Linux Audio

Check our new training course

Linux BSP upgrade and security maintenance

Need help to get security updates for your Linux BSP?
Loading...
v3.1
 
   1/*
   2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
   3 * All Rights Reserved.
   4 *
   5 * This program is free software; you can redistribute it and/or
   6 * modify it under the terms of the GNU General Public License as
   7 * published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope that it would be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write the Free Software Foundation,
  16 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
  17 */
  18#include <linux/log2.h>
  19
  20#include "xfs.h"
  21#include "xfs_fs.h"
  22#include "xfs_types.h"
  23#include "xfs_bit.h"
  24#include "xfs_log.h"
  25#include "xfs_inum.h"
  26#include "xfs_trans.h"
  27#include "xfs_trans_priv.h"
  28#include "xfs_sb.h"
  29#include "xfs_ag.h"
  30#include "xfs_mount.h"
  31#include "xfs_bmap_btree.h"
  32#include "xfs_alloc_btree.h"
  33#include "xfs_ialloc_btree.h"
  34#include "xfs_attr_sf.h"
  35#include "xfs_dinode.h"
  36#include "xfs_inode.h"
 
 
 
 
  37#include "xfs_buf_item.h"
  38#include "xfs_inode_item.h"
  39#include "xfs_btree.h"
  40#include "xfs_alloc.h"
  41#include "xfs_ialloc.h"
  42#include "xfs_bmap.h"
 
 
  43#include "xfs_error.h"
  44#include "xfs_utils.h"
  45#include "xfs_quota.h"
  46#include "xfs_filestream.h"
  47#include "xfs_vnodeops.h"
  48#include "xfs_trace.h"
 
 
 
 
 
 
  49
  50kmem_zone_t *xfs_ifork_zone;
  51kmem_zone_t *xfs_inode_zone;
  52
  53/*
  54 * Used in xfs_itruncate_extents().  This is the maximum number of extents
  55 * freed from a file in a single transaction.
  56 */
  57#define	XFS_ITRUNC_MAX_EXTENTS	2
  58
  59STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
  60STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int);
  61STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int);
  62STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int);
  63
  64#ifdef DEBUG
  65/*
  66 * Make sure that the extents in the given memory buffer
  67 * are valid.
  68 */
  69STATIC void
  70xfs_validate_extents(
  71	xfs_ifork_t		*ifp,
  72	int			nrecs,
  73	xfs_exntfmt_t		fmt)
  74{
  75	xfs_bmbt_irec_t		irec;
  76	xfs_bmbt_rec_host_t	rec;
  77	int			i;
  78
  79	for (i = 0; i < nrecs; i++) {
  80		xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
  81		rec.l0 = get_unaligned(&ep->l0);
  82		rec.l1 = get_unaligned(&ep->l1);
  83		xfs_bmbt_get_all(&rec, &irec);
  84		if (fmt == XFS_EXTFMT_NOSTATE)
  85			ASSERT(irec.br_state == XFS_EXT_NORM);
  86	}
  87}
  88#else /* DEBUG */
  89#define xfs_validate_extents(ifp, nrecs, fmt)
  90#endif /* DEBUG */
  91
  92/*
  93 * Check that none of the inode's in the buffer have a next
  94 * unlinked field of 0.
 
 
  95 */
  96#if defined(DEBUG)
  97void
  98xfs_inobp_check(
  99	xfs_mount_t	*mp,
 100	xfs_buf_t	*bp)
 101{
 102	int		i;
 103	int		j;
 104	xfs_dinode_t	*dip;
 105
 106	j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
 107
 108	for (i = 0; i < j; i++) {
 109		dip = (xfs_dinode_t *)xfs_buf_offset(bp,
 110					i * mp->m_sb.sb_inodesize);
 111		if (!dip->di_next_unlinked)  {
 112			xfs_alert(mp,
 113	"Detected bogus zero next_unlinked field in incore inode buffer 0x%p.",
 114				bp);
 115			ASSERT(dip->di_next_unlinked);
 116		}
 117	}
 118}
 119#endif
 120
 121/*
 122 * Find the buffer associated with the given inode map
 123 * We do basic validation checks on the buffer once it has been
 124 * retrieved from disk.
 
 
 
 
 
 
 
 
 
 
 125 */
 126STATIC int
 127xfs_imap_to_bp(
 128	xfs_mount_t	*mp,
 129	xfs_trans_t	*tp,
 130	struct xfs_imap	*imap,
 131	xfs_buf_t	**bpp,
 132	uint		buf_flags,
 133	uint		iget_flags)
 134{
 135	int		error;
 136	int		i;
 137	int		ni;
 138	xfs_buf_t	*bp;
 139
 140	error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap->im_blkno,
 141				   (int)imap->im_len, buf_flags, &bp);
 142	if (error) {
 143		if (error != EAGAIN) {
 144			xfs_warn(mp,
 145				"%s: xfs_trans_read_buf() returned error %d.",
 146				__func__, error);
 147		} else {
 148			ASSERT(buf_flags & XBF_TRYLOCK);
 149		}
 150		return error;
 151	}
 152
 153	/*
 154	 * Validate the magic number and version of every inode in the buffer
 155	 * (if DEBUG kernel) or the first inode in the buffer, otherwise.
 156	 */
 157#ifdef DEBUG
 158	ni = BBTOB(imap->im_len) >> mp->m_sb.sb_inodelog;
 159#else	/* usual case */
 160	ni = 1;
 161#endif
 162
 163	for (i = 0; i < ni; i++) {
 164		int		di_ok;
 165		xfs_dinode_t	*dip;
 166
 167		dip = (xfs_dinode_t *)xfs_buf_offset(bp,
 168					(i << mp->m_sb.sb_inodelog));
 169		di_ok = dip->di_magic == cpu_to_be16(XFS_DINODE_MAGIC) &&
 170			    XFS_DINODE_GOOD_VERSION(dip->di_version);
 171		if (unlikely(XFS_TEST_ERROR(!di_ok, mp,
 172						XFS_ERRTAG_ITOBP_INOTOBP,
 173						XFS_RANDOM_ITOBP_INOTOBP))) {
 174			if (iget_flags & XFS_IGET_UNTRUSTED) {
 175				xfs_trans_brelse(tp, bp);
 176				return XFS_ERROR(EINVAL);
 177			}
 178			XFS_CORRUPTION_ERROR("xfs_imap_to_bp",
 179						XFS_ERRLEVEL_HIGH, mp, dip);
 180#ifdef DEBUG
 181			xfs_emerg(mp,
 182				"bad inode magic/vsn daddr %lld #%d (magic=%x)",
 183				(unsigned long long)imap->im_blkno, i,
 184				be16_to_cpu(dip->di_magic));
 185			ASSERT(0);
 186#endif
 187			xfs_trans_brelse(tp, bp);
 188			return XFS_ERROR(EFSCORRUPTED);
 189		}
 190	}
 191
 192	xfs_inobp_check(mp, bp);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 193
 194	/*
 195	 * Mark the buffer as an inode buffer now that it looks good
 
 
 196	 */
 197	XFS_BUF_SET_VTYPE(bp, B_FS_INO);
 
 
 
 
 
 
 198
 199	*bpp = bp;
 200	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 201}
 202
 203/*
 204 * This routine is called to map an inode number within a file
 205 * system to the buffer containing the on-disk version of the
 206 * inode.  It returns a pointer to the buffer containing the
 207 * on-disk inode in the bpp parameter, and in the dip parameter
 208 * it returns a pointer to the on-disk inode within that buffer.
 209 *
 210 * If a non-zero error is returned, then the contents of bpp and
 211 * dipp are undefined.
 212 *
 213 * Use xfs_imap() to determine the size and location of the
 214 * buffer to read from disk.
 215 */
 216int
 217xfs_inotobp(
 218	xfs_mount_t	*mp,
 219	xfs_trans_t	*tp,
 220	xfs_ino_t	ino,
 221	xfs_dinode_t	**dipp,
 222	xfs_buf_t	**bpp,
 223	int		*offset,
 224	uint		imap_flags)
 225{
 226	struct xfs_imap	imap;
 227	xfs_buf_t	*bp;
 228	int		error;
 229
 230	imap.im_blkno = 0;
 231	error = xfs_imap(mp, tp, ino, &imap, imap_flags);
 232	if (error)
 233		return error;
 
 
 
 
 
 
 
 
 234
 235	error = xfs_imap_to_bp(mp, tp, &imap, &bp, XBF_LOCK, imap_flags);
 236	if (error)
 237		return error;
 
 
 
 
 238
 239	*dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
 240	*bpp = bp;
 241	*offset = imap.im_boffset;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 242	return 0;
 243}
 244
 245
 246/*
 247 * This routine is called to map an inode to the buffer containing
 248 * the on-disk version of the inode.  It returns a pointer to the
 249 * buffer containing the on-disk inode in the bpp parameter, and in
 250 * the dip parameter it returns a pointer to the on-disk inode within
 251 * that buffer.
 252 *
 253 * If a non-zero error is returned, then the contents of bpp and
 254 * dipp are undefined.
 
 
 255 *
 256 * The inode is expected to already been mapped to its buffer and read
 257 * in once, thus we can use the mapping information stored in the inode
 258 * rather than calling xfs_imap().  This allows us to avoid the overhead
 259 * of looking at the inode btree for small block file systems
 260 * (see xfs_imap()).
 261 */
 262int
 263xfs_itobp(
 264	xfs_mount_t	*mp,
 265	xfs_trans_t	*tp,
 266	xfs_inode_t	*ip,
 267	xfs_dinode_t	**dipp,
 268	xfs_buf_t	**bpp,
 269	uint		buf_flags)
 270{
 271	xfs_buf_t	*bp;
 272	int		error;
 
 
 
 
 
 
 
 
 
 
 
 273
 274	ASSERT(ip->i_imap.im_blkno != 0);
 
 
 
 275
 276	error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp, buf_flags, 0);
 277	if (error)
 278		return error;
 
 279
 280	if (!bp) {
 281		ASSERT(buf_flags & XBF_TRYLOCK);
 282		ASSERT(tp == NULL);
 283		*bpp = NULL;
 284		return EAGAIN;
 285	}
 286
 287	*dipp = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
 288	*bpp = bp;
 289	return 0;
 290}
 291
 292/*
 293 * Move inode type and inode format specific information from the
 294 * on-disk inode to the in-core inode.  For fifos, devs, and sockets
 295 * this means set if_rdev to the proper value.  For files, directories,
 296 * and symlinks this means to bring in the in-line data or extent
 297 * pointers.  For a file in B-tree format, only the root is immediately
 298 * brought in-core.  The rest will be in-lined in if_extents when it
 299 * is first referenced (see xfs_iread_extents()).
 300 */
 301STATIC int
 302xfs_iformat(
 303	xfs_inode_t		*ip,
 304	xfs_dinode_t		*dip)
 305{
 306	xfs_attr_shortform_t	*atp;
 307	int			size;
 308	int			error;
 309	xfs_fsize_t             di_size;
 310	ip->i_df.if_ext_max =
 311		XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
 312	error = 0;
 313
 314	if (unlikely(be32_to_cpu(dip->di_nextents) +
 315		     be16_to_cpu(dip->di_anextents) >
 316		     be64_to_cpu(dip->di_nblocks))) {
 317		xfs_warn(ip->i_mount,
 318			"corrupt dinode %Lu, extent total = %d, nblocks = %Lu.",
 319			(unsigned long long)ip->i_ino,
 320			(int)(be32_to_cpu(dip->di_nextents) +
 321			      be16_to_cpu(dip->di_anextents)),
 322			(unsigned long long)
 323				be64_to_cpu(dip->di_nblocks));
 324		XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW,
 325				     ip->i_mount, dip);
 326		return XFS_ERROR(EFSCORRUPTED);
 327	}
 328
 329	if (unlikely(dip->di_forkoff > ip->i_mount->m_sb.sb_inodesize)) {
 330		xfs_warn(ip->i_mount, "corrupt dinode %Lu, forkoff = 0x%x.",
 331			(unsigned long long)ip->i_ino,
 332			dip->di_forkoff);
 333		XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW,
 334				     ip->i_mount, dip);
 335		return XFS_ERROR(EFSCORRUPTED);
 336	}
 337
 338	if (unlikely((ip->i_d.di_flags & XFS_DIFLAG_REALTIME) &&
 339		     !ip->i_mount->m_rtdev_targp)) {
 340		xfs_warn(ip->i_mount,
 341			"corrupt dinode %Lu, has realtime flag set.",
 342			ip->i_ino);
 343		XFS_CORRUPTION_ERROR("xfs_iformat(realtime)",
 344				     XFS_ERRLEVEL_LOW, ip->i_mount, dip);
 345		return XFS_ERROR(EFSCORRUPTED);
 346	}
 347
 348	switch (ip->i_d.di_mode & S_IFMT) {
 349	case S_IFIFO:
 350	case S_IFCHR:
 351	case S_IFBLK:
 352	case S_IFSOCK:
 353		if (unlikely(dip->di_format != XFS_DINODE_FMT_DEV)) {
 354			XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW,
 355					      ip->i_mount, dip);
 356			return XFS_ERROR(EFSCORRUPTED);
 357		}
 358		ip->i_d.di_size = 0;
 359		ip->i_size = 0;
 360		ip->i_df.if_u2.if_rdev = xfs_dinode_get_rdev(dip);
 361		break;
 362
 363	case S_IFREG:
 364	case S_IFLNK:
 365	case S_IFDIR:
 366		switch (dip->di_format) {
 367		case XFS_DINODE_FMT_LOCAL:
 368			/*
 369			 * no local regular files yet
 370			 */
 371			if (unlikely(S_ISREG(be16_to_cpu(dip->di_mode)))) {
 372				xfs_warn(ip->i_mount,
 373			"corrupt inode %Lu (local format for regular file).",
 374					(unsigned long long) ip->i_ino);
 375				XFS_CORRUPTION_ERROR("xfs_iformat(4)",
 376						     XFS_ERRLEVEL_LOW,
 377						     ip->i_mount, dip);
 378				return XFS_ERROR(EFSCORRUPTED);
 379			}
 380
 381			di_size = be64_to_cpu(dip->di_size);
 382			if (unlikely(di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) {
 383				xfs_warn(ip->i_mount,
 384			"corrupt inode %Lu (bad size %Ld for local inode).",
 385					(unsigned long long) ip->i_ino,
 386					(long long) di_size);
 387				XFS_CORRUPTION_ERROR("xfs_iformat(5)",
 388						     XFS_ERRLEVEL_LOW,
 389						     ip->i_mount, dip);
 390				return XFS_ERROR(EFSCORRUPTED);
 391			}
 392
 393			size = (int)di_size;
 394			error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size);
 395			break;
 396		case XFS_DINODE_FMT_EXTENTS:
 397			error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK);
 398			break;
 399		case XFS_DINODE_FMT_BTREE:
 400			error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK);
 401			break;
 402		default:
 403			XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW,
 404					 ip->i_mount);
 405			return XFS_ERROR(EFSCORRUPTED);
 406		}
 407		break;
 408
 409	default:
 410		XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount);
 411		return XFS_ERROR(EFSCORRUPTED);
 412	}
 413	if (error) {
 414		return error;
 
 
 
 
 415	}
 416	if (!XFS_DFORK_Q(dip))
 417		return 0;
 418	ASSERT(ip->i_afp == NULL);
 419	ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP | KM_NOFS);
 420	ip->i_afp->if_ext_max =
 421		XFS_IFORK_ASIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
 422	switch (dip->di_aformat) {
 423	case XFS_DINODE_FMT_LOCAL:
 424		atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip);
 425		size = be16_to_cpu(atp->hdr.totsize);
 426
 427		if (unlikely(size < sizeof(struct xfs_attr_sf_hdr))) {
 428			xfs_warn(ip->i_mount,
 429				"corrupt inode %Lu (bad attr fork size %Ld).",
 430				(unsigned long long) ip->i_ino,
 431				(long long) size);
 432			XFS_CORRUPTION_ERROR("xfs_iformat(8)",
 433					     XFS_ERRLEVEL_LOW,
 434					     ip->i_mount, dip);
 435			return XFS_ERROR(EFSCORRUPTED);
 436		}
 437
 438		error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size);
 439		break;
 440	case XFS_DINODE_FMT_EXTENTS:
 441		error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK);
 442		break;
 443	case XFS_DINODE_FMT_BTREE:
 444		error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK);
 445		break;
 446	default:
 447		error = XFS_ERROR(EFSCORRUPTED);
 448		break;
 449	}
 450	if (error) {
 451		kmem_zone_free(xfs_ifork_zone, ip->i_afp);
 452		ip->i_afp = NULL;
 453		xfs_idestroy_fork(ip, XFS_DATA_FORK);
 
 
 454	}
 455	return error;
 
 
 456}
 
 457
 458/*
 459 * The file is in-lined in the on-disk inode.
 460 * If it fits into if_inline_data, then copy
 461 * it there, otherwise allocate a buffer for it
 462 * and copy the data there.  Either way, set
 463 * if_data to point at the data.
 464 * If we allocate a buffer for the data, make
 465 * sure that its size is a multiple of 4 and
 466 * record the real size in i_real_bytes.
 467 */
 468STATIC int
 469xfs_iformat_local(
 470	xfs_inode_t	*ip,
 471	xfs_dinode_t	*dip,
 472	int		whichfork,
 473	int		size)
 474{
 475	xfs_ifork_t	*ifp;
 476	int		real_size;
 477
 478	/*
 479	 * If the size is unreasonable, then something
 480	 * is wrong and we just bail out rather than crash in
 481	 * kmem_alloc() or memcpy() below.
 482	 */
 483	if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
 484		xfs_warn(ip->i_mount,
 485	"corrupt inode %Lu (bad size %d for local fork, size = %d).",
 486			(unsigned long long) ip->i_ino, size,
 487			XFS_DFORK_SIZE(dip, ip->i_mount, whichfork));
 488		XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW,
 489				     ip->i_mount, dip);
 490		return XFS_ERROR(EFSCORRUPTED);
 491	}
 492	ifp = XFS_IFORK_PTR(ip, whichfork);
 493	real_size = 0;
 494	if (size == 0)
 495		ifp->if_u1.if_data = NULL;
 496	else if (size <= sizeof(ifp->if_u2.if_inline_data))
 497		ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
 498	else {
 499		real_size = roundup(size, 4);
 500		ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP | KM_NOFS);
 501	}
 502	ifp->if_bytes = size;
 503	ifp->if_real_bytes = real_size;
 504	if (size)
 505		memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR(dip, whichfork), size);
 506	ifp->if_flags &= ~XFS_IFEXTENTS;
 507	ifp->if_flags |= XFS_IFINLINE;
 508	return 0;
 509}
 
 
 
 510
 511/*
 512 * The file consists of a set of extents all
 513 * of which fit into the on-disk inode.
 514 * If there are few enough extents to fit into
 515 * the if_inline_ext, then copy them there.
 516 * Otherwise allocate a buffer for them and copy
 517 * them into it.  Either way, set if_extents
 518 * to point at the extents.
 519 */
 520STATIC int
 521xfs_iformat_extents(
 522	xfs_inode_t	*ip,
 523	xfs_dinode_t	*dip,
 524	int		whichfork)
 525{
 526	xfs_bmbt_rec_t	*dp;
 527	xfs_ifork_t	*ifp;
 528	int		nex;
 529	int		size;
 530	int		i;
 531
 532	ifp = XFS_IFORK_PTR(ip, whichfork);
 533	nex = XFS_DFORK_NEXTENTS(dip, whichfork);
 534	size = nex * (uint)sizeof(xfs_bmbt_rec_t);
 535
 536	/*
 537	 * If the number of extents is unreasonable, then something
 538	 * is wrong and we just bail out rather than crash in
 539	 * kmem_alloc() or memcpy() below.
 540	 */
 541	if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
 542		xfs_warn(ip->i_mount, "corrupt inode %Lu ((a)extents = %d).",
 543			(unsigned long long) ip->i_ino, nex);
 544		XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW,
 545				     ip->i_mount, dip);
 546		return XFS_ERROR(EFSCORRUPTED);
 547	}
 548
 549	ifp->if_real_bytes = 0;
 550	if (nex == 0)
 551		ifp->if_u1.if_extents = NULL;
 552	else if (nex <= XFS_INLINE_EXTS)
 553		ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
 554	else
 555		xfs_iext_add(ifp, 0, nex);
 556
 557	ifp->if_bytes = size;
 558	if (size) {
 559		dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork);
 560		xfs_validate_extents(ifp, nex, XFS_EXTFMT_INODE(ip));
 561		for (i = 0; i < nex; i++, dp++) {
 562			xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
 563			ep->l0 = get_unaligned_be64(&dp->l0);
 564			ep->l1 = get_unaligned_be64(&dp->l1);
 565		}
 566		XFS_BMAP_TRACE_EXLIST(ip, nex, whichfork);
 567		if (whichfork != XFS_DATA_FORK ||
 568			XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE)
 569				if (unlikely(xfs_check_nostate_extents(
 570				    ifp, 0, nex))) {
 571					XFS_ERROR_REPORT("xfs_iformat_extents(2)",
 572							 XFS_ERRLEVEL_LOW,
 573							 ip->i_mount);
 574					return XFS_ERROR(EFSCORRUPTED);
 575				}
 576	}
 577	ifp->if_flags |= XFS_IFEXTENTS;
 578	return 0;
 
 
 
 
 
 
 
 
 
 
 579}
 580
 581/*
 582 * The file has too many extents to fit into
 583 * the inode, so they are in B-tree format.
 584 * Allocate a buffer for the root of the B-tree
 585 * and copy the root into it.  The i_extents
 586 * field will remain NULL until all of the
 587 * extents are read in (when they are needed).
 
 
 
 
 
 
 
 588 */
 589STATIC int
 590xfs_iformat_btree(
 591	xfs_inode_t		*ip,
 592	xfs_dinode_t		*dip,
 593	int			whichfork)
 594{
 595	xfs_bmdr_block_t	*dfp;
 596	xfs_ifork_t		*ifp;
 597	/* REFERENCED */
 598	int			nrecs;
 599	int			size;
 600
 601	ifp = XFS_IFORK_PTR(ip, whichfork);
 602	dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork);
 603	size = XFS_BMAP_BROOT_SPACE(dfp);
 604	nrecs = be16_to_cpu(dfp->bb_numrecs);
 605
 606	/*
 607	 * blow out if -- fork has less extents than can fit in
 608	 * fork (fork shouldn't be a btree format), root btree
 609	 * block has more records than can fit into the fork,
 610	 * or the number of extents is greater than the number of
 611	 * blocks.
 612	 */
 613	if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <= ifp->if_ext_max
 614	    || XFS_BMDR_SPACE_CALC(nrecs) >
 615			XFS_DFORK_SIZE(dip, ip->i_mount, whichfork)
 616	    || XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) {
 617		xfs_warn(ip->i_mount, "corrupt inode %Lu (btree).",
 618			(unsigned long long) ip->i_ino);
 619		XFS_CORRUPTION_ERROR("xfs_iformat_btree", XFS_ERRLEVEL_LOW,
 620				 ip->i_mount, dip);
 621		return XFS_ERROR(EFSCORRUPTED);
 622	}
 623
 624	ifp->if_broot_bytes = size;
 625	ifp->if_broot = kmem_alloc(size, KM_SLEEP | KM_NOFS);
 626	ASSERT(ifp->if_broot != NULL);
 627	/*
 628	 * Copy and convert from the on-disk structure
 629	 * to the in-memory structure.
 630	 */
 631	xfs_bmdr_to_bmbt(ip->i_mount, dfp,
 632			 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork),
 633			 ifp->if_broot, size);
 634	ifp->if_flags &= ~XFS_IFEXTENTS;
 635	ifp->if_flags |= XFS_IFBROOT;
 636
 637	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 638}
 639
 640STATIC void
 641xfs_dinode_from_disk(
 642	xfs_icdinode_t		*to,
 643	xfs_dinode_t		*from)
 644{
 645	to->di_magic = be16_to_cpu(from->di_magic);
 646	to->di_mode = be16_to_cpu(from->di_mode);
 647	to->di_version = from ->di_version;
 648	to->di_format = from->di_format;
 649	to->di_onlink = be16_to_cpu(from->di_onlink);
 650	to->di_uid = be32_to_cpu(from->di_uid);
 651	to->di_gid = be32_to_cpu(from->di_gid);
 652	to->di_nlink = be32_to_cpu(from->di_nlink);
 653	to->di_projid_lo = be16_to_cpu(from->di_projid_lo);
 654	to->di_projid_hi = be16_to_cpu(from->di_projid_hi);
 655	memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
 656	to->di_flushiter = be16_to_cpu(from->di_flushiter);
 657	to->di_atime.t_sec = be32_to_cpu(from->di_atime.t_sec);
 658	to->di_atime.t_nsec = be32_to_cpu(from->di_atime.t_nsec);
 659	to->di_mtime.t_sec = be32_to_cpu(from->di_mtime.t_sec);
 660	to->di_mtime.t_nsec = be32_to_cpu(from->di_mtime.t_nsec);
 661	to->di_ctime.t_sec = be32_to_cpu(from->di_ctime.t_sec);
 662	to->di_ctime.t_nsec = be32_to_cpu(from->di_ctime.t_nsec);
 663	to->di_size = be64_to_cpu(from->di_size);
 664	to->di_nblocks = be64_to_cpu(from->di_nblocks);
 665	to->di_extsize = be32_to_cpu(from->di_extsize);
 666	to->di_nextents = be32_to_cpu(from->di_nextents);
 667	to->di_anextents = be16_to_cpu(from->di_anextents);
 668	to->di_forkoff = from->di_forkoff;
 669	to->di_aformat	= from->di_aformat;
 670	to->di_dmevmask	= be32_to_cpu(from->di_dmevmask);
 671	to->di_dmstate	= be16_to_cpu(from->di_dmstate);
 672	to->di_flags	= be16_to_cpu(from->di_flags);
 673	to->di_gen	= be32_to_cpu(from->di_gen);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 674}
 675
 676void
 677xfs_dinode_to_disk(
 678	xfs_dinode_t		*to,
 679	xfs_icdinode_t		*from)
 680{
 681	to->di_magic = cpu_to_be16(from->di_magic);
 682	to->di_mode = cpu_to_be16(from->di_mode);
 683	to->di_version = from ->di_version;
 684	to->di_format = from->di_format;
 685	to->di_onlink = cpu_to_be16(from->di_onlink);
 686	to->di_uid = cpu_to_be32(from->di_uid);
 687	to->di_gid = cpu_to_be32(from->di_gid);
 688	to->di_nlink = cpu_to_be32(from->di_nlink);
 689	to->di_projid_lo = cpu_to_be16(from->di_projid_lo);
 690	to->di_projid_hi = cpu_to_be16(from->di_projid_hi);
 691	memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
 692	to->di_flushiter = cpu_to_be16(from->di_flushiter);
 693	to->di_atime.t_sec = cpu_to_be32(from->di_atime.t_sec);
 694	to->di_atime.t_nsec = cpu_to_be32(from->di_atime.t_nsec);
 695	to->di_mtime.t_sec = cpu_to_be32(from->di_mtime.t_sec);
 696	to->di_mtime.t_nsec = cpu_to_be32(from->di_mtime.t_nsec);
 697	to->di_ctime.t_sec = cpu_to_be32(from->di_ctime.t_sec);
 698	to->di_ctime.t_nsec = cpu_to_be32(from->di_ctime.t_nsec);
 699	to->di_size = cpu_to_be64(from->di_size);
 700	to->di_nblocks = cpu_to_be64(from->di_nblocks);
 701	to->di_extsize = cpu_to_be32(from->di_extsize);
 702	to->di_nextents = cpu_to_be32(from->di_nextents);
 703	to->di_anextents = cpu_to_be16(from->di_anextents);
 704	to->di_forkoff = from->di_forkoff;
 705	to->di_aformat = from->di_aformat;
 706	to->di_dmevmask = cpu_to_be32(from->di_dmevmask);
 707	to->di_dmstate = cpu_to_be16(from->di_dmstate);
 708	to->di_flags = cpu_to_be16(from->di_flags);
 709	to->di_gen = cpu_to_be32(from->di_gen);
 710}
 711
 712STATIC uint
 713_xfs_dic2xflags(
 714	__uint16_t		di_flags)
 
 
 715{
 716	uint			flags = 0;
 717
 718	if (di_flags & XFS_DIFLAG_ANY) {
 719		if (di_flags & XFS_DIFLAG_REALTIME)
 720			flags |= XFS_XFLAG_REALTIME;
 721		if (di_flags & XFS_DIFLAG_PREALLOC)
 722			flags |= XFS_XFLAG_PREALLOC;
 723		if (di_flags & XFS_DIFLAG_IMMUTABLE)
 724			flags |= XFS_XFLAG_IMMUTABLE;
 725		if (di_flags & XFS_DIFLAG_APPEND)
 726			flags |= XFS_XFLAG_APPEND;
 727		if (di_flags & XFS_DIFLAG_SYNC)
 728			flags |= XFS_XFLAG_SYNC;
 729		if (di_flags & XFS_DIFLAG_NOATIME)
 730			flags |= XFS_XFLAG_NOATIME;
 731		if (di_flags & XFS_DIFLAG_NODUMP)
 732			flags |= XFS_XFLAG_NODUMP;
 733		if (di_flags & XFS_DIFLAG_RTINHERIT)
 734			flags |= XFS_XFLAG_RTINHERIT;
 735		if (di_flags & XFS_DIFLAG_PROJINHERIT)
 736			flags |= XFS_XFLAG_PROJINHERIT;
 737		if (di_flags & XFS_DIFLAG_NOSYMLINKS)
 738			flags |= XFS_XFLAG_NOSYMLINKS;
 739		if (di_flags & XFS_DIFLAG_EXTSIZE)
 740			flags |= XFS_XFLAG_EXTSIZE;
 741		if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
 742			flags |= XFS_XFLAG_EXTSZINHERIT;
 743		if (di_flags & XFS_DIFLAG_NODEFRAG)
 744			flags |= XFS_XFLAG_NODEFRAG;
 745		if (di_flags & XFS_DIFLAG_FILESTREAM)
 746			flags |= XFS_XFLAG_FILESTREAM;
 
 
 
 
 
 
 
 747	}
 748
 
 
 
 749	return flags;
 750}
 751
 752uint
 753xfs_ip2xflags(
 754	xfs_inode_t		*ip)
 755{
 756	xfs_icdinode_t		*dic = &ip->i_d;
 757
 758	return _xfs_dic2xflags(dic->di_flags) |
 759				(XFS_IFORK_Q(ip) ? XFS_XFLAG_HASATTR : 0);
 760}
 761
 762uint
 763xfs_dic2xflags(
 764	xfs_dinode_t		*dip)
 765{
 766	return _xfs_dic2xflags(be16_to_cpu(dip->di_flags)) |
 767				(XFS_DFORK_Q(dip) ? XFS_XFLAG_HASATTR : 0);
 768}
 769
 770/*
 771 * Read the disk inode attributes into the in-core inode structure.
 
