Linux Audio

Check our new training course

Loading...
v3.1
 
   1/*
   2 *  linux/fs/ext4/inode.c
   3 *
   4 * Copyright (C) 1992, 1993, 1994, 1995
   5 * Remy Card (card@masi.ibp.fr)
   6 * Laboratoire MASI - Institut Blaise Pascal
   7 * Universite Pierre et Marie Curie (Paris VI)
   8 *
   9 *  from
  10 *
  11 *  linux/fs/minix/inode.c
  12 *
  13 *  Copyright (C) 1991, 1992  Linus Torvalds
  14 *
  15 *  64-bit file support on 64-bit platforms by Jakub Jelinek
  16 *	(jj@sunsite.ms.mff.cuni.cz)
  17 *
  18 *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
  19 */
  20
  21#include <linux/module.h>
  22#include <linux/fs.h>
 
  23#include <linux/time.h>
  24#include <linux/jbd2.h>
  25#include <linux/highuid.h>
  26#include <linux/pagemap.h>
 
  27#include <linux/quotaops.h>
  28#include <linux/string.h>
  29#include <linux/buffer_head.h>
  30#include <linux/writeback.h>
  31#include <linux/pagevec.h>
  32#include <linux/mpage.h>
  33#include <linux/namei.h>
  34#include <linux/uio.h>
  35#include <linux/bio.h>
  36#include <linux/workqueue.h>
  37#include <linux/kernel.h>
  38#include <linux/printk.h>
  39#include <linux/slab.h>
  40#include <linux/ratelimit.h>
 
 
  41
  42#include "ext4_jbd2.h"
  43#include "xattr.h"
  44#include "acl.h"
  45#include "ext4_extents.h"
  46#include "truncate.h"
  47
  48#include <trace/events/ext4.h>
  49
  50#define MPAGE_DA_EXTENT_TAIL 0x01
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  51
  52static inline int ext4_begin_ordered_truncate(struct inode *inode,
  53					      loff_t new_size)
  54{
  55	trace_ext4_begin_ordered_truncate(inode, new_size);
  56	/*
  57	 * If jinode is zero, then we never opened the file for
  58	 * writing, so there's no need to call
  59	 * jbd2_journal_begin_ordered_truncate() since there's no
  60	 * outstanding writes we need to flush.
  61	 */
  62	if (!EXT4_I(inode)->jinode)
  63		return 0;
  64	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
  65						   EXT4_I(inode)->jinode,
  66						   new_size);
  67}
  68
  69static void ext4_invalidatepage(struct page *page, unsigned long offset);
  70static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
  71				   struct buffer_head *bh_result, int create);
  72static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
  73static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
  74static int __ext4_journalled_writepage(struct page *page, unsigned int len);
  75static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
  76
  77/*
  78 * Test whether an inode is a fast symlink.
 
  79 */
  80static int ext4_inode_is_fast_symlink(struct inode *inode)
  81{
  82	int ea_blocks = EXT4_I(inode)->i_file_acl ?
  83		(inode->i_sb->s_blocksize >> 9) : 0;
  84
  85	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
  86}
  87
  88/*
  89 * Restart the transaction associated with *handle.  This does a commit,
  90 * so before we call here everything must be consistently dirtied against
  91 * this transaction.
  92 */
  93int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
  94				 int nblocks)
  95{
  96	int ret;
 
 
  97
  98	/*
  99	 * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
 100	 * moment, get_block can be called only for blocks inside i_size since
 101	 * page cache has been already dropped and writes are blocked by
 102	 * i_mutex. So we can safely drop the i_data_sem here.
 103	 */
 104	BUG_ON(EXT4_JOURNAL(inode) == NULL);
 105	jbd_debug(2, "restarting handle %p\n", handle);
 106	up_write(&EXT4_I(inode)->i_data_sem);
 107	ret = ext4_journal_restart(handle, nblocks);
 108	down_write(&EXT4_I(inode)->i_data_sem);
 109	ext4_discard_preallocations(inode);
 110
 111	return ret;
 
 
 
 112}
 113
 114/*
 115 * Called at the last iput() if i_nlink is zero.
 116 */
 117void ext4_evict_inode(struct inode *inode)
 118{
 119	handle_t *handle;
 120	int err;
 
 
 
 
 
 
 
 
 121
 122	trace_ext4_evict_inode(inode);
 123
 124	ext4_ioend_wait(inode);
 125
 126	if (inode->i_nlink) {
 127		/*
 128		 * When journalling data dirty buffers are tracked only in the
 129		 * journal. So although mm thinks everything is clean and
 130		 * ready for reaping the inode might still have some pages to
 131		 * write in the running transaction or waiting to be
 132		 * checkpointed. Thus calling jbd2_journal_invalidatepage()
 133		 * (via truncate_inode_pages()) to discard these buffers can
 134		 * cause data loss. Also even if we did not discard these
 135		 * buffers, we would have no way to find them after the inode
 136		 * is reaped and thus user could see stale data if he tries to
 137		 * read them before the transaction is checkpointed. So be
 138		 * careful and force everything to disk here... We use
 139		 * ei->i_datasync_tid to store the newest transaction
 140		 * containing inode's data.
 141		 *
 142		 * Note that directories do not have this problem because they
 143		 * don't use page cache.
 144		 */
 145		if (ext4_should_journal_data(inode) &&
 146		    (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
 147			journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
 148			tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
 149
 150			jbd2_log_start_commit(journal, commit_tid);
 151			jbd2_log_wait_commit(journal, commit_tid);
 152			filemap_write_and_wait(&inode->i_data);
 153		}
 154		truncate_inode_pages(&inode->i_data, 0);
 155		goto no_delete;
 156	}
 157
 158	if (!is_bad_inode(inode))
 159		dquot_initialize(inode);
 
 160
 161	if (ext4_should_order_data(inode))
 162		ext4_begin_ordered_truncate(inode, 0);
 163	truncate_inode_pages(&inode->i_data, 0);
 164
 165	if (is_bad_inode(inode))
 166		goto no_delete;
 
 
 
 
 
 
 
 167
 168	handle = ext4_journal_start(inode, ext4_blocks_for_truncate(inode)+3);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 169	if (IS_ERR(handle)) {
 170		ext4_std_error(inode->i_sb, PTR_ERR(handle));
 171		/*
 172		 * If we're going to skip the normal cleanup, we still need to
 173		 * make sure that the in-core orphan linked list is properly
 174		 * cleaned up.
 175		 */
 176		ext4_orphan_del(NULL, inode);
 
 
 177		goto no_delete;
 178	}
 179
 180	if (IS_SYNC(inode))
 181		ext4_handle_sync(handle);
 
 
 
 
 
 
 
 
 
 
 182	inode->i_size = 0;
 183	err = ext4_mark_inode_dirty(handle, inode);
 184	if (err) {
 185		ext4_warning(inode->i_sb,
 186			     "couldn't mark inode dirty (err %d)", err);
 187		goto stop_handle;
 188	}
 189	if (inode->i_blocks)
 190		ext4_truncate(inode);
 191
 192	/*
 193	 * ext4_ext_truncate() doesn't reserve any slop when it
 194	 * restarts journal transactions; therefore there may not be
 195	 * enough credits left in the handle to remove the inode from
 196	 * the orphan list and set the dtime field.
 197	 */
 198	if (!ext4_handle_has_enough_credits(handle, 3)) {
 199		err = ext4_journal_extend(handle, 3);
 200		if (err > 0)
 201			err = ext4_journal_restart(handle, 3);
 202		if (err != 0) {
 203			ext4_warning(inode->i_sb,
 204				     "couldn't extend journal (err %d)", err);
 205		stop_handle:
 206			ext4_journal_stop(handle);
 207			ext4_orphan_del(NULL, inode);
 208			goto no_delete;
 209		}
 210	}
 211
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 212	/*
 213	 * Kill off the orphan record which ext4_truncate created.
 214	 * AKPM: I think this can be inside the above `if'.
 215	 * Note that ext4_orphan_del() has to be able to cope with the
 216	 * deletion of a non-existent orphan - this is because we don't
 217	 * know if ext4_truncate() actually created an orphan record.
 218	 * (Well, we could do this if we need to, but heck - it works)
 219	 */
 220	ext4_orphan_del(handle, inode);
 221	EXT4_I(inode)->i_dtime	= get_seconds();
 222
 223	/*
 224	 * One subtle ordering requirement: if anything has gone wrong
 225	 * (transaction abort, IO errors, whatever), then we can still
 226	 * do these next steps (the fs will already have been marked as
 227	 * having errors), but we can't free the inode if the mark_dirty
 228	 * fails.
 229	 */
 230	if (ext4_mark_inode_dirty(handle, inode))
 231		/* If that failed, just do the required in-core inode clear. */
 232		ext4_clear_inode(inode);
 233	else
 234		ext4_free_inode(handle, inode);
 235	ext4_journal_stop(handle);
 
 
 
 236	return;
 237no_delete:
 
 
 
 
 
 
 
 
 238	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
 239}
 240
 241#ifdef CONFIG_QUOTA
 242qsize_t *ext4_get_reserved_space(struct inode *inode)
 243{
 244	return &EXT4_I(inode)->i_reserved_quota;
 245}
 246#endif
 247
 248/*
 249 * Calculate the number of metadata blocks need to reserve
 250 * to allocate a block located at @lblock
 251 */
 252static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
 253{
 254	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
 255		return ext4_ext_calc_metadata_amount(inode, lblock);
 256
 257	return ext4_ind_calc_metadata_amount(inode, lblock);
 258}
 259
 260/*
 261 * Called with i_data_sem down, which is important since we can call
 262 * ext4_discard_preallocations() from here.
 263 */
 264void ext4_da_update_reserve_space(struct inode *inode,
 265					int used, int quota_claim)
 266{
 267	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
 268	struct ext4_inode_info *ei = EXT4_I(inode);
 269
 270	spin_lock(&ei->i_block_reservation_lock);
 271	trace_ext4_da_update_reserve_space(inode, used);
 272	if (unlikely(used > ei->i_reserved_data_blocks)) {
 273		ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
 274			 "with only %d reserved data blocks\n",
 275			 __func__, inode->i_ino, used,
 276			 ei->i_reserved_data_blocks);
 277		WARN_ON(1);
 278		used = ei->i_reserved_data_blocks;
 279	}
 280
 281	/* Update per-inode reservations */
 282	ei->i_reserved_data_blocks -= used;
 283	ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
 284	percpu_counter_sub(&sbi->s_dirtyblocks_counter,
 285			   used + ei->i_allocated_meta_blocks);
 286	ei->i_allocated_meta_blocks = 0;
 287
 288	if (ei->i_reserved_data_blocks == 0) {
 289		/*
 290		 * We can release all of the reserved metadata blocks
 291		 * only when we have written all of the delayed
 292		 * allocation blocks.
 293		 */
 294		percpu_counter_sub(&sbi->s_dirtyblocks_counter,
 295				   ei->i_reserved_meta_blocks);
 296		ei->i_reserved_meta_blocks = 0;
 297		ei->i_da_metadata_calc_len = 0;
 298	}
 299	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
 300
 301	/* Update quota subsystem for data blocks */
 302	if (quota_claim)
 303		dquot_claim_block(inode, used);
 304	else {
 305		/*
 306		 * We did fallocate with an offset that is already delayed
 307		 * allocated. So on delayed allocated writeback we should
 308		 * not re-claim the quota for fallocated blocks.
 309		 */
 310		dquot_release_reservation_block(inode, used);
 311	}
 312
 313	/*
 314	 * If we have done all the pending block allocations and if
 315	 * there aren't any writers on the inode, we can discard the
 316	 * inode's preallocations.
 317	 */
 318	if ((ei->i_reserved_data_blocks == 0) &&
 319	    (atomic_read(&inode->i_writecount) == 0))
 320		ext4_discard_preallocations(inode);
 321}
 322
 323static int __check_block_validity(struct inode *inode, const char *func,
 324				unsigned int line,
 325				struct ext4_map_blocks *map)
 326{
 327	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
 328				   map->m_len)) {
 
 
 
 329		ext4_error_inode(inode, func, line, map->m_pblk,
 330				 "lblock %lu mapped to illegal pblock "
 331				 "(length %d)", (unsigned long) map->m_lblk,
 332				 map->m_len);
 333		return -EIO;
 334	}
 335	return 0;
 336}
 337
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 338#define check_block_validity(inode, map)	\
 339	__check_block_validity((inode), __func__, __LINE__, (map))
 340
 341/*
 342 * Return the number of contiguous dirty pages in a given inode
 343 * starting at page frame idx.
 344 */
 345static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
 346				    unsigned int max_pages)
 347{
 348	struct address_space *mapping = inode->i_mapping;
 349	pgoff_t	index;
 350	struct pagevec pvec;
 351	pgoff_t num = 0;
 352	int i, nr_pages, done = 0;
 353
 354	if (max_pages == 0)
 355		return 0;
 356	pagevec_init(&pvec, 0);
 357	while (!done) {
 358		index = idx;
 359		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
 360					      PAGECACHE_TAG_DIRTY,
 361					      (pgoff_t)PAGEVEC_SIZE);
 362		if (nr_pages == 0)
 363			break;
 364		for (i = 0; i < nr_pages; i++) {
 365			struct page *page = pvec.pages[i];
 366			struct buffer_head *bh, *head;
 367
 368			lock_page(page);
 369			if (unlikely(page->mapping != mapping) ||
 370			    !PageDirty(page) ||
 371			    PageWriteback(page) ||
 372			    page->index != idx) {
 373				done = 1;
 374				unlock_page(page);
 375				break;
 376			}
 377			if (page_has_buffers(page)) {
 378				bh = head = page_buffers(page);
 379				do {
 380					if (!buffer_delay(bh) &&
 381					    !buffer_unwritten(bh))
 382						done = 1;
 383					bh = bh->b_this_page;
 384				} while (!done && (bh != head));
 385			}
 386			unlock_page(page);
 387			if (done)
 388				break;
 389			idx++;
 390			num++;
 391			if (num >= max_pages) {
 392				done = 1;
 393				break;
 394			}
 395		}
 396		pagevec_release(&pvec);
 397	}
 398	return num;
 399}
 
 400
 401/*
 402 * The ext4_map_blocks() function tries to look up the requested blocks,
 403 * and returns if the blocks are already mapped.
 404 *
 405 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
 406 * and store the allocated blocks in the result buffer head and mark it
 407 * mapped.
 408 *
 409 * If file type is extents based, it will call ext4_ext_map_blocks(),
 410 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
 411 * based files
 412 *
 413 * On success, it returns the number of blocks being mapped or allocate.
 414 * if create==0 and the blocks are pre-allocated and uninitialized block,
 415 * the result buffer head is unmapped. If the create ==1, it will make sure
 416 * the buffer head is mapped.
 417 *
 418 * It returns 0 if plain look up failed (blocks have not been allocated), in
 419 * that casem, buffer head is unmapped
 
 420 *
 421 * It returns the error in case of allocation failure.
 422 */
 423int ext4_map_blocks(handle_t *handle, struct inode *inode,
 424		    struct ext4_map_blocks *map, int flags)
 425{
 
 426	int retval;
 
 
 
 
 
 
 427
 428	map->m_flags = 0;
 429	ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
 430		  "logical block %lu\n", inode->i_ino, flags, map->m_len,
 431		  (unsigned long) map->m_lblk);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 432	/*
 433	 * Try to see if we can get the block without requesting a new
 434	 * file system block.
 435	 */
 436	down_read((&EXT4_I(inode)->i_data_sem));
 437	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
 438		retval = ext4_ext_map_blocks(handle, inode, map, 0);
 439	} else {
 440		retval = ext4_ind_map_blocks(handle, inode, map, 0);
 441	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 442	up_read((&EXT4_I(inode)->i_data_sem));
 443
 
 444	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
 445		int ret = check_block_validity(inode, map);
 446		if (ret != 0)
 447			return ret;
 448	}
 449
 450	/* If it is only a block(s) look up */
 451	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
 452		return retval;
 453
 454	/*
 455	 * Returns if the blocks have already allocated
 456	 *
 457	 * Note that if blocks have been preallocated
 458	 * ext4_ext_get_block() returns th create = 0
 459	 * with buffer head unmapped.
 460	 */
 461	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
 462		return retval;
 
 
 
 
 
 
 463
 464	/*
 465	 * When we call get_blocks without the create flag, the
 466	 * BH_Unwritten flag could have gotten set if the blocks
 467	 * requested were part of a uninitialized extent.  We need to
 468	 * clear this flag now that we are committed to convert all or
 469	 * part of the uninitialized extent to be an initialized
 470	 * extent.  This is because we need to avoid the combination
 471	 * of BH_Unwritten and BH_Mapped flags being simultaneously
 472	 * set on the buffer_head.
 473	 */
 474	map->m_flags &= ~EXT4_MAP_UNWRITTEN;
 475
 476	/*
 477	 * New blocks allocate and/or writing to uninitialized extent
 478	 * will possibly result in updating i_data, so we take
 479	 * the write lock of i_data_sem, and call get_blocks()
 480	 * with create == 1 flag.
 481	 */
 482	down_write((&EXT4_I(inode)->i_data_sem));
 483
 484	/*
 485	 * if the caller is from delayed allocation writeout path
 486	 * we have already reserved fs blocks for allocation
 487	 * let the underlying get_block() function know to
 488	 * avoid double accounting
 489	 */
 490	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
 491		ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
 492	/*
 493	 * We need to check for EXT4 here because migrate
 494	 * could have changed the inode type in between
 495	 */
 496	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
 497		retval = ext4_ext_map_blocks(handle, inode, map, flags);
 498	} else {
 499		retval = ext4_ind_map_blocks(handle, inode, map, flags);
 500
 501		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
 502			/*
 503			 * We allocated new blocks which will result in
 504			 * i_data's format changing.  Force the migrate
 505			 * to fail by clearing migrate flags
 506			 */
 507			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
 508		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 509
 510		/*
 511		 * Update reserved blocks/metadata blocks after successful
 512		 * block allocation which had been deferred till now. We don't
 513		 * support fallocate for non extent files. So we can update
 514		 * reserve space here.
 515		 */
 516		if ((retval > 0) &&
 517			(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
 518			ext4_da_update_reserve_space(inode, retval, 1);
 
 
 
 
 
 
 
 
 
 
 
 519	}
 520	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
 521		ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
 522
 
 523	up_write((&EXT4_I(inode)->i_data_sem));
 524	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
 525		int ret = check_block_validity(inode, map);
 526		if (ret != 0)
 527			return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 528	}
 
 
 
 
 
 
 529	return retval;
 530}
 531
 532/* Maximum number of blocks we map for direct IO at once. */
 533#define DIO_MAX_BLOCKS 4096
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 534
 535static int _ext4_get_block(struct inode *inode, sector_t iblock,
 536			   struct buffer_head *bh, int flags)
 537{
 538	handle_t *handle = ext4_journal_current_handle();
 539	struct ext4_map_blocks map;
 540	int ret = 0, started = 0;
 541	int dio_credits;
 
 
 542
 543	map.m_lblk = iblock;
 544	map.m_len = bh->b_size >> inode->i_blkbits;
 545
 546	if (flags && !handle) {
 547		/* Direct IO write... */
 548		if (map.m_len > DIO_MAX_BLOCKS)
 549			map.m_len = DIO_MAX_BLOCKS;
 550		dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
 551		handle = ext4_journal_start(inode, dio_credits);
 552		if (IS_ERR(handle)) {
 553			ret = PTR_ERR(handle);
 554			return ret;
 555		}
 556		started = 1;
 557	}
 558
 559	ret = ext4_map_blocks(handle, inode, &map, flags);
 560	if (ret > 0) {
 561		map_bh(bh, inode->i_sb, map.m_pblk);
 562		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
 563		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
 564		ret = 0;
 
 
 
 565	}
 566	if (started)
 567		ext4_journal_stop(handle);
 568	return ret;
 569}
 570
 571int ext4_get_block(struct inode *inode, sector_t iblock,
 572		   struct buffer_head *bh, int create)
 573{
 574	return _ext4_get_block(inode, iblock, bh,
 575			       create ? EXT4_GET_BLOCKS_CREATE : 0);
 576}
 577
 578/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 579 * `handle' can be NULL if create is zero
 580 */
 581struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
 582				ext4_lblk_t block, int create, int *errp)
 583{
 584	struct ext4_map_blocks map;
 585	struct buffer_head *bh;
 586	int fatal = 0, err;
 
 
 587
 588	J_ASSERT(handle != NULL || create == 0);
 
 
 589
 590	map.m_lblk = block;
 591	map.m_len = 1;
 592	err = ext4_map_blocks(handle, inode, &map,
 593			      create ? EXT4_GET_BLOCKS_CREATE : 0);
 594
 
 
 595	if (err < 0)
 596		*errp = err;
 597	if (err <= 0)
 598		return NULL;
 599	*errp = 0;
 600
 601	bh = sb_getblk(inode->i_sb, map.m_pblk);
 602	if (!bh) {
 603		*errp = -EIO;
 604		return NULL;
 605	}
 606	if (map.m_flags & EXT4_MAP_NEW) {
 607		J_ASSERT(create != 0);
 608		J_ASSERT(handle != NULL);
 
 609
 610		/*
 611		 * Now that we do not always journal data, we should
 612		 * keep in mind whether this should always journal the
 613		 * new buffer as metadata.  For now, regular file
 614		 * writes use ext4_get_block instead, so it's not a
 615		 * problem.
 616		 */
 617		lock_buffer(bh);
 618		BUFFER_TRACE(bh, "call get_create_access");
 619		fatal = ext4_journal_get_create_access(handle, bh);
 620		if (!fatal && !buffer_uptodate(bh)) {
 
 
 
 
 
 621			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
 622			set_buffer_uptodate(bh);
 623		}
 624		unlock_buffer(bh);
 625		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
 626		err = ext4_handle_dirty_metadata(handle, inode, bh);
 627		if (!fatal)
 628			fatal = err;
 629	} else {
 630		BUFFER_TRACE(bh, "not a new buffer");
 631	}
 632	if (fatal) {
 633		*errp = fatal;
 634		brelse(bh);
 635		bh = NULL;
 636	}
 637	return bh;
 
 
 
 638}
 639
 640struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
 641			       ext4_lblk_t block, int create, int *err)
 642{
 643	struct buffer_head *bh;
 
 644
 645	bh = ext4_getblk(handle, inode, block, create, err);
 646	if (!bh)
 647		return bh;
 648	if (buffer_uptodate(bh))
 649		return bh;
 650	ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
 651	wait_on_buffer(bh);
 652	if (buffer_uptodate(bh))
 653		return bh;
 654	put_bh(bh);
 655	*err = -EIO;
 656	return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 657}
 658
 659static int walk_page_buffers(handle_t *handle,
 660			     struct buffer_head *head,
 661			     unsigned from,
 662			     unsigned to,
 663			     int *partial,
 664			     int (*fn)(handle_t *handle,
 665				       struct buffer_head *bh))
 666{
 667	struct buffer_head *bh;
 668	unsigned block_start, block_end;
 669	unsigned blocksize = head->b_size;
 670	int err, ret = 0;
 671	struct buffer_head *next;
 672
 673	for (bh = head, block_start = 0;
 674	     ret == 0 && (bh != head || !block_start);
 675	     block_start = block_end, bh = next) {
 676		next = bh->b_this_page;
 677		block_end = block_start + blocksize;
 678		if (block_end <= from || block_start >= to) {
 679			if (partial && !buffer_uptodate(bh))
 680				*partial = 1;
 681			continue;
 682		}
 683		err = (*fn)(handle, bh);
 684		if (!ret)
 685			ret = err;
 686	}
 687	return ret;
 688}
 689
 690/*
 691 * To preserve ordering, it is essential that the hole instantiation and
 692 * the data write be encapsulated in a single transaction.  We cannot
 693 * close off a transaction and start a new one between the ext4_get_block()
 694 * and the commit_write().  So doing the jbd2_journal_start at the start of
 695 * prepare_write() is the right place.
 696 *
 697 * Also, this function can nest inside ext4_writepage() ->
 698 * block_write_full_page(). In that case, we *know* that ext4_writepage()
 699 * has generated enough buffer credits to do the whole page.  So we won't
 700 * block on the journal in that case, which is good, because the caller may
 701 * be PF_MEMALLOC.
 702 *
 703 * By accident, ext4 can be reentered when a transaction is open via
 704 * quota file writes.  If we were to commit the transaction while thus
 705 * reentered, there can be a deadlock - we would be holding a quota
 706 * lock, and the commit would never complete if another thread had a
 707 * transaction open and was blocking on the quota lock - a ranking
 708 * violation.
 709 *
 710 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
 711 * will _not_ run commit under these circumstances because handle->h_ref
 712 * is elevated.  We'll still have enough credits for the tiny quotafile
 713 * write.
 714 */
 715static int do_journal_get_write_access(handle_t *handle,
 716				       struct buffer_head *bh)
 
