp->if_u1.if_ext_irec[erp_idx+1].er_extcount))) {
3090 erp_idx++;
3091 erp++;
3092 /* Create a hole for nex2 extents */
3093 memmove(&erp->er_extbuf[nex2], erp->er_extbuf,
3094 erp->er_extcount * sizeof(xfs_bmbt_rec_t));
3095 }
3096 /*
3097 * Final choice, create a new extent page for
3098 * nex2 extents.
3099 */
3100 else {
3101 erp_idx++;
3102 erp = xfs_iext_irec_new(ifp, erp_idx);
3103 }
3104 memmove(&erp->er_extbuf[i], nex2_ep, byte_diff);
3105 kmem_free(nex2_ep);
3106 erp->er_extcount += nex2;
3107 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, nex2);
3108 }
3109}
3110
3111/*
3112 * This is called when the amount of space required for incore file
3113 * extents needs to be decreased. The ext_diff parameter stores the
3114 * number of extents to be removed and the idx parameter contains
3115 * the extent index where the extents will be removed from.
3116 *
3117 * If the amount of space needed has decreased below the linear
3118 * limit, XFS_IEXT_BUFSZ, then switch to using the contiguous
3119 * extent array. Otherwise, use kmem_realloc() to adjust the
3120 * size to what is needed.
3121 */
3122void
3123xfs_iext_remove(
3124 xfs_inode_t *ip, /* incore inode pointer */
3125 xfs_extnum_t idx, /* index to begin removing exts */
3126 int ext_diff, /* number of extents to remove */
3127 int state) /* type of extent conversion */
3128{
3129 xfs_ifork_t *ifp = (state & BMAP_ATTRFORK) ? ip->i_afp : &ip->i_df;
3130 xfs_extnum_t nextents; /* number of extents in file */
3131 int new_size; /* size of extents after removal */
3132
3133 trace_xfs_iext_remove(ip, idx, state, _RET_IP_);
3134
3135 ASSERT(ext_diff > 0);
3136 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3137 new_size = (nextents - ext_diff) * sizeof(xfs_bmbt_rec_t);
3138
3139 if (new_size == 0) {
3140 xfs_iext_destroy(ifp);
3141 } else if (ifp->if_flags & XFS_IFEXTIREC) {
3142 xfs_iext_remove_indirect(ifp, idx, ext_diff);
3143 } else if (ifp->if_real_bytes) {
3144 xfs_iext_remove_direct(ifp, idx, ext_diff);
3145 } else {
3146 xfs_iext_remove_inline(ifp, idx, ext_diff);
3147 }
3148 ifp->if_bytes = new_size;
3149}
3150
3151/*
3152 * This removes ext_diff extents from the inline buffer, beginning
3153 * at extent index idx.
3154 */
3155void
3156xfs_iext_remove_inline(
3157 xfs_ifork_t *ifp, /* inode fork pointer */
3158 xfs_extnum_t idx, /* index to begin removing exts */
3159 int ext_diff) /* number of extents to remove */
3160{
3161 int nextents; /* number of extents in file */
3162
3163 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
3164 ASSERT(idx < XFS_INLINE_EXTS);
3165 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3166 ASSERT(((nextents - ext_diff) > 0) &&
3167 (nextents - ext_diff) < XFS_INLINE_EXTS);
3168
3169 if (idx + ext_diff < nextents) {
3170 memmove(&ifp->if_u2.if_inline_ext[idx],
3171 &ifp->if_u2.if_inline_ext[idx + ext_diff],
3172 (nextents - (idx + ext_diff)) *
3173 sizeof(xfs_bmbt_rec_t));
3174 memset(&ifp->if_u2.if_inline_ext[nextents - ext_diff],
3175 0, ext_diff * sizeof(xfs_bmbt_rec_t));
3176 } else {
3177 memset(&ifp->if_u2.if_inline_ext[idx], 0,
3178 ext_diff * sizeof(xfs_bmbt_rec_t));
3179 }
3180}
3181
3182/*
3183 * This removes ext_diff extents from a linear (direct) extent list,
3184 * beginning at extent index idx. If the extents are being removed
3185 * from the end of the list (ie. truncate) then we just need to re-
3186 * allocate the list to remove the extra space. Otherwise, if the
3187 * extents are being removed from the middle of the existing extent
3188 * entries, then we first need to move the extent records beginning
3189 * at idx + ext_diff up in the list to overwrite the records being
3190 * removed, then remove the extra space via kmem_realloc.
3191 */
3192void
3193xfs_iext_remove_direct(
3194 xfs_ifork_t *ifp, /* inode fork pointer */
3195 xfs_extnum_t idx, /* index to begin removing exts */
3196 int ext_diff) /* number of extents to remove */
3197{
3198 xfs_extnum_t nextents; /* number of extents in file */
3199 int new_size; /* size of extents after removal */
3200
3201 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
3202 new_size = ifp->if_bytes -
3203 (ext_diff * sizeof(xfs_bmbt_rec_t));
3204 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3205
3206 if (new_size == 0) {
3207 xfs_iext_destroy(ifp);
3208 return;
3209 }
3210 /* Move extents up in the list (if needed) */
3211 if (idx + ext_diff < nextents) {
3212 memmove(&ifp->if_u1.if_extents[idx],
3213 &ifp->if_u1.if_extents[idx + ext_diff],
3214 (nextents - (idx + ext_diff)) *
3215 sizeof(xfs_bmbt_rec_t));
3216 }
3217 memset(&ifp->if_u1.if_extents[nextents - ext_diff],
3218 0, ext_diff * sizeof(xfs_bmbt_rec_t));
3219 /*
3220 * Reallocate the direct extent list. If the extents
3221 * will fit inside the inode then xfs_iext_realloc_direct
3222 * will switch from direct to inline extent allocation
3223 * mode for us.
3224 */
3225 xfs_iext_realloc_direct(ifp, new_size);
3226 ifp->if_bytes = new_size;
3227}
3228
3229/*
3230 * This is called when incore extents are being removed from the
3231 * indirection array and the extents being removed span multiple extent
3232 * buffers. The idx parameter contains the file extent index where we
3233 * want to begin removing extents, and the count parameter contains
3234 * how many extents need to be removed.
3235 *
3236 * |-------| |-------|
3237 * | nex1 | | | nex1 - number of extents before idx
3238 * |-------| | count |
3239 * | | | | count - number of extents being removed at idx
3240 * | count | |-------|
3241 * | | | nex2 | nex2 - number of extents after idx + count
3242 * |-------| |-------|
3243 */
3244void
3245xfs_iext_remove_indirect(
3246 xfs_ifork_t *ifp, /* inode fork pointer */
3247 xfs_extnum_t idx, /* index to begin removing extents */
3248 int count) /* number of extents to remove */
3249{
3250 xfs_ext_irec_t *erp; /* indirection array pointer */
3251 int erp_idx = 0; /* indirection array index */
3252 xfs_extnum_t ext_cnt; /* extents left to remove */
3253 xfs_extnum_t ext_diff; /* extents to remove in current list */
3254 xfs_extnum_t nex1; /* number of extents before idx */
3255 xfs_extnum_t nex2; /* extents after idx + count */
3256 int page_idx = idx; /* index in target extent list */
3257
3258 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3259 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
3260 ASSERT(erp != NULL);
3261 nex1 = page_idx;
3262 ext_cnt = count;
3263 while (ext_cnt) {
3264 nex2 = MAX((erp->er_extcount - (nex1 + ext_cnt)), 0);
3265 ext_diff = MIN(ext_cnt, (erp->er_extcount - nex1));
3266 /*
3267 * Check for deletion of entire list;
3268 * xfs_iext_irec_remove() updates extent offsets.
3269 */
3270 if (ext_diff == erp->er_extcount) {
3271 xfs_iext_irec_remove(ifp, erp_idx);
3272 ext_cnt -= ext_diff;
3273 nex1 = 0;
3274 if (ext_cnt) {
3275 ASSERT(erp_idx < ifp->if_real_bytes /
3276 XFS_IEXT_BUFSZ);
3277 erp = &ifp->if_u1.if_ext_irec[erp_idx];
3278 nex1 = 0;
3279 continue;
3280 } else {
3281 break;
3282 }
3283 }
3284 /* Move extents up (if needed) */
3285 if (nex2) {
3286 memmove(&erp->er_extbuf[nex1],
3287 &erp->er_extbuf[nex1 + ext_diff],
3288 nex2 * sizeof(xfs_bmbt_rec_t));
3289 }
3290 /* Zero out rest of page */
3291 memset(&erp->er_extbuf[nex1 + nex2], 0, (XFS_IEXT_BUFSZ -
3292 ((nex1 + nex2) * sizeof(xfs_bmbt_rec_t))));
3293 /* Update remaining counters */
3294 erp->er_extcount -= ext_diff;
3295 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -ext_diff);
3296 ext_cnt -= ext_diff;
3297 nex1 = 0;
3298 erp_idx++;
3299 erp++;
3300 }
3301 ifp->if_bytes -= count * sizeof(xfs_bmbt_rec_t);
3302 xfs_iext_irec_compact(ifp);
3303}
3304
3305/*
3306 * Create, destroy, or resize a linear (direct) block of extents.
3307 */
3308void
3309xfs_iext_realloc_direct(
3310 xfs_ifork_t *ifp, /* inode fork pointer */
3311 int new_size) /* new size of extents */
3312{
3313 int rnew_size; /* real new size of extents */
3314
3315 rnew_size = new_size;
3316
3317 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC) ||
3318 ((new_size >= 0) && (new_size <= XFS_IEXT_BUFSZ) &&
3319 (new_size != ifp->if_real_bytes)));
3320
3321 /* Free extent records */
3322 if (new_size == 0) {
3323 xfs_iext_destroy(ifp);
3324 }
3325 /* Resize direct extent list and zero any new bytes */
3326 else if (ifp->if_real_bytes) {
3327 /* Check if extents will fit inside the inode */
3328 if (new_size <= XFS_INLINE_EXTS * sizeof(xfs_bmbt_rec_t)) {
3329 xfs_iext_direct_to_inline(ifp, new_size /
3330 (uint)sizeof(xfs_bmbt_rec_t));
3331 ifp->if_bytes = new_size;
3332 return;
3333 }
3334 if (!is_power_of_2(new_size)){
3335 rnew_size = roundup_pow_of_two(new_size);
3336 }
3337 if (rnew_size != ifp->if_real_bytes) {
3338 ifp->if_u1.if_extents =
3339 kmem_realloc(ifp->if_u1.if_extents,
3340 rnew_size,
3341 ifp->if_real_bytes, KM_NOFS);
3342 }
3343 if (rnew_size > ifp->if_real_bytes) {
3344 memset(&ifp->if_u1.if_extents[ifp->if_bytes /
3345 (uint)sizeof(xfs_bmbt_rec_t)], 0,
3346 rnew_size - ifp->if_real_bytes);
3347 }
3348 }
3349 /*
3350 * Switch from the inline extent buffer to a direct
3351 * extent list. Be sure to include the inline extent
3352 * bytes in new_size.
3353 */
3354 else {
3355 new_size += ifp->if_bytes;
3356 if (!is_power_of_2(new_size)) {
3357 rnew_size = roundup_pow_of_two(new_size);
3358 }
3359 xfs_iext_inline_to_direct(ifp, rnew_size);
3360 }
3361 ifp->if_real_bytes = rnew_size;
3362 ifp->if_bytes = new_size;
3363}
3364
3365/*
3366 * Switch from linear (direct) extent records to inline buffer.
3367 */
3368void
3369xfs_iext_direct_to_inline(
3370 xfs_ifork_t *ifp, /* inode fork pointer */
3371 xfs_extnum_t nextents) /* number of extents in file */
3372{
3373 ASSERT(ifp->if_flags & XFS_IFEXTENTS);
3374 ASSERT(nextents <= XFS_INLINE_EXTS);
3375 /*
3376 * The inline buffer was zeroed when we switched
3377 * from inline to direct extent allocation mode,
3378 * so we don't need to clear it here.
3379 */
3380 memcpy(ifp->if_u2.if_inline_ext, ifp->if_u1.if_extents,
3381 nextents * sizeof(xfs_bmbt_rec_t));
3382 kmem_free(ifp->if_u1.if_extents);
3383 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
3384 ifp->if_real_bytes = 0;
3385}
3386
3387/*
3388 * Switch from inline buffer to linear (direct) extent records.
3389 * new_size should already be rounded up to the next power of 2
3390 * by the caller (when appropriate), so use new_size as it is.
3391 * However, since new_size may be rounded up, we can't update
3392 * if_bytes here. It is the caller's responsibility to update
3393 * if_bytes upon return.
3394 */
3395void
3396xfs_iext_inline_to_direct(
3397 xfs_ifork_t *ifp, /* inode fork pointer */
3398 int new_size) /* number of extents in file */
3399{
3400 ifp->if_u1.if_extents = kmem_alloc(new_size, KM_NOFS);
3401 memset(ifp->if_u1.if_extents, 0, new_size);
3402 if (ifp->if_bytes) {
3403 memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext,
3404 ifp->if_bytes);
3405 memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
3406 sizeof(xfs_bmbt_rec_t));
3407 }
3408 ifp->if_real_bytes = new_size;
3409}
3410
3411/*
3412 * Resize an extent indirection array to new_size bytes.
3413 */
3414STATIC void
3415xfs_iext_realloc_indirect(
3416 xfs_ifork_t *ifp, /* inode fork pointer */
3417 int new_size) /* new indirection array size */
3418{
3419 int nlists; /* number of irec's (ex lists) */
3420 int size; /* current indirection array size */
3421
3422 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3423 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3424 size = nlists * sizeof(xfs_ext_irec_t);
3425 ASSERT(ifp->if_real_bytes);
3426 ASSERT((new_size >= 0) && (new_size != size));
3427 if (new_size == 0) {
3428 xfs_iext_destroy(ifp);
3429 } else {
3430 ifp->if_u1.if_ext_irec = (xfs_ext_irec_t *)
3431 kmem_realloc(ifp->if_u1.if_ext_irec,
3432 new_size, size, KM_NOFS);
3433 }
3434}
3435
3436/*
3437 * Switch from indirection array to linear (direct) extent allocations.
3438 */
3439STATIC void
3440xfs_iext_indirect_to_direct(
3441 xfs_ifork_t *ifp) /* inode fork pointer */
3442{
3443 xfs_bmbt_rec_host_t *ep; /* extent record pointer */
3444 xfs_extnum_t nextents; /* number of extents in file */
3445 int size; /* size of file extents */
3446
3447 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3448 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3449 ASSERT(nextents <= XFS_LINEAR_EXTS);
3450 size = nextents * sizeof(xfs_bmbt_rec_t);
3451
3452 xfs_iext_irec_compact_pages(ifp);
3453 ASSERT(ifp->if_real_bytes == XFS_IEXT_BUFSZ);
3454
3455 ep = ifp->if_u1.if_ext_irec->er_extbuf;
3456 kmem_free(ifp->if_u1.if_ext_irec);
3457 ifp->if_flags &= ~XFS_IFEXTIREC;
3458 ifp->if_u1.if_extents = ep;
3459 ifp->if_bytes = size;
3460 if (nextents < XFS_LINEAR_EXTS) {
3461 xfs_iext_realloc_direct(ifp, size);
3462 }
3463}
3464
3465/*
3466 * Free incore file extents.
3467 */
3468void
3469xfs_iext_destroy(
3470 xfs_ifork_t *ifp) /* inode fork pointer */
3471{
3472 if (ifp->if_flags & XFS_IFEXTIREC) {
3473 int erp_idx;
3474 int nlists;
3475
3476 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3477 for (erp_idx = nlists - 1; erp_idx >= 0 ; erp_idx--) {
3478 xfs_iext_irec_remove(ifp, erp_idx);
3479 }
3480 ifp->if_flags &= ~XFS_IFEXTIREC;
3481 } else if (ifp->if_real_bytes) {
3482 kmem_free(ifp->if_u1.if_extents);
3483 } else if (ifp->if_bytes) {
3484 memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
3485 sizeof(xfs_bmbt_rec_t));
3486 }
3487 ifp->if_u1.if_extents = NULL;
3488 ifp->if_real_bytes = 0;
3489 ifp->if_bytes = 0;
3490}
3491
3492/*
3493 * Return a pointer to the extent record for file system block bno.
3494 */
3495xfs_bmbt_rec_host_t * /* pointer to found extent record */
3496xfs_iext_bno_to_ext(
3497 xfs_ifork_t *ifp, /* inode fork pointer */
3498 xfs_fileoff_t bno, /* block number to search for */
3499 xfs_extnum_t *idxp) /* index of target extent */
3500{
3501 xfs_bmbt_rec_host_t *base; /* pointer to first extent */
3502 xfs_filblks_t blockcount = 0; /* number of blocks in extent */
3503 xfs_bmbt_rec_host_t *ep = NULL; /* pointer to target extent */
3504 xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
3505 int high; /* upper boundary in search */
3506 xfs_extnum_t idx = 0; /* index of target extent */
3507 int low; /* lower boundary in search */
3508 xfs_extnum_t nextents; /* number of file extents */
3509 xfs_fileoff_t startoff = 0; /* start offset of extent */
3510
3511 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3512 if (nextents == 0) {
3513 *idxp = 0;
3514 return NULL;
3515 }
3516 low = 0;
3517 if (ifp->if_flags & XFS_IFEXTIREC) {
3518 /* Find target extent list */
3519 int erp_idx = 0;
3520 erp = xfs_iext_bno_to_irec(ifp, bno, &erp_idx);
3521 base = erp->er_extbuf;
3522 high = erp->er_extcount - 1;
3523 } else {
3524 base = ifp->if_u1.if_extents;
3525 high = nextents - 1;
3526 }
3527 /* Binary search extent records */
3528 while (low <= high) {
3529 idx = (low + high) >> 1;
3530 ep = base + idx;
3531 startoff = xfs_bmbt_get_startoff(ep);
3532 blockcount = xfs_bmbt_get_blockcount(ep);
3533 if (bno < startoff) {
3534 high = idx - 1;
3535 } else if (bno >= startoff + blockcount) {
3536 low = idx + 1;
3537 } else {
3538 /* Convert back to file-based extent index */
3539 if (ifp->if_flags & XFS_IFEXTIREC) {
3540 idx += erp->er_extoff;
3541 }
3542 *idxp = idx;
3543 return ep;
3544 }
3545 }
3546 /* Convert back to file-based extent index */
3547 if (ifp->if_flags & XFS_IFEXTIREC) {
3548 idx += erp->er_extoff;
3549 }
3550 if (bno >= startoff + blockcount) {
3551 if (++idx == nextents) {
3552 ep = NULL;
3553 } else {
3554 ep = xfs_iext_get_ext(ifp, idx);
3555 }
3556 }
3557 *idxp = idx;
3558 return ep;
3559}
3560
3561/*
3562 * Return a pointer to the indirection array entry containing the
3563 * extent record for filesystem block bno. Store the index of the
3564 * target irec in *erp_idxp.