 
 
 772 */
 773int
 774xfs_iread(
 775	xfs_mount_t	*mp,
 776	xfs_trans_t	*tp,
 777	xfs_inode_t	*ip,
 778	uint		iget_flags)
 779{
 780	xfs_buf_t	*bp;
 781	xfs_dinode_t	*dip;
 782	int		error;
 783
 784	/*
 785	 * Fill in the location information in the in-core inode.
 786	 */
 787	error = xfs_imap(mp, tp, ip->i_ino, &ip->i_imap, iget_flags);
 788	if (error)
 789		return error;
 790
 791	/*
 792	 * Get pointers to the on-disk inode and the buffer containing it.
 793	 */
 794	error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp,
 795			       XBF_LOCK, iget_flags);
 796	if (error)
 797		return error;
 798	dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
 799
 800	/*
 801	 * If we got something that isn't an inode it means someone
 802	 * (nfs or dmi) has a stale handle.
 803	 */
 804	if (dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC)) {
 805#ifdef DEBUG
 806		xfs_alert(mp,
 807			"%s: dip->di_magic (0x%x) != XFS_DINODE_MAGIC (0x%x)",
 808			__func__, be16_to_cpu(dip->di_magic), XFS_DINODE_MAGIC);
 809#endif /* DEBUG */
 810		error = XFS_ERROR(EINVAL);
 811		goto out_brelse;
 812	}
 813
 814	/*
 815	 * If the on-disk inode is already linked to a directory
 816	 * entry, copy all of the inode into the in-core inode.
 817	 * xfs_iformat() handles copying in the inode format
 818	 * specific information.
 819	 * Otherwise, just get the truly permanent information.
 820	 */
 821	if (dip->di_mode) {
 822		xfs_dinode_from_disk(&ip->i_d, dip);
 823		error = xfs_iformat(ip, dip);
 824		if (error)  {
 825#ifdef DEBUG
 826			xfs_alert(mp, "%s: xfs_iformat() returned error %d",
 827				__func__, error);
 828#endif /* DEBUG */
 829			goto out_brelse;
 830		}
 831	} else {
 832		ip->i_d.di_magic = be16_to_cpu(dip->di_magic);
 833		ip->i_d.di_version = dip->di_version;
 834		ip->i_d.di_gen = be32_to_cpu(dip->di_gen);
 835		ip->i_d.di_flushiter = be16_to_cpu(dip->di_flushiter);
 836		/*
 837		 * Make sure to pull in the mode here as well in
 838		 * case the inode is released without being used.
 839		 * This ensures that xfs_inactive() will see that
 840		 * the inode is already free and not try to mess
 841		 * with the uninitialized part of it.
 842		 */
 843		ip->i_d.di_mode = 0;
 844		/*
 845		 * Initialize the per-fork minima and maxima for a new
 846		 * inode here.  xfs_iformat will do it for old inodes.
 847		 */
 848		ip->i_df.if_ext_max =
 849			XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
 850	}
 851
 852	/*
 853	 * The inode format changed when we moved the link count and
 854	 * made it 32 bits long.  If this is an old format inode,
 855	 * convert it in memory to look like a new one.  If it gets
 856	 * flushed to disk we will convert back before flushing or
 857	 * logging it.  We zero out the new projid field and the old link
 858	 * count field.  We'll handle clearing the pad field (the remains
 859	 * of the old uuid field) when we actually convert the inode to
 860	 * the new format. We don't change the version number so that we
 861	 * can distinguish this from a real new format inode.
 862	 */
 863	if (ip->i_d.di_version == 1) {
 864		ip->i_d.di_nlink = ip->i_d.di_onlink;
 865		ip->i_d.di_onlink = 0;
 866		xfs_set_projid(ip, 0);
 867	}
 868
 869	ip->i_delayed_blks = 0;
 870	ip->i_size = ip->i_d.di_size;
 
 871
 872	/*
 873	 * Mark the buffer containing the inode as something to keep
 874	 * around for a while.  This helps to keep recently accessed
 875	 * meta-data in-core longer.
 876	 */
 877	xfs_buf_set_ref(bp, XFS_INO_REF);
 878
 879	/*
 880	 * Use xfs_trans_brelse() to release the buffer containing the
 881	 * on-disk inode, because it was acquired with xfs_trans_read_buf()
 882	 * in xfs_itobp() above.  If tp is NULL, this is just a normal
 883	 * brelse().  If we're within a transaction, then xfs_trans_brelse()
 884	 * will only release the buffer if it is not dirty within the
 885	 * transaction.  It will be OK to release the buffer in this case,
 886	 * because inodes on disk are never destroyed and we will be
 887	 * locking the new in-core inode before putting it in the hash
 888	 * table where other processes can find it.  Thus we don't have
 889	 * to worry about the inode being changed just because we released
 890	 * the buffer.
 891	 */
 892 out_brelse:
 893	xfs_trans_brelse(tp, bp);
 894	return error;
 895}
 896
 897/*
 898 * Read in extents from a btree-format inode.
 899 * Allocate and fill in if_extents.  Real work is done in xfs_bmap.c.
 900 */
 901int
 902xfs_iread_extents(
 903	xfs_trans_t	*tp,
 904	xfs_inode_t	*ip,
 905	int		whichfork)
 906{
 907	int		error;
 908	xfs_ifork_t	*ifp;
 909	xfs_extnum_t	nextents;
 910
 911	if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) {
 912		XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW,
 913				 ip->i_mount);
 914		return XFS_ERROR(EFSCORRUPTED);
 915	}
 916	nextents = XFS_IFORK_NEXTENTS(ip, whichfork);
 917	ifp = XFS_IFORK_PTR(ip, whichfork);
 918
 919	/*
 920	 * We know that the size is valid (it's checked in iformat_btree)
 921	 */
 922	ifp->if_bytes = ifp->if_real_bytes = 0;
 923	ifp->if_flags |= XFS_IFEXTENTS;
 924	xfs_iext_add(ifp, 0, nextents);
 925	error = xfs_bmap_read_extents(tp, ip, whichfork);
 926	if (error) {
 927		xfs_iext_destroy(ifp);
 928		ifp->if_flags &= ~XFS_IFEXTENTS;
 929		return error;
 930	}
 931	xfs_validate_extents(ifp, nextents, XFS_EXTFMT_INODE(ip));
 932	return 0;
 933}
 934
 935/*
 936 * Allocate an inode on disk and return a copy of its in-core version.
 937 * The in-core inode is locked exclusively.  Set mode, nlink, and rdev
 938 * appropriately within the inode.  The uid and gid for the inode are
 939 * set according to the contents of the given cred structure.
 940 *
 941 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
 942 * has a free inode available, call xfs_iget()
 943 * to obtain the in-core version of the allocated inode.  Finally,
 944 * fill in the inode and log its initial contents.  In this case,
 945 * ialloc_context would be set to NULL and call_again set to false.
 946 *
 947 * If xfs_dialloc() does not have an available inode,
 948 * it will replenish its supply by doing an allocation. Since we can
 949 * only do one allocation within a transaction without deadlocks, we
 950 * must commit the current transaction before returning the inode itself.
 951 * In this case, therefore, we will set call_again to true and return.
 952 * The caller should then commit the current transaction, start a new
 953 * transaction, and call xfs_ialloc() again to actually get the inode.
 954 *
 955 * To ensure that some other process does not grab the inode that
 956 * was allocated during the first call to xfs_ialloc(), this routine
 957 * also returns the [locked] bp pointing to the head of the freelist
 958 * as ialloc_context.  The caller should hold this buffer across
 959 * the commit and pass it back into this routine on the second call.
 960 *
 961 * If we are allocating quota inodes, we do not have a parent inode
 962 * to attach to or associate with (i.e. pip == NULL) because they
 963 * are not linked into the directory structure - they are attached
 964 * directly to the superblock - and so have no parent.
 965 */
 966int
 967xfs_ialloc(
 968	xfs_trans_t	*tp,
 969	xfs_inode_t	*pip,
 970	mode_t		mode,
 971	xfs_nlink_t	nlink,
 972	xfs_dev_t	rdev,
 973	prid_t		prid,
 974	int		okalloc,
 975	xfs_buf_t	**ialloc_context,
 976	boolean_t	*call_again,
 977	xfs_inode_t	**ipp)
 978{
 
 979	xfs_ino_t	ino;
 980	xfs_inode_t	*ip;
 981	uint		flags;
 982	int		error;
 983	timespec_t	tv;
 984	int		filestreams = 0;
 985
 986	/*
 987	 * Call the space management code to pick
 988	 * the on-disk inode to be allocated.
 989	 */
 990	error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
 991			    ialloc_context, call_again, &ino);
 992	if (error)
 993		return error;
 994	if (*call_again || ino == NULLFSINO) {
 995		*ipp = NULL;
 996		return 0;
 997	}
 998	ASSERT(*ialloc_context == NULL);
 999
1000	/*
 
 
 
 
 
 
 
 
 
 
 
 
1001	 * Get the in-core inode with the lock held exclusively.
1002	 * This is because we're setting fields here we need
1003	 * to prevent others from looking at until we're done.
1004	 */
1005	error = xfs_iget(tp->t_mountp, tp, ino, XFS_IGET_CREATE,
1006			 XFS_ILOCK_EXCL, &ip);
1007	if (error)
1008		return error;
1009	ASSERT(ip != NULL);
1010
1011	ip->i_d.di_mode = (__uint16_t)mode;
1012	ip->i_d.di_onlink = 0;
1013	ip->i_d.di_nlink = nlink;
1014	ASSERT(ip->i_d.di_nlink == nlink);
1015	ip->i_d.di_uid = current_fsuid();
1016	ip->i_d.di_gid = current_fsgid();
1017	xfs_set_projid(ip, prid);
1018	memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
1019
1020	/*
1021	 * If the superblock version is up to where we support new format
1022	 * inodes and this is currently an old format inode, then change
1023	 * the inode version number now.  This way we only do the conversion
1024	 * here rather than here and in the flush/logging code.
1025	 */
1026	if (xfs_sb_version_hasnlink(&tp->t_mountp->m_sb) &&
1027	    ip->i_d.di_version == 1) {
1028		ip->i_d.di_version = 2;
1029		/*
1030		 * We've already zeroed the old link count, the projid field,
1031		 * and the pad field.
1032		 */
1033	}
1034
1035	/*
1036	 * Project ids won't be stored on disk if we are using a version 1 inode.
1037	 */
1038	if ((prid != 0) && (ip->i_d.di_version == 1))
1039		xfs_bump_ino_vers2(tp, ip);
1040
1041	if (pip && XFS_INHERIT_GID(pip)) {
1042		ip->i_d.di_gid = pip->i_d.di_gid;
1043		if ((pip->i_d.di_mode & S_ISGID) && S_ISDIR(mode)) {
1044			ip->i_d.di_mode |= S_ISGID;
1045		}
 
1046	}
1047
1048	/*
1049	 * If the group ID of the new file does not match the effective group
1050	 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
1051	 * (and only if the irix_sgid_inherit compatibility variable is set).
1052	 */
1053	if ((irix_sgid_inherit) &&
1054	    (ip->i_d.di_mode & S_ISGID) &&
1055	    (!in_group_p((gid_t)ip->i_d.di_gid))) {
1056		ip->i_d.di_mode &= ~S_ISGID;
1057	}
1058
1059	ip->i_d.di_size = 0;
1060	ip->i_size = 0;
1061	ip->i_d.di_nextents = 0;
1062	ASSERT(ip->i_d.di_nblocks == 0);
1063
1064	nanotime(&tv);
1065	ip->i_d.di_mtime.t_sec = (__int32_t)tv.tv_sec;
1066	ip->i_d.di_mtime.t_nsec = (__int32_t)tv.tv_nsec;
1067	ip->i_d.di_atime = ip->i_d.di_mtime;
1068	ip->i_d.di_ctime = ip->i_d.di_mtime;
1069
1070	/*
1071	 * di_gen will have been taken care of in xfs_iread.
1072	 */
1073	ip->i_d.di_extsize = 0;
1074	ip->i_d.di_dmevmask = 0;
1075	ip->i_d.di_dmstate = 0;
1076	ip->i_d.di_flags = 0;
 
 
 
 
 
 
 
 
1077	flags = XFS_ILOG_CORE;
1078	switch (mode & S_IFMT) {
1079	case S_IFIFO:
1080	case S_IFCHR:
1081	case S_IFBLK:
1082	case S_IFSOCK:
1083		ip->i_d.di_format = XFS_DINODE_FMT_DEV;
1084		ip->i_df.if_u2.if_rdev = rdev;
1085		ip->i_df.if_flags = 0;
1086		flags |= XFS_ILOG_DEV;
1087		break;
1088	case S_IFREG:
1089		/*
1090		 * we can't set up filestreams until after the VFS inode
1091		 * is set up properly.
1092		 */
1093		if (pip && xfs_inode_is_filestream(pip))
1094			filestreams = 1;
1095		/* fall through */
1096	case S_IFDIR:
1097		if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
1098			uint	di_flags = 0;
1099
1100			if (S_ISDIR(mode)) {
1101				if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
1102					di_flags |= XFS_DIFLAG_RTINHERIT;
1103				if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1104					di_flags |= XFS_DIFLAG_EXTSZINHERIT;
1105					ip->i_d.di_extsize = pip->i_d.di_extsize;
1106				}
 
 
1107			} else if (S_ISREG(mode)) {
1108				if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
1109					di_flags |= XFS_DIFLAG_REALTIME;
1110				if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1111					di_flags |= XFS_DIFLAG_EXTSIZE;
1112					ip->i_d.di_extsize = pip->i_d.di_extsize;
1113				}
1114			}
1115			if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
1116			    xfs_inherit_noatime)
1117				di_flags |= XFS_DIFLAG_NOATIME;
1118			if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
1119			    xfs_inherit_nodump)
1120				di_flags |= XFS_DIFLAG_NODUMP;
1121			if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
1122			    xfs_inherit_sync)
1123				di_flags |= XFS_DIFLAG_SYNC;
1124			if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
1125			    xfs_inherit_nosymlinks)
1126				di_flags |= XFS_DIFLAG_NOSYMLINKS;
1127			if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
1128				di_flags |= XFS_DIFLAG_PROJINHERIT;
1129			if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
1130			    xfs_inherit_nodefrag)
1131				di_flags |= XFS_DIFLAG_NODEFRAG;
1132			if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
1133				di_flags |= XFS_DIFLAG_FILESTREAM;
 
1134			ip->i_d.di_flags |= di_flags;
1135		}
 
 
 
 
 
 
 
 
1136		/* FALLTHROUGH */
1137	case S_IFLNK:
1138		ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
1139		ip->i_df.if_flags = XFS_IFEXTENTS;
1140		ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
1141		ip->i_df.if_u1.if_extents = NULL;
1142		break;
1143	default:
1144		ASSERT(0);
1145	}
1146	/*
1147	 * Attribute fork settings for new inode.
1148	 */
1149	ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
1150	ip->i_d.di_anextents = 0;
1151
1152	/*
1153	 * Log the new values stuffed into the inode.
1154	 */
1155	xfs_trans_ijoin_ref(tp, ip, XFS_ILOCK_EXCL);
1156	xfs_trans_log_inode(tp, ip, flags);
1157
1158	/* now that we have an i_mode we can setup inode ops and unlock */
1159	xfs_setup_inode(ip);
1160
1161	/* now we have set up the vfs inode we can associate the filestream */
1162	if (filestreams) {
1163		error = xfs_filestream_associate(pip, ip);
1164		if (error < 0)
1165			return -error;
1166		if (!error)
1167			xfs_iflags_set(ip, XFS_IFILESTREAM);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1168	}
1169
1170	*ipp = ip;
 
 
1171	return 0;
1172}
1173
1174/*
1175 * Check to make sure that there are no blocks allocated to the
1176 * file beyond the size of the file.  We don't check this for
1177 * files with fixed size extents or real time extents, but we
1178 * at least do it for regular files.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1179 */
1180#ifdef DEBUG
1181STATIC void
1182xfs_isize_check(
1183	struct xfs_inode	*ip,
1184	xfs_fsize_t		isize)
1185{
1186	struct xfs_mount	*mp = ip->i_mount;
1187	xfs_fileoff_t		map_first;
1188	int			nimaps;
1189	xfs_bmbt_irec_t		imaps[2];
1190
1191	if (!S_ISREG(ip->i_d.di_mode))
1192		return;
 
1193
1194	if (XFS_IS_REALTIME_INODE(ip))
1195		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1196
1197	if (ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE)
1198		return;
 
 
 
 
1199
1200	nimaps = 2;
1201	map_first = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
1202	/*
1203	 * The filesystem could be shutting down, so bmapi may return
1204	 * an error.
1205	 */
1206	if (xfs_bmapi(NULL, ip, map_first,
1207			 (XFS_B_TO_FSB(mp,
1208				       (xfs_ufsize_t)XFS_MAXIOFFSET(mp)) -
1209			  map_first),
1210			 XFS_BMAPI_ENTIRE, NULL, 0, imaps, &nimaps,
1211			 NULL))
1212	    return;
1213	ASSERT(nimaps == 1);
1214	ASSERT(imaps[0].br_startblock == HOLESTARTBLOCK);
1215}
1216#else	/* DEBUG */
1217#define xfs_isize_check(ip, isize)
1218#endif	/* DEBUG */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1219
1220/*
1221 * Free up the underlying blocks past new_size.  The new size must be smaller
1222 * than the current size.  This routine can be used both for the attribute and
1223 * data fork, and does not modify the inode size, which is left to the caller.
1224 *
1225 * The transaction passed to this routine must have made a permanent log
1226 * reservation of at least XFS_ITRUNCATE_LOG_RES.  This routine may commit the
1227 * given transaction and start new ones, so make sure everything involved in
1228 * the transaction is tidy before calling here.  Some transaction will be
1229 * returned to the caller to be committed.  The incoming transaction must
1230 * already include the inode, and both inode locks must be held exclusively.
1231 * The inode must also be "held" within the transaction.  On return the inode
1232 * will be "held" within the returned transaction.  This routine does NOT
1233 * require any disk space to be reserved for it within the transaction.
1234 *
1235 * If we get an error, we must return with the inode locked and linked into the
1236 * current transaction. This keeps things simple for the higher level code,
1237 * because it always knows that the inode is locked and held in the transaction
1238 * that returns to it whether errors occur or not.  We don't mark the inode
1239 * dirty on error so that transactions can be easily aborted if possible.
1240 */
1241int
1242xfs_itruncate_extents(
1243	struct xfs_trans	**tpp,
1244	struct xfs_inode	*ip,
1245	int			whichfork,
1246	xfs_fsize_t		new_size)
 
1247{
1248	struct xfs_mount	*mp = ip->i_mount;
1249	struct xfs_trans	*tp = *tpp;
1250	struct xfs_trans	*ntp;
1251	xfs_bmap_free_t		free_list;
1252	xfs_fsblock_t		first_block;
1253	xfs_fileoff_t		first_unmap_block;
1254	xfs_fileoff_t		last_block;
1255	xfs_filblks_t		unmap_len;
1256	int			committed;
1257	int			error = 0;
1258	int			done = 0;
1259
1260	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_IOLOCK_EXCL));
1261	ASSERT(new_size <= ip->i_size);
 
 
1262	ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1263	ASSERT(ip->i_itemp != NULL);
1264	ASSERT(ip->i_itemp->ili_lock_flags == 0);
1265	ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
1266
 
 
 
 
1267	/*
1268	 * Since it is possible for space to become allocated beyond
1269	 * the end of the file (in a crash where the space is allocated
1270	 * but the inode size is not yet updated), simply remove any
1271	 * blocks which show up between the new EOF and the maximum
1272	 * possible file size.  If the first block to be removed is
1273	 * beyond the maximum file size (ie it is the same as last_block),
1274	 * then there is nothing to do.
 
1275	 */
1276	first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1277	last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_MAXIOFFSET(mp));
1278	if (first_unmap_block == last_block)
1279		return 0;
 
1280
1281	ASSERT(first_unmap_block < last_block);
1282	unmap_len = last_block - first_unmap_block + 1;
1283	while (!done) {
1284		xfs_bmap_init(&free_list, &first_block);
1285		error = xfs_bunmapi(tp, ip,
1286				    first_unmap_block, unmap_len,
1287				    xfs_bmapi_aflag(whichfork),
1288				    XFS_ITRUNC_MAX_EXTENTS,
1289				    &first_block, &free_list,
1290				    &done);
1291		if (error)
1292			goto out_bmap_cancel;
1293
1294		/*
1295		 * Duplicate the transaction that has the permanent
1296		 * reservation and commit the old transaction.
1297		 */
1298		error = xfs_bmap_finish(&tp, &free_list, &committed);
1299		if (committed)
1300			xfs_trans_ijoin(tp, ip);
1301		if (error)
1302			goto out_bmap_cancel;
1303
1304		if (committed) {
1305			/*
1306			 * Mark the inode dirty so it will be logged and
1307			 * moved forward in the log as part of every commit.
1308			 */
1309			xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1310		}
1311
1312		ntp = xfs_trans_dup(tp);
1313		error = xfs_trans_commit(tp, 0);
1314		tp = ntp;
1315
1316		xfs_trans_ijoin(tp, ip);
1317
 
1318		if (error)
1319			goto out;
 
1320
1321		/*
1322		 * Transaction commit worked ok so we can drop the extra ticket
1323		 * reference that we gained in xfs_trans_dup()
1324		 */
1325		xfs_log_ticket_put(tp->t_ticket);
1326		error = xfs_trans_reserve(tp, 0,
1327					XFS_ITRUNCATE_LOG_RES(mp), 0,
1328					XFS_TRANS_PERM_LOG_RES,
1329					XFS_ITRUNCATE_LOG_COUNT);
1330		if (error)
1331			goto out;
 
 
1332	}
1333
 
 
 
 
 
 
 
 
1334out:
1335	*tpp = tp;
1336	return error;
1337out_bmap_cancel:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1338	/*
1339	 * If the bunmapi call encounters an error, return to the caller where
1340	 * the transaction can be properly aborted.  We just need to make sure
1341	 * we're not holding any resources that we were not when we came in.
1342	 */
1343	xfs_bmap_cancel(&free_list);
1344	goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1345}
1346
1347int
1348xfs_itruncate_data(
1349	struct xfs_trans	**tpp,
1350	struct xfs_inode	*ip,
1351	xfs_fsize_t		new_size)
 
 
 
1352{
 
 
1353	int			error;
1354
1355	trace_xfs_itruncate_data_start(ip, new_size);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1356
1357	/*
1358	 * The first thing we do is set the size to new_size permanently on
1359	 * disk.  This way we don't have to worry about anyone ever being able
1360	 * to look at the data being freed even in the face of a crash.
1361	 * What we're getting around here is the case where we free a block, it
1362	 * is allocated to another file, it is written to, and then we crash.
1363	 * If the new data gets written to the file but the log buffers
1364	 * containing the free and reallocation don't, then we'd end up with
1365	 * garbage in the blocks being freed.  As long as we make the new_size
1366	 * permanent before actually freeing any blocks it doesn't matter if
1367	 * they get written to.
 
 
 
 
 
 
 
 
1368	 */
1369	if (ip->i_d.di_nextents > 0) {
 
 
 
 
 
1370		/*
1371		 * If we are not changing the file size then do not update
1372		 * the on-disk file size - we may be called from
1373		 * xfs_inactive_free_eofblocks().  If we update the on-disk
1374		 * file size and then the system crashes before the contents
1375		 * of the file are flushed to disk then the files may be
1376		 * full of holes (ie NULL files bug).
1377		 */
1378		if (ip->i_size != new_size) {
1379			ip->i_d.di_size = new_size;
1380			ip->i_size = new_size;
1381			xfs_trans_log_inode(*tpp, ip, XFS_ILOG_CORE);
1382		}
 
 
1383	}
1384
1385	error = xfs_itruncate_extents(tpp, ip, XFS_DATA_FORK, new_size);
 
 
 
 
 
 
 
 
 
1386	if (error)
1387		return error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1388
1389	/*
1390	 * If we are not changing the file size then do not update the on-disk
1391	 * file size - we may be called from xfs_inactive_free_eofblocks().
1392	 * If we update the on-disk file size and then the system crashes
1393	 * before the contents of the file are flushed to disk then the files
1394	 * may be full of holes (ie NULL files bug).
1395	 */
1396	xfs_isize_check(ip, new_size);
1397	if (ip->i_size != new_size) {
1398		ip->i_d.di_size = new_size;
1399		ip->i_size = new_size;
1400	}
1401
1402	ASSERT(new_size != 0 || ip->i_delayed_blks == 0);
1403	ASSERT(new_size != 0 || ip->i_d.di_nextents == 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1404
1405	/*
1406	 * Always re-log the inode so that our permanent transaction can keep
1407	 * on rolling it forward in the log.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1408	 */
1409	xfs_trans_log_inode(*tpp, ip, XFS_ILOG_CORE);
 
1410
1411	trace_xfs_itruncate_data_end(ip, new_size);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1412	return 0;
1413}
1414
 
 
 
 
 
 
 
 
 
 
1415/*
1416 * This is called when the inode's link count goes to 0.
1417 * We place the on-disk inode on a list in the AGI.  It
1418 * will be pulled from this list when the inode is freed.
1419 */
1420int
1421xfs_iunlink(
1422	xfs_trans_t	*tp,
1423	xfs_inode_t	*ip)
1424{
1425	xfs_mount_t	*mp;
1426	xfs_agi_t	*agi;
1427	xfs_dinode_t	*dip;
1428	xfs_buf_t	*agibp;
1429	xfs_buf_t	*ibp;
1430	xfs_agino_t	agino;
1431	short		bucket_index;
1432	int		offset;
1433	int		error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1434
1435	ASSERT(ip->i_d.di_nlink == 0);
1436	ASSERT(ip->i_d.di_mode != 0);
 
1437
1438	mp = tp->t_mountp;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1439
1440	/*
1441	 * Get the agi buffer first.  It ensures lock ordering
1442	 * on the list.
 
 
 
 
1443	 */
1444	error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp);
 
1445	if (error)
1446		return error;
1447	agi = XFS_BUF_TO_AGI(agibp);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1448
1449	/*
1450	 * Get the index into the agi hash table for the
1451	 * list this inode will go on.
 
1452	 */
1453	agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1454	ASSERT(agino != 0);
1455	bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1456	ASSERT(agi->agi_unlinked[bucket_index]);
1457	ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
1458
1459	if (agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO)) {
1460		/*
1461		 * There is already another inode in the bucket we need
1462		 * to add ourselves to.  Add us at the front of the list.
1463		 * Here we put the head pointer into our next pointer,
1464		 * and then we fall through to point the head at us.
1465		 */
1466		error = xfs_itobp(mp, tp, ip, &dip, &ibp, XBF_LOCK);
1467		if (error)
1468			return error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1469
1470		ASSERT(dip->di_next_unlinked == cpu_to_be32(NULLAGINO));
1471		dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
1472		offset = ip->i_imap.im_boffset +
1473			offsetof(xfs_dinode_t, di_next_unlinked);
1474		xfs_trans_inode_buf(tp, ibp);
1475		xfs_trans_log_buf(tp, ibp, offset,
1476				  (offset + sizeof(xfs_agino_t) - 1));
1477		xfs_inobp_check(mp, ibp);
 
 
 
1478	}
1479
1480	/*
1481	 * Point the bucket head pointer at the inode being inserted.
1482	 */
1483	ASSERT(agino != 0);
1484	agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
1485	offset = offsetof(xfs_agi_t, agi_unlinked) +
1486		(sizeof(xfs_agino_t) * bucket_index);
1487	xfs_trans_log_buf(tp, agibp, offset,
1488			  (offset + sizeof(xfs_agino_t) - 1));
 
 
 
 
 
 
 
 
 
1489	return 0;
 
 
 
1490}
1491
1492/*
1493 * Pull the on-disk inode from the AGI unlinked list.
 
 
 
 
1494 */
1495STATIC int
1496xfs_iunlink_remove(
1497	xfs_trans_t	*tp,
1498	xfs_inode_t	*ip)
1499{
1500	xfs_ino_t	next_ino;
1501	xfs_mount_t	*mp;
1502	xfs_agi_t	*agi;
1503	xfs_dinode_t	*dip;
1504	xfs_buf_t	*agibp;
1505	xfs_buf_t	*ibp;
1506	xfs_agnumber_t	agno;
1507	xfs_agino_t	agino;
1508	xfs_agino_t	next_agino;
1509	xfs_buf_t	*last_ibp;
1510	xfs_dinode_t	*last_dip = NULL;
1511	short		bucket_index;
1512	int		offset, last_offset = 0;
1513	int		error;
1514
1515	mp = tp->t_mountp;
1516	agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
 
1517
1518	/*
1519	 * Get the agi buffer first.  It ensures lock ordering
1520	 * on the list.
1521	 */
1522	error = xfs_read_agi(mp, tp, agno, &agibp);
1523	if (error)
1524		return error;
1525
1526	agi = XFS_BUF_TO_AGI(agibp);
1527
1528	/*
1529	 * Get the index into the agi hash table for the
1530	 * list this inode will go on.
 
1531	 */
1532	agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1533	ASSERT(agino != 0);
1534	bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1535	ASSERT(agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO));
1536	ASSERT(agi->agi_unlinked[bucket_index]);
1537
1538	if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
1539		/*
1540		 * We're at the head of the list.  Get the inode's
1541		 * on-disk buffer to see if there is anyone after us
1542		 * on the list.  Only modify our next pointer if it
1543		 * is not already NULLAGINO.  This saves us the overhead
1544		 * of dealing with the buffer when there is no need to
1545		 * change it.
1546		 */
1547		error = xfs_itobp(mp, tp, ip, &dip, &ibp, XBF_LOCK);
1548		if (error) {
1549			xfs_warn(mp, "%s: xfs_itobp() returned error %d.",
1550				__func__, error);
1551			return error;
1552		}
1553		next_agino = be32_to_cpu(dip->di_next_unlinked);
1554		ASSERT(next_agino != 0);
1555		if (next_agino != NULLAGINO) {
1556			dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
1557			offset = ip->i_imap.im_boffset +
1558				offsetof(xfs_dinode_t, di_next_unlinked);
1559			xfs_trans_inode_buf(tp, ibp);
1560			xfs_trans_log_buf(tp, ibp, offset,
1561					  (offset + sizeof(xfs_agino_t) - 1));
1562			xfs_inobp_check(mp, ibp);
1563		} else {
1564			xfs_trans_brelse(tp, ibp);
1565		}
1566		/*
1567		 * Point the bucket head pointer at the next inode.
1568		 */
1569		ASSERT(next_agino != 0);
1570		ASSERT(next_agino != agino);
1571		agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
1572		offset = offsetof(xfs_agi_t, agi_unlinked) +
1573			(sizeof(xfs_agino_t) * bucket_index);
1574		xfs_trans_log_buf(tp, agibp, offset,
1575				  (offset + sizeof(xfs_agino_t) - 1));
1576	} else {
1577		/*
1578		 * We need to search the list for the inode being freed.
1579		 */
1580		next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
1581		last_ibp = NULL;
1582		while (next_agino != agino) {
1583			/*
1584			 * If the last inode wasn't the one pointing to
1585			 * us, then release its buffer since we're not
1586			 * going to do anything with it.
1587			 */
1588			if (last_ibp != NULL) {
1589				xfs_trans_brelse(tp, last_ibp);
1590			}
1591			next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
1592			error = xfs_inotobp(mp, tp, next_ino, &last_dip,
1593					    &last_ibp, &last_offset, 0);
1594			if (error) {
1595				xfs_warn(mp,
1596					"%s: xfs_inotobp() returned error %d.",
1597					__func__, error);
1598				return error;
1599			}
1600			next_agino = be32_to_cpu(last_dip->di_next_unlinked);
1601			ASSERT(next_agino != NULLAGINO);
1602			ASSERT(next_agino != 0);
1603		}
1604		/*
1605		 * Now last_ibp points to the buffer previous to us on
1606		 * the unlinked list.  Pull us from the list.
1607		 */
1608		error = xfs_itobp(mp, tp, ip, &dip, &ibp, XBF_LOCK);
1609		if (error) {
1610			xfs_warn(mp, "%s: xfs_itobp(2) returned error %d.",
1611				__func__, error);
1612			return error;
1613		}
1614		next_agino = be32_to_cpu(dip->di_next_unlinked);
1615		ASSERT(next_agino != 0);
1616		ASSERT(next_agino != agino);
1617		if (next_agino != NULLAGINO) {
1618			dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
1619			offset = ip->i_imap.im_boffset +
1620				offsetof(xfs_dinode_t, di_next_unlinked);
1621			xfs_trans_inode_buf(tp, ibp);
1622			xfs_trans_log_buf(tp, ibp, offset,
1623					  (offset + sizeof(xfs_agino_t) - 1));
1624			xfs_inobp_check(mp, ibp);
1625		} else {
1626			xfs_trans_brelse(tp, ibp);
1627		}
1628		/*
1629		 * Point the previous inode on the list to the next inode.
 
1630		 */
1631		last_dip->di_next_unlinked = cpu_to_be32(next_agino);
1632		ASSERT(next_agino != 0);
1633		offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
1634		xfs_trans_inode_buf(tp, last_ibp);
1635		xfs_trans_log_buf(tp, last_ibp, offset,
1636				  (offset + sizeof(xfs_agino_t) - 1));
1637		xfs_inobp_check(mp, last_ibp);
1638	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1639	return 0;
1640}
1641
1642/*
1643 * A big issue when freeing the inode cluster is is that we _cannot_ skip any
1644 * inodes that are in memory - they all must be marked stale and attached to
1645 * the cluster buffer.
 
 
 
 
 
1646 */
1647STATIC void
1648xfs_ifree_cluster(
1649	xfs_inode_t	*free_ip,
1650	xfs_trans_t	*tp,
1651	xfs_ino_t	inum)
 
 
 
 
 
 
1652{
1653	xfs_mount_t		*mp = free_ip->i_mount;
1654	int			blks_per_cluster;
1655	int			nbufs;
1656	int			ninodes;
1657	int			i, j;
1658	xfs_daddr_t		blkno;
1659	xfs_buf_t		*bp;
1660	xfs_inode_t		*ip;
1661	xfs_inode_log_item_t	*iip;
1662	xfs_log_item_t		*lip;
1663	struct xfs_perag	*pag;
1664
1665	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum));
1666	if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) {
1667		blks_per_cluster = 1;
1668		ninodes = mp->m_sb.sb_inopblock;
1669		nbufs = XFS_IALLOC_BLOCKS(mp);
1670	} else {
1671		blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) /
1672					mp->m_sb.sb_blocksize;
1673		ninodes = blks_per_cluster * mp->m_sb.sb_inopblock;
1674		nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster;
1675	}
1676
1677	for (j = 0; j < nbufs; j++, inum += ninodes) {
1678		blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
1679					 XFS_INO_TO_AGBNO(mp, inum));
1680
1681		/*
1682		 * We obtain and lock the backing buffer first in the process
1683		 * here, as we have to ensure that any dirty inode that we
1684		 * can't get the flush lock on is attached to the buffer.
1685		 * If we scan the in-memory inodes first, then buffer IO can
1686		 * complete before we get a lock on it, and hence we may fail
1687		 * to mark all the active inodes on the buffer stale.
1688		 */
1689		bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
1690					mp->m_bsize * blks_per_cluster,
1691					XBF_LOCK);
1692
1693		/*
1694		 * Walk the inodes already attached to the buffer and mark them
1695		 * stale. These will all have the flush locks held, so an
1696		 * in-memory inode walk can't lock them. By marking them all
1697		 * stale first, we will not attempt to lock them in the loop
1698		 * below as the XFS_ISTALE flag will be set.
1699		 */
1700		lip = bp->b_fspriv;
1701		while (lip) {
1702			if (lip->li_type == XFS_LI_INODE) {
1703				iip = (xfs_inode_log_item_t *)lip;
1704				ASSERT(iip->ili_logged == 1);
1705				lip->li_cb = xfs_istale_done;
1706				xfs_trans_ail_copy_lsn(mp->m_ail,
1707							&iip->ili_flush_lsn,
1708							&iip->ili_item.li_lsn);
1709				xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
1710			}
1711			lip = lip->li_bio_list;
1712		}
1713
 
 
1714
1715		/*
1716		 * For each inode in memory attempt to add it to the inode
1717		 * buffer and set it up for being staled on buffer IO
1718		 * completion.  This is safe as we've locked out tail pushing
1719		 * and flushing by locking the buffer.
1720		 *
1721		 * We have already marked every inode that was part of a
1722		 * transaction stale above, which means there is no point in
1723		 * even trying to lock them.
1724		 */
1725		for (i = 0; i < ninodes; i++) {
1726retry:
1727			rcu_read_lock();
1728			ip = radix_tree_lookup(&pag->pag_ici_root,
1729					XFS_INO_TO_AGINO(mp, (inum + i)));
1730
1731			/* Inode not in memory, nothing to do */
1732			if (!ip) {
1733				rcu_read_unlock();
1734				continue;
1735			}
1736
1737			/*
1738			 * because this is an RCU protected lookup, we could
1739			 * find a recently freed or even reallocated inode
1740			 * during the lookup. We need to check under the
1741			 * i_flags_lock for a valid inode here. Skip it if it
1742			 * is not valid, the wrong inode or stale.
1743			 */
1744			spin_lock(&ip->i_flags_lock);
1745			if (ip->i_ino != inum + i ||
1746			    __xfs_iflags_test(ip, XFS_ISTALE)) {
1747				spin_unlock(&ip->i_flags_lock);
1748				rcu_read_unlock();
1749				continue;
1750			}
1751			spin_unlock(&ip->i_flags_lock);
1752
1753			/*
1754			 * Don't try to lock/unlock the current inode, but we
1755			 * _cannot_ skip the other inodes that we did not find
1756			 * in the list attached to the buffer and are not
1757			 * already marked stale. If we can't lock it, back off
1758			 * and retry.
1759			 */
1760			if (ip != free_ip &&
1761			    !xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
1762				rcu_read_unlock();
1763				delay(1);
1764				goto retry;
1765			}
1766			rcu_read_unlock();
1767
1768			xfs_iflock(ip);
1769			xfs_iflags_set(ip, XFS_ISTALE);
 
 
1770
1771			/*
1772			 * we don't need to attach clean inodes or those only
1773			 * with unlogged changes (which we throw away, anyway).
1774			 */
1775			iip = ip->i_itemp;
1776			if (!iip || xfs_inode_clean(ip)) {
1777				ASSERT(ip != free_ip);
1778				ip->i_update_core = 0;
1779				xfs_ifunlock(ip);
1780				xfs_iunlock(ip, XFS_ILOCK_EXCL);
1781				continue;
1782			}
1783
1784			iip->ili_last_fields = iip->ili_format.ilf_fields;
1785			iip->ili_format.ilf_fields = 0;
1786			iip->ili_logged = 1;
1787			xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
1788						&iip->ili_item.li_lsn);
1789
1790			xfs_buf_attach_iodone(bp, xfs_istale_done,
1791						  &iip->ili_item);
1792
1793			if (ip != free_ip)
1794				xfs_iunlock(ip, XFS_ILOCK_EXCL);
 
 
 
 
 
 
 
 
 
 
1795		}
1796
1797		xfs_trans_stale_inode_buf(tp, bp);
1798		xfs_trans_binval(tp, bp);
1799	}
1800
1801	xfs_perag_put(pag);
1802}
1803
1804/*
1805 * This is called to return an inode to the inode free list.
1806 * The inode should already be truncated to 0 length and have
1807 * no pages associated with it.  This routine also assumes that
1808 * the inode is already a part of the transaction.
1809 *
1810 * The on-disk copy of the inode will have been added to the list
1811 * of unlinked inodes in the AGI. We need to remove the inode from
1812 * that list atomically with respect to freeing it here.
1813 */
1814int
1815xfs_ifree(
1816	xfs_trans_t	*tp,
1817	xfs_inode_t	*ip,
1818	xfs_bmap_free_t	*flist)
1819{
 
 
 
 
 
 
 
 
 
 
1820	int			error;
1821	int			delete;
1822	xfs_ino_t		first_ino;
1823	xfs_dinode_t    	*dip;
1824	xfs_buf_t       	*ibp;
1825
1826	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1827	ASSERT(ip->i_d.di_nlink == 0);
1828	ASSERT(ip->i_d.di_nextents == 0);
1829	ASSERT(ip->i_d.di_anextents == 0);
1830	ASSERT((ip->i_d.di_size == 0 && ip->i_size == 0) ||
1831	       (!S_ISREG(ip->i_d.di_mode)));
1832	ASSERT(ip->i_d.di_nblocks == 0);
1833
1834	/*
1835	 * Pull the on-disk inode from the AGI unlinked list.
 
1836	 */
1837	error = xfs_iunlink_remove(tp, ip);
1838	if (error != 0) {
1839		return error;
 
 
1840	}
1841
1842	error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
1843	if (error != 0) {
1844		return error;
1845	}
1846	ip->i_d.di_mode = 0;		/* mark incore inode as free */
1847	ip->i_d.di_flags = 0;
1848	ip->i_d.di_dmevmask = 0;
1849	ip->i_d.di_forkoff = 0;		/* mark the attr fork not in use */
1850	ip->i_df.if_ext_max =
1851		XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
1852	ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
1853	ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
1854	/*
1855	 * Bump the generation count so no one will be confused
1856	 * by reincarnations of this inode.
 