 
 
 
 
 
 717{
 718	int dirty = buffer_dirty(bh);
 719	int ret;
 720
 721	if (!buffer_mapped(bh) || buffer_freed(bh))
 722		return 0;
 723	/*
 724	 * __block_write_begin() could have dirtied some buffers. Clean
 725	 * the dirty bit as jbd2_journal_get_write_access() could complain
 726	 * otherwise about fs integrity issues. Setting of the dirty bit
 727	 * by __block_write_begin() isn't a real problem here as we clear
 728	 * the bit before releasing a page lock and thus writeback cannot
 729	 * ever write the buffer.
 730	 */
 731	if (dirty)
 732		clear_buffer_dirty(bh);
 733	ret = ext4_journal_get_write_access(handle, bh);
 
 
 734	if (!ret && dirty)
 735		ret = ext4_handle_dirty_metadata(handle, NULL, bh);
 736	return ret;
 737}
 738
 739static int ext4_get_block_write(struct inode *inode, sector_t iblock,
 740		   struct buffer_head *bh_result, int create);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 741static int ext4_write_begin(struct file *file, struct address_space *mapping,
 742			    loff_t pos, unsigned len, unsigned flags,
 743			    struct page **pagep, void **fsdata)
 744{
 745	struct inode *inode = mapping->host;
 746	int ret, needed_blocks;
 747	handle_t *handle;
 748	int retries = 0;
 749	struct page *page;
 750	pgoff_t index;
 751	unsigned from, to;
 752
 753	trace_ext4_write_begin(inode, pos, len, flags);
 
 
 
 754	/*
 755	 * Reserve one block more for addition to orphan list in case
 756	 * we allocate blocks but write fails for some reason
 757	 */
 758	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
 759	index = pos >> PAGE_CACHE_SHIFT;
 760	from = pos & (PAGE_CACHE_SIZE - 1);
 761	to = from + len;
 762
 763retry:
 764	handle = ext4_journal_start(inode, needed_blocks);
 765	if (IS_ERR(handle)) {
 766		ret = PTR_ERR(handle);
 767		goto out;
 
 
 768	}
 769
 770	/* We cannot recurse into the filesystem as the transaction is already
 771	 * started */
 772	flags |= AOP_FLAG_NOFS;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 773
 774	page = grab_cache_page_write_begin(mapping, index, flags);
 775	if (!page) {
 
 
 
 
 
 
 
 
 
 
 776		ext4_journal_stop(handle);
 777		ret = -ENOMEM;
 778		goto out;
 779	}
 780	*pagep = page;
 
 781
 
 782	if (ext4_should_dioread_nolock(inode))
 783		ret = __block_write_begin(page, pos, len, ext4_get_block_write);
 
 784	else
 785		ret = __block_write_begin(page, pos, len, ext4_get_block);
 786
 
 
 
 
 
 
 787	if (!ret && ext4_should_journal_data(inode)) {
 788		ret = walk_page_buffers(handle, page_buffers(page),
 789				from, to, NULL, do_journal_get_write_access);
 
 790	}
 791
 792	if (ret) {
 793		unlock_page(page);
 794		page_cache_release(page);
 
 
 795		/*
 796		 * __block_write_begin may have instantiated a few blocks
 797		 * outside i_size.  Trim these off again. Don't need
 798		 * i_size_read because we hold i_mutex.
 799		 *
 800		 * Add inode to orphan list in case we crash before
 801		 * truncate finishes
 802		 */
 803		if (pos + len > inode->i_size && ext4_can_truncate(inode))
 804			ext4_orphan_add(handle, inode);
 805
 806		ext4_journal_stop(handle);
 807		if (pos + len > inode->i_size) {
 808			ext4_truncate_failed_write(inode);
 809			/*
 810			 * If truncate failed early the inode might
 811			 * still be on the orphan list; we need to
 812			 * make sure the inode is removed from the
 813			 * orphan list in that case.
 814			 */
 815			if (inode->i_nlink)
 816				ext4_orphan_del(NULL, inode);
 817		}
 818	}
 819
 820	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
 821		goto retry;
 822out:
 
 
 
 
 823	return ret;
 824}
 825
 826/* For write_end() in data=journal mode */
 827static int write_end_fn(handle_t *handle, struct buffer_head *bh)
 
 828{
 
 829	if (!buffer_mapped(bh) || buffer_freed(bh))
 830		return 0;
 831	set_buffer_uptodate(bh);
 832	return ext4_handle_dirty_metadata(handle, NULL, bh);
 833}
 834
 835static int ext4_generic_write_end(struct file *file,
 836				  struct address_space *mapping,
 837				  loff_t pos, unsigned len, unsigned copied,
 838				  struct page *page, void *fsdata)
 839{
 840	int i_size_changed = 0;
 841	struct inode *inode = mapping->host;
 842	handle_t *handle = ext4_journal_current_handle();
 843
 844	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
 845
 846	/*
 847	 * No need to use i_size_read() here, the i_size
 848	 * cannot change under us because we hold i_mutex.
 849	 *
 850	 * But it's important to update i_size while still holding page lock:
 851	 * page writeout could otherwise come in and zero beyond i_size.
 852	 */
 853	if (pos + copied > inode->i_size) {
 854		i_size_write(inode, pos + copied);
 855		i_size_changed = 1;
 856	}
 857
 858	if (pos + copied >  EXT4_I(inode)->i_disksize) {
 859		/* We need to mark inode dirty even if
 860		 * new_i_size is less that inode->i_size
 861		 * bu greater than i_disksize.(hint delalloc)
 862		 */
 863		ext4_update_i_disksize(inode, (pos + copied));
 864		i_size_changed = 1;
 865	}
 866	unlock_page(page);
 867	page_cache_release(page);
 868
 869	/*
 870	 * Don't mark the inode dirty under page lock. First, it unnecessarily
 871	 * makes the holding time of page lock longer. Second, it forces lock
 872	 * ordering of page lock and transaction start for journaling
 873	 * filesystems.
 874	 */
 875	if (i_size_changed)
 876		ext4_mark_inode_dirty(handle, inode);
 877
 878	return copied;
 879}
 880
 881/*
 882 * We need to pick up the new inode size which generic_commit_write gave us
 883 * `file' can be NULL - eg, when called from page_symlink().
 884 *
 885 * ext4 never places buffers on inode->i_mapping->private_list.  metadata
 886 * buffers are managed internally.
 887 */
 888static int ext4_ordered_write_end(struct file *file,
 889				  struct address_space *mapping,
 890				  loff_t pos, unsigned len, unsigned copied,
 891				  struct page *page, void *fsdata)
 892{
 
 893	handle_t *handle = ext4_journal_current_handle();
 894	struct inode *inode = mapping->host;
 
 895	int ret = 0, ret2;
 
 
 896
 897	trace_ext4_ordered_write_end(inode, pos, len, copied);
 898	ret = ext4_jbd2_file_inode(handle, inode);
 899
 900	if (ret == 0) {
 901		ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
 902							page, fsdata);
 903		copied = ret2;
 904		if (pos + len > inode->i_size && ext4_can_truncate(inode))
 905			/* if we have allocated more blocks and copied
 906			 * less. We will have blocks allocated outside
 907			 * inode->i_size. So truncate them
 908			 */
 909			ext4_orphan_add(handle, inode);
 910		if (ret2 < 0)
 911			ret = ret2;
 912	}
 913	ret2 = ext4_journal_stop(handle);
 914	if (!ret)
 915		ret = ret2;
 916
 917	if (pos + len > inode->i_size) {
 918		ext4_truncate_failed_write(inode);
 919		/*
 920		 * If truncate failed early the inode might still be
 921		 * on the orphan list; we need to make sure the inode
 922		 * is removed from the orphan list in that case.
 923		 */
 924		if (inode->i_nlink)
 925			ext4_orphan_del(NULL, inode);
 926	}
 927
 928
 929	return ret ? ret : copied;
 930}
 
 
 931
 932static int ext4_writeback_write_end(struct file *file,
 933				    struct address_space *mapping,
 934				    loff_t pos, unsigned len, unsigned copied,
 935				    struct page *page, void *fsdata)
 936{
 937	handle_t *handle = ext4_journal_current_handle();
 938	struct inode *inode = mapping->host;
 939	int ret = 0, ret2;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 940
 941	trace_ext4_writeback_write_end(inode, pos, len, copied);
 942	ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
 943							page, fsdata);
 944	copied = ret2;
 945	if (pos + len > inode->i_size && ext4_can_truncate(inode))
 946		/* if we have allocated more blocks and copied
 947		 * less. We will have blocks allocated outside
 948		 * inode->i_size. So truncate them
 949		 */
 950		ext4_orphan_add(handle, inode);
 951
 952	if (ret2 < 0)
 953		ret = ret2;
 954
 955	ret2 = ext4_journal_stop(handle);
 956	if (!ret)
 957		ret = ret2;
 958
 959	if (pos + len > inode->i_size) {
 960		ext4_truncate_failed_write(inode);
 961		/*
 962		 * If truncate failed early the inode might still be
 963		 * on the orphan list; we need to make sure the inode
 964		 * is removed from the orphan list in that case.
 965		 */
 966		if (inode->i_nlink)
 967			ext4_orphan_del(NULL, inode);
 968	}
 969
 970	return ret ? ret : copied;
 971}
 972
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 973static int ext4_journalled_write_end(struct file *file,
 974				     struct address_space *mapping,
 975				     loff_t pos, unsigned len, unsigned copied,
 976				     struct page *page, void *fsdata)
 977{
 
 978	handle_t *handle = ext4_journal_current_handle();
 979	struct inode *inode = mapping->host;
 
 980	int ret = 0, ret2;
 981	int partial = 0;
 982	unsigned from, to;
 983	loff_t new_i_size;
 
 984
 985	trace_ext4_journalled_write_end(inode, pos, len, copied);
 986	from = pos & (PAGE_CACHE_SIZE - 1);
 987	to = from + len;
 988
 989	BUG_ON(!ext4_handle_valid(handle));
 990
 991	if (copied < len) {
 992		if (!PageUptodate(page))
 993			copied = 0;
 994		page_zero_new_buffers(page, from+copied, to);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 995	}
 996
 997	ret = walk_page_buffers(handle, page_buffers(page), from,
 998				to, &partial, write_end_fn);
 999	if (!partial)
1000		SetPageUptodate(page);
1001	new_i_size = pos + copied;
1002	if (new_i_size > inode->i_size)
1003		i_size_write(inode, pos+copied);
1004	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1005	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1006	if (new_i_size > EXT4_I(inode)->i_disksize) {
1007		ext4_update_i_disksize(inode, new_i_size);
 
 
 
 
 
1008		ret2 = ext4_mark_inode_dirty(handle, inode);
1009		if (!ret)
1010			ret = ret2;
1011	}
1012
1013	unlock_page(page);
1014	page_cache_release(page);
1015	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1016		/* if we have allocated more blocks and copied
1017		 * less. We will have blocks allocated outside
1018		 * inode->i_size. So truncate them
1019		 */
1020		ext4_orphan_add(handle, inode);
1021
1022	ret2 = ext4_journal_stop(handle);
1023	if (!ret)
1024		ret = ret2;
1025	if (pos + len > inode->i_size) {
1026		ext4_truncate_failed_write(inode);
1027		/*
1028		 * If truncate failed early the inode might still be
1029		 * on the orphan list; we need to make sure the inode
1030		 * is removed from the orphan list in that case.
1031		 */
1032		if (inode->i_nlink)
1033			ext4_orphan_del(NULL, inode);
1034	}
1035
1036	return ret ? ret : copied;
1037}
1038
1039/*
1040 * Reserve a single block located at lblock
1041 */
1042static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1043{
1044	int retries = 0;
1045	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1046	struct ext4_inode_info *ei = EXT4_I(inode);
1047	unsigned long md_needed;
1048	int ret;
1049
1050	/*
1051	 * recalculate the amount of metadata blocks to reserve
1052	 * in order to allocate nrblocks
1053	 * worse case is one extent per block
1054	 */
1055repeat:
1056	spin_lock(&ei->i_block_reservation_lock);
1057	md_needed = ext4_calc_metadata_amount(inode, lblock);
1058	trace_ext4_da_reserve_space(inode, md_needed);
1059	spin_unlock(&ei->i_block_reservation_lock);
1060
1061	/*
1062	 * We will charge metadata quota at writeout time; this saves
1063	 * us from metadata over-estimation, though we may go over by
1064	 * a small amount in the end.  Here we just reserve for data.
1065	 */
1066	ret = dquot_reserve_block(inode, 1);
1067	if (ret)
1068		return ret;
1069	/*
1070	 * We do still charge estimated metadata to the sb though;
1071	 * we cannot afford to run out of free blocks.
1072	 */
1073	if (ext4_claim_free_blocks(sbi, md_needed + 1, 0)) {
1074		dquot_release_reservation_block(inode, 1);
1075		if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1076			yield();
1077			goto repeat;
1078		}
1079		return -ENOSPC;
1080	}
1081	spin_lock(&ei->i_block_reservation_lock);
1082	ei->i_reserved_data_blocks++;
1083	ei->i_reserved_meta_blocks += md_needed;
1084	spin_unlock(&ei->i_block_reservation_lock);
1085
1086	return 0;       /* success */
1087}
1088
1089static void ext4_da_release_space(struct inode *inode, int to_free)
1090{
1091	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1092	struct ext4_inode_info *ei = EXT4_I(inode);
1093
1094	if (!to_free)
1095		return;		/* Nothing to release, exit */
1096
1097	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1098
1099	trace_ext4_da_release_space(inode, to_free);
1100	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1101		/*
1102		 * if there aren't enough reserved blocks, then the
1103		 * counter is messed up somewhere.  Since this
1104		 * function is called from invalidate page, it's
1105		 * harmless to return without any action.
1106		 */
1107		ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
1108			 "ino %lu, to_free %d with only %d reserved "
1109			 "data blocks\n", inode->i_ino, to_free,
1110			 ei->i_reserved_data_blocks);
1111		WARN_ON(1);
1112		to_free = ei->i_reserved_data_blocks;
1113	}
1114	ei->i_reserved_data_blocks -= to_free;
1115
1116	if (ei->i_reserved_data_blocks == 0) {
1117		/*
1118		 * We can release all of the reserved metadata blocks
1119		 * only when we have written all of the delayed
1120		 * allocation blocks.
1121		 */
1122		percpu_counter_sub(&sbi->s_dirtyblocks_counter,
1123				   ei->i_reserved_meta_blocks);
1124		ei->i_reserved_meta_blocks = 0;
1125		ei->i_da_metadata_calc_len = 0;
1126	}
1127
1128	/* update fs dirty data blocks counter */
1129	percpu_counter_sub(&sbi->s_dirtyblocks_counter, to_free);
1130
1131	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1132
1133	dquot_release_reservation_block(inode, to_free);
1134}
1135
1136static void ext4_da_page_release_reservation(struct page *page,
1137					     unsigned long offset)
1138{
1139	int to_release = 0;
1140	struct buffer_head *head, *bh;
1141	unsigned int curr_off = 0;
1142
1143	head = page_buffers(page);
1144	bh = head;
1145	do {
1146		unsigned int next_off = curr_off + bh->b_size;
1147
1148		if ((offset <= curr_off) && (buffer_delay(bh))) {
1149			to_release++;
1150			clear_buffer_delay(bh);
1151		}
1152		curr_off = next_off;
1153	} while ((bh = bh->b_this_page) != head);
1154	ext4_da_release_space(page->mapping->host, to_release);
1155}
1156
1157/*
1158 * Delayed allocation stuff
1159 */
1160
1161/*
1162 * mpage_da_submit_io - walks through extent of pages and try to write
1163 * them with writepage() call back
1164 *
1165 * @mpd->inode: inode
1166 * @mpd->first_page: first page of the extent
1167 * @mpd->next_page: page after the last page of the extent
1168 *
1169 * By the time mpage_da_submit_io() is called we expect all blocks
1170 * to be allocated. this may be wrong if allocation failed.
1171 *
1172 * As pages are already locked by write_cache_pages(), we can't use it
1173 */
1174static int mpage_da_submit_io(struct mpage_da_data *mpd,
1175			      struct ext4_map_blocks *map)
1176{
1177	struct pagevec pvec;
1178	unsigned long index, end;
1179	int ret = 0, err, nr_pages, i;
1180	struct inode *inode = mpd->inode;
1181	struct address_space *mapping = inode->i_mapping;
1182	loff_t size = i_size_read(inode);
1183	unsigned int len, block_start;
1184	struct buffer_head *bh, *page_bufs = NULL;
1185	int journal_data = ext4_should_journal_data(inode);
1186	sector_t pblock = 0, cur_logical = 0;
1187	struct ext4_io_submit io_submit;
1188
1189	BUG_ON(mpd->next_page <= mpd->first_page);
1190	memset(&io_submit, 0, sizeof(io_submit));
1191	/*
1192	 * We need to start from the first_page to the next_page - 1
1193	 * to make sure we also write the mapped dirty buffer_heads.
1194	 * If we look at mpd->b_blocknr we would only be looking
1195	 * at the currently mapped buffer_heads.
1196	 */
1197	index = mpd->first_page;
1198	end = mpd->next_page - 1;
1199
1200	pagevec_init(&pvec, 0);
1201	while (index <= end) {
1202		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1203		if (nr_pages == 0)
1204			break;
1205		for (i = 0; i < nr_pages; i++) {
1206			int commit_write = 0, skip_page = 0;
1207			struct page *page = pvec.pages[i];
1208
1209			index = page->index;
1210			if (index > end)
1211				break;
1212
1213			if (index == size >> PAGE_CACHE_SHIFT)
1214				len = size & ~PAGE_CACHE_MASK;
1215			else
1216				len = PAGE_CACHE_SIZE;
1217			if (map) {
1218				cur_logical = index << (PAGE_CACHE_SHIFT -
1219							inode->i_blkbits);
1220				pblock = map->m_pblk + (cur_logical -
1221							map->m_lblk);
1222			}
1223			index++;
1224
1225			BUG_ON(!PageLocked(page));
1226			BUG_ON(PageWriteback(page));
1227
1228			/*
1229			 * If the page does not have buffers (for
1230			 * whatever reason), try to create them using
1231			 * __block_write_begin.  If this fails,
1232			 * skip the page and move on.
1233			 */
1234			if (!page_has_buffers(page)) {
1235				if (__block_write_begin(page, 0, len,
1236						noalloc_get_block_write)) {
1237				skip_page:
1238					unlock_page(page);
1239					continue;
1240				}
1241				commit_write = 1;
1242			}
1243
1244			bh = page_bufs = page_buffers(page);
1245			block_start = 0;
1246			do {
1247				if (!bh)
1248					goto skip_page;
1249				if (map && (cur_logical >= map->m_lblk) &&
1250				    (cur_logical <= (map->m_lblk +
1251						     (map->m_len - 1)))) {
1252					if (buffer_delay(bh)) {
1253						clear_buffer_delay(bh);
1254						bh->b_blocknr = pblock;
1255					}
1256					if (buffer_unwritten(bh) ||
1257					    buffer_mapped(bh))
1258						BUG_ON(bh->b_blocknr != pblock);
1259					if (map->m_flags & EXT4_MAP_UNINIT)
1260						set_buffer_uninit(bh);
1261					clear_buffer_unwritten(bh);
1262				}
1263
1264				/* skip page if block allocation undone */
1265				if (buffer_delay(bh) || buffer_unwritten(bh))
1266					skip_page = 1;
1267				bh = bh->b_this_page;
1268				block_start += bh->b_size;
1269				cur_logical++;
1270				pblock++;
1271			} while (bh != page_bufs);
1272
1273			if (skip_page)
1274				goto skip_page;
1275
1276			if (commit_write)
1277				/* mark the buffer_heads as dirty & uptodate */
1278				block_commit_write(page, 0, len);
1279
1280			clear_page_dirty_for_io(page);
1281			/*
1282			 * Delalloc doesn't support data journalling,
1283			 * but eventually maybe we'll lift this
1284			 * restriction.
1285			 */
1286			if (unlikely(journal_data && PageChecked(page)))
1287				err = __ext4_journalled_writepage(page, len);
1288			else if (test_opt(inode->i_sb, MBLK_IO_SUBMIT))
1289				err = ext4_bio_write_page(&io_submit, page,
1290							  len, mpd->wbc);
1291			else if (buffer_uninit(page_bufs)) {
1292				ext4_set_bh_endio(page_bufs, inode);
1293				err = block_write_full_page_endio(page,
1294					noalloc_get_block_write,
1295					mpd->wbc, ext4_end_io_buffer_write);
1296			} else
1297				err = block_write_full_page(page,
1298					noalloc_get_block_write, mpd->wbc);
1299
1300			if (!err)
1301				mpd->pages_written++;
1302			/*
1303			 * In error case, we have to continue because
1304			 * remaining pages are still locked
1305			 */
1306			if (ret == 0)
1307				ret = err;
1308		}
1309		pagevec_release(&pvec);
1310	}
1311	ext4_io_submit(&io_submit);
1312	return ret;
1313}
 
1314
1315static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
 
1316{
1317	int nr_pages, i;
1318	pgoff_t index, end;
1319	struct pagevec pvec;
1320	struct inode *inode = mpd->inode;
1321	struct address_space *mapping = inode->i_mapping;
1322
 
 
 
 
 
1323	index = mpd->first_page;
1324	end   = mpd->next_page - 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1325	while (index <= end) {
1326		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1327		if (nr_pages == 0)
1328			break;
1329		for (i = 0; i < nr_pages; i++) {
1330			struct page *page = pvec.pages[i];
1331			if (page->index > end)
1332				break;
1333			BUG_ON(!PageLocked(page));
1334			BUG_ON(PageWriteback(page));
1335			block_invalidatepage(page, 0);
1336			ClearPageUptodate(page);
1337			unlock_page(page);
 
 
 
 
 
 
 
 
1338		}
1339		index = pvec.pages[nr_pages - 1]->index + 1;
1340		pagevec_release(&pvec);
1341	}
1342	return;
1343}
1344
1345static void ext4_print_free_blocks(struct inode *inode)
1346{
1347	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1348	printk(KERN_CRIT "Total free blocks count %lld\n",
1349	       ext4_count_free_blocks(inode->i_sb));
1350	printk(KERN_CRIT "Free/Dirty block details\n");
1351	printk(KERN_CRIT "free_blocks=%lld\n",
1352	       (long long) percpu_counter_sum(&sbi->s_freeblocks_counter));
1353	printk(KERN_CRIT "dirty_blocks=%lld\n",
1354	       (long long) percpu_counter_sum(&sbi->s_dirtyblocks_counter));
1355	printk(KERN_CRIT "Block reservation details\n");
1356	printk(KERN_CRIT "i_reserved_data_blocks=%u\n",
1357	       EXT4_I(inode)->i_reserved_data_blocks);
1358	printk(KERN_CRIT "i_reserved_meta_blocks=%u\n",
1359	       EXT4_I(inode)->i_reserved_meta_blocks);
 
 
 
 
1360	return;
1361}
1362
1363/*
1364 * mpage_da_map_and_submit - go through given space, map them
1365 *       if necessary, and then submit them for I/O
1366 *
1367 * @mpd - bh describing space
1368 *
1369 * The function skips space we know is already mapped to disk blocks.
 