3565 */
3566xfs_ext_irec_t * /* pointer to found extent record */
3567xfs_iext_bno_to_irec(
3568 xfs_ifork_t *ifp, /* inode fork pointer */
3569 xfs_fileoff_t bno, /* block number to search for */
3570 int *erp_idxp) /* irec index of target ext list */
3571{
3572 xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
3573 xfs_ext_irec_t *erp_next; /* next indirection array entry */
3574 int erp_idx; /* indirection array index */
3575 int nlists; /* number of extent irec's (lists) */
3576 int high; /* binary search upper limit */
3577 int low; /* binary search lower limit */
3578
3579 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3580 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3581 erp_idx = 0;
3582 low = 0;
3583 high = nlists - 1;
3584 while (low <= high) {
3585 erp_idx = (low + high) >> 1;
3586 erp = &ifp->if_u1.if_ext_irec[erp_idx];
3587 erp_next = erp_idx < nlists - 1 ? erp + 1 : NULL;
3588 if (bno < xfs_bmbt_get_startoff(erp->er_extbuf)) {
3589 high = erp_idx - 1;
3590 } else if (erp_next && bno >=
3591 xfs_bmbt_get_startoff(erp_next->er_extbuf)) {
3592 low = erp_idx + 1;
3593 } else {
3594 break;
3595 }
3596 }
3597 *erp_idxp = erp_idx;
3598 return erp;
3599}
3600
3601/*
3602 * Return a pointer to the indirection array entry containing the
3603 * extent record at file extent index *idxp. Store the index of the
3604 * target irec in *erp_idxp and store the page index of the target
3605 * extent record in *idxp.
3606 */
3607xfs_ext_irec_t *
3608xfs_iext_idx_to_irec(
3609 xfs_ifork_t *ifp, /* inode fork pointer */
3610 xfs_extnum_t *idxp, /* extent index (file -> page) */
3611 int *erp_idxp, /* pointer to target irec */
3612 int realloc) /* new bytes were just added */
3613{
3614 xfs_ext_irec_t *prev; /* pointer to previous irec */
3615 xfs_ext_irec_t *erp = NULL; /* pointer to current irec */
3616 int erp_idx; /* indirection array index */
3617 int nlists; /* number of irec's (ex lists) */
3618 int high; /* binary search upper limit */
3619 int low; /* binary search lower limit */
3620 xfs_extnum_t page_idx = *idxp; /* extent index in target list */
3621
3622 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3623 ASSERT(page_idx >= 0);
3624 ASSERT(page_idx <= ifp->if_bytes / sizeof(xfs_bmbt_rec_t));
3625 ASSERT(page_idx < ifp->if_bytes / sizeof(xfs_bmbt_rec_t) || realloc);
3626
3627 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3628 erp_idx = 0;
3629 low = 0;
3630 high = nlists - 1;
3631
3632 /* Binary search extent irec's */
3633 while (low <= high) {
3634 erp_idx = (low + high) >> 1;
3635 erp = &ifp->if_u1.if_ext_irec[erp_idx];
3636 prev = erp_idx > 0 ? erp - 1 : NULL;
3637 if (page_idx < erp->er_extoff || (page_idx == erp->er_extoff &&
3638 realloc && prev && prev->er_extcount < XFS_LINEAR_EXTS)) {
3639 high = erp_idx - 1;
3640 } else if (page_idx > erp->er_extoff + erp->er_extcount ||
3641 (page_idx == erp->er_extoff + erp->er_extcount &&
3642 !realloc)) {
3643 low = erp_idx + 1;
3644 } else if (page_idx == erp->er_extoff + erp->er_extcount &&
3645 erp->er_extcount == XFS_LINEAR_EXTS) {
3646 ASSERT(realloc);
3647 page_idx = 0;
3648 erp_idx++;
3649 erp = erp_idx < nlists ? erp + 1 : NULL;
3650 break;
3651 } else {
3652 page_idx -= erp->er_extoff;
3653 break;
3654 }
3655 }
3656 *idxp = page_idx;
3657 *erp_idxp = erp_idx;
3658 return(erp);
3659}
3660
3661/*
3662 * Allocate and initialize an indirection array once the space needed
3663 * for incore extents increases above XFS_IEXT_BUFSZ.
3664 */
3665void
3666xfs_iext_irec_init(
3667 xfs_ifork_t *ifp) /* inode fork pointer */
3668{
3669 xfs_ext_irec_t *erp; /* indirection array pointer */
3670 xfs_extnum_t nextents; /* number of extents in file */
3671
3672 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
3673 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3674 ASSERT(nextents <= XFS_LINEAR_EXTS);
3675
3676 erp = kmem_alloc(sizeof(xfs_ext_irec_t), KM_NOFS);
3677
3678 if (nextents == 0) {
3679 ifp->if_u1.if_extents = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS);
3680 } else if (!ifp->if_real_bytes) {
3681 xfs_iext_inline_to_direct(ifp, XFS_IEXT_BUFSZ);
3682 } else if (ifp->if_real_bytes < XFS_IEXT_BUFSZ) {
3683 xfs_iext_realloc_direct(ifp, XFS_IEXT_BUFSZ);
3684 }
3685 erp->er_extbuf = ifp->if_u1.if_extents;
3686 erp->er_extcount = nextents;
3687 erp->er_extoff = 0;
3688
3689 ifp->if_flags |= XFS_IFEXTIREC;
3690 ifp->if_real_bytes = XFS_IEXT_BUFSZ;
3691 ifp->if_bytes = nextents * sizeof(xfs_bmbt_rec_t);
3692 ifp->if_u1.if_ext_irec = erp;
3693
3694 return;
3695}
3696
3697/*
3698 * Allocate and initialize a new entry in the indirection array.
3699 */
3700xfs_ext_irec_t *
3701xfs_iext_irec_new(
3702 xfs_ifork_t *ifp, /* inode fork pointer */
3703 int erp_idx) /* index for new irec */
3704{
3705 xfs_ext_irec_t *erp; /* indirection array pointer */
3706 int i; /* loop counter */
3707 int nlists; /* number of irec's (ex lists) */
3708
3709 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3710 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3711
3712 /* Resize indirection array */
3713 xfs_iext_realloc_indirect(ifp, ++nlists *
3714 sizeof(xfs_ext_irec_t));
3715 /*
3716 * Move records down in the array so the
3717 * new page can use erp_idx.
3718 */
3719 erp = ifp->if_u1.if_ext_irec;
3720 for (i = nlists - 1; i > erp_idx; i--) {
3721 memmove(&erp[i], &erp[i-1], sizeof(xfs_ext_irec_t));
3722 }
3723 ASSERT(i == erp_idx);
3724
3725 /* Initialize new extent record */
3726 erp = ifp->if_u1.if_ext_irec;
3727 erp[erp_idx].er_extbuf = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS);
3728 ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
3729 memset(erp[erp_idx].er_extbuf, 0, XFS_IEXT_BUFSZ);
3730 erp[erp_idx].er_extcount = 0;
3731 erp[erp_idx].er_extoff = erp_idx > 0 ?
3732 erp[erp_idx-1].er_extoff + erp[erp_idx-1].er_extcount : 0;
3733 return (&erp[erp_idx]);
3734}
3735
3736/*
3737 * Remove a record from the indirection array.
3738 */
3739void
3740xfs_iext_irec_remove(
3741 xfs_ifork_t *ifp, /* inode fork pointer */
3742 int erp_idx) /* irec index to remove */
3743{
3744 xfs_ext_irec_t *erp; /* indirection array pointer */
3745 int i; /* loop counter */
3746 int nlists; /* number of irec's (ex lists) */
3747
3748 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3749 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3750 erp = &ifp->if_u1.if_ext_irec[erp_idx];
3751 if (erp->er_extbuf) {
3752 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1,
3753 -erp->er_extcount);
3754 kmem_free(erp->er_extbuf);
3755 }
3756 /* Compact extent records */
3757 erp = ifp->if_u1.if_ext_irec;
3758 for (i = erp_idx; i < nlists - 1; i++) {
3759 memmove(&erp[i], &erp[i+1], sizeof(xfs_ext_irec_t));
3760 }
3761 /*
3762 * Manually free the last extent record from the indirection
3763 * array. A call to xfs_iext_realloc_indirect() with a size
3764 * of zero would result in a call to xfs_iext_destroy() which
3765 * would in turn call this function again, creating a nasty
3766 * infinite loop.
3767 */
3768 if (--nlists) {
3769 xfs_iext_realloc_indirect(ifp,
3770 nlists * sizeof(xfs_ext_irec_t));
3771 } else {
3772 kmem_free(ifp->if_u1.if_ext_irec);
3773 }
3774 ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
3775}
3776
3777/*
3778 * This is called to clean up large amounts of unused memory allocated
3779 * by the indirection array. Before compacting anything though, verify
3780 * that the indirection array is still needed and switch back to the
3781 * linear extent list (or even the inline buffer) if possible. The
3782 * compaction policy is as follows:
3783 *
3784 * Full Compaction: Extents fit into a single page (or inline buffer)
3785 * Partial Compaction: Extents occupy less than 50% of allocated space
3786 * No Compaction: Extents occupy at least 50% of allocated space
3787 */
3788void
3789xfs_iext_irec_compact(
3790 xfs_ifork_t *ifp) /* inode fork pointer */
3791{
3792 xfs_extnum_t nextents; /* number of extents in file */
3793 int nlists; /* number of irec's (ex lists) */
3794
3795 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3796 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3797 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3798
3799 if (nextents == 0) {
3800 xfs_iext_destroy(ifp);
3801 } else if (nextents <= XFS_INLINE_EXTS) {
3802 xfs_iext_indirect_to_direct(ifp);
3803 xfs_iext_direct_to_inline(ifp, nextents);
3804 } else if (nextents <= XFS_LINEAR_EXTS) {
3805 xfs_iext_indirect_to_direct(ifp);
3806 } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 1) {
3807 xfs_iext_irec_compact_pages(ifp);
3808 }
3809}
3810
3811/*
3812 * Combine extents from neighboring extent pages.
3813 */
3814void
3815xfs_iext_irec_compact_pages(
3816 xfs_ifork_t *ifp) /* inode fork pointer */
3817{
3818 xfs_ext_irec_t *erp, *erp_next;/* pointers to irec entries */
3819 int erp_idx = 0; /* indirection array index */
3820 int nlists; /* number of irec's (ex lists) */
3821
3822 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3823 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3824 while (erp_idx < nlists - 1) {
3825 erp = &ifp->if_u1.if_ext_irec[erp_idx];
3826 erp_next = erp + 1;
3827 if (erp_next->er_extcount <=
3828 (XFS_LINEAR_EXTS - erp->er_extcount)) {
3829 memcpy(&erp->er_extbuf[erp->er_extcount],
3830 erp_next->er_extbuf, erp_next->er_extcount *
3831 sizeof(xfs_bmbt_rec_t));
3832 erp->er_extcount += erp_next->er_extcount;
3833 /*
3834 * Free page before removing extent record
3835 * so er_extoffs don't get modified in
3836 * xfs_iext_irec_remove.
3837 */
3838 kmem_free(erp_next->er_extbuf);
3839 erp_next->er_extbuf = NULL;
3840 xfs_iext_irec_remove(ifp, erp_idx + 1);
3841 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3842 } else {
3843 erp_idx++;
3844 }
3845 }
3846}
3847
3848/*
3849 * This is called to update the er_extoff field in the indirection
3850 * array when extents have been added or removed from one of the
3851 * extent lists. erp_idx contains the irec index to begin updating
3852 * at and ext_diff contains the number of extents that were added
3853 * or removed.
3854 */
3855void
3856xfs_iext_irec_update_extoffs(
3857 xfs_ifork_t *ifp, /* inode fork pointer */
3858 int erp_idx, /* irec index to update */
3859 int ext_diff) /* number of new extents */
3860{
3861 int i; /* loop counter */
3862 int nlists; /* number of irec's (ex lists */
3863
3864 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3865 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3866 for (i = erp_idx; i < nlists; i++) {
3867 ifp->if_u1.if_ext_irec[i].er_extoff += ext_diff;
3868 }
3869}
1/*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18#include <linux/log2.h>
19
20#include "xfs.h"
21#include "xfs_fs.h"
22#include "xfs_shared.h"
23#include "xfs_format.h"
24#include "xfs_log_format.h"
25#include "xfs_trans_resv.h"
26#include "xfs_sb.h"
27#include "xfs_mount.h"
28#include "xfs_defer.h"
29#include "xfs_inode.h"
30#include "xfs_da_format.h"
31#include "xfs_da_btree.h"
32#include "xfs_dir2.h"
33#include "xfs_attr_sf.h"
34#include "xfs_attr.h"
35#include "xfs_trans_space.h"
36#include "xfs_trans.h"
37#include "xfs_buf_item.h"
38#include "xfs_inode_item.h"
39#include "xfs_ialloc.h"
40#include "xfs_bmap.h"
41#include "xfs_bmap_util.h"
42#include "xfs_error.h"
43#include "xfs_quota.h"
44#include "xfs_filestream.h"
45#include "xfs_cksum.h"
46#include "xfs_trace.h"
47#include "xfs_icache.h"
48#include "xfs_symlink.h"
49#include "xfs_trans_priv.h"
50#include "xfs_log.h"
51#include "xfs_bmap_btree.h"
52#include "xfs_reflink.h"
53
54kmem_zone_t *xfs_inode_zone;
55
56/*
57 * Used in xfs_itruncate_extents(). This is the maximum number of extents
58 * freed from a file in a single transaction.
59 */
60#define XFS_ITRUNC_MAX_EXTENTS 2
61
62STATIC int xfs_iflush_int(struct xfs_inode *, struct xfs_buf *);
63STATIC int xfs_iunlink(struct xfs_trans *, struct xfs_inode *);
64STATIC int xfs_iunlink_remove(struct xfs_trans *, struct xfs_inode *);
65
66/*
67 * helper function to extract extent size hint from inode
68 */
69xfs_extlen_t
70xfs_get_extsz_hint(
71 struct xfs_inode *ip)
72{
73 if ((ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE) && ip->i_d.di_extsize)
74 return ip->i_d.di_extsize;
75 if (XFS_IS_REALTIME_INODE(ip))
76 return ip->i_mount->m_sb.sb_rextsize;
77 return 0;
78}
79
80/*
81 * Helper function to extract CoW extent size hint from inode.
82 * Between the extent size hint and the CoW extent size hint, we
83 * return the greater of the two. If the value is zero (automatic),
84 * use the default size.
85 */
86xfs_extlen_t
87xfs_get_cowextsz_hint(
88 struct xfs_inode *ip)
89{
90 xfs_extlen_t a, b;
91
92 a = 0;
93 if (ip->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE)
94 a = ip->i_d.di_cowextsize;
95 b = xfs_get_extsz_hint(ip);
96
97 a = max(a, b);
98 if (a == 0)
99 return XFS_DEFAULT_COWEXTSZ_HINT;
100 return a;
101}
102
103/*
104 * These two are wrapper routines around the xfs_ilock() routine used to
105 * centralize some grungy code. They are used in places that wish to lock the
106 * inode solely for reading the extents. The reason these places can't just
107 * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to
108 * bringing in of the extents from disk for a file in b-tree format. If the
109 * inode is in b-tree format, then we need to lock the inode exclusively until
110 * the extents are read in. Locking it exclusively all the time would limit
111 * our parallelism unnecessarily, though. What we do instead is check to see
112 * if the extents have been read in yet, and only lock the inode exclusively
113 * if they have not.
114 *
115 * The functions return a value which should be given to the corresponding
116 * xfs_iunlock() call.
117 */
118uint
119xfs_ilock_data_map_shared(
120 struct xfs_inode *ip)
121{
122 uint lock_mode = XFS_ILOCK_SHARED;
123
124 if (ip->i_d.di_format == XFS_DINODE_FMT_BTREE &&
125 (ip->i_df.if_flags & XFS_IFEXTENTS) == 0)
126 lock_mode = XFS_ILOCK_EXCL;
127 xfs_ilock(ip, lock_mode);
128 return lock_mode;
129}
130
131uint
132xfs_ilock_attr_map_shared(
133 struct xfs_inode *ip)
134{
135 uint lock_mode = XFS_ILOCK_SHARED;
136
137 if (ip->i_d.di_aformat == XFS_DINODE_FMT_BTREE &&
138 (ip->i_afp->if_flags & XFS_IFEXTENTS) == 0)
139 lock_mode = XFS_ILOCK_EXCL;
140 xfs_ilock(ip, lock_mode);
141 return lock_mode;
142}
143
144/*
145 * In addition to i_rwsem in the VFS inode, the xfs inode contains 2
146 * multi-reader locks: i_mmap_lock and the i_lock. This routine allows
147 * various combinations of the locks to be obtained.
148 *
149 * The 3 locks should always be ordered so that the IO lock is obtained first,
150 * the mmap lock second and the ilock last in order to prevent deadlock.
151 *
152 * Basic locking order:
153 *
154 * i_rwsem -> i_mmap_lock -> page_lock -> i_ilock
155 *
156 * mmap_sem locking order:
157 *
158 * i_rwsem -> page lock -> mmap_sem
159 * mmap_sem -> i_mmap_lock -> page_lock
160 *
161 * The difference in mmap_sem locking order mean that we cannot hold the
162 * i_mmap_lock over syscall based read(2)/write(2) based IO. These IO paths can
163 * fault in pages during copy in/out (for buffered IO) or require the mmap_sem
164 * in get_user_pages() to map the user pages into the kernel address space for
165 * direct IO. Similarly the i_rwsem cannot be taken inside a page fault because
166 * page faults already hold the mmap_sem.
167 *
168 * Hence to serialise fully against both syscall and mmap based IO, we need to
169 * take both the i_rwsem and the i_mmap_lock. These locks should *only* be both
170 * taken in places where we need to invalidate the page cache in a race
171 * free manner (e.g. truncate, hole punch and other extent manipulation
172 * functions).
173 */
174void
175xfs_ilock(
176 xfs_inode_t *ip,
177 uint lock_flags)
178{
179 trace_xfs_ilock(ip, lock_flags, _RET_IP_);
180
181 /*
182 * You can't set both SHARED and EXCL for the same lock,
183 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
184 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
185 */
186 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
187 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
188 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
189 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
190 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
191 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
192 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
193
194 if (lock_flags & XFS_IOLOCK_EXCL) {
195 down_write_nested(&VFS_I(ip)->i_rwsem,
196 XFS_IOLOCK_DEP(lock_flags));
197 } else if (lock_flags & XFS_IOLOCK_SHARED) {
198 down_read_nested(&VFS_I(ip)->i_rwsem,
199 XFS_IOLOCK_DEP(lock_flags));
200 }
201
202 if (lock_flags & XFS_MMAPLOCK_EXCL)
203 mrupdate_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
204 else if (lock_flags & XFS_MMAPLOCK_SHARED)
205 mraccess_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
206
207 if (lock_flags & XFS_ILOCK_EXCL)
208 mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
209 else if (lock_flags & XFS_ILOCK_SHARED)
210 mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
211}
212
213/*
214 * This is just like xfs_ilock(), except that the caller
215 * is guaranteed not to sleep. It returns 1 if it gets
216 * the requested locks and 0 otherwise. If the IO lock is
217 * obtained but the inode lock cannot be, then the IO lock
218 * is dropped before returning.