1857	 */
1858	ip->i_d.di_gen++;
1859
1860	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1861
1862	error = xfs_itobp(ip->i_mount, tp, ip, &dip, &ibp, XBF_LOCK);
1863	if (error)
1864		return error;
1865
1866        /*
1867	* Clear the on-disk di_mode. This is to prevent xfs_bulkstat
1868	* from picking up this inode when it is reclaimed (its incore state
1869	* initialzed but not flushed to disk yet). The in-core di_mode is
1870	* already cleared  and a corresponding transaction logged.
1871	* The hack here just synchronizes the in-core to on-disk
1872	* di_mode value in advance before the actual inode sync to disk.
1873	* This is OK because the inode is already unlinked and would never
1874	* change its di_mode again for this inode generation.
1875	* This is a temporary hack that would require a proper fix
1876	* in the future.
1877	*/
1878	dip->di_mode = 0;
 
 
 
 
 
 
 
 
 
 
 
1879
1880	if (delete) {
1881		xfs_ifree_cluster(ip, tp, first_ino);
 
 
 
 
 
 
 
 
 
 
 
 
1882	}
1883
1884	return 0;
 
 
1885}
1886
1887/*
1888 * Reallocate the space for if_broot based on the number of records
1889 * being added or deleted as indicated in rec_diff.  Move the records
1890 * and pointers in if_broot to fit the new size.  When shrinking this
1891 * will eliminate holes between the records and pointers created by
1892 * the caller.  When growing this will create holes to be filled in
1893 * by the caller.
1894 *
1895 * The caller must not request to add more records than would fit in
1896 * the on-disk inode root.  If the if_broot is currently NULL, then
1897 * if we adding records one will be allocated.  The caller must also
1898 * not request that the number of records go below zero, although
1899 * it can go to zero.
1900 *
1901 * ip -- the inode whose if_broot area is changing
1902 * ext_diff -- the change in the number of records, positive or negative,
1903 *	 requested for the if_broot array.
1904 */
1905void
1906xfs_iroot_realloc(
1907	xfs_inode_t		*ip,
1908	int			rec_diff,
1909	int			whichfork)
1910{
1911	struct xfs_mount	*mp = ip->i_mount;
1912	int			cur_max;
1913	xfs_ifork_t		*ifp;
1914	struct xfs_btree_block	*new_broot;
1915	int			new_max;
1916	size_t			new_size;
1917	char			*np;
1918	char			*op;
 
 
 
 
 
 
1919
1920	/*
1921	 * Handle the degenerate case quietly.
 
 
 
1922	 */
1923	if (rec_diff == 0) {
 
 
 
1924		return;
1925	}
1926
1927	ifp = XFS_IFORK_PTR(ip, whichfork);
1928	if (rec_diff > 0) {
1929		/*
1930		 * If there wasn't any memory allocated before, just
1931		 * allocate it now and get out.
1932		 */
1933		if (ifp->if_broot_bytes == 0) {
1934			new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff);
1935			ifp->if_broot = kmem_alloc(new_size, KM_SLEEP | KM_NOFS);
1936			ifp->if_broot_bytes = (int)new_size;
1937			return;
 
1938		}
1939
1940		/*
1941		 * If there is already an existing if_broot, then we need
1942		 * to realloc() it and shift the pointers to their new
1943		 * location.  The records don't change location because
1944		 * they are kept butted up against the btree block header.
1945		 */
1946		cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
1947		new_max = cur_max + rec_diff;
1948		new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
1949		ifp->if_broot = kmem_realloc(ifp->if_broot, new_size,
1950				(size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max), /* old size */
1951				KM_SLEEP | KM_NOFS);
1952		op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
1953						     ifp->if_broot_bytes);
1954		np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
1955						     (int)new_size);
1956		ifp->if_broot_bytes = (int)new_size;
1957		ASSERT(ifp->if_broot_bytes <=
1958			XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
1959		memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t));
1960		return;
1961	}
 
 
 
1962
1963	/*
1964	 * rec_diff is less than 0.  In this case, we are shrinking the
1965	 * if_broot buffer.  It must already exist.  If we go to zero
1966	 * records, just get rid of the root and clear the status bit.
1967	 */
1968	ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0));
1969	cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
1970	new_max = cur_max + rec_diff;
1971	ASSERT(new_max >= 0);
1972	if (new_max > 0)
1973		new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
1974	else
1975		new_size = 0;
1976	if (new_size > 0) {
1977		new_broot = kmem_alloc(new_size, KM_SLEEP | KM_NOFS);
1978		/*
1979		 * First copy over the btree block header.
1980		 */
1981		memcpy(new_broot, ifp->if_broot, XFS_BTREE_LBLOCK_LEN);
1982	} else {
1983		new_broot = NULL;
1984		ifp->if_flags &= ~XFS_IFBROOT;
1985	}
1986
1987	/*
1988	 * Only copy the records and pointers if there are any.
 
 
 
1989	 */
1990	if (new_max > 0) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1991		/*
1992		 * First copy the records.
 
 
1993		 */
1994		op = (char *)XFS_BMBT_REC_ADDR(mp, ifp->if_broot, 1);
1995		np = (char *)XFS_BMBT_REC_ADDR(mp, new_broot, 1);
1996		memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t));
 
 
 
 
 
1997
1998		/*
1999		 * Then copy the pointers.
 
 
 
 
 
2000		 */
2001		op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
2002						     ifp->if_broot_bytes);
2003		np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, new_broot, 1,
2004						     (int)new_size);
2005		memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2006	}
2007	kmem_free(ifp->if_broot);
2008	ifp->if_broot = new_broot;
2009	ifp->if_broot_bytes = (int)new_size;
2010	ASSERT(ifp->if_broot_bytes <=
2011		XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
2012	return;
2013}
2014
2015
2016/*
2017 * This is called when the amount of space needed for if_data
2018 * is increased or decreased.  The change in size is indicated by
2019 * the number of bytes that need to be added or deleted in the
2020 * byte_diff parameter.
2021 *
2022 * If the amount of space needed has decreased below the size of the
2023 * inline buffer, then switch to using the inline buffer.  Otherwise,
2024 * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
2025 * to what is needed.
2026 *
2027 * ip -- the inode whose if_data area is changing
2028 * byte_diff -- the change in the number of bytes, positive or negative,
2029 *	 requested for the if_data array.
2030 */
2031void
2032xfs_idata_realloc(
2033	xfs_inode_t	*ip,
2034	int		byte_diff,
2035	int		whichfork)
2036{
2037	xfs_ifork_t	*ifp;
2038	int		new_size;
2039	int		real_size;
2040
2041	if (byte_diff == 0) {
2042		return;
2043	}
 
 
2044
2045	ifp = XFS_IFORK_PTR(ip, whichfork);
2046	new_size = (int)ifp->if_bytes + byte_diff;
2047	ASSERT(new_size >= 0);
2048
2049	if (new_size == 0) {
2050		if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2051			kmem_free(ifp->if_u1.if_data);
2052		}
2053		ifp->if_u1.if_data = NULL;
2054		real_size = 0;
2055	} else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) {
2056		/*
2057		 * If the valid extents/data can fit in if_inline_ext/data,
2058		 * copy them from the malloc'd vector and free it.
2059		 */
2060		if (ifp->if_u1.if_data == NULL) {
2061			ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2062		} else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2063			ASSERT(ifp->if_real_bytes != 0);
2064			memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data,
2065			      new_size);
2066			kmem_free(ifp->if_u1.if_data);
2067			ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2068		}
2069		real_size = 0;
2070	} else {
2071		/*
2072		 * Stuck with malloc/realloc.
2073		 * For inline data, the underlying buffer must be
2074		 * a multiple of 4 bytes in size so that it can be
2075		 * logged and stay on word boundaries.  We enforce
2076		 * that here.
2077		 */
2078		real_size = roundup(new_size, 4);
2079		if (ifp->if_u1.if_data == NULL) {
2080			ASSERT(ifp->if_real_bytes == 0);
2081			ifp->if_u1.if_data = kmem_alloc(real_size,
2082							KM_SLEEP | KM_NOFS);
2083		} else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2084			/*
2085			 * Only do the realloc if the underlying size
2086			 * is really changing.
2087			 */
2088			if (ifp->if_real_bytes != real_size) {
2089				ifp->if_u1.if_data =
2090					kmem_realloc(ifp->if_u1.if_data,
2091							real_size,
2092							ifp->if_real_bytes,
2093							KM_SLEEP | KM_NOFS);
2094			}
2095		} else {
2096			ASSERT(ifp->if_real_bytes == 0);
2097			ifp->if_u1.if_data = kmem_alloc(real_size,
2098							KM_SLEEP | KM_NOFS);
2099			memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data,
2100				ifp->if_bytes);
2101		}
2102	}
2103	ifp->if_real_bytes = real_size;
2104	ifp->if_bytes = new_size;
2105	ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2106}
2107
2108void
2109xfs_idestroy_fork(
2110	xfs_inode_t	*ip,
2111	int		whichfork)
2112{
2113	xfs_ifork_t	*ifp;
2114
2115	ifp = XFS_IFORK_PTR(ip, whichfork);
2116	if (ifp->if_broot != NULL) {
2117		kmem_free(ifp->if_broot);
2118		ifp->if_broot = NULL;
2119	}
2120
2121	/*
2122	 * If the format is local, then we can't have an extents
2123	 * array so just look for an inline data array.  If we're
2124	 * not local then we may or may not have an extents list,
2125	 * so check and free it up if we do.
2126	 */
2127	if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) {
2128		if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) &&
2129		    (ifp->if_u1.if_data != NULL)) {
2130			ASSERT(ifp->if_real_bytes != 0);
2131			kmem_free(ifp->if_u1.if_data);
2132			ifp->if_u1.if_data = NULL;
2133			ifp->if_real_bytes = 0;
2134		}
2135	} else if ((ifp->if_flags & XFS_IFEXTENTS) &&
2136		   ((ifp->if_flags & XFS_IFEXTIREC) ||
2137		    ((ifp->if_u1.if_extents != NULL) &&
2138		     (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)))) {
2139		ASSERT(ifp->if_real_bytes != 0);
2140		xfs_iext_destroy(ifp);
2141	}
2142	ASSERT(ifp->if_u1.if_extents == NULL ||
2143	       ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext);
2144	ASSERT(ifp->if_real_bytes == 0);
2145	if (whichfork == XFS_ATTR_FORK) {
2146		kmem_zone_free(xfs_ifork_zone, ip->i_afp);
2147		ip->i_afp = NULL;
2148	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2149}
2150
2151/*
2152 * This is called to unpin an inode.  The caller must have the inode locked
2153 * in at least shared mode so that the buffer cannot be subsequently pinned
2154 * once someone is waiting for it to be unpinned.
2155 */
2156static void
2157xfs_iunpin_nowait(
2158	struct xfs_inode	*ip)
2159{
2160	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2161
2162	trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
2163
2164	/* Give the log a push to start the unpinning I/O */
2165	xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0);
 
 
 
 
 
 
 
 
 
2166
 
 
 
 
 
 
 
 
2167}
2168
2169void
2170xfs_iunpin_wait(
2171	struct xfs_inode	*ip)
2172{
2173	if (xfs_ipincount(ip)) {
2174		xfs_iunpin_nowait(ip);
2175		wait_event(ip->i_ipin_wait, (xfs_ipincount(ip) == 0));
2176	}
2177}
2178
2179/*
2180 * xfs_iextents_copy()
2181 *
2182 * This is called to copy the REAL extents (as opposed to the delayed
2183 * allocation extents) from the inode into the given buffer.  It
2184 * returns the number of bytes copied into the buffer.
2185 *
2186 * If there are no delayed allocation extents, then we can just
2187 * memcpy() the extents into the buffer.  Otherwise, we need to
2188 * examine each extent in turn and skip those which are delayed.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2189 */
2190int
2191xfs_iextents_copy(
2192	xfs_inode_t		*ip,
2193	xfs_bmbt_rec_t		*dp,
2194	int			whichfork)
2195{
2196	int			copied;
2197	int			i;
2198	xfs_ifork_t		*ifp;
2199	int			nrecs;
2200	xfs_fsblock_t		start_block;
2201
2202	ifp = XFS_IFORK_PTR(ip, whichfork);
2203	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2204	ASSERT(ifp->if_bytes > 0);
2205
2206	nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
2207	XFS_BMAP_TRACE_EXLIST(ip, nrecs, whichfork);
2208	ASSERT(nrecs > 0);
2209
2210	/*
2211	 * There are some delayed allocation extents in the
2212	 * inode, so copy the extents one at a time and skip
2213	 * the delayed ones.  There must be at least one
2214	 * non-delayed extent.
2215	 */
2216	copied = 0;
2217	for (i = 0; i < nrecs; i++) {
2218		xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
2219		start_block = xfs_bmbt_get_startblock(ep);
2220		if (isnullstartblock(start_block)) {
2221			/*
2222			 * It's a delayed allocation extent, so skip it.
2223			 */
2224			continue;
2225		}
2226
2227		/* Translate to on disk format */
2228		put_unaligned(cpu_to_be64(ep->l0), &dp->l0);
2229		put_unaligned(cpu_to_be64(ep->l1), &dp->l1);
2230		dp++;
2231		copied++;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2232	}
2233	ASSERT(copied != 0);
2234	xfs_validate_extents(ifp, copied, XFS_EXTFMT_INODE(ip));
2235
2236	return (copied * (uint)sizeof(xfs_bmbt_rec_t));
2237}
2238
2239/*
2240 * Each of the following cases stores data into the same region
2241 * of the on-disk inode, so only one of them can be valid at
2242 * any given time. While it is possible to have conflicting formats
2243 * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
2244 * in EXTENTS format, this can only happen when the fork has
2245 * changed formats after being modified but before being flushed.
2246 * In these cases, the format always takes precedence, because the
2247 * format indicates the current state of the fork.
2248 */
2249/*ARGSUSED*/
2250STATIC void
2251xfs_iflush_fork(
2252	xfs_inode_t		*ip,
2253	xfs_dinode_t		*dip,
2254	xfs_inode_log_item_t	*iip,
2255	int			whichfork,
2256	xfs_buf_t		*bp)
2257{
2258	char			*cp;
2259	xfs_ifork_t		*ifp;
2260	xfs_mount_t		*mp;
2261#ifdef XFS_TRANS_DEBUG
2262	int			first;
2263#endif
2264	static const short	brootflag[2] =
2265		{ XFS_ILOG_DBROOT, XFS_ILOG_ABROOT };
2266	static const short	dataflag[2] =
2267		{ XFS_ILOG_DDATA, XFS_ILOG_ADATA };
2268	static const short	extflag[2] =
2269		{ XFS_ILOG_DEXT, XFS_ILOG_AEXT };
2270
2271	if (!iip)
2272		return;
2273	ifp = XFS_IFORK_PTR(ip, whichfork);
2274	/*
2275	 * This can happen if we gave up in iformat in an error path,
2276	 * for the attribute fork.
2277	 */
2278	if (!ifp) {
2279		ASSERT(whichfork == XFS_ATTR_FORK);
2280		return;
2281	}
2282	cp = XFS_DFORK_PTR(dip, whichfork);
2283	mp = ip->i_mount;
2284	switch (XFS_IFORK_FORMAT(ip, whichfork)) {
2285	case XFS_DINODE_FMT_LOCAL:
2286		if ((iip->ili_format.ilf_fields & dataflag[whichfork]) &&
2287		    (ifp->if_bytes > 0)) {
2288			ASSERT(ifp->if_u1.if_data != NULL);
2289			ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2290			memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes);
2291		}
2292		break;
2293
2294	case XFS_DINODE_FMT_EXTENTS:
2295		ASSERT((ifp->if_flags & XFS_IFEXTENTS) ||
2296		       !(iip->ili_format.ilf_fields & extflag[whichfork]));
2297		if ((iip->ili_format.ilf_fields & extflag[whichfork]) &&
2298		    (ifp->if_bytes > 0)) {
2299			ASSERT(xfs_iext_get_ext(ifp, 0));
2300			ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0);
2301			(void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp,
2302				whichfork);
2303		}
2304		break;
2305
2306	case XFS_DINODE_FMT_BTREE:
2307		if ((iip->ili_format.ilf_fields & brootflag[whichfork]) &&
2308		    (ifp->if_broot_bytes > 0)) {
2309			ASSERT(ifp->if_broot != NULL);
2310			ASSERT(ifp->if_broot_bytes <=
2311			       (XFS_IFORK_SIZE(ip, whichfork) +
2312				XFS_BROOT_SIZE_ADJ));
2313			xfs_bmbt_to_bmdr(mp, ifp->if_broot, ifp->if_broot_bytes,
2314				(xfs_bmdr_block_t *)cp,
2315				XFS_DFORK_SIZE(dip, mp, whichfork));
2316		}
2317		break;
2318
2319	case XFS_DINODE_FMT_DEV:
2320		if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) {
2321			ASSERT(whichfork == XFS_DATA_FORK);
2322			xfs_dinode_put_rdev(dip, ip->i_df.if_u2.if_rdev);
2323		}
2324		break;
 
 
 
 
 
 
 
2325
2326	case XFS_DINODE_FMT_UUID:
2327		if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) {
2328			ASSERT(whichfork == XFS_DATA_FORK);
2329			memcpy(XFS_DFORK_DPTR(dip),
2330			       &ip->i_df.if_u2.if_uuid,
2331			       sizeof(uuid_t));
2332		}
2333		break;
2334
2335	default:
2336		ASSERT(0);
2337		break;
 
2338	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2339}
2340
2341STATIC int
2342xfs_iflush_cluster(
2343	xfs_inode_t	*ip,
2344	xfs_buf_t	*bp)
 
 
 
 
 
 
 
 
 
2345{
2346	xfs_mount_t		*mp = ip->i_mount;
2347	struct xfs_perag	*pag;
2348	unsigned long		first_index, mask;
2349	unsigned long		inodes_per_cluster;
2350	int			ilist_size;
2351	xfs_inode_t		**ilist;
2352	xfs_inode_t		*iq;
2353	int			nr_found;
2354	int			clcount = 0;
2355	int			bufwasdelwri;
2356	int			i;
2357
2358	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
 
2359
2360	inodes_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog;
2361	ilist_size = inodes_per_cluster * sizeof(xfs_inode_t *);
2362	ilist = kmem_alloc(ilist_size, KM_MAYFAIL|KM_NOFS);
2363	if (!ilist)
2364		goto out_put;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2365
2366	mask = ~(((XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog)) - 1);
2367	first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
2368	rcu_read_lock();
2369	/* really need a gang lookup range call here */
2370	nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)ilist,
2371					first_index, inodes_per_cluster);
2372	if (nr_found == 0)
2373		goto out_free;
2374
2375	for (i = 0; i < nr_found; i++) {
2376		iq = ilist[i];
2377		if (iq == ip)
2378			continue;
2379
2380		/*
2381		 * because this is an RCU protected lookup, we could find a
2382		 * recently freed or even reallocated inode during the lookup.
2383		 * We need to check under the i_flags_lock for a valid inode
2384		 * here. Skip it if it is not valid or the wrong inode.
2385		 */
2386		spin_lock(&ip->i_flags_lock);
2387		if (!ip->i_ino ||
2388		    (XFS_INO_TO_AGINO(mp, iq->i_ino) & mask) != first_index) {
2389			spin_unlock(&ip->i_flags_lock);
2390			continue;
2391		}
2392		spin_unlock(&ip->i_flags_lock);
2393
2394		/*
2395		 * Do an un-protected check to see if the inode is dirty and
2396		 * is a candidate for flushing.  These checks will be repeated
2397		 * later after the appropriate locks are acquired.
2398		 */
2399		if (xfs_inode_clean(iq) && xfs_ipincount(iq) == 0)
2400			continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
2401
2402		/*
2403		 * Try to get locks.  If any are unavailable or it is pinned,
2404		 * then this inode cannot be flushed and is skipped.
2405		 */
2406
2407		if (!xfs_ilock_nowait(iq, XFS_ILOCK_SHARED))
2408			continue;
2409		if (!xfs_iflock_nowait(iq)) {
2410			xfs_iunlock(iq, XFS_ILOCK_SHARED);
2411			continue;
2412		}
2413		if (xfs_ipincount(iq)) {
2414			xfs_ifunlock(iq);
2415			xfs_iunlock(iq, XFS_ILOCK_SHARED);
2416			continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2417		}
2418
2419		/*
2420		 * arriving here means that this inode can be flushed.  First
2421		 * re-check that it's dirty before flushing.
2422		 */
2423		if (!xfs_inode_clean(iq)) {
2424			int	error;
2425			error = xfs_iflush_int(iq, bp);
2426			if (error) {
2427				xfs_iunlock(iq, XFS_ILOCK_SHARED);
2428				goto cluster_corrupt_out;
 
 
2429			}
2430			clcount++;
2431		} else {
2432			xfs_ifunlock(iq);
 
 
 
 
 
 
2433		}
2434		xfs_iunlock(iq, XFS_ILOCK_SHARED);
2435	}
2436
2437	if (clcount) {
2438		XFS_STATS_INC(xs_icluster_flushcnt);
2439		XFS_STATS_ADD(xs_icluster_flushinode, clcount);
2440	}
 
 
 
 
 
 
 
 
 
 
 
2441
2442out_free:
2443	rcu_read_unlock();
2444	kmem_free(ilist);
2445out_put:
2446	xfs_perag_put(pag);
2447	return 0;
2448
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2449
2450cluster_corrupt_out:
2451	/*
2452	 * Corruption detected in the clustering loop.  Invalidate the
2453	 * inode buffer and shut down the filesystem.
2454	 */
2455	rcu_read_unlock();
2456	/*
2457	 * Clean up the buffer.  If it was B_DELWRI, just release it --
2458	 * brelse can handle it with no problems.  If not, shut down the
2459	 * filesystem before releasing the buffer.
2460	 */
2461	bufwasdelwri = XFS_BUF_ISDELAYWRITE(bp);
2462	if (bufwasdelwri)
2463		xfs_buf_relse(bp);
2464
2465	xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
2466
2467	if (!bufwasdelwri) {
2468		/*
2469		 * Just like incore_relse: if we have b_iodone functions,
2470		 * mark the buffer as an error and call them.  Otherwise
2471		 * mark it as stale and brelse.
2472		 */
2473		if (bp->b_iodone) {
2474			XFS_BUF_UNDONE(bp);
2475			XFS_BUF_STALE(bp);
2476			xfs_buf_ioerror(bp, EIO);
2477			xfs_buf_ioend(bp, 0);
2478		} else {
2479			XFS_BUF_STALE(bp);
2480			xfs_buf_relse(bp);
2481		}
2482	}
2483
2484	/*
2485	 * Unlocks the flush lock
2486	 */
2487	xfs_iflush_abort(iq);
2488	kmem_free(ilist);
2489	xfs_perag_put(pag);
2490	return XFS_ERROR(EFSCORRUPTED);
 
 
 
 
2491}
2492
2493/*
2494 * xfs_iflush() will write a modified inode's changes out to the
2495 * inode's on disk home.  The caller must have the inode lock held
2496 * in at least shared mode and the inode flush completion must be
2497 * active as well.  The inode lock will still be held upon return from
2498 * the call and the caller is free to unlock it.
2499 * The inode flush will be completed when the inode reaches the disk.
2500 * The flags indicate how the inode's buffer should be written out.
2501 */
2502int
2503xfs_iflush(
2504	xfs_inode_t		*ip,
2505	uint			flags)
2506{
2507	xfs_inode_log_item_t	*iip;
2508	xfs_buf_t		*bp;
2509	xfs_dinode_t		*dip;
2510	xfs_mount_t		*mp;
 
 
 
 
 
 
 
 
 
 
2511	int			error;
2512
2513	XFS_STATS_INC(xs_iflush_count);
2514
2515	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2516	ASSERT(!completion_done(&ip->i_flush));
2517	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
2518	       ip->i_d.di_nextents > ip->i_df.if_ext_max);
2519
2520	iip = ip->i_itemp;
2521	mp = ip->i_mount;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2522
2523	/*
2524	 * We can't flush the inode until it is unpinned, so wait for it if we
2525	 * are allowed to block.  We know no one new can pin it, because we are
2526	 * holding the inode lock shared and you need to hold it exclusively to
2527	 * pin the inode.
2528	 *
2529	 * If we are not allowed to block, force the log out asynchronously so
2530	 * that when we come back the inode will be unpinned. If other inodes
2531	 * in the same cluster are dirty, they will probably write the inode
2532	 * out for us if they occur after the log force completes.
2533	 */
2534	if (!(flags & SYNC_WAIT) && xfs_ipincount(ip)) {
2535		xfs_iunpin_nowait(ip);
2536		xfs_ifunlock(ip);
2537		return EAGAIN;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2538	}
2539	xfs_iunpin_wait(ip);
 
 
 
 
 
2540
2541	/*
2542	 * For stale inodes we cannot rely on the backing buffer remaining
2543	 * stale in cache for the remaining life of the stale inode and so
2544	 * xfs_itobp() below may give us a buffer that no longer contains
2545	 * inodes below. We have to check this after ensuring the inode is
2546	 * unpinned so that it is safe to reclaim the stale inode after the
2547	 * flush call.
2548	 */
2549	if (xfs_iflags_test(ip, XFS_ISTALE)) {
2550		xfs_ifunlock(ip);
2551		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2552	}
2553
2554	/*
2555	 * This may have been unpinned because the filesystem is shutting
2556	 * down forcibly. If that's the case we must not write this inode
2557	 * to disk, because the log record didn't make it to disk!
2558	 */
2559	if (XFS_FORCED_SHUTDOWN(mp)) {
2560		ip->i_update_core = 0;
2561		if (iip)
2562			iip->ili_format.ilf_fields = 0;
2563		xfs_ifunlock(ip);
2564		return XFS_ERROR(EIO);
 
 
 
 
 
 
 
 
 
2565	}
2566
2567	/*
2568	 * Get the buffer containing the on-disk inode.
2569	 */
2570	error = xfs_itobp(mp, NULL, ip, &dip, &bp,
2571				(flags & SYNC_TRYLOCK) ? XBF_TRYLOCK : XBF_LOCK);
2572	if (error || !bp) {
2573		xfs_ifunlock(ip);
2574		return error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2575	}
2576
2577	/*
2578	 * First flush out the inode that xfs_iflush was called with.
 
 
 
 
2579	 */
2580	error = xfs_iflush_int(ip, bp);
2581	if (error)
2582		goto corrupt_out;
2583
2584	/*
2585	 * If the buffer is pinned then push on the log now so we won't
2586	 * get stuck waiting in the write for too long.
 
2587	 */
2588	if (xfs_buf_ispinned(bp))
2589		xfs_log_force(mp, 0);
 
 
 
 
 
 
 
 
2590
2591	/*
2592	 * inode clustering:
2593	 * see if other inodes can be gathered into this write
 
2594	 */
2595	error = xfs_iflush_cluster(ip, bp);
 
 
 
 
 
2596	if (error)
2597		goto cluster_corrupt_out;
2598
2599	if (flags & SYNC_WAIT)
2600		error = xfs_bwrite(mp, bp);
2601	else
2602		xfs_bdwrite(mp, bp);
 
 
 
 
2603	return error;
2604
2605corrupt_out:
2606	xfs_buf_relse(bp);
2607	xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
2608cluster_corrupt_out:
2609	/*
2610	 * Unlocks the flush lock
2611	 */
2612	xfs_iflush_abort(ip);
2613	return XFS_ERROR(EFSCORRUPTED);
2614}
2615
2616
2617STATIC int
2618xfs_iflush_int(
2619	xfs_inode_t		*ip,
2620	xfs_buf_t		*bp)
2621{
2622	xfs_inode_log_item_t	*iip;
2623	xfs_dinode_t		*dip;
2624	xfs_mount_t		*mp;
2625#ifdef XFS_TRANS_DEBUG
2626	int			first;
2627#endif
2628
2629	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2630	ASSERT(!completion_done(&ip->i_flush));
2631	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
2632	       ip->i_d.di_nextents > ip->i_df.if_ext_max);
 
2633
2634	iip = ip->i_itemp;
2635	mp = ip->i_mount;
2636
2637	/* set *dip = inode's place in the buffer */
2638	dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
2639
2640	/*
2641	 * Clear i_update_core before copying out the data.
2642	 * This is for coordination with our timestamp updates
2643	 * that don't hold the inode lock. They will always
2644	 * update the timestamps BEFORE setting i_update_core,
2645	 * so if we clear i_update_core after they set it we
2646	 * are guaranteed to see their updates to the timestamps.
2647	 * I believe that this depends on strongly ordered memory
2648	 * semantics, but we have that.  We use the SYNCHRONIZE
2649	 * macro to make sure that the compiler does not reorder
2650	 * the i_update_core access below the data copy below.
2651	 */
2652	ip->i_update_core = 0;
2653	SYNCHRONIZE();
2654
2655	/*
2656	 * Make sure to get the latest timestamps from the Linux inode.
2657	 */
2658	xfs_synchronize_times(ip);
2659
2660	if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
2661			       mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
2662		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2663			"%s: Bad inode %Lu magic number 0x%x, ptr 0x%p",
2664			__func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
2665		goto corrupt_out;
2666	}
2667	if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
2668				mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
2669		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2670			"%s: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
2671			__func__, ip->i_ino, ip, ip->i_d.di_magic);
2672		goto corrupt_out;
2673	}
2674	if (S_ISREG(ip->i_d.di_mode)) {
2675		if (XFS_TEST_ERROR(
2676		    (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
2677		    (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
2678		    mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
2679			xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2680				"%s: Bad regular inode %Lu, ptr 0x%p",
2681				__func__, ip->i_ino, ip);
2682			goto corrupt_out;
2683		}
2684	} else if (S_ISDIR(ip->i_d.di_mode)) {
2685		if (XFS_TEST_ERROR(
2686		    (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
2687		    (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
2688		    (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
2689		    mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
2690			xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2691				"%s: Bad directory inode %Lu, ptr 0x%p",
2692				__func__, ip->i_ino, ip);
2693			goto corrupt_out;
2694		}
2695	}
2696	if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
2697				ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
2698				XFS_RANDOM_IFLUSH_5)) {
2699		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2700			"%s: detected corrupt incore inode %Lu, "
2701			"total extents = %d, nblocks = %Ld, ptr 0x%p",
2702			__func__, ip->i_ino,
2703			ip->i_d.di_nextents + ip->i_d.di_anextents,
2704			ip->i_d.di_nblocks, ip);
2705		goto corrupt_out;
2706	}
2707	if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
2708				mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
2709		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2710			"%s: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
2711			__func__, ip->i_ino, ip->i_d.di_forkoff, ip);
2712		goto corrupt_out;
2713	}
 
2714	/*
2715	 * bump the flush iteration count, used to detect flushes which
2716	 * postdate a log record during recovery.
 
 
 
 
 
2717	 */
 
 
2718
2719	ip->i_d.di_flushiter++;
 
 
 
 
 
 
 
 
 
2720
2721	/*
2722	 * Copy the dirty parts of the inode into the on-disk
2723	 * inode.  We always copy out the core of the inode,
2724	 * because if the inode is dirty at all the core must
2725	 * be.
2726	 */
2727	xfs_dinode_to_disk(dip, &ip->i_d);
2728
2729	/* Wrap, we never let the log put out DI_MAX_FLUSH */
2730	if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
2731		ip->i_d.di_flushiter = 0;
2732
2733	/*
2734	 * If this is really an old format inode and the superblock version
2735	 * has not been updated to support only new format inodes, then
2736	 * convert back to the old inode format.  If the superblock version
2737	 * has been updated, then make the conversion permanent.
2738	 */
2739	ASSERT(ip->i_d.di_version == 1 || xfs_sb_version_hasnlink(&mp->m_sb));
2740	if (ip->i_d.di_version == 1) {
2741		if (!xfs_sb_version_hasnlink(&mp->m_sb)) {
2742			/*
2743			 * Convert it back.
2744			 */
2745			ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
2746			dip->di_onlink = cpu_to_be16(ip->i_d.di_nlink);
2747		} else {
2748			/*
2749			 * The superblock version has already been bumped,
2750			 * so just make the conversion to the new inode
2751			 * format permanent.
2752			 */
2753			ip->i_d.di_version = 2;
2754			dip->di_version = 2;
2755			ip->i_d.di_onlink = 0;
2756			dip->di_onlink = 0;
2757			memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
2758			memset(&(dip->di_pad[0]), 0,
2759			      sizeof(dip->di_pad));
2760			ASSERT(xfs_get_projid(ip) == 0);
2761		}
2762	}
2763
2764	xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp);
2765	if (XFS_IFORK_Q(ip))
2766		xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp);
2767	xfs_inobp_check(mp, bp);
2768
2769	/*
2770	 * We've recorded everything logged in the inode, so we'd
2771	 * like to clear the ilf_fields bits so we don't log and
2772	 * flush things unnecessarily.  However, we can't stop
2773	 * logging all this information until the data we've copied
2774	 * into the disk buffer is written to disk.  If we did we might
2775	 * overwrite the copy of the inode in the log with all the
2776	 * data after re-logging only part of it, and in the face of
2777	 * a crash we wouldn't have all the data we need to recover.
2778	 *
2779	 * What we do is move the bits to the ili_last_fields field.
2780	 * When logging the inode, these bits are moved back to the
2781	 * ilf_fields field.  In the xfs_iflush_done() routine we
2782	 * clear ili_last_fields, since we know that the information
2783	 * those bits represent is permanently on disk.  As long as
2784	 * the flush completes before the inode is logged again, then
2785	 * both ilf_fields and ili_last_fields will be cleared.
2786	 *
2787	 * We can play with the ilf_fields bits here, because the inode
2788	 * lock must be held exclusively in order to set bits there
2789	 * and the flush lock protects the ili_last_fields bits.
2790	 * Set ili_logged so the flush done
2791	 * routine can tell whether or not to look in the AIL.
2792	 * Also, store the current LSN of the inode so that we can tell
2793	 * whether the item has moved in the AIL from xfs_iflush_done().
2794	 * In order to read the lsn we need the AIL lock, because
2795	 * it is a 64 bit value that cannot be read atomically.
2796	 */
2797	if (iip != NULL && iip->ili_format.ilf_fields != 0) {
2798		iip->ili_last_fields = iip->ili_format.ilf_fields;
2799		iip->ili_format.ilf_fields = 0;
2800		iip->ili_logged = 1;
2801
2802		xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
2803					&iip->ili_item.li_lsn);
2804
2805		/*
2806		 * Attach the function xfs_iflush_done to the inode's
2807		 * buffer.  This will remove the inode from the AIL
2808		 * and unlock the inode's flush lock when the inode is
2809		 * completely written to disk.
2810		 */
2811		xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item);
2812
2813		ASSERT(bp->b_fspriv != NULL);
2814		ASSERT(bp->b_iodone != NULL);
2815	} else {
2816		/*
2817		 * We're flushing an inode which is not in the AIL and has
2818		 * not been logged but has i_update_core set.  For this
2819		 * case we can use a B_DELWRI flush and immediately drop
2820		 * the inode flush lock because we can avoid the whole
2821		 * AIL state thing.  It's OK to drop the flush lock now,
2822		 * because we've already locked the buffer and to do anything
2823		 * you really need both.
2824		 */
2825		if (iip != NULL) {
2826			ASSERT(iip->ili_logged == 0);
2827			ASSERT(iip->ili_last_fields == 0);
2828			ASSERT((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0);
2829		}
2830		xfs_ifunlock(ip);
2831	}
2832
2833	return 0;
 
 
 
 
 
2834
2835corrupt_out:
2836	return XFS_ERROR(EFSCORRUPTED);
 
2837}
2838
2839/*
2840 * Return a pointer to the extent record at file index idx.
 