1370 *
 
1371 */
1372static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
1373{
1374	int err, blks, get_blocks_flags;
1375	struct ext4_map_blocks map, *mapp = NULL;
1376	sector_t next = mpd->b_blocknr;
1377	unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
1378	loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
1379	handle_t *handle = NULL;
1380
1381	/*
1382	 * If the blocks are mapped already, or we couldn't accumulate
1383	 * any blocks, then proceed immediately to the submission stage.
1384	 */
1385	if ((mpd->b_size == 0) ||
1386	    ((mpd->b_state  & (1 << BH_Mapped)) &&
1387	     !(mpd->b_state & (1 << BH_Delay)) &&
1388	     !(mpd->b_state & (1 << BH_Unwritten))))
1389		goto submit_io;
1390
1391	handle = ext4_journal_current_handle();
1392	BUG_ON(!handle);
1393
1394	/*
1395	 * Call ext4_map_blocks() to allocate any delayed allocation
1396	 * blocks, or to convert an uninitialized extent to be
1397	 * initialized (in the case where we have written into
1398	 * one or more preallocated blocks).
1399	 *
1400	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
1401	 * indicate that we are on the delayed allocation path.  This
1402	 * affects functions in many different parts of the allocation
1403	 * call path.  This flag exists primarily because we don't
1404	 * want to change *many* call functions, so ext4_map_blocks()
1405	 * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
1406	 * inode's allocation semaphore is taken.
1407	 *
1408	 * If the blocks in questions were delalloc blocks, set
1409	 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
1410	 * variables are updated after the blocks have been allocated.
1411	 */
1412	map.m_lblk = next;
1413	map.m_len = max_blocks;
1414	get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
1415	if (ext4_should_dioread_nolock(mpd->inode))
1416		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
1417	if (mpd->b_state & (1 << BH_Delay))
1418		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
1419
1420	blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
1421	if (blks < 0) {
1422		struct super_block *sb = mpd->inode->i_sb;
1423
1424		err = blks;
1425		/*
1426		 * If get block returns EAGAIN or ENOSPC and there
1427		 * appears to be free blocks we will just let
1428		 * mpage_da_submit_io() unlock all of the pages.
1429		 */
1430		if (err == -EAGAIN)
1431			goto submit_io;
 
 
 
 
 
 
 
1432
1433		if (err == -ENOSPC &&
1434		    ext4_count_free_blocks(sb)) {
1435			mpd->retval = err;
1436			goto submit_io;
1437		}
 
 
 
 
 
 
 
 
 
1438
1439		/*
1440		 * get block failure will cause us to loop in
1441		 * writepages, because a_ops->writepage won't be able
1442		 * to make progress. The page will be redirtied by
1443		 * writepage and writepages will again try to write
1444		 * the same.
1445		 */
1446		if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
1447			ext4_msg(sb, KERN_CRIT,
1448				 "delayed block allocation failed for inode %lu "
1449				 "at logical offset %llu with max blocks %zd "
1450				 "with error %d", mpd->inode->i_ino,
1451				 (unsigned long long) next,
1452				 mpd->b_size >> mpd->inode->i_blkbits, err);
1453			ext4_msg(sb, KERN_CRIT,
1454				"This should not happen!! Data will be lost\n");
1455			if (err == -ENOSPC)
1456				ext4_print_free_blocks(mpd->inode);
1457		}
1458		/* invalidate all the pages */
1459		ext4_da_block_invalidatepages(mpd);
1460
1461		/* Mark this page range as having been completed */
1462		mpd->io_done = 1;
1463		return;
1464	}
1465	BUG_ON(blks == 0);
1466
1467	mapp = &map;
1468	if (map.m_flags & EXT4_MAP_NEW) {
1469		struct block_device *bdev = mpd->inode->i_sb->s_bdev;
1470		int i;
1471
1472		for (i = 0; i < map.m_len; i++)
1473			unmap_underlying_metadata(bdev, map.m_pblk + i);
1474	}
1475
1476	if (ext4_should_order_data(mpd->inode)) {
1477		err = ext4_jbd2_file_inode(handle, mpd->inode);
1478		if (err)
1479			/* This only happens if the journal is aborted */
1480			return;
1481	}
1482
1483	/*
1484	 * Update on-disk size along with block allocation.
 
1485	 */
1486	disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
1487	if (disksize > i_size_read(mpd->inode))
1488		disksize = i_size_read(mpd->inode);
1489	if (disksize > EXT4_I(mpd->inode)->i_disksize) {
1490		ext4_update_i_disksize(mpd->inode, disksize);
1491		err = ext4_mark_inode_dirty(handle, mpd->inode);
1492		if (err)
1493			ext4_error(mpd->inode->i_sb,
1494				   "Failed to mark inode %lu dirty",
1495				   mpd->inode->i_ino);
1496	}
 
 
1497
1498submit_io:
1499	mpage_da_submit_io(mpd, mapp);
1500	mpd->io_done = 1;
1501}
1502
1503#define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1504		(1 << BH_Delay) | (1 << BH_Unwritten))
1505
1506/*
1507 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1508 *
1509 * @mpd->lbh - extent of blocks
1510 * @logical - logical number of the block in the file
1511 * @bh - bh of the block (used to access block's state)
1512 *
1513 * the function is used to collect contig. blocks in same state
1514 */
1515static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
1516				   sector_t logical, size_t b_size,
1517				   unsigned long b_state)
1518{
1519	sector_t next;
1520	int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
1521
1522	/*
1523	 * XXX Don't go larger than mballoc is willing to allocate
1524	 * This is a stopgap solution.  We eventually need to fold
1525	 * mpage_da_submit_io() into this function and then call
1526	 * ext4_map_blocks() multiple times in a loop
1527	 */
1528	if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize)
1529		goto flush_it;
1530
1531	/* check if thereserved journal credits might overflow */
1532	if (!(ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS))) {
1533		if (nrblocks >= EXT4_MAX_TRANS_DATA) {
1534			/*
1535			 * With non-extent format we are limited by the journal
1536			 * credit available.  Total credit needed to insert
1537			 * nrblocks contiguous blocks is dependent on the
1538			 * nrblocks.  So limit nrblocks.
1539			 */
1540			goto flush_it;
1541		} else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
1542				EXT4_MAX_TRANS_DATA) {
1543			/*
1544			 * Adding the new buffer_head would make it cross the
1545			 * allowed limit for which we have journal credit
1546			 * reserved. So limit the new bh->b_size
1547			 */
1548			b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
1549						mpd->inode->i_blkbits;
1550			/* we will do mpage_da_submit_io in the next loop */
1551		}
1552	}
1553	/*
1554	 * First block in the extent
1555	 */
1556	if (mpd->b_size == 0) {
1557		mpd->b_blocknr = logical;
1558		mpd->b_size = b_size;
1559		mpd->b_state = b_state & BH_FLAGS;
1560		return;
1561	}
1562
1563	next = mpd->b_blocknr + nrblocks;
1564	/*
1565	 * Can we merge the block to our big extent?
1566	 */
1567	if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
1568		mpd->b_size += b_size;
1569		return;
1570	}
 
1571
1572flush_it:
1573	/*
1574	 * We couldn't merge the block to our extent, so we
1575	 * need to flush current  extent and start new one
1576	 */
1577	mpage_da_map_and_submit(mpd);
1578	return;
1579}
1580
1581static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1582{
1583	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
 
1584}
1585
1586/*
1587 * This is a special get_blocks_t callback which is used by
1588 * ext4_da_write_begin().  It will either return mapped block or
1589 * reserve space for a single block.
1590 *
1591 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1592 * We also have b_blocknr = -1 and b_bdev initialized properly
1593 *
1594 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1595 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1596 * initialized properly.
1597 */
1598static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1599				  struct buffer_head *bh, int create)
1600{
1601	struct ext4_map_blocks map;
1602	int ret = 0;
1603	sector_t invalid_block = ~((sector_t) 0xffff);
1604
1605	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1606		invalid_block = ~0;
1607
1608	BUG_ON(create == 0);
1609	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1610
1611	map.m_lblk = iblock;
1612	map.m_len = 1;
1613
1614	/*
1615	 * first, we need to know whether the block is allocated already
1616	 * preallocated blocks are unmapped but should treated
1617	 * the same as allocated blocks.
1618	 */
1619	ret = ext4_map_blocks(NULL, inode, &map, 0);
1620	if (ret < 0)
1621		return ret;
1622	if (ret == 0) {
1623		if (buffer_delay(bh))
1624			return 0; /* Not sure this could or should happen */
1625		/*
1626		 * XXX: __block_write_begin() unmaps passed block, is it OK?
1627		 */
1628		ret = ext4_da_reserve_space(inode, iblock);
1629		if (ret)
1630			/* not enough space to reserve */
1631			return ret;
1632
1633		map_bh(bh, inode->i_sb, invalid_block);
1634		set_buffer_new(bh);
1635		set_buffer_delay(bh);
1636		return 0;
1637	}
1638
1639	map_bh(bh, inode->i_sb, map.m_pblk);
1640	bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1641
1642	if (buffer_unwritten(bh)) {
1643		/* A delayed write to unwritten bh should be marked
1644		 * new and mapped.  Mapped ensures that we don't do
1645		 * get_block multiple times when we write to the same
1646		 * offset and new ensures that we do proper zero out
1647		 * for partial write.
1648		 */
1649		set_buffer_new(bh);
1650		set_buffer_mapped(bh);
1651	}
1652	return 0;
1653}
1654
1655/*
1656 * This function is used as a standard get_block_t calback function
1657 * when there is no desire to allocate any blocks.  It is used as a
1658 * callback function for block_write_begin() and block_write_full_page().
1659 * These functions should only try to map a single block at a time.
1660 *
1661 * Since this function doesn't do block allocations even if the caller
1662 * requests it by passing in create=1, it is critically important that
1663 * any caller checks to make sure that any buffer heads are returned
1664 * by this function are either all already mapped or marked for
1665 * delayed allocation before calling  block_write_full_page().  Otherwise,
1666 * b_blocknr could be left unitialized, and the page write functions will
1667 * be taken by surprise.
1668 */
1669static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
1670				   struct buffer_head *bh_result, int create)
1671{
1672	BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
1673	return _ext4_get_block(inode, iblock, bh_result, 0);
1674}
1675
1676static int bget_one(handle_t *handle, struct buffer_head *bh)
1677{
1678	get_bh(bh);
1679	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1680}
1681
1682static int bput_one(handle_t *handle, struct buffer_head *bh)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1683{
1684	put_bh(bh);
1685	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1686}
1687
1688static int __ext4_journalled_writepage(struct page *page,
1689				       unsigned int len)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1690{
1691	struct address_space *mapping = page->mapping;
1692	struct inode *inode = mapping->host;
1693	struct buffer_head *page_bufs;
1694	handle_t *handle = NULL;
1695	int ret = 0;
1696	int err;
 
 
1697
1698	ClearPageChecked(page);
1699	page_bufs = page_buffers(page);
1700	BUG_ON(!page_bufs);
1701	walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
1702	/* As soon as we unlock the page, it can go away, but we have
1703	 * references to buffers so we are safe */
1704	unlock_page(page);
1705
1706	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
1707	if (IS_ERR(handle)) {
1708		ret = PTR_ERR(handle);
1709		goto out;
1710	}
1711
1712	BUG_ON(!ext4_handle_valid(handle));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1713
1714	ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
1715				do_journal_get_write_access);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1716
1717	err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
1718				write_end_fn);
1719	if (ret == 0)
1720		ret = err;
1721	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1722	err = ext4_journal_stop(handle);
1723	if (!ret)
1724		ret = err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1725
1726	walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
1727	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1728out:
1729	return ret;
 
 
1730}
1731
1732static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
1733static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
1734
1735/*
1736 * Note that we don't need to start a transaction unless we're journaling data
1737 * because we should have holes filled from ext4_page_mkwrite(). We even don't
1738 * need to file the inode to the transaction's list in ordered mode because if
1739 * we are writing back data added by write(), the inode is already there and if
1740 * we are writing back data modified via mmap(), no one guarantees in which
1741 * transaction the data will hit the disk. In case we are journaling data, we
1742 * cannot start transaction directly because transaction start ranks above page
1743 * lock so we have to do some magic.
1744 *
1745 * This function can get called via...
1746 *   - ext4_da_writepages after taking page lock (have journal handle)
1747 *   - journal_submit_inode_data_buffers (no journal handle)
1748 *   - shrink_page_list via pdflush (no journal handle)
1749 *   - grab_page_cache when doing write_begin (have journal handle)
1750 *
1751 * We don't do any block allocation in this function. If we have page with
1752 * multiple blocks we need to write those buffer_heads that are mapped. This
1753 * is important for mmaped based write. So if we do with blocksize 1K
1754 * truncate(f, 1024);
1755 * a = mmap(f, 0, 4096);
1756 * a[0] = 'a';
1757 * truncate(f, 4096);
1758 * we have in the page first buffer_head mapped via page_mkwrite call back
1759 * but other bufer_heads would be unmapped but dirty(dirty done via the
1760 * do_wp_page). So writepage should write the first block. If we modify
1761 * the mmap area beyond 1024 we will again get a page_fault and the
1762 * page_mkwrite callback will do the block allocation and mark the
1763 * buffer_heads mapped.
1764 *
1765 * We redirty the page if we have any buffer_heads that is either delay or
1766 * unwritten in the page.
1767 *
1768 * We can get recursively called as show below.
1769 *
1770 *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1771 *		ext4_writepage()
1772 *
1773 * But since we don't do any block allocation we should not deadlock.
1774 * Page also have the dirty flag cleared so we don't get recurive page_lock.
 
 
 
 
 
 
 
1775 */
1776static int ext4_writepage(struct page *page,
1777			  struct writeback_control *wbc)
1778{
1779	int ret = 0, commit_write = 0;
1780	loff_t size;
1781	unsigned int len;
1782	struct buffer_head *page_bufs = NULL;
1783	struct inode *inode = page->mapping->host;
 
 
 
 
1784
1785	trace_ext4_writepage(page);
1786	size = i_size_read(inode);
1787	if (page->index == size >> PAGE_CACHE_SHIFT)
1788		len = size & ~PAGE_CACHE_MASK;
1789	else
1790		len = PAGE_CACHE_SIZE;
 
 
 
 
 
 
1791
1792	/*
1793	 * If the page does not have buffers (for whatever reason),
1794	 * try to create them using __block_write_begin.  If this
1795	 * fails, redirty the page and move on.
1796	 */
1797	if (!page_has_buffers(page)) {
1798		if (__block_write_begin(page, 0, len,
1799					noalloc_get_block_write)) {
1800		redirty_page:
1801			redirty_page_for_writepage(wbc, page);
1802			unlock_page(page);
1803			return 0;
 
 
1804		}
1805		commit_write = 1;
1806	}
1807	page_bufs = page_buffers(page);
1808	if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
1809			      ext4_bh_delay_or_unwritten)) {
1810		/*
1811		 * We don't want to do block allocation, so redirty
1812		 * the page and return.  We may reach here when we do
1813		 * a journal commit via journal_submit_inode_data_buffers.
1814		 * We can also reach here via shrink_page_list
1815		 */
1816		goto redirty_page;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1817	}
1818	if (commit_write)
1819		/* now mark the buffer_heads as dirty and uptodate */
1820		block_commit_write(page, 0, len);
1821
1822	if (PageChecked(page) && ext4_should_journal_data(inode))
1823		/*
1824		 * It's mmapped pagecache.  Add buffers and journal it.  There
1825		 * doesn't seem much point in redirtying the page here.
1826		 */
1827		return __ext4_journalled_writepage(page, len);
1828
1829	if (buffer_uninit(page_bufs)) {
1830		ext4_set_bh_endio(page_bufs, inode);
1831		ret = block_write_full_page_endio(page, noalloc_get_block_write,
1832					    wbc, ext4_end_io_buffer_write);
1833	} else
1834		ret = block_write_full_page(page, noalloc_get_block_write,
1835					    wbc);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1836
1837	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1838}
1839
1840/*
1841 * This is called via ext4_da_writepages() to
1842 * calculate the total number of credits to reserve to fit
1843 * a single extent allocation into a single transaction,
1844 * ext4_da_writpeages() will loop calling this before
1845 * the block allocation.
1846 */
1847
1848static int ext4_da_writepages_trans_blocks(struct inode *inode)
1849{
1850	int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
1851
1852	/*
1853	 * With non-extent format the journal credit needed to
1854	 * insert nrblocks contiguous block is dependent on
1855	 * number of contiguous block. So we will limit
1856	 * number of contiguous block to a sane value
1857	 */
1858	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
1859	    (max_blocks > EXT4_MAX_TRANS_DATA))
1860		max_blocks = EXT4_MAX_TRANS_DATA;
1861
1862	return ext4_chunk_trans_blocks(inode, max_blocks);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1863}
1864
1865/*
1866 * write_cache_pages_da - walk the list of dirty pages of the given
1867 * address space and accumulate pages that need writing, and call
1868 * mpage_da_map_and_submit to map a single contiguous memory region
1869 * and then write them.
1870 */
1871static int write_cache_pages_da(struct address_space *mapping,
1872				struct writeback_control *wbc,
1873				struct mpage_da_data *mpd,
1874				pgoff_t *done_index)
1875{
1876	struct buffer_head	*bh, *head;
1877	struct inode		*inode = mapping->host;
1878	struct pagevec		pvec;
1879	unsigned int		nr_pages;
1880	sector_t		logical;
1881	pgoff_t			index, end;
1882	long			nr_to_write = wbc->nr_to_write;
1883	int			i, tag, ret = 0;
1884
1885	memset(mpd, 0, sizeof(struct mpage_da_data));
1886	mpd->wbc = wbc;
1887	mpd->inode = inode;
1888	pagevec_init(&pvec, 0);
1889	index = wbc->range_start >> PAGE_CACHE_SHIFT;
1890	end = wbc->range_end >> PAGE_CACHE_SHIFT;
 
 
 
 
 
 
 
 
1891
1892	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1893		tag = PAGECACHE_TAG_TOWRITE;
1894	else
1895		tag = PAGECACHE_TAG_DIRTY;
1896
1897	*done_index = index;
 
 
 
 
 
 
 
 
1898	while (index <= end) {
1899		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
1900			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1901		if (nr_pages == 0)
1902			return 0;
1903
1904		for (i = 0; i < nr_pages; i++) {
1905			struct page *page = pvec.pages[i];
1906
1907			/*
1908			 * At this point, the page may be truncated or
1909			 * invalidated (changing page->mapping to NULL), or
1910			 * even swizzled back from swapper_space to tmpfs file
1911			 * mapping. However, page->index will not change
1912			 * because we have a reference on the page.
 
1913			 */
1914			if (page->index > end)
 
 
1915				goto out;
1916
1917			*done_index = page->index + 1;
 
 
 
 
 
 
 
 
 
1918
 
1919			/*
1920			 * If we can't merge this page, and we have
1921			 * accumulated an contiguous region, write it
 
 
 
1922			 */
1923			if ((mpd->next_page != page->index) &&
1924			    (mpd->next_page != mpd->first_page)) {
1925				mpage_da_map_and_submit(mpd);
1926				goto ret_extent_tail;
 
 
1927			}
1928
1929			lock_page(page);
 
1930
1931			/*
1932			 * If the page is no longer dirty, or its
1933			 * mapping no longer corresponds to inode we
1934			 * are writing (which means it has been
1935			 * truncated or invalidated), or the page is
1936			 * already under writeback and we are not
1937			 * doing a data integrity writeback, skip the page
 
1938			 */
1939			if (!PageDirty(page) ||
1940			    (PageWriteback(page) &&
1941			     (wbc->sync_mode == WB_SYNC_NONE)) ||
1942			    unlikely(page->mapping != mapping)) {
1943				unlock_page(page);
1944				continue;
1945			}
1946
1947			wait_on_page_writeback(page);
1948			BUG_ON(PageWriteback(page));
1949
1950			if (mpd->next_page != page->index)
1951				mpd->first_page = page->index;
1952			mpd->next_page = page->index + 1;
1953			logical = (sector_t) page->index <<
1954				(PAGE_CACHE_SHIFT - inode->i_blkbits);
1955
1956			if (!page_has_buffers(page)) {
1957				mpage_add_bh_to_extent(mpd, logical,
1958						       PAGE_CACHE_SIZE,
1959						       (1 << BH_Dirty) | (1 << BH_Uptodate));
1960				if (mpd->io_done)
1961					goto ret_extent_tail;
 
 
 
 
 
 
 
 
 
 
 
1962			} else {
1963				/*
1964				 * Page with regular buffer heads,
1965				 * just add all dirty ones
1966				 */
1967				head = page_buffers(page);
1968				bh = head;
1969				do {
1970					BUG_ON(buffer_locked(bh));
1971					/*
1972					 * We need to try to allocate
1973					 * unmapped blocks in the same page.
1974					 * Otherwise we won't make progress
1975					 * with the page in ext4_writepage
1976					 */
1977					if (ext4_bh_delay_or_unwritten(NULL, bh)) {
1978						mpage_add_bh_to_extent(mpd, logical,
1979								       bh->b_size,
1980								       bh->b_state);
1981						if (mpd->io_done)
1982							goto ret_extent_tail;
1983					} else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
1984						/*
1985						 * mapped dirty buffer. We need
1986						 * to update the b_state
1987						 * because we look at b_state
1988						 * in mpage_da_map_blocks.  We
1989						 * don't update b_size because
1990						 * if we find an unmapped
1991						 * buffer_head later we need to
1992						 * use the b_state flag of that
1993						 * buffer_head.
1994						 */
1995						if (mpd->b_size == 0)
1996							mpd->b_state = bh->b_state & BH_FLAGS;
1997					}
1998					logical++;
1999				} while ((bh = bh->b_this_page) != head);
2000			}
2001
2002			if (nr_to_write > 0) {
2003				nr_to_write--;
2004				if (nr_to_write == 0 &&
2005				    wbc->sync_mode == WB_SYNC_NONE)
2006					/*
2007					 * We stop writing back only if we are
2008					 * not doing integrity sync. In case of
2009					 * integrity sync we have to keep going
2010					 * because someone may be concurrently
2011					 * dirtying pages, and we might have
2012					 * synced a lot of newly appeared dirty
2013					 * pages, but have not synced all of the
2014					 * old dirty pages.
2015					 */
2016					goto out;
 
2017			}
2018		}
2019		pagevec_release(&pvec);
2020		cond_resched();
2021	}
 
 
 
2022	return 0;
2023ret_extent_tail:
2024	ret = MPAGE_DA_EXTENT_TAIL;
2025out:
2026	pagevec_release(&pvec);
2027	cond_resched();
2028	return ret;
 
2029}
2030
2031
2032static int ext4_da_writepages(struct address_space *mapping,
2033			      struct writeback_control *wbc)
2034{
2035	pgoff_t	index;
 
 
2036	int range_whole = 0;
 
2037	handle_t *handle = NULL;
2038	struct mpage_da_data mpd;
2039	struct inode *inode = mapping->host;
2040	int pages_written = 0;
2041	unsigned int max_pages;
2042	int range_cyclic, cycled = 1, io_done = 0;
2043	int needed_blocks, ret = 0;
2044	long desired_nr_to_write, nr_to_writebump = 0;
2045	loff_t range_start = wbc->range_start;
2046	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2047	pgoff_t done_index = 0;
2048	pgoff_t end;
2049
2050	trace_ext4_da_writepages(inode, wbc);
2051
2052	/*
2053	 * No pages to write? This is mainly a kludge to avoid starting
2054	 * a transaction for special inodes like journal inode on last iput()
2055	 * because that could violate lock ordering on umount
2056	 */
2057	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2058		return 0;
2059
2060	/*
2061	 * If the filesystem has aborted, it is read-only, so return
2062	 * right away instead of dumping stack traces later on that
2063	 * will obscure the real source of the problem.  We test
2064	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2065	 * the latter could be true if the filesystem is mounted
2066	 * read-only, and in that case, ext4_da_writepages should
2067	 * *never* be called, so if that ever happens, we would want
2068	 * the stack trace.
2069	 */
2070	if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2071		return -EROFS;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2072
2073	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2074		range_whole = 1;
2075
2076	range_cyclic = wbc->range_cyclic;
2077	if (wbc->range_cyclic) {
2078		index = mapping->writeback_index;
2079		if (index)
2080			cycled = 0;
2081		wbc->range_start = index << PAGE_CACHE_SHIFT;
2082		wbc->range_end  = LLONG_MAX;
2083		wbc->range_cyclic = 0;
2084		end = -1;
2085	} else {
2086		index = wbc->range_start >> PAGE_CACHE_SHIFT;
2087		end = wbc->range_end >> PAGE_CACHE_SHIFT;
2088	}
2089
2090	/*
2091	 * This works around two forms of stupidity.  The first is in
2092	 * the writeback code, which caps the maximum number of pages
2093	 * written to be 1024 pages.  This is wrong on multiple
2094	 * levels; different architectues have a different page size,
2095	 * which changes the maximum amount of data which gets
2096	 * written.  Secondly, 4 megabytes is way too small.  XFS
2097	 * forces this value to be 16 megabytes by multiplying
2098	 * nr_to_write parameter by four, and then relies on its
2099	 * allocator to allocate larger extents to make them
2100	 * contiguous.  Unfortunately this brings us to the second
2101	 * stupidity, which is that ext4's mballoc code only allocates
2102	 * at most 2048 blocks.  So we force contiguous writes up to
2103	 * the number of dirty blocks in the inode, or
2104	 * sbi->max_writeback_mb_bump whichever is smaller.
2105	 */
2106	max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2107	if (!range_cyclic && range_whole) {
2108		if (wbc->nr_to_write == LONG_MAX)
2109			desired_nr_to_write = wbc->nr_to_write;
2110		else
2111			desired_nr_to_write = wbc->nr_to_write * 8;
2112	} else
2113		desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2114							   max_pages);
2115	if (desired_nr_to_write > max_pages)
2116		desired_nr_to_write = max_pages;
2117
2118	if (wbc->nr_to_write < desired_nr_to_write) {
2119		nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2120		wbc->nr_to_write = desired_nr_to_write;
2121	}
2122
 
2123retry:
2124	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2125		tag_pages_for_writeback(mapping, index, end);
 
 
2126
2127	while (!ret && wbc->nr_to_write > 0) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2128
 
 
 
 
 
 
 
 
 
2129		/*
2130		 * we  insert one extent at a time. So we need
2131		 * credit needed for single extent allocation.
2132		 * journalled mode is currently not supported
2133		 * by delalloc
 
2134		 */
2135		BUG_ON(ext4_should_journal_data(inode));
2136		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2137
2138		/* start a new transaction*/
2139		handle = ext4_journal_start(inode, needed_blocks);
 
2140		if (IS_ERR(handle)) {
2141			ret = PTR_ERR(handle);
2142			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2143			       "%ld pages, ino %lu; err %d", __func__,
2144				wbc->nr_to_write, inode->i_ino, ret);
2145			goto out_writepages;
 
 
 
2146		}
 
2147
 
 
 
 
 
2148		/*
2149		 * Now call write_cache_pages_da() to find the next
2150		 * contiguous region of logical blocks that need
2151		 * blocks to be allocated by ext4 and submit them.
 