219 *
220 * ip -- the inode being locked
221 * lock_flags -- this parameter indicates the inode's locks to be
222 * to be locked. See the comment for xfs_ilock() for a list
223 * of valid values.
224 */
225int
226xfs_ilock_nowait(
227 xfs_inode_t *ip,
228 uint lock_flags)
229{
230 trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_);
231
232 /*
233 * You can't set both SHARED and EXCL for the same lock,
234 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
235 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
236 */
237 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
238 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
239 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
240 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
241 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
242 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
243 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
244
245 if (lock_flags & XFS_IOLOCK_EXCL) {
246 if (!down_write_trylock(&VFS_I(ip)->i_rwsem))
247 goto out;
248 } else if (lock_flags & XFS_IOLOCK_SHARED) {
249 if (!down_read_trylock(&VFS_I(ip)->i_rwsem))
250 goto out;
251 }
252
253 if (lock_flags & XFS_MMAPLOCK_EXCL) {
254 if (!mrtryupdate(&ip->i_mmaplock))
255 goto out_undo_iolock;
256 } else if (lock_flags & XFS_MMAPLOCK_SHARED) {
257 if (!mrtryaccess(&ip->i_mmaplock))
258 goto out_undo_iolock;
259 }
260
261 if (lock_flags & XFS_ILOCK_EXCL) {
262 if (!mrtryupdate(&ip->i_lock))
263 goto out_undo_mmaplock;
264 } else if (lock_flags & XFS_ILOCK_SHARED) {
265 if (!mrtryaccess(&ip->i_lock))
266 goto out_undo_mmaplock;
267 }
268 return 1;
269
270out_undo_mmaplock:
271 if (lock_flags & XFS_MMAPLOCK_EXCL)
272 mrunlock_excl(&ip->i_mmaplock);
273 else if (lock_flags & XFS_MMAPLOCK_SHARED)
274 mrunlock_shared(&ip->i_mmaplock);
275out_undo_iolock:
276 if (lock_flags & XFS_IOLOCK_EXCL)
277 up_write(&VFS_I(ip)->i_rwsem);
278 else if (lock_flags & XFS_IOLOCK_SHARED)
279 up_read(&VFS_I(ip)->i_rwsem);
280out:
281 return 0;
282}
283
284/*
285 * xfs_iunlock() is used to drop the inode locks acquired with
286 * xfs_ilock() and xfs_ilock_nowait(). The caller must pass
287 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
288 * that we know which locks to drop.
289 *
290 * ip -- the inode being unlocked
291 * lock_flags -- this parameter indicates the inode's locks to be
292 * to be unlocked. See the comment for xfs_ilock() for a list
293 * of valid values for this parameter.
294 *
295 */
296void
297xfs_iunlock(
298 xfs_inode_t *ip,
299 uint lock_flags)
300{
301 /*
302 * You can't set both SHARED and EXCL for the same lock,
303 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
304 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
305 */
306 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
307 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
308 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
309 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
310 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
311 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
312 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
313 ASSERT(lock_flags != 0);
314
315 if (lock_flags & XFS_IOLOCK_EXCL)
316 up_write(&VFS_I(ip)->i_rwsem);
317 else if (lock_flags & XFS_IOLOCK_SHARED)
318 up_read(&VFS_I(ip)->i_rwsem);
319
320 if (lock_flags & XFS_MMAPLOCK_EXCL)
321 mrunlock_excl(&ip->i_mmaplock);
322 else if (lock_flags & XFS_MMAPLOCK_SHARED)
323 mrunlock_shared(&ip->i_mmaplock);
324
325 if (lock_flags & XFS_ILOCK_EXCL)
326 mrunlock_excl(&ip->i_lock);
327 else if (lock_flags & XFS_ILOCK_SHARED)
328 mrunlock_shared(&ip->i_lock);
329
330 trace_xfs_iunlock(ip, lock_flags, _RET_IP_);
331}
332
333/*
334 * give up write locks. the i/o lock cannot be held nested
335 * if it is being demoted.
336 */
337void
338xfs_ilock_demote(
339 xfs_inode_t *ip,
340 uint lock_flags)
341{
342 ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL));
343 ASSERT((lock_flags &
344 ~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
345
346 if (lock_flags & XFS_ILOCK_EXCL)
347 mrdemote(&ip->i_lock);
348 if (lock_flags & XFS_MMAPLOCK_EXCL)
349 mrdemote(&ip->i_mmaplock);
350 if (lock_flags & XFS_IOLOCK_EXCL)
351 downgrade_write(&VFS_I(ip)->i_rwsem);
352
353 trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_);
354}
355
356#if defined(DEBUG) || defined(XFS_WARN)
357int
358xfs_isilocked(
359 xfs_inode_t *ip,
360 uint lock_flags)
361{
362 if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) {
363 if (!(lock_flags & XFS_ILOCK_SHARED))
364 return !!ip->i_lock.mr_writer;
365 return rwsem_is_locked(&ip->i_lock.mr_lock);
366 }
367
368 if (lock_flags & (XFS_MMAPLOCK_EXCL|XFS_MMAPLOCK_SHARED)) {
369 if (!(lock_flags & XFS_MMAPLOCK_SHARED))
370 return !!ip->i_mmaplock.mr_writer;
371 return rwsem_is_locked(&ip->i_mmaplock.mr_lock);
372 }
373
374 if (lock_flags & (XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)) {
375 if (!(lock_flags & XFS_IOLOCK_SHARED))
376 return !debug_locks ||
377 lockdep_is_held_type(&VFS_I(ip)->i_rwsem, 0);
378 return rwsem_is_locked(&VFS_I(ip)->i_rwsem);
379 }
380
381 ASSERT(0);
382 return 0;
383}
384#endif
385
386#ifdef DEBUG
387int xfs_locked_n;
388int xfs_small_retries;
389int xfs_middle_retries;
390int xfs_lots_retries;
391int xfs_lock_delays;
392#endif
393
394/*
395 * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when
396 * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined
397 * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build
398 * errors and warnings.
399 */
400#if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP)
401static bool
402xfs_lockdep_subclass_ok(
403 int subclass)
404{
405 return subclass < MAX_LOCKDEP_SUBCLASSES;
406}
407#else
408#define xfs_lockdep_subclass_ok(subclass) (true)
409#endif
410
411/*
412 * Bump the subclass so xfs_lock_inodes() acquires each lock with a different
413 * value. This can be called for any type of inode lock combination, including
414 * parent locking. Care must be taken to ensure we don't overrun the subclass
415 * storage fields in the class mask we build.
416 */
417static inline int
418xfs_lock_inumorder(int lock_mode, int subclass)
419{
420 int class = 0;
421
422 ASSERT(!(lock_mode & (XFS_ILOCK_PARENT | XFS_ILOCK_RTBITMAP |
423 XFS_ILOCK_RTSUM)));
424 ASSERT(xfs_lockdep_subclass_ok(subclass));
425
426 if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) {
427 ASSERT(subclass <= XFS_IOLOCK_MAX_SUBCLASS);
428 class += subclass << XFS_IOLOCK_SHIFT;
429 }
430
431 if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) {
432 ASSERT(subclass <= XFS_MMAPLOCK_MAX_SUBCLASS);
433 class += subclass << XFS_MMAPLOCK_SHIFT;
434 }
435
436 if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) {
437 ASSERT(subclass <= XFS_ILOCK_MAX_SUBCLASS);
438 class += subclass << XFS_ILOCK_SHIFT;
439 }
440
441 return (lock_mode & ~XFS_LOCK_SUBCLASS_MASK) | class;
442}
443
444/*
445 * The following routine will lock n inodes in exclusive mode. We assume the
446 * caller calls us with the inodes in i_ino order.
447 *
448 * We need to detect deadlock where an inode that we lock is in the AIL and we
449 * start waiting for another inode that is locked by a thread in a long running
450 * transaction (such as truncate). This can result in deadlock since the long
451 * running trans might need to wait for the inode we just locked in order to
452 * push the tail and free space in the log.
453 *
454 * xfs_lock_inodes() can only be used to lock one type of lock at a time -
455 * the iolock, the mmaplock or the ilock, but not more than one at a time. If we
456 * lock more than one at a time, lockdep will report false positives saying we
457 * have violated locking orders.
458 */
459static void
460xfs_lock_inodes(
461 xfs_inode_t **ips,
462 int inodes,
463 uint lock_mode)
464{
465 int attempts = 0, i, j, try_lock;
466 xfs_log_item_t *lp;
467
468 /*
469 * Currently supports between 2 and 5 inodes with exclusive locking. We
470 * support an arbitrary depth of locking here, but absolute limits on
471 * inodes depend on the the type of locking and the limits placed by
472 * lockdep annotations in xfs_lock_inumorder. These are all checked by
473 * the asserts.
474 */
475 ASSERT(ips && inodes >= 2 && inodes <= 5);
476 ASSERT(lock_mode & (XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL |
477 XFS_ILOCK_EXCL));
478 ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED | XFS_MMAPLOCK_SHARED |
479 XFS_ILOCK_SHARED)));
480 ASSERT(!(lock_mode & XFS_MMAPLOCK_EXCL) ||
481 inodes <= XFS_MMAPLOCK_MAX_SUBCLASS + 1);
482 ASSERT(!(lock_mode & XFS_ILOCK_EXCL) ||
483 inodes <= XFS_ILOCK_MAX_SUBCLASS + 1);
484
485 if (lock_mode & XFS_IOLOCK_EXCL) {
486 ASSERT(!(lock_mode & (XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL)));
487 } else if (lock_mode & XFS_MMAPLOCK_EXCL)
488 ASSERT(!(lock_mode & XFS_ILOCK_EXCL));
489
490 try_lock = 0;
491 i = 0;
492again:
493 for (; i < inodes; i++) {
494 ASSERT(ips[i]);
495
496 if (i && (ips[i] == ips[i - 1])) /* Already locked */
497 continue;
498
499 /*
500 * If try_lock is not set yet, make sure all locked inodes are
501 * not in the AIL. If any are, set try_lock to be used later.
502 */
503 if (!try_lock) {
504 for (j = (i - 1); j >= 0 && !try_lock; j--) {
505 lp = (xfs_log_item_t *)ips[j]->i_itemp;
506 if (lp && (lp->li_flags & XFS_LI_IN_AIL))
507 try_lock++;
508 }
509 }
510
511 /*
512 * If any of the previous locks we have locked is in the AIL,
513 * we must TRY to get the second and subsequent locks. If
514 * we can't get any, we must release all we have
515 * and try again.
516 */
517 if (!try_lock) {
518 xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i));
519 continue;
520 }
521
522 /* try_lock means we have an inode locked that is in the AIL. */
523 ASSERT(i != 0);
524 if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i)))
525 continue;
526
527 /*
528 * Unlock all previous guys and try again. xfs_iunlock will try
529 * to push the tail if the inode is in the AIL.
530 */
531 attempts++;
532 for (j = i - 1; j >= 0; j--) {
533 /*
534 * Check to see if we've already unlocked this one. Not
535 * the first one going back, and the inode ptr is the
536 * same.
537 */
538 if (j != (i - 1) && ips[j] == ips[j + 1])
539 continue;
540
541 xfs_iunlock(ips[j], lock_mode);
542 }
543
544 if ((attempts % 5) == 0) {
545 delay(1); /* Don't just spin the CPU */
546#ifdef DEBUG
547 xfs_lock_delays++;
548#endif
549 }
550 i = 0;
551 try_lock = 0;
552 goto again;
553 }
554
555#ifdef DEBUG
556 if (attempts) {
557 if (attempts < 5) xfs_small_retries++;
558 else if (attempts < 100) xfs_middle_retries++;
559 else xfs_lots_retries++;
560 } else {
561 xfs_locked_n++;
562 }
563#endif
564}
565
566/*
567 * xfs_lock_two_inodes() can only be used to lock one type of lock at a time -
568 * the iolock, the mmaplock or the ilock, but not more than one at a time. If we
569 * lock more than one at a time, lockdep will report false positives saying we
570 * have violated locking orders.
571 */
572void
573xfs_lock_two_inodes(
574 xfs_inode_t *ip0,
575 xfs_inode_t *ip1,
576 uint lock_mode)
577{
578 xfs_inode_t *temp;
579 int attempts = 0;
580 xfs_log_item_t *lp;
581
582 ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
583 if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL))
584 ASSERT(!(lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
585
586 ASSERT(ip0->i_ino != ip1->i_ino);
587
588 if (ip0->i_ino > ip1->i_ino) {
589 temp = ip0;
590 ip0 = ip1;
591 ip1 = temp;
592 }
593
594 again:
595 xfs_ilock(ip0, xfs_lock_inumorder(lock_mode, 0));
596
597 /*
598 * If the first lock we have locked is in the AIL, we must TRY to get
599 * the second lock. If we can't get it, we must release the first one
600 * and try again.
601 */
602 lp = (xfs_log_item_t *)ip0->i_itemp;
603 if (lp && (lp->li_flags & XFS_LI_IN_AIL)) {
604 if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(lock_mode, 1))) {
605 xfs_iunlock(ip0, lock_mode);
606 if ((++attempts % 5) == 0)
607 delay(1); /* Don't just spin the CPU */
608 goto again;
609 }
610 } else {
611 xfs_ilock(ip1, xfs_lock_inumorder(lock_mode, 1));
612 }
613}
614
615
616void
617__xfs_iflock(
618 struct xfs_inode *ip)
619{
620 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IFLOCK_BIT);
621 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IFLOCK_BIT);
622
623 do {
624 prepare_to_wait_exclusive(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
625 if (xfs_isiflocked(ip))
626 io_schedule();
627 } while (!xfs_iflock_nowait(ip));
628
629 finish_wait(wq, &wait.wait);
630}
631
632STATIC uint
633_xfs_dic2xflags(
634 __uint16_t di_flags,
635 uint64_t di_flags2,
636 bool has_attr)
637{
638 uint flags = 0;
639
640 if (di_flags & XFS_DIFLAG_ANY) {
641 if (di_flags & XFS_DIFLAG_REALTIME)
642 flags |= FS_XFLAG_REALTIME;
643 if (di_flags & XFS_DIFLAG_PREALLOC)
644 flags |= FS_XFLAG_PREALLOC;
645 if (di_flags & XFS_DIFLAG_IMMUTABLE)
646 flags |= FS_XFLAG_IMMUTABLE;
647 if (di_flags & XFS_DIFLAG_APPEND)
648 flags |= FS_XFLAG_APPEND;
649 if (di_flags & XFS_DIFLAG_SYNC)
650 flags |= FS_XFLAG_SYNC;
651 if (di_flags & XFS_DIFLAG_NOATIME)
652 flags |= FS_XFLAG_NOATIME;
653 if (di_flags & XFS_DIFLAG_NODUMP)
654 flags |= FS_XFLAG_NODUMP;
655 if (di_flags & XFS_DIFLAG_RTINHERIT)
656 flags |= FS_XFLAG_RTINHERIT;
657 if (di_flags & XFS_DIFLAG_PROJINHERIT)
658 flags |= FS_XFLAG_PROJINHERIT;
659 if (di_flags & XFS_DIFLAG_NOSYMLINKS)
660 flags |= FS_XFLAG_NOSYMLINKS;
661 if (di_flags & XFS_DIFLAG_EXTSIZE)
662 flags |= FS_XFLAG_EXTSIZE;
663 if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
664 flags |= FS_XFLAG_EXTSZINHERIT;
665 if (di_flags & XFS_DIFLAG_NODEFRAG)
666 flags |= FS_XFLAG_NODEFRAG;
667 if (di_flags & XFS_DIFLAG_FILESTREAM)
668 flags |= FS_XFLAG_FILESTREAM;
669 }
670
671 if (di_flags2 & XFS_DIFLAG2_ANY) {
672 if (di_flags2 & XFS_DIFLAG2_DAX)
673 flags |= FS_XFLAG_DAX;
674 if (di_flags2 & XFS_DIFLAG2_COWEXTSIZE)
675 flags |= FS_XFLAG_COWEXTSIZE;
676 }
677
678 if (has_attr)
679 flags |= FS_XFLAG_HASATTR;
680
681 return flags;
682}
683
684uint
685xfs_ip2xflags(
686 struct xfs_inode *ip)
687{
688 struct xfs_icdinode *dic = &ip->i_d;
689
690 return _xfs_dic2xflags(dic->di_flags, dic->di_flags2, XFS_IFORK_Q(ip));
691}
692
693/*
694 * Lookups up an inode from "name". If ci_name is not NULL, then a CI match
695 * is allowed, otherwise it has to be an exact match. If a CI match is found,
696 * ci_name->name will point to a the actual name (caller must free) or
697 * will be set to NULL if an exact match is found.
698 */
699int
700xfs_lookup(
701 xfs_inode_t *dp,
702 struct xfs_name *name,
703 xfs_inode_t **ipp,
704 struct xfs_name *ci_name)
705{
706 xfs_ino_t inum;
707 int error;
708
709 trace_xfs_lookup(dp, name);
710
711 if (XFS_FORCED_SHUTDOWN(dp->i_mount))
712 return -EIO;
713
714 error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name);
715 if (error)
716 goto out_unlock;
717
718 error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp);
719 if (error)
720 goto out_free_name;
721
722 return 0;
723
724out_free_name:
725 if (ci_name)
726 kmem_free(ci_name->name);
727out_unlock:
728 *ipp = NULL;
729 return error;
730}
731
732/*
733 * Allocate an inode on disk and return a copy of its in-core version.
734 * The in-core inode is locked exclusively. Set mode, nlink, and rdev
735 * appropriately within the inode. The uid and gid for the inode are
736 * set according to the contents of the given cred structure.
737 *
738 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
739 * has a free inode available, call xfs_iget() to obtain the in-core
740 * version of the allocated inode. Finally, fill in the inode and
741 * log its initial contents. In this case, ialloc_context would be
742 * set to NULL.
743 *
744 * If xfs_dialloc() does not have an available inode, it will replenish
745 * its supply by doing an allocation. Since we can only do one
746 * allocation within a transaction without deadlocks, we must commit
747 * the current transaction before returning the inode itself.
748 * In this case, therefore, we will set ialloc_context and return.
749 * The caller should then commit the current transaction, start a new
750 * transaction, and call xfs_ialloc() again to actually get the inode.
751 *
752 * To ensure that some other process does not grab the inode that
753 * was allocated during the first call to xfs_ialloc(), this routine
754 * also returns the [locked] bp pointing to the head of the freelist
755 * as ialloc_context. The caller should hold this buffer across
756 * the commit and pass it back into this routine on the second call.
757 *
758 * If we are allocating quota inodes, we do not have a parent inode
759 * to attach to or associate with (i.e. pip == NULL) because they
760 * are not linked into the directory structure - they are attached
761 * directly to the superblock - and so have no parent.
762 */
763static int
764xfs_ialloc(
765 xfs_trans_t *tp,
766 xfs_inode_t *pip,
767 umode_t mode,
768 xfs_nlink_t nlink,
769 xfs_dev_t rdev,
770 prid_t prid,
771 int okalloc,
772 xfs_buf_t **ialloc_context,
773 xfs_inode_t **ipp)
774{
775 struct xfs_mount *mp = tp->t_mountp;
776 xfs_ino_t ino;
777 xfs_inode_t *ip;
778 uint flags;
779 int error;
780 struct timespec tv;
781 struct inode *inode;
782
783 /*
784 * Call the space management code to pick
785 * the on-disk inode to be allocated.