 
 
 
 
 
 
 
 
 
2841 */
2842xfs_bmbt_rec_host_t *
2843xfs_iext_get_ext(
2844	xfs_ifork_t	*ifp,		/* inode fork pointer */
2845	xfs_extnum_t	idx)		/* index of target extent */
2846{
2847	ASSERT(idx >= 0);
2848	ASSERT(idx < ifp->if_bytes / sizeof(xfs_bmbt_rec_t));
2849
2850	if ((ifp->if_flags & XFS_IFEXTIREC) && (idx == 0)) {
2851		return ifp->if_u1.if_ext_irec->er_extbuf;
2852	} else if (ifp->if_flags & XFS_IFEXTIREC) {
2853		xfs_ext_irec_t	*erp;		/* irec pointer */
2854		int		erp_idx = 0;	/* irec index */
2855		xfs_extnum_t	page_idx = idx;	/* ext index in target list */
2856
2857		erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
2858		return &erp->er_extbuf[page_idx];
2859	} else if (ifp->if_bytes) {
2860		return &ifp->if_u1.if_extents[idx];
2861	} else {
2862		return NULL;
2863	}
2864}
2865
2866/*
2867 * Insert new item(s) into the extent records for incore inode
2868 * fork 'ifp'.  'count' new items are inserted at index 'idx'.
2869 */
2870void
2871xfs_iext_insert(
2872	xfs_inode_t	*ip,		/* incore inode pointer */
2873	xfs_extnum_t	idx,		/* starting index of new items */
2874	xfs_extnum_t	count,		/* number of inserted items */
2875	xfs_bmbt_irec_t	*new,		/* items to insert */
2876	int		state)		/* type of extent conversion */
2877{
2878	xfs_ifork_t	*ifp = (state & BMAP_ATTRFORK) ? ip->i_afp : &ip->i_df;
2879	xfs_extnum_t	i;		/* extent record index */
2880
2881	trace_xfs_iext_insert(ip, idx, new, state, _RET_IP_);
2882
2883	ASSERT(ifp->if_flags & XFS_IFEXTENTS);
2884	xfs_iext_add(ifp, idx, count);
2885	for (i = idx; i < idx + count; i++, new++)
2886		xfs_bmbt_set_all(xfs_iext_get_ext(ifp, i), new);
2887}
2888
2889/*
2890 * This is called when the amount of space required for incore file
2891 * extents needs to be increased. The ext_diff parameter stores the
2892 * number of new extents being added and the idx parameter contains
2893 * the extent index where the new extents will be added. If the new
2894 * extents are being appended, then we just need to (re)allocate and
2895 * initialize the space. Otherwise, if the new extents are being
2896 * inserted into the middle of the existing entries, a bit more work
2897 * is required to make room for the new extents to be inserted. The
2898 * caller is responsible for filling in the new extent entries upon
2899 * return.
2900 */
2901void
2902xfs_iext_add(
2903	xfs_ifork_t	*ifp,		/* inode fork pointer */
2904	xfs_extnum_t	idx,		/* index to begin adding exts */
2905	int		ext_diff)	/* number of extents to add */
2906{
2907	int		byte_diff;	/* new bytes being added */
2908	int		new_size;	/* size of extents after adding */
2909	xfs_extnum_t	nextents;	/* number of extents in file */
2910
2911	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
2912	ASSERT((idx >= 0) && (idx <= nextents));
2913	byte_diff = ext_diff * sizeof(xfs_bmbt_rec_t);
2914	new_size = ifp->if_bytes + byte_diff;
2915	/*
2916	 * If the new number of extents (nextents + ext_diff)
2917	 * fits inside the inode, then continue to use the inline
2918	 * extent buffer.
2919	 */
2920	if (nextents + ext_diff <= XFS_INLINE_EXTS) {
2921		if (idx < nextents) {
2922			memmove(&ifp->if_u2.if_inline_ext[idx + ext_diff],
2923				&ifp->if_u2.if_inline_ext[idx],
2924				(nextents - idx) * sizeof(xfs_bmbt_rec_t));
2925			memset(&ifp->if_u2.if_inline_ext[idx], 0, byte_diff);
2926		}
2927		ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
2928		ifp->if_real_bytes = 0;
2929	}
2930	/*
2931	 * Otherwise use a linear (direct) extent list.
2932	 * If the extents are currently inside the inode,
2933	 * xfs_iext_realloc_direct will switch us from
2934	 * inline to direct extent allocation mode.
2935	 */
2936	else if (nextents + ext_diff <= XFS_LINEAR_EXTS) {
2937		xfs_iext_realloc_direct(ifp, new_size);
2938		if (idx < nextents) {
2939			memmove(&ifp->if_u1.if_extents[idx + ext_diff],
2940				&ifp->if_u1.if_extents[idx],
2941				(nextents - idx) * sizeof(xfs_bmbt_rec_t));
2942			memset(&ifp->if_u1.if_extents[idx], 0, byte_diff);
2943		}
2944	}
2945	/* Indirection array */
2946	else {
2947		xfs_ext_irec_t	*erp;
2948		int		erp_idx = 0;
2949		int		page_idx = idx;
2950
2951		ASSERT(nextents + ext_diff > XFS_LINEAR_EXTS);
2952		if (ifp->if_flags & XFS_IFEXTIREC) {
2953			erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 1);
2954		} else {
2955			xfs_iext_irec_init(ifp);
2956			ASSERT(ifp->if_flags & XFS_IFEXTIREC);
2957			erp = ifp->if_u1.if_ext_irec;
2958		}
2959		/* Extents fit in target extent page */
2960		if (erp && erp->er_extcount + ext_diff <= XFS_LINEAR_EXTS) {
2961			if (page_idx < erp->er_extcount) {
2962				memmove(&erp->er_extbuf[page_idx + ext_diff],
2963					&erp->er_extbuf[page_idx],
2964					(erp->er_extcount - page_idx) *
2965					sizeof(xfs_bmbt_rec_t));
2966				memset(&erp->er_extbuf[page_idx], 0, byte_diff);
2967			}
2968			erp->er_extcount += ext_diff;
2969			xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
2970		}
2971		/* Insert a new extent page */
2972		else if (erp) {
2973			xfs_iext_add_indirect_multi(ifp,
2974				erp_idx, page_idx, ext_diff);
2975		}
2976		/*
2977		 * If extent(s) are being appended to the last page in
2978		 * the indirection array and the new extent(s) don't fit
2979		 * in the page, then erp is NULL and erp_idx is set to
2980		 * the next index needed in the indirection array.
2981		 */
2982		else {
2983			int	count = ext_diff;
2984
2985			while (count) {
2986				erp = xfs_iext_irec_new(ifp, erp_idx);
2987				erp->er_extcount = count;
2988				count -= MIN(count, (int)XFS_LINEAR_EXTS);
2989				if (count) {
2990					erp_idx++;
2991				}
2992			}
2993		}
2994	}
2995	ifp->if_bytes = new_size;
2996}
2997
2998/*
2999 * This is called when incore extents are being added to the indirection
3000 * array and the new extents do not fit in the target extent list. The
3001 * erp_idx parameter contains the irec index for the target extent list
3002 * in the indirection array, and the idx parameter contains the extent
3003 * index within the list. The number of extents being added is stored
3004 * in the count parameter.
3005 *
3006 *    |-------|   |-------|
3007 *    |       |   |       |    idx - number of extents before idx
3008 *    |  idx  |   | count |
3009 *    |       |   |       |    count - number of extents being inserted at idx
3010 *    |-------|   |-------|
3011 *    | count |   | nex2  |    nex2 - number of extents after idx + count
3012 *    |-------|   |-------|
3013 */
3014void
3015xfs_iext_add_indirect_multi(
3016	xfs_ifork_t	*ifp,			/* inode fork pointer */
3017	int		erp_idx,		/* target extent irec index */
3018	xfs_extnum_t	idx,			/* index within target list */
3019	int		count)			/* new extents being added */
3020{
3021	int		byte_diff;		/* new bytes being added */
3022	xfs_ext_irec_t	*erp;			/* pointer to irec entry */
3023	xfs_extnum_t	ext_diff;		/* number of extents to add */
3024	xfs_extnum_t	ext_cnt;		/* new extents still needed */
3025	xfs_extnum_t	nex2;			/* extents after idx + count */
3026	xfs_bmbt_rec_t	*nex2_ep = NULL;	/* temp list for nex2 extents */
3027	int		nlists;			/* number of irec's (lists) */
3028
3029	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3030	erp = &ifp->if_u1.if_ext_irec[erp_idx];
3031	nex2 = erp->er_extcount - idx;
3032	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3033
3034	/*
3035	 * Save second part of target extent list
3036	 * (all extents past */
3037	if (nex2) {
3038		byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
3039		nex2_ep = (xfs_bmbt_rec_t *) kmem_alloc(byte_diff, KM_NOFS);
3040		memmove(nex2_ep, &erp->er_extbuf[idx], byte_diff);
3041		erp->er_extcount -= nex2;
3042		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -nex2);
3043		memset(&erp->er_extbuf[idx], 0, byte_diff);
3044	}
3045
3046	/*
3047	 * Add the new extents to the end of the target
3048	 * list, then allocate new irec record(s) and
3049	 * extent buffer(s) as needed to store the rest
3050	 * of the new extents.
3051	 */
3052	ext_cnt = count;
3053	ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS - erp->er_extcount);
3054	if (ext_diff) {
3055		erp->er_extcount += ext_diff;
3056		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3057		ext_cnt -= ext_diff;
3058	}
3059	while (ext_cnt) {
3060		erp_idx++;
3061		erp = xfs_iext_irec_new(ifp, erp_idx);
3062		ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS);
3063		erp->er_extcount = ext_diff;
3064		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3065		ext_cnt -= ext_diff;
3066	}
3067
3068	/* Add nex2 extents back to indirection array */
3069	if (nex2) {
3070		xfs_extnum_t	ext_avail;
3071		int		i;
3072
3073		byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
3074		ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
3075		i = 0;
3076		/*
3077		 * If nex2 extents fit in the current page, append
3078		 * nex2_ep after the new extents.
3079		 */
3080		if (nex2 <= ext_avail) {
3081			i = erp->er_extcount;
3082		}
 
 
3083		/*
3084		 * Otherwise, check if space is available in the
3085		 * next page.
 
 
 
3086		 */
3087		else if ((erp_idx < nlists - 1) &&
3088			 (nex2 <= (ext_avail = XFS_LINEAR_EXTS -
3089			  ifp->if_u1.if_ext_irec[erp_idx+1].er_extcount))) {
3090			erp_idx++;
3091			erp++;
3092			/* Create a hole for nex2 extents */
3093			memmove(&erp->er_extbuf[nex2], erp->er_extbuf,
3094				erp->er_extcount * sizeof(xfs_bmbt_rec_t));
3095		}
 
3096		/*
3097		 * Final choice, create a new extent page for
3098		 * nex2 extents.
 
3099		 */
3100		else {
3101			erp_idx++;
3102			erp = xfs_iext_irec_new(ifp, erp_idx);
3103		}
3104		memmove(&erp->er_extbuf[i], nex2_ep, byte_diff);
3105		kmem_free(nex2_ep);
3106		erp->er_extcount += nex2;
3107		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, nex2);
3108	}
3109}
3110
3111/*
3112 * This is called when the amount of space required for incore file
3113 * extents needs to be decreased. The ext_diff parameter stores the
3114 * number of extents to be removed and the idx parameter contains
3115 * the extent index where the extents will be removed from.
3116 *
3117 * If the amount of space needed has decreased below the linear
3118 * limit, XFS_IEXT_BUFSZ, then switch to using the contiguous
3119 * extent array.  Otherwise, use kmem_realloc() to adjust the
3120 * size to what is needed.
3121 */
3122void
3123xfs_iext_remove(
3124	xfs_inode_t	*ip,		/* incore inode pointer */
3125	xfs_extnum_t	idx,		/* index to begin removing exts */
3126	int		ext_diff,	/* number of extents to remove */
3127	int		state)		/* type of extent conversion */
3128{
3129	xfs_ifork_t	*ifp = (state & BMAP_ATTRFORK) ? ip->i_afp : &ip->i_df;
3130	xfs_extnum_t	nextents;	/* number of extents in file */
3131	int		new_size;	/* size of extents after removal */
3132
3133	trace_xfs_iext_remove(ip, idx, state, _RET_IP_);
3134
3135	ASSERT(ext_diff > 0);
3136	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3137	new_size = (nextents - ext_diff) * sizeof(xfs_bmbt_rec_t);
3138
3139	if (new_size == 0) {
3140		xfs_iext_destroy(ifp);
3141	} else if (ifp->if_flags & XFS_IFEXTIREC) {
3142		xfs_iext_remove_indirect(ifp, idx, ext_diff);
3143	} else if (ifp->if_real_bytes) {
3144		xfs_iext_remove_direct(ifp, idx, ext_diff);
3145	} else {
3146		xfs_iext_remove_inline(ifp, idx, ext_diff);
3147	}
3148	ifp->if_bytes = new_size;
3149}
3150
3151/*
3152 * This removes ext_diff extents from the inline buffer, beginning
3153 * at extent index idx.
3154 */
3155void
3156xfs_iext_remove_inline(
3157	xfs_ifork_t	*ifp,		/* inode fork pointer */
3158	xfs_extnum_t	idx,		/* index to begin removing exts */
3159	int		ext_diff)	/* number of extents to remove */
3160{
3161	int		nextents;	/* number of extents in file */
3162
3163	ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
3164	ASSERT(idx < XFS_INLINE_EXTS);
3165	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3166	ASSERT(((nextents - ext_diff) > 0) &&
3167		(nextents - ext_diff) < XFS_INLINE_EXTS);
3168
3169	if (idx + ext_diff < nextents) {
3170		memmove(&ifp->if_u2.if_inline_ext[idx],
3171			&ifp->if_u2.if_inline_ext[idx + ext_diff],
3172			(nextents - (idx + ext_diff)) *
3173			 sizeof(xfs_bmbt_rec_t));
3174		memset(&ifp->if_u2.if_inline_ext[nextents - ext_diff],
3175			0, ext_diff * sizeof(xfs_bmbt_rec_t));
3176	} else {
3177		memset(&ifp->if_u2.if_inline_ext[idx], 0,
3178			ext_diff * sizeof(xfs_bmbt_rec_t));
3179	}
3180}
3181
3182/*
3183 * This removes ext_diff extents from a linear (direct) extent list,
3184 * beginning at extent index idx. If the extents are being removed
3185 * from the end of the list (ie. truncate) then we just need to re-
3186 * allocate the list to remove the extra space. Otherwise, if the
3187 * extents are being removed from the middle of the existing extent
3188 * entries, then we first need to move the extent records beginning
3189 * at idx + ext_diff up in the list to overwrite the records being
3190 * removed, then remove the extra space via kmem_realloc.
3191 */
3192void
3193xfs_iext_remove_direct(
3194	xfs_ifork_t	*ifp,		/* inode fork pointer */
3195	xfs_extnum_t	idx,		/* index to begin removing exts */
3196	int		ext_diff)	/* number of extents to remove */
3197{
3198	xfs_extnum_t	nextents;	/* number of extents in file */
3199	int		new_size;	/* size of extents after removal */
3200
3201	ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
3202	new_size = ifp->if_bytes -
3203		(ext_diff * sizeof(xfs_bmbt_rec_t));
3204	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3205
3206	if (new_size == 0) {
3207		xfs_iext_destroy(ifp);
3208		return;
3209	}
3210	/* Move extents up in the list (if needed) */
3211	if (idx + ext_diff < nextents) {
3212		memmove(&ifp->if_u1.if_extents[idx],
3213			&ifp->if_u1.if_extents[idx + ext_diff],
3214			(nextents - (idx + ext_diff)) *
3215			 sizeof(xfs_bmbt_rec_t));
3216	}
3217	memset(&ifp->if_u1.if_extents[nextents - ext_diff],
3218		0, ext_diff * sizeof(xfs_bmbt_rec_t));
3219	/*
3220	 * Reallocate the direct extent list. If the extents
3221	 * will fit inside the inode then xfs_iext_realloc_direct
3222	 * will switch from direct to inline extent allocation
3223	 * mode for us.
3224	 */
3225	xfs_iext_realloc_direct(ifp, new_size);
3226	ifp->if_bytes = new_size;
3227}
3228
3229/*
3230 * This is called when incore extents are being removed from the
3231 * indirection array and the extents being removed span multiple extent
3232 * buffers. The idx parameter contains the file extent index where we
3233 * want to begin removing extents, and the count parameter contains
3234 * how many extents need to be removed.
3235 *
3236 *    |-------|   |-------|
3237 *    | nex1  |   |       |    nex1 - number of extents before idx
3238 *    |-------|   | count |
3239 *    |       |   |       |    count - number of extents being removed at idx
3240 *    | count |   |-------|
3241 *    |       |   | nex2  |    nex2 - number of extents after idx + count
3242 *    |-------|   |-------|
3243 */
3244void
3245xfs_iext_remove_indirect(
3246	xfs_ifork_t	*ifp,		/* inode fork pointer */
3247	xfs_extnum_t	idx,		/* index to begin removing extents */
3248	int		count)		/* number of extents to remove */
3249{
3250	xfs_ext_irec_t	*erp;		/* indirection array pointer */
3251	int		erp_idx = 0;	/* indirection array index */
3252	xfs_extnum_t	ext_cnt;	/* extents left to remove */
3253	xfs_extnum_t	ext_diff;	/* extents to remove in current list */
3254	xfs_extnum_t	nex1;		/* number of extents before idx */
3255	xfs_extnum_t	nex2;		/* extents after idx + count */
3256	int		page_idx = idx;	/* index in target extent list */
3257
3258	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3259	erp = xfs_iext_idx_to_irec(ifp,  &page_idx, &erp_idx, 0);
3260	ASSERT(erp != NULL);
3261	nex1 = page_idx;
3262	ext_cnt = count;
3263	while (ext_cnt) {
3264		nex2 = MAX((erp->er_extcount - (nex1 + ext_cnt)), 0);
3265		ext_diff = MIN(ext_cnt, (erp->er_extcount - nex1));
3266		/*
3267		 * Check for deletion of entire list;
3268		 * xfs_iext_irec_remove() updates extent offsets.
3269		 */
3270		if (ext_diff == erp->er_extcount) {
3271			xfs_iext_irec_remove(ifp, erp_idx);
3272			ext_cnt -= ext_diff;
3273			nex1 = 0;
3274			if (ext_cnt) {
3275				ASSERT(erp_idx < ifp->if_real_bytes /
3276					XFS_IEXT_BUFSZ);
3277				erp = &ifp->if_u1.if_ext_irec[erp_idx];
3278				nex1 = 0;
3279				continue;
3280			} else {
3281				break;
3282			}
3283		}
3284		/* Move extents up (if needed) */
3285		if (nex2) {
3286			memmove(&erp->er_extbuf[nex1],
3287				&erp->er_extbuf[nex1 + ext_diff],
3288				nex2 * sizeof(xfs_bmbt_rec_t));
3289		}
3290		/* Zero out rest of page */
3291		memset(&erp->er_extbuf[nex1 + nex2], 0, (XFS_IEXT_BUFSZ -
3292			((nex1 + nex2) * sizeof(xfs_bmbt_rec_t))));
3293		/* Update remaining counters */
3294		erp->er_extcount -= ext_diff;
3295		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -ext_diff);
3296		ext_cnt -= ext_diff;
3297		nex1 = 0;
3298		erp_idx++;
3299		erp++;
3300	}
3301	ifp->if_bytes -= count * sizeof(xfs_bmbt_rec_t);
3302	xfs_iext_irec_compact(ifp);
3303}
3304
3305/*
3306 * Create, destroy, or resize a linear (direct) block of extents.
3307 */
3308void
3309xfs_iext_realloc_direct(
3310	xfs_ifork_t	*ifp,		/* inode fork pointer */
3311	int		new_size)	/* new size of extents */
3312{
3313	int		rnew_size;	/* real new size of extents */
3314
3315	rnew_size = new_size;
3316
3317	ASSERT(!(ifp->if_flags & XFS_IFEXTIREC) ||
3318		((new_size >= 0) && (new_size <= XFS_IEXT_BUFSZ) &&
3319		 (new_size != ifp->if_real_bytes)));
3320
3321	/* Free extent records */
3322	if (new_size == 0) {
3323		xfs_iext_destroy(ifp);
3324	}
3325	/* Resize direct extent list and zero any new bytes */
3326	else if (ifp->if_real_bytes) {
3327		/* Check if extents will fit inside the inode */
3328		if (new_size <= XFS_INLINE_EXTS * sizeof(xfs_bmbt_rec_t)) {
3329			xfs_iext_direct_to_inline(ifp, new_size /
3330				(uint)sizeof(xfs_bmbt_rec_t));
3331			ifp->if_bytes = new_size;
3332			return;
3333		}
3334		if (!is_power_of_2(new_size)){
3335			rnew_size = roundup_pow_of_two(new_size);
3336		}
3337		if (rnew_size != ifp->if_real_bytes) {
3338			ifp->if_u1.if_extents =
3339				kmem_realloc(ifp->if_u1.if_extents,
3340						rnew_size,
3341						ifp->if_real_bytes, KM_NOFS);
3342		}
3343		if (rnew_size > ifp->if_real_bytes) {
3344			memset(&ifp->if_u1.if_extents[ifp->if_bytes /
3345				(uint)sizeof(xfs_bmbt_rec_t)], 0,
3346				rnew_size - ifp->if_real_bytes);
3347		}
3348	}
3349	/*
3350	 * Switch from the inline extent buffer to a direct
3351	 * extent list. Be sure to include the inline extent
3352	 * bytes in new_size.
3353	 */
3354	else {
3355		new_size += ifp->if_bytes;
3356		if (!is_power_of_2(new_size)) {
3357			rnew_size = roundup_pow_of_two(new_size);
3358		}
3359		xfs_iext_inline_to_direct(ifp, rnew_size);
3360	}
3361	ifp->if_real_bytes = rnew_size;
3362	ifp->if_bytes = new_size;
3363}
3364
3365/*
3366 * Switch from linear (direct) extent records to inline buffer.
3367 */
3368void
3369xfs_iext_direct_to_inline(
3370	xfs_ifork_t	*ifp,		/* inode fork pointer */
3371	xfs_extnum_t	nextents)	/* number of extents in file */
3372{
3373	ASSERT(ifp->if_flags & XFS_IFEXTENTS);
3374	ASSERT(nextents <= XFS_INLINE_EXTS);
3375	/*
3376	 * The inline buffer was zeroed when we switched
3377	 * from inline to direct extent allocation mode,
3378	 * so we don't need to clear it here.
3379	 */
3380	memcpy(ifp->if_u2.if_inline_ext, ifp->if_u1.if_extents,
3381		nextents * sizeof(xfs_bmbt_rec_t));
3382	kmem_free(ifp->if_u1.if_extents);
3383	ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
3384	ifp->if_real_bytes = 0;
3385}
3386
3387/*
3388 * Switch from inline buffer to linear (direct) extent records.
3389 * new_size should already be rounded up to the next power of 2
3390 * by the caller (when appropriate), so use new_size as it is.
3391 * However, since new_size may be rounded up, we can't update
3392 * if_bytes here. It is the caller's responsibility to update
3393 * if_bytes upon return.
3394 */
3395void
3396xfs_iext_inline_to_direct(
3397	xfs_ifork_t	*ifp,		/* inode fork pointer */
3398	int		new_size)	/* number of extents in file */
3399{
3400	ifp->if_u1.if_extents = kmem_alloc(new_size, KM_NOFS);
3401	memset(ifp->if_u1.if_extents, 0, new_size);
3402	if (ifp->if_bytes) {
3403		memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext,
3404			ifp->if_bytes);
3405		memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
3406			sizeof(xfs_bmbt_rec_t));
3407	}
3408	ifp->if_real_bytes = new_size;
3409}
3410
3411/*
3412 * Resize an extent indirection array to new_size bytes.
3413 */
3414STATIC void
3415xfs_iext_realloc_indirect(
3416	xfs_ifork_t	*ifp,		/* inode fork pointer */
3417	int		new_size)	/* new indirection array size */
3418{
3419	int		nlists;		/* number of irec's (ex lists) */
3420	int		size;		/* current indirection array size */
3421
3422	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3423	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3424	size = nlists * sizeof(xfs_ext_irec_t);
3425	ASSERT(ifp->if_real_bytes);
3426	ASSERT((new_size >= 0) && (new_size != size));
3427	if (new_size == 0) {
3428		xfs_iext_destroy(ifp);
3429	} else {
3430		ifp->if_u1.if_ext_irec = (xfs_ext_irec_t *)
3431			kmem_realloc(ifp->if_u1.if_ext_irec,
3432				new_size, size, KM_NOFS);
3433	}
3434}
3435
3436/*
3437 * Switch from indirection array to linear (direct) extent allocations.
3438 */
3439STATIC void
3440xfs_iext_indirect_to_direct(
3441	 xfs_ifork_t	*ifp)		/* inode fork pointer */
3442{
3443	xfs_bmbt_rec_host_t *ep;	/* extent record pointer */
3444	xfs_extnum_t	nextents;	/* number of extents in file */
3445	int		size;		/* size of file extents */
3446
3447	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3448	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3449	ASSERT(nextents <= XFS_LINEAR_EXTS);
3450	size = nextents * sizeof(xfs_bmbt_rec_t);
3451
3452	xfs_iext_irec_compact_pages(ifp);
3453	ASSERT(ifp->if_real_bytes == XFS_IEXT_BUFSZ);
 
3454
3455	ep = ifp->if_u1.if_ext_irec->er_extbuf;
3456	kmem_free(ifp->if_u1.if_ext_irec);
3457	ifp->if_flags &= ~XFS_IFEXTIREC;
3458	ifp->if_u1.if_extents = ep;
3459	ifp->if_bytes = size;
3460	if (nextents < XFS_LINEAR_EXTS) {
3461		xfs_iext_realloc_direct(ifp, size);
3462	}
3463}
3464
3465/*
3466 * Free incore file extents.
3467 */
3468void
3469xfs_iext_destroy(
3470	xfs_ifork_t	*ifp)		/* inode fork pointer */
3471{
3472	if (ifp->if_flags & XFS_IFEXTIREC) {
3473		int	erp_idx;
3474		int	nlists;
3475
3476		nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3477		for (erp_idx = nlists - 1; erp_idx >= 0 ; erp_idx--) {
3478			xfs_iext_irec_remove(ifp, erp_idx);
3479		}
3480		ifp->if_flags &= ~XFS_IFEXTIREC;
3481	} else if (ifp->if_real_bytes) {
3482		kmem_free(ifp->if_u1.if_extents);
3483	} else if (ifp->if_bytes) {
3484		memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
3485			sizeof(xfs_bmbt_rec_t));
3486	}
3487	ifp->if_u1.if_extents = NULL;
3488	ifp->if_real_bytes = 0;
3489	ifp->if_bytes = 0;
3490}
3491
3492/*
3493 * Return a pointer to the extent record for file system block bno.
3494 */
3495xfs_bmbt_rec_host_t *			/* pointer to found extent record */
3496xfs_iext_bno_to_ext(
3497	xfs_ifork_t	*ifp,		/* inode fork pointer */
3498	xfs_fileoff_t	bno,		/* block number to search for */
3499	xfs_extnum_t	*idxp)		/* index of target extent */
3500{
3501	xfs_bmbt_rec_host_t *base;	/* pointer to first extent */
3502	xfs_filblks_t	blockcount = 0;	/* number of blocks in extent */
3503	xfs_bmbt_rec_host_t *ep = NULL;	/* pointer to target extent */
3504	xfs_ext_irec_t	*erp = NULL;	/* indirection array pointer */
3505	int		high;		/* upper boundary in search */
3506	xfs_extnum_t	idx = 0;	/* index of target extent */
3507	int		low;		/* lower boundary in search */
3508	xfs_extnum_t	nextents;	/* number of file extents */
3509	xfs_fileoff_t	startoff = 0;	/* start offset of extent */
3510
3511	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3512	if (nextents == 0) {
3513		*idxp = 0;
3514		return NULL;
3515	}
3516	low = 0;
3517	if (ifp->if_flags & XFS_IFEXTIREC) {
3518		/* Find target extent list */
3519		int	erp_idx = 0;
3520		erp = xfs_iext_bno_to_irec(ifp, bno, &erp_idx);
3521		base = erp->er_extbuf;
3522		high = erp->er_extcount - 1;
3523	} else {
3524		base = ifp->if_u1.if_extents;
3525		high = nextents - 1;
3526	}
3527	/* Binary search extent records */
3528	while (low <= high) {
3529		idx = (low + high) >> 1;
3530		ep = base + idx;
3531		startoff = xfs_bmbt_get_startoff(ep);
3532		blockcount = xfs_bmbt_get_blockcount(ep);
3533		if (bno < startoff) {
3534			high = idx - 1;
3535		} else if (bno >= startoff + blockcount) {
3536			low = idx + 1;
3537		} else {
3538			/* Convert back to file-based extent index */
3539			if (ifp->if_flags & XFS_IFEXTIREC) {
3540				idx += erp->er_extoff;
3541			}
3542			*idxp = idx;
3543			return ep;
3544		}
3545	}
3546	/* Convert back to file-based extent index */
3547	if (ifp->if_flags & XFS_IFEXTIREC) {
3548		idx += erp->er_extoff;
3549	}
3550	if (bno >= startoff + blockcount) {
3551		if (++idx == nextents) {
3552			ep = NULL;
3553		} else {
3554			ep = xfs_iext_get_ext(ifp, idx);
3555		}
3556	}
3557	*idxp = idx;
3558	return ep;
3559}
3560
3561/*
3562 * Return a pointer to the indirection array entry containing the
3563 * extent record for filesystem block bno. Store the index of the
3564 * target irec in *erp_idxp.
3565 */
3566xfs_ext_irec_t *			/* pointer to found extent record */
3567xfs_iext_bno_to_irec(
3568	xfs_ifork_t	*ifp,		/* inode fork pointer */
3569	xfs_fileoff_t	bno,		/* block number to search for */
3570	int		*erp_idxp)	/* irec index of target ext list */
3571{
3572	xfs_ext_irec_t	*erp = NULL;	/* indirection array pointer */
3573	xfs_ext_irec_t	*erp_next;	/* next indirection array entry */
3574	int		erp_idx;	/* indirection array index */
3575	int		nlists;		/* number of extent irec's (lists) */
3576	int		high;		/* binary search upper limit */
3577	int		low;		/* binary search lower limit */
3578
3579	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3580	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3581	erp_idx = 0;
3582	low = 0;
3583	high = nlists - 1;
3584	while (low <= high) {
3585		erp_idx = (low + high) >> 1;
3586		erp = &ifp->if_u1.if_ext_irec[erp_idx];
3587		erp_next = erp_idx < nlists - 1 ? erp + 1 : NULL;
3588		if (bno < xfs_bmbt_get_startoff(erp->er_extbuf)) {
3589			high = erp_idx - 1;
3590		} else if (erp_next && bno >=
3591			   xfs_bmbt_get_startoff(erp_next->er_extbuf)) {
3592			low = erp_idx + 1;
3593		} else {
3594			break;
3595		}
3596	}
3597	*erp_idxp = erp_idx;
3598	return erp;
3599}
3600
3601/*
3602 * Return a pointer to the indirection array entry containing the
3603 * extent record at file extent index *idxp. Store the index of the
3604 * target irec in *erp_idxp and store the page index of the target
3605 * extent record in *idxp.
3606 */
3607xfs_ext_irec_t *
3608xfs_iext_idx_to_irec(
3609	xfs_ifork_t	*ifp,		/* inode fork pointer */
3610	xfs_extnum_t	*idxp,		/* extent index (file -> page) */
3611	int		*erp_idxp,	/* pointer to target irec */
3612	int		realloc)	/* new bytes were just added */
3613{
3614	xfs_ext_irec_t	*prev;		/* pointer to previous irec */
3615	xfs_ext_irec_t	*erp = NULL;	/* pointer to current irec */
3616	int		erp_idx;	/* indirection array index */
3617	int		nlists;		/* number of irec's (ex lists) */
3618	int		high;		/* binary search upper limit */
3619	int		low;		/* binary search lower limit */
3620	xfs_extnum_t	page_idx = *idxp; /* extent index in target list */
3621
3622	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3623	ASSERT(page_idx >= 0);
3624	ASSERT(page_idx <= ifp->if_bytes / sizeof(xfs_bmbt_rec_t));
3625	ASSERT(page_idx < ifp->if_bytes / sizeof(xfs_bmbt_rec_t) || realloc);
3626
3627	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3628	erp_idx = 0;
3629	low = 0;
3630	high = nlists - 1;
3631
3632	/* Binary search extent irec's */
3633	while (low <= high) {
3634		erp_idx = (low + high) >> 1;
3635		erp = &ifp->if_u1.if_ext_irec[erp_idx];
3636		prev = erp_idx > 0 ? erp - 1 : NULL;
3637		if (page_idx < erp->er_extoff || (page_idx == erp->er_extoff &&
3638		     realloc && prev && prev->er_extcount < XFS_LINEAR_EXTS)) {
3639			high = erp_idx - 1;
3640		} else if (page_idx > erp->er_extoff + erp->er_extcount ||
3641			   (page_idx == erp->er_extoff + erp->er_extcount &&
3642			    !realloc)) {
3643			low = erp_idx + 1;
3644		} else if (page_idx == erp->er_extoff + erp->er_extcount &&
3645			   erp->er_extcount == XFS_LINEAR_EXTS) {
3646			ASSERT(realloc);
3647			page_idx = 0;
3648			erp_idx++;
3649			erp = erp_idx < nlists ? erp + 1 : NULL;
3650			break;
3651		} else {
3652			page_idx -= erp->er_extoff;
3653			break;
3654		}
3655	}
3656	*idxp = page_idx;
3657	*erp_idxp = erp_idx;
3658	return(erp);
3659}
3660
3661/*
3662 * Allocate and initialize an indirection array once the space needed
3663 * for incore extents increases above XFS_IEXT_BUFSZ.
3664 */
3665void
3666xfs_iext_irec_init(
3667	xfs_ifork_t	*ifp)		/* inode fork pointer */
3668{
3669	xfs_ext_irec_t	*erp;		/* indirection array pointer */
3670	xfs_extnum_t	nextents;	/* number of extents in file */
3671
3672	ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
3673	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3674	ASSERT(nextents <= XFS_LINEAR_EXTS);
 
3675
3676	erp = kmem_alloc(sizeof(xfs_ext_irec_t), KM_NOFS);
3677
3678	if (nextents == 0) {
3679		ifp->if_u1.if_extents = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS);
3680	} else if (!ifp->if_real_bytes) {
3681		xfs_iext_inline_to_direct(ifp, XFS_IEXT_BUFSZ);
3682	} else if (ifp->if_real_bytes < XFS_IEXT_BUFSZ) {
3683		xfs_iext_realloc_direct(ifp, XFS_IEXT_BUFSZ);
3684	}
3685	erp->er_extbuf = ifp->if_u1.if_extents;
3686	erp->er_extcount = nextents;
3687	erp->er_extoff = 0;
3688
3689	ifp->if_flags |= XFS_IFEXTIREC;
3690	ifp->if_real_bytes = XFS_IEXT_BUFSZ;
3691	ifp->if_bytes = nextents * sizeof(xfs_bmbt_rec_t);
3692	ifp->if_u1.if_ext_irec = erp;
3693
3694	return;
3695}
3696
3697/*
3698 * Allocate and initialize a new entry in the indirection array.
 