 
 
 
 
2152		 */
2153		ret = write_cache_pages_da(mapping, wbc, &mpd, &done_index);
2154		/*
2155		 * If we have a contiguous extent of pages and we
2156		 * haven't done the I/O yet, map the blocks and submit
2157		 * them for I/O.
2158		 */
2159		if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2160			mpage_da_map_and_submit(&mpd);
2161			ret = MPAGE_DA_EXTENT_TAIL;
2162		}
2163		trace_ext4_da_write_pages(inode, &mpd);
2164		wbc->nr_to_write -= mpd.pages_written;
 
 
2165
2166		ext4_journal_stop(handle);
 
 
 
 
 
 
 
 
 
 
 
 
2167
2168		if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2169			/* commit the transaction which would
 
2170			 * free blocks released in the transaction
2171			 * and try again
2172			 */
2173			jbd2_journal_force_commit_nested(sbi->s_journal);
2174			ret = 0;
2175		} else if (ret == MPAGE_DA_EXTENT_TAIL) {
2176			/*
2177			 * got one extent now try with
2178			 * rest of the pages
2179			 */
2180			pages_written += mpd.pages_written;
2181			ret = 0;
2182			io_done = 1;
2183		} else if (wbc->nr_to_write)
2184			/*
2185			 * There is no more writeout needed
2186			 * or we requested for a noblocking writeout
2187			 * and we found the device congested
2188			 */
2189			break;
2190	}
2191	if (!io_done && !cycled) {
 
 
2192		cycled = 1;
2193		index = 0;
2194		wbc->range_start = index << PAGE_CACHE_SHIFT;
2195		wbc->range_end  = mapping->writeback_index - 1;
2196		goto retry;
2197	}
2198
2199	/* Update index */
2200	wbc->range_cyclic = range_cyclic;
2201	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2202		/*
2203		 * set the writeback_index so that range_cyclic
2204		 * mode will write it back later
2205		 */
2206		mapping->writeback_index = done_index;
2207
2208out_writepages:
2209	wbc->nr_to_write -= nr_to_writebump;
2210	wbc->range_start = range_start;
2211	trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2212	return ret;
2213}
2214
2215#define FALL_BACK_TO_NONDELALLOC 1
2216static int ext4_nonda_switch(struct super_block *sb)
2217{
2218	s64 free_blocks, dirty_blocks;
2219	struct ext4_sb_info *sbi = EXT4_SB(sb);
2220
2221	/*
2222	 * switch to non delalloc mode if we are running low
2223	 * on free block. The free block accounting via percpu
2224	 * counters can get slightly wrong with percpu_counter_batch getting
2225	 * accumulated on each CPU without updating global counters
2226	 * Delalloc need an accurate free block accounting. So switch
2227	 * to non delalloc when we are near to error range.
2228	 */
2229	free_blocks  = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
2230	dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
2231	if (2 * free_blocks < 3 * dirty_blocks ||
2232		free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
 
 
 
 
 
 
 
 
2233		/*
2234		 * free block count is less than 150% of dirty blocks
2235		 * or free blocks is less than watermark
2236		 */
2237		return 1;
2238	}
2239	/*
2240	 * Even if we don't switch but are nearing capacity,
2241	 * start pushing delalloc when 1/2 of free blocks are dirty.
2242	 */
2243	if (free_blocks < 2 * dirty_blocks)
2244		writeback_inodes_sb_if_idle(sb);
2245
2246	return 0;
2247}
2248
2249static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2250			       loff_t pos, unsigned len, unsigned flags,
2251			       struct page **pagep, void **fsdata)
2252{
2253	int ret, retries = 0;
2254	struct page *page;
2255	pgoff_t index;
2256	struct inode *inode = mapping->host;
2257	handle_t *handle;
2258
2259	index = pos >> PAGE_CACHE_SHIFT;
 
2260
2261	if (ext4_nonda_switch(inode->i_sb)) {
 
 
2262		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2263		return ext4_write_begin(file, mapping, pos,
2264					len, flags, pagep, fsdata);
2265	}
2266	*fsdata = (void *)0;
2267	trace_ext4_da_write_begin(inode, pos, len, flags);
2268retry:
2269	/*
2270	 * With delayed allocation, we don't log the i_disksize update
2271	 * if there is delayed block allocation. But we still need
2272	 * to journalling the i_disksize update if writes to the end
2273	 * of file which has an already mapped buffer.
2274	 */
2275	handle = ext4_journal_start(inode, 1);
2276	if (IS_ERR(handle)) {
2277		ret = PTR_ERR(handle);
2278		goto out;
2279	}
2280	/* We cannot recurse into the filesystem as the transaction is already
2281	 * started */
2282	flags |= AOP_FLAG_NOFS;
2283
2284	page = grab_cache_page_write_begin(mapping, index, flags);
2285	if (!page) {
2286		ext4_journal_stop(handle);
2287		ret = -ENOMEM;
2288		goto out;
 
 
2289	}
2290	*pagep = page;
2291
2292	ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
 
 
 
 
 
 
 
 
 
 
2293	if (ret < 0) {
2294		unlock_page(page);
2295		ext4_journal_stop(handle);
2296		page_cache_release(page);
2297		/*
2298		 * block_write_begin may have instantiated a few blocks
2299		 * outside i_size.  Trim these off again. Don't need
2300		 * i_size_read because we hold i_mutex.
2301		 */
2302		if (pos + len > inode->i_size)
2303			ext4_truncate_failed_write(inode);
 
 
 
 
 
2304	}
2305
2306	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
2307		goto retry;
2308out:
2309	return ret;
2310}
2311
2312/*
2313 * Check if we should update i_disksize
2314 * when write to the end of file but not require block allocation
2315 */
2316static int ext4_da_should_update_i_disksize(struct page *page,
2317					    unsigned long offset)
2318{
2319	struct buffer_head *bh;
2320	struct inode *inode = page->mapping->host;
2321	unsigned int idx;
2322	int i;
2323
2324	bh = page_buffers(page);
2325	idx = offset >> inode->i_blkbits;
2326
2327	for (i = 0; i < idx; i++)
2328		bh = bh->b_this_page;
2329
2330	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2331		return 0;
2332	return 1;
2333}
2334
2335static int ext4_da_write_end(struct file *file,
2336			     struct address_space *mapping,
2337			     loff_t pos, unsigned len, unsigned copied,
2338			     struct page *page, void *fsdata)
2339{
2340	struct inode *inode = mapping->host;
2341	int ret = 0, ret2;
2342	handle_t *handle = ext4_journal_current_handle();
2343	loff_t new_i_size;
2344	unsigned long start, end;
2345	int write_mode = (int)(unsigned long)fsdata;
2346
2347	if (write_mode == FALL_BACK_TO_NONDELALLOC) {
2348		if (ext4_should_order_data(inode)) {
2349			return ext4_ordered_write_end(file, mapping, pos,
2350					len, copied, page, fsdata);
2351		} else if (ext4_should_writeback_data(inode)) {
2352			return ext4_writeback_write_end(file, mapping, pos,
2353					len, copied, page, fsdata);
2354		} else {
2355			BUG();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2356		}
2357	}
2358
2359	trace_ext4_da_write_end(inode, pos, len, copied);
2360	start = pos & (PAGE_CACHE_SIZE - 1);
2361	end = start + copied - 1;
2362
2363	/*
2364	 * generic_write_end() will run mark_inode_dirty() if i_size
2365	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
2366	 * into that.
2367	 */
2368
2369	new_i_size = pos + copied;
2370	if (new_i_size > EXT4_I(inode)->i_disksize) {
2371		if (ext4_da_should_update_i_disksize(page, end)) {
2372			down_write(&EXT4_I(inode)->i_data_sem);
2373			if (new_i_size > EXT4_I(inode)->i_disksize) {
2374				/*
2375				 * Updating i_disksize when extending file
2376				 * without needing block allocation
2377				 */
2378				if (ext4_should_order_data(inode))
2379					ret = ext4_jbd2_file_inode(handle,
2380								   inode);
2381
2382				EXT4_I(inode)->i_disksize = new_i_size;
2383			}
2384			up_write(&EXT4_I(inode)->i_data_sem);
2385			/* We need to mark inode dirty even if
2386			 * new_i_size is less that inode->i_size
2387			 * bu greater than i_disksize.(hint delalloc)
2388			 */
2389			ext4_mark_inode_dirty(handle, inode);
2390		}
2391	}
2392	ret2 = generic_write_end(file, mapping, pos, len, copied,
2393							page, fsdata);
2394	copied = ret2;
2395	if (ret2 < 0)
2396		ret = ret2;
2397	ret2 = ext4_journal_stop(handle);
2398	if (!ret)
2399		ret = ret2;
2400
2401	return ret ? ret : copied;
2402}
2403
2404static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
 
 
 
2405{
2406	/*
2407	 * Drop reserved blocks
2408	 */
2409	BUG_ON(!PageLocked(page));
2410	if (!page_has_buffers(page))
2411		goto out;
2412
2413	ext4_da_page_release_reservation(page, offset);
 
 
2414
2415out:
2416	ext4_invalidatepage(page, offset);
2417
2418	return;
 
 
 
 
 
 
 
 
 
2419}
2420
2421/*
2422 * Force all delayed allocation blocks to be allocated for a given inode.
2423 */
2424int ext4_alloc_da_blocks(struct inode *inode)
2425{
2426	trace_ext4_alloc_da_blocks(inode);
2427
2428	if (!EXT4_I(inode)->i_reserved_data_blocks &&
2429	    !EXT4_I(inode)->i_reserved_meta_blocks)
2430		return 0;
2431
2432	/*
2433	 * We do something simple for now.  The filemap_flush() will
2434	 * also start triggering a write of the data blocks, which is
2435	 * not strictly speaking necessary (and for users of
2436	 * laptop_mode, not even desirable).  However, to do otherwise
2437	 * would require replicating code paths in:
2438	 *
2439	 * ext4_da_writepages() ->
2440	 *    write_cache_pages() ---> (via passed in callback function)
2441	 *        __mpage_da_writepage() -->
2442	 *           mpage_add_bh_to_extent()
2443	 *           mpage_da_map_blocks()
2444	 *
2445	 * The problem is that write_cache_pages(), located in
2446	 * mm/page-writeback.c, marks pages clean in preparation for
2447	 * doing I/O, which is not desirable if we're not planning on
2448	 * doing I/O at all.
2449	 *
2450	 * We could call write_cache_pages(), and then redirty all of
2451	 * the pages by calling redirty_page_for_writepage() but that
2452	 * would be ugly in the extreme.  So instead we would need to
2453	 * replicate parts of the code in the above functions,
2454	 * simplifying them because we wouldn't actually intend to
2455	 * write out the pages, but rather only collect contiguous
2456	 * logical block extents, call the multi-block allocator, and
2457	 * then update the buffer heads with the block allocations.
2458	 *
2459	 * For now, though, we'll cheat by calling filemap_flush(),
2460	 * which will map the blocks, and start the I/O, but not
2461	 * actually wait for the I/O to complete.
2462	 */
2463	return filemap_flush(inode->i_mapping);
2464}
2465
2466/*
2467 * bmap() is special.  It gets used by applications such as lilo and by
2468 * the swapper to find the on-disk block of a specific piece of data.
2469 *
2470 * Naturally, this is dangerous if the block concerned is still in the
2471 * journal.  If somebody makes a swapfile on an ext4 data-journaling
2472 * filesystem and enables swap, then they may get a nasty shock when the
2473 * data getting swapped to that swapfile suddenly gets overwritten by
2474 * the original zero's written out previously to the journal and
2475 * awaiting writeback in the kernel's buffer cache.
2476 *
2477 * So, if we see any bmap calls here on a modified, data-journaled file,
2478 * take extra steps to flush any blocks which might be in the cache.
2479 */
2480static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2481{
2482	struct inode *inode = mapping->host;
2483	journal_t *journal;
2484	int err;
 
 
 
 
 
 
2485
2486	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2487			test_opt(inode->i_sb, DELALLOC)) {
 
2488		/*
2489		 * With delalloc we want to sync the file
2490		 * so that we can make sure we allocate
2491		 * blocks for file
2492		 */
2493		filemap_write_and_wait(mapping);
2494	}
2495
2496	if (EXT4_JOURNAL(inode) &&
2497	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2498		/*
2499		 * This is a REALLY heavyweight approach, but the use of
2500		 * bmap on dirty files is expected to be extremely rare:
2501		 * only if we run lilo or swapon on a freshly made file
2502		 * do we expect this to happen.
2503		 *
2504		 * (bmap requires CAP_SYS_RAWIO so this does not
2505		 * represent an unprivileged user DOS attack --- we'd be
2506		 * in trouble if mortal users could trigger this path at
2507		 * will.)
2508		 *
2509		 * NB. EXT4_STATE_JDATA is not set on files other than
2510		 * regular files.  If somebody wants to bmap a directory
2511		 * or symlink and gets confused because the buffer
2512		 * hasn't yet been flushed to disk, they deserve
2513		 * everything they get.
2514		 */
2515
2516		ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2517		journal = EXT4_JOURNAL(inode);
2518		jbd2_journal_lock_updates(journal);
2519		err = jbd2_journal_flush(journal);
2520		jbd2_journal_unlock_updates(journal);
2521
2522		if (err)
2523			return 0;
2524	}
2525
2526	return generic_block_bmap(mapping, block, ext4_get_block);
2527}
2528
2529static int ext4_readpage(struct file *file, struct page *page)
2530{
2531	trace_ext4_readpage(page);
2532	return mpage_readpage(page, ext4_get_block);
 
 
 
 
 
 
 
 
 
 
2533}
2534
2535static int
2536ext4_readpages(struct file *file, struct address_space *mapping,
2537		struct list_head *pages, unsigned nr_pages)
2538{
2539	return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
 
 
 
 
 
 
2540}
2541
2542static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset)
 
2543{
2544	struct buffer_head *head, *bh;
2545	unsigned int curr_off = 0;
2546
2547	if (!page_has_buffers(page))
2548		return;
2549	head = bh = page_buffers(page);
2550	do {
2551		if (offset <= curr_off && test_clear_buffer_uninit(bh)
2552					&& bh->b_private) {
2553			ext4_free_io_end(bh->b_private);
2554			bh->b_private = NULL;
2555			bh->b_end_io = NULL;
2556		}
2557		curr_off = curr_off + bh->b_size;
2558		bh = bh->b_this_page;
2559	} while (bh != head);
2560}
2561
2562static void ext4_invalidatepage(struct page *page, unsigned long offset)
 
2563{
2564	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2565
2566	trace_ext4_invalidatepage(page, offset);
2567
2568	/*
2569	 * free any io_end structure allocated for buffers to be discarded
2570	 */
2571	if (ext4_should_dioread_nolock(page->mapping->host))
2572		ext4_invalidatepage_free_endio(page, offset);
2573	/*
2574	 * If it's a full truncate we just forget about the pending dirtying
2575	 */
2576	if (offset == 0)
2577		ClearPageChecked(page);
2578
2579	if (journal)
2580		jbd2_journal_invalidatepage(journal, page, offset);
2581	else
2582		block_invalidatepage(page, offset);
2583}
2584
2585static int ext4_releasepage(struct page *page, gfp_t wait)
 
 
 
2586{
2587	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
 
 
 
 
 
 
2588
2589	trace_ext4_releasepage(page);
2590
2591	WARN_ON(PageChecked(page));
2592	if (!page_has_buffers(page))
2593		return 0;
2594	if (journal)
2595		return jbd2_journal_try_to_free_buffers(journal, page, wait);
2596	else
2597		return try_to_free_buffers(page);
2598}
2599
2600/*
2601 * ext4_get_block used when preparing for a DIO write or buffer write.
2602 * We allocate an uinitialized extent if blocks haven't been allocated.
2603 * The extent will be converted to initialized after the IO is complete.
2604 */
2605static int ext4_get_block_write(struct inode *inode, sector_t iblock,
2606		   struct buffer_head *bh_result, int create)
2607{
2608	ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
2609		   inode->i_ino, create);
2610	return _ext4_get_block(inode, iblock, bh_result,
2611			       EXT4_GET_BLOCKS_IO_CREATE_EXT);
2612}
2613
2614static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
2615			    ssize_t size, void *private, int ret,
2616			    bool is_async)
2617{
2618	struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
2619        ext4_io_end_t *io_end = iocb->private;
2620	struct workqueue_struct *wq;
2621	unsigned long flags;
2622	struct ext4_inode_info *ei;
2623
2624	/* if not async direct IO or dio with 0 bytes write, just return */
2625	if (!io_end || !size)
2626		goto out;
2627
2628	ext_debug("ext4_end_io_dio(): io_end 0x%p"
2629		  "for inode %lu, iocb 0x%p, offset %llu, size %llu\n",
2630 		  iocb->private, io_end->inode->i_ino, iocb, offset,
2631		  size);
2632
2633	/* if not aio dio with unwritten extents, just free io and return */
2634	if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
2635		ext4_free_io_end(io_end);
2636		iocb->private = NULL;
2637out:
2638		if (is_async)
2639			aio_complete(iocb, ret, 0);
2640		inode_dio_done(inode);
2641		return;
2642	}
2643
2644	io_end->offset = offset;
2645	io_end->size = size;
2646	if (is_async) {
2647		io_end->iocb = iocb;
2648		io_end->result = ret;
2649	}
2650	wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;
2651
2652	/* Add the io_end to per-inode completed aio dio list*/
2653	ei = EXT4_I(io_end->inode);
2654	spin_lock_irqsave(&ei->i_completed_io_lock, flags);
2655	list_add_tail(&io_end->list, &ei->i_completed_io_list);
2656	spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
2657
2658	/* queue the work to convert unwritten extents to written */
2659	queue_work(wq, &io_end->work);
2660	iocb->private = NULL;
 
 
 
 
 
 
 
 
 
2661
2662	/* XXX: probably should move into the real I/O completion handler */
2663	inode_dio_done(inode);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2664}
2665
2666static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate)
 
2667{
2668	ext4_io_end_t *io_end = bh->b_private;
2669	struct workqueue_struct *wq;
2670	struct inode *inode;
2671	unsigned long flags;
2672
2673	if (!test_clear_buffer_uninit(bh) || !io_end)
2674		goto out;
 
 
 
 
 
2675
2676	if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) {
2677		printk("sb umounted, discard end_io request for inode %lu\n",
2678			io_end->inode->i_ino);
2679		ext4_free_io_end(io_end);
2680		goto out;
2681	}
 
 
 
 
2682
2683	/*
2684	 * It may be over-defensive here to check EXT4_IO_END_UNWRITTEN now,
2685	 * but being more careful is always safe for the future change.
2686	 */
2687	inode = io_end->inode;
2688	if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
2689		io_end->flag |= EXT4_IO_END_UNWRITTEN;
2690		atomic_inc(&EXT4_I(inode)->i_aiodio_unwritten);
2691	}
2692
2693	/* Add the io_end to per-inode completed io list*/
2694	spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
2695	list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list);
2696	spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
2697
2698	wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq;
2699	/* queue the work to convert unwritten extents to written */
2700	queue_work(wq, &io_end->work);
2701out:
2702	bh->b_private = NULL;
2703	bh->b_end_io = NULL;
2704	clear_buffer_uninit(bh);
2705	end_buffer_async_write(bh, uptodate);
2706}
2707
2708static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode)
2709{
2710	ext4_io_end_t *io_end;
2711	struct page *page = bh->b_page;
2712	loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT;
2713	size_t size = bh->b_size;
2714
2715retry:
2716	io_end = ext4_init_io_end(inode, GFP_ATOMIC);
2717	if (!io_end) {
2718		pr_warn_ratelimited("%s: allocation fail\n", __func__);
2719		schedule();
2720		goto retry;
2721	}
2722	io_end->offset = offset;
2723	io_end->size = size;
2724	/*
2725	 * We need to hold a reference to the page to make sure it
2726	 * doesn't get evicted before ext4_end_io_work() has a chance
2727	 * to convert the extent from written to unwritten.
2728	 */
2729	io_end->page = page;
2730	get_page(io_end->page);
2731
2732	bh->b_private = io_end;
2733	bh->b_end_io = ext4_end_io_buffer_write;
2734	return 0;
 