786 */
787 error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
788 ialloc_context, &ino);
789 if (error)
790 return error;
791 if (*ialloc_context || ino == NULLFSINO) {
792 *ipp = NULL;
793 return 0;
794 }
795 ASSERT(*ialloc_context == NULL);
796
797 /*
798 * Get the in-core inode with the lock held exclusively.
799 * This is because we're setting fields here we need
800 * to prevent others from looking at until we're done.
801 */
802 error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE,
803 XFS_ILOCK_EXCL, &ip);
804 if (error)
805 return error;
806 ASSERT(ip != NULL);
807 inode = VFS_I(ip);
808
809 /*
810 * We always convert v1 inodes to v2 now - we only support filesystems
811 * with >= v2 inode capability, so there is no reason for ever leaving
812 * an inode in v1 format.
813 */
814 if (ip->i_d.di_version == 1)
815 ip->i_d.di_version = 2;
816
817 inode->i_mode = mode;
818 set_nlink(inode, nlink);
819 ip->i_d.di_uid = xfs_kuid_to_uid(current_fsuid());
820 ip->i_d.di_gid = xfs_kgid_to_gid(current_fsgid());
821 xfs_set_projid(ip, prid);
822
823 if (pip && XFS_INHERIT_GID(pip)) {
824 ip->i_d.di_gid = pip->i_d.di_gid;
825 if ((VFS_I(pip)->i_mode & S_ISGID) && S_ISDIR(mode))
826 inode->i_mode |= S_ISGID;
827 }
828
829 /*
830 * If the group ID of the new file does not match the effective group
831 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
832 * (and only if the irix_sgid_inherit compatibility variable is set).
833 */
834 if ((irix_sgid_inherit) &&
835 (inode->i_mode & S_ISGID) &&
836 (!in_group_p(xfs_gid_to_kgid(ip->i_d.di_gid))))
837 inode->i_mode &= ~S_ISGID;
838
839 ip->i_d.di_size = 0;
840 ip->i_d.di_nextents = 0;
841 ASSERT(ip->i_d.di_nblocks == 0);
842
843 tv = current_time(inode);
844 inode->i_mtime = tv;
845 inode->i_atime = tv;
846 inode->i_ctime = tv;
847
848 ip->i_d.di_extsize = 0;
849 ip->i_d.di_dmevmask = 0;
850 ip->i_d.di_dmstate = 0;
851 ip->i_d.di_flags = 0;
852
853 if (ip->i_d.di_version == 3) {
854 inode->i_version = 1;
855 ip->i_d.di_flags2 = 0;
856 ip->i_d.di_cowextsize = 0;
857 ip->i_d.di_crtime.t_sec = (__int32_t)tv.tv_sec;
858 ip->i_d.di_crtime.t_nsec = (__int32_t)tv.tv_nsec;
859 }
860
861
862 flags = XFS_ILOG_CORE;
863 switch (mode & S_IFMT) {
864 case S_IFIFO:
865 case S_IFCHR:
866 case S_IFBLK:
867 case S_IFSOCK:
868 ip->i_d.di_format = XFS_DINODE_FMT_DEV;
869 ip->i_df.if_u2.if_rdev = rdev;
870 ip->i_df.if_flags = 0;
871 flags |= XFS_ILOG_DEV;
872 break;
873 case S_IFREG:
874 case S_IFDIR:
875 if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
876 uint64_t di_flags2 = 0;
877 uint di_flags = 0;
878
879 if (S_ISDIR(mode)) {
880 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
881 di_flags |= XFS_DIFLAG_RTINHERIT;
882 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
883 di_flags |= XFS_DIFLAG_EXTSZINHERIT;
884 ip->i_d.di_extsize = pip->i_d.di_extsize;
885 }
886 if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
887 di_flags |= XFS_DIFLAG_PROJINHERIT;
888 } else if (S_ISREG(mode)) {
889 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
890 di_flags |= XFS_DIFLAG_REALTIME;
891 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
892 di_flags |= XFS_DIFLAG_EXTSIZE;
893 ip->i_d.di_extsize = pip->i_d.di_extsize;
894 }
895 }
896 if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
897 xfs_inherit_noatime)
898 di_flags |= XFS_DIFLAG_NOATIME;
899 if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
900 xfs_inherit_nodump)
901 di_flags |= XFS_DIFLAG_NODUMP;
902 if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
903 xfs_inherit_sync)
904 di_flags |= XFS_DIFLAG_SYNC;
905 if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
906 xfs_inherit_nosymlinks)
907 di_flags |= XFS_DIFLAG_NOSYMLINKS;
908 if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
909 xfs_inherit_nodefrag)
910 di_flags |= XFS_DIFLAG_NODEFRAG;
911 if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
912 di_flags |= XFS_DIFLAG_FILESTREAM;
913 if (pip->i_d.di_flags2 & XFS_DIFLAG2_DAX)
914 di_flags2 |= XFS_DIFLAG2_DAX;
915
916 ip->i_d.di_flags |= di_flags;
917 ip->i_d.di_flags2 |= di_flags2;
918 }
919 if (pip &&
920 (pip->i_d.di_flags2 & XFS_DIFLAG2_ANY) &&
921 pip->i_d.di_version == 3 &&
922 ip->i_d.di_version == 3) {
923 if (pip->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE) {
924 ip->i_d.di_flags2 |= XFS_DIFLAG2_COWEXTSIZE;
925 ip->i_d.di_cowextsize = pip->i_d.di_cowextsize;
926 }
927 }
928 /* FALLTHROUGH */
929 case S_IFLNK:
930 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
931 ip->i_df.if_flags = XFS_IFEXTENTS;
932 ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
933 ip->i_df.if_u1.if_extents = NULL;
934 break;
935 default:
936 ASSERT(0);
937 }
938 /*
939 * Attribute fork settings for new inode.
940 */
941 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
942 ip->i_d.di_anextents = 0;
943
944 /*
945 * Log the new values stuffed into the inode.
946 */
947 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
948 xfs_trans_log_inode(tp, ip, flags);
949
950 /* now that we have an i_mode we can setup the inode structure */
951 xfs_setup_inode(ip);
952
953 *ipp = ip;
954 return 0;
955}
956
957/*
958 * Allocates a new inode from disk and return a pointer to the
959 * incore copy. This routine will internally commit the current
960 * transaction and allocate a new one if the Space Manager needed
961 * to do an allocation to replenish the inode free-list.
962 *
963 * This routine is designed to be called from xfs_create and
964 * xfs_create_dir.
965 *
966 */
967int
968xfs_dir_ialloc(
969 xfs_trans_t **tpp, /* input: current transaction;
970 output: may be a new transaction. */
971 xfs_inode_t *dp, /* directory within whose allocate
972 the inode. */
973 umode_t mode,
974 xfs_nlink_t nlink,
975 xfs_dev_t rdev,
976 prid_t prid, /* project id */
977 int okalloc, /* ok to allocate new space */
978 xfs_inode_t **ipp, /* pointer to inode; it will be
979 locked. */
980 int *committed)
981
982{
983 xfs_trans_t *tp;
984 xfs_inode_t *ip;
985 xfs_buf_t *ialloc_context = NULL;
986 int code;
987 void *dqinfo;
988 uint tflags;
989
990 tp = *tpp;
991 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
992
993 /*
994 * xfs_ialloc will return a pointer to an incore inode if
995 * the Space Manager has an available inode on the free
996 * list. Otherwise, it will do an allocation and replenish
997 * the freelist. Since we can only do one allocation per
998 * transaction without deadlocks, we will need to commit the
999 * current transaction and start a new one. We will then
1000 * need to call xfs_ialloc again to get the inode.
1001 *
1002 * If xfs_ialloc did an allocation to replenish the freelist,
1003 * it returns the bp containing the head of the freelist as
1004 * ialloc_context. We will hold a lock on it across the
1005 * transaction commit so that no other process can steal
1006 * the inode(s) that we've just allocated.
1007 */
1008 code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid, okalloc,
1009 &ialloc_context, &ip);
1010
1011 /*
1012 * Return an error if we were unable to allocate a new inode.
1013 * This should only happen if we run out of space on disk or
1014 * encounter a disk error.
1015 */
1016 if (code) {
1017 *ipp = NULL;
1018 return code;
1019 }
1020 if (!ialloc_context && !ip) {
1021 *ipp = NULL;
1022 return -ENOSPC;
1023 }
1024
1025 /*
1026 * If the AGI buffer is non-NULL, then we were unable to get an
1027 * inode in one operation. We need to commit the current
1028 * transaction and call xfs_ialloc() again. It is guaranteed
1029 * to succeed the second time.
1030 */
1031 if (ialloc_context) {
1032 /*
1033 * Normally, xfs_trans_commit releases all the locks.
1034 * We call bhold to hang on to the ialloc_context across
1035 * the commit. Holding this buffer prevents any other
1036 * processes from doing any allocations in this
1037 * allocation group.
1038 */
1039 xfs_trans_bhold(tp, ialloc_context);
1040
1041 /*
1042 * We want the quota changes to be associated with the next
1043 * transaction, NOT this one. So, detach the dqinfo from this
1044 * and attach it to the next transaction.
1045 */
1046 dqinfo = NULL;
1047 tflags = 0;
1048 if (tp->t_dqinfo) {
1049 dqinfo = (void *)tp->t_dqinfo;
1050 tp->t_dqinfo = NULL;
1051 tflags = tp->t_flags & XFS_TRANS_DQ_DIRTY;
1052 tp->t_flags &= ~(XFS_TRANS_DQ_DIRTY);
1053 }
1054
1055 code = xfs_trans_roll(&tp, NULL);
1056 if (committed != NULL)
1057 *committed = 1;
1058
1059 /*
1060 * Re-attach the quota info that we detached from prev trx.
1061 */
1062 if (dqinfo) {
1063 tp->t_dqinfo = dqinfo;
1064 tp->t_flags |= tflags;
1065 }
1066
1067 if (code) {
1068 xfs_buf_relse(ialloc_context);
1069 *tpp = tp;
1070 *ipp = NULL;
1071 return code;
1072 }
1073 xfs_trans_bjoin(tp, ialloc_context);
1074
1075 /*
1076 * Call ialloc again. Since we've locked out all
1077 * other allocations in this allocation group,
1078 * this call should always succeed.
1079 */
1080 code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid,
1081 okalloc, &ialloc_context, &ip);
1082
1083 /*
1084 * If we get an error at this point, return to the caller
1085 * so that the current transaction can be aborted.
1086 */
1087 if (code) {
1088 *tpp = tp;
1089 *ipp = NULL;
1090 return code;
1091 }
1092 ASSERT(!ialloc_context && ip);
1093
1094 } else {
1095 if (committed != NULL)
1096 *committed = 0;
1097 }
1098
1099 *ipp = ip;
1100 *tpp = tp;
1101
1102 return 0;
1103}
1104
1105/*
1106 * Decrement the link count on an inode & log the change. If this causes the
1107 * link count to go to zero, move the inode to AGI unlinked list so that it can
1108 * be freed when the last active reference goes away via xfs_inactive().
1109 */
1110static int /* error */
1111xfs_droplink(
1112 xfs_trans_t *tp,
1113 xfs_inode_t *ip)
1114{
1115 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1116
1117 drop_nlink(VFS_I(ip));
1118 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1119
1120 if (VFS_I(ip)->i_nlink)
1121 return 0;
1122
1123 return xfs_iunlink(tp, ip);
1124}
1125
1126/*
1127 * Increment the link count on an inode & log the change.
1128 */
1129static int
1130xfs_bumplink(
1131 xfs_trans_t *tp,
1132 xfs_inode_t *ip)
1133{
1134 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1135
1136 ASSERT(ip->i_d.di_version > 1);
1137 inc_nlink(VFS_I(ip));
1138 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1139 return 0;
1140}
1141
1142int
1143xfs_create(
1144 xfs_inode_t *dp,
1145 struct xfs_name *name,
1146 umode_t mode,
1147 xfs_dev_t rdev,
1148 xfs_inode_t **ipp)
1149{
1150 int is_dir = S_ISDIR(mode);
1151 struct xfs_mount *mp = dp->i_mount;
1152 struct xfs_inode *ip = NULL;
1153 struct xfs_trans *tp = NULL;
1154 int error;
1155 struct xfs_defer_ops dfops;
1156 xfs_fsblock_t first_block;
1157 bool unlock_dp_on_error = false;
1158 prid_t prid;
1159 struct xfs_dquot *udqp = NULL;
1160 struct xfs_dquot *gdqp = NULL;
1161 struct xfs_dquot *pdqp = NULL;
1162 struct xfs_trans_res *tres;
1163 uint resblks;
1164
1165 trace_xfs_create(dp, name);
1166
1167 if (XFS_FORCED_SHUTDOWN(mp))
1168 return -EIO;
1169
1170 prid = xfs_get_initial_prid(dp);
1171
1172 /*
1173 * Make sure that we have allocated dquot(s) on disk.
1174 */
1175 error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()),
1176 xfs_kgid_to_gid(current_fsgid()), prid,
1177 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1178 &udqp, &gdqp, &pdqp);
1179 if (error)
1180 return error;
1181
1182 if (is_dir) {
1183 rdev = 0;
1184 resblks = XFS_MKDIR_SPACE_RES(mp, name->len);
1185 tres = &M_RES(mp)->tr_mkdir;
1186 } else {
1187 resblks = XFS_CREATE_SPACE_RES(mp, name->len);
1188 tres = &M_RES(mp)->tr_create;
1189 }
1190
1191 /*
1192 * Initially assume that the file does not exist and
1193 * reserve the resources for that case. If that is not
1194 * the case we'll drop the one we have and get a more
1195 * appropriate transaction later.
1196 */
1197 error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
1198 if (error == -ENOSPC) {
1199 /* flush outstanding delalloc blocks and retry */
1200 xfs_flush_inodes(mp);
1201 error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
1202 }
1203 if (error == -ENOSPC) {
1204 /* No space at all so try a "no-allocation" reservation */
1205 resblks = 0;
1206 error = xfs_trans_alloc(mp, tres, 0, 0, 0, &tp);
1207 }
1208 if (error)
1209 goto out_release_inode;
1210
1211 xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT);
1212 unlock_dp_on_error = true;
1213
1214 xfs_defer_init(&dfops, &first_block);
1215
1216 /*
1217 * Reserve disk quota and the inode.
1218 */
1219 error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1220 pdqp, resblks, 1, 0);
1221 if (error)
1222 goto out_trans_cancel;
1223
1224 if (!resblks) {
1225 error = xfs_dir_canenter(tp, dp, name);
1226 if (error)
1227 goto out_trans_cancel;
1228 }
1229
1230 /*
1231 * A newly created regular or special file just has one directory
1232 * entry pointing to them, but a directory also the "." entry
1233 * pointing to itself.
1234 */
1235 error = xfs_dir_ialloc(&tp, dp, mode, is_dir ? 2 : 1, rdev,
1236 prid, resblks > 0, &ip, NULL);
1237 if (error)
1238 goto out_trans_cancel;
1239
1240 /*
1241 * Now we join the directory inode to the transaction. We do not do it
1242 * earlier because xfs_dir_ialloc might commit the previous transaction
1243 * (and release all the locks). An error from here on will result in
1244 * the transaction cancel unlocking dp so don't do it explicitly in the
1245 * error path.
1246 */
1247 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
1248 unlock_dp_on_error = false;
1249
1250 error = xfs_dir_createname(tp, dp, name, ip->i_ino,
1251 &first_block, &dfops, resblks ?
1252 resblks - XFS_IALLOC_SPACE_RES(mp) : 0);
1253 if (error) {
1254 ASSERT(error != -ENOSPC);
1255 goto out_trans_cancel;
1256 }
1257 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1258 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
1259
1260 if (is_dir) {
1261 error = xfs_dir_init(tp, ip, dp);
1262 if (error)
1263 goto out_bmap_cancel;
1264
1265 error = xfs_bumplink(tp, dp);
1266 if (error)
1267 goto out_bmap_cancel;
1268 }
1269
1270 /*
1271 * If this is a synchronous mount, make sure that the
1272 * create transaction goes to disk before returning to
1273 * the user.
1274 */
1275 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
1276 xfs_trans_set_sync(tp);
1277
1278 /*
1279 * Attach the dquot(s) to the inodes and modify them incore.
1280 * These ids of the inode couldn't have changed since the new
1281 * inode has been locked ever since it was created.
1282 */
1283 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1284
1285 error = xfs_defer_finish(&tp, &dfops, NULL);
1286 if (error)
1287 goto out_bmap_cancel;
1288
1289 error = xfs_trans_commit(tp);
1290 if (error)
1291 goto out_release_inode;
1292
1293 xfs_qm_dqrele(udqp);
1294 xfs_qm_dqrele(gdqp);
1295 xfs_qm_dqrele(pdqp);
1296
1297 *ipp = ip;
1298 return 0;
1299
1300 out_bmap_cancel:
1301 xfs_defer_cancel(&dfops);
1302 out_trans_cancel:
1303 xfs_trans_cancel(tp);
1304 out_release_inode:
1305 /*
1306 * Wait until after the current transaction is aborted to finish the
1307 * setup of the inode and release the inode. This prevents recursive
1308 * transactions and deadlocks from xfs_inactive.
1309 */
1310 if (ip) {
1311 xfs_finish_inode_setup(ip);
1312 IRELE(ip);
1313 }
1314
1315 xfs_qm_dqrele(udqp);
1316 xfs_qm_dqrele(gdqp);
1317 xfs_qm_dqrele(pdqp);
1318
1319 if (unlock_dp_on_error)
1320 xfs_iunlock(dp, XFS_ILOCK_EXCL);
1321 return error;
1322}
1323
1324int
1325xfs_create_tmpfile(
1326 struct xfs_inode *dp,
1327 struct dentry *dentry,
1328 umode_t mode,
1329 struct xfs_inode **ipp)
1330{
1331 struct xfs_mount *mp = dp->i_mount;
1332 struct xfs_inode *ip = NULL;
1333 struct xfs_trans *tp = NULL;
1334 int error;
1335 prid_t prid;
1336 struct xfs_dquot *udqp = NULL;
1337 struct xfs_dquot *gdqp = NULL;
1338 struct xfs_dquot *pdqp = NULL;
1339 struct xfs_trans_res *tres;
1340 uint resblks;
1341
1342 if (XFS_FORCED_SHUTDOWN(mp))
1343 return -EIO;
1344
1345 prid = xfs_get_initial_prid(dp);
1346
1347 /*
1348 * Make sure that we have allocated dquot(s) on disk.