 
 
 
3699 */
3700xfs_ext_irec_t *
3701xfs_iext_irec_new(
3702	xfs_ifork_t	*ifp,		/* inode fork pointer */
3703	int		erp_idx)	/* index for new irec */
3704{
3705	xfs_ext_irec_t	*erp;		/* indirection array pointer */
3706	int		i;		/* loop counter */
3707	int		nlists;		/* number of irec's (ex lists) */
3708
3709	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3710	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3711
3712	/* Resize indirection array */
3713	xfs_iext_realloc_indirect(ifp, ++nlists *
3714				  sizeof(xfs_ext_irec_t));
3715	/*
3716	 * Move records down in the array so the
3717	 * new page can use erp_idx.
3718	 */
3719	erp = ifp->if_u1.if_ext_irec;
3720	for (i = nlists - 1; i > erp_idx; i--) {
3721		memmove(&erp[i], &erp[i-1], sizeof(xfs_ext_irec_t));
3722	}
3723	ASSERT(i == erp_idx);
3724
3725	/* Initialize new extent record */
3726	erp = ifp->if_u1.if_ext_irec;
3727	erp[erp_idx].er_extbuf = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS);
3728	ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
3729	memset(erp[erp_idx].er_extbuf, 0, XFS_IEXT_BUFSZ);
3730	erp[erp_idx].er_extcount = 0;
3731	erp[erp_idx].er_extoff = erp_idx > 0 ?
3732		erp[erp_idx-1].er_extoff + erp[erp_idx-1].er_extcount : 0;
3733	return (&erp[erp_idx]);
3734}
3735
3736/*
3737 * Remove a record from the indirection array.
3738 */
3739void
3740xfs_iext_irec_remove(
3741	xfs_ifork_t	*ifp,		/* inode fork pointer */
3742	int		erp_idx)	/* irec index to remove */
3743{
3744	xfs_ext_irec_t	*erp;		/* indirection array pointer */
3745	int		i;		/* loop counter */
3746	int		nlists;		/* number of irec's (ex lists) */
3747
3748	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3749	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3750	erp = &ifp->if_u1.if_ext_irec[erp_idx];
3751	if (erp->er_extbuf) {
3752		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1,
3753			-erp->er_extcount);
3754		kmem_free(erp->er_extbuf);
3755	}
3756	/* Compact extent records */
3757	erp = ifp->if_u1.if_ext_irec;
3758	for (i = erp_idx; i < nlists - 1; i++) {
3759		memmove(&erp[i], &erp[i+1], sizeof(xfs_ext_irec_t));
3760	}
3761	/*
3762	 * Manually free the last extent record from the indirection
3763	 * array.  A call to xfs_iext_realloc_indirect() with a size
3764	 * of zero would result in a call to xfs_iext_destroy() which
3765	 * would in turn call this function again, creating a nasty
3766	 * infinite loop.
3767	 */
3768	if (--nlists) {
3769		xfs_iext_realloc_indirect(ifp,
3770			nlists * sizeof(xfs_ext_irec_t));
3771	} else {
3772		kmem_free(ifp->if_u1.if_ext_irec);
3773	}
3774	ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
3775}
3776
3777/*
3778 * This is called to clean up large amounts of unused memory allocated
3779 * by the indirection array.  Before compacting anything though, verify
3780 * that the indirection array is still needed and switch back to the
3781 * linear extent list (or even the inline buffer) if possible.  The
3782 * compaction policy is as follows:
3783 *
3784 *    Full Compaction: Extents fit into a single page (or inline buffer)
3785 * Partial Compaction: Extents occupy less than 50% of allocated space
3786 *      No Compaction: Extents occupy at least 50% of allocated space
3787 */
3788void
3789xfs_iext_irec_compact(
3790	xfs_ifork_t	*ifp)		/* inode fork pointer */
3791{
3792	xfs_extnum_t	nextents;	/* number of extents in file */
3793	int		nlists;		/* number of irec's (ex lists) */
3794
3795	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3796	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3797	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3798
3799	if (nextents == 0) {
3800		xfs_iext_destroy(ifp);
3801	} else if (nextents <= XFS_INLINE_EXTS) {
3802		xfs_iext_indirect_to_direct(ifp);
3803		xfs_iext_direct_to_inline(ifp, nextents);
3804	} else if (nextents <= XFS_LINEAR_EXTS) {
3805		xfs_iext_indirect_to_direct(ifp);
3806	} else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 1) {
3807		xfs_iext_irec_compact_pages(ifp);
3808	}
 
 
3809}
3810
3811/*
3812 * Combine extents from neighboring extent pages.
 
3813 */
3814void
3815xfs_iext_irec_compact_pages(
3816	xfs_ifork_t	*ifp)		/* inode fork pointer */
3817{
3818	xfs_ext_irec_t	*erp, *erp_next;/* pointers to irec entries */
3819	int		erp_idx = 0;	/* indirection array index */
3820	int		nlists;		/* number of irec's (ex lists) */
3821
3822	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3823	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3824	while (erp_idx < nlists - 1) {
3825		erp = &ifp->if_u1.if_ext_irec[erp_idx];
3826		erp_next = erp + 1;
3827		if (erp_next->er_extcount <=
3828		    (XFS_LINEAR_EXTS - erp->er_extcount)) {
3829			memcpy(&erp->er_extbuf[erp->er_extcount],
3830				erp_next->er_extbuf, erp_next->er_extcount *
3831				sizeof(xfs_bmbt_rec_t));
3832			erp->er_extcount += erp_next->er_extcount;
3833			/*
3834			 * Free page before removing extent record
3835			 * so er_extoffs don't get modified in
3836			 * xfs_iext_irec_remove.
3837			 */
3838			kmem_free(erp_next->er_extbuf);
3839			erp_next->er_extbuf = NULL;
3840			xfs_iext_irec_remove(ifp, erp_idx + 1);
3841			nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3842		} else {
3843			erp_idx++;
3844		}
3845	}
3846}
3847
3848/*
3849 * This is called to update the er_extoff field in the indirection
3850 * array when extents have been added or removed from one of the
3851 * extent lists. erp_idx contains the irec index to begin updating
3852 * at and ext_diff contains the number of extents that were added
3853 * or removed.
3854 */
3855void
3856xfs_iext_irec_update_extoffs(
3857	xfs_ifork_t	*ifp,		/* inode fork pointer */
3858	int		erp_idx,	/* irec index to update */
3859	int		ext_diff)	/* number of new extents */
3860{
3861	int		i;		/* loop counter */
3862	int		nlists;		/* number of irec's (ex lists */
3863
3864	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3865	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3866	for (i = erp_idx; i < nlists; i++) {
3867		ifp->if_u1.if_ext_irec[i].er_extoff += ext_diff;
3868	}
3869}
v5.9
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
   4 * All Rights Reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
   5 */
   6#include <linux/iversion.h>
   7
   8#include "xfs.h"
   9#include "xfs_fs.h"
  10#include "xfs_shared.h"
  11#include "xfs_format.h"
  12#include "xfs_log_format.h"
  13#include "xfs_trans_resv.h"
 
 
  14#include "xfs_sb.h"
 
  15#include "xfs_mount.h"
  16#include "xfs_defer.h"
 
 
 
 
  17#include "xfs_inode.h"
  18#include "xfs_dir2.h"
  19#include "xfs_attr.h"
  20#include "xfs_trans_space.h"
  21#include "xfs_trans.h"
  22#include "xfs_buf_item.h"
  23#include "xfs_inode_item.h"
 
 
  24#include "xfs_ialloc.h"
  25#include "xfs_bmap.h"
  26#include "xfs_bmap_util.h"
  27#include "xfs_errortag.h"
  28#include "xfs_error.h"
 
  29#include "xfs_quota.h"
  30#include "xfs_filestream.h"
 
  31#include "xfs_trace.h"
  32#include "xfs_icache.h"
  33#include "xfs_symlink.h"
  34#include "xfs_trans_priv.h"
  35#include "xfs_log.h"
  36#include "xfs_bmap_btree.h"
  37#include "xfs_reflink.h"
  38
 
  39kmem_zone_t *xfs_inode_zone;
  40
  41/*
  42 * Used in xfs_itruncate_extents().  This is the maximum number of extents
  43 * freed from a file in a single transaction.
  44 */
  45#define	XFS_ITRUNC_MAX_EXTENTS	2
  46
  47STATIC int xfs_iunlink(struct xfs_trans *, struct xfs_inode *);
  48STATIC int xfs_iunlink_remove(struct xfs_trans *, struct xfs_inode *);
 
 
  49
 
  50/*
  51 * helper function to extract extent size hint from inode
 
  52 */
  53xfs_extlen_t
  54xfs_get_extsz_hint(
  55	struct xfs_inode	*ip)
 
 
  56{
  57	/*
  58	 * No point in aligning allocations if we need to COW to actually
  59	 * write to them.
  60	 */
  61	if (xfs_is_always_cow_inode(ip))
  62		return 0;
  63	if ((ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE) && ip->i_d.di_extsize)
  64		return ip->i_d.di_extsize;
  65	if (XFS_IS_REALTIME_INODE(ip))
  66		return ip->i_mount->m_sb.sb_rextsize;
  67	return 0;
 
  68}
 
 
 
  69
  70/*
  71 * Helper function to extract CoW extent size hint from inode.
  72 * Between the extent size hint and the CoW extent size hint, we
  73 * return the greater of the two.  If the value is zero (automatic),
  74 * use the default size.
  75 */
  76xfs_extlen_t
  77xfs_get_cowextsz_hint(
  78	struct xfs_inode	*ip)
  79{
  80	xfs_extlen_t		a, b;
  81
  82	a = 0;
  83	if (ip->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE)
  84		a = ip->i_d.di_cowextsize;
  85	b = xfs_get_extsz_hint(ip);
  86
  87	a = max(a, b);
  88	if (a == 0)
  89		return XFS_DEFAULT_COWEXTSZ_HINT;
  90	return a;
 
 
 
 
 
 
 
  91}
 
  92
  93/*
  94 * These two are wrapper routines around the xfs_ilock() routine used to
  95 * centralize some grungy code.  They are used in places that wish to lock the
  96 * inode solely for reading the extents.  The reason these places can't just
  97 * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to
  98 * bringing in of the extents from disk for a file in b-tree format.  If the
  99 * inode is in b-tree format, then we need to lock the inode exclusively until
 100 * the extents are read in.  Locking it exclusively all the time would limit
 101 * our parallelism unnecessarily, though.  What we do instead is check to see
 102 * if the extents have been read in yet, and only lock the inode exclusively
 103 * if they have not.
 104 *
 105 * The functions return a value which should be given to the corresponding
 106 * xfs_iunlock() call.
 107 */
 108uint
 109xfs_ilock_data_map_shared(
 110	struct xfs_inode	*ip)
 
 
 
 
 
 111{
 112	uint			lock_mode = XFS_ILOCK_SHARED;
 
 
 
 113
 114	if (ip->i_df.if_format == XFS_DINODE_FMT_BTREE &&
 115	    (ip->i_df.if_flags & XFS_IFEXTENTS) == 0)
 116		lock_mode = XFS_ILOCK_EXCL;
 117	xfs_ilock(ip, lock_mode);
 118	return lock_mode;
 119}
 
 
 
 
 
 
 120
 121uint
 122xfs_ilock_attr_map_shared(
 123	struct xfs_inode	*ip)
 124{
 125	uint			lock_mode = XFS_ILOCK_SHARED;
 
 
 
 
 126
 127	if (ip->i_afp &&
 128	    ip->i_afp->if_format == XFS_DINODE_FMT_BTREE &&
 129	    (ip->i_afp->if_flags & XFS_IFEXTENTS) == 0)
 130		lock_mode = XFS_ILOCK_EXCL;
 131	xfs_ilock(ip, lock_mode);
 132	return lock_mode;
 133}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 134
 135/*
 136 * In addition to i_rwsem in the VFS inode, the xfs inode contains 2
 137 * multi-reader locks: i_mmap_lock and the i_lock.  This routine allows
 138 * various combinations of the locks to be obtained.
 139 *
 140 * The 3 locks should always be ordered so that the IO lock is obtained first,
 141 * the mmap lock second and the ilock last in order to prevent deadlock.
 142 *
 143 * Basic locking order:
 144 *
 145 * i_rwsem -> i_mmap_lock -> page_lock -> i_ilock
 146 *
 147 * mmap_lock locking order:
 148 *
 149 * i_rwsem -> page lock -> mmap_lock
 150 * mmap_lock -> i_mmap_lock -> page_lock
 151 *
 152 * The difference in mmap_lock locking order mean that we cannot hold the
 153 * i_mmap_lock over syscall based read(2)/write(2) based IO. These IO paths can
 154 * fault in pages during copy in/out (for buffered IO) or require the mmap_lock
 155 * in get_user_pages() to map the user pages into the kernel address space for
 156 * direct IO. Similarly the i_rwsem cannot be taken inside a page fault because
 157 * page faults already hold the mmap_lock.
 158 *
 159 * Hence to serialise fully against both syscall and mmap based IO, we need to
 160 * take both the i_rwsem and the i_mmap_lock. These locks should *only* be both
 161 * taken in places where we need to invalidate the page cache in a race
 162 * free manner (e.g. truncate, hole punch and other extent manipulation
 163 * functions).
 164 */
 165void
 166xfs_ilock(
 167	xfs_inode_t		*ip,
 168	uint			lock_flags)
 169{
 170	trace_xfs_ilock(ip, lock_flags, _RET_IP_);
 171
 172	/*
 173	 * You can't set both SHARED and EXCL for the same lock,
 174	 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
 175	 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
 176	 */
 177	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
 178	       (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
 179	ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
 180	       (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
 181	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
 182	       (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
 183	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
 184
 185	if (lock_flags & XFS_IOLOCK_EXCL) {
 186		down_write_nested(&VFS_I(ip)->i_rwsem,
 187				  XFS_IOLOCK_DEP(lock_flags));
 188	} else if (lock_flags & XFS_IOLOCK_SHARED) {
 189		down_read_nested(&VFS_I(ip)->i_rwsem,
 190				 XFS_IOLOCK_DEP(lock_flags));
 191	}
 192
 193	if (lock_flags & XFS_MMAPLOCK_EXCL)
 194		mrupdate_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
 195	else if (lock_flags & XFS_MMAPLOCK_SHARED)
 196		mraccess_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
 197
 198	if (lock_flags & XFS_ILOCK_EXCL)
 199		mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
 200	else if (lock_flags & XFS_ILOCK_SHARED)
 201		mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
 202}
 203
 204/*
 205 * This is just like xfs_ilock(), except that the caller
 206 * is guaranteed not to sleep.  It returns 1 if it gets
 207 * the requested locks and 0 otherwise.  If the IO lock is
 208 * obtained but the inode lock cannot be, then the IO lock
 209 * is dropped before returning.
 210 *
 211 * ip -- the inode being locked
 212 * lock_flags -- this parameter indicates the inode's locks to be
 213 *       to be locked.  See the comment for xfs_ilock() for a list
 214 *	 of valid values.
 
 215 */
 216int
 217xfs_ilock_nowait(
 218	xfs_inode_t		*ip,
 219	uint			lock_flags)
 
 
 
 
 
 220{
 221	trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_);
 
 
 222
 223	/*
 224	 * You can't set both SHARED and EXCL for the same lock,
 225	 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
 226	 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
 227	 */
 228	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
 229	       (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
 230	ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
 231	       (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
 232	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
 233	       (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
 234	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
 235
 236	if (lock_flags & XFS_IOLOCK_EXCL) {
 237		if (!down_write_trylock(&VFS_I(ip)->i_rwsem))
 238			goto out;
 239	} else if (lock_flags & XFS_IOLOCK_SHARED) {
 240		if (!down_read_trylock(&VFS_I(ip)->i_rwsem))
 241			goto out;
 242	}
 243
 244	if (lock_flags & XFS_MMAPLOCK_EXCL) {
 245		if (!mrtryupdate(&ip->i_mmaplock))
 246			goto out_undo_iolock;
 247	} else if (lock_flags & XFS_MMAPLOCK_SHARED) {
 248		if (!mrtryaccess(&ip->i_mmaplock))
 249			goto out_undo_iolock;
 250	}
 251
 252	if (lock_flags & XFS_ILOCK_EXCL) {
 253		if (!mrtryupdate(&ip->i_lock))
 254			goto out_undo_mmaplock;
 255	} else if (lock_flags & XFS_ILOCK_SHARED) {
 256		if (!mrtryaccess(&ip->i_lock))
 257			goto out_undo_mmaplock;
 258	}
 259	return 1;
 260
 261out_undo_mmaplock:
 262	if (lock_flags & XFS_MMAPLOCK_EXCL)
 263		mrunlock_excl(&ip->i_mmaplock);
 264	else if (lock_flags & XFS_MMAPLOCK_SHARED)
 265		mrunlock_shared(&ip->i_mmaplock);
 266out_undo_iolock:
 267	if (lock_flags & XFS_IOLOCK_EXCL)
 268		up_write(&VFS_I(ip)->i_rwsem);
 269	else if (lock_flags & XFS_IOLOCK_SHARED)
 270		up_read(&VFS_I(ip)->i_rwsem);
 271out:
 272	return 0;
 273}
 274
 
 275/*
 276 * xfs_iunlock() is used to drop the inode locks acquired with
 277 * xfs_ilock() and xfs_ilock_nowait().  The caller must pass
 278 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
 279 * that we know which locks to drop.
 
 280 *
 281 * ip -- the inode being unlocked
 282 * lock_flags -- this parameter indicates the inode's locks to be
 283 *       to be unlocked.  See the comment for xfs_ilock() for a list
 284 *	 of valid values for this parameter.
 285 *
 
 
 
 
 
 286 */
 287void
 288xfs_iunlock(
 289	xfs_inode_t		*ip,
 290	uint			lock_flags)
 
 
 
 
 291{
 292	/*
 293	 * You can't set both SHARED and EXCL for the same lock,
 294	 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
 295	 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
 296	 */
 297	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
 298	       (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
 299	ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
 300	       (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
 301	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
 302	       (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
 303	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
 304	ASSERT(lock_flags != 0);
 305
 306	if (lock_flags & XFS_IOLOCK_EXCL)
 307		up_write(&VFS_I(ip)->i_rwsem);
 308	else if (lock_flags & XFS_IOLOCK_SHARED)
 309		up_read(&VFS_I(ip)->i_rwsem);
 310
 311	if (lock_flags & XFS_MMAPLOCK_EXCL)
 312		mrunlock_excl(&ip->i_mmaplock);
 313	else if (lock_flags & XFS_MMAPLOCK_SHARED)
 314		mrunlock_shared(&ip->i_mmaplock);
 315
 316	if (lock_flags & XFS_ILOCK_EXCL)
 317		mrunlock_excl(&ip->i_lock);
 318	else if (lock_flags & XFS_ILOCK_SHARED)
 319		mrunlock_shared(&ip->i_lock);
 
 
 320
 321	trace_xfs_iunlock(ip, lock_flags, _RET_IP_);
 
 
 322}
 323
 324/*
 325 * give up write locks.  the i/o lock cannot be held nested
 326 * if it is being demoted.
 
 
 
 
 
 327 */
 328void
 329xfs_ilock_demote(
 330	xfs_inode_t		*ip,
 331	uint			lock_flags)
 332{
 333	ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL));
 334	ASSERT((lock_flags &
 335		~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 336
 337	if (lock_flags & XFS_ILOCK_EXCL)
 338		mrdemote(&ip->i_lock);
 339	if (lock_flags & XFS_MMAPLOCK_EXCL)
 340		mrdemote(&ip->i_mmaplock);
 341	if (lock_flags & XFS_IOLOCK_EXCL)
 342		downgrade_write(&VFS_I(ip)->i_rwsem);
 
 
 
 
 
 343
 344	trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_);
 345}
 
 
 
 
 
 
 
 
 
 
 
 
 
 346
 347#if defined(DEBUG) || defined(XFS_WARN)
 348int
 349xfs_isilocked(
 350	xfs_inode_t		*ip,
 351	uint			lock_flags)
 352{
 353	if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) {
 354		if (!(lock_flags & XFS_ILOCK_SHARED))
 355			return !!ip->i_lock.mr_writer;
 356		return rwsem_is_locked(&ip->i_lock.mr_lock);
 357	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 358
 359	if (lock_flags & (XFS_MMAPLOCK_EXCL|XFS_MMAPLOCK_SHARED)) {
 360		if (!(lock_flags & XFS_MMAPLOCK_SHARED))
 361			return !!ip->i_mmaplock.mr_writer;
 362		return rwsem_is_locked(&ip->i_mmaplock.mr_lock);
 
 
 
 
 
 
 
 363	}
 364
 365	if (lock_flags & (XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)) {
 366		if (!(lock_flags & XFS_IOLOCK_SHARED))
 367			return !debug_locks ||
 368				lockdep_is_held_type(&VFS_I(ip)->i_rwsem, 0);
 369		return rwsem_is_locked(&VFS_I(ip)->i_rwsem);
 370	}
 371
 372	ASSERT(0);
 373	return 0;
 374}
 375#endif
 376
 377/*
 378 * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when
 379 * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined
 380 * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build
 381 * errors and warnings.
 382 */
 383#if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP)
 384static bool
 385xfs_lockdep_subclass_ok(
 386	int subclass)
 387{
 388	return subclass < MAX_LOCKDEP_SUBCLASSES;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 389}
 390#else
 391#define xfs_lockdep_subclass_ok(subclass)	(true)
 392#endif
 393
 394/*
 395 * Bump the subclass so xfs_lock_inodes() acquires each lock with a different
 396 * value. This can be called for any type of inode lock combination, including
 397 * parent locking. Care must be taken to ensure we don't overrun the subclass
 398 * storage fields in the class mask we build.
 
 
 
 399 */
 400static inline int
 401xfs_lock_inumorder(int lock_mode, int subclass)
 402{
 403	int	class = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 404
 405	ASSERT(!(lock_mode & (XFS_ILOCK_PARENT | XFS_ILOCK_RTBITMAP |
 406			      XFS_ILOCK_RTSUM)));
 407	ASSERT(xfs_lockdep_subclass_ok(subclass));
 408
 409	if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) {
 410		ASSERT(subclass <= XFS_IOLOCK_MAX_SUBCLASS);
 411		class += subclass << XFS_IOLOCK_SHIFT;
 
 
 
 
 
 
 
 
 
 
 
 
 412	}
 413
 414	if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) {
 415		ASSERT(subclass <= XFS_MMAPLOCK_MAX_SUBCLASS);
 416		class += subclass << XFS_MMAPLOCK_SHIFT;
 417	}
 418
 419	if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) {
 420		ASSERT(subclass <= XFS_ILOCK_MAX_SUBCLASS);
 421		class += subclass << XFS_ILOCK_SHIFT;
 422	}
 423
 424	return (lock_mode & ~XFS_LOCK_SUBCLASS_MASK) | class;
 425}
 426
 427/*
 428 * The following routine will lock n inodes in exclusive mode.  We assume the
 429 * caller calls us with the inodes in i_ino order.
 430 *
 431 * We need to detect deadlock where an inode that we lock is in the AIL and we
 432 * start waiting for another inode that is locked by a thread in a long running
 433 * transaction (such as truncate). This can result in deadlock since the long
 434 * running trans might need to wait for the inode we just locked in order to
 435 * push the tail and free space in the log.
 436 *
 437 * xfs_lock_inodes() can only be used to lock one type of lock at a time -
 438 * the iolock, the mmaplock or the ilock, but not more than one at a time. If we
 439 * lock more than one at a time, lockdep will report false positives saying we
 440 * have violated locking orders.
 441 */
 442static void
 443xfs_lock_inodes(
 444	struct xfs_inode	**ips,
 445	int			inodes,
 446	uint			lock_mode)
 447{
 448	int			attempts = 0, i, j, try_lock;
 449	struct xfs_log_item	*lp;
 450
 451	/*
 452	 * Currently supports between 2 and 5 inodes with exclusive locking.  We
 453	 * support an arbitrary depth of locking here, but absolute limits on
 454	 * inodes depend on the type of locking and the limits placed by
 455	 * lockdep annotations in xfs_lock_inumorder.  These are all checked by
 456	 * the asserts.
 457	 */
 458	ASSERT(ips && inodes >= 2 && inodes <= 5);
 459	ASSERT(lock_mode & (XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL |
 460			    XFS_ILOCK_EXCL));
 461	ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED | XFS_MMAPLOCK_SHARED |
 462			      XFS_ILOCK_SHARED)));
 463	ASSERT(!(lock_mode & XFS_MMAPLOCK_EXCL) ||
 464		inodes <= XFS_MMAPLOCK_MAX_SUBCLASS + 1);
 465	ASSERT(!(lock_mode & XFS_ILOCK_EXCL) ||
 466		inodes <= XFS_ILOCK_MAX_SUBCLASS + 1);
 467
 468	if (lock_mode & XFS_IOLOCK_EXCL) {
 469		ASSERT(!(lock_mode & (XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL)));
 470	} else if (lock_mode & XFS_MMAPLOCK_EXCL)
 471		ASSERT(!(lock_mode & XFS_ILOCK_EXCL));
 472
 473	try_lock = 0;
 474	i = 0;
 475again:
 476	for (; i < inodes; i++) {
 477		ASSERT(ips[i]);
 
 
 
 
 
 
 
 
 
 
 
 478
 479		if (i && (ips[i] == ips[i - 1]))	/* Already locked */
 480			continue;
 481
 482		/*
 483		 * If try_lock is not set yet, make sure all locked inodes are
 484		 * not in the AIL.  If any are, set try_lock to be used later.
 485		 */
 486		if (!try_lock) {
 487			for (j = (i - 1); j >= 0 && !try_lock; j--) {
 488				lp = &ips[j]->i_itemp->ili_item;
 489				if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags))
 490					try_lock++;
 491			}
 492		}
 493
 494		/*
 495		 * If any of the previous locks we have locked is in the AIL,
 496		 * we must TRY to get the second and subsequent locks. If
 497		 * we can't get any, we must release all we have
 498		 * and try again.
 499		 */
 500		if (!try_lock) {
 501			xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i));
 502			continue;
 503		}
 504
 505		/* try_lock means we have an inode locked that is in the AIL. */
 506		ASSERT(i != 0);
 507		if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i)))
 508			continue;
 509
 510		/*
 511		 * Unlock all previous guys and try again.  xfs_iunlock will try
 512		 * to push the tail if the inode is in the AIL.
 513		 */
 514		attempts++;
 515		for (j = i - 1; j >= 0; j--) {
 516			/*
 517			 * Check to see if we've already unlocked this one.  Not
 518			 * the first one going back, and the inode ptr is the
 519			 * same.
 520			 */
 521			if (j != (i - 1) && ips[j] == ips[j + 1])
 522				continue;
 523
 524			xfs_iunlock(ips[j], lock_mode);
 525		}
 526
 527		if ((attempts % 5) == 0) {
 528			delay(1); /* Don't just spin the CPU */
 529		}
 530		i = 0;
 531		try_lock = 0;
 532		goto again;
 533	}
 534}
 535
 536/*
 537 * xfs_lock_two_inodes() can only be used to lock one type of lock at a time -
 538 * the mmaplock or the ilock, but not more than one type at a time. If we lock
 539 * more than one at a time, lockdep will report false positives saying we have
 540 * violated locking orders.  The iolock must be double-locked separately since
 541 * we use i_rwsem for that.  We now support taking one lock EXCL and the other
 542 * SHARED.
 543 */
 544void
 545xfs_lock_two_inodes(
 546	struct xfs_inode	*ip0,
 547	uint			ip0_mode,
 548	struct xfs_inode	*ip1,
 549	uint			ip1_mode)
 550{
 551	struct xfs_inode	*temp;
 552	uint			mode_temp;
 553	int			attempts = 0;
 554	struct xfs_log_item	*lp;
 555
 556	ASSERT(hweight32(ip0_mode) == 1);
 557	ASSERT(hweight32(ip1_mode) == 1);
 558	ASSERT(!(ip0_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
 559	ASSERT(!(ip1_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
 560	ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
 561	       !(ip0_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
 562	ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
 563	       !(ip1_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
 564	ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
 565	       !(ip0_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
 566	ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
 567	       !(ip1_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
 568
 569	ASSERT(ip0->i_ino != ip1->i_ino);
 570
 571	if (ip0->i_ino > ip1->i_ino) {
 572		temp = ip0;
 573		ip0 = ip1;
 574		ip1 = temp;
 575		mode_temp = ip0_mode;
 576		ip0_mode = ip1_mode;
 577		ip1_mode = mode_temp;
 578	}
 579
 580 again:
 581	xfs_ilock(ip0, xfs_lock_inumorder(ip0_mode, 0));
 582
 583	/*
 584	 * If the first lock we have locked is in the AIL, we must TRY to get
 585	 * the second lock. If we can't get it, we must release the first one
 586	 * and try again.
 587	 */
 588	lp = &ip0->i_itemp->ili_item;
 589	if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags)) {
 590		if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(ip1_mode, 1))) {
 591			xfs_iunlock(ip0, ip0_mode);
 592			if ((++attempts % 5) == 0)
 593				delay(1); /* Don't just spin the CPU */
 594			goto again;
 595		}
 596	} else {
 597		xfs_ilock(ip1, xfs_lock_inumorder(ip1_mode, 1));
 598	}
 599}
 600
 601void
 602__xfs_iflock(
 603	struct xfs_inode	*ip)
 604{
 605	wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IFLOCK_BIT);
 606	DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IFLOCK_BIT);
 607
 608	do {
 609		prepare_to_wait_exclusive(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
 610		if (xfs_isiflocked(ip))
 611			io_schedule();
 612	} while (!xfs_iflock_nowait(ip));
 613
 614	finish_wait(wq, &wait.wq_entry);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 615}
 616
 617STATIC uint
 618_xfs_dic2xflags(
 619	uint16_t		di_flags,
 620	uint64_t		di_flags2,
 621	bool			has_attr)
 622{
 623	uint			flags = 0;
 624
 625	if (di_flags & XFS_DIFLAG_ANY) {
 626		if (di_flags & XFS_DIFLAG_REALTIME)
 627			flags |= FS_XFLAG_REALTIME;
 628		if (di_flags & XFS_DIFLAG_PREALLOC)
 629			flags |= FS_XFLAG_PREALLOC;
 630		if (di_flags & XFS_DIFLAG_IMMUTABLE)
 631			flags |= FS_XFLAG_IMMUTABLE;
 632		if (di_flags & XFS_DIFLAG_APPEND)
 633			flags |= FS_XFLAG_APPEND;
 634		if (di_flags & XFS_DIFLAG_SYNC)
 635			flags |= FS_XFLAG_SYNC;
 636		if (di_flags & XFS_DIFLAG_NOATIME)
 637			flags |= FS_XFLAG_NOATIME;
 638		if (di_flags & XFS_DIFLAG_NODUMP)
 639			flags |= FS_XFLAG_NODUMP;
 640		if (di_flags & XFS_DIFLAG_RTINHERIT)
 641			flags |= FS_XFLAG_RTINHERIT;
 642		if (di_flags & XFS_DIFLAG_PROJINHERIT)
 643			flags |= FS_XFLAG_PROJINHERIT;
 644		if (di_flags & XFS_DIFLAG_NOSYMLINKS)
 645			flags |= FS_XFLAG_NOSYMLINKS;
 646		if (di_flags & XFS_DIFLAG_EXTSIZE)
 647			flags |= FS_XFLAG_EXTSIZE;
 648		if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
 649			flags |= FS_XFLAG_EXTSZINHERIT;
 650		if (di_flags & XFS_DIFLAG_NODEFRAG)
 651			flags |= FS_XFLAG_NODEFRAG;
 652		if (di_flags & XFS_DIFLAG_FILESTREAM)
 653			flags |= FS_XFLAG_FILESTREAM;
 654	}
 655
 656	if (di_flags2 & XFS_DIFLAG2_ANY) {
 657		if (di_flags2 & XFS_DIFLAG2_DAX)
 658			flags |= FS_XFLAG_DAX;
 659		if (di_flags2 & XFS_DIFLAG2_COWEXTSIZE)
 660			flags |= FS_XFLAG_COWEXTSIZE;
 661	}
 662
 663	if (has_attr)
 664		flags |= FS_XFLAG_HASATTR;
 665
 666	return flags;
 667}
 668
 669uint
 670xfs_ip2xflags(
 671	struct xfs_inode	*ip)
 672{
 673	struct xfs_icdinode	*dic = &ip->i_d;
 
 
 
 
 674
 675	return _xfs_dic2xflags(dic->di_flags, dic->di_flags2, XFS_IFORK_Q(ip));
 
 
 
 
 
 676}
 677
 678/*
 679 * Lookups up an inode from "name". If ci_name is not NULL, then a CI match
 680 * is allowed, otherwise it has to be an exact match. If a CI match is found,
 681 * ci_name->name will point to a the actual name (caller must free) or
 682 * will be set to NULL if an exact match is found.
 683 */
 684int
 685xfs_lookup(
 686	xfs_inode_t		*dp,
 687	struct xfs_name		*name,
 688	xfs_inode_t		**ipp,
 689	struct xfs_name		*ci_name)
 690{
 691	xfs_ino_t		inum;
 692	int			error;
 
 
 
 
 
 
 
 
 693
 694	trace_xfs_lookup(dp, name);
 
 
 
 
 
 
 
 695
 696	if (XFS_FORCED_SHUTDOWN(dp->i_mount))
 697		return -EIO;
 
 
 
 
 
 
 
 
 
 
 
 698
 699	error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name);
 700	if (error)
 701		goto out_unlock;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 702
 703	error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp);
 704	if (error)
 705		goto out_free_name;
 706
 707	return 0;
 
 
 
 
 
 708
 709out_free_name:
 710	if (ci_name)
 711		kmem_free(ci_name->name);
 712out_unlock:
 713	*ipp = NULL;
 
 
 
 
 
 
 
 
 
 
 714	return error;
 715}
 716
 717/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 718 * Allocate an inode on disk and return a copy of its in-core version.
 719 * The in-core inode is locked exclusively.  Set mode, nlink, and rdev
 720 * appropriately within the inode.  The uid and gid for the inode are
 721 * set according to the contents of the given cred structure.
 722 *
 723 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
 724 * has a free inode available, call xfs_iget() to obtain the in-core
 725 * version of the allocated inode.  Finally, fill in the inode and
 726 * log its initial contents.  In this case, ialloc_context would be
 727 * set to NULL.
 728 *
 729 * If xfs_dialloc() does not have an available inode, it will replenish
 730 * its supply by doing an allocation. Since we can only do one
 731 * allocation within a transaction without deadlocks, we must commit
 732 * the current transaction before returning the inode itself.
 733 * In this case, therefore, we will set ialloc_context and return.
 734 * The caller should then commit the current transaction, start a new
 735 * transaction, and call xfs_ialloc() again to actually get the inode.
 736 *
 737 * To ensure that some other process does not grab the inode that
 738 * was allocated during the first call to xfs_ialloc(), this routine
 739 * also returns the [locked] bp pointing to the head of the freelist
 740 * as ialloc_context.  The caller should hold this buffer across
 741 * the commit and pass it back into this routine on the second call.
 742 *
 743 * If we are allocating quota inodes, we do not have a parent inode
 744 * to attach to or associate with (i.e. pip == NULL) because they
 745 * are not linked into the directory structure - they are attached
 746 * directly to the superblock - and so have no parent.
 747 */
 748static int
 749xfs_ialloc(
 750	xfs_trans_t	*tp,
 751	xfs_inode_t	*pip,
 752	umode_t		mode,
 753	xfs_nlink_t	nlink,
 754	dev_t		rdev,
 755	prid_t		prid,
 
 756	xfs_buf_t	**ialloc_context,
 
 757	xfs_inode_t	**ipp)
 758{
 759	struct xfs_mount *mp = tp->t_mountp;
 760	xfs_ino_t	ino;
 761	xfs_inode_t	*ip;
 762	uint		flags;
 763	int		error;
 764	struct timespec64 tv;
 765	struct inode	*inode;
 766
 767	/*
 768	 * Call the space management code to pick
 769	 * the on-disk inode to be allocated.
 770	 */
 771	error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode,
 772			    ialloc_context, &ino);
 773	if (error)
 774		return error;
 775	if (*ialloc_context || ino == NULLFSINO) {
 776		*ipp = NULL;
 777		return 0;
 778	}
 779	ASSERT(*ialloc_context == NULL);
 780
 781	/*
 782	 * Protect against obviously corrupt allocation btree records. Later
 783	 * xfs_iget checks will catch re-allocation of other active in-memory
 784	 * and on-disk inodes. If we don't catch reallocating the parent inode
 785	 * here we will deadlock in xfs_iget() so we have to do these checks
 786	 * first.
 787	 */
 788	if ((pip && ino == pip->i_ino) || !xfs_verify_dir_ino(mp, ino)) {
 789		xfs_alert(mp, "Allocated a known in-use inode 0x%llx!", ino);
 790		return -EFSCORRUPTED;
 791	}
 792
 793	/*
 794	 * Get the in-core inode with the lock held exclusively.
 795	 * This is because we're setting fields here we need
 796	 * to prevent others from looking at until we're done.
 797	 */
 798	error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE,
 799			 XFS_ILOCK_EXCL, &ip);
 800	if (error)
 801		return error;
 802	ASSERT(ip != NULL);
 803	inode = VFS_I(ip);
 804	inode->i_mode = mode;
 805	set_nlink(inode, nlink);
 806	inode->i_uid = current_fsuid();
 807	inode->i_rdev = rdev;
 808	ip->i_d.di_projid = prid;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 809
 810	if (pip && XFS_INHERIT_GID(pip)) {
 811		inode->i_gid = VFS_I(pip)->i_gid;
 812		if ((VFS_I(pip)->i_mode & S_ISGID) && S_ISDIR(mode))
 813			inode->i_mode |= S_ISGID;
 814	} else {
 815		inode->i_gid = current_fsgid();
 816	}
 817
 818	/*
 819	 * If the group ID of the new file does not match the effective group
 820	 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
 821	 * (and only if the irix_sgid_inherit compatibility variable is set).
 822	 */
 823	if (irix_sgid_inherit &&
 824	    (inode->i_mode & S_ISGID) && !in_group_p(inode->i_gid))
 825		inode->i_mode &= ~S_ISGID;
 