 
2735}
2736
2737/*
2738 * For ext4 extent files, ext4 will do direct-io write to holes,
2739 * preallocated extents, and those write extend the file, no need to
2740 * fall back to buffered IO.
2741 *
2742 * For holes, we fallocate those blocks, mark them as uninitialized
2743 * If those blocks were preallocated, we mark sure they are splited, but
2744 * still keep the range to write as uninitialized.
2745 *
2746 * The unwrritten extents will be converted to written when DIO is completed.
2747 * For async direct IO, since the IO may still pending when return, we
2748 * set up an end_io call back function, which will do the conversion
2749 * when async direct IO completed.
2750 *
2751 * If the O_DIRECT write will extend the file then add this inode to the
2752 * orphan list.  So recovery will truncate it back to the original size
2753 * if the machine crashes during the write.
2754 *
2755 */
2756static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
2757			      const struct iovec *iov, loff_t offset,
2758			      unsigned long nr_segs)
2759{
2760	struct file *file = iocb->ki_filp;
2761	struct inode *inode = file->f_mapping->host;
2762	ssize_t ret;
2763	size_t count = iov_length(iov, nr_segs);
2764
2765	loff_t final_size = offset + count;
2766	if (rw == WRITE && final_size <= inode->i_size) {
2767		/*
2768 		 * We could direct write to holes and fallocate.
2769		 *
2770 		 * Allocated blocks to fill the hole are marked as uninitialized
2771 		 * to prevent parallel buffered read to expose the stale data
2772 		 * before DIO complete the data IO.
2773		 *
2774 		 * As to previously fallocated extents, ext4 get_block
2775 		 * will just simply mark the buffer mapped but still
2776 		 * keep the extents uninitialized.
2777 		 *
2778		 * for non AIO case, we will convert those unwritten extents
2779		 * to written after return back from blockdev_direct_IO.
2780		 *
2781		 * for async DIO, the conversion needs to be defered when
2782		 * the IO is completed. The ext4 end_io callback function
2783		 * will be called to take care of the conversion work.
2784		 * Here for async case, we allocate an io_end structure to
2785		 * hook to the iocb.
2786 		 */
2787		iocb->private = NULL;
2788		EXT4_I(inode)->cur_aio_dio = NULL;
2789		if (!is_sync_kiocb(iocb)) {
2790			iocb->private = ext4_init_io_end(inode, GFP_NOFS);
2791			if (!iocb->private)
2792				return -ENOMEM;
2793			/*
2794			 * we save the io structure for current async
2795			 * direct IO, so that later ext4_map_blocks()
2796			 * could flag the io structure whether there
2797			 * is a unwritten extents needs to be converted
2798			 * when IO is completed.
2799			 */
2800			EXT4_I(inode)->cur_aio_dio = iocb->private;
2801		}
2802
2803		ret = __blockdev_direct_IO(rw, iocb, inode,
2804					 inode->i_sb->s_bdev, iov,
2805					 offset, nr_segs,
2806					 ext4_get_block_write,
2807					 ext4_end_io_dio,
2808					 NULL,
2809					 DIO_LOCKING | DIO_SKIP_HOLES);
2810		if (iocb->private)
2811			EXT4_I(inode)->cur_aio_dio = NULL;
 
 
 
 
 
2812		/*
2813		 * The io_end structure takes a reference to the inode,
2814		 * that structure needs to be destroyed and the
2815		 * reference to the inode need to be dropped, when IO is
2816		 * complete, even with 0 byte write, or failed.
2817		 *
2818		 * In the successful AIO DIO case, the io_end structure will be
2819		 * desctroyed and the reference to the inode will be dropped
2820		 * after the end_io call back function is called.
2821		 *
2822		 * In the case there is 0 byte write, or error case, since
2823		 * VFS direct IO won't invoke the end_io call back function,
2824		 * we need to free the end_io structure here.
2825		 */
2826		if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
2827			ext4_free_io_end(iocb->private);
2828			iocb->private = NULL;
2829		} else if (ret > 0 && ext4_test_inode_state(inode,
2830						EXT4_STATE_DIO_UNWRITTEN)) {
2831			int err;
2832			/*
2833			 * for non AIO case, since the IO is already
2834			 * completed, we could do the conversion right here
2835			 */
2836			err = ext4_convert_unwritten_extents(inode,
2837							     offset, ret);
2838			if (err < 0)
2839				ret = err;
2840			ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
2841		}
2842		return ret;
 
 
2843	}
2844
2845	/* for write the the end of file case, we fall back to old way */
2846	return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
 
 
 
 
 
 
 
 
 
 
 
2847}
2848
2849static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
2850			      const struct iovec *iov, loff_t offset,
2851			      unsigned long nr_segs)
2852{
2853	struct file *file = iocb->ki_filp;
2854	struct inode *inode = file->f_mapping->host;
2855	ssize_t ret;
2856
2857	trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
2858	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
2859		ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
2860	else
2861		ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
2862	trace_ext4_direct_IO_exit(inode, offset,
2863				iov_length(iov, nr_segs), rw, ret);
2864	return ret;
2865}
2866
2867/*
2868 * Pages can be marked dirty completely asynchronously from ext4's journalling
2869 * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
2870 * much here because ->set_page_dirty is called under VFS locks.  The page is
2871 * not necessarily locked.
2872 *
2873 * We cannot just dirty the page and leave attached buffers clean, because the
2874 * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
2875 * or jbddirty because all the journalling code will explode.
2876 *
2877 * So what we do is to mark the page "pending dirty" and next time writepage
2878 * is called, propagate that into the buffers appropriately.
2879 */
2880static int ext4_journalled_set_page_dirty(struct page *page)
2881{
2882	SetPageChecked(page);
2883	return __set_page_dirty_nobuffers(page);
 
 
 
 
 
 
 
 
 
2884}
2885
2886static const struct address_space_operations ext4_ordered_aops = {
2887	.readpage		= ext4_readpage,
2888	.readpages		= ext4_readpages,
2889	.writepage		= ext4_writepage,
2890	.write_begin		= ext4_write_begin,
2891	.write_end		= ext4_ordered_write_end,
2892	.bmap			= ext4_bmap,
2893	.invalidatepage		= ext4_invalidatepage,
2894	.releasepage		= ext4_releasepage,
2895	.direct_IO		= ext4_direct_IO,
2896	.migratepage		= buffer_migrate_page,
2897	.is_partially_uptodate  = block_is_partially_uptodate,
2898	.error_remove_page	= generic_error_remove_page,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2899};
2900
2901static const struct address_space_operations ext4_writeback_aops = {
2902	.readpage		= ext4_readpage,
2903	.readpages		= ext4_readpages,
2904	.writepage		= ext4_writepage,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2905	.write_begin		= ext4_write_begin,
2906	.write_end		= ext4_writeback_write_end,
 
2907	.bmap			= ext4_bmap,
2908	.invalidatepage		= ext4_invalidatepage,
2909	.releasepage		= ext4_releasepage,
2910	.direct_IO		= ext4_direct_IO,
2911	.migratepage		= buffer_migrate_page,
2912	.is_partially_uptodate  = block_is_partially_uptodate,
2913	.error_remove_page	= generic_error_remove_page,
 
2914};
2915
2916static const struct address_space_operations ext4_journalled_aops = {
2917	.readpage		= ext4_readpage,
2918	.readpages		= ext4_readpages,
2919	.writepage		= ext4_writepage,
2920	.write_begin		= ext4_write_begin,
2921	.write_end		= ext4_journalled_write_end,
2922	.set_page_dirty		= ext4_journalled_set_page_dirty,
2923	.bmap			= ext4_bmap,
2924	.invalidatepage		= ext4_invalidatepage,
2925	.releasepage		= ext4_releasepage,
 
 
2926	.is_partially_uptodate  = block_is_partially_uptodate,
2927	.error_remove_page	= generic_error_remove_page,
 
2928};
2929
2930static const struct address_space_operations ext4_da_aops = {
2931	.readpage		= ext4_readpage,
2932	.readpages		= ext4_readpages,
2933	.writepage		= ext4_writepage,
2934	.writepages		= ext4_da_writepages,
2935	.write_begin		= ext4_da_write_begin,
2936	.write_end		= ext4_da_write_end,
 
2937	.bmap			= ext4_bmap,
2938	.invalidatepage		= ext4_da_invalidatepage,
2939	.releasepage		= ext4_releasepage,
2940	.direct_IO		= ext4_direct_IO,
2941	.migratepage		= buffer_migrate_page,
2942	.is_partially_uptodate  = block_is_partially_uptodate,
2943	.error_remove_page	= generic_error_remove_page,
 
 
 
 
 
 
 
 
 
2944};
2945
2946void ext4_set_aops(struct inode *inode)
2947{
2948	if (ext4_should_order_data(inode) &&
2949		test_opt(inode->i_sb, DELALLOC))
2950		inode->i_mapping->a_ops = &ext4_da_aops;
2951	else if (ext4_should_order_data(inode))
2952		inode->i_mapping->a_ops = &ext4_ordered_aops;
2953	else if (ext4_should_writeback_data(inode) &&
2954		 test_opt(inode->i_sb, DELALLOC))
 
 
 
 
 
 
2955		inode->i_mapping->a_ops = &ext4_da_aops;
2956	else if (ext4_should_writeback_data(inode))
2957		inode->i_mapping->a_ops = &ext4_writeback_aops;
2958	else
2959		inode->i_mapping->a_ops = &ext4_journalled_aops;
2960}
2961
2962/*
2963 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
2964 * up to the end of the block which corresponds to `from'.
2965 * This required during truncate. We need to physically zero the tail end
2966 * of that block so it doesn't yield old data if the file is later grown.
2967 */
2968int ext4_block_truncate_page(handle_t *handle,
2969		struct address_space *mapping, loff_t from)
2970{
2971	unsigned offset = from & (PAGE_CACHE_SIZE-1);
2972	unsigned length;
2973	unsigned blocksize;
2974	struct inode *inode = mapping->host;
2975
2976	blocksize = inode->i_sb->s_blocksize;
2977	length = blocksize - (offset & (blocksize - 1));
2978
2979	return ext4_block_zero_page_range(handle, mapping, from, length);
2980}
2981
2982/*
2983 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
2984 * starting from file offset 'from'.  The range to be zero'd must
2985 * be contained with in one block.  If the specified range exceeds
2986 * the end of the block it will be shortened to end of the block
2987 * that cooresponds to 'from'
2988 */
2989int ext4_block_zero_page_range(handle_t *handle,
2990		struct address_space *mapping, loff_t from, loff_t length)
2991{
2992	ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
2993	unsigned offset = from & (PAGE_CACHE_SIZE-1);
2994	unsigned blocksize, max, pos;
2995	ext4_lblk_t iblock;
2996	struct inode *inode = mapping->host;
2997	struct buffer_head *bh;
2998	struct page *page;
2999	int err = 0;
3000
3001	page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3002				   mapping_gfp_mask(mapping) & ~__GFP_FS);
3003	if (!page)
3004		return -EINVAL;
 
3005
3006	blocksize = inode->i_sb->s_blocksize;
3007	max = blocksize - (offset & (blocksize - 1));
3008
3009	/*
3010	 * correct length if it does not fall between
3011	 * 'from' and the end of the block
3012	 */
3013	if (length > max || length < 0)
3014		length = max;
3015
3016	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3017
3018	if (!page_has_buffers(page))
3019		create_empty_buffers(page, blocksize, 0);
 
3020
3021	/* Find the buffer that contains "offset" */
3022	bh = page_buffers(page);
3023	pos = blocksize;
3024	while (offset >= pos) {
3025		bh = bh->b_this_page;
3026		iblock++;
3027		pos += blocksize;
3028	}
3029
3030	err = 0;
3031	if (buffer_freed(bh)) {
3032		BUFFER_TRACE(bh, "freed: skip");
3033		goto unlock;
3034	}
3035
3036	if (!buffer_mapped(bh)) {
3037		BUFFER_TRACE(bh, "unmapped");
3038		ext4_get_block(inode, iblock, bh, 0);
3039		/* unmapped? It's a hole - nothing to do */
3040		if (!buffer_mapped(bh)) {
3041			BUFFER_TRACE(bh, "still unmapped");
3042			goto unlock;
3043		}
3044	}
3045
3046	/* Ok, it's mapped. Make sure it's up-to-date */
3047	if (PageUptodate(page))
3048		set_buffer_uptodate(bh);
3049
3050	if (!buffer_uptodate(bh)) {
3051		err = -EIO;
3052		ll_rw_block(READ, 1, &bh);
3053		wait_on_buffer(bh);
3054		/* Uhhuh. Read error. Complain and punt. */
3055		if (!buffer_uptodate(bh))
3056			goto unlock;
 
 
 
 
 
 
 
 
 
 
 
3057	}
3058
3059	if (ext4_should_journal_data(inode)) {
3060		BUFFER_TRACE(bh, "get write access");
3061		err = ext4_journal_get_write_access(handle, bh);
 
3062		if (err)
3063			goto unlock;
3064	}
3065
3066	zero_user(page, offset, length);
3067
3068	BUFFER_TRACE(bh, "zeroed end of block");
3069
3070	err = 0;
3071	if (ext4_should_journal_data(inode)) {
3072		err = ext4_handle_dirty_metadata(handle, inode, bh);
3073	} else {
3074		if (ext4_should_order_data(inode) && EXT4_I(inode)->jinode)
3075			err = ext4_jbd2_file_inode(handle, inode);
3076		mark_buffer_dirty(bh);
 
 
 
3077	}
3078
3079unlock:
3080	unlock_page(page);
3081	page_cache_release(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3082	return err;
3083}
3084
3085int ext4_can_truncate(struct inode *inode)
3086{
3087	if (S_ISREG(inode->i_mode))
3088		return 1;
3089	if (S_ISDIR(inode->i_mode))
3090		return 1;
3091	if (S_ISLNK(inode->i_mode))
3092		return !ext4_inode_is_fast_symlink(inode);
3093	return 0;
3094}
3095
3096/*
3097 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3098 * associated with the given offset and length
3099 *
3100 * @inode:  File inode
3101 * @offset: The offset where the hole will begin
3102 * @len:    The length of the hole
3103 *
3104 * Returns: 0 on sucess or negative on failure
3105 */
3106
3107int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3108{
3109	struct inode *inode = file->f_path.dentry->d_inode;
3110	if (!S_ISREG(inode->i_mode))
3111		return -ENOTSUPP;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3112
3113	if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
3114		/* TODO: Add support for non extent hole punching */
3115		return -ENOTSUPP;
 
 
 
 
 
3116	}
3117
3118	return ext4_ext_punch_hole(file, offset, length);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3119}
3120
3121/*
3122 * ext4_truncate()
3123 *
3124 * We block out ext4_get_block() block instantiations across the entire
3125 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3126 * simultaneously on behalf of the same inode.
3127 *
3128 * As we work through the truncate and commmit bits of it to the journal there
3129 * is one core, guiding principle: the file's tree must always be consistent on
3130 * disk.  We must be able to restart the truncate after a crash.
3131 *
3132 * The file's tree may be transiently inconsistent in memory (although it
3133 * probably isn't), but whenever we close off and commit a journal transaction,
3134 * the contents of (the filesystem + the journal) must be consistent and
3135 * restartable.  It's pretty simple, really: bottom up, right to left (although
3136 * left-to-right works OK too).
3137 *
3138 * Note that at recovery time, journal replay occurs *before* the restart of
3139 * truncate against the orphan inode list.
3140 *
3141 * The committed inode has the new, desired i_size (which is the same as
3142 * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3143 * that this inode's truncate did not complete and it will again call
3144 * ext4_truncate() to have another go.  So there will be instantiated blocks
3145 * to the right of the truncation point in a crashed ext4 filesystem.  But
3146 * that's fine - as long as they are linked from the inode, the post-crash
3147 * ext4_truncate() run will find them and release them.
3148 */
3149void ext4_truncate(struct inode *inode)
3150{
 
 
 
 
 
 
 
 
 
 
 
 
 
3151	trace_ext4_truncate_enter(inode);
3152
3153	if (!ext4_can_truncate(inode))
3154		return;
3155
3156	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3157
3158	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3159		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3160
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3161	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3162		ext4_ext_truncate(inode);
3163	else
3164		ext4_ind_truncate(inode);
 
 
 
 
 
 
 
3165
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3166	trace_ext4_truncate_exit(inode);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3167}
3168
3169/*
3170 * ext4_get_inode_loc returns with an extra refcount against the inode's
3171 * underlying buffer_head on success. If 'in_mem' is true, we have all
3172 * data in memory that is needed to recreate the on-disk version of this
3173 * inode.
3174 */
3175static int __ext4_get_inode_loc(struct inode *inode,
3176				struct ext4_iloc *iloc, int in_mem)
 
3177{
3178	struct ext4_group_desc	*gdp;
3179	struct buffer_head	*bh;
3180	struct super_block	*sb = inode->i_sb;
3181	ext4_fsblk_t		block;
 
3182	int			inodes_per_block, inode_offset;
3183
3184	iloc->bh = NULL;
3185	if (!ext4_valid_inum(sb, inode->i_ino))
3186		return -EIO;
 
3187
3188	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3189	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3190	if (!gdp)
3191		return -EIO;
3192
3193	/*
3194	 * Figure out the offset within the block group inode table
3195	 */
3196	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3197	inode_offset = ((inode->i_ino - 1) %
3198			EXT4_INODES_PER_GROUP(sb));
3199	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3200	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3201
 
 
 
 
 
 
 
 
 
3202	bh = sb_getblk(sb, block);
3203	if (!bh) {
3204		EXT4_ERROR_INODE_BLOCK(inode, block,
3205				       "unable to read itable block");
3206		return -EIO;
 
 
 
 
 
 
3207	}
3208	if (!buffer_uptodate(bh)) {
3209		lock_buffer(bh);
3210
3211		/*
3212		 * If the buffer has the write error flag, we have failed
3213		 * to write out another inode in the same block.  In this
3214		 * case, we don't have to read the block because we may
3215		 * read the old inode data successfully.
3216		 */
3217		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3218			set_buffer_uptodate(bh);
3219
3220		if (buffer_uptodate(bh)) {
3221			/* someone brought it uptodate while we waited */
3222			unlock_buffer(bh);
3223			goto has_buffer;
3224		}
 
3225
3226		/*
3227		 * If we have all information of the inode in memory and this
3228		 * is the only valid inode in the block, we need not read the
3229		 * block.
3230		 */
3231		if (in_mem) {
3232			struct buffer_head *bitmap_bh;
3233			int i, start;
3234
3235			start = inode_offset & ~(inodes_per_block - 1);
3236
3237			/* Is the inode bitmap in cache? */
3238			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3239			if (!bitmap_bh)
3240				goto make_io;
3241
3242			/*
3243			 * If the inode bitmap isn't in cache then the
3244			 * optimisation may end up performing two reads instead
3245			 * of one, so skip it.
3246			 */
3247			if (!buffer_uptodate(bitmap_bh)) {
3248				brelse(bitmap_bh);
3249				goto make_io;
3250			}
3251			for (i = start; i < start + inodes_per_block; i++) {
3252				if (i == inode_offset)
3253					continue;
3254				if (ext4_test_bit(i, bitmap_bh->b_data))
3255					break;
3256			}
3257			brelse(bitmap_bh);
3258			if (i == start + inodes_per_block) {
3259				/* all other inodes are free, so skip I/O */
3260				memset(bh->b_data, 0, bh->b_size);
3261				set_buffer_uptodate(bh);
3262				unlock_buffer(bh);
3263				goto has_buffer;
3264			}
3265		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3266
3267make_io:
3268		/*
3269		 * If we need to do any I/O, try to pre-readahead extra
3270		 * blocks from the inode table.
3271		 */
3272		if (EXT4_SB(sb)->s_inode_readahead_blks) {
3273			ext4_fsblk_t b, end, table;
3274			unsigned num;
3275
3276			table = ext4_inode_table(sb, gdp);
3277			/* s_inode_readahead_blks is always a power of 2 */
3278			b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
3279			if (table > b)
3280				b = table;
3281			end = b + EXT4_SB(sb)->s_inode_readahead_blks;
3282			num = EXT4_INODES_PER_GROUP(sb);
3283			if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3284				       EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
3285				num -= ext4_itable_unused_count(sb, gdp);
3286			table += num / inodes_per_block;
3287			if (end > table)
3288				end = table;
3289			while (b <= end)
3290				sb_breadahead(sb, b++);
3291		}
 
3292
3293		/*
3294		 * There are other valid inodes in the buffer, this inode
3295		 * has in-inode xattrs, or we don't have this inode in memory.
3296		 * Read the block from disk.
3297		 */
3298		trace_ext4_load_inode(inode);
3299		get_bh(bh);
3300		bh->b_end_io = end_buffer_read_sync;
3301		submit_bh(READ | REQ_META | REQ_PRIO, bh);
3302		wait_on_buffer(bh);
3303		if (!buffer_uptodate(bh)) {
3304			EXT4_ERROR_INODE_BLOCK(inode, block,
3305					       "unable to read itable block");
3306			brelse(bh);
3307			return -EIO;
3308		}
3309	}
3310has_buffer:
3311	iloc->bh = bh;
3312	return 0;
3313}
3314
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3315int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3316{
3317	/* We have all inode data except xattrs in memory here. */
3318	return __ext4_get_inode_loc(inode, iloc,
3319		!ext4_test_inode_state(inode, EXT4_STATE_XATTR));
 
 
 
 
 
 
 
 
3320}
3321
3322void ext4_set_inode_flags(struct inode *inode)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3323{
3324	unsigned int flags = EXT4_I(inode)->i_flags;
 
 
 
3325
3326	inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3327	if (flags & EXT4_SYNC_FL)
3328		inode->i_flags |= S_SYNC;
3329	if (flags & EXT4_APPEND_FL)
3330		inode->i_flags |= S_APPEND;
3331	if (flags & EXT4_IMMUTABLE_FL)
3332		inode->i_flags |= S_IMMUTABLE;
3333	if (flags & EXT4_NOATIME_FL)
3334		inode->i_flags |= S_NOATIME;
3335	if (flags & EXT4_DIRSYNC_FL)
3336		inode->i_flags |= S_DIRSYNC;
3337}
3338
3339/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3340void ext4_get_inode_flags(struct ext4_inode_info *ei)
3341{
3342	unsigned int vfs_fl;
3343	unsigned long old_fl, new_fl;
3344
3345	do {
3346		vfs_fl = ei->vfs_inode.i_flags;
3347		old_fl = ei->i_flags;
3348		new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3349				EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3350				EXT4_DIRSYNC_FL);
3351		if (vfs_fl & S_SYNC)
3352			new_fl |= EXT4_SYNC_FL;
3353		if (vfs_fl & S_APPEND)
3354			new_fl |= EXT4_APPEND_FL;
3355		if (vfs_fl & S_IMMUTABLE)
3356			new_fl |= EXT4_IMMUTABLE_FL;
3357		if (vfs_fl & S_NOATIME)
3358			new_fl |= EXT4_NOATIME_FL;
3359		if (vfs_fl & S_DIRSYNC)
3360			new_fl |= EXT4_DIRSYNC_FL;
3361	} while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
3362}
3363
3364static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3365				  struct ext4_inode_info *ei)
3366{
3367	blkcnt_t i_blocks ;
3368	struct inode *inode = &(ei->vfs_inode);
3369	struct super_block *sb = inode->i_sb;
3370
3371	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3372				EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3373		/* we are using combined 48 bit field */
3374		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3375					le32_to_cpu(raw_inode->i_blocks_lo);
3376		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
3377			/* i_blocks represent file system block size */
3378			return i_blocks  << (inode->i_blkbits - 9);
3379		} else {
3380			return i_blocks;
3381		}
3382	} else {
3383		return le32_to_cpu(raw_inode->i_blocks_lo);
3384	}
3385}
3386
3387struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3388{
3389	struct ext4_iloc iloc;
3390	struct ext4_inode *raw_inode;
3391	struct ext4_inode_info *ei;
 
3392	struct inode *inode;
 
3393	journal_t *journal = EXT4_SB(sb)->s_journal;
3394	long ret;
 
3395	int block;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3396
3397	inode = iget_locked(sb, ino);
3398	if (!inode)
3399		return ERR_PTR(-ENOMEM);
3400	if (!(inode->i_state & I_NEW))
 
 
 
 
 
3401		return inode;
 
3402
3403	ei = EXT4_I(inode);
3404	iloc.bh = NULL;
3405
3406	ret = __ext4_get_inode_loc(inode, &iloc, 0);
3407	if (ret < 0)
3408		goto bad_inode;
3409	raw_inode = ext4_raw_inode(&iloc);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3410	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
3411	inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
3412	inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
 
 
 
 
 
 
 