1349 */
1350 error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()),
1351 xfs_kgid_to_gid(current_fsgid()), prid,
1352 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1353 &udqp, &gdqp, &pdqp);
1354 if (error)
1355 return error;
1356
1357 resblks = XFS_IALLOC_SPACE_RES(mp);
1358 tres = &M_RES(mp)->tr_create_tmpfile;
1359
1360 error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
1361 if (error == -ENOSPC) {
1362 /* No space at all so try a "no-allocation" reservation */
1363 resblks = 0;
1364 error = xfs_trans_alloc(mp, tres, 0, 0, 0, &tp);
1365 }
1366 if (error)
1367 goto out_release_inode;
1368
1369 error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1370 pdqp, resblks, 1, 0);
1371 if (error)
1372 goto out_trans_cancel;
1373
1374 error = xfs_dir_ialloc(&tp, dp, mode, 1, 0,
1375 prid, resblks > 0, &ip, NULL);
1376 if (error)
1377 goto out_trans_cancel;
1378
1379 if (mp->m_flags & XFS_MOUNT_WSYNC)
1380 xfs_trans_set_sync(tp);
1381
1382 /*
1383 * Attach the dquot(s) to the inodes and modify them incore.
1384 * These ids of the inode couldn't have changed since the new
1385 * inode has been locked ever since it was created.
1386 */
1387 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1388
1389 error = xfs_iunlink(tp, ip);
1390 if (error)
1391 goto out_trans_cancel;
1392
1393 error = xfs_trans_commit(tp);
1394 if (error)
1395 goto out_release_inode;
1396
1397 xfs_qm_dqrele(udqp);
1398 xfs_qm_dqrele(gdqp);
1399 xfs_qm_dqrele(pdqp);
1400
1401 *ipp = ip;
1402 return 0;
1403
1404 out_trans_cancel:
1405 xfs_trans_cancel(tp);
1406 out_release_inode:
1407 /*
1408 * Wait until after the current transaction is aborted to finish the
1409 * setup of the inode and release the inode. This prevents recursive
1410 * transactions and deadlocks from xfs_inactive.
1411 */
1412 if (ip) {
1413 xfs_finish_inode_setup(ip);
1414 IRELE(ip);
1415 }
1416
1417 xfs_qm_dqrele(udqp);
1418 xfs_qm_dqrele(gdqp);
1419 xfs_qm_dqrele(pdqp);
1420
1421 return error;
1422}
1423
1424int
1425xfs_link(
1426 xfs_inode_t *tdp,
1427 xfs_inode_t *sip,
1428 struct xfs_name *target_name)
1429{
1430 xfs_mount_t *mp = tdp->i_mount;
1431 xfs_trans_t *tp;
1432 int error;
1433 struct xfs_defer_ops dfops;
1434 xfs_fsblock_t first_block;
1435 int resblks;
1436
1437 trace_xfs_link(tdp, target_name);
1438
1439 ASSERT(!S_ISDIR(VFS_I(sip)->i_mode));
1440
1441 if (XFS_FORCED_SHUTDOWN(mp))
1442 return -EIO;
1443
1444 error = xfs_qm_dqattach(sip, 0);
1445 if (error)
1446 goto std_return;
1447
1448 error = xfs_qm_dqattach(tdp, 0);
1449 if (error)
1450 goto std_return;
1451
1452 resblks = XFS_LINK_SPACE_RES(mp, target_name->len);
1453 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, resblks, 0, 0, &tp);
1454 if (error == -ENOSPC) {
1455 resblks = 0;
1456 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, 0, 0, 0, &tp);
1457 }
1458 if (error)
1459 goto std_return;
1460
1461 xfs_lock_two_inodes(sip, tdp, XFS_ILOCK_EXCL);
1462
1463 xfs_trans_ijoin(tp, sip, XFS_ILOCK_EXCL);
1464 xfs_trans_ijoin(tp, tdp, XFS_ILOCK_EXCL);
1465
1466 /*
1467 * If we are using project inheritance, we only allow hard link
1468 * creation in our tree when the project IDs are the same; else
1469 * the tree quota mechanism could be circumvented.
1470 */
1471 if (unlikely((tdp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
1472 (xfs_get_projid(tdp) != xfs_get_projid(sip)))) {
1473 error = -EXDEV;
1474 goto error_return;
1475 }
1476
1477 if (!resblks) {
1478 error = xfs_dir_canenter(tp, tdp, target_name);
1479 if (error)
1480 goto error_return;
1481 }
1482
1483 xfs_defer_init(&dfops, &first_block);
1484
1485 /*
1486 * Handle initial link state of O_TMPFILE inode
1487 */
1488 if (VFS_I(sip)->i_nlink == 0) {
1489 error = xfs_iunlink_remove(tp, sip);
1490 if (error)
1491 goto error_return;
1492 }
1493
1494 error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino,
1495 &first_block, &dfops, resblks);
1496 if (error)
1497 goto error_return;
1498 xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1499 xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE);
1500
1501 error = xfs_bumplink(tp, sip);
1502 if (error)
1503 goto error_return;
1504
1505 /*
1506 * If this is a synchronous mount, make sure that the
1507 * link transaction goes to disk before returning to
1508 * the user.
1509 */
1510 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
1511 xfs_trans_set_sync(tp);
1512
1513 error = xfs_defer_finish(&tp, &dfops, NULL);
1514 if (error) {
1515 xfs_defer_cancel(&dfops);
1516 goto error_return;
1517 }
1518
1519 return xfs_trans_commit(tp);
1520
1521 error_return:
1522 xfs_trans_cancel(tp);
1523 std_return:
1524 return error;
1525}
1526
1527/*
1528 * Free up the underlying blocks past new_size. The new size must be smaller
1529 * than the current size. This routine can be used both for the attribute and
1530 * data fork, and does not modify the inode size, which is left to the caller.
1531 *
1532 * The transaction passed to this routine must have made a permanent log
1533 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the
1534 * given transaction and start new ones, so make sure everything involved in
1535 * the transaction is tidy before calling here. Some transaction will be
1536 * returned to the caller to be committed. The incoming transaction must
1537 * already include the inode, and both inode locks must be held exclusively.
1538 * The inode must also be "held" within the transaction. On return the inode
1539 * will be "held" within the returned transaction. This routine does NOT
1540 * require any disk space to be reserved for it within the transaction.
1541 *
1542 * If we get an error, we must return with the inode locked and linked into the
1543 * current transaction. This keeps things simple for the higher level code,
1544 * because it always knows that the inode is locked and held in the transaction
1545 * that returns to it whether errors occur or not. We don't mark the inode
1546 * dirty on error so that transactions can be easily aborted if possible.
1547 */
1548int
1549xfs_itruncate_extents(
1550 struct xfs_trans **tpp,
1551 struct xfs_inode *ip,
1552 int whichfork,
1553 xfs_fsize_t new_size)
1554{
1555 struct xfs_mount *mp = ip->i_mount;
1556 struct xfs_trans *tp = *tpp;
1557 struct xfs_defer_ops dfops;
1558 xfs_fsblock_t first_block;
1559 xfs_fileoff_t first_unmap_block;
1560 xfs_fileoff_t last_block;
1561 xfs_filblks_t unmap_len;
1562 int error = 0;
1563 int done = 0;
1564
1565 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1566 ASSERT(!atomic_read(&VFS_I(ip)->i_count) ||
1567 xfs_isilocked(ip, XFS_IOLOCK_EXCL));
1568 ASSERT(new_size <= XFS_ISIZE(ip));
1569 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1570 ASSERT(ip->i_itemp != NULL);
1571 ASSERT(ip->i_itemp->ili_lock_flags == 0);
1572 ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
1573
1574 trace_xfs_itruncate_extents_start(ip, new_size);
1575
1576 /*
1577 * Since it is possible for space to become allocated beyond
1578 * the end of the file (in a crash where the space is allocated
1579 * but the inode size is not yet updated), simply remove any
1580 * blocks which show up between the new EOF and the maximum
1581 * possible file size. If the first block to be removed is
1582 * beyond the maximum file size (ie it is the same as last_block),
1583 * then there is nothing to do.
1584 */
1585 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1586 last_block = XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes);
1587 if (first_unmap_block == last_block)
1588 return 0;
1589
1590 ASSERT(first_unmap_block < last_block);
1591 unmap_len = last_block - first_unmap_block + 1;
1592 while (!done) {
1593 xfs_defer_init(&dfops, &first_block);
1594 error = xfs_bunmapi(tp, ip,
1595 first_unmap_block, unmap_len,
1596 xfs_bmapi_aflag(whichfork),
1597 XFS_ITRUNC_MAX_EXTENTS,
1598 &first_block, &dfops,
1599 &done);
1600 if (error)
1601 goto out_bmap_cancel;
1602
1603 /*
1604 * Duplicate the transaction that has the permanent
1605 * reservation and commit the old transaction.
1606 */
1607 error = xfs_defer_finish(&tp, &dfops, ip);
1608 if (error)
1609 goto out_bmap_cancel;
1610
1611 error = xfs_trans_roll(&tp, ip);
1612 if (error)
1613 goto out;
1614 }
1615
1616 /* Remove all pending CoW reservations. */
1617 error = xfs_reflink_cancel_cow_blocks(ip, &tp, first_unmap_block,
1618 last_block, true);
1619 if (error)
1620 goto out;
1621
1622 /*
1623 * Clear the reflink flag if we truncated everything.
1624 */
1625 if (ip->i_d.di_nblocks == 0 && xfs_is_reflink_inode(ip)) {
1626 ip->i_d.di_flags2 &= ~XFS_DIFLAG2_REFLINK;
1627 xfs_inode_clear_cowblocks_tag(ip);
1628 }
1629
1630 /*
1631 * Always re-log the inode so that our permanent transaction can keep
1632 * on rolling it forward in the log.
1633 */
1634 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1635
1636 trace_xfs_itruncate_extents_end(ip, new_size);
1637
1638out:
1639 *tpp = tp;
1640 return error;
1641out_bmap_cancel:
1642 /*
1643 * If the bunmapi call encounters an error, return to the caller where
1644 * the transaction can be properly aborted. We just need to make sure
1645 * we're not holding any resources that we were not when we came in.
1646 */
1647 xfs_defer_cancel(&dfops);
1648 goto out;
1649}
1650
1651int
1652xfs_release(
1653 xfs_inode_t *ip)
1654{
1655 xfs_mount_t *mp = ip->i_mount;
1656 int error;
1657
1658 if (!S_ISREG(VFS_I(ip)->i_mode) || (VFS_I(ip)->i_mode == 0))
1659 return 0;
1660
1661 /* If this is a read-only mount, don't do this (would generate I/O) */
1662 if (mp->m_flags & XFS_MOUNT_RDONLY)
1663 return 0;
1664
1665 if (!XFS_FORCED_SHUTDOWN(mp)) {
1666 int truncated;
1667
1668 /*
1669 * If we previously truncated this file and removed old data
1670 * in the process, we want to initiate "early" writeout on
1671 * the last close. This is an attempt to combat the notorious
1672 * NULL files problem which is particularly noticeable from a
1673 * truncate down, buffered (re-)write (delalloc), followed by
1674 * a crash. What we are effectively doing here is
1675 * significantly reducing the time window where we'd otherwise
1676 * be exposed to that problem.
1677 */
1678 truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED);
1679 if (truncated) {
1680 xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE);
1681 if (ip->i_delayed_blks > 0) {
1682 error = filemap_flush(VFS_I(ip)->i_mapping);
1683 if (error)
1684 return error;
1685 }
1686 }
1687 }
1688
1689 if (VFS_I(ip)->i_nlink == 0)
1690 return 0;
1691
1692 if (xfs_can_free_eofblocks(ip, false)) {
1693
1694 /*
1695 * Check if the inode is being opened, written and closed
1696 * frequently and we have delayed allocation blocks outstanding
1697 * (e.g. streaming writes from the NFS server), truncating the
1698 * blocks past EOF will cause fragmentation to occur.
1699 *
1700 * In this case don't do the truncation, but we have to be
1701 * careful how we detect this case. Blocks beyond EOF show up as
1702 * i_delayed_blks even when the inode is clean, so we need to
1703 * truncate them away first before checking for a dirty release.
1704 * Hence on the first dirty close we will still remove the
1705 * speculative allocation, but after that we will leave it in
1706 * place.
1707 */
1708 if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE))
1709 return 0;
1710 /*
1711 * If we can't get the iolock just skip truncating the blocks
1712 * past EOF because we could deadlock with the mmap_sem
1713 * otherwise. We'll get another chance to drop them once the
1714 * last reference to the inode is dropped, so we'll never leak
1715 * blocks permanently.
1716 */
1717 if (xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
1718 error = xfs_free_eofblocks(ip);
1719 xfs_iunlock(ip, XFS_IOLOCK_EXCL);
1720 if (error)
1721 return error;
1722 }
1723
1724 /* delalloc blocks after truncation means it really is dirty */
1725 if (ip->i_delayed_blks)
1726 xfs_iflags_set(ip, XFS_IDIRTY_RELEASE);
1727 }
1728 return 0;
1729}
1730
1731/*
1732 * xfs_inactive_truncate
1733 *
1734 * Called to perform a truncate when an inode becomes unlinked.
1735 */
1736STATIC int
1737xfs_inactive_truncate(
1738 struct xfs_inode *ip)
1739{
1740 struct xfs_mount *mp = ip->i_mount;
1741 struct xfs_trans *tp;
1742 int error;
1743
1744 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp);
1745 if (error) {
1746 ASSERT(XFS_FORCED_SHUTDOWN(mp));
1747 return error;
1748 }
1749
1750 xfs_ilock(ip, XFS_ILOCK_EXCL);
1751 xfs_trans_ijoin(tp, ip, 0);
1752
1753 /*
1754 * Log the inode size first to prevent stale data exposure in the event
1755 * of a system crash before the truncate completes. See the related
1756 * comment in xfs_vn_setattr_size() for details.
1757 */
1758 ip->i_d.di_size = 0;
1759 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1760
1761 error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0);
1762 if (error)
1763 goto error_trans_cancel;
1764
1765 ASSERT(ip->i_d.di_nextents == 0);
1766
1767 error = xfs_trans_commit(tp);
1768 if (error)
1769 goto error_unlock;
1770
1771 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1772 return 0;
1773
1774error_trans_cancel:
1775 xfs_trans_cancel(tp);
1776error_unlock:
1777 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1778 return error;
1779}
1780
1781/*
1782 * xfs_inactive_ifree()
1783 *
1784 * Perform the inode free when an inode is unlinked.
1785 */
1786STATIC int
1787xfs_inactive_ifree(
1788 struct xfs_inode *ip)
1789{
1790 struct xfs_defer_ops dfops;
1791 xfs_fsblock_t first_block;
1792 struct xfs_mount *mp = ip->i_mount;
1793 struct xfs_trans *tp;
1794 int error;
1795
1796 /*
1797 * We try to use a per-AG reservation for any block needed by the finobt
1798 * tree, but as the finobt feature predates the per-AG reservation
1799 * support a degraded file system might not have enough space for the
1800 * reservation at mount time. In that case try to dip into the reserved
1801 * pool and pray.
1802 *
1803 * Send a warning if the reservation does happen to fail, as the inode
1804 * now remains allocated and sits on the unlinked list until the fs is
1805 * repaired.
1806 */
1807 if (unlikely(mp->m_inotbt_nores)) {
1808 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree,
1809 XFS_IFREE_SPACE_RES(mp), 0, XFS_TRANS_RESERVE,
1810 &tp);
1811 } else {
1812 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 0, 0, 0, &tp);
1813 }
1814 if (error) {
1815 if (error == -ENOSPC) {
1816 xfs_warn_ratelimited(mp,
1817 "Failed to remove inode(s) from unlinked list. "
1818 "Please free space, unmount and run xfs_repair.");
1819 } else {
1820 ASSERT(XFS_FORCED_SHUTDOWN(mp));
1821 }
1822 return error;
1823 }
1824
1825 xfs_ilock(ip, XFS_ILOCK_EXCL);
1826 xfs_trans_ijoin(tp, ip, 0);
1827
1828 xfs_defer_init(&dfops, &first_block);
1829 error = xfs_ifree(tp, ip, &dfops);
1830 if (error) {
1831 /*
1832 * If we fail to free the inode, shut down. The cancel
1833 * might do that, we need to make sure. Otherwise the
1834 * inode might be lost for a long time or forever.
1835 */
1836 if (!XFS_FORCED_SHUTDOWN(mp)) {
1837 xfs_notice(mp, "%s: xfs_ifree returned error %d",
1838 __func__, error);
1839 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1840 }
1841 xfs_trans_cancel(tp);
1842 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1843 return error;
1844 }
1845
1846 /*
1847 * Credit the quota account(s). The inode is gone.
1848 */
1849 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1);
1850
1851 /*
1852 * Just ignore errors at this point. There is nothing we can do except
1853 * to try to keep going. Make sure it's not a silent error.
1854 */
1855 error = xfs_defer_finish(&tp, &dfops, NULL);
1856 if (error) {
1857 xfs_notice(mp, "%s: xfs_defer_finish returned error %d",
1858 __func__, error);
1859 xfs_defer_cancel(&dfops);
1860 }
1861 error = xfs_trans_commit(tp);
1862 if (error)
1863 xfs_notice(mp, "%s: xfs_trans_commit returned error %d",
1864 __func__, error);
1865
1866 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1867 return 0;
1868}
1869
1870/*
1871 * xfs_inactive
1872 *
1873 * This is called when the vnode reference count for the vnode
1874 * goes to zero. If the file has been unlinked, then it must
1875 * now be truncated. Also, we clear all of the read-ahead state
1876 * kept for the inode here since the file is now closed.
1877 */
1878void
1879xfs_inactive(
1880 xfs_inode_t *ip)
1881{
1882 struct xfs_mount *mp;
1883 int error;
1884 int truncate = 0;
1885
1886 /*
1887 * If the inode is already free, then there can be nothing
1888 * to clean up here.
1889 */
1890 if (VFS_I(ip)->i_mode == 0) {
1891 ASSERT(ip->i_df.if_real_bytes == 0);
1892 ASSERT(ip->i_df.if_broot_bytes == 0);
1893 return;
1894 }
1895
1896 mp = ip->i_mount;
1897 ASSERT(!xfs_iflags_test(ip, XFS_IRECOVERY));
1898
1899 /* If this is a read-only mount, don't do this (would generate I/O) */
1900 if (mp->m_flags & XFS_MOUNT_RDONLY)
1901 return;
1902
1903 if (VFS_I(ip)->i_nlink != 0) {
1904 /*
1905 * force is true because we are evicting an inode from the
1906 * cache. Post-eof blocks must be freed, lest we end up with
1907 * broken free space accounting.
1908 */
1909 if (xfs_can_free_eofblocks(ip, true)) {
1910 xfs_ilock(ip, XFS_IOLOCK_EXCL);
1911 xfs_free_eofblocks(ip);
1912 xfs_iunlock(ip, XFS_IOLOCK_EXCL);
1913 }
1914
1915 return;
1916 }
1917
1918 if (S_ISREG(VFS_I(ip)->i_mode) &&
1919 (ip->i_d.di_size != 0 || XFS_ISIZE(ip) != 0 ||
1920 ip->i_d.di_nextents > 0 || ip->i_delayed_blks > 0))
1921 truncate = 1;
1922
1923 error = xfs_qm_dqattach(ip, 0);
1924 if (error)
1925 return;
1926
1927 if (S_ISLNK(VFS_I(ip)->i_mode))
1928 error = xfs_inactive_symlink(ip);
1929 else if (truncate)
1930 error = xfs_inactive_truncate(ip);
1931 if (error)
1932 return;
1933
1934 /*
1935 * If there are attributes associated with the file then blow them away
1936 * now. The code calls a routine that recursively deconstructs the
1937 * attribute fork. If also blows away the in-core attribute fork.