 
 826
 827	ip->i_d.di_size = 0;
 828	ip->i_df.if_nextents = 0;
 
 829	ASSERT(ip->i_d.di_nblocks == 0);
 830
 831	tv = current_time(inode);
 832	inode->i_mtime = tv;
 833	inode->i_atime = tv;
 834	inode->i_ctime = tv;
 
 835
 
 
 
 836	ip->i_d.di_extsize = 0;
 837	ip->i_d.di_dmevmask = 0;
 838	ip->i_d.di_dmstate = 0;
 839	ip->i_d.di_flags = 0;
 840
 841	if (xfs_sb_version_has_v3inode(&mp->m_sb)) {
 842		inode_set_iversion(inode, 1);
 843		ip->i_d.di_flags2 = 0;
 844		ip->i_d.di_cowextsize = 0;
 845		ip->i_d.di_crtime = tv;
 846	}
 847
 848	flags = XFS_ILOG_CORE;
 849	switch (mode & S_IFMT) {
 850	case S_IFIFO:
 851	case S_IFCHR:
 852	case S_IFBLK:
 853	case S_IFSOCK:
 854		ip->i_df.if_format = XFS_DINODE_FMT_DEV;
 
 855		ip->i_df.if_flags = 0;
 856		flags |= XFS_ILOG_DEV;
 857		break;
 858	case S_IFREG:
 
 
 
 
 
 
 
 859	case S_IFDIR:
 860		if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
 861			uint		di_flags = 0;
 862
 863			if (S_ISDIR(mode)) {
 864				if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
 865					di_flags |= XFS_DIFLAG_RTINHERIT;
 866				if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
 867					di_flags |= XFS_DIFLAG_EXTSZINHERIT;
 868					ip->i_d.di_extsize = pip->i_d.di_extsize;
 869				}
 870				if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
 871					di_flags |= XFS_DIFLAG_PROJINHERIT;
 872			} else if (S_ISREG(mode)) {
 873				if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
 874					di_flags |= XFS_DIFLAG_REALTIME;
 875				if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
 876					di_flags |= XFS_DIFLAG_EXTSIZE;
 877					ip->i_d.di_extsize = pip->i_d.di_extsize;
 878				}
 879			}
 880			if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
 881			    xfs_inherit_noatime)
 882				di_flags |= XFS_DIFLAG_NOATIME;
 883			if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
 884			    xfs_inherit_nodump)
 885				di_flags |= XFS_DIFLAG_NODUMP;
 886			if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
 887			    xfs_inherit_sync)
 888				di_flags |= XFS_DIFLAG_SYNC;
 889			if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
 890			    xfs_inherit_nosymlinks)
 891				di_flags |= XFS_DIFLAG_NOSYMLINKS;
 
 
 892			if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
 893			    xfs_inherit_nodefrag)
 894				di_flags |= XFS_DIFLAG_NODEFRAG;
 895			if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
 896				di_flags |= XFS_DIFLAG_FILESTREAM;
 897
 898			ip->i_d.di_flags |= di_flags;
 899		}
 900		if (pip && (pip->i_d.di_flags2 & XFS_DIFLAG2_ANY)) {
 901			if (pip->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE) {
 902				ip->i_d.di_flags2 |= XFS_DIFLAG2_COWEXTSIZE;
 903				ip->i_d.di_cowextsize = pip->i_d.di_cowextsize;
 904			}
 905			if (pip->i_d.di_flags2 & XFS_DIFLAG2_DAX)
 906				ip->i_d.di_flags2 |= XFS_DIFLAG2_DAX;
 907		}
 908		/* FALLTHROUGH */
 909	case S_IFLNK:
 910		ip->i_df.if_format = XFS_DINODE_FMT_EXTENTS;
 911		ip->i_df.if_flags = XFS_IFEXTENTS;
 912		ip->i_df.if_bytes = 0;
 913		ip->i_df.if_u1.if_root = NULL;
 914		break;
 915	default:
 916		ASSERT(0);
 917	}
 
 
 
 
 
 918
 919	/*
 920	 * Log the new values stuffed into the inode.
 921	 */
 922	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
 923	xfs_trans_log_inode(tp, ip, flags);
 924
 925	/* now that we have an i_mode we can setup the inode structure */
 926	xfs_setup_inode(ip);
 927
 928	*ipp = ip;
 929	return 0;
 930}
 931
 932/*
 933 * Allocates a new inode from disk and return a pointer to the
 934 * incore copy. This routine will internally commit the current
 935 * transaction and allocate a new one if the Space Manager needed
 936 * to do an allocation to replenish the inode free-list.
 937 *
 938 * This routine is designed to be called from xfs_create and
 939 * xfs_create_dir.
 940 *
 941 */
 942int
 943xfs_dir_ialloc(
 944	xfs_trans_t	**tpp,		/* input: current transaction;
 945					   output: may be a new transaction. */
 946	xfs_inode_t	*dp,		/* directory within whose allocate
 947					   the inode. */
 948	umode_t		mode,
 949	xfs_nlink_t	nlink,
 950	dev_t		rdev,
 951	prid_t		prid,		/* project id */
 952	xfs_inode_t	**ipp)		/* pointer to inode; it will be
 953					   locked. */
 954{
 955	xfs_trans_t	*tp;
 956	xfs_inode_t	*ip;
 957	xfs_buf_t	*ialloc_context = NULL;
 958	int		code;
 959	void		*dqinfo;
 960	uint		tflags;
 961
 962	tp = *tpp;
 963	ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
 964
 965	/*
 966	 * xfs_ialloc will return a pointer to an incore inode if
 967	 * the Space Manager has an available inode on the free
 968	 * list. Otherwise, it will do an allocation and replenish
 969	 * the freelist.  Since we can only do one allocation per
 970	 * transaction without deadlocks, we will need to commit the
 971	 * current transaction and start a new one.  We will then
 972	 * need to call xfs_ialloc again to get the inode.
 973	 *
 974	 * If xfs_ialloc did an allocation to replenish the freelist,
 975	 * it returns the bp containing the head of the freelist as
 976	 * ialloc_context. We will hold a lock on it across the
 977	 * transaction commit so that no other process can steal
 978	 * the inode(s) that we've just allocated.
 979	 */
 980	code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid, &ialloc_context,
 981			&ip);
 982
 983	/*
 984	 * Return an error if we were unable to allocate a new inode.
 985	 * This should only happen if we run out of space on disk or
 986	 * encounter a disk error.
 987	 */
 988	if (code) {
 989		*ipp = NULL;
 990		return code;
 991	}
 992	if (!ialloc_context && !ip) {
 993		*ipp = NULL;
 994		return -ENOSPC;
 995	}
 996
 997	/*
 998	 * If the AGI buffer is non-NULL, then we were unable to get an
 999	 * inode in one operation.  We need to commit the current
1000	 * transaction and call xfs_ialloc() again.  It is guaranteed
1001	 * to succeed the second time.
1002	 */
1003	if (ialloc_context) {
1004		/*
1005		 * Normally, xfs_trans_commit releases all the locks.
1006		 * We call bhold to hang on to the ialloc_context across
1007		 * the commit.  Holding this buffer prevents any other
1008		 * processes from doing any allocations in this
1009		 * allocation group.
1010		 */
1011		xfs_trans_bhold(tp, ialloc_context);
1012
1013		/*
1014		 * We want the quota changes to be associated with the next
1015		 * transaction, NOT this one. So, detach the dqinfo from this
1016		 * and attach it to the next transaction.
1017		 */
1018		dqinfo = NULL;
1019		tflags = 0;
1020		if (tp->t_dqinfo) {
1021			dqinfo = (void *)tp->t_dqinfo;
1022			tp->t_dqinfo = NULL;
1023			tflags = tp->t_flags & XFS_TRANS_DQ_DIRTY;
1024			tp->t_flags &= ~(XFS_TRANS_DQ_DIRTY);
1025		}
1026
1027		code = xfs_trans_roll(&tp);
1028
1029		/*
1030		 * Re-attach the quota info that we detached from prev trx.
1031		 */
1032		if (dqinfo) {
1033			tp->t_dqinfo = dqinfo;
1034			tp->t_flags |= tflags;
1035		}
1036
1037		if (code) {
1038			xfs_buf_relse(ialloc_context);
1039			*tpp = tp;
1040			*ipp = NULL;
1041			return code;
1042		}
1043		xfs_trans_bjoin(tp, ialloc_context);
1044
1045		/*
1046		 * Call ialloc again. Since we've locked out all
1047		 * other allocations in this allocation group,
1048		 * this call should always succeed.
1049		 */
1050		code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid,
1051				  &ialloc_context, &ip);
1052
1053		/*
1054		 * If we get an error at this point, return to the caller
1055		 * so that the current transaction can be aborted.
1056		 */
1057		if (code) {
1058			*tpp = tp;
1059			*ipp = NULL;
1060			return code;
1061		}
1062		ASSERT(!ialloc_context && ip);
1063
1064	}
1065
1066	*ipp = ip;
1067	*tpp = tp;
1068
1069	return 0;
1070}
1071
1072/*
1073 * Decrement the link count on an inode & log the change.  If this causes the
1074 * link count to go to zero, move the inode to AGI unlinked list so that it can
1075 * be freed when the last active reference goes away via xfs_inactive().
1076 */
1077static int			/* error */
1078xfs_droplink(
1079	xfs_trans_t *tp,
1080	xfs_inode_t *ip)
1081{
1082	xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1083
1084	drop_nlink(VFS_I(ip));
1085	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1086
1087	if (VFS_I(ip)->i_nlink)
1088		return 0;
1089
1090	return xfs_iunlink(tp, ip);
1091}
1092
1093/*
1094 * Increment the link count on an inode & log the change.
1095 */
1096static void
1097xfs_bumplink(
1098	xfs_trans_t *tp,
1099	xfs_inode_t *ip)
 
1100{
1101	xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
 
 
 
1102
1103	inc_nlink(VFS_I(ip));
1104	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1105}
1106
1107int
1108xfs_create(
1109	xfs_inode_t		*dp,
1110	struct xfs_name		*name,
1111	umode_t			mode,
1112	dev_t			rdev,
1113	xfs_inode_t		**ipp)
1114{
1115	int			is_dir = S_ISDIR(mode);
1116	struct xfs_mount	*mp = dp->i_mount;
1117	struct xfs_inode	*ip = NULL;
1118	struct xfs_trans	*tp = NULL;
1119	int			error;
1120	bool                    unlock_dp_on_error = false;
1121	prid_t			prid;
1122	struct xfs_dquot	*udqp = NULL;
1123	struct xfs_dquot	*gdqp = NULL;
1124	struct xfs_dquot	*pdqp = NULL;
1125	struct xfs_trans_res	*tres;
1126	uint			resblks;
1127
1128	trace_xfs_create(dp, name);
1129
1130	if (XFS_FORCED_SHUTDOWN(mp))
1131		return -EIO;
1132
1133	prid = xfs_get_initial_prid(dp);
1134
 
 
1135	/*
1136	 * Make sure that we have allocated dquot(s) on disk.
 
1137	 */
1138	error = xfs_qm_vop_dqalloc(dp, current_fsuid(), current_fsgid(), prid,
1139					XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1140					&udqp, &gdqp, &pdqp);
1141	if (error)
1142		return error;
1143
1144	if (is_dir) {
1145		resblks = XFS_MKDIR_SPACE_RES(mp, name->len);
1146		tres = &M_RES(mp)->tr_mkdir;
1147	} else {
1148		resblks = XFS_CREATE_SPACE_RES(mp, name->len);
1149		tres = &M_RES(mp)->tr_create;
1150	}
1151
1152	/*
1153	 * Initially assume that the file does not exist and
1154	 * reserve the resources for that case.  If that is not
1155	 * the case we'll drop the one we have and get a more
1156	 * appropriate transaction later.
1157	 */
1158	error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
1159	if (error == -ENOSPC) {
1160		/* flush outstanding delalloc blocks and retry */
1161		xfs_flush_inodes(mp);
1162		error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
1163	}
1164	if (error)
1165		goto out_release_inode;
1166
1167	xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT);
1168	unlock_dp_on_error = true;
1169
1170	/*
1171	 * Reserve disk quota and the inode.
1172	 */
1173	error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1174						pdqp, resblks, 1, 0);
1175	if (error)
1176		goto out_trans_cancel;
1177
1178	/*
1179	 * A newly created regular or special file just has one directory
1180	 * entry pointing to them, but a directory also the "." entry
1181	 * pointing to itself.
1182	 */
1183	error = xfs_dir_ialloc(&tp, dp, mode, is_dir ? 2 : 1, rdev, prid, &ip);
1184	if (error)
1185		goto out_trans_cancel;
1186
1187	/*
1188	 * Now we join the directory inode to the transaction.  We do not do it
1189	 * earlier because xfs_dir_ialloc might commit the previous transaction
1190	 * (and release all the locks).  An error from here on will result in
1191	 * the transaction cancel unlocking dp so don't do it explicitly in the
1192	 * error path.
1193	 */
1194	xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
1195	unlock_dp_on_error = false;
1196
1197	error = xfs_dir_createname(tp, dp, name, ip->i_ino,
1198					resblks - XFS_IALLOC_SPACE_RES(mp));
1199	if (error) {
1200		ASSERT(error != -ENOSPC);
1201		goto out_trans_cancel;
1202	}
1203	xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1204	xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
1205
1206	if (is_dir) {
1207		error = xfs_dir_init(tp, ip, dp);
1208		if (error)
1209			goto out_trans_cancel;
1210
1211		xfs_bumplink(tp, dp);
1212	}
1213
1214	/*
1215	 * If this is a synchronous mount, make sure that the
1216	 * create transaction goes to disk before returning to
1217	 * the user.
1218	 */
1219	if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
1220		xfs_trans_set_sync(tp);
1221
1222	/*
1223	 * Attach the dquot(s) to the inodes and modify them incore.
1224	 * These ids of the inode couldn't have changed since the new
1225	 * inode has been locked ever since it was created.
1226	 */
1227	xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1228
1229	error = xfs_trans_commit(tp);
1230	if (error)
1231		goto out_release_inode;
1232
1233	xfs_qm_dqrele(udqp);
1234	xfs_qm_dqrele(gdqp);
1235	xfs_qm_dqrele(pdqp);
1236
1237	*ipp = ip;
1238	return 0;
1239
1240 out_trans_cancel:
1241	xfs_trans_cancel(tp);
1242 out_release_inode:
1243	/*
1244	 * Wait until after the current transaction is aborted to finish the
1245	 * setup of the inode and release the inode.  This prevents recursive
1246	 * transactions and deadlocks from xfs_inactive.
1247	 */
1248	if (ip) {
1249		xfs_finish_inode_setup(ip);
1250		xfs_irele(ip);
1251	}
1252
1253	xfs_qm_dqrele(udqp);
1254	xfs_qm_dqrele(gdqp);
1255	xfs_qm_dqrele(pdqp);
1256
1257	if (unlock_dp_on_error)
1258		xfs_iunlock(dp, XFS_ILOCK_EXCL);
1259	return error;
1260}
1261
1262int
1263xfs_create_tmpfile(
1264	struct xfs_inode	*dp,
1265	umode_t			mode,
1266	struct xfs_inode	**ipp)
1267{
1268	struct xfs_mount	*mp = dp->i_mount;
1269	struct xfs_inode	*ip = NULL;
1270	struct xfs_trans	*tp = NULL;
1271	int			error;
1272	prid_t                  prid;
1273	struct xfs_dquot	*udqp = NULL;
1274	struct xfs_dquot	*gdqp = NULL;
1275	struct xfs_dquot	*pdqp = NULL;
1276	struct xfs_trans_res	*tres;
1277	uint			resblks;
1278
1279	if (XFS_FORCED_SHUTDOWN(mp))
1280		return -EIO;
1281
1282	prid = xfs_get_initial_prid(dp);
1283
1284	/*
1285	 * Make sure that we have allocated dquot(s) on disk.
1286	 */
1287	error = xfs_qm_vop_dqalloc(dp, current_fsuid(), current_fsgid(), prid,
1288				XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1289				&udqp, &gdqp, &pdqp);
1290	if (error)
1291		return error;
1292
1293	resblks = XFS_IALLOC_SPACE_RES(mp);
1294	tres = &M_RES(mp)->tr_create_tmpfile;
1295
1296	error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
1297	if (error)
1298		goto out_release_inode;
1299
1300	error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1301						pdqp, resblks, 1, 0);
1302	if (error)
1303		goto out_trans_cancel;
1304
1305	error = xfs_dir_ialloc(&tp, dp, mode, 0, 0, prid, &ip);
1306	if (error)
1307		goto out_trans_cancel;
1308
1309	if (mp->m_flags & XFS_MOUNT_WSYNC)
1310		xfs_trans_set_sync(tp);
1311
1312	/*
1313	 * Attach the dquot(s) to the inodes and modify them incore.
1314	 * These ids of the inode couldn't have changed since the new
1315	 * inode has been locked ever since it was created.
1316	 */
1317	xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1318
1319	error = xfs_iunlink(tp, ip);
1320	if (error)
1321		goto out_trans_cancel;
1322
1323	error = xfs_trans_commit(tp);
1324	if (error)
1325		goto out_release_inode;
1326
1327	xfs_qm_dqrele(udqp);
1328	xfs_qm_dqrele(gdqp);
1329	xfs_qm_dqrele(pdqp);
1330
1331	*ipp = ip;
1332	return 0;
1333
1334 out_trans_cancel:
1335	xfs_trans_cancel(tp);
1336 out_release_inode:
1337	/*
1338	 * Wait until after the current transaction is aborted to finish the
1339	 * setup of the inode and release the inode.  This prevents recursive
1340	 * transactions and deadlocks from xfs_inactive.
1341	 */
1342	if (ip) {
1343		xfs_finish_inode_setup(ip);
1344		xfs_irele(ip);
1345	}
1346
1347	xfs_qm_dqrele(udqp);
1348	xfs_qm_dqrele(gdqp);
1349	xfs_qm_dqrele(pdqp);
1350
1351	return error;
1352}
1353
1354int
1355xfs_link(
1356	xfs_inode_t		*tdp,
1357	xfs_inode_t		*sip,
1358	struct xfs_name		*target_name)
1359{
1360	xfs_mount_t		*mp = tdp->i_mount;
1361	xfs_trans_t		*tp;
1362	int			error;
1363	int			resblks;
1364
1365	trace_xfs_link(tdp, target_name);
1366
1367	ASSERT(!S_ISDIR(VFS_I(sip)->i_mode));
1368
1369	if (XFS_FORCED_SHUTDOWN(mp))
1370		return -EIO;
1371
1372	error = xfs_qm_dqattach(sip);
1373	if (error)
1374		goto std_return;
1375
1376	error = xfs_qm_dqattach(tdp);
1377	if (error)
1378		goto std_return;
1379
1380	resblks = XFS_LINK_SPACE_RES(mp, target_name->len);
1381	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, resblks, 0, 0, &tp);
1382	if (error == -ENOSPC) {
1383		resblks = 0;
1384		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, 0, 0, 0, &tp);
1385	}
1386	if (error)
1387		goto std_return;
1388
1389	xfs_lock_two_inodes(sip, XFS_ILOCK_EXCL, tdp, XFS_ILOCK_EXCL);
1390
1391	xfs_trans_ijoin(tp, sip, XFS_ILOCK_EXCL);
1392	xfs_trans_ijoin(tp, tdp, XFS_ILOCK_EXCL);
1393
1394	/*
1395	 * If we are using project inheritance, we only allow hard link
1396	 * creation in our tree when the project IDs are the same; else
1397	 * the tree quota mechanism could be circumvented.
1398	 */
1399	if (unlikely((tdp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
1400		     tdp->i_d.di_projid != sip->i_d.di_projid)) {
1401		error = -EXDEV;
1402		goto error_return;
1403	}
1404
1405	if (!resblks) {
1406		error = xfs_dir_canenter(tp, tdp, target_name);
1407		if (error)
1408			goto error_return;
1409	}
1410
1411	/*
1412	 * Handle initial link state of O_TMPFILE inode
1413	 */
1414	if (VFS_I(sip)->i_nlink == 0) {
1415		error = xfs_iunlink_remove(tp, sip);
1416		if (error)
1417			goto error_return;
1418	}
1419
1420	error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino,
1421				   resblks);
1422	if (error)
1423		goto error_return;
1424	xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1425	xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE);
1426
1427	xfs_bumplink(tp, sip);
1428
1429	/*
1430	 * If this is a synchronous mount, make sure that the
1431	 * link transaction goes to disk before returning to
1432	 * the user.
1433	 */
1434	if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
1435		xfs_trans_set_sync(tp);
1436
1437	return xfs_trans_commit(tp);
1438
1439 error_return:
1440	xfs_trans_cancel(tp);
1441 std_return:
1442	return error;
1443}
1444
1445/* Clear the reflink flag and the cowblocks tag if possible. */
1446static void
1447xfs_itruncate_clear_reflink_flags(
1448	struct xfs_inode	*ip)
1449{
1450	struct xfs_ifork	*dfork;
1451	struct xfs_ifork	*cfork;
1452
1453	if (!xfs_is_reflink_inode(ip))
1454		return;
1455	dfork = XFS_IFORK_PTR(ip, XFS_DATA_FORK);
1456	cfork = XFS_IFORK_PTR(ip, XFS_COW_FORK);
1457	if (dfork->if_bytes == 0 && cfork->if_bytes == 0)
1458		ip->i_d.di_flags2 &= ~XFS_DIFLAG2_REFLINK;
1459	if (cfork->if_bytes == 0)
1460		xfs_inode_clear_cowblocks_tag(ip);
1461}
1462
1463/*
1464 * Free up the underlying blocks past new_size.  The new size must be smaller
1465 * than the current size.  This routine can be used both for the attribute and
1466 * data fork, and does not modify the inode size, which is left to the caller.
1467 *
1468 * The transaction passed to this routine must have made a permanent log
1469 * reservation of at least XFS_ITRUNCATE_LOG_RES.  This routine may commit the
1470 * given transaction and start new ones, so make sure everything involved in
1471 * the transaction is tidy before calling here.  Some transaction will be
1472 * returned to the caller to be committed.  The incoming transaction must
1473 * already include the inode, and both inode locks must be held exclusively.
1474 * The inode must also be "held" within the transaction.  On return the inode
1475 * will be "held" within the returned transaction.  This routine does NOT
1476 * require any disk space to be reserved for it within the transaction.
1477 *
1478 * If we get an error, we must return with the inode locked and linked into the
1479 * current transaction. This keeps things simple for the higher level code,
1480 * because it always knows that the inode is locked and held in the transaction
1481 * that returns to it whether errors occur or not.  We don't mark the inode
1482 * dirty on error so that transactions can be easily aborted if possible.
1483 */
1484int
1485xfs_itruncate_extents_flags(
1486	struct xfs_trans	**tpp,
1487	struct xfs_inode	*ip,
1488	int			whichfork,
1489	xfs_fsize_t		new_size,
1490	int			flags)
1491{
1492	struct xfs_mount	*mp = ip->i_mount;
1493	struct xfs_trans	*tp = *tpp;
 
 
 
1494	xfs_fileoff_t		first_unmap_block;
 
1495	xfs_filblks_t		unmap_len;
 
1496	int			error = 0;
 
1497
1498	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1499	ASSERT(!atomic_read(&VFS_I(ip)->i_count) ||
1500	       xfs_isilocked(ip, XFS_IOLOCK_EXCL));
1501	ASSERT(new_size <= XFS_ISIZE(ip));
1502	ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1503	ASSERT(ip->i_itemp != NULL);
1504	ASSERT(ip->i_itemp->ili_lock_flags == 0);
1505	ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
1506
1507	trace_xfs_itruncate_extents_start(ip, new_size);
1508
1509	flags |= xfs_bmapi_aflag(whichfork);
1510
1511	/*
1512	 * Since it is possible for space to become allocated beyond
1513	 * the end of the file (in a crash where the space is allocated
1514	 * but the inode size is not yet updated), simply remove any
1515	 * blocks which show up between the new EOF and the maximum
1516	 * possible file size.
1517	 *
1518	 * We have to free all the blocks to the bmbt maximum offset, even if
1519	 * the page cache can't scale that far.
1520	 */
1521	first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1522	if (first_unmap_block >= XFS_MAX_FILEOFF) {
1523		WARN_ON_ONCE(first_unmap_block > XFS_MAX_FILEOFF);
1524		return 0;
1525	}
1526
1527	unmap_len = XFS_MAX_FILEOFF - first_unmap_block + 1;
1528	while (unmap_len > 0) {
1529		ASSERT(tp->t_firstblock == NULLFSBLOCK);
1530		error = __xfs_bunmapi(tp, ip, first_unmap_block, &unmap_len,
1531				flags, XFS_ITRUNC_MAX_EXTENTS);
 
 
 
 
 
1532		if (error)
1533			goto out;
1534
1535		/*
1536		 * Duplicate the transaction that has the permanent
1537		 * reservation and commit the old transaction.
1538		 */
1539		error = xfs_defer_finish(&tp);
 
 
1540		if (error)
1541			goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1542
1543		error = xfs_trans_roll_inode(&tp, ip);
1544		if (error)
1545			goto out;
1546	}
1547
1548	if (whichfork == XFS_DATA_FORK) {
1549		/* Remove all pending CoW reservations. */
1550		error = xfs_reflink_cancel_cow_blocks(ip, &tp,
1551				first_unmap_block, XFS_MAX_FILEOFF, true);
 
 
 
 
 
1552		if (error)
1553			goto out;
1554
1555		xfs_itruncate_clear_reflink_flags(ip);
1556	}
1557
1558	/*
1559	 * Always re-log the inode so that our permanent transaction can keep
1560	 * on rolling it forward in the log.
1561	 */
1562	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1563
1564	trace_xfs_itruncate_extents_end(ip, new_size);
1565
1566out:
1567	*tpp = tp;
1568	return error;
1569}
1570
1571int
1572xfs_release(
1573	xfs_inode_t	*ip)
1574{
1575	xfs_mount_t	*mp = ip->i_mount;
1576	int		error;
1577
1578	if (!S_ISREG(VFS_I(ip)->i_mode) || (VFS_I(ip)->i_mode == 0))
1579		return 0;
1580
1581	/* If this is a read-only mount, don't do this (would generate I/O) */
1582	if (mp->m_flags & XFS_MOUNT_RDONLY)
1583		return 0;
1584
1585	if (!XFS_FORCED_SHUTDOWN(mp)) {
1586		int truncated;
1587
1588		/*
1589		 * If we previously truncated this file and removed old data
1590		 * in the process, we want to initiate "early" writeout on
1591		 * the last close.  This is an attempt to combat the notorious
1592		 * NULL files problem which is particularly noticeable from a
1593		 * truncate down, buffered (re-)write (delalloc), followed by
1594		 * a crash.  What we are effectively doing here is
1595		 * significantly reducing the time window where we'd otherwise
1596		 * be exposed to that problem.
1597		 */
1598		truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED);
1599		if (truncated) {
1600			xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE);
1601			if (ip->i_delayed_blks > 0) {
1602				error = filemap_flush(VFS_I(ip)->i_mapping);
1603				if (error)
1604					return error;
1605			}
1606		}
1607	}
1608
1609	if (VFS_I(ip)->i_nlink == 0)
1610		return 0;
1611
1612	if (xfs_can_free_eofblocks(ip, false)) {
1613
1614		/*
1615		 * Check if the inode is being opened, written and closed
1616		 * frequently and we have delayed allocation blocks outstanding
1617		 * (e.g. streaming writes from the NFS server), truncating the
1618		 * blocks past EOF will cause fragmentation to occur.
1619		 *
1620		 * In this case don't do the truncation, but we have to be
1621		 * careful how we detect this case. Blocks beyond EOF show up as
1622		 * i_delayed_blks even when the inode is clean, so we need to
1623		 * truncate them away first before checking for a dirty release.
1624		 * Hence on the first dirty close we will still remove the
1625		 * speculative allocation, but after that we will leave it in
1626		 * place.
1627		 */
1628		if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE))
1629			return 0;
1630		/*
1631		 * If we can't get the iolock just skip truncating the blocks
1632		 * past EOF because we could deadlock with the mmap_lock
1633		 * otherwise. We'll get another chance to drop them once the
1634		 * last reference to the inode is dropped, so we'll never leak
1635		 * blocks permanently.
1636		 */
1637		if (xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
1638			error = xfs_free_eofblocks(ip);
1639			xfs_iunlock(ip, XFS_IOLOCK_EXCL);
1640			if (error)
1641				return error;
1642		}
1643
1644		/* delalloc blocks after truncation means it really is dirty */
1645		if (ip->i_delayed_blks)
1646			xfs_iflags_set(ip, XFS_IDIRTY_RELEASE);
1647	}
1648	return 0;
1649}
1650
1651/*
1652 * xfs_inactive_truncate
1653 *
1654 * Called to perform a truncate when an inode becomes unlinked.
1655 */
1656STATIC int
1657xfs_inactive_truncate(
1658	struct xfs_inode *ip)
1659{
1660	struct xfs_mount	*mp = ip->i_mount;
1661	struct xfs_trans	*tp;
1662	int			error;
1663
1664	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp);
1665	if (error) {
1666		ASSERT(XFS_FORCED_SHUTDOWN(mp));
1667		return error;
1668	}
1669	xfs_ilock(ip, XFS_ILOCK_EXCL);
1670	xfs_trans_ijoin(tp, ip, 0);
1671
1672	/*
1673	 * Log the inode size first to prevent stale data exposure in the event
1674	 * of a system crash before the truncate completes. See the related
1675	 * comment in xfs_vn_setattr_size() for details.
1676	 */
1677	ip->i_d.di_size = 0;
1678	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1679
1680	error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0);
1681	if (error)
1682		goto error_trans_cancel;
1683
1684	ASSERT(ip->i_df.if_nextents == 0);
1685
1686	error = xfs_trans_commit(tp);
1687	if (error)
1688		goto error_unlock;
1689
1690	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1691	return 0;
1692
1693error_trans_cancel:
1694	xfs_trans_cancel(tp);
1695error_unlock:
1696	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1697	return error;
1698}
1699
1700/*
1701 * xfs_inactive_ifree()
1702 *
1703 * Perform the inode free when an inode is unlinked.
1704 */
1705STATIC int
1706xfs_inactive_ifree(
1707	struct xfs_inode *ip)
1708{
1709	struct xfs_mount	*mp = ip->i_mount;
1710	struct xfs_trans	*tp;
1711	int			error;
1712
1713	/*
1714	 * We try to use a per-AG reservation for any block needed by the finobt
1715	 * tree, but as the finobt feature predates the per-AG reservation
1716	 * support a degraded file system might not have enough space for the
1717	 * reservation at mount time.  In that case try to dip into the reserved
1718	 * pool and pray.
1719	 *
1720	 * Send a warning if the reservation does happen to fail, as the inode
1721	 * now remains allocated and sits on the unlinked list until the fs is
1722	 * repaired.
1723	 */
1724	if (unlikely(mp->m_finobt_nores)) {
1725		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree,
1726				XFS_IFREE_SPACE_RES(mp), 0, XFS_TRANS_RESERVE,
1727				&tp);
1728	} else {
1729		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 0, 0, 0, &tp);
1730	}
1731	if (error) {
1732		if (error == -ENOSPC) {
1733			xfs_warn_ratelimited(mp,
1734			"Failed to remove inode(s) from unlinked list. "
1735			"Please free space, unmount and run xfs_repair.");
1736		} else {
1737			ASSERT(XFS_FORCED_SHUTDOWN(mp));
1738		}
1739		return error;
1740	}
1741
1742	/*
1743	 * We do not hold the inode locked across the entire rolling transaction
1744	 * here. We only need to hold it for the first transaction that
1745	 * xfs_ifree() builds, which may mark the inode XFS_ISTALE if the
1746	 * underlying cluster buffer is freed. Relogging an XFS_ISTALE inode
1747	 * here breaks the relationship between cluster buffer invalidation and
1748	 * stale inode invalidation on cluster buffer item journal commit
1749	 * completion, and can result in leaving dirty stale inodes hanging
1750	 * around in memory.
1751	 *
1752	 * We have no need for serialising this inode operation against other
1753	 * operations - we freed the inode and hence reallocation is required
1754	 * and that will serialise on reallocating the space the deferops need
1755	 * to free. Hence we can unlock the inode on the first commit of
1756	 * the transaction rather than roll it right through the deferops. This
1757	 * avoids relogging the XFS_ISTALE inode.
1758	 *
1759	 * We check that xfs_ifree() hasn't grown an internal transaction roll
1760	 * by asserting that the inode is still locked when it returns.
1761	 */
1762	xfs_ilock(ip, XFS_ILOCK_EXCL);
1763	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
1764
1765	error = xfs_ifree(tp, ip);
1766	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1767	if (error) {
1768		/*
1769		 * If we fail to free the inode, shut down.  The cancel
1770		 * might do that, we need to make sure.  Otherwise the
1771		 * inode might be lost for a long time or forever.
 
 
 
1772		 */
1773		if (!XFS_FORCED_SHUTDOWN(mp)) {
1774			xfs_notice(mp, "%s: xfs_ifree returned error %d",
1775				__func__, error);
1776			xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1777		}
1778		xfs_trans_cancel(tp);
1779		return error;
1780	}
1781
1782	/*
1783	 * Credit the quota account(s). The inode is gone.
1784	 */
1785	xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1);
1786
1787	/*
1788	 * Just ignore errors at this point.  There is nothing we can do except
1789	 * to try to keep going. Make sure it's not a silent error.
1790	 */
1791	error = xfs_trans_commit(tp);
1792	if (error)
1793		xfs_notice(mp, "%s: xfs_trans_commit returned error %d",
1794			__func__, error);
1795
1796	return 0;
1797}
1798
1799/*
1800 * xfs_inactive
1801 *
1802 * This is called when the vnode reference count for the vnode
1803 * goes to zero.  If the file has been unlinked, then it must
1804 * now be truncated.  Also, we clear all of the read-ahead state
1805 * kept for the inode here since the file is now closed.
1806 */
1807void
1808xfs_inactive(
1809	xfs_inode_t	*ip)
1810{
1811	struct xfs_mount	*mp;
1812	int			error;
1813	int			truncate = 0;
1814
1815	/*
1816	 * If the inode is already free, then there can be nothing
1817	 * to clean up here.
 