3413	if (!(test_opt(inode->i_sb, NO_UID32))) {
3414		inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
3415		inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
3416	}
3417	inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
 
 
 
3418
3419	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
 
3420	ei->i_dir_start_lookup = 0;
3421	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
3422	/* We now have enough fields to check if the inode was active or not.
3423	 * This is needed because nfsd might try to access dead inodes
3424	 * the test is that same one that e2fsck uses
3425	 * NeilBrown 1999oct15
3426	 */
3427	if (inode->i_nlink == 0) {
3428		if (inode->i_mode == 0 ||
3429		    !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
3430			/* this inode is deleted */
3431			ret = -ESTALE;
 
 
 
 
 
 
3432			goto bad_inode;
3433		}
3434		/* The only unlinked inodes we let through here have
3435		 * valid i_mode and are being read by the orphan
3436		 * recovery code: that's fine, we're about to complete
3437		 * the process of deleting those. */
 
 
3438	}
3439	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
 
3440	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
3441	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
3442	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
3443		ei->i_file_acl |=
3444			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
3445	inode->i_size = ext4_isize(raw_inode);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3446	ei->i_disksize = inode->i_size;
3447#ifdef CONFIG_QUOTA
3448	ei->i_reserved_quota = 0;
3449#endif
3450	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
3451	ei->i_block_group = iloc.block_group;
3452	ei->i_last_alloc_group = ~0;
3453	/*
3454	 * NOTE! The in-memory inode i_data array is in little-endian order
3455	 * even on big-endian machines: we do NOT byteswap the block numbers!
3456	 */
3457	for (block = 0; block < EXT4_N_BLOCKS; block++)
3458		ei->i_data[block] = raw_inode->i_block[block];
3459	INIT_LIST_HEAD(&ei->i_orphan);
 
3460
3461	/*
3462	 * Set transaction id's of transactions that have to be committed
3463	 * to finish f[data]sync. We set them to currently running transaction
3464	 * as we cannot be sure that the inode or some of its metadata isn't
3465	 * part of the transaction - the inode could have been reclaimed and
3466	 * now it is reread from disk.
3467	 */
3468	if (journal) {
3469		transaction_t *transaction;
3470		tid_t tid;
3471
3472		read_lock(&journal->j_state_lock);
3473		if (journal->j_running_transaction)
3474			transaction = journal->j_running_transaction;
3475		else
3476			transaction = journal->j_committing_transaction;
3477		if (transaction)
3478			tid = transaction->t_tid;
3479		else
3480			tid = journal->j_commit_sequence;
3481		read_unlock(&journal->j_state_lock);
3482		ei->i_sync_tid = tid;
3483		ei->i_datasync_tid = tid;
3484	}
3485
3486	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3487		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
3488		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
3489		    EXT4_INODE_SIZE(inode->i_sb)) {
3490			ret = -EIO;
3491			goto bad_inode;
3492		}
3493		if (ei->i_extra_isize == 0) {
3494			/* The extra space is currently unused. Use it. */
 
3495			ei->i_extra_isize = sizeof(struct ext4_inode) -
3496					    EXT4_GOOD_OLD_INODE_SIZE;
3497		} else {
3498			__le32 *magic = (void *)raw_inode +
3499					EXT4_GOOD_OLD_INODE_SIZE +
3500					ei->i_extra_isize;
3501			if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
3502				ext4_set_inode_state(inode, EXT4_STATE_XATTR);
3503		}
3504	} else
3505		ei->i_extra_isize = 0;
3506
3507	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
3508	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
3509	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
3510	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
3511
3512	inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
3513	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3514		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
3515			inode->i_version |=
3516			(__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
 
 
 
 
3517	}
3518
3519	ret = 0;
3520	if (ei->i_file_acl &&
3521	    !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
3522		EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
 
3523				 ei->i_file_acl);
3524		ret = -EIO;
3525		goto bad_inode;
3526	} else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
3527		if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
3528		    (S_ISLNK(inode->i_mode) &&
3529		     !ext4_inode_is_fast_symlink(inode)))
3530			/* Validate extent which is part of inode */
3531			ret = ext4_ext_check_inode(inode);
3532	} else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
3533		   (S_ISLNK(inode->i_mode) &&
3534		    !ext4_inode_is_fast_symlink(inode))) {
3535		/* Validate block references which are part of inode */
3536		ret = ext4_ind_check_inode(inode);
3537	}
3538	if (ret)
3539		goto bad_inode;
3540
3541	if (S_ISREG(inode->i_mode)) {
3542		inode->i_op = &ext4_file_inode_operations;
3543		inode->i_fop = &ext4_file_operations;
3544		ext4_set_aops(inode);
3545	} else if (S_ISDIR(inode->i_mode)) {
3546		inode->i_op = &ext4_dir_inode_operations;
3547		inode->i_fop = &ext4_dir_operations;
3548	} else if (S_ISLNK(inode->i_mode)) {
3549		if (ext4_inode_is_fast_symlink(inode)) {
 
 
 
 
 
 
 
 
 
 
 
3550			inode->i_op = &ext4_fast_symlink_inode_operations;
3551			nd_terminate_link(ei->i_data, inode->i_size,
3552				sizeof(ei->i_data) - 1);
3553		} else {
3554			inode->i_op = &ext4_symlink_inode_operations;
3555			ext4_set_aops(inode);
3556		}
3557	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
3558	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
3559		inode->i_op = &ext4_special_inode_operations;
3560		if (raw_inode->i_block[0])
3561			init_special_inode(inode, inode->i_mode,
3562			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
3563		else
3564			init_special_inode(inode, inode->i_mode,
3565			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
 
 
3566	} else {
3567		ret = -EIO;
3568		EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
 
 
 
 
 
 
 
3569		goto bad_inode;
3570	}
 
 
 
 
 
 
3571	brelse(iloc.bh);
3572	ext4_set_inode_flags(inode);
3573	unlock_new_inode(inode);
3574	return inode;
3575
3576bad_inode:
3577	brelse(iloc.bh);
3578	iget_failed(inode);
3579	return ERR_PTR(ret);
3580}
3581
3582static int ext4_inode_blocks_set(handle_t *handle,
3583				struct ext4_inode *raw_inode,
3584				struct ext4_inode_info *ei)
 
3585{
3586	struct inode *inode = &(ei->vfs_inode);
3587	u64 i_blocks = inode->i_blocks;
3588	struct super_block *sb = inode->i_sb;
3589
3590	if (i_blocks <= ~0U) {
3591		/*
3592		 * i_blocks can be represnted in a 32 bit variable
3593		 * as multiple of 512 bytes
3594		 */
3595		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
3596		raw_inode->i_blocks_high = 0;
3597		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3598		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
3599	}
3600	if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
3601		return -EFBIG;
3602
3603	if (i_blocks <= 0xffffffffffffULL) {
3604		/*
3605		 * i_blocks can be represented in a 48 bit variable
3606		 * as multiple of 512 bytes
3607		 */
3608		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
3609		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
3610		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3611	} else {
3612		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3613		/* i_block is stored in file system block size */
3614		i_blocks = i_blocks >> (inode->i_blkbits - 9);
3615		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
3616		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
 
 
 
 
 
 
 
 
 
3617	}
3618	return 0;
3619}
3620
3621/*
3622 * Post the struct inode info into an on-disk inode location in the
3623 * buffer-cache.  This gobbles the caller's reference to the
3624 * buffer_head in the inode location struct.
3625 *
3626 * The caller must have write access to iloc->bh.
3627 */
3628static int ext4_do_update_inode(handle_t *handle,
3629				struct inode *inode,
3630				struct ext4_iloc *iloc)
3631{
3632	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
3633	struct ext4_inode_info *ei = EXT4_I(inode);
3634	struct buffer_head *bh = iloc->bh;
3635	int err = 0, rc, block;
 
 
3636
3637	/* For fields not not tracking in the in-memory inode,
3638	 * initialise them to zero for new inodes. */
 
 
 
 
3639	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
3640		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
3641
3642	ext4_get_inode_flags(ei);
3643	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
3644	if (!(test_opt(inode->i_sb, NO_UID32))) {
3645		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
3646		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
3647/*
3648 * Fix up interoperability with old kernels. Otherwise, old inodes get
3649 * re-used with the upper 16 bits of the uid/gid intact
3650 */
3651		if (!ei->i_dtime) {
3652			raw_inode->i_uid_high =
3653				cpu_to_le16(high_16_bits(inode->i_uid));
3654			raw_inode->i_gid_high =
3655				cpu_to_le16(high_16_bits(inode->i_gid));
3656		} else {
3657			raw_inode->i_uid_high = 0;
3658			raw_inode->i_gid_high = 0;
3659		}
3660	} else {
3661		raw_inode->i_uid_low =
3662			cpu_to_le16(fs_high2lowuid(inode->i_uid));
3663		raw_inode->i_gid_low =
3664			cpu_to_le16(fs_high2lowgid(inode->i_gid));
3665		raw_inode->i_uid_high = 0;
3666		raw_inode->i_gid_high = 0;
3667	}
3668	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
3669
3670	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
3671	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
3672	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
3673	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
3674
3675	if (ext4_inode_blocks_set(handle, raw_inode, ei))
3676		goto out_brelse;
3677	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
3678	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
3679	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
3680	    cpu_to_le32(EXT4_OS_HURD))
3681		raw_inode->i_file_acl_high =
3682			cpu_to_le16(ei->i_file_acl >> 32);
3683	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
3684	ext4_isize_set(raw_inode, ei->i_disksize);
3685	if (ei->i_disksize > 0x7fffffffULL) {
3686		struct super_block *sb = inode->i_sb;
3687		if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
3688				EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
3689				EXT4_SB(sb)->s_es->s_rev_level ==
3690				cpu_to_le32(EXT4_GOOD_OLD_REV)) {
3691			/* If this is the first large file
3692			 * created, add a flag to the superblock.
3693			 */
3694			err = ext4_journal_get_write_access(handle,
3695					EXT4_SB(sb)->s_sbh);
3696			if (err)
3697				goto out_brelse;
3698			ext4_update_dynamic_rev(sb);
3699			EXT4_SET_RO_COMPAT_FEATURE(sb,
3700					EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
3701			sb->s_dirt = 1;
3702			ext4_handle_sync(handle);
3703			err = ext4_handle_dirty_metadata(handle, NULL,
3704					EXT4_SB(sb)->s_sbh);
3705		}
3706	}
3707	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
3708	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
3709		if (old_valid_dev(inode->i_rdev)) {
3710			raw_inode->i_block[0] =
3711				cpu_to_le32(old_encode_dev(inode->i_rdev));
3712			raw_inode->i_block[1] = 0;
3713		} else {
3714			raw_inode->i_block[0] = 0;
3715			raw_inode->i_block[1] =
3716				cpu_to_le32(new_encode_dev(inode->i_rdev));
3717			raw_inode->i_block[2] = 0;
3718		}
3719	} else
3720		for (block = 0; block < EXT4_N_BLOCKS; block++)
3721			raw_inode->i_block[block] = ei->i_data[block];
3722
3723	raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
3724	if (ei->i_extra_isize) {
3725		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
3726			raw_inode->i_version_hi =
3727			cpu_to_le32(inode->i_version >> 32);
3728		raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
3729	}
3730
3731	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
3732	rc = ext4_handle_dirty_metadata(handle, NULL, bh);
3733	if (!err)
3734		err = rc;
3735	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
3736
3737	ext4_update_inode_fsync_trans(handle, inode, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3738out_brelse:
3739	brelse(bh);
3740	ext4_std_error(inode->i_sb, err);
3741	return err;
3742}
3743
3744/*
3745 * ext4_write_inode()
3746 *
3747 * We are called from a few places:
3748 *
3749 * - Within generic_file_write() for O_SYNC files.
3750 *   Here, there will be no transaction running. We wait for any running
3751 *   trasnaction to commit.
3752 *
3753 * - Within sys_sync(), kupdate and such.
3754 *   We wait on commit, if tol to.
3755 *
3756 * - Within prune_icache() (PF_MEMALLOC == true)
3757 *   Here we simply return.  We can't afford to block kswapd on the
3758 *   journal commit.
3759 *
3760 * In all cases it is actually safe for us to return without doing anything,
3761 * because the inode has been copied into a raw inode buffer in
3762 * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
3763 * knfsd.
3764 *
3765 * Note that we are absolutely dependent upon all inode dirtiers doing the
3766 * right thing: they *must* call mark_inode_dirty() after dirtying info in
3767 * which we are interested.
3768 *
3769 * It would be a bug for them to not do this.  The code:
3770 *
3771 *	mark_inode_dirty(inode)
3772 *	stuff();
3773 *	inode->i_size = expr;
3774 *
3775 * is in error because a kswapd-driven write_inode() could occur while
3776 * `stuff()' is running, and the new i_size will be lost.  Plus the inode
3777 * will no longer be on the superblock's dirty inode list.
3778 */
3779int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
3780{
3781	int err;
3782
3783	if (current->flags & PF_MEMALLOC)
3784		return 0;
3785
 
 
 
3786	if (EXT4_SB(inode->i_sb)->s_journal) {
3787		if (ext4_journal_current_handle()) {
3788			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
3789			dump_stack();
3790			return -EIO;
3791		}
3792
3793		if (wbc->sync_mode != WB_SYNC_ALL)
 
 
 
 
 
3794			return 0;
3795
3796		err = ext4_force_commit(inode->i_sb);
 
3797	} else {
3798		struct ext4_iloc iloc;
3799
3800		err = __ext4_get_inode_loc(inode, &iloc, 0);
3801		if (err)
3802			return err;
3803		if (wbc->sync_mode == WB_SYNC_ALL)
 
 
 
 
3804			sync_dirty_buffer(iloc.bh);
3805		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
3806			EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
3807					 "IO error syncing inode");
3808			err = -EIO;
3809		}
3810		brelse(iloc.bh);
3811	}
3812	return err;
3813}
3814
3815/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3816 * ext4_setattr()
3817 *
3818 * Called from notify_change.
3819 *
3820 * We want to trap VFS attempts to truncate the file as soon as
3821 * possible.  In particular, we want to make sure that when the VFS
3822 * shrinks i_size, we put the inode on the orphan list and modify
3823 * i_disksize immediately, so that during the subsequent flushing of
3824 * dirty pages and freeing of disk blocks, we can guarantee that any
3825 * commit will leave the blocks being flushed in an unused state on
3826 * disk.  (On recovery, the inode will get truncated and the blocks will
3827 * be freed, so we have a strong guarantee that no future commit will
3828 * leave these blocks visible to the user.)
3829 *
3830 * Another thing we have to assure is that if we are in ordered mode
3831 * and inode is still attached to the committing transaction, we must
3832 * we start writeout of all the dirty pages which are being truncated.
3833 * This way we are sure that all the data written in the previous
3834 * transaction are already on disk (truncate waits for pages under
3835 * writeback).
3836 *
3837 * Called with inode->i_mutex down.
3838 */
3839int ext4_setattr(struct dentry *dentry, struct iattr *attr)
 
3840{
3841	struct inode *inode = dentry->d_inode;
3842	int error, rc = 0;
3843	int orphan = 0;
3844	const unsigned int ia_valid = attr->ia_valid;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3845
3846	error = inode_change_ok(inode, attr);
3847	if (error)
3848		return error;
3849
3850	if (is_quota_modification(inode, attr))
3851		dquot_initialize(inode);
3852	if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
3853		(ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
 
 
 
 
3854		handle_t *handle;
3855
3856		/* (user+group)*(old+new) structure, inode write (sb,
3857		 * inode block, ? - but truncate inode update has it) */
3858		handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
3859					EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
 
3860		if (IS_ERR(handle)) {
3861			error = PTR_ERR(handle);
3862			goto err_out;
3863		}
3864		error = dquot_transfer(inode, attr);
 
 
 
 
 
 
 
3865		if (error) {
3866			ext4_journal_stop(handle);
3867			return error;
3868		}
3869		/* Update corresponding info in inode so that everything is in
3870		 * one transaction */
3871		if (attr->ia_valid & ATTR_UID)
3872			inode->i_uid = attr->ia_uid;
3873		if (attr->ia_valid & ATTR_GID)
3874			inode->i_gid = attr->ia_gid;
3875		error = ext4_mark_inode_dirty(handle, inode);
3876		ext4_journal_stop(handle);
 
 
 
3877	}
3878
3879	if (attr->ia_valid & ATTR_SIZE) {
3880		inode_dio_wait(inode);
 
 
 
3881
3882		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
3883			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3884
3885			if (attr->ia_size > sbi->s_bitmap_maxbytes)
3886				return -EFBIG;
 
 
 
 
3887		}
3888	}
3889
3890	if (S_ISREG(inode->i_mode) &&
3891	    attr->ia_valid & ATTR_SIZE &&
3892	    (attr->ia_size < inode->i_size)) {
3893		handle_t *handle;
3894
3895		handle = ext4_journal_start(inode, 3);
3896		if (IS_ERR(handle)) {
3897			error = PTR_ERR(handle);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3898			goto err_out;
3899		}
3900		if (ext4_handle_valid(handle)) {
3901			error = ext4_orphan_add(handle, inode);
3902			orphan = 1;
3903		}
3904		EXT4_I(inode)->i_disksize = attr->ia_size;
3905		rc = ext4_mark_inode_dirty(handle, inode);
3906		if (!error)
3907			error = rc;
3908		ext4_journal_stop(handle);
3909
3910		if (ext4_should_order_data(inode)) {
3911			error = ext4_begin_ordered_truncate(inode,
3912							    attr->ia_size);
3913			if (error) {
3914				/* Do as much error cleanup as possible */
3915				handle = ext4_journal_start(inode, 3);
3916				if (IS_ERR(handle)) {
3917					ext4_orphan_del(NULL, inode);
3918					goto err_out;
3919				}
3920				ext4_orphan_del(handle, inode);
3921				orphan = 0;
3922				ext4_journal_stop(handle);
3923				goto err_out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3924			}
3925		}
3926	}
3927
3928	if (attr->ia_valid & ATTR_SIZE) {
3929		if (attr->ia_size != i_size_read(inode)) {
3930			truncate_setsize(inode, attr->ia_size);
3931			ext4_truncate(inode);
3932		} else if (ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS))
3933			ext4_truncate(inode);
 
 
 
 
 
 
 
 
 
 
3934	}
3935
3936	if (!rc) {
3937		setattr_copy(inode, attr);
 
 
3938		mark_inode_dirty(inode);
3939	}
3940
3941	/*
3942	 * If the call to ext4_truncate failed to get a transaction handle at
3943	 * all, we need to clean up the in-core orphan list manually.
3944	 */
3945	if (orphan && inode->i_nlink)
3946		ext4_orphan_del(NULL, inode);
3947
3948	if (!rc && (ia_valid & ATTR_MODE))
3949		rc = ext4_acl_chmod(inode);
3950
3951err_out:
3952	ext4_std_error(inode->i_sb, error);
 
3953	if (!error)
3954		error = rc;
3955	return error;
3956}
3957
3958int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
3959		 struct kstat *stat)
3960{
3961	struct inode *inode;
3962	unsigned long delalloc_blocks;
 
 
 
 
 
 
 
 
 
 
 
3963
3964	inode = dentry->d_inode;
3965	generic_fillattr(inode, stat);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3966
3967	/*
3968	 * We can't update i_blocks if the block allocation is delayed
3969	 * otherwise in the case of system crash before the real block
3970	 * allocation is done, we will have i_blocks inconsistent with
3971	 * on-disk file blocks.
3972	 * We always keep i_blocks updated together with real
3973	 * allocation. But to not confuse with user, stat
3974	 * will return the blocks that include the delayed allocation
3975	 * blocks for this file.
3976	 */
3977	delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
3978
3979	stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
3980	return 0;
3981}
3982
3983static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
 
3984{
3985	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
3986		return ext4_ind_trans_blocks(inode, nrblocks, chunk);
3987	return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
3988}
3989
3990/*
3991 * Account for index blocks, block groups bitmaps and block group
3992 * descriptor blocks if modify datablocks and index blocks
3993 * worse case, the indexs blocks spread over different block groups
3994 *
3995 * If datablocks are discontiguous, they are possible to spread over
3996 * different block groups too. If they are contiuguous, with flexbg,
3997 * they could still across block group boundary.
3998 *
3999 * Also account for superblock, inode, quota and xattr blocks
4000 */
4001static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
 
4002{
4003	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4004	int gdpblocks;
4005	int idxblocks;
4006	int ret = 0;
4007
4008	/*
4009	 * How many index blocks need to touch to modify nrblocks?
4010	 * The "Chunk" flag indicating whether the nrblocks is
4011	 * physically contiguous on disk
4012	 *
4013	 * For Direct IO and fallocate, they calls get_block to allocate
4014	 * one single extent at a time, so they could set the "Chunk" flag
4015	 */
4016	idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4017
4018	ret = idxblocks;
4019
4020	/*
4021	 * Now let's see how many group bitmaps and group descriptors need
4022	 * to account
4023	 */
4024	groups = idxblocks;
4025	if (chunk)
4026		groups += 1;
4027	else
4028		groups += nrblocks;
4029
4030	gdpblocks = groups;
4031	if (groups > ngroups)
4032		groups = ngroups;
4033	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4034		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4035
4036	/* bitmaps and block group descriptor blocks */
4037	ret += groups + gdpblocks;
4038
4039	/* Blocks for super block, inode, quota and xattr blocks */
4040	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4041
4042	return ret;
4043}
4044
4045/*
4046 * Calculate the total number of credits to reserve to fit
4047 * the modification of a single pages into a single transaction,
4048 * which may include multiple chunks of block allocations.
4049 *
4050 * This could be called via ext4_write_begin()
4051 *
4052 * We need to consider the worse case, when
4053 * one new block per extent.
4054 */
4055int ext4_writepage_trans_blocks(struct inode *inode)
4056{
4057	int bpp = ext4_journal_blocks_per_page(inode);
4058	int ret;
4059
4060	ret = ext4_meta_trans_blocks(inode, bpp, 0);
4061
4062	/* Account for data blocks for journalled mode */
4063	if (ext4_should_journal_data(inode))
4064		ret += bpp;
4065	return ret;
4066}
4067
4068/*
4069 * Calculate the journal credits for a chunk of data modification.
4070 *
4071 * This is called from DIO, fallocate or whoever calling
4072 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4073 *
4074 * journal buffers for data blocks are not included here, as DIO
4075 * and fallocate do no need to journal data buffers.
4076 */
4077int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4078{
4079	return ext4_meta_trans_blocks(inode, nrblocks, 1);
4080}
4081
4082/*
4083 * The caller must have previously called ext4_reserve_inode_write().
4084 * Give this, we know that the caller already has write access to iloc->bh.
4085 */
4086int ext4_mark_iloc_dirty(handle_t *handle,
4087			 struct inode *inode, struct ext4_iloc *iloc)
4088{
4089	int err = 0;
4090
4091	if (test_opt(inode->i_sb, I_VERSION))
4092		inode_inc_iversion(inode);
 
 
 
4093
4094	/* the do_update_inode consumes one bh->b_count */
4095	get_bh(iloc->bh);
4096
4097	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4098	err = ext4_do_update_inode(handle, inode, iloc);
4099	put_bh(iloc->bh);
4100	return err;
4101}
4102
4103/*
4104 * On success, We end up with an outstanding reference count against
4105 * iloc->bh.  This _must_ be cleaned up later.
4106 */
4107
4108int
4109ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4110			 struct ext4_iloc *iloc)
4111{
4112	int err;
4113
 
 
 
4114	err = ext4_get_inode_loc(inode, iloc);
4115	if (!err) {
4116		BUFFER_TRACE(iloc->bh, "get_write_access");
4117		err = ext4_journal_get_write_access(handle, iloc->bh);
 
4118		if (err) {
4119			brelse(iloc->bh);
4120			iloc->bh = NULL;
4121		}
4122	}
4123	ext4_std_error(inode->i_sb, err);
4124	return err;
4125}
4126
4127/*
4128 * Expand an inode by new_extra_isize bytes.
4129 * Returns 0 on success or negative error number on failure.
4130 */
4131static int ext4_expand_extra_isize(struct inode *inode,
4132				   unsigned int new_extra_isize,
4133				   struct ext4_iloc iloc,
4134				   handle_t *handle)
4135{
4136	struct ext4_inode *raw_inode;
4137	struct ext4_xattr_ibody_header *header;
 