1938 */
1939 if (XFS_IFORK_Q(ip)) {
1940 error = xfs_attr_inactive(ip);
1941 if (error)
1942 return;
1943 }
1944
1945 ASSERT(!ip->i_afp);
1946 ASSERT(ip->i_d.di_anextents == 0);
1947 ASSERT(ip->i_d.di_forkoff == 0);
1948
1949 /*
1950 * Free the inode.
1951 */
1952 error = xfs_inactive_ifree(ip);
1953 if (error)
1954 return;
1955
1956 /*
1957 * Release the dquots held by inode, if any.
1958 */
1959 xfs_qm_dqdetach(ip);
1960}
1961
1962/*
1963 * This is called when the inode's link count goes to 0 or we are creating a
1964 * tmpfile via O_TMPFILE. In the case of a tmpfile, @ignore_linkcount will be
1965 * set to true as the link count is dropped to zero by the VFS after we've
1966 * created the file successfully, so we have to add it to the unlinked list
1967 * while the link count is non-zero.
1968 *
1969 * We place the on-disk inode on a list in the AGI. It will be pulled from this
1970 * list when the inode is freed.
1971 */
1972STATIC int
1973xfs_iunlink(
1974 struct xfs_trans *tp,
1975 struct xfs_inode *ip)
1976{
1977 xfs_mount_t *mp = tp->t_mountp;
1978 xfs_agi_t *agi;
1979 xfs_dinode_t *dip;
1980 xfs_buf_t *agibp;
1981 xfs_buf_t *ibp;
1982 xfs_agino_t agino;
1983 short bucket_index;
1984 int offset;
1985 int error;
1986
1987 ASSERT(VFS_I(ip)->i_mode != 0);
1988
1989 /*
1990 * Get the agi buffer first. It ensures lock ordering
1991 * on the list.
1992 */
1993 error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp);
1994 if (error)
1995 return error;
1996 agi = XFS_BUF_TO_AGI(agibp);
1997
1998 /*
1999 * Get the index into the agi hash table for the
2000 * list this inode will go on.
2001 */
2002 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2003 ASSERT(agino != 0);
2004 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2005 ASSERT(agi->agi_unlinked[bucket_index]);
2006 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
2007
2008 if (agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO)) {
2009 /*
2010 * There is already another inode in the bucket we need
2011 * to add ourselves to. Add us at the front of the list.
2012 * Here we put the head pointer into our next pointer,
2013 * and then we fall through to point the head at us.
2014 */
2015 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
2016 0, 0);
2017 if (error)
2018 return error;
2019
2020 ASSERT(dip->di_next_unlinked == cpu_to_be32(NULLAGINO));
2021 dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
2022 offset = ip->i_imap.im_boffset +
2023 offsetof(xfs_dinode_t, di_next_unlinked);
2024
2025 /* need to recalc the inode CRC if appropriate */
2026 xfs_dinode_calc_crc(mp, dip);
2027
2028 xfs_trans_inode_buf(tp, ibp);
2029 xfs_trans_log_buf(tp, ibp, offset,
2030 (offset + sizeof(xfs_agino_t) - 1));
2031 xfs_inobp_check(mp, ibp);
2032 }
2033
2034 /*
2035 * Point the bucket head pointer at the inode being inserted.
2036 */
2037 ASSERT(agino != 0);
2038 agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
2039 offset = offsetof(xfs_agi_t, agi_unlinked) +
2040 (sizeof(xfs_agino_t) * bucket_index);
2041 xfs_trans_log_buf(tp, agibp, offset,
2042 (offset + sizeof(xfs_agino_t) - 1));
2043 return 0;
2044}
2045
2046/*
2047 * Pull the on-disk inode from the AGI unlinked list.
2048 */
2049STATIC int
2050xfs_iunlink_remove(
2051 xfs_trans_t *tp,
2052 xfs_inode_t *ip)
2053{
2054 xfs_ino_t next_ino;
2055 xfs_mount_t *mp;
2056 xfs_agi_t *agi;
2057 xfs_dinode_t *dip;
2058 xfs_buf_t *agibp;
2059 xfs_buf_t *ibp;
2060 xfs_agnumber_t agno;
2061 xfs_agino_t agino;
2062 xfs_agino_t next_agino;
2063 xfs_buf_t *last_ibp;
2064 xfs_dinode_t *last_dip = NULL;
2065 short bucket_index;
2066 int offset, last_offset = 0;
2067 int error;
2068
2069 mp = tp->t_mountp;
2070 agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
2071
2072 /*
2073 * Get the agi buffer first. It ensures lock ordering
2074 * on the list.
2075 */
2076 error = xfs_read_agi(mp, tp, agno, &agibp);
2077 if (error)
2078 return error;
2079
2080 agi = XFS_BUF_TO_AGI(agibp);
2081
2082 /*
2083 * Get the index into the agi hash table for the
2084 * list this inode will go on.
2085 */
2086 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2087 ASSERT(agino != 0);
2088 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2089 ASSERT(agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO));
2090 ASSERT(agi->agi_unlinked[bucket_index]);
2091
2092 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
2093 /*
2094 * We're at the head of the list. Get the inode's on-disk
2095 * buffer to see if there is anyone after us on the list.
2096 * Only modify our next pointer if it is not already NULLAGINO.
2097 * This saves us the overhead of dealing with the buffer when
2098 * there is no need to change it.
2099 */
2100 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
2101 0, 0);
2102 if (error) {
2103 xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.",
2104 __func__, error);
2105 return error;
2106 }
2107 next_agino = be32_to_cpu(dip->di_next_unlinked);
2108 ASSERT(next_agino != 0);
2109 if (next_agino != NULLAGINO) {
2110 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
2111 offset = ip->i_imap.im_boffset +
2112 offsetof(xfs_dinode_t, di_next_unlinked);
2113
2114 /* need to recalc the inode CRC if appropriate */
2115 xfs_dinode_calc_crc(mp, dip);
2116
2117 xfs_trans_inode_buf(tp, ibp);
2118 xfs_trans_log_buf(tp, ibp, offset,
2119 (offset + sizeof(xfs_agino_t) - 1));
2120 xfs_inobp_check(mp, ibp);
2121 } else {
2122 xfs_trans_brelse(tp, ibp);
2123 }
2124 /*
2125 * Point the bucket head pointer at the next inode.
2126 */
2127 ASSERT(next_agino != 0);
2128 ASSERT(next_agino != agino);
2129 agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
2130 offset = offsetof(xfs_agi_t, agi_unlinked) +
2131 (sizeof(xfs_agino_t) * bucket_index);
2132 xfs_trans_log_buf(tp, agibp, offset,
2133 (offset + sizeof(xfs_agino_t) - 1));
2134 } else {
2135 /*
2136 * We need to search the list for the inode being freed.
2137 */
2138 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2139 last_ibp = NULL;
2140 while (next_agino != agino) {
2141 struct xfs_imap imap;
2142
2143 if (last_ibp)
2144 xfs_trans_brelse(tp, last_ibp);
2145
2146 imap.im_blkno = 0;
2147 next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
2148
2149 error = xfs_imap(mp, tp, next_ino, &imap, 0);
2150 if (error) {
2151 xfs_warn(mp,
2152 "%s: xfs_imap returned error %d.",
2153 __func__, error);
2154 return error;
2155 }
2156
2157 error = xfs_imap_to_bp(mp, tp, &imap, &last_dip,
2158 &last_ibp, 0, 0);
2159 if (error) {
2160 xfs_warn(mp,
2161 "%s: xfs_imap_to_bp returned error %d.",
2162 __func__, error);
2163 return error;
2164 }
2165
2166 last_offset = imap.im_boffset;
2167 next_agino = be32_to_cpu(last_dip->di_next_unlinked);
2168 ASSERT(next_agino != NULLAGINO);
2169 ASSERT(next_agino != 0);
2170 }
2171
2172 /*
2173 * Now last_ibp points to the buffer previous to us on the
2174 * unlinked list. Pull us from the list.
2175 */
2176 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
2177 0, 0);
2178 if (error) {
2179 xfs_warn(mp, "%s: xfs_imap_to_bp(2) returned error %d.",
2180 __func__, error);
2181 return error;
2182 }
2183 next_agino = be32_to_cpu(dip->di_next_unlinked);
2184 ASSERT(next_agino != 0);
2185 ASSERT(next_agino != agino);
2186 if (next_agino != NULLAGINO) {
2187 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
2188 offset = ip->i_imap.im_boffset +
2189 offsetof(xfs_dinode_t, di_next_unlinked);
2190
2191 /* need to recalc the inode CRC if appropriate */
2192 xfs_dinode_calc_crc(mp, dip);
2193
2194 xfs_trans_inode_buf(tp, ibp);
2195 xfs_trans_log_buf(tp, ibp, offset,
2196 (offset + sizeof(xfs_agino_t) - 1));
2197 xfs_inobp_check(mp, ibp);
2198 } else {
2199 xfs_trans_brelse(tp, ibp);
2200 }
2201 /*
2202 * Point the previous inode on the list to the next inode.
2203 */
2204 last_dip->di_next_unlinked = cpu_to_be32(next_agino);
2205 ASSERT(next_agino != 0);
2206 offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
2207
2208 /* need to recalc the inode CRC if appropriate */
2209 xfs_dinode_calc_crc(mp, last_dip);
2210
2211 xfs_trans_inode_buf(tp, last_ibp);
2212 xfs_trans_log_buf(tp, last_ibp, offset,
2213 (offset + sizeof(xfs_agino_t) - 1));
2214 xfs_inobp_check(mp, last_ibp);
2215 }
2216 return 0;
2217}
2218
2219/*
2220 * A big issue when freeing the inode cluster is that we _cannot_ skip any
2221 * inodes that are in memory - they all must be marked stale and attached to
2222 * the cluster buffer.
2223 */
2224STATIC int
2225xfs_ifree_cluster(
2226 xfs_inode_t *free_ip,
2227 xfs_trans_t *tp,
2228 struct xfs_icluster *xic)
2229{
2230 xfs_mount_t *mp = free_ip->i_mount;
2231 int blks_per_cluster;
2232 int inodes_per_cluster;
2233 int nbufs;
2234 int i, j;
2235 int ioffset;
2236 xfs_daddr_t blkno;
2237 xfs_buf_t *bp;
2238 xfs_inode_t *ip;
2239 xfs_inode_log_item_t *iip;
2240 xfs_log_item_t *lip;
2241 struct xfs_perag *pag;
2242 xfs_ino_t inum;
2243
2244 inum = xic->first_ino;
2245 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum));
2246 blks_per_cluster = xfs_icluster_size_fsb(mp);
2247 inodes_per_cluster = blks_per_cluster << mp->m_sb.sb_inopblog;
2248 nbufs = mp->m_ialloc_blks / blks_per_cluster;
2249
2250 for (j = 0; j < nbufs; j++, inum += inodes_per_cluster) {
2251 /*
2252 * The allocation bitmap tells us which inodes of the chunk were
2253 * physically allocated. Skip the cluster if an inode falls into
2254 * a sparse region.
2255 */
2256 ioffset = inum - xic->first_ino;
2257 if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) {
2258 ASSERT(do_mod(ioffset, inodes_per_cluster) == 0);
2259 continue;
2260 }
2261
2262 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2263 XFS_INO_TO_AGBNO(mp, inum));
2264
2265 /*
2266 * We obtain and lock the backing buffer first in the process
2267 * here, as we have to ensure that any dirty inode that we
2268 * can't get the flush lock on is attached to the buffer.
2269 * If we scan the in-memory inodes first, then buffer IO can
2270 * complete before we get a lock on it, and hence we may fail
2271 * to mark all the active inodes on the buffer stale.
2272 */
2273 bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2274 mp->m_bsize * blks_per_cluster,
2275 XBF_UNMAPPED);
2276
2277 if (!bp)
2278 return -ENOMEM;
2279
2280 /*
2281 * This buffer may not have been correctly initialised as we
2282 * didn't read it from disk. That's not important because we are
2283 * only using to mark the buffer as stale in the log, and to
2284 * attach stale cached inodes on it. That means it will never be
2285 * dispatched for IO. If it is, we want to know about it, and we
2286 * want it to fail. We can acheive this by adding a write
2287 * verifier to the buffer.
2288 */
2289 bp->b_ops = &xfs_inode_buf_ops;
2290
2291 /*
2292 * Walk the inodes already attached to the buffer and mark them
2293 * stale. These will all have the flush locks held, so an
2294 * in-memory inode walk can't lock them. By marking them all
2295 * stale first, we will not attempt to lock them in the loop
2296 * below as the XFS_ISTALE flag will be set.
2297 */
2298 lip = bp->b_fspriv;
2299 while (lip) {
2300 if (lip->li_type == XFS_LI_INODE) {
2301 iip = (xfs_inode_log_item_t *)lip;
2302 ASSERT(iip->ili_logged == 1);
2303 lip->li_cb = xfs_istale_done;
2304 xfs_trans_ail_copy_lsn(mp->m_ail,
2305 &iip->ili_flush_lsn,
2306 &iip->ili_item.li_lsn);
2307 xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
2308 }
2309 lip = lip->li_bio_list;
2310 }
2311
2312
2313 /*
2314 * For each inode in memory attempt to add it to the inode
2315 * buffer and set it up for being staled on buffer IO
2316 * completion. This is safe as we've locked out tail pushing
2317 * and flushing by locking the buffer.
2318 *
2319 * We have already marked every inode that was part of a
2320 * transaction stale above, which means there is no point in
2321 * even trying to lock them.
2322 */
2323 for (i = 0; i < inodes_per_cluster; i++) {
2324retry:
2325 rcu_read_lock();
2326 ip = radix_tree_lookup(&pag->pag_ici_root,
2327 XFS_INO_TO_AGINO(mp, (inum + i)));
2328
2329 /* Inode not in memory, nothing to do */
2330 if (!ip) {
2331 rcu_read_unlock();
2332 continue;
2333 }
2334
2335 /*
2336 * because this is an RCU protected lookup, we could
2337 * find a recently freed or even reallocated inode
2338 * during the lookup. We need to check under the
2339 * i_flags_lock for a valid inode here. Skip it if it
2340 * is not valid, the wrong inode or stale.
2341 */
2342 spin_lock(&ip->i_flags_lock);
2343 if (ip->i_ino != inum + i ||
2344 __xfs_iflags_test(ip, XFS_ISTALE)) {
2345 spin_unlock(&ip->i_flags_lock);
2346 rcu_read_unlock();
2347 continue;
2348 }
2349 spin_unlock(&ip->i_flags_lock);
2350
2351 /*
2352 * Don't try to lock/unlock the current inode, but we
2353 * _cannot_ skip the other inodes that we did not find
2354 * in the list attached to the buffer and are not
2355 * already marked stale. If we can't lock it, back off
2356 * and retry.
2357 */
2358 if (ip != free_ip &&
2359 !xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2360 rcu_read_unlock();
2361 delay(1);
2362 goto retry;
2363 }
2364 rcu_read_unlock();
2365
2366 xfs_iflock(ip);
2367 xfs_iflags_set(ip, XFS_ISTALE);
2368
2369 /*
2370 * we don't need to attach clean inodes or those only
2371 * with unlogged changes (which we throw away, anyway).
2372 */
2373 iip = ip->i_itemp;
2374 if (!iip || xfs_inode_clean(ip)) {
2375 ASSERT(ip != free_ip);
2376 xfs_ifunlock(ip);
2377 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2378 continue;
2379 }
2380
2381 iip->ili_last_fields = iip->ili_fields;
2382 iip->ili_fields = 0;
2383 iip->ili_fsync_fields = 0;
2384 iip->ili_logged = 1;
2385 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
2386 &iip->ili_item.li_lsn);
2387
2388 xfs_buf_attach_iodone(bp, xfs_istale_done,
2389 &iip->ili_item);
2390
2391 if (ip != free_ip)
2392 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2393 }
2394
2395 xfs_trans_stale_inode_buf(tp, bp);
2396 xfs_trans_binval(tp, bp);
2397 }
2398
2399 xfs_perag_put(pag);
2400 return 0;
2401}
2402
2403/*
2404 * This is called to return an inode to the inode free list.
2405 * The inode should already be truncated to 0 length and have
2406 * no pages associated with it. This routine also assumes that
2407 * the inode is already a part of the transaction.
2408 *
2409 * The on-disk copy of the inode will have been added to the list
2410 * of unlinked inodes in the AGI. We need to remove the inode from
2411 * that list atomically with respect to freeing it here.
2412 */
2413int
2414xfs_ifree(
2415 xfs_trans_t *tp,
2416 xfs_inode_t *ip,
2417 struct xfs_defer_ops *dfops)
2418{
2419 int error;
2420 struct xfs_icluster xic = { 0 };
2421
2422 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
2423 ASSERT(VFS_I(ip)->i_nlink == 0);
2424 ASSERT(ip->i_d.di_nextents == 0);
2425 ASSERT(ip->i_d.di_anextents == 0);
2426 ASSERT(ip->i_d.di_size == 0 || !S_ISREG(VFS_I(ip)->i_mode));
2427 ASSERT(ip->i_d.di_nblocks == 0);
2428
2429 /*
2430 * Pull the on-disk inode from the AGI unlinked list.
2431 */
2432 error = xfs_iunlink_remove(tp, ip);
2433 if (error)
2434 return error;
2435
2436 error = xfs_difree(tp, ip->i_ino, dfops, &xic);
2437 if (error)
2438 return error;
2439
2440 VFS_I(ip)->i_mode = 0; /* mark incore inode as free */
2441 ip->i_d.di_flags = 0;
2442 ip->i_d.di_dmevmask = 0;
2443 ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */
2444 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
2445 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
2446 /*
2447 * Bump the generation count so no one will be confused
2448 * by reincarnations of this inode.
2449 */
2450 VFS_I(ip)->i_generation++;
2451 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2452
2453 if (xic.deleted)
2454 error = xfs_ifree_cluster(ip, tp, &xic);
2455
2456 return error;
2457}
2458
2459/*
2460 * This is called to unpin an inode. The caller must have the inode locked
2461 * in at least shared mode so that the buffer cannot be subsequently pinned
2462 * once someone is waiting for it to be unpinned.
2463 */
2464static void
2465xfs_iunpin(
2466 struct xfs_inode *ip)
2467{
2468 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2469
2470 trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
2471
2472 /* Give the log a push to start the unpinning I/O */
2473 xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0);
2474
2475}
2476
2477static void
2478__xfs_iunpin_wait(
2479 struct xfs_inode *ip)
2480{
2481 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT);
2482 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT);
2483
2484 xfs_iunpin(ip);
2485
2486 do {
2487 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
2488 if (xfs_ipincount(ip))
2489 io_schedule();
2490 } while (xfs_ipincount(ip));
2491 finish_wait(wq, &wait.wait);
2492}
2493
2494void
2495xfs_iunpin_wait(
2496 struct xfs_inode *ip)
2497{
2498 if (xfs_ipincount(ip))
2499 __xfs_iunpin_wait(ip);
2500}
2501
2502/*
2503 * Removing an inode from the namespace involves removing the directory entry
2504 * and dropping the link count on the inode. Removing the directory entry can
2505 * result in locking an AGF (directory blocks were freed) and removing a link
2506 * count can result in placing the inode on an unlinked list which results in
2507 * locking an AGI.