 
 
1818	 */
1819	if (VFS_I(ip)->i_mode == 0) {
1820		ASSERT(ip->i_df.if_broot_bytes == 0);
1821		return;
 
1822	}
1823
1824	mp = ip->i_mount;
1825	ASSERT(!xfs_iflags_test(ip, XFS_IRECOVERY));
1826
1827	/* If this is a read-only mount, don't do this (would generate I/O) */
1828	if (mp->m_flags & XFS_MOUNT_RDONLY)
1829		return;
1830
1831	/* Try to clean out the cow blocks if there are any. */
1832	if (xfs_inode_has_cow_data(ip))
1833		xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, true);
1834
1835	if (VFS_I(ip)->i_nlink != 0) {
1836		/*
1837		 * force is true because we are evicting an inode from the
1838		 * cache. Post-eof blocks must be freed, lest we end up with
1839		 * broken free space accounting.
1840		 *
1841		 * Note: don't bother with iolock here since lockdep complains
1842		 * about acquiring it in reclaim context. We have the only
1843		 * reference to the inode at this point anyways.
1844		 */
1845		if (xfs_can_free_eofblocks(ip, true))
1846			xfs_free_eofblocks(ip);
1847
1848		return;
1849	}
1850
1851	if (S_ISREG(VFS_I(ip)->i_mode) &&
1852	    (ip->i_d.di_size != 0 || XFS_ISIZE(ip) != 0 ||
1853	     ip->i_df.if_nextents > 0 || ip->i_delayed_blks > 0))
1854		truncate = 1;
1855
1856	error = xfs_qm_dqattach(ip);
1857	if (error)
1858		return;
1859
1860	if (S_ISLNK(VFS_I(ip)->i_mode))
1861		error = xfs_inactive_symlink(ip);
1862	else if (truncate)
1863		error = xfs_inactive_truncate(ip);
1864	if (error)
1865		return;
1866
1867	/*
1868	 * If there are attributes associated with the file then blow them away
1869	 * now.  The code calls a routine that recursively deconstructs the
1870	 * attribute fork. If also blows away the in-core attribute fork.
1871	 */
1872	if (XFS_IFORK_Q(ip)) {
1873		error = xfs_attr_inactive(ip);
1874		if (error)
1875			return;
1876	}
1877
1878	ASSERT(!ip->i_afp);
1879	ASSERT(ip->i_d.di_forkoff == 0);
1880
1881	/*
1882	 * Free the inode.
1883	 */
1884	error = xfs_inactive_ifree(ip);
1885	if (error)
1886		return;
1887
1888	/*
1889	 * Release the dquots held by inode, if any.
1890	 */
1891	xfs_qm_dqdetach(ip);
1892}
1893
1894/*
1895 * In-Core Unlinked List Lookups
1896 * =============================
1897 *
1898 * Every inode is supposed to be reachable from some other piece of metadata
1899 * with the exception of the root directory.  Inodes with a connection to a
1900 * file descriptor but not linked from anywhere in the on-disk directory tree
1901 * are collectively known as unlinked inodes, though the filesystem itself
1902 * maintains links to these inodes so that on-disk metadata are consistent.
1903 *
1904 * XFS implements a per-AG on-disk hash table of unlinked inodes.  The AGI
1905 * header contains a number of buckets that point to an inode, and each inode
1906 * record has a pointer to the next inode in the hash chain.  This
1907 * singly-linked list causes scaling problems in the iunlink remove function
1908 * because we must walk that list to find the inode that points to the inode
1909 * being removed from the unlinked hash bucket list.
1910 *
1911 * What if we modelled the unlinked list as a collection of records capturing
1912 * "X.next_unlinked = Y" relations?  If we indexed those records on Y, we'd
1913 * have a fast way to look up unlinked list predecessors, which avoids the
1914 * slow list walk.  That's exactly what we do here (in-core) with a per-AG
1915 * rhashtable.
1916 *
1917 * Because this is a backref cache, we ignore operational failures since the
1918 * iunlink code can fall back to the slow bucket walk.  The only errors that
1919 * should bubble out are for obviously incorrect situations.
1920 *
1921 * All users of the backref cache MUST hold the AGI buffer lock to serialize
1922 * access or have otherwise provided for concurrency control.
1923 */
1924
1925/* Capture a "X.next_unlinked = Y" relationship. */
1926struct xfs_iunlink {
1927	struct rhash_head	iu_rhash_head;
1928	xfs_agino_t		iu_agino;		/* X */
1929	xfs_agino_t		iu_next_unlinked;	/* Y */
1930};
1931
1932/* Unlinked list predecessor lookup hashtable construction */
1933static int
1934xfs_iunlink_obj_cmpfn(
1935	struct rhashtable_compare_arg	*arg,
1936	const void			*obj)
1937{
1938	const xfs_agino_t		*key = arg->key;
1939	const struct xfs_iunlink	*iu = obj;
1940
1941	if (iu->iu_next_unlinked != *key)
1942		return 1;
1943	return 0;
1944}
1945
1946static const struct rhashtable_params xfs_iunlink_hash_params = {
1947	.min_size		= XFS_AGI_UNLINKED_BUCKETS,
1948	.key_len		= sizeof(xfs_agino_t),
1949	.key_offset		= offsetof(struct xfs_iunlink,
1950					   iu_next_unlinked),
1951	.head_offset		= offsetof(struct xfs_iunlink, iu_rhash_head),
1952	.automatic_shrinking	= true,
1953	.obj_cmpfn		= xfs_iunlink_obj_cmpfn,
1954};
1955
1956/*
1957 * Return X, where X.next_unlinked == @agino.  Returns NULLAGINO if no such
1958 * relation is found.
 
1959 */
1960static xfs_agino_t
1961xfs_iunlink_lookup_backref(
1962	struct xfs_perag	*pag,
1963	xfs_agino_t		agino)
1964{
1965	struct xfs_iunlink	*iu;
1966
1967	iu = rhashtable_lookup_fast(&pag->pagi_unlinked_hash, &agino,
1968			xfs_iunlink_hash_params);
1969	return iu ? iu->iu_agino : NULLAGINO;
1970}
1971
1972/*
1973 * Take ownership of an iunlink cache entry and insert it into the hash table.
1974 * If successful, the entry will be owned by the cache; if not, it is freed.
1975 * Either way, the caller does not own @iu after this call.
1976 */
1977static int
1978xfs_iunlink_insert_backref(
1979	struct xfs_perag	*pag,
1980	struct xfs_iunlink	*iu)
1981{
1982	int			error;
1983
1984	error = rhashtable_insert_fast(&pag->pagi_unlinked_hash,
1985			&iu->iu_rhash_head, xfs_iunlink_hash_params);
1986	/*
1987	 * Fail loudly if there already was an entry because that's a sign of
1988	 * corruption of in-memory data.  Also fail loudly if we see an error
1989	 * code we didn't anticipate from the rhashtable code.  Currently we
1990	 * only anticipate ENOMEM.
1991	 */
1992	if (error) {
1993		WARN(error != -ENOMEM, "iunlink cache insert error %d", error);
1994		kmem_free(iu);
1995	}
1996	/*
1997	 * Absorb any runtime errors that aren't a result of corruption because
1998	 * this is a cache and we can always fall back to bucket list scanning.
1999	 */
2000	if (error != 0 && error != -EEXIST)
2001		error = 0;
2002	return error;
2003}
2004
2005/* Remember that @prev_agino.next_unlinked = @this_agino. */
2006static int
2007xfs_iunlink_add_backref(
2008	struct xfs_perag	*pag,
2009	xfs_agino_t		prev_agino,
2010	xfs_agino_t		this_agino)
2011{
2012	struct xfs_iunlink	*iu;
2013
2014	if (XFS_TEST_ERROR(false, pag->pag_mount, XFS_ERRTAG_IUNLINK_FALLBACK))
2015		return 0;
2016
2017	iu = kmem_zalloc(sizeof(*iu), KM_NOFS);
2018	iu->iu_agino = prev_agino;
2019	iu->iu_next_unlinked = this_agino;
2020
2021	return xfs_iunlink_insert_backref(pag, iu);
2022}
2023
2024/*
2025 * Replace X.next_unlinked = @agino with X.next_unlinked = @next_unlinked.
2026 * If @next_unlinked is NULLAGINO, we drop the backref and exit.  If there
2027 * wasn't any such entry then we don't bother.
2028 */
2029static int
2030xfs_iunlink_change_backref(
2031	struct xfs_perag	*pag,
2032	xfs_agino_t		agino,
2033	xfs_agino_t		next_unlinked)
2034{
2035	struct xfs_iunlink	*iu;
2036	int			error;
2037
2038	/* Look up the old entry; if there wasn't one then exit. */
2039	iu = rhashtable_lookup_fast(&pag->pagi_unlinked_hash, &agino,
2040			xfs_iunlink_hash_params);
2041	if (!iu)
2042		return 0;
2043
2044	/*
2045	 * Remove the entry.  This shouldn't ever return an error, but if we
2046	 * couldn't remove the old entry we don't want to add it again to the
2047	 * hash table, and if the entry disappeared on us then someone's
2048	 * violated the locking rules and we need to fail loudly.  Either way
2049	 * we cannot remove the inode because internal state is or would have
2050	 * been corrupt.
2051	 */
2052	error = rhashtable_remove_fast(&pag->pagi_unlinked_hash,
2053			&iu->iu_rhash_head, xfs_iunlink_hash_params);
2054	if (error)
2055		return error;
2056
2057	/* If there is no new next entry just free our item and return. */
2058	if (next_unlinked == NULLAGINO) {
2059		kmem_free(iu);
2060		return 0;
2061	}
2062
2063	/* Update the entry and re-add it to the hash table. */
2064	iu->iu_next_unlinked = next_unlinked;
2065	return xfs_iunlink_insert_backref(pag, iu);
2066}
2067
2068/* Set up the in-core predecessor structures. */
2069int
2070xfs_iunlink_init(
2071	struct xfs_perag	*pag)
2072{
2073	return rhashtable_init(&pag->pagi_unlinked_hash,
2074			&xfs_iunlink_hash_params);
2075}
2076
2077/* Free the in-core predecessor structures. */
2078static void
2079xfs_iunlink_free_item(
2080	void			*ptr,
2081	void			*arg)
2082{
2083	struct xfs_iunlink	*iu = ptr;
2084	bool			*freed_anything = arg;
2085
2086	*freed_anything = true;
2087	kmem_free(iu);
2088}
2089
2090void
2091xfs_iunlink_destroy(
2092	struct xfs_perag	*pag)
2093{
2094	bool			freed_anything = false;
2095
2096	rhashtable_free_and_destroy(&pag->pagi_unlinked_hash,
2097			xfs_iunlink_free_item, &freed_anything);
2098
2099	ASSERT(freed_anything == false || XFS_FORCED_SHUTDOWN(pag->pag_mount));
2100}
2101
2102/*
2103 * Point the AGI unlinked bucket at an inode and log the results.  The caller
2104 * is responsible for validating the old value.
2105 */
2106STATIC int
2107xfs_iunlink_update_bucket(
2108	struct xfs_trans	*tp,
2109	xfs_agnumber_t		agno,
2110	struct xfs_buf		*agibp,
2111	unsigned int		bucket_index,
2112	xfs_agino_t		new_agino)
2113{
2114	struct xfs_agi		*agi = agibp->b_addr;
2115	xfs_agino_t		old_value;
2116	int			offset;
2117
2118	ASSERT(xfs_verify_agino_or_null(tp->t_mountp, agno, new_agino));
2119
2120	old_value = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2121	trace_xfs_iunlink_update_bucket(tp->t_mountp, agno, bucket_index,
2122			old_value, new_agino);
2123
2124	/*
2125	 * We should never find the head of the list already set to the value
2126	 * passed in because either we're adding or removing ourselves from the
2127	 * head of the list.
2128	 */
2129	if (old_value == new_agino) {
2130		xfs_buf_mark_corrupt(agibp);
2131		return -EFSCORRUPTED;
2132	}
 
2133
2134	agi->agi_unlinked[bucket_index] = cpu_to_be32(new_agino);
2135	offset = offsetof(struct xfs_agi, agi_unlinked) +
2136			(sizeof(xfs_agino_t) * bucket_index);
2137	xfs_trans_log_buf(tp, agibp, offset, offset + sizeof(xfs_agino_t) - 1);
2138	return 0;
2139}
2140
2141/* Set an on-disk inode's next_unlinked pointer. */
2142STATIC void
2143xfs_iunlink_update_dinode(
2144	struct xfs_trans	*tp,
2145	xfs_agnumber_t		agno,
2146	xfs_agino_t		agino,
2147	struct xfs_buf		*ibp,
2148	struct xfs_dinode	*dip,
2149	struct xfs_imap		*imap,
2150	xfs_agino_t		next_agino)
2151{
2152	struct xfs_mount	*mp = tp->t_mountp;
2153	int			offset;
2154
2155	ASSERT(xfs_verify_agino_or_null(mp, agno, next_agino));
2156
2157	trace_xfs_iunlink_update_dinode(mp, agno, agino,
2158			be32_to_cpu(dip->di_next_unlinked), next_agino);
2159
2160	dip->di_next_unlinked = cpu_to_be32(next_agino);
2161	offset = imap->im_boffset +
2162			offsetof(struct xfs_dinode, di_next_unlinked);
2163
2164	/* need to recalc the inode CRC if appropriate */
2165	xfs_dinode_calc_crc(mp, dip);
2166	xfs_trans_inode_buf(tp, ibp);
2167	xfs_trans_log_buf(tp, ibp, offset, offset + sizeof(xfs_agino_t) - 1);
2168}
2169
2170/* Set an in-core inode's unlinked pointer and return the old value. */
2171STATIC int
2172xfs_iunlink_update_inode(
2173	struct xfs_trans	*tp,
2174	struct xfs_inode	*ip,
2175	xfs_agnumber_t		agno,
2176	xfs_agino_t		next_agino,
2177	xfs_agino_t		*old_next_agino)
2178{
2179	struct xfs_mount	*mp = tp->t_mountp;
2180	struct xfs_dinode	*dip;
2181	struct xfs_buf		*ibp;
2182	xfs_agino_t		old_value;
2183	int			error;
2184
2185	ASSERT(xfs_verify_agino_or_null(mp, agno, next_agino));
2186
2187	error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp, 0);
2188	if (error)
2189		return error;
2190
2191	/* Make sure the old pointer isn't garbage. */
2192	old_value = be32_to_cpu(dip->di_next_unlinked);
2193	if (!xfs_verify_agino_or_null(mp, agno, old_value)) {
2194		xfs_inode_verifier_error(ip, -EFSCORRUPTED, __func__, dip,
2195				sizeof(*dip), __this_address);
2196		error = -EFSCORRUPTED;
2197		goto out;
2198	}
2199
2200	/*
2201	 * Since we're updating a linked list, we should never find that the
2202	 * current pointer is the same as the new value, unless we're
2203	 * terminating the list.
2204	 */
2205	*old_next_agino = old_value;
2206	if (old_value == next_agino) {
2207		if (next_agino != NULLAGINO) {
2208			xfs_inode_verifier_error(ip, -EFSCORRUPTED, __func__,
2209					dip, sizeof(*dip), __this_address);
2210			error = -EFSCORRUPTED;
2211		}
2212		goto out;
2213	}
2214
2215	/* Ok, update the new pointer. */
2216	xfs_iunlink_update_dinode(tp, agno, XFS_INO_TO_AGINO(mp, ip->i_ino),
2217			ibp, dip, &ip->i_imap, next_agino);
2218	return 0;
2219out:
2220	xfs_trans_brelse(tp, ibp);
2221	return error;
2222}
2223
2224/*
2225 * This is called when the inode's link count has gone to 0 or we are creating
2226 * a tmpfile via O_TMPFILE.  The inode @ip must have nlink == 0.
2227 *
2228 * We place the on-disk inode on a list in the AGI.  It will be pulled from this
2229 * list when the inode is freed.
2230 */
2231STATIC int
2232xfs_iunlink(
2233	struct xfs_trans	*tp,
2234	struct xfs_inode	*ip)
2235{
2236	struct xfs_mount	*mp = tp->t_mountp;
2237	struct xfs_agi		*agi;
2238	struct xfs_buf		*agibp;
2239	xfs_agino_t		next_agino;
2240	xfs_agnumber_t		agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
2241	xfs_agino_t		agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2242	short			bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2243	int			error;
 
 
 
 
 
 
2244
2245	ASSERT(VFS_I(ip)->i_nlink == 0);
2246	ASSERT(VFS_I(ip)->i_mode != 0);
2247	trace_xfs_iunlink(ip);
2248
2249	/* Get the agi buffer first.  It ensures lock ordering on the list. */
 
 
 
2250	error = xfs_read_agi(mp, tp, agno, &agibp);
2251	if (error)
2252		return error;
2253	agi = agibp->b_addr;
 
2254
2255	/*
2256	 * Get the index into the agi hash table for the list this inode will
2257	 * go on.  Make sure the pointer isn't garbage and that this inode
2258	 * isn't already on the list.
2259	 */
2260	next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2261	if (next_agino == agino ||
2262	    !xfs_verify_agino_or_null(mp, agno, next_agino)) {
2263		xfs_buf_mark_corrupt(agibp);
2264		return -EFSCORRUPTED;
2265	}
2266
2267	if (next_agino != NULLAGINO) {
2268		xfs_agino_t		old_agino;
2269
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2270		/*
2271		 * There is already another inode in the bucket, so point this
2272		 * inode to the current head of the list.
2273		 */
2274		error = xfs_iunlink_update_inode(tp, ip, agno, next_agino,
2275				&old_agino);
2276		if (error)
 
2277			return error;
2278		ASSERT(old_agino == NULLAGINO);
2279
 
 
 
 
 
 
 
 
 
 
 
 
 
2280		/*
2281		 * agino has been unlinked, add a backref from the next inode
2282		 * back to agino.
2283		 */
2284		error = xfs_iunlink_add_backref(agibp->b_pag, agino, next_agino);
2285		if (error)
2286			return error;
 
 
 
 
2287	}
2288
2289	/* Point the head of the list to point to this inode. */
2290	return xfs_iunlink_update_bucket(tp, agno, agibp, bucket_index, agino);
2291}
2292
2293/* Return the imap, dinode pointer, and buffer for an inode. */
2294STATIC int
2295xfs_iunlink_map_ino(
2296	struct xfs_trans	*tp,
2297	xfs_agnumber_t		agno,
2298	xfs_agino_t		agino,
2299	struct xfs_imap		*imap,
2300	struct xfs_dinode	**dipp,
2301	struct xfs_buf		**bpp)
2302{
2303	struct xfs_mount	*mp = tp->t_mountp;
2304	int			error;
2305
2306	imap->im_blkno = 0;
2307	error = xfs_imap(mp, tp, XFS_AGINO_TO_INO(mp, agno, agino), imap, 0);
2308	if (error) {
2309		xfs_warn(mp, "%s: xfs_imap returned error %d.",
2310				__func__, error);
2311		return error;
2312	}
2313
2314	error = xfs_imap_to_bp(mp, tp, imap, dipp, bpp, 0);
2315	if (error) {
2316		xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.",
2317				__func__, error);
2318		return error;
2319	}
2320
2321	return 0;
2322}
2323
2324/*
2325 * Walk the unlinked chain from @head_agino until we find the inode that
2326 * points to @target_agino.  Return the inode number, map, dinode pointer,
2327 * and inode cluster buffer of that inode as @agino, @imap, @dipp, and @bpp.
2328 *
2329 * @tp, @pag, @head_agino, and @target_agino are input parameters.
2330 * @agino, @imap, @dipp, and @bpp are all output parameters.
2331 *
2332 * Do not call this function if @target_agino is the head of the list.
2333 */
2334STATIC int
2335xfs_iunlink_map_prev(
2336	struct xfs_trans	*tp,
2337	xfs_agnumber_t		agno,
2338	xfs_agino_t		head_agino,
2339	xfs_agino_t		target_agino,
2340	xfs_agino_t		*agino,
2341	struct xfs_imap		*imap,
2342	struct xfs_dinode	**dipp,
2343	struct xfs_buf		**bpp,
2344	struct xfs_perag	*pag)
2345{
2346	struct xfs_mount	*mp = tp->t_mountp;
2347	xfs_agino_t		next_agino;
2348	int			error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2349
2350	ASSERT(head_agino != target_agino);
2351	*bpp = NULL;
 
2352
2353	/* See if our backref cache can find it faster. */
2354	*agino = xfs_iunlink_lookup_backref(pag, target_agino);
2355	if (*agino != NULLAGINO) {
2356		error = xfs_iunlink_map_ino(tp, agno, *agino, imap, dipp, bpp);
2357		if (error)
2358			return error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2359
2360		if (be32_to_cpu((*dipp)->di_next_unlinked) == target_agino)
2361			return 0;
2362
2363		/*
2364		 * If we get here the cache contents were corrupt, so drop the
2365		 * buffer and fall back to walking the bucket list.
 
 
 
 
 
 
2366		 */
2367		xfs_trans_brelse(tp, *bpp);
2368		*bpp = NULL;
2369		WARN_ON_ONCE(1);
2370	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2371
2372	trace_xfs_iunlink_map_prev_fallback(mp, agno);
 
 
 
 
 
 
 
 
 
 
 
 
 
2373
2374	/* Otherwise, walk the entire bucket until we find it. */
2375	next_agino = head_agino;
2376	while (next_agino != target_agino) {
2377		xfs_agino_t	unlinked_agino;
2378
2379		if (*bpp)
2380			xfs_trans_brelse(tp, *bpp);
 
 
 
 
 
 
 
 
 
 
2381
2382		*agino = next_agino;
2383		error = xfs_iunlink_map_ino(tp, agno, next_agino, imap, dipp,
2384				bpp);
2385		if (error)
2386			return error;
 
 
 
2387
2388		unlinked_agino = be32_to_cpu((*dipp)->di_next_unlinked);
2389		/*
2390		 * Make sure this pointer is valid and isn't an obvious
2391		 * infinite loop.
2392		 */
2393		if (!xfs_verify_agino(mp, agno, unlinked_agino) ||
2394		    next_agino == unlinked_agino) {
2395			XFS_CORRUPTION_ERROR(__func__,
2396					XFS_ERRLEVEL_LOW, mp,
2397					*dipp, sizeof(**dipp));
2398			error = -EFSCORRUPTED;
2399			return error;
2400		}
2401		next_agino = unlinked_agino;
 
 
2402	}
2403
2404	return 0;
2405}
2406
2407/*
2408 * Pull the on-disk inode from the AGI unlinked list.
 
 
 
 
 
 
 
2409 */
2410STATIC int
2411xfs_iunlink_remove(
2412	struct xfs_trans	*tp,
2413	struct xfs_inode	*ip)
 
2414{
2415	struct xfs_mount	*mp = tp->t_mountp;
2416	struct xfs_agi		*agi;
2417	struct xfs_buf		*agibp;
2418	struct xfs_buf		*last_ibp;
2419	struct xfs_dinode	*last_dip = NULL;
2420	xfs_agnumber_t		agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
2421	xfs_agino_t		agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2422	xfs_agino_t		next_agino;
2423	xfs_agino_t		head_agino;
2424	short			bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2425	int			error;
 
 
 
 
2426
2427	trace_xfs_iunlink_remove(ip);
2428
2429	/* Get the agi buffer first.  It ensures lock ordering on the list. */
2430	error = xfs_read_agi(mp, tp, agno, &agibp);
2431	if (error)
2432		return error;
2433	agi = agibp->b_addr;
2434
2435	/*
2436	 * Get the index into the agi hash table for the list this inode will
2437	 * go on.  Make sure the head pointer isn't garbage.
2438	 */
2439	head_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2440	if (!xfs_verify_agino(mp, agno, head_agino)) {
2441		XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
2442				agi, sizeof(*agi));
2443		return -EFSCORRUPTED;
2444	}
2445
 
 
 
 
 
 
 
 
 
 
 
 
2446	/*
2447	 * Set our inode's next_unlinked pointer to NULL and then return
2448	 * the old pointer value so that we can update whatever was previous
2449	 * to us in the list to point to whatever was next in the list.
2450	 */
2451	error = xfs_iunlink_update_inode(tp, ip, agno, NULLAGINO, &next_agino);
 
 
 
 
2452	if (error)
2453		return error;
2454
2455	/*
2456	 * If there was a backref pointing from the next inode back to this
2457	 * one, remove it because we've removed this inode from the list.
2458	 *
2459	 * Later, if this inode was in the middle of the list we'll update
2460	 * this inode's backref to point from the next inode.
2461	 */
2462	if (next_agino != NULLAGINO) {
2463		error = xfs_iunlink_change_backref(agibp->b_pag, next_agino,
2464				NULLAGINO);
2465		if (error)
2466			return error;
2467	}
2468
2469	if (head_agino != agino) {
2470		struct xfs_imap	imap;
2471		xfs_agino_t	prev_agino;
2472
2473		/* We need to search the list for the inode being freed. */
2474		error = xfs_iunlink_map_prev(tp, agno, head_agino, agino,
2475				&prev_agino, &imap, &last_dip, &last_ibp,
2476				agibp->b_pag);
2477		if (error)
2478			return error;
2479
2480		/* Point the previous inode on the list to the next inode. */
2481		xfs_iunlink_update_dinode(tp, agno, prev_agino, last_ibp,
2482				last_dip, &imap, next_agino);
2483
2484		/*
2485		 * Now we deal with the backref for this inode.  If this inode
2486		 * pointed at a real inode, change the backref that pointed to
2487		 * us to point to our old next.  If this inode was the end of
2488		 * the list, delete the backref that pointed to us.  Note that
2489		 * change_backref takes care of deleting the backref if
2490		 * next_agino is NULLAGINO.
2491		 */
2492		return xfs_iunlink_change_backref(agibp->b_pag, agino,
2493				next_agino);
2494	}
2495
2496	/* Point the head of the list to the next unlinked inode. */
2497	return xfs_iunlink_update_bucket(tp, agno, agibp, bucket_index,
2498			next_agino);
2499}
2500
2501/*
2502 * Look up the inode number specified and if it is not already marked XFS_ISTALE
2503 * mark it stale. We should only find clean inodes in this lookup that aren't
2504 * already stale.
 
 
 
 
 
 
 
 
 
 
 
 
 
2505 */
2506static void
2507xfs_ifree_mark_inode_stale(
2508	struct xfs_buf		*bp,
2509	struct xfs_inode	*free_ip,
2510	xfs_ino_t		inum)
2511{
2512	struct xfs_mount	*mp = bp->b_mount;
2513	struct xfs_perag	*pag = bp->b_pag;
2514	struct xfs_inode_log_item *iip;
2515	struct xfs_inode	*ip;
2516
2517retry:
2518	rcu_read_lock();
2519	ip = radix_tree_lookup(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, inum));
2520
2521	/* Inode not in memory, nothing to do */
2522	if (!ip) {
2523		rcu_read_unlock();
2524		return;
2525	}
2526
2527	/*
2528	 * because this is an RCU protected lookup, we could find a recently
2529	 * freed or even reallocated inode during the lookup. We need to check
2530	 * under the i_flags_lock for a valid inode here. Skip it if it is not
2531	 * valid, the wrong inode or stale.
2532	 */
2533	spin_lock(&ip->i_flags_lock);
2534	if (ip->i_ino != inum || __xfs_iflags_test(ip, XFS_ISTALE)) {
2535		spin_unlock(&ip->i_flags_lock);
2536		rcu_read_unlock();
2537		return;
2538	}
2539
2540	/*
2541	 * Don't try to lock/unlock the current inode, but we _cannot_ skip the
2542	 * other inodes that we did not find in the list attached to the buffer
2543	 * and are not already marked stale. If we can't lock it, back off and
2544	 * retry.
2545	 */
2546	if (ip != free_ip) {
2547		if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2548			spin_unlock(&ip->i_flags_lock);
2549			rcu_read_unlock();
2550			delay(1);
2551			goto retry;
2552		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2553	}
2554	ip->i_flags |= XFS_ISTALE;
2555	spin_unlock(&ip->i_flags_lock);
2556	rcu_read_unlock();
2557
2558	/*
2559	 * If we can't get the flush lock, the inode is already attached.  All
2560	 * we needed to do here is mark the inode stale so buffer IO completion
2561	 * will remove it from the AIL.
2562	 */
2563	iip = ip->i_itemp;
2564	if (!xfs_iflock_nowait(ip)) {
2565		ASSERT(!list_empty(&iip->ili_item.li_bio_list));
2566		ASSERT(iip->ili_last_fields);
2567		goto out_iunlock;
 
 
 
 
 
 
 
 
 
 
 
 
2568	}
2569
2570	/*
2571	 * Inodes not attached to the buffer can be released immediately.
2572	 * Everything else has to go through xfs_iflush_abort() on journal
2573	 * commit as the flock synchronises removal of the inode from the
2574	 * cluster buffer against inode reclaim.
2575	 */
2576	if (!iip || list_empty(&iip->ili_item.li_bio_list)) {
2577		xfs_ifunlock(ip);
2578		goto out_iunlock;
2579	}
2580
2581	/* we have a dirty inode in memory that has not yet been flushed. */
2582	spin_lock(&iip->ili_lock);
2583	iip->ili_last_fields = iip->ili_fields;
2584	iip->ili_fields = 0;
2585	iip->ili_fsync_fields = 0;
2586	spin_unlock(&iip->ili_lock);
2587	ASSERT(iip->ili_last_fields);
2588
2589out_iunlock:
2590	if (ip != free_ip)
2591		xfs_iunlock(ip, XFS_ILOCK_EXCL);
2592}
2593
2594/*
2595 * A big issue when freeing the inode cluster is that we _cannot_ skip any
2596 * inodes that are in memory - they all must be marked stale and attached to
2597 * the cluster buffer.
2598 */
2599STATIC int
2600xfs_ifree_cluster(
2601	struct xfs_inode	*free_ip,
2602	struct xfs_trans	*tp,
2603	struct xfs_icluster	*xic)
2604{
2605	struct xfs_mount	*mp = free_ip->i_mount;
2606	struct xfs_ino_geometry	*igeo = M_IGEO(mp);
2607	struct xfs_buf		*bp;
2608	xfs_daddr_t		blkno;
2609	xfs_ino_t		inum = xic->first_ino;
2610	int			nbufs;
2611	int			i, j;
2612	int			ioffset;
2613	int			error;
2614
2615	nbufs = igeo->ialloc_blks / igeo->blocks_per_cluster;
2616
2617	for (j = 0; j < nbufs; j++, inum += igeo->inodes_per_cluster) {
2618		/*
2619		 * The allocation bitmap tells us which inodes of the chunk were
2620		 * physically allocated. Skip the cluster if an inode falls into
2621		 * a sparse region.
2622		 */
2623		ioffset = inum - xic->first_ino;
2624		if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) {
2625			ASSERT(ioffset % igeo->inodes_per_cluster == 0);
2626			continue;
2627		}
2628
2629		blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2630					 XFS_INO_TO_AGBNO(mp, inum));
2631
2632		/*
2633		 * We obtain and lock the backing buffer first in the process
2634		 * here, as we have to ensure that any dirty inode that we
2635		 * can't get the flush lock on is attached to the buffer.
2636		 * If we scan the in-memory inodes first, then buffer IO can
2637		 * complete before we get a lock on it, and hence we may fail
2638		 * to mark all the active inodes on the buffer stale.
2639		 */
2640		error = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2641				mp->m_bsize * igeo->blocks_per_cluster,
2642				XBF_UNMAPPED, &bp);
2643		if (error)
2644			return error;
2645
2646		/*
2647		 * This buffer may not have been correctly initialised as we
2648		 * didn't read it from disk. That's not important because we are
2649		 * only using to mark the buffer as stale in the log, and to
2650		 * attach stale cached inodes on it. That means it will never be
2651		 * dispatched for IO. If it is, we want to know about it, and we
2652		 * want it to fail. We can acheive this by adding a write
2653		 * verifier to the buffer.
2654		 */
2655		bp->b_ops = &xfs_inode_buf_ops;
2656
2657		/*
2658		 * Now we need to set all the cached clean inodes as XFS_ISTALE,
2659		 * too. This requires lookups, and will skip inodes that we've
2660		 * already marked XFS_ISTALE.
2661		 */
2662		for (i = 0; i < igeo->inodes_per_cluster; i++)
2663			xfs_ifree_mark_inode_stale(bp, free_ip, inum + i);
2664
2665		xfs_trans_stale_inode_buf(tp, bp);
2666		xfs_trans_binval(tp, bp);
2667	}
2668	return 0;
 
 
 
 
 
2669}
2670
 
2671/*
2672 * This is called to return an inode to the inode free list.
2673 * The inode should already be truncated to 0 length and have
2674 * no pages associated with it.  This routine also assumes that
2675 * the inode is already a part of the transaction.
 
 
 
 
 
2676 *
2677 * The on-disk copy of the inode will have been added to the list
2678 * of unlinked inodes in the AGI. We need to remove the inode from
2679 * that list atomically with respect to freeing it here.
2680 */
2681int
2682xfs_ifree(
2683	struct xfs_trans	*tp,
2684	struct xfs_inode	*ip)
2685{
2686	int			error;
2687	struct xfs_icluster	xic = { 0 };
2688	struct xfs_inode_log_item *iip = ip->i_itemp;
 
2689
2690	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
2691	ASSERT(VFS_I(ip)->i_nlink == 0);
2692	ASSERT(ip->i_df.if_nextents == 0);
2693	ASSERT(ip->i_d.di_size == 0 || !S_ISREG(VFS_I(ip)->i_mode));
2694	ASSERT(ip->i_d.di_nblocks == 0);
2695
2696	/*
2697	 * Pull the on-disk inode from the AGI unlinked list.
2698	 */
2699	error = xfs_iunlink_remove(tp, ip);
2700	if (error)
2701		return error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2702
2703	error = xfs_difree(tp, ip->i_ino, &xic);
2704	if (error)
2705		return error;
 
 
 
 
 
 
 
 
 
2706
2707	/*
2708	 * Free any local-format data sitting around before we reset the
2709	 * data fork to extents format.  Note that the attr fork data has
2710	 * already been freed by xfs_attr_inactive.
2711	 */
2712	if (ip->i_df.if_format == XFS_DINODE_FMT_LOCAL) {
2713		kmem_free(ip->i_df.if_u1.if_data);
2714		ip->i_df.if_u1.if_data = NULL;
2715		ip->i_df.if_bytes = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2716	}
2717
2718	VFS_I(ip)->i_mode = 0;		/* mark incore inode as free */
2719	ip->i_d.di_flags = 0;
2720	ip->i_d.di_flags2 = 0;
2721	ip->i_d.di_dmevmask = 0;
2722	ip->i_d.di_forkoff = 0;		/* mark the attr fork not in use */
2723	ip->i_df.if_format = XFS_DINODE_FMT_EXTENTS;
2724
2725	/* Don't attempt to replay owner changes for a deleted inode */
2726	spin_lock(&iip->ili_lock);
2727	iip->ili_fields &= ~(XFS_ILOG_AOWNER | XFS_ILOG_DOWNER);
2728	spin_unlock(&iip->ili_lock);
2729
2730	/*
2731	 * Bump the generation count so no one will be confused
2732	 * by reincarnations of this inode.
2733	 */
2734	VFS_I(ip)->i_generation++;
2735	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2736
2737	if (xic.deleted)
2738		error = xfs_ifree_cluster(ip, tp, &xic);
2739
2740	return error;
2741}
2742
2743/*
2744 * This is called to unpin an inode.  The caller must have the inode locked
2745 * in at least shared mode so that the buffer cannot be subsequently pinned
2746 * once someone is waiting for it to be unpinned.
2747 */
2748static void
2749xfs_iunpin(
2750	struct xfs_inode	*ip)
2751{
2752	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2753
2754	trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
2755
2756	/* Give the log a push to start the unpinning I/O */
2757	xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0, NULL);
2758
2759}
2760
2761static void
2762__xfs_iunpin_wait(
2763	struct xfs_inode	*ip)
2764{
2765	wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT);
2766	DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT);
2767
2768	xfs_iunpin(ip);
2769
2770	do {
2771		prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2772		if (xfs_ipincount(ip))
2773			io_schedule();
2774	} while (xfs_ipincount(ip));
2775	finish_wait(wq, &wait.wq_entry);
2776}
2777
2778void
2779xfs_iunpin_wait(
2780	struct xfs_inode	*ip)
2781{
2782	if (xfs_ipincount(ip))
2783		__xfs_iunpin_wait(ip);
 
 
2784}
2785
2786/*
2787 * Removing an inode from the namespace involves removing the directory entry
2788 * and dropping the link count on the inode. Removing the directory entry can
2789 * result in locking an AGF (directory blocks were freed) and removing a link
2790 * count can result in placing the inode on an unlinked list which results in
2791 * locking an AGI.
2792 *
2793 * The big problem here is that we have an ordering constraint on AGF and AGI
2794 * locking - inode allocation locks the AGI, then can allocate a new extent for
2795 * new inodes, locking the AGF after the AGI. Similarly, freeing the inode
2796 * removes the inode from the unlinked list, requiring that we lock the AGI
2797 * first, and then freeing the inode can result in an inode chunk being freed
2798 * and hence freeing disk space requiring that we lock an AGF.
2799 *
2800 * Hence the ordering that is imposed by other parts of the code is AGI before
2801 * AGF. This means we cannot remove the directory entry before we drop the inode
2802 * reference count and put it on the unlinked list as this results in a lock
2803 * order of AGF then AGI, and this can deadlock against inode allocation and
2804 * freeing. Therefore we must drop the link counts before we remove the
2805 * directory entry.
2806 *
2807 * This is still safe from a transactional point of view - it is not until we
2808 * get to xfs_defer_finish() that we have the possibility of multiple
2809 * transactions in this operation. Hence as long as we remove the directory
2810 * entry and drop the link count in the first transaction of the remove
2811 * operation, there are no transactional constraints on the ordering here.
2812 */
2813int
2814xfs_remove(
2815	xfs_inode_t             *dp,
2816	struct xfs_name		*name,
2817	xfs_inode_t		*ip)
2818{
2819	xfs_mount_t		*mp = dp->i_mount;
2820	xfs_trans_t             *tp = NULL;
2821	int			is_dir = S_ISDIR(VFS_I(ip)->i_mode);
2822	int                     error = 0;
2823	uint			resblks;
2824
2825	trace_xfs_remove(dp, name);
 
 
2826
2827	if (XFS_FORCED_SHUTDOWN(mp))
2828		return -EIO;
2829
2830	error = xfs_qm_dqattach(dp);
2831	if (error)
2832		goto std_return;
2833
2834	error = xfs_qm_dqattach(ip);
2835	if (error)
2836		goto std_return;
 
 
 
 
 
 
 
 
 
 
2837
2838	/*
2839	 * We try to get the real space reservation first,
2840	 * allowing for directory btree deletion(s) implying
2841	 * possible bmap insert(s).  If we can't get the space
2842	 * reservation then we use 0 instead, and avoid the bmap
2843	 * btree insert(s) in the directory code by, if the bmap
2844	 * insert tries to happen, instead trimming the LAST
2845	 * block from the directory.
2846	 */
2847	resblks = XFS_REMOVE_SPACE_RES(mp);
2848	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, resblks, 0, 0, &tp);
2849	if (error == -ENOSPC) {
2850		resblks = 0;
2851		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, 0, 0, 0,
2852				&tp);
2853	}
2854	if (error) {
2855		ASSERT(error != -ENOSPC);
2856		goto std_return;
2857	}
 
 
2858
2859	xfs_lock_two_inodes(dp, XFS_ILOCK_EXCL, ip, XFS_ILOCK_EXCL);
 
2860
2861	xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
2862	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2863
 
 
 
2864	/*
2865	 * If we're removing a directory perform some additional validation.
 