 
 
4138
4139	if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4140		return 0;
 
 
 
 
 
 
 
 
 
 
4141
4142	raw_inode = ext4_raw_inode(&iloc);
4143
4144	header = IHDR(inode, raw_inode);
4145
4146	/* No extended attributes present */
4147	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4148	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4149		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4150			new_extra_isize);
 
4151		EXT4_I(inode)->i_extra_isize = new_extra_isize;
4152		return 0;
4153	}
4154
 
 
 
 
 
 
 
 
4155	/* try to expand with EAs present */
4156	return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4157					  raw_inode, handle);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4158}
4159
4160/*
4161 * What we do here is to mark the in-core inode as clean with respect to inode
4162 * dirtiness (it may still be data-dirty).
4163 * This means that the in-core inode may be reaped by prune_icache
4164 * without having to perform any I/O.  This is a very good thing,
4165 * because *any* task may call prune_icache - even ones which
4166 * have a transaction open against a different journal.
4167 *
4168 * Is this cheating?  Not really.  Sure, we haven't written the
4169 * inode out, but prune_icache isn't a user-visible syncing function.
4170 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4171 * we start and wait on commits.
4172 *
4173 * Is this efficient/effective?  Well, we're being nice to the system
4174 * by cleaning up our inodes proactively so they can be reaped
4175 * without I/O.  But we are potentially leaving up to five seconds'
4176 * worth of inodes floating about which prune_icache wants us to
4177 * write out.  One way to fix that would be to get prune_icache()
4178 * to do a write_super() to free up some memory.  It has the desired
4179 * effect.
4180 */
4181int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
 
4182{
4183	struct ext4_iloc iloc;
4184	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4185	static unsigned int mnt_count;
4186	int err, ret;
4187
4188	might_sleep();
4189	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
4190	err = ext4_reserve_inode_write(handle, inode, &iloc);
4191	if (ext4_handle_valid(handle) &&
4192	    EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4193	    !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
4194		/*
4195		 * We need extra buffer credits since we may write into EA block
4196		 * with this same handle. If journal_extend fails, then it will
4197		 * only result in a minor loss of functionality for that inode.
4198		 * If this is felt to be critical, then e2fsck should be run to
4199		 * force a large enough s_min_extra_isize.
4200		 */
4201		if ((jbd2_journal_extend(handle,
4202			     EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4203			ret = ext4_expand_extra_isize(inode,
4204						      sbi->s_want_extra_isize,
4205						      iloc, handle);
4206			if (ret) {
4207				ext4_set_inode_state(inode,
4208						     EXT4_STATE_NO_EXPAND);
4209				if (mnt_count !=
4210					le16_to_cpu(sbi->s_es->s_mnt_count)) {
4211					ext4_warning(inode->i_sb,
4212					"Unable to expand inode %lu. Delete"
4213					" some EAs or run e2fsck.",
4214					inode->i_ino);
4215					mnt_count =
4216					  le16_to_cpu(sbi->s_es->s_mnt_count);
4217				}
4218			}
4219		}
4220	}
4221	if (!err)
4222		err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4223	return err;
4224}
4225
4226/*
4227 * ext4_dirty_inode() is called from __mark_inode_dirty()
4228 *
4229 * We're really interested in the case where a file is being extended.
4230 * i_size has been changed by generic_commit_write() and we thus need
4231 * to include the updated inode in the current transaction.
4232 *
4233 * Also, dquot_alloc_block() will always dirty the inode when blocks
4234 * are allocated to the file.
4235 *
4236 * If the inode is marked synchronous, we don't honour that here - doing
4237 * so would cause a commit on atime updates, which we don't bother doing.
4238 * We handle synchronous inodes at the highest possible level.
4239 */
4240void ext4_dirty_inode(struct inode *inode, int flags)
4241{
4242	handle_t *handle;
4243
4244	handle = ext4_journal_start(inode, 2);
4245	if (IS_ERR(handle))
4246		goto out;
4247
4248	ext4_mark_inode_dirty(handle, inode);
4249
4250	ext4_journal_stop(handle);
4251out:
4252	return;
4253}
4254
4255#if 0
4256/*
4257 * Bind an inode's backing buffer_head into this transaction, to prevent
4258 * it from being flushed to disk early.  Unlike
4259 * ext4_reserve_inode_write, this leaves behind no bh reference and
4260 * returns no iloc structure, so the caller needs to repeat the iloc
4261 * lookup to mark the inode dirty later.
4262 */
4263static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4264{
4265	struct ext4_iloc iloc;
4266
4267	int err = 0;
4268	if (handle) {
4269		err = ext4_get_inode_loc(inode, &iloc);
4270		if (!err) {
4271			BUFFER_TRACE(iloc.bh, "get_write_access");
4272			err = jbd2_journal_get_write_access(handle, iloc.bh);
4273			if (!err)
4274				err = ext4_handle_dirty_metadata(handle,
4275								 NULL,
4276								 iloc.bh);
4277			brelse(iloc.bh);
4278		}
4279	}
4280	ext4_std_error(inode->i_sb, err);
4281	return err;
4282}
4283#endif
4284
4285int ext4_change_inode_journal_flag(struct inode *inode, int val)
4286{
4287	journal_t *journal;
4288	handle_t *handle;
4289	int err;
 
4290
4291	/*
4292	 * We have to be very careful here: changing a data block's
4293	 * journaling status dynamically is dangerous.  If we write a
4294	 * data block to the journal, change the status and then delete
4295	 * that block, we risk forgetting to revoke the old log record
4296	 * from the journal and so a subsequent replay can corrupt data.
4297	 * So, first we make sure that the journal is empty and that
4298	 * nobody is changing anything.
4299	 */
4300
4301	journal = EXT4_JOURNAL(inode);
4302	if (!journal)
4303		return 0;
4304	if (is_journal_aborted(journal))
4305		return -EROFS;
4306
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4307	jbd2_journal_lock_updates(journal);
4308	jbd2_journal_flush(journal);
4309
4310	/*
4311	 * OK, there are no updates running now, and all cached data is
4312	 * synced to disk.  We are now in a completely consistent state
4313	 * which doesn't have anything in the journal, and we know that
4314	 * no filesystem updates are running, so it is safe to modify
4315	 * the inode's in-core data-journaling state flag now.
4316	 */
4317
4318	if (val)
4319		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4320	else
 
 
 
 
 
 
4321		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
 
4322	ext4_set_aops(inode);
4323
4324	jbd2_journal_unlock_updates(journal);
 
 
 
 
4325
4326	/* Finally we can mark the inode as dirty. */
4327
4328	handle = ext4_journal_start(inode, 1);
4329	if (IS_ERR(handle))
4330		return PTR_ERR(handle);
4331
 
 
4332	err = ext4_mark_inode_dirty(handle, inode);
4333	ext4_handle_sync(handle);
4334	ext4_journal_stop(handle);
4335	ext4_std_error(inode->i_sb, err);
4336
4337	return err;
4338}
4339
4340static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
 
4341{
4342	return !buffer_mapped(bh);
4343}
4344
4345int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
4346{
4347	struct page *page = vmf->page;
 
4348	loff_t size;
4349	unsigned long len;
4350	int ret;
 
4351	struct file *file = vma->vm_file;
4352	struct inode *inode = file->f_path.dentry->d_inode;
4353	struct address_space *mapping = inode->i_mapping;
4354	handle_t *handle;
4355	get_block_t *get_block;
4356	int retries = 0;
4357
 
 
 
 
 
 
 
 
 
 
 
 
4358	/*
4359	 * This check is racy but catches the common case. We rely on
4360	 * __block_page_mkwrite() to do a reliable check.
 
 
4361	 */
4362	vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
 
 
4363	/* Delalloc case is easy... */
4364	if (test_opt(inode->i_sb, DELALLOC) &&
4365	    !ext4_should_journal_data(inode) &&
4366	    !ext4_nonda_switch(inode->i_sb)) {
4367		do {
4368			ret = __block_page_mkwrite(vma, vmf,
4369						   ext4_da_get_block_prep);
4370		} while (ret == -ENOSPC &&
4371		       ext4_should_retry_alloc(inode->i_sb, &retries));
4372		goto out_ret;
4373	}
4374
4375	lock_page(page);
4376	size = i_size_read(inode);
4377	/* Page got truncated from under us? */
4378	if (page->mapping != mapping || page_offset(page) > size) {
4379		unlock_page(page);
4380		ret = VM_FAULT_NOPAGE;
4381		goto out;
4382	}
4383
4384	if (page->index == size >> PAGE_CACHE_SHIFT)
4385		len = size & ~PAGE_CACHE_MASK;
4386	else
4387		len = PAGE_CACHE_SIZE;
4388	/*
4389	 * Return if we have all the buffers mapped. This avoids the need to do
4390	 * journal_start/journal_stop which can block and take a long time
 
 
 
4391	 */
4392	if (page_has_buffers(page)) {
4393		if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
4394					ext4_bh_unmapped)) {
 
4395			/* Wait so that we don't change page under IO */
4396			wait_on_page_writeback(page);
4397			ret = VM_FAULT_LOCKED;
4398			goto out;
4399		}
4400	}
4401	unlock_page(page);
4402	/* OK, we need to fill the hole... */
4403	if (ext4_should_dioread_nolock(inode))
4404		get_block = ext4_get_block_write;
4405	else
4406		get_block = ext4_get_block;
4407retry_alloc:
4408	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
 
4409	if (IS_ERR(handle)) {
4410		ret = VM_FAULT_SIGBUS;
4411		goto out;
4412	}
4413	ret = __block_page_mkwrite(vma, vmf, get_block);
4414	if (!ret && ext4_should_journal_data(inode)) {
4415		if (walk_page_buffers(handle, page_buffers(page), 0,
4416			  PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
4417			unlock_page(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4418			ret = VM_FAULT_SIGBUS;
4419			goto out;
 
 
 
4420		}
4421		ext4_set_inode_state(inode, EXT4_STATE_JDATA);
4422	}
4423	ext4_journal_stop(handle);
4424	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
4425		goto retry_alloc;
4426out_ret:
4427	ret = block_page_mkwrite_return(ret);
4428out:
 
 
4429	return ret;
 
 
 
 
4430}
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  linux/fs/ext4/inode.c
   4 *
   5 * Copyright (C) 1992, 1993, 1994, 1995
   6 * Remy Card (card@masi.ibp.fr)
   7 * Laboratoire MASI - Institut Blaise Pascal
   8 * Universite Pierre et Marie Curie (Paris VI)
   9 *
  10 *  from
  11 *
  12 *  linux/fs/minix/inode.c
  13 *
  14 *  Copyright (C) 1991, 1992  Linus Torvalds
  15 *
  16 *  64-bit file support on 64-bit platforms by Jakub Jelinek
  17 *	(jj@sunsite.ms.mff.cuni.cz)
  18 *
  19 *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
  20 */
  21
 
  22#include <linux/fs.h>
  23#include <linux/mount.h>
  24#include <linux/time.h>
 
  25#include <linux/highuid.h>
  26#include <linux/pagemap.h>
  27#include <linux/dax.h>
  28#include <linux/quotaops.h>
  29#include <linux/string.h>
  30#include <linux/buffer_head.h>
  31#include <linux/writeback.h>
  32#include <linux/pagevec.h>
  33#include <linux/mpage.h>
  34#include <linux/namei.h>
  35#include <linux/uio.h>
  36#include <linux/bio.h>
  37#include <linux/workqueue.h>
  38#include <linux/kernel.h>
  39#include <linux/printk.h>
  40#include <linux/slab.h>
  41#include <linux/bitops.h>
  42#include <linux/iomap.h>
  43#include <linux/iversion.h>
  44
  45#include "ext4_jbd2.h"
  46#include "xattr.h"
  47#include "acl.h"
 
  48#include "truncate.h"
  49
  50#include <trace/events/ext4.h>
  51
  52static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
  53			      struct ext4_inode_info *ei)
  54{
  55	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
  56	__u32 csum;
  57	__u16 dummy_csum = 0;
  58	int offset = offsetof(struct ext4_inode, i_checksum_lo);
  59	unsigned int csum_size = sizeof(dummy_csum);
  60
  61	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
  62	csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
  63	offset += csum_size;
  64	csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
  65			   EXT4_GOOD_OLD_INODE_SIZE - offset);
  66
  67	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
  68		offset = offsetof(struct ext4_inode, i_checksum_hi);
  69		csum = ext4_chksum(sbi, csum, (__u8 *)raw +
  70				   EXT4_GOOD_OLD_INODE_SIZE,
  71				   offset - EXT4_GOOD_OLD_INODE_SIZE);
  72		if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
  73			csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
  74					   csum_size);
  75			offset += csum_size;
  76		}
  77		csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
  78				   EXT4_INODE_SIZE(inode->i_sb) - offset);
  79	}
  80
  81	return csum;
  82}
  83
  84static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
  85				  struct ext4_inode_info *ei)
  86{
  87	__u32 provided, calculated;
  88
  89	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
  90	    cpu_to_le32(EXT4_OS_LINUX) ||
  91	    !ext4_has_metadata_csum(inode->i_sb))
  92		return 1;
  93
  94	provided = le16_to_cpu(raw->i_checksum_lo);
  95	calculated = ext4_inode_csum(inode, raw, ei);
  96	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
  97	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
  98		provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
  99	else
 100		calculated &= 0xFFFF;
 101
 102	return provided == calculated;
 103}
 104
 105void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
 106			 struct ext4_inode_info *ei)
 107{
 108	__u32 csum;
 109
 110	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
 111	    cpu_to_le32(EXT4_OS_LINUX) ||
 112	    !ext4_has_metadata_csum(inode->i_sb))
 113		return;
 114
 115	csum = ext4_inode_csum(inode, raw, ei);
 116	raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
 117	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
 118	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
 119		raw->i_checksum_hi = cpu_to_le16(csum >> 16);
 120}
 121
 122static inline int ext4_begin_ordered_truncate(struct inode *inode,
 123					      loff_t new_size)
 124{
 125	trace_ext4_begin_ordered_truncate(inode, new_size);
 126	/*
 127	 * If jinode is zero, then we never opened the file for
 128	 * writing, so there's no need to call
 129	 * jbd2_journal_begin_ordered_truncate() since there's no
 130	 * outstanding writes we need to flush.
 131	 */
 132	if (!EXT4_I(inode)->jinode)
 133		return 0;
 134	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
 135						   EXT4_I(inode)->jinode,
 136						   new_size);
 137}
 138
 139static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
 140				  int pextents);
 
 
 
 
 
 141
 142/*
 143 * Test whether an inode is a fast symlink.
 144 * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
 145 */
 146int ext4_inode_is_fast_symlink(struct inode *inode)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 147{
 148	if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
 149		int ea_blocks = EXT4_I(inode)->i_file_acl ?
 150				EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
 151
 152		if (ext4_has_inline_data(inode))
 153			return 0;
 
 
 
 
 
 
 
 
 
 
 154
 155		return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
 156	}
 157	return S_ISLNK(inode->i_mode) && inode->i_size &&
 158	       (inode->i_size < EXT4_N_BLOCKS * 4);
 159}
 160
 161/*
 162 * Called at the last iput() if i_nlink is zero.
 163 */
 164void ext4_evict_inode(struct inode *inode)
 165{
 166	handle_t *handle;
 167	int err;
 168	/*
 169	 * Credits for final inode cleanup and freeing:
 170	 * sb + inode (ext4_orphan_del()), block bitmap, group descriptor
 171	 * (xattr block freeing), bitmap, group descriptor (inode freeing)
 172	 */
 173	int extra_credits = 6;
 174	struct ext4_xattr_inode_array *ea_inode_array = NULL;
 175	bool freeze_protected = false;
 176
 177	trace_ext4_evict_inode(inode);
 178
 179	if (EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)
 180		ext4_evict_ea_inode(inode);
 181	if (inode->i_nlink) {
 182		truncate_inode_pages_final(&inode->i_data);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 183
 
 
 
 
 
 184		goto no_delete;
 185	}
 186
 187	if (is_bad_inode(inode))
 188		goto no_delete;
 189	dquot_initialize(inode);
 190
 191	if (ext4_should_order_data(inode))
 192		ext4_begin_ordered_truncate(inode, 0);
 193	truncate_inode_pages_final(&inode->i_data);
 194
 195	/*
 196	 * For inodes with journalled data, transaction commit could have
 197	 * dirtied the inode. And for inodes with dioread_nolock, unwritten
 198	 * extents converting worker could merge extents and also have dirtied
 199	 * the inode. Flush worker is ignoring it because of I_FREEING flag but
 200	 * we still need to remove the inode from the writeback lists.
 201	 */
 202	if (!list_empty_careful(&inode->i_io_list))
 203		inode_io_list_del(inode);
 204
 205	/*
 206	 * Protect us against freezing - iput() caller didn't have to have any
 207	 * protection against it. When we are in a running transaction though,
 208	 * we are already protected against freezing and we cannot grab further
 209	 * protection due to lock ordering constraints.
 210	 */
 211	if (!ext4_journal_current_handle()) {
 212		sb_start_intwrite(inode->i_sb);
 213		freeze_protected = true;
 214	}
 215
 216	if (!IS_NOQUOTA(inode))
 217		extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
 218
 219	/*
 220	 * Block bitmap, group descriptor, and inode are accounted in both
 221	 * ext4_blocks_for_truncate() and extra_credits. So subtract 3.
 222	 */
 223	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
 224			 ext4_blocks_for_truncate(inode) + extra_credits - 3);
 225	if (IS_ERR(handle)) {
 226		ext4_std_error(inode->i_sb, PTR_ERR(handle));
 227		/*
 228		 * If we're going to skip the normal cleanup, we still need to
 229		 * make sure that the in-core orphan linked list is properly
 230		 * cleaned up.
 231		 */
 232		ext4_orphan_del(NULL, inode);
 233		if (freeze_protected)
 234			sb_end_intwrite(inode->i_sb);
 235		goto no_delete;
 236	}
 237
 238	if (IS_SYNC(inode))
 239		ext4_handle_sync(handle);
 240
 241	/*
 242	 * Set inode->i_size to 0 before calling ext4_truncate(). We need
 243	 * special handling of symlinks here because i_size is used to
 244	 * determine whether ext4_inode_info->i_data contains symlink data or
 245	 * block mappings. Setting i_size to 0 will remove its fast symlink
 246	 * status. Erase i_data so that it becomes a valid empty block map.
 247	 */
 248	if (ext4_inode_is_fast_symlink(inode))
 249		memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
 250	inode->i_size = 0;
 251	err = ext4_mark_inode_dirty(handle, inode);
 252	if (err) {
 253		ext4_warning(inode->i_sb,
 254			     "couldn't mark inode dirty (err %d)", err);
 255		goto stop_handle;
 256	}
 257	if (inode->i_blocks) {
 258		err = ext4_truncate(inode);
 259		if (err) {
 260			ext4_error_err(inode->i_sb, -err,
 261				       "couldn't truncate inode %lu (err %d)",
 262				       inode->i_ino, err);
 263			goto stop_handle;
 
 
 
 
 
 
 
 
 
 
 
 
 
 264		}
 265	}
 266
 267	/* Remove xattr references. */
 268	err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
 269				      extra_credits);
 270	if (err) {
 271		ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
 272stop_handle:
 273		ext4_journal_stop(handle);
 274		ext4_orphan_del(NULL, inode);
 275		if (freeze_protected)
 276			sb_end_intwrite(inode->i_sb);
 277		ext4_xattr_inode_array_free(ea_inode_array);
 278		goto no_delete;
 279	}
 280
 281	/*
 282	 * Kill off the orphan record which ext4_truncate created.
 283	 * AKPM: I think this can be inside the above `if'.
 284	 * Note that ext4_orphan_del() has to be able to cope with the
 285	 * deletion of a non-existent orphan - this is because we don't
 286	 * know if ext4_truncate() actually created an orphan record.
 287	 * (Well, we could do this if we need to, but heck - it works)
 288	 */
 289	ext4_orphan_del(handle, inode);
 290	EXT4_I(inode)->i_dtime	= (__u32)ktime_get_real_seconds();
 291
 292	/*
 293	 * One subtle ordering requirement: if anything has gone wrong
 294	 * (transaction abort, IO errors, whatever), then we can still
 295	 * do these next steps (the fs will already have been marked as
 296	 * having errors), but we can't free the inode if the mark_dirty
 297	 * fails.
 298	 */
 299	if (ext4_mark_inode_dirty(handle, inode))
 300		/* If that failed, just do the required in-core inode clear. */
 301		ext4_clear_inode(inode);
 302	else
 303		ext4_free_inode(handle, inode);
 304	ext4_journal_stop(handle);
 305	if (freeze_protected)
 306		sb_end_intwrite(inode->i_sb);
 307	ext4_xattr_inode_array_free(ea_inode_array);
 308	return;
 309no_delete:
 310	/*
 311	 * Check out some where else accidentally dirty the evicting inode,
 312	 * which may probably cause inode use-after-free issues later.
 313	 */
 314	WARN_ON_ONCE(!list_empty_careful(&inode->i_io_list));
 315
 316	if (!list_empty(&EXT4_I(inode)->i_fc_list))
 317		ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_NOMEM, NULL);
 318	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
 319}
 320
 321#ifdef CONFIG_QUOTA
 322qsize_t *ext4_get_reserved_space(struct inode *inode)
 323{
 324	return &EXT4_I(inode)->i_reserved_quota;
 325}
 326#endif
 327
 328/*
 
 
 
 
 
 
 
 
 
 
 
 
 329 * Called with i_data_sem down, which is important since we can call
 330 * ext4_discard_preallocations() from here.
 331 */
 332void ext4_da_update_reserve_space(struct inode *inode,
 333					int used, int quota_claim)
 334{
 335	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
 336	struct ext4_inode_info *ei = EXT4_I(inode);
 337
 338	spin_lock(&ei->i_block_reservation_lock);
 339	trace_ext4_da_update_reserve_space(inode, used, quota_claim);
 340	if (unlikely(used > ei->i_reserved_data_blocks)) {
 341		ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
 342			 "with only %d reserved data blocks",
 343			 __func__, inode->i_ino, used,
 344			 ei->i_reserved_data_blocks);
 345		WARN_ON(1);
 346		used = ei->i_reserved_data_blocks;
 347	}
 348
 349	/* Update per-inode reservations */
 350	ei->i_reserved_data_blocks -= used;
 351	percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
 
 
 
 352
 353	spin_unlock(&ei->i_block_reservation_lock);
 
 
 
 
 
 
 
 
 
 
 
 354
 355	/* Update quota subsystem for data blocks */
 356	if (quota_claim)
 357		dquot_claim_block(inode, EXT4_C2B(sbi, used));
 358	else {
 359		/*
 360		 * We did fallocate with an offset that is already delayed
 361		 * allocated. So on delayed allocated writeback we should
 362		 * not re-claim the quota for fallocated blocks.
 363		 */
 364		dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
 365	}
 366
 367	/*
 368	 * If we have done all the pending block allocations and if
 369	 * there aren't any writers on the inode, we can discard the
 370	 * inode's preallocations.
 371	 */
 372	if ((ei->i_reserved_data_blocks == 0) &&
 373	    !inode_is_open_for_write(inode))
 374		ext4_discard_preallocations(inode);
 375}
 376
 377static int __check_block_validity(struct inode *inode, const char *func,
 378				unsigned int line,
 379				struct ext4_map_blocks *map)
 380{
 381	if (ext4_has_feature_journal(inode->i_sb) &&
 382	    (inode->i_ino ==
 383	     le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum)))
 384		return 0;
 385	if (!ext4_inode_block_valid(inode, map->m_pblk, map->m_len)) {
 386		ext4_error_inode(inode, func, line, map->m_pblk,
 387				 "lblock %lu mapped to illegal pblock %llu "
 388				 "(length %d)", (unsigned long) map->m_lblk,
 389				 map->m_pblk, map->m_len);
 390		return -EFSCORRUPTED;
 391	}
 392	return 0;
 393}
 394
 395int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
 396		       ext4_lblk_t len)
 397{
 398	int ret;
 399
 400	if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode))
 401		return fscrypt_zeroout_range(inode, lblk, pblk, len);
 402
 403	ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
 404	if (ret > 0)
 405		ret = 0;
 406
 407	return ret;
 408}
 409
 410#define check_block_validity(inode, map)	\
 411	__check_block_validity((inode), __func__, __LINE__, (map))
 412
 413#ifdef ES_AGGRESSIVE_TEST
 414static void ext4_map_blocks_es_recheck(handle_t *handle,
 415				       struct inode *inode,
 416				       struct ext4_map_blocks *es_map,
 417				       struct ext4_map_blocks *map,
 418				       int flags)
 419{
 420	int retval;
 