2508 *
2509 * The big problem here is that we have an ordering constraint on AGF and AGI
2510 * locking - inode allocation locks the AGI, then can allocate a new extent for
2511 * new inodes, locking the AGF after the AGI. Similarly, freeing the inode
2512 * removes the inode from the unlinked list, requiring that we lock the AGI
2513 * first, and then freeing the inode can result in an inode chunk being freed
2514 * and hence freeing disk space requiring that we lock an AGF.
2515 *
2516 * Hence the ordering that is imposed by other parts of the code is AGI before
2517 * AGF. This means we cannot remove the directory entry before we drop the inode
2518 * reference count and put it on the unlinked list as this results in a lock
2519 * order of AGF then AGI, and this can deadlock against inode allocation and
2520 * freeing. Therefore we must drop the link counts before we remove the
2521 * directory entry.
2522 *
2523 * This is still safe from a transactional point of view - it is not until we
2524 * get to xfs_defer_finish() that we have the possibility of multiple
2525 * transactions in this operation. Hence as long as we remove the directory
2526 * entry and drop the link count in the first transaction of the remove
2527 * operation, there are no transactional constraints on the ordering here.
2528 */
2529int
2530xfs_remove(
2531 xfs_inode_t *dp,
2532 struct xfs_name *name,
2533 xfs_inode_t *ip)
2534{
2535 xfs_mount_t *mp = dp->i_mount;
2536 xfs_trans_t *tp = NULL;
2537 int is_dir = S_ISDIR(VFS_I(ip)->i_mode);
2538 int error = 0;
2539 struct xfs_defer_ops dfops;
2540 xfs_fsblock_t first_block;
2541 uint resblks;
2542
2543 trace_xfs_remove(dp, name);
2544
2545 if (XFS_FORCED_SHUTDOWN(mp))
2546 return -EIO;
2547
2548 error = xfs_qm_dqattach(dp, 0);
2549 if (error)
2550 goto std_return;
2551
2552 error = xfs_qm_dqattach(ip, 0);
2553 if (error)
2554 goto std_return;
2555
2556 /*
2557 * We try to get the real space reservation first,
2558 * allowing for directory btree deletion(s) implying
2559 * possible bmap insert(s). If we can't get the space
2560 * reservation then we use 0 instead, and avoid the bmap
2561 * btree insert(s) in the directory code by, if the bmap
2562 * insert tries to happen, instead trimming the LAST
2563 * block from the directory.
2564 */
2565 resblks = XFS_REMOVE_SPACE_RES(mp);
2566 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, resblks, 0, 0, &tp);
2567 if (error == -ENOSPC) {
2568 resblks = 0;
2569 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, 0, 0, 0,
2570 &tp);
2571 }
2572 if (error) {
2573 ASSERT(error != -ENOSPC);
2574 goto std_return;
2575 }
2576
2577 xfs_lock_two_inodes(dp, ip, XFS_ILOCK_EXCL);
2578
2579 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
2580 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
2581
2582 /*
2583 * If we're removing a directory perform some additional validation.
2584 */
2585 if (is_dir) {
2586 ASSERT(VFS_I(ip)->i_nlink >= 2);
2587 if (VFS_I(ip)->i_nlink != 2) {
2588 error = -ENOTEMPTY;
2589 goto out_trans_cancel;
2590 }
2591 if (!xfs_dir_isempty(ip)) {
2592 error = -ENOTEMPTY;
2593 goto out_trans_cancel;
2594 }
2595
2596 /* Drop the link from ip's "..". */
2597 error = xfs_droplink(tp, dp);
2598 if (error)
2599 goto out_trans_cancel;
2600
2601 /* Drop the "." link from ip to self. */
2602 error = xfs_droplink(tp, ip);
2603 if (error)
2604 goto out_trans_cancel;
2605 } else {
2606 /*
2607 * When removing a non-directory we need to log the parent
2608 * inode here. For a directory this is done implicitly
2609 * by the xfs_droplink call for the ".." entry.
2610 */
2611 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
2612 }
2613 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2614
2615 /* Drop the link from dp to ip. */
2616 error = xfs_droplink(tp, ip);
2617 if (error)
2618 goto out_trans_cancel;
2619
2620 xfs_defer_init(&dfops, &first_block);
2621 error = xfs_dir_removename(tp, dp, name, ip->i_ino,
2622 &first_block, &dfops, resblks);
2623 if (error) {
2624 ASSERT(error != -ENOENT);
2625 goto out_bmap_cancel;
2626 }
2627
2628 /*
2629 * If this is a synchronous mount, make sure that the
2630 * remove transaction goes to disk before returning to
2631 * the user.
2632 */
2633 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2634 xfs_trans_set_sync(tp);
2635
2636 error = xfs_defer_finish(&tp, &dfops, NULL);
2637 if (error)
2638 goto out_bmap_cancel;
2639
2640 error = xfs_trans_commit(tp);
2641 if (error)
2642 goto std_return;
2643
2644 if (is_dir && xfs_inode_is_filestream(ip))
2645 xfs_filestream_deassociate(ip);
2646
2647 return 0;
2648
2649 out_bmap_cancel:
2650 xfs_defer_cancel(&dfops);
2651 out_trans_cancel:
2652 xfs_trans_cancel(tp);
2653 std_return:
2654 return error;
2655}
2656
2657/*
2658 * Enter all inodes for a rename transaction into a sorted array.
2659 */
2660#define __XFS_SORT_INODES 5
2661STATIC void
2662xfs_sort_for_rename(
2663 struct xfs_inode *dp1, /* in: old (source) directory inode */
2664 struct xfs_inode *dp2, /* in: new (target) directory inode */
2665 struct xfs_inode *ip1, /* in: inode of old entry */
2666 struct xfs_inode *ip2, /* in: inode of new entry */
2667 struct xfs_inode *wip, /* in: whiteout inode */
2668 struct xfs_inode **i_tab,/* out: sorted array of inodes */
2669 int *num_inodes) /* in/out: inodes in array */
2670{
2671 int i, j;
2672
2673 ASSERT(*num_inodes == __XFS_SORT_INODES);
2674 memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *));
2675
2676 /*
2677 * i_tab contains a list of pointers to inodes. We initialize
2678 * the table here & we'll sort it. We will then use it to
2679 * order the acquisition of the inode locks.
2680 *
2681 * Note that the table may contain duplicates. e.g., dp1 == dp2.
2682 */
2683 i = 0;
2684 i_tab[i++] = dp1;
2685 i_tab[i++] = dp2;
2686 i_tab[i++] = ip1;
2687 if (ip2)
2688 i_tab[i++] = ip2;
2689 if (wip)
2690 i_tab[i++] = wip;
2691 *num_inodes = i;
2692
2693 /*
2694 * Sort the elements via bubble sort. (Remember, there are at
2695 * most 5 elements to sort, so this is adequate.)
2696 */
2697 for (i = 0; i < *num_inodes; i++) {
2698 for (j = 1; j < *num_inodes; j++) {
2699 if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) {
2700 struct xfs_inode *temp = i_tab[j];
2701 i_tab[j] = i_tab[j-1];
2702 i_tab[j-1] = temp;
2703 }
2704 }
2705 }
2706}
2707
2708static int
2709xfs_finish_rename(
2710 struct xfs_trans *tp,
2711 struct xfs_defer_ops *dfops)
2712{
2713 int error;
2714
2715 /*
2716 * If this is a synchronous mount, make sure that the rename transaction
2717 * goes to disk before returning to the user.
2718 */
2719 if (tp->t_mountp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2720 xfs_trans_set_sync(tp);
2721
2722 error = xfs_defer_finish(&tp, dfops, NULL);
2723 if (error) {
2724 xfs_defer_cancel(dfops);
2725 xfs_trans_cancel(tp);
2726 return error;
2727 }
2728
2729 return xfs_trans_commit(tp);
2730}
2731
2732/*
2733 * xfs_cross_rename()
2734 *
2735 * responsible for handling RENAME_EXCHANGE flag in renameat2() sytemcall
2736 */
2737STATIC int
2738xfs_cross_rename(
2739 struct xfs_trans *tp,
2740 struct xfs_inode *dp1,
2741 struct xfs_name *name1,
2742 struct xfs_inode *ip1,
2743 struct xfs_inode *dp2,
2744 struct xfs_name *name2,
2745 struct xfs_inode *ip2,
2746 struct xfs_defer_ops *dfops,
2747 xfs_fsblock_t *first_block,
2748 int spaceres)
2749{
2750 int error = 0;
2751 int ip1_flags = 0;
2752 int ip2_flags = 0;
2753 int dp2_flags = 0;
2754
2755 /* Swap inode number for dirent in first parent */
2756 error = xfs_dir_replace(tp, dp1, name1,
2757 ip2->i_ino,
2758 first_block, dfops, spaceres);
2759 if (error)
2760 goto out_trans_abort;
2761
2762 /* Swap inode number for dirent in second parent */
2763 error = xfs_dir_replace(tp, dp2, name2,
2764 ip1->i_ino,
2765 first_block, dfops, spaceres);
2766 if (error)
2767 goto out_trans_abort;
2768
2769 /*
2770 * If we're renaming one or more directories across different parents,
2771 * update the respective ".." entries (and link counts) to match the new
2772 * parents.
2773 */
2774 if (dp1 != dp2) {
2775 dp2_flags = XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2776
2777 if (S_ISDIR(VFS_I(ip2)->i_mode)) {
2778 error = xfs_dir_replace(tp, ip2, &xfs_name_dotdot,
2779 dp1->i_ino, first_block,
2780 dfops, spaceres);
2781 if (error)
2782 goto out_trans_abort;
2783
2784 /* transfer ip2 ".." reference to dp1 */
2785 if (!S_ISDIR(VFS_I(ip1)->i_mode)) {
2786 error = xfs_droplink(tp, dp2);
2787 if (error)
2788 goto out_trans_abort;
2789 error = xfs_bumplink(tp, dp1);
2790 if (error)
2791 goto out_trans_abort;
2792 }
2793
2794 /*
2795 * Although ip1 isn't changed here, userspace needs
2796 * to be warned about the change, so that applications
2797 * relying on it (like backup ones), will properly
2798 * notify the change
2799 */
2800 ip1_flags |= XFS_ICHGTIME_CHG;
2801 ip2_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2802 }
2803
2804 if (S_ISDIR(VFS_I(ip1)->i_mode)) {
2805 error = xfs_dir_replace(tp, ip1, &xfs_name_dotdot,
2806 dp2->i_ino, first_block,
2807 dfops, spaceres);
2808 if (error)
2809 goto out_trans_abort;
2810
2811 /* transfer ip1 ".." reference to dp2 */
2812 if (!S_ISDIR(VFS_I(ip2)->i_mode)) {
2813 error = xfs_droplink(tp, dp1);
2814 if (error)
2815 goto out_trans_abort;
2816 error = xfs_bumplink(tp, dp2);
2817 if (error)
2818 goto out_trans_abort;
2819 }
2820
2821 /*
2822 * Although ip2 isn't changed here, userspace needs
2823 * to be warned about the change, so that applications
2824 * relying on it (like backup ones), will properly
2825 * notify the change
2826 */
2827 ip1_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2828 ip2_flags |= XFS_ICHGTIME_CHG;
2829 }
2830 }
2831
2832 if (ip1_flags) {
2833 xfs_trans_ichgtime(tp, ip1, ip1_flags);
2834 xfs_trans_log_inode(tp, ip1, XFS_ILOG_CORE);
2835 }
2836 if (ip2_flags) {
2837 xfs_trans_ichgtime(tp, ip2, ip2_flags);
2838 xfs_trans_log_inode(tp, ip2, XFS_ILOG_CORE);
2839 }
2840 if (dp2_flags) {
2841 xfs_trans_ichgtime(tp, dp2, dp2_flags);
2842 xfs_trans_log_inode(tp, dp2, XFS_ILOG_CORE);
2843 }
2844 xfs_trans_ichgtime(tp, dp1, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2845 xfs_trans_log_inode(tp, dp1, XFS_ILOG_CORE);
2846 return xfs_finish_rename(tp, dfops);
2847
2848out_trans_abort:
2849 xfs_defer_cancel(dfops);
2850 xfs_trans_cancel(tp);
2851 return error;
2852}
2853
2854/*
2855 * xfs_rename_alloc_whiteout()
2856 *
2857 * Return a referenced, unlinked, unlocked inode that that can be used as a
2858 * whiteout in a rename transaction. We use a tmpfile inode here so that if we
2859 * crash between allocating the inode and linking it into the rename transaction
2860 * recovery will free the inode and we won't leak it.
2861 */
2862static int
2863xfs_rename_alloc_whiteout(
2864 struct xfs_inode *dp,
2865 struct xfs_inode **wip)
2866{
2867 struct xfs_inode *tmpfile;
2868 int error;
2869
2870 error = xfs_create_tmpfile(dp, NULL, S_IFCHR | WHITEOUT_MODE, &tmpfile);
2871 if (error)
2872 return error;
2873
2874 /*
2875 * Prepare the tmpfile inode as if it were created through the VFS.
2876 * Otherwise, the link increment paths will complain about nlink 0->1.
2877 * Drop the link count as done by d_tmpfile(), complete the inode setup
2878 * and flag it as linkable.
2879 */
2880 drop_nlink(VFS_I(tmpfile));
2881 xfs_setup_iops(tmpfile);
2882 xfs_finish_inode_setup(tmpfile);
2883 VFS_I(tmpfile)->i_state |= I_LINKABLE;
2884
2885 *wip = tmpfile;
2886 return 0;
2887}
2888
2889/*
2890 * xfs_rename
2891 */
2892int
2893xfs_rename(
2894 struct xfs_inode *src_dp,
2895 struct xfs_name *src_name,
2896 struct xfs_inode *src_ip,
2897 struct xfs_inode *target_dp,
2898 struct xfs_name *target_name,
2899 struct xfs_inode *target_ip,
2900 unsigned int flags)
2901{
2902 struct xfs_mount *mp = src_dp->i_mount;
2903 struct xfs_trans *tp;
2904 struct xfs_defer_ops dfops;
2905 xfs_fsblock_t first_block;
2906 struct xfs_inode *wip = NULL; /* whiteout inode */
2907 struct xfs_inode *inodes[__XFS_SORT_INODES];
2908 int num_inodes = __XFS_SORT_INODES;
2909 bool new_parent = (src_dp != target_dp);
2910 bool src_is_directory = S_ISDIR(VFS_I(src_ip)->i_mode);
2911 int spaceres;
2912 int error;
2913
2914 trace_xfs_rename(src_dp, target_dp, src_name, target_name);
2915
2916 if ((flags & RENAME_EXCHANGE) && !target_ip)
2917 return -EINVAL;
2918
2919 /*
2920 * If we are doing a whiteout operation, allocate the whiteout inode
2921 * we will be placing at the target and ensure the type is set
2922 * appropriately.
2923 */
2924 if (flags & RENAME_WHITEOUT) {
2925 ASSERT(!(flags & (RENAME_NOREPLACE | RENAME_EXCHANGE)));
2926 error = xfs_rename_alloc_whiteout(target_dp, &wip);
2927 if (error)
2928 return error;
2929
2930 /* setup target dirent info as whiteout */
2931 src_name->type = XFS_DIR3_FT_CHRDEV;
2932 }
2933
2934 xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, wip,
2935 inodes, &num_inodes);
2936
2937 spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len);
2938 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, spaceres, 0, 0, &tp);
2939 if (error == -ENOSPC) {
2940 spaceres = 0;
2941 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, 0, 0, 0,
2942 &tp);
2943 }
2944 if (error)
2945 goto out_release_wip;
2946
2947 /*
2948 * Attach the dquots to the inodes
2949 */
2950 error = xfs_qm_vop_rename_dqattach(inodes);
2951 if (error)
2952 goto out_trans_cancel;
2953
2954 /*
2955 * Lock all the participating inodes. Depending upon whether
2956 * the target_name exists in the target directory, and
2957 * whether the target directory is the same as the source
2958 * directory, we can lock from 2 to 4 inodes.
2959 */
2960 xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL);
2961
2962 /*
2963 * Join all the inodes to the transaction. From this point on,
2964 * we can rely on either trans_commit or trans_cancel to unlock
2965 * them.
2966 */
2967 xfs_trans_ijoin(tp, src_dp, XFS_ILOCK_EXCL);
2968 if (new_parent)
2969 xfs_trans_ijoin(tp, target_dp, XFS_ILOCK_EXCL);
2970 xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL);
2971 if (target_ip)
2972 xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL);
2973 if (wip)
2974 xfs_trans_ijoin(tp, wip, XFS_ILOCK_EXCL);
2975
2976 /*
2977 * If we are using project inheritance, we only allow renames
2978 * into our tree when the project IDs are the same; else the
2979 * tree quota mechanism would be circumvented.
2980 */
2981 if (unlikely((target_dp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
2982 (xfs_get_projid(target_dp) != xfs_get_projid(src_ip)))) {
2983 error = -EXDEV;
2984 goto out_trans_cancel;
2985 }
2986
2987 xfs_defer_init(&dfops, &first_block);
2988
2989 /* RENAME_EXCHANGE is unique from here on. */
2990 if (flags & RENAME_EXCHANGE)
2991 return xfs_cross_rename(tp, src_dp, src_name, src_ip,
2992 target_dp, target_name, target_ip,
2993 &dfops, &first_block, spaceres);
2994
2995 /*
2996 * Set up the target.
2997 */
2998 if (target_ip == NULL) {
2999 /*
3000 * If there's no space reservation, check the entry will
3001 * fit before actually inserting it.
3002 */
3003 if (!spaceres) {
3004 error = xfs_dir_canenter(tp, target_dp, target_name);
3005 if (error)
3006 goto out_trans_cancel;
3007 }
3008 /*
3009 * If target does not exist and the rename crosses
3010 * directories, adjust the target directory link count
3011 * to account for the ".." reference from the new entry.
3012 */
3013 error = xfs_dir_createname(tp, target_dp, target_name,
3014 src_ip->i_ino, &first_block,
3015 &dfops, spaceres);
3016 if (error)
3017 goto out_bmap_cancel;
3018
3019 xfs_trans_ichgtime(tp, target_dp,
3020 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3021
3022 if (new_parent && src_is_directory) {
3023 error = xfs_bumplink(tp, target_dp);
3024 if (error)
3025 goto out_bmap_cancel;
3026 }
3027 } else { /* target_ip != NULL */
3028 /*
3029 * If target exists and it's a directory, check that both
3030 * target and source are directories and that target can be
3031 * destroyed, or that neither is a directory.
3032 */
3033 if (S_ISDIR(VFS_I(target_ip)->i_mode)) {
3034 /*
3035 * Make sure target dir is empty.
3036 */
3037 if (!(xfs_dir_isempty(target_ip)) ||
3038 (VFS_I(target_ip)->i_nlink > 2)) {
3039 error = -EEXIST;
3040 goto out_trans_cancel;
3041 }
3042 }
3043
3044 /*
3045 * Link the source inode under the target name.