2866	 */
2867	if (is_dir) {
2868		ASSERT(VFS_I(ip)->i_nlink >= 2);
2869		if (VFS_I(ip)->i_nlink != 2) {
2870			error = -ENOTEMPTY;
2871			goto out_trans_cancel;
 
 
 
 
 
 
 
 
2872		}
2873		if (!xfs_dir_isempty(ip)) {
2874			error = -ENOTEMPTY;
2875			goto out_trans_cancel;
 
 
 
 
 
 
 
 
2876		}
 
2877
2878		/* Drop the link from ip's "..".  */
2879		error = xfs_droplink(tp, dp);
2880		if (error)
2881			goto out_trans_cancel;
 
 
 
 
 
 
 
 
2882
2883		/* Drop the "." link from ip to self.  */
2884		error = xfs_droplink(tp, ip);
2885		if (error)
2886			goto out_trans_cancel;
2887	} else {
2888		/*
2889		 * When removing a non-directory we need to log the parent
2890		 * inode here.  For a directory this is done implicitly
2891		 * by the xfs_droplink call for the ".." entry.
2892		 */
2893		xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
2894	}
2895	xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2896
2897	/* Drop the link from dp to ip. */
2898	error = xfs_droplink(tp, ip);
2899	if (error)
2900		goto out_trans_cancel;
 
 
 
 
2901
2902	error = xfs_dir_removename(tp, dp, name, ip->i_ino, resblks);
2903	if (error) {
2904		ASSERT(error != -ENOENT);
2905		goto out_trans_cancel;
2906	}
2907
2908	/*
2909	 * If this is a synchronous mount, make sure that the
2910	 * remove transaction goes to disk before returning to
2911	 * the user.
2912	 */
2913	if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2914		xfs_trans_set_sync(tp);
2915
2916	error = xfs_trans_commit(tp);
2917	if (error)
2918		goto std_return;
2919
2920	if (is_dir && xfs_inode_is_filestream(ip))
2921		xfs_filestream_deassociate(ip);
2922
2923	return 0;
2924
2925 out_trans_cancel:
2926	xfs_trans_cancel(tp);
2927 std_return:
2928	return error;
2929}
2930
2931/*
2932 * Enter all inodes for a rename transaction into a sorted array.
2933 */
2934#define __XFS_SORT_INODES	5
2935STATIC void
2936xfs_sort_for_rename(
2937	struct xfs_inode	*dp1,	/* in: old (source) directory inode */
2938	struct xfs_inode	*dp2,	/* in: new (target) directory inode */
2939	struct xfs_inode	*ip1,	/* in: inode of old entry */
2940	struct xfs_inode	*ip2,	/* in: inode of new entry */
2941	struct xfs_inode	*wip,	/* in: whiteout inode */
2942	struct xfs_inode	**i_tab,/* out: sorted array of inodes */
2943	int			*num_inodes)  /* in/out: inodes in array */
2944{
2945	int			i, j;
 
 
 
 
 
 
 
 
 
 
2946
2947	ASSERT(*num_inodes == __XFS_SORT_INODES);
2948	memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *));
2949
2950	/*
2951	 * i_tab contains a list of pointers to inodes.  We initialize
2952	 * the table here & we'll sort it.  We will then use it to
2953	 * order the acquisition of the inode locks.
2954	 *
2955	 * Note that the table may contain duplicates.  e.g., dp1 == dp2.
2956	 */
2957	i = 0;
2958	i_tab[i++] = dp1;
2959	i_tab[i++] = dp2;
2960	i_tab[i++] = ip1;
2961	if (ip2)
2962		i_tab[i++] = ip2;
2963	if (wip)
2964		i_tab[i++] = wip;
2965	*num_inodes = i;
2966
2967	/*
2968	 * Sort the elements via bubble sort.  (Remember, there are at
2969	 * most 5 elements to sort, so this is adequate.)
2970	 */
2971	for (i = 0; i < *num_inodes; i++) {
2972		for (j = 1; j < *num_inodes; j++) {
2973			if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) {
2974				struct xfs_inode *temp = i_tab[j];
2975				i_tab[j] = i_tab[j-1];
2976				i_tab[j-1] = temp;
2977			}
2978		}
2979	}
2980}
2981
2982static int
2983xfs_finish_rename(
2984	struct xfs_trans	*tp)
2985{
2986	/*
2987	 * If this is a synchronous mount, make sure that the rename transaction
2988	 * goes to disk before returning to the user.
2989	 */
2990	if (tp->t_mountp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2991		xfs_trans_set_sync(tp);
 
 
 
2992
2993	return xfs_trans_commit(tp);
2994}
 
 
 
 
 
 
 
 
 
 
 
2995
2996/*
2997 * xfs_cross_rename()
2998 *
2999 * responsible for handling RENAME_EXCHANGE flag in renameat2() sytemcall
3000 */
3001STATIC int
3002xfs_cross_rename(
3003	struct xfs_trans	*tp,
3004	struct xfs_inode	*dp1,
3005	struct xfs_name		*name1,
3006	struct xfs_inode	*ip1,
3007	struct xfs_inode	*dp2,
3008	struct xfs_name		*name2,
3009	struct xfs_inode	*ip2,
3010	int			spaceres)
3011{
3012	int		error = 0;
3013	int		ip1_flags = 0;
3014	int		ip2_flags = 0;
3015	int		dp2_flags = 0;
3016
3017	/* Swap inode number for dirent in first parent */
3018	error = xfs_dir_replace(tp, dp1, name1, ip2->i_ino, spaceres);
3019	if (error)
3020		goto out_trans_abort;
3021
3022	/* Swap inode number for dirent in second parent */
3023	error = xfs_dir_replace(tp, dp2, name2, ip1->i_ino, spaceres);
3024	if (error)
3025		goto out_trans_abort;
3026
3027	/*
3028	 * If we're renaming one or more directories across different parents,
3029	 * update the respective ".." entries (and link counts) to match the new
3030	 * parents.
3031	 */
3032	if (dp1 != dp2) {
3033		dp2_flags = XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
3034
3035		if (S_ISDIR(VFS_I(ip2)->i_mode)) {
3036			error = xfs_dir_replace(tp, ip2, &xfs_name_dotdot,
3037						dp1->i_ino, spaceres);
3038			if (error)
3039				goto out_trans_abort;
3040
3041			/* transfer ip2 ".." reference to dp1 */
3042			if (!S_ISDIR(VFS_I(ip1)->i_mode)) {
3043				error = xfs_droplink(tp, dp2);
3044				if (error)
3045					goto out_trans_abort;
3046				xfs_bumplink(tp, dp1);
3047			}
3048
3049			/*
3050			 * Although ip1 isn't changed here, userspace needs
3051			 * to be warned about the change, so that applications
3052			 * relying on it (like backup ones), will properly
3053			 * notify the change
3054			 */
3055			ip1_flags |= XFS_ICHGTIME_CHG;
3056			ip2_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
3057		}
3058
3059		if (S_ISDIR(VFS_I(ip1)->i_mode)) {
3060			error = xfs_dir_replace(tp, ip1, &xfs_name_dotdot,
3061						dp2->i_ino, spaceres);
3062			if (error)
3063				goto out_trans_abort;
3064
3065			/* transfer ip1 ".." reference to dp2 */
3066			if (!S_ISDIR(VFS_I(ip2)->i_mode)) {
3067				error = xfs_droplink(tp, dp1);
3068				if (error)
3069					goto out_trans_abort;
3070				xfs_bumplink(tp, dp2);
3071			}
3072
3073			/*
3074			 * Although ip2 isn't changed here, userspace needs
3075			 * to be warned about the change, so that applications
3076			 * relying on it (like backup ones), will properly
3077			 * notify the change
3078			 */
3079			ip1_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
3080			ip2_flags |= XFS_ICHGTIME_CHG;
3081		}
 
3082	}
3083
3084	if (ip1_flags) {
3085		xfs_trans_ichgtime(tp, ip1, ip1_flags);
3086		xfs_trans_log_inode(tp, ip1, XFS_ILOG_CORE);
3087	}
3088	if (ip2_flags) {
3089		xfs_trans_ichgtime(tp, ip2, ip2_flags);
3090		xfs_trans_log_inode(tp, ip2, XFS_ILOG_CORE);
3091	}
3092	if (dp2_flags) {
3093		xfs_trans_ichgtime(tp, dp2, dp2_flags);
3094		xfs_trans_log_inode(tp, dp2, XFS_ILOG_CORE);
3095	}
3096	xfs_trans_ichgtime(tp, dp1, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3097	xfs_trans_log_inode(tp, dp1, XFS_ILOG_CORE);
3098	return xfs_finish_rename(tp);
3099
3100out_trans_abort:
3101	xfs_trans_cancel(tp);
3102	return error;
3103}
 
 
3104
3105/*
3106 * xfs_rename_alloc_whiteout()
3107 *
3108 * Return a referenced, unlinked, unlocked inode that can be used as a
3109 * whiteout in a rename transaction. We use a tmpfile inode here so that if we
3110 * crash between allocating the inode and linking it into the rename transaction
3111 * recovery will free the inode and we won't leak it.
3112 */
3113static int
3114xfs_rename_alloc_whiteout(
3115	struct xfs_inode	*dp,
3116	struct xfs_inode	**wip)
3117{
3118	struct xfs_inode	*tmpfile;
3119	int			error;
3120
3121	error = xfs_create_tmpfile(dp, S_IFCHR | WHITEOUT_MODE, &tmpfile);
3122	if (error)
3123		return error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3124
3125	/*
3126	 * Prepare the tmpfile inode as if it were created through the VFS.
3127	 * Complete the inode setup and flag it as linkable.  nlink is already
3128	 * zero, so we can skip the drop_nlink.
3129	 */
3130	xfs_setup_iops(tmpfile);
3131	xfs_finish_inode_setup(tmpfile);
3132	VFS_I(tmpfile)->i_state |= I_LINKABLE;
3133
3134	*wip = tmpfile;
3135	return 0;
3136}
3137
3138/*
3139 * xfs_rename
 
 
 
 
 
 
3140 */
3141int
3142xfs_rename(
3143	struct xfs_inode	*src_dp,
3144	struct xfs_name		*src_name,
3145	struct xfs_inode	*src_ip,
3146	struct xfs_inode	*target_dp,
3147	struct xfs_name		*target_name,
3148	struct xfs_inode	*target_ip,
3149	unsigned int		flags)
3150{
3151	struct xfs_mount	*mp = src_dp->i_mount;
3152	struct xfs_trans	*tp;
3153	struct xfs_inode	*wip = NULL;		/* whiteout inode */
3154	struct xfs_inode	*inodes[__XFS_SORT_INODES];
3155	struct xfs_buf		*agibp;
3156	int			num_inodes = __XFS_SORT_INODES;
3157	bool			new_parent = (src_dp != target_dp);
3158	bool			src_is_directory = S_ISDIR(VFS_I(src_ip)->i_mode);
3159	int			spaceres;
3160	int			error;
3161
3162	trace_xfs_rename(src_dp, target_dp, src_name, target_name);
3163
3164	if ((flags & RENAME_EXCHANGE) && !target_ip)
3165		return -EINVAL;
 
 
3166
3167	/*
3168	 * If we are doing a whiteout operation, allocate the whiteout inode
3169	 * we will be placing at the target and ensure the type is set
3170	 * appropriately.
3171	 */
3172	if (flags & RENAME_WHITEOUT) {
3173		ASSERT(!(flags & (RENAME_NOREPLACE | RENAME_EXCHANGE)));
3174		error = xfs_rename_alloc_whiteout(target_dp, &wip);
3175		if (error)
3176			return error;
3177
3178		/* setup target dirent info as whiteout */
3179		src_name->type = XFS_DIR3_FT_CHRDEV;
3180	}
3181
3182	xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, wip,
3183				inodes, &num_inodes);
3184
3185	spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len);
3186	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, spaceres, 0, 0, &tp);
3187	if (error == -ENOSPC) {
3188		spaceres = 0;
3189		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, 0, 0, 0,
3190				&tp);
3191	}
3192	if (error)
3193		goto out_release_wip;
3194
3195	/*
3196	 * Attach the dquots to the inodes
 
 
 
 
 
 
 
 
3197	 */
3198	error = xfs_qm_vop_rename_dqattach(inodes);
3199	if (error)
3200		goto out_trans_cancel;
3201
3202	/*
3203	 * Lock all the participating inodes. Depending upon whether
3204	 * the target_name exists in the target directory, and
3205	 * whether the target directory is the same as the source
3206	 * directory, we can lock from 2 to 4 inodes.
3207	 */
3208	xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL);
3209
3210	/*
3211	 * Join all the inodes to the transaction. From this point on,
3212	 * we can rely on either trans_commit or trans_cancel to unlock
3213	 * them.
3214	 */
3215	xfs_trans_ijoin(tp, src_dp, XFS_ILOCK_EXCL);
3216	if (new_parent)
3217		xfs_trans_ijoin(tp, target_dp, XFS_ILOCK_EXCL);
3218	xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL);
3219	if (target_ip)
3220		xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL);
3221	if (wip)
3222		xfs_trans_ijoin(tp, wip, XFS_ILOCK_EXCL);
3223
3224	/*
3225	 * If we are using project inheritance, we only allow renames
3226	 * into our tree when the project IDs are the same; else the
3227	 * tree quota mechanism would be circumvented.
3228	 */
3229	if (unlikely((target_dp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
3230		     target_dp->i_d.di_projid != src_ip->i_d.di_projid)) {
3231		error = -EXDEV;
3232		goto out_trans_cancel;
3233	}
3234
3235	/* RENAME_EXCHANGE is unique from here on. */
3236	if (flags & RENAME_EXCHANGE)
3237		return xfs_cross_rename(tp, src_dp, src_name, src_ip,
3238					target_dp, target_name, target_ip,
3239					spaceres);
3240
3241	/*
3242	 * Check for expected errors before we dirty the transaction
3243	 * so we can return an error without a transaction abort.
 
 
 
 
3244	 */
3245	if (target_ip == NULL) {
3246		/*
3247		 * If there's no space reservation, check the entry will
3248		 * fit before actually inserting it.
3249		 */
3250		if (!spaceres) {
3251			error = xfs_dir_canenter(tp, target_dp, target_name);
3252			if (error)
3253				goto out_trans_cancel;
3254		}
3255	} else {
3256		/*
3257		 * If target exists and it's a directory, check that whether
3258		 * it can be destroyed.
3259		 */
3260		if (S_ISDIR(VFS_I(target_ip)->i_mode) &&
3261		    (!xfs_dir_isempty(target_ip) ||
3262		     (VFS_I(target_ip)->i_nlink > 2))) {
3263			error = -EEXIST;
3264			goto out_trans_cancel;
3265		}
3266	}
3267
3268	/*
3269	 * Directory entry creation below may acquire the AGF. Remove
3270	 * the whiteout from the unlinked list first to preserve correct
3271	 * AGI/AGF locking order. This dirties the transaction so failures
3272	 * after this point will abort and log recovery will clean up the
3273	 * mess.
3274	 *
3275	 * For whiteouts, we need to bump the link count on the whiteout
3276	 * inode. After this point, we have a real link, clear the tmpfile
3277	 * state flag from the inode so it doesn't accidentally get misused
3278	 * in future.
3279	 */
3280	if (wip) {
3281		ASSERT(VFS_I(wip)->i_nlink == 0);
3282		error = xfs_iunlink_remove(tp, wip);
3283		if (error)
3284			goto out_trans_cancel;
3285
3286		xfs_bumplink(tp, wip);
3287		VFS_I(wip)->i_state &= ~I_LINKABLE;
3288	}
3289
3290	/*
3291	 * Set up the target.
3292	 */
3293	if (target_ip == NULL) {
3294		/*
3295		 * If target does not exist and the rename crosses
3296		 * directories, adjust the target directory link count
3297		 * to account for the ".." reference from the new entry.
3298		 */
3299		error = xfs_dir_createname(tp, target_dp, target_name,
3300					   src_ip->i_ino, spaceres);
3301		if (error)
3302			goto out_trans_cancel;
3303
3304		xfs_trans_ichgtime(tp, target_dp,
3305					XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3306
3307		if (new_parent && src_is_directory) {
3308			xfs_bumplink(tp, target_dp);
3309		}
3310	} else { /* target_ip != NULL */
3311		/*
3312		 * Link the source inode under the target name.
3313		 * If the source inode is a directory and we are moving
3314		 * it across directories, its ".." entry will be
3315		 * inconsistent until we replace that down below.
3316		 *
3317		 * In case there is already an entry with the same
3318		 * name at the destination directory, remove it first.
3319		 */
3320
3321		/*
3322		 * Check whether the replace operation will need to allocate
3323		 * blocks.  This happens when the shortform directory lacks
3324		 * space and we have to convert it to a block format directory.
3325		 * When more blocks are necessary, we must lock the AGI first
3326		 * to preserve locking order (AGI -> AGF).
3327		 */
3328		if (xfs_dir2_sf_replace_needblock(target_dp, src_ip->i_ino)) {
3329			error = xfs_read_agi(mp, tp,
3330					XFS_INO_TO_AGNO(mp, target_ip->i_ino),
3331					&agibp);
3332			if (error)
3333				goto out_trans_cancel;
3334		}
3335
3336		error = xfs_dir_replace(tp, target_dp, target_name,
3337					src_ip->i_ino, spaceres);
3338		if (error)
3339			goto out_trans_cancel;
3340
3341		xfs_trans_ichgtime(tp, target_dp,
3342					XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3343
3344		/*
3345		 * Decrement the link count on the target since the target
3346		 * dir no longer points to it.
3347		 */
3348		error = xfs_droplink(tp, target_ip);
3349		if (error)
3350			goto out_trans_cancel;
3351
3352		if (src_is_directory) {
3353			/*
3354			 * Drop the link from the old "." entry.
3355			 */
3356			error = xfs_droplink(tp, target_ip);
3357			if (error)
3358				goto out_trans_cancel;
3359		}
3360	} /* target_ip != NULL */
3361
3362	/*
3363	 * Remove the source.
3364	 */
3365	if (new_parent && src_is_directory) {
3366		/*
3367		 * Rewrite the ".." entry to point to the new
3368		 * directory.
3369		 */
3370		error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot,
3371					target_dp->i_ino, spaceres);
3372		ASSERT(error != -EEXIST);
3373		if (error)
3374			goto out_trans_cancel;
3375	}
3376
3377	/*
3378	 * We always want to hit the ctime on the source inode.
3379	 *
3380	 * This isn't strictly required by the standards since the source
3381	 * inode isn't really being changed, but old unix file systems did
3382	 * it and some incremental backup programs won't work without it.
3383	 */
3384	xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG);
3385	xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE);
 
3386
3387	/*
3388	 * Adjust the link count on src_dp.  This is necessary when
3389	 * renaming a directory, either within one parent when
3390	 * the target existed, or across two parent directories.
3391	 */
3392	if (src_is_directory && (new_parent || target_ip != NULL)) {
3393
3394		/*
3395		 * Decrement link count on src_directory since the
3396		 * entry that's moved no longer points to it.
3397		 */
3398		error = xfs_droplink(tp, src_dp);
3399		if (error)
3400			goto out_trans_cancel;
3401	}
3402
3403	/*
3404	 * For whiteouts, we only need to update the source dirent with the
3405	 * inode number of the whiteout inode rather than removing it
3406	 * altogether.
3407	 */
3408	if (wip) {
3409		error = xfs_dir_replace(tp, src_dp, src_name, wip->i_ino,
3410					spaceres);
3411	} else
3412		error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino,
3413					   spaceres);
3414	if (error)
3415		goto out_trans_cancel;
3416
3417	xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3418	xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE);
3419	if (new_parent)
3420		xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE);
3421
3422	error = xfs_finish_rename(tp);
3423	if (wip)
3424		xfs_irele(wip);
3425	return error;
3426
3427out_trans_cancel:
3428	xfs_trans_cancel(tp);
3429out_release_wip:
3430	if (wip)
3431		xfs_irele(wip);
3432	return error;
 
 
 
3433}
3434
3435static int
3436xfs_iflush(
3437	struct xfs_inode	*ip,
3438	struct xfs_buf		*bp)
 
3439{
3440	struct xfs_inode_log_item *iip = ip->i_itemp;
3441	struct xfs_dinode	*dip;
3442	struct xfs_mount	*mp = ip->i_mount;
3443	int			error;
 
 
3444
3445	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3446	ASSERT(xfs_isiflocked(ip));
3447	ASSERT(ip->i_df.if_format != XFS_DINODE_FMT_BTREE ||
3448	       ip->i_df.if_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
3449	ASSERT(iip->ili_item.li_buf == bp);
3450
3451	dip = xfs_buf_offset(bp, ip->i_imap.im_boffset);
 
 
 
 
3452
3453	/*
3454	 * We don't flush the inode if any of the following checks fail, but we
3455	 * do still update the log item and attach to the backing buffer as if
3456	 * the flush happened. This is a formality to facilitate predictable
3457	 * error handling as the caller will shutdown and fail the buffer.
 
 
 
 
 
 
3458	 */
3459	error = -EFSCORRUPTED;
 
 
 
 
 
 
 
3460	if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
3461			       mp, XFS_ERRTAG_IFLUSH_1)) {
3462		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3463			"%s: Bad inode %Lu magic number 0x%x, ptr "PTR_FMT,
3464			__func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
3465		goto flush_out;
 
 
 
 
 
 
 
3466	}
3467	if (S_ISREG(VFS_I(ip)->i_mode)) {
3468		if (XFS_TEST_ERROR(
3469		    ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS &&
3470		    ip->i_df.if_format != XFS_DINODE_FMT_BTREE,
3471		    mp, XFS_ERRTAG_IFLUSH_3)) {
3472			xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3473				"%s: Bad regular inode %Lu, ptr "PTR_FMT,
3474				__func__, ip->i_ino, ip);
3475			goto flush_out;
3476		}
3477	} else if (S_ISDIR(VFS_I(ip)->i_mode)) {
3478		if (XFS_TEST_ERROR(
3479		    ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS &&
3480		    ip->i_df.if_format != XFS_DINODE_FMT_BTREE &&
3481		    ip->i_df.if_format != XFS_DINODE_FMT_LOCAL,
3482		    mp, XFS_ERRTAG_IFLUSH_4)) {
3483			xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3484				"%s: Bad directory inode %Lu, ptr "PTR_FMT,
3485				__func__, ip->i_ino, ip);
3486			goto flush_out;
3487		}
3488	}
3489	if (XFS_TEST_ERROR(ip->i_df.if_nextents + xfs_ifork_nextents(ip->i_afp) >
3490				ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5)) {
 
3491		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3492			"%s: detected corrupt incore inode %Lu, "
3493			"total extents = %d, nblocks = %Ld, ptr "PTR_FMT,
3494			__func__, ip->i_ino,
3495			ip->i_df.if_nextents + xfs_ifork_nextents(ip->i_afp),
3496			ip->i_d.di_nblocks, ip);
3497		goto flush_out;
3498	}
3499	if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
3500				mp, XFS_ERRTAG_IFLUSH_6)) {
3501		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3502			"%s: bad inode %Lu, forkoff 0x%x, ptr "PTR_FMT,
3503			__func__, ip->i_ino, ip->i_d.di_forkoff, ip);
3504		goto flush_out;
3505	}
3506
3507	/*
3508	 * Inode item log recovery for v2 inodes are dependent on the
3509	 * di_flushiter count for correct sequencing. We bump the flush
3510	 * iteration count so we can detect flushes which postdate a log record
3511	 * during recovery. This is redundant as we now log every change and
3512	 * hence this can't happen but we need to still do it to ensure
3513	 * backwards compatibility with old kernels that predate logging all
3514	 * inode changes.
3515	 */
3516	if (!xfs_sb_version_has_v3inode(&mp->m_sb))
3517		ip->i_d.di_flushiter++;
3518
3519	/*
3520	 * If there are inline format data / attr forks attached to this inode,
3521	 * make sure they are not corrupt.
3522	 */
3523	if (ip->i_df.if_format == XFS_DINODE_FMT_LOCAL &&
3524	    xfs_ifork_verify_local_data(ip))
3525		goto flush_out;
3526	if (ip->i_afp && ip->i_afp->if_format == XFS_DINODE_FMT_LOCAL &&
3527	    xfs_ifork_verify_local_attr(ip))
3528		goto flush_out;
3529
3530	/*
3531	 * Copy the dirty parts of the inode into the on-disk inode.  We always
3532	 * copy out the core of the inode, because if the inode is dirty at all
3533	 * the core must be.
 
3534	 */
3535	xfs_inode_to_disk(ip, dip, iip->ili_item.li_lsn);
3536
3537	/* Wrap, we never let the log put out DI_MAX_FLUSH */
3538	if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
3539		ip->i_d.di_flushiter = 0;
3540
3541	xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3542	if (XFS_IFORK_Q(ip))
3543		xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK);
 
3544
3545	/*
3546	 * We've recorded everything logged in the inode, so we'd like to clear
3547	 * the ili_fields bits so we don't log and flush things unnecessarily.
3548	 * However, we can't stop logging all this information until the data
3549	 * we've copied into the disk buffer is written to disk.  If we did we
3550	 * might overwrite the copy of the inode in the log with all the data
3551	 * after re-logging only part of it, and in the face of a crash we
3552	 * wouldn't have all the data we need to recover.
 
 
 
 
 
 
 
 
 
3553	 *
3554	 * What we do is move the bits to the ili_last_fields field.  When
3555	 * logging the inode, these bits are moved back to the ili_fields field.
3556	 * In the xfs_iflush_done() routine we clear ili_last_fields, since we
3557	 * know that the information those bits represent is permanently on
3558	 * disk.  As long as the flush completes before the inode is logged
3559	 * again, then both ili_fields and ili_last_fields will be cleared.
3560	 */
3561	error = 0;
3562flush_out:
3563	spin_lock(&iip->ili_lock);
3564	iip->ili_last_fields = iip->ili_fields;
3565	iip->ili_fields = 0;
3566	iip->ili_fsync_fields = 0;
3567	spin_unlock(&iip->ili_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3568
3569	/*
3570	 * Store the current LSN of the inode so that we can tell whether the
3571	 * item has moved in the AIL from xfs_iflush_done().
3572	 */
3573	xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
3574				&iip->ili_item.li_lsn);
3575
3576	/* generate the checksum. */
3577	xfs_dinode_calc_crc(mp, dip);
3578	return error;
3579}
3580
3581/*
3582 * Non-blocking flush of dirty inode metadata into the backing buffer.
3583 *
3584 * The caller must have a reference to the inode and hold the cluster buffer
3585 * locked. The function will walk across all the inodes on the cluster buffer it
3586 * can find and lock without blocking, and flush them to the cluster buffer.
3587 *
3588 * On successful flushing of at least one inode, the caller must write out the
3589 * buffer and release it. If no inodes are flushed, -EAGAIN will be returned and
3590 * the caller needs to release the buffer. On failure, the filesystem will be
3591 * shut down, the buffer will have been unlocked and released, and EFSCORRUPTED
3592 * will be returned.
3593 */
3594int
3595xfs_iflush_cluster(
3596	struct xfs_buf		*bp)
 
3597{
3598	struct xfs_mount	*mp = bp->b_mount;
3599	struct xfs_log_item	*lip, *n;
3600	struct xfs_inode	*ip;
3601	struct xfs_inode_log_item *iip;
3602	int			clcount = 0;
3603	int			error = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3604
3605	/*
3606	 * We must use the safe variant here as on shutdown xfs_iflush_abort()
3607	 * can remove itself from the list.
3608	 */
3609	list_for_each_entry_safe(lip, n, &bp->b_li_list, li_bio_list) {
3610		iip = (struct xfs_inode_log_item *)lip;
3611		ip = iip->ili_inode;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3612
 
 
 
3613		/*
3614		 * Quick and dirty check to avoid locks if possible.
 
3615		 */
3616		if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLOCK))
3617			continue;
3618		if (xfs_ipincount(ip))
3619			continue;
3620
3621		/*
3622		 * The inode is still attached to the buffer, which means it is
3623		 * dirty but reclaim might try to grab it. Check carefully for
3624		 * that, and grab the ilock while still holding the i_flags_lock
3625		 * to guarantee reclaim will not be able to reclaim this inode
3626		 * once we drop the i_flags_lock.
3627		 */
3628		spin_lock(&ip->i_flags_lock);
3629		ASSERT(!__xfs_iflags_test(ip, XFS_ISTALE));
3630		if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLOCK)) {
3631			spin_unlock(&ip->i_flags_lock);
3632			continue;
 
 
 
3633		}
3634
3635		/*
3636		 * ILOCK will pin the inode against reclaim and prevent
3637		 * concurrent transactions modifying the inode while we are
3638		 * flushing the inode.
3639		 */
3640		if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) {
3641			spin_unlock(&ip->i_flags_lock);
3642			continue;
3643		}
3644		spin_unlock(&ip->i_flags_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3645
3646		/*
3647		 * Skip inodes that are already flush locked as they have
3648		 * already been written to the buffer.
3649		 */
3650		if (!xfs_iflock_nowait(ip)) {
3651			xfs_iunlock(ip, XFS_ILOCK_SHARED);
3652			continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3653		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3654
3655		/*
3656		 * Abort flushing this inode if we are shut down because the
3657		 * inode may not currently be in the AIL. This can occur when
3658		 * log I/O failure unpins the inode without inserting into the
3659		 * AIL, leaving a dirty/unpinned inode attached to the buffer
3660		 * that otherwise looks like it should be flushed.
3661		 */
3662		if (XFS_FORCED_SHUTDOWN(mp)) {
3663			xfs_iunpin_wait(ip);
3664			/* xfs_iflush_abort() drops the flush lock */
3665			xfs_iflush_abort(ip);
3666			xfs_iunlock(ip, XFS_ILOCK_SHARED);
3667			error = -EIO;
3668			continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3669		}
 
 
 
 
 
3670
3671		/* don't block waiting on a log force to unpin dirty inodes */
3672		if (xfs_ipincount(ip)) {
3673			xfs_ifunlock(ip);
3674			xfs_iunlock(ip, XFS_ILOCK_SHARED);
3675			continue;
3676		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3677
3678		if (!xfs_inode_clean(ip))
3679			error = xfs_iflush(ip, bp);
3680		else
3681			xfs_ifunlock(ip);
3682		xfs_iunlock(ip, XFS_ILOCK_SHARED);
3683		if (error)
3684			break;
3685		clcount++;
 
 
 
 
 
 
 
 
 
 
 
 
3686	}
 
 
3687
3688	if (error) {
3689		bp->b_flags |= XBF_ASYNC;
3690		xfs_buf_ioend_fail(bp);
3691		xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3692		return error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3693	}
 
3694
3695	if (!clcount)
3696		return -EAGAIN;
 
 
 
 
 
 
 
 
 
 
 
 
 
3697
3698	XFS_STATS_INC(mp, xs_icluster_flushcnt);
3699	XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount);
3700	return 0;
3701
 
 
 
 
 
 
 
 
3702}
3703
3704/* Release an inode. */
 
 
3705void
3706xfs_irele(
3707	struct xfs_inode	*ip)
3708{
3709	trace_xfs_irele(ip, _RET_IP_);
3710	iput(VFS_I(ip));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3711}
3712
3713/*
3714 * Ensure all commited transactions touching the inode are written to the log.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3715 */
3716int
3717xfs_log_force_inode(
3718	struct xfs_inode	*ip)
3719{
3720	xfs_lsn_t		lsn = 0;
 
3721
3722	xfs_ilock(ip, XFS_ILOCK_SHARED);
3723	if (xfs_ipincount(ip))
3724		lsn = ip->i_itemp->ili_last_lsn;
3725	xfs_iunlock(ip, XFS_ILOCK_SHARED);
3726
3727	if (!lsn)
3728		return 0;
3729	return xfs_log_force_lsn(ip->i_mount, lsn, XFS_LOG_SYNC, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3730}
3731
3732/*
3733 * Grab the exclusive iolock for a data copy from src to dest, making sure to
3734 * abide vfs locking order (lowest pointer value goes first) and breaking the
3735 * layout leases before proceeding.  The loop is needed because we cannot call
3736 * the blocking break_layout() with the iolocks held, and therefore have to
3737 * back out both locks.
3738 */
3739static int
3740xfs_iolock_two_inodes_and_break_layout(
3741	struct inode		*src,
3742	struct inode		*dest)
3743{
3744	int			error;
 
 
3745
3746	if (src > dest)
3747		swap(src, dest);
3748
3749retry:
3750	/* Wait to break both inodes' layouts before we start locking. */
3751	error = break_layout(src, true);
3752	if (error)
3753		return error;
3754	if (src != dest) {
3755		error = break_layout(dest, true);
3756		if (error)
3757			return error;
 
3758	}
 
 
 
 
 
 
 
 
 
 
 
 
3759
3760	/* Lock one inode and make sure nobody got in and leased it. */
3761	inode_lock(src);
3762	error = break_layout(src, false);
3763	if (error) {
3764		inode_unlock(src);
3765		if (error == -EWOULDBLOCK)
3766			goto retry;
3767		return error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3768	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3769
3770	if (src == dest)
3771		return 0;
 
3772
3773	/* Lock the other inode and make sure nobody got in and leased it. */
3774	inode_lock_nested(dest, I_MUTEX_NONDIR2);
3775	error = break_layout(dest, false);
3776	if (error) {
3777		inode_unlock(src);
3778		inode_unlock(dest);
3779		if (error == -EWOULDBLOCK)
3780			goto retry;
3781		return error;
3782	}
3783
3784	return 0;
3785}
3786
3787/*
3788 * Lock two inodes so that userspace cannot initiate I/O via file syscalls or
3789 * mmap activity.
3790 */
3791int
3792xfs_ilock2_io_mmap(
3793	struct xfs_inode	*ip1,
3794	struct xfs_inode	*ip2)
3795{
3796	int			ret;
3797
3798	ret = xfs_iolock_two_inodes_and_break_layout(VFS_I(ip1), VFS_I(ip2));
3799	if (ret)
3800		return ret;
3801	if (ip1 == ip2)
3802		xfs_ilock(ip1, XFS_MMAPLOCK_EXCL);
3803	else
3804		xfs_lock_two_inodes(ip1, XFS_MMAPLOCK_EXCL,
3805				    ip2, XFS_MMAPLOCK_EXCL);
3806	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3807}
3808
3809/* Unlock both inodes to allow IO and mmap activity. */
 
 
 
 
 
 
3810void
3811xfs_iunlock2_io_mmap(
3812	struct xfs_inode	*ip1,
3813	struct xfs_inode	*ip2)
3814{
3815	bool			same_inode = (ip1 == ip2);
3816
3817	xfs_iunlock(ip2, XFS_MMAPLOCK_EXCL);
3818	if (!same_inode)
3819		xfs_iunlock(ip1, XFS_MMAPLOCK_EXCL);
3820	inode_unlock(VFS_I(ip2));
3821	if (!same_inode)
3822		inode_unlock(VFS_I(ip1));
 
3823}