 
 
 
 421
 422	map->m_flags = 0;
 423	/*
 424	 * There is a race window that the result is not the same.
 425	 * e.g. xfstests #223 when dioread_nolock enables.  The reason
 426	 * is that we lookup a block mapping in extent status tree with
 427	 * out taking i_data_sem.  So at the time the unwritten extent
 428	 * could be converted.
 429	 */
 430	down_read(&EXT4_I(inode)->i_data_sem);
 431	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
 432		retval = ext4_ext_map_blocks(handle, inode, map, 0);
 433	} else {
 434		retval = ext4_ind_map_blocks(handle, inode, map, 0);
 435	}
 436	up_read((&EXT4_I(inode)->i_data_sem));
 437
 438	/*
 439	 * We don't check m_len because extent will be collpased in status
 440	 * tree.  So the m_len might not equal.
 441	 */
 442	if (es_map->m_lblk != map->m_lblk ||
 443	    es_map->m_flags != map->m_flags ||
 444	    es_map->m_pblk != map->m_pblk) {
 445		printk("ES cache assertion failed for inode: %lu "
 446		       "es_cached ex [%d/%d/%llu/%x] != "
 447		       "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
 448		       inode->i_ino, es_map->m_lblk, es_map->m_len,
 449		       es_map->m_pblk, es_map->m_flags, map->m_lblk,
 450		       map->m_len, map->m_pblk, map->m_flags,
 451		       retval, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 452	}
 
 453}
 454#endif /* ES_AGGRESSIVE_TEST */
 455
 456/*
 457 * The ext4_map_blocks() function tries to look up the requested blocks,
 458 * and returns if the blocks are already mapped.
 459 *
 460 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
 461 * and store the allocated blocks in the result buffer head and mark it
 462 * mapped.
 463 *
 464 * If file type is extents based, it will call ext4_ext_map_blocks(),
 465 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
 466 * based files
 467 *
 468 * On success, it returns the number of blocks being mapped or allocated.
 469 * If flags doesn't contain EXT4_GET_BLOCKS_CREATE the blocks are
 470 * pre-allocated and unwritten, the resulting @map is marked as unwritten.
 471 * If the flags contain EXT4_GET_BLOCKS_CREATE, it will mark @map as mapped.
 472 *
 473 * It returns 0 if plain look up failed (blocks have not been allocated), in
 474 * that case, @map is returned as unmapped but we still do fill map->m_len to
 475 * indicate the length of a hole starting at map->m_lblk.
 476 *
 477 * It returns the error in case of allocation failure.
 478 */
 479int ext4_map_blocks(handle_t *handle, struct inode *inode,
 480		    struct ext4_map_blocks *map, int flags)
 481{
 482	struct extent_status es;
 483	int retval;
 484	int ret = 0;
 485#ifdef ES_AGGRESSIVE_TEST
 486	struct ext4_map_blocks orig_map;
 487
 488	memcpy(&orig_map, map, sizeof(*map));
 489#endif
 490
 491	map->m_flags = 0;
 492	ext_debug(inode, "flag 0x%x, max_blocks %u, logical block %lu\n",
 493		  flags, map->m_len, (unsigned long) map->m_lblk);
 494
 495	/*
 496	 * ext4_map_blocks returns an int, and m_len is an unsigned int
 497	 */
 498	if (unlikely(map->m_len > INT_MAX))
 499		map->m_len = INT_MAX;
 500
 501	/* We can handle the block number less than EXT_MAX_BLOCKS */
 502	if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
 503		return -EFSCORRUPTED;
 504
 505	/* Lookup extent status tree firstly */
 506	if (!(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) &&
 507	    ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
 508		if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
 509			map->m_pblk = ext4_es_pblock(&es) +
 510					map->m_lblk - es.es_lblk;
 511			map->m_flags |= ext4_es_is_written(&es) ?
 512					EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
 513			retval = es.es_len - (map->m_lblk - es.es_lblk);
 514			if (retval > map->m_len)
 515				retval = map->m_len;
 516			map->m_len = retval;
 517		} else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
 518			map->m_pblk = 0;
 519			map->m_flags |= ext4_es_is_delayed(&es) ?
 520					EXT4_MAP_DELAYED : 0;
 521			retval = es.es_len - (map->m_lblk - es.es_lblk);
 522			if (retval > map->m_len)
 523				retval = map->m_len;
 524			map->m_len = retval;
 525			retval = 0;
 526		} else {
 527			BUG();
 528		}
 529
 530		if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT)
 531			return retval;
 532#ifdef ES_AGGRESSIVE_TEST
 533		ext4_map_blocks_es_recheck(handle, inode, map,
 534					   &orig_map, flags);
 535#endif
 536		goto found;
 537	}
 538	/*
 539	 * In the query cache no-wait mode, nothing we can do more if we
 540	 * cannot find extent in the cache.
 541	 */
 542	if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT)
 543		return 0;
 544
 545	/*
 546	 * Try to see if we can get the block without requesting a new
 547	 * file system block.
 548	 */
 549	down_read(&EXT4_I(inode)->i_data_sem);
 550	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
 551		retval = ext4_ext_map_blocks(handle, inode, map, 0);
 552	} else {
 553		retval = ext4_ind_map_blocks(handle, inode, map, 0);
 554	}
 555	if (retval > 0) {
 556		unsigned int status;
 557
 558		if (unlikely(retval != map->m_len)) {
 559			ext4_warning(inode->i_sb,
 560				     "ES len assertion failed for inode "
 561				     "%lu: retval %d != map->m_len %d",
 562				     inode->i_ino, retval, map->m_len);
 563			WARN_ON(1);
 564		}
 565
 566		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
 567				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
 568		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
 569		    !(status & EXTENT_STATUS_WRITTEN) &&
 570		    ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
 571				       map->m_lblk + map->m_len - 1))
 572			status |= EXTENT_STATUS_DELAYED;
 573		ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
 574				      map->m_pblk, status);
 575	}
 576	up_read((&EXT4_I(inode)->i_data_sem));
 577
 578found:
 579	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
 580		ret = check_block_validity(inode, map);
 581		if (ret != 0)
 582			return ret;
 583	}
 584
 585	/* If it is only a block(s) look up */
 586	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
 587		return retval;
 588
 589	/*
 590	 * Returns if the blocks have already allocated
 591	 *
 592	 * Note that if blocks have been preallocated
 593	 * ext4_ext_map_blocks() returns with buffer head unmapped
 
 594	 */
 595	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
 596		/*
 597		 * If we need to convert extent to unwritten
 598		 * we continue and do the actual work in
 599		 * ext4_ext_map_blocks()
 600		 */
 601		if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
 602			return retval;
 603
 604	/*
 605	 * Here we clear m_flags because after allocating an new extent,
 606	 * it will be set again.
 
 
 
 
 
 
 607	 */
 608	map->m_flags &= ~EXT4_MAP_FLAGS;
 609
 610	/*
 611	 * New blocks allocate and/or writing to unwritten extent
 612	 * will possibly result in updating i_data, so we take
 613	 * the write lock of i_data_sem, and call get_block()
 614	 * with create == 1 flag.
 615	 */
 616	down_write(&EXT4_I(inode)->i_data_sem);
 617
 618	/*
 
 
 
 
 
 
 
 
 619	 * We need to check for EXT4 here because migrate
 620	 * could have changed the inode type in between
 621	 */
 622	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
 623		retval = ext4_ext_map_blocks(handle, inode, map, flags);
 624	} else {
 625		retval = ext4_ind_map_blocks(handle, inode, map, flags);
 626
 627		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
 628			/*
 629			 * We allocated new blocks which will result in
 630			 * i_data's format changing.  Force the migrate
 631			 * to fail by clearing migrate flags
 632			 */
 633			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
 634		}
 635	}
 636
 637	if (retval > 0) {
 638		unsigned int status;
 639
 640		if (unlikely(retval != map->m_len)) {
 641			ext4_warning(inode->i_sb,
 642				     "ES len assertion failed for inode "
 643				     "%lu: retval %d != map->m_len %d",
 644				     inode->i_ino, retval, map->m_len);
 645			WARN_ON(1);
 646		}
 647
 648		/*
 649		 * We have to zeroout blocks before inserting them into extent
 650		 * status tree. Otherwise someone could look them up there and
 651		 * use them before they are really zeroed. We also have to
 652		 * unmap metadata before zeroing as otherwise writeback can
 653		 * overwrite zeros with stale data from block device.
 654		 */
 655		if (flags & EXT4_GET_BLOCKS_ZERO &&
 656		    map->m_flags & EXT4_MAP_MAPPED &&
 657		    map->m_flags & EXT4_MAP_NEW) {
 658			ret = ext4_issue_zeroout(inode, map->m_lblk,
 659						 map->m_pblk, map->m_len);
 660			if (ret) {
 661				retval = ret;
 662				goto out_sem;
 663			}
 664		}
 665
 666		/*
 667		 * If the extent has been zeroed out, we don't need to update
 668		 * extent status tree.
 
 
 669		 */
 670		if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
 671		    ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
 672			if (ext4_es_is_written(&es))
 673				goto out_sem;
 674		}
 675		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
 676				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
 677		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
 678		    !(status & EXTENT_STATUS_WRITTEN) &&
 679		    ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
 680				       map->m_lblk + map->m_len - 1))
 681			status |= EXTENT_STATUS_DELAYED;
 682		ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
 683				      map->m_pblk, status);
 684	}
 
 
 685
 686out_sem:
 687	up_write((&EXT4_I(inode)->i_data_sem));
 688	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
 689		ret = check_block_validity(inode, map);
 690		if (ret != 0)
 691			return ret;
 692
 693		/*
 694		 * Inodes with freshly allocated blocks where contents will be
 695		 * visible after transaction commit must be on transaction's
 696		 * ordered data list.
 697		 */
 698		if (map->m_flags & EXT4_MAP_NEW &&
 699		    !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
 700		    !(flags & EXT4_GET_BLOCKS_ZERO) &&
 701		    !ext4_is_quota_file(inode) &&
 702		    ext4_should_order_data(inode)) {
 703			loff_t start_byte =
 704				(loff_t)map->m_lblk << inode->i_blkbits;
 705			loff_t length = (loff_t)map->m_len << inode->i_blkbits;
 706
 707			if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
 708				ret = ext4_jbd2_inode_add_wait(handle, inode,
 709						start_byte, length);
 710			else
 711				ret = ext4_jbd2_inode_add_write(handle, inode,
 712						start_byte, length);
 713			if (ret)
 714				return ret;
 715		}
 716	}
 717	if (retval > 0 && (map->m_flags & EXT4_MAP_UNWRITTEN ||
 718				map->m_flags & EXT4_MAP_MAPPED))
 719		ext4_fc_track_range(handle, inode, map->m_lblk,
 720					map->m_lblk + map->m_len - 1);
 721	if (retval < 0)
 722		ext_debug(inode, "failed with err %d\n", retval);
 723	return retval;
 724}
 725
 726/*
 727 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
 728 * we have to be careful as someone else may be manipulating b_state as well.
 729 */
 730static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
 731{
 732	unsigned long old_state;
 733	unsigned long new_state;
 734
 735	flags &= EXT4_MAP_FLAGS;
 736
 737	/* Dummy buffer_head? Set non-atomically. */
 738	if (!bh->b_page) {
 739		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
 740		return;
 741	}
 742	/*
 743	 * Someone else may be modifying b_state. Be careful! This is ugly but
 744	 * once we get rid of using bh as a container for mapping information
 745	 * to pass to / from get_block functions, this can go away.
 746	 */
 747	old_state = READ_ONCE(bh->b_state);
 748	do {
 749		new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
 750	} while (unlikely(!try_cmpxchg(&bh->b_state, &old_state, new_state)));
 751}
 752
 753static int _ext4_get_block(struct inode *inode, sector_t iblock,
 754			   struct buffer_head *bh, int flags)
 755{
 
 756	struct ext4_map_blocks map;
 757	int ret = 0;
 758
 759	if (ext4_has_inline_data(inode))
 760		return -ERANGE;
 761
 762	map.m_lblk = iblock;
 763	map.m_len = bh->b_size >> inode->i_blkbits;
 764
 765	ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
 766			      flags);
 
 
 
 
 
 
 
 
 
 
 
 
 767	if (ret > 0) {
 768		map_bh(bh, inode->i_sb, map.m_pblk);
 769		ext4_update_bh_state(bh, map.m_flags);
 770		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
 771		ret = 0;
 772	} else if (ret == 0) {
 773		/* hole case, need to fill in bh->b_size */
 774		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
 775	}
 
 
 776	return ret;
 777}
 778
 779int ext4_get_block(struct inode *inode, sector_t iblock,
 780		   struct buffer_head *bh, int create)
 781{
 782	return _ext4_get_block(inode, iblock, bh,
 783			       create ? EXT4_GET_BLOCKS_CREATE : 0);
 784}
 785
 786/*
 787 * Get block function used when preparing for buffered write if we require
 788 * creating an unwritten extent if blocks haven't been allocated.  The extent
 789 * will be converted to written after the IO is complete.
 790 */
 791int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
 792			     struct buffer_head *bh_result, int create)
 793{
 794	int ret = 0;
 795
 796	ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
 797		   inode->i_ino, create);
 798	ret = _ext4_get_block(inode, iblock, bh_result,
 799			       EXT4_GET_BLOCKS_CREATE_UNWRIT_EXT);
 800
 801	/*
 802	 * If the buffer is marked unwritten, mark it as new to make sure it is
 803	 * zeroed out correctly in case of partial writes. Otherwise, there is
 804	 * a chance of stale data getting exposed.
 805	 */
 806	if (ret == 0 && buffer_unwritten(bh_result))
 807		set_buffer_new(bh_result);
 808
 809	return ret;
 810}
 811
 812/* Maximum number of blocks we map for direct IO at once. */
 813#define DIO_MAX_BLOCKS 4096
 814
 815/*
 816 * `handle' can be NULL if create is zero
 817 */
 818struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
 819				ext4_lblk_t block, int map_flags)
 820{
 821	struct ext4_map_blocks map;
 822	struct buffer_head *bh;
 823	int create = map_flags & EXT4_GET_BLOCKS_CREATE;
 824	bool nowait = map_flags & EXT4_GET_BLOCKS_CACHED_NOWAIT;
 825	int err;
 826
 827	ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
 828		    || handle != NULL || create == 0);
 829	ASSERT(create == 0 || !nowait);
 830
 831	map.m_lblk = block;
 832	map.m_len = 1;
 833	err = ext4_map_blocks(handle, inode, &map, map_flags);
 
 834
 835	if (err == 0)
 836		return create ? ERR_PTR(-ENOSPC) : NULL;
 837	if (err < 0)
 838		return ERR_PTR(err);
 839
 840	if (nowait)
 841		return sb_find_get_block(inode->i_sb, map.m_pblk);
 842
 843	bh = sb_getblk(inode->i_sb, map.m_pblk);
 844	if (unlikely(!bh))
 845		return ERR_PTR(-ENOMEM);
 
 
 846	if (map.m_flags & EXT4_MAP_NEW) {
 847		ASSERT(create != 0);
 848		ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
 849			    || (handle != NULL));
 850
 851		/*
 852		 * Now that we do not always journal data, we should
 853		 * keep in mind whether this should always journal the
 854		 * new buffer as metadata.  For now, regular file
 855		 * writes use ext4_get_block instead, so it's not a
 856		 * problem.
 857		 */
 858		lock_buffer(bh);
 859		BUFFER_TRACE(bh, "call get_create_access");
 860		err = ext4_journal_get_create_access(handle, inode->i_sb, bh,
 861						     EXT4_JTR_NONE);
 862		if (unlikely(err)) {
 863			unlock_buffer(bh);
 864			goto errout;
 865		}
 866		if (!buffer_uptodate(bh)) {
 867			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
 868			set_buffer_uptodate(bh);
 869		}
 870		unlock_buffer(bh);
 871		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
 872		err = ext4_handle_dirty_metadata(handle, inode, bh);
 873		if (unlikely(err))
 874			goto errout;
 875	} else
 876		BUFFER_TRACE(bh, "not a new buffer");
 
 
 
 
 
 
 877	return bh;
 878errout:
 879	brelse(bh);
 880	return ERR_PTR(err);
 881}
 882
 883struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
 884			       ext4_lblk_t block, int map_flags)
 885{
 886	struct buffer_head *bh;
 887	int ret;
 888
 889	bh = ext4_getblk(handle, inode, block, map_flags);
 890	if (IS_ERR(bh))
 891		return bh;
 892	if (!bh || ext4_buffer_uptodate(bh))
 
 
 
 
 893		return bh;
 894
 895	ret = ext4_read_bh_lock(bh, REQ_META | REQ_PRIO, true);
 896	if (ret) {
 897		put_bh(bh);
 898		return ERR_PTR(ret);
 899	}
 900	return bh;
 901}
 902
 903/* Read a contiguous batch of blocks. */
 904int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
 905		     bool wait, struct buffer_head **bhs)
 906{
 907	int i, err;
 908
 909	for (i = 0; i < bh_count; i++) {
 910		bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
 911		if (IS_ERR(bhs[i])) {
 912			err = PTR_ERR(bhs[i]);
 913			bh_count = i;
 914			goto out_brelse;
 915		}
 916	}
 917
 918	for (i = 0; i < bh_count; i++)
 919		/* Note that NULL bhs[i] is valid because of holes. */
 920		if (bhs[i] && !ext4_buffer_uptodate(bhs[i]))
 921			ext4_read_bh_lock(bhs[i], REQ_META | REQ_PRIO, false);
 922
 923	if (!wait)
 924		return 0;
 925
 926	for (i = 0; i < bh_count; i++)
 927		if (bhs[i])
 928			wait_on_buffer(bhs[i]);
 929
 930	for (i = 0; i < bh_count; i++) {
 931		if (bhs[i] && !buffer_uptodate(bhs[i])) {
 932			err = -EIO;
 933			goto out_brelse;
 934		}
 935	}
 936	return 0;
 937
 938out_brelse:
 939	for (i = 0; i < bh_count; i++) {
 940		brelse(bhs[i]);
 941		bhs[i] = NULL;
 942	}
 943	return err;
 944}
 945
 946int ext4_walk_page_buffers(handle_t *handle, struct inode *inode,
 947			   struct buffer_head *head,
 948			   unsigned from,
 949			   unsigned to,
 950			   int *partial,
 951			   int (*fn)(handle_t *handle, struct inode *inode,
 952				     struct buffer_head *bh))
 953{
 954	struct buffer_head *bh;
 955	unsigned block_start, block_end;
 956	unsigned blocksize = head->b_size;
 957	int err, ret = 0;
 958	struct buffer_head *next;
 959
 960	for (bh = head, block_start = 0;
 961	     ret == 0 && (bh != head || !block_start);
 962	     block_start = block_end, bh = next) {
 963		next = bh->b_this_page;
 964		block_end = block_start + blocksize;
 965		if (block_end <= from || block_start >= to) {
 966			if (partial && !buffer_uptodate(bh))
 967				*partial = 1;
 968			continue;
 969		}
 970		err = (*fn)(handle, inode, bh);
 971		if (!ret)
 972			ret = err;
 973	}
 974	return ret;
 975}
 976
 977/*
 978 * Helper for handling dirtying of journalled data. We also mark the folio as
 979 * dirty so that writeback code knows about this page (and inode) contains
 980 * dirty data. ext4_writepages() then commits appropriate transaction to
 981 * make data stable.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 982 */
 983static int ext4_dirty_journalled_data(handle_t *handle, struct buffer_head *bh)
 984{
 985	folio_mark_dirty(bh->b_folio);
 986	return ext4_handle_dirty_metadata(handle, NULL, bh);
 987}
 988
 989int do_journal_get_write_access(handle_t *handle, struct inode *inode,
 990				struct buffer_head *bh)
 991{
 992	int dirty = buffer_dirty(bh);
 993	int ret;
 994
 995	if (!buffer_mapped(bh) || buffer_freed(bh))
 996		return 0;
 997	/*
 998	 * __block_write_begin() could have dirtied some buffers. Clean
 999	 * the dirty bit as jbd2_journal_get_write_access() could complain
1000	 * otherwise about fs integrity issues. Setting of the dirty bit
1001	 * by __block_write_begin() isn't a real problem here as we clear
1002	 * the bit before releasing a page lock and thus writeback cannot
1003	 * ever write the buffer.
1004	 */
1005	if (dirty)
1006		clear_buffer_dirty(bh);
1007	BUFFER_TRACE(bh, "get write access");
1008	ret = ext4_journal_get_write_access(handle, inode->i_sb, bh,
1009					    EXT4_JTR_NONE);
1010	if (!ret && dirty)
1011		ret = ext4_dirty_journalled_data(handle, bh);
1012	return ret;
1013}
1014
1015#ifdef CONFIG_FS_ENCRYPTION
1016static int ext4_block_write_begin(struct folio *folio, loff_t pos, unsigned len,
1017				  get_block_t *get_block)
1018{
1019	unsigned from = pos & (PAGE_SIZE - 1);
1020	unsigned to = from + len;
1021	struct inode *inode = folio->mapping->host;
1022	unsigned block_start, block_end;
1023	sector_t block;
1024	int err = 0;
1025	unsigned blocksize = inode->i_sb->s_blocksize;
1026	unsigned bbits;
1027	struct buffer_head *bh, *head, *wait[2];
1028	int nr_wait = 0;
1029	int i;
1030
1031	BUG_ON(!folio_test_locked(folio));
1032	BUG_ON(from > PAGE_SIZE);
1033	BUG_ON(to > PAGE_SIZE);
1034	BUG_ON(from > to);
1035
1036	head = folio_buffers(folio);
1037	if (!head)
1038		head = create_empty_buffers(folio, blocksize, 0);
1039	bbits = ilog2(blocksize);
1040	block = (sector_t)folio->index << (PAGE_SHIFT - bbits);
1041
1042	for (bh = head, block_start = 0; bh != head || !block_start;
1043	    block++, block_start = block_end, bh = bh->b_this_page) {
1044		block_end = block_start + blocksize;
1045		if (block_end <= from || block_start >= to) {
1046			if (folio_test_uptodate(folio)) {
1047				set_buffer_uptodate(bh);
1048			}
1049			continue;
1050		}
1051		if (buffer_new(bh))
1052			clear_buffer_new(bh);
1053		if (!buffer_mapped(bh)) {
1054			WARN_ON(bh->b_size != blocksize);
1055			err = get_block(inode, block, bh, 1);
1056			if (err)
1057				break;
1058			if (buffer_new(bh)) {
1059				if (folio_test_uptodate(folio)) {
1060					clear_buffer_new(bh);
1061					set_buffer_uptodate(bh);
1062					mark_buffer_dirty(bh);
1063					continue;
1064				}
1065				if (block_end > to || block_start < from)
1066					folio_zero_segments(folio, to,
1067							    block_end,
1068							    block_start, from);
1069				continue;
1070			}
1071		}
1072		if (folio_test_uptodate(folio)) {
1073			set_buffer_uptodate(bh);
1074			continue;
1075		}
1076		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1077		    !buffer_unwritten(bh) &&
1078		    (block_start < from || block_end > to)) {
1079			ext4_read_bh_lock(bh, 0, false);
1080			wait[