3046 * If the source inode is a directory and we are moving
3047 * it across directories, its ".." entry will be
3048 * inconsistent until we replace that down below.
3049 *
3050 * In case there is already an entry with the same
3051 * name at the destination directory, remove it first.
3052 */
3053 error = xfs_dir_replace(tp, target_dp, target_name,
3054 src_ip->i_ino,
3055 &first_block, &dfops, spaceres);
3056 if (error)
3057 goto out_bmap_cancel;
3058
3059 xfs_trans_ichgtime(tp, target_dp,
3060 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3061
3062 /*
3063 * Decrement the link count on the target since the target
3064 * dir no longer points to it.
3065 */
3066 error = xfs_droplink(tp, target_ip);
3067 if (error)
3068 goto out_bmap_cancel;
3069
3070 if (src_is_directory) {
3071 /*
3072 * Drop the link from the old "." entry.
3073 */
3074 error = xfs_droplink(tp, target_ip);
3075 if (error)
3076 goto out_bmap_cancel;
3077 }
3078 } /* target_ip != NULL */
3079
3080 /*
3081 * Remove the source.
3082 */
3083 if (new_parent && src_is_directory) {
3084 /*
3085 * Rewrite the ".." entry to point to the new
3086 * directory.
3087 */
3088 error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot,
3089 target_dp->i_ino,
3090 &first_block, &dfops, spaceres);
3091 ASSERT(error != -EEXIST);
3092 if (error)
3093 goto out_bmap_cancel;
3094 }
3095
3096 /*
3097 * We always want to hit the ctime on the source inode.
3098 *
3099 * This isn't strictly required by the standards since the source
3100 * inode isn't really being changed, but old unix file systems did
3101 * it and some incremental backup programs won't work without it.
3102 */
3103 xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG);
3104 xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE);
3105
3106 /*
3107 * Adjust the link count on src_dp. This is necessary when
3108 * renaming a directory, either within one parent when
3109 * the target existed, or across two parent directories.
3110 */
3111 if (src_is_directory && (new_parent || target_ip != NULL)) {
3112
3113 /*
3114 * Decrement link count on src_directory since the
3115 * entry that's moved no longer points to it.
3116 */
3117 error = xfs_droplink(tp, src_dp);
3118 if (error)
3119 goto out_bmap_cancel;
3120 }
3121
3122 /*
3123 * For whiteouts, we only need to update the source dirent with the
3124 * inode number of the whiteout inode rather than removing it
3125 * altogether.
3126 */
3127 if (wip) {
3128 error = xfs_dir_replace(tp, src_dp, src_name, wip->i_ino,
3129 &first_block, &dfops, spaceres);
3130 } else
3131 error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino,
3132 &first_block, &dfops, spaceres);
3133 if (error)
3134 goto out_bmap_cancel;
3135
3136 /*
3137 * For whiteouts, we need to bump the link count on the whiteout inode.
3138 * This means that failures all the way up to this point leave the inode
3139 * on the unlinked list and so cleanup is a simple matter of dropping
3140 * the remaining reference to it. If we fail here after bumping the link
3141 * count, we're shutting down the filesystem so we'll never see the
3142 * intermediate state on disk.
3143 */
3144 if (wip) {
3145 ASSERT(VFS_I(wip)->i_nlink == 0);
3146 error = xfs_bumplink(tp, wip);
3147 if (error)
3148 goto out_bmap_cancel;
3149 error = xfs_iunlink_remove(tp, wip);
3150 if (error)
3151 goto out_bmap_cancel;
3152 xfs_trans_log_inode(tp, wip, XFS_ILOG_CORE);
3153
3154 /*
3155 * Now we have a real link, clear the "I'm a tmpfile" state
3156 * flag from the inode so it doesn't accidentally get misused in
3157 * future.
3158 */
3159 VFS_I(wip)->i_state &= ~I_LINKABLE;
3160 }
3161
3162 xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3163 xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE);
3164 if (new_parent)
3165 xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE);
3166
3167 error = xfs_finish_rename(tp, &dfops);
3168 if (wip)
3169 IRELE(wip);
3170 return error;
3171
3172out_bmap_cancel:
3173 xfs_defer_cancel(&dfops);
3174out_trans_cancel:
3175 xfs_trans_cancel(tp);
3176out_release_wip:
3177 if (wip)
3178 IRELE(wip);
3179 return error;
3180}
3181
3182STATIC int
3183xfs_iflush_cluster(
3184 struct xfs_inode *ip,
3185 struct xfs_buf *bp)
3186{
3187 struct xfs_mount *mp = ip->i_mount;
3188 struct xfs_perag *pag;
3189 unsigned long first_index, mask;
3190 unsigned long inodes_per_cluster;
3191 int cilist_size;
3192 struct xfs_inode **cilist;
3193 struct xfs_inode *cip;
3194 int nr_found;
3195 int clcount = 0;
3196 int bufwasdelwri;
3197 int i;
3198
3199 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
3200
3201 inodes_per_cluster = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
3202 cilist_size = inodes_per_cluster * sizeof(xfs_inode_t *);
3203 cilist = kmem_alloc(cilist_size, KM_MAYFAIL|KM_NOFS);
3204 if (!cilist)
3205 goto out_put;
3206
3207 mask = ~(((mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog)) - 1);
3208 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
3209 rcu_read_lock();
3210 /* really need a gang lookup range call here */
3211 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)cilist,
3212 first_index, inodes_per_cluster);
3213 if (nr_found == 0)
3214 goto out_free;
3215
3216 for (i = 0; i < nr_found; i++) {
3217 cip = cilist[i];
3218 if (cip == ip)
3219 continue;
3220
3221 /*
3222 * because this is an RCU protected lookup, we could find a
3223 * recently freed or even reallocated inode during the lookup.
3224 * We need to check under the i_flags_lock for a valid inode
3225 * here. Skip it if it is not valid or the wrong inode.
3226 */
3227 spin_lock(&cip->i_flags_lock);
3228 if (!cip->i_ino ||
3229 __xfs_iflags_test(cip, XFS_ISTALE)) {
3230 spin_unlock(&cip->i_flags_lock);
3231 continue;
3232 }
3233
3234 /*
3235 * Once we fall off the end of the cluster, no point checking
3236 * any more inodes in the list because they will also all be
3237 * outside the cluster.
3238 */
3239 if ((XFS_INO_TO_AGINO(mp, cip->i_ino) & mask) != first_index) {
3240 spin_unlock(&cip->i_flags_lock);
3241 break;
3242 }
3243 spin_unlock(&cip->i_flags_lock);
3244
3245 /*
3246 * Do an un-protected check to see if the inode is dirty and
3247 * is a candidate for flushing. These checks will be repeated
3248 * later after the appropriate locks are acquired.
3249 */
3250 if (xfs_inode_clean(cip) && xfs_ipincount(cip) == 0)
3251 continue;
3252
3253 /*
3254 * Try to get locks. If any are unavailable or it is pinned,
3255 * then this inode cannot be flushed and is skipped.
3256 */
3257
3258 if (!xfs_ilock_nowait(cip, XFS_ILOCK_SHARED))
3259 continue;
3260 if (!xfs_iflock_nowait(cip)) {
3261 xfs_iunlock(cip, XFS_ILOCK_SHARED);
3262 continue;
3263 }
3264 if (xfs_ipincount(cip)) {
3265 xfs_ifunlock(cip);
3266 xfs_iunlock(cip, XFS_ILOCK_SHARED);
3267 continue;
3268 }
3269
3270
3271 /*
3272 * Check the inode number again, just to be certain we are not
3273 * racing with freeing in xfs_reclaim_inode(). See the comments
3274 * in that function for more information as to why the initial
3275 * check is not sufficient.
3276 */
3277 if (!cip->i_ino) {
3278 xfs_ifunlock(cip);
3279 xfs_iunlock(cip, XFS_ILOCK_SHARED);
3280 continue;
3281 }
3282
3283 /*
3284 * arriving here means that this inode can be flushed. First
3285 * re-check that it's dirty before flushing.
3286 */
3287 if (!xfs_inode_clean(cip)) {
3288 int error;
3289 error = xfs_iflush_int(cip, bp);
3290 if (error) {
3291 xfs_iunlock(cip, XFS_ILOCK_SHARED);
3292 goto cluster_corrupt_out;
3293 }
3294 clcount++;
3295 } else {
3296 xfs_ifunlock(cip);
3297 }
3298 xfs_iunlock(cip, XFS_ILOCK_SHARED);
3299 }
3300
3301 if (clcount) {
3302 XFS_STATS_INC(mp, xs_icluster_flushcnt);
3303 XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount);
3304 }
3305
3306out_free:
3307 rcu_read_unlock();
3308 kmem_free(cilist);
3309out_put:
3310 xfs_perag_put(pag);
3311 return 0;
3312
3313
3314cluster_corrupt_out:
3315 /*
3316 * Corruption detected in the clustering loop. Invalidate the
3317 * inode buffer and shut down the filesystem.
3318 */
3319 rcu_read_unlock();
3320 /*
3321 * Clean up the buffer. If it was delwri, just release it --
3322 * brelse can handle it with no problems. If not, shut down the
3323 * filesystem before releasing the buffer.
3324 */
3325 bufwasdelwri = (bp->b_flags & _XBF_DELWRI_Q);
3326 if (bufwasdelwri)
3327 xfs_buf_relse(bp);
3328
3329 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3330
3331 if (!bufwasdelwri) {
3332 /*
3333 * Just like incore_relse: if we have b_iodone functions,
3334 * mark the buffer as an error and call them. Otherwise
3335 * mark it as stale and brelse.
3336 */
3337 if (bp->b_iodone) {
3338 bp->b_flags &= ~XBF_DONE;
3339 xfs_buf_stale(bp);
3340 xfs_buf_ioerror(bp, -EIO);
3341 xfs_buf_ioend(bp);
3342 } else {
3343 xfs_buf_stale(bp);
3344 xfs_buf_relse(bp);
3345 }
3346 }
3347
3348 /*
3349 * Unlocks the flush lock
3350 */
3351 xfs_iflush_abort(cip, false);
3352 kmem_free(cilist);
3353 xfs_perag_put(pag);
3354 return -EFSCORRUPTED;
3355}
3356
3357/*
3358 * Flush dirty inode metadata into the backing buffer.
3359 *
3360 * The caller must have the inode lock and the inode flush lock held. The
3361 * inode lock will still be held upon return to the caller, and the inode
3362 * flush lock will be released after the inode has reached the disk.
3363 *
3364 * The caller must write out the buffer returned in *bpp and release it.
3365 */
3366int
3367xfs_iflush(
3368 struct xfs_inode *ip,
3369 struct xfs_buf **bpp)
3370{
3371 struct xfs_mount *mp = ip->i_mount;
3372 struct xfs_buf *bp = NULL;
3373 struct xfs_dinode *dip;
3374 int error;
3375
3376 XFS_STATS_INC(mp, xs_iflush_count);
3377
3378 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3379 ASSERT(xfs_isiflocked(ip));
3380 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3381 ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
3382
3383 *bpp = NULL;
3384
3385 xfs_iunpin_wait(ip);
3386
3387 /*
3388 * For stale inodes we cannot rely on the backing buffer remaining
3389 * stale in cache for the remaining life of the stale inode and so
3390 * xfs_imap_to_bp() below may give us a buffer that no longer contains
3391 * inodes below. We have to check this after ensuring the inode is
3392 * unpinned so that it is safe to reclaim the stale inode after the
3393 * flush call.
3394 */
3395 if (xfs_iflags_test(ip, XFS_ISTALE)) {
3396 xfs_ifunlock(ip);
3397 return 0;
3398 }
3399
3400 /*
3401 * This may have been unpinned because the filesystem is shutting
3402 * down forcibly. If that's the case we must not write this inode
3403 * to disk, because the log record didn't make it to disk.
3404 *
3405 * We also have to remove the log item from the AIL in this case,
3406 * as we wait for an empty AIL as part of the unmount process.
3407 */
3408 if (XFS_FORCED_SHUTDOWN(mp)) {
3409 error = -EIO;
3410 goto abort_out;
3411 }
3412
3413 /*
3414 * Get the buffer containing the on-disk inode. We are doing a try-lock
3415 * operation here, so we may get an EAGAIN error. In that case, we
3416 * simply want to return with the inode still dirty.
3417 *
3418 * If we get any other error, we effectively have a corruption situation
3419 * and we cannot flush the inode, so we treat it the same as failing
3420 * xfs_iflush_int().
3421 */
3422 error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &bp, XBF_TRYLOCK,
3423 0);
3424 if (error == -EAGAIN) {
3425 xfs_ifunlock(ip);
3426 return error;
3427 }
3428 if (error)
3429 goto corrupt_out;
3430
3431 /*
3432 * First flush out the inode that xfs_iflush was called with.
3433 */
3434 error = xfs_iflush_int(ip, bp);
3435 if (error)
3436 goto corrupt_out;
3437
3438 /*
3439 * If the buffer is pinned then push on the log now so we won't
3440 * get stuck waiting in the write for too long.
3441 */
3442 if (xfs_buf_ispinned(bp))
3443 xfs_log_force(mp, 0);
3444
3445 /*
3446 * inode clustering:
3447 * see if other inodes can be gathered into this write
3448 */
3449 error = xfs_iflush_cluster(ip, bp);
3450 if (error)
3451 goto cluster_corrupt_out;
3452
3453 *bpp = bp;
3454 return 0;
3455
3456corrupt_out:
3457 if (bp)
3458 xfs_buf_relse(bp);
3459 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3460cluster_corrupt_out:
3461 error = -EFSCORRUPTED;
3462abort_out:
3463 /*
3464 * Unlocks the flush lock
3465 */
3466 xfs_iflush_abort(ip, false);
3467 return error;
3468}
3469
3470STATIC int
3471xfs_iflush_int(
3472 struct xfs_inode *ip,
3473 struct xfs_buf *bp)
3474{
3475 struct xfs_inode_log_item *iip = ip->i_itemp;
3476 struct xfs_dinode *dip;
3477 struct xfs_mount *mp = ip->i_mount;
3478
3479 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3480 ASSERT(xfs_isiflocked(ip));
3481 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3482 ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
3483 ASSERT(iip != NULL && iip->ili_fields != 0);
3484 ASSERT(ip->i_d.di_version > 1);
3485
3486 /* set *dip = inode's place in the buffer */
3487 dip = xfs_buf_offset(bp, ip->i_imap.im_boffset);
3488
3489 if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
3490 mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
3491 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3492 "%s: Bad inode %Lu magic number 0x%x, ptr 0x%p",
3493 __func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
3494 goto corrupt_out;
3495 }
3496 if (S_ISREG(VFS_I(ip)->i_mode)) {
3497 if (XFS_TEST_ERROR(
3498 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3499 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
3500 mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
3501 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3502 "%s: Bad regular inode %Lu, ptr 0x%p",
3503 __func__, ip->i_ino, ip);
3504 goto corrupt_out;
3505 }
3506 } else if (S_ISDIR(VFS_I(ip)->i_mode)) {
3507 if (XFS_TEST_ERROR(
3508 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3509 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
3510 (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
3511 mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
3512 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3513 "%s: Bad directory inode %Lu, ptr 0x%p",
3514 __func__, ip->i_ino, ip);
3515 goto corrupt_out;
3516 }
3517 }
3518 if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
3519 ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
3520 XFS_RANDOM_IFLUSH_5)) {
3521 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3522 "%s: detected corrupt incore inode %Lu, "
3523 "total extents = %d, nblocks = %Ld, ptr 0x%p",
3524 __func__, ip->i_ino,
3525 ip->i_d.di_nextents + ip->i_d.di_anextents,
3526 ip->i_d.di_nblocks, ip);
3527 goto corrupt_out;
3528 }
3529 if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
3530 mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
3531 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3532 "%s: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
3533 __func__, ip->i_ino, ip->i_d.di_forkoff, ip);
3534 goto corrupt_out;
3535 }
3536
3537 /*
3538 * Inode item log recovery for v2 inodes are dependent on the
3539 * di_flushiter count for correct sequencing. We bump the flush
3540 * iteration count so we can detect flushes which postdate a log record
3541 * during recovery. This is redundant as we now log every change and
3542 * hence this can't happen but we need to still do it to ensure
3543 * backwards compatibility with old kernels that predate logging all
3544 * inode changes.
3545 */
3546 if (ip->i_d.di_version < 3)
3547 ip->i_d.di_flushiter++;
3548
3549 /*
3550 * Copy the dirty parts of the inode into the on-disk inode. We always
3551 * copy out the core of the inode, because if the inode is dirty at all
3552 * the core must be.
3553 */
3554 xfs_inode_to_disk(ip, dip, iip->ili_item.li_lsn);
3555
3556 /* Wrap, we never let the log put out DI_MAX_FLUSH */
3557 if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
3558 ip->i_d.di_flushiter = 0;
3559
3560 xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK);
3561 if (XFS_IFORK_Q(ip))
3562 xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK);
3563 xfs_inobp_check(mp, bp);
3564
3565 /*
3566 * We've recorded everything logged in the inode, so we'd like to clear
3567 * the ili_fields bits so we don't log and flush things unnecessarily.
3568 * However, we can't stop logging all this information until the data
3569 * we've copied into the disk buffer is written to disk. If we did we
3570 * might overwrite the copy of the inode in the log with all the data
3571 * after re-logging only part of it, and in the face of a crash we
3572 * wouldn't have all the data we need to recover.
3573 *
3574 * What we do is move the bits to the ili_last_fields field. When
3575 * logging the inode, these bits are moved back to the ili_fields field.
3576 * In the xfs_iflush_done() routine we clear ili_last_fields, since we
3577 * know that the information those bits represent is permanently on
3578 * disk. As long as the flush completes before the inode is logged
3579 * again, then both ili_fields and ili_last_fields will be cleared.
3580 *
3581 * We can play with the ili_fields bits here, because the inode lock
3582 * must be held exclusively in order to set bits there and the flush
3583 * lock protects the ili_last_fields bits. Set ili_logged so the flush
3584 * done routine can tell whether or not to look in the AIL. Also, store
3585 * the current LSN of the inode so that we can tell whether the item has
3586 * moved in the AIL from xfs_iflush_done(). In order to read the lsn we
3587 * need the AIL lock, because it is a 64 bit value that cannot be read
3588 * atomically.
3589 */
3590 iip->ili_last_fields = iip->ili_fields;
3591 iip->ili_fields = 0;
3592 iip->ili_fsync_fields = 0;
3593 iip->ili_logged = 1;
3594
3595 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
3596 &iip->ili_item.li_lsn);
3597
3598 /*
3599 * Attach the function xfs_iflush_done to the inode's
3600 * buffer. This will remove the inode from the AIL
3601 * and unlock the inode's flush lock when the inode is
3602 * completely written to disk.
3603 */
3604 xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item);
3605
3606 /* generate the checksum. */
3607 xfs_dinode_calc_crc(mp, dip);
3608
3609 ASSERT(bp->b_fspriv != NULL);
3610 ASSERT(bp->b_iodone != NULL);
3611 return 0;
3612
3613corrupt_out:
3614 return -EFSCORRUPTED;
3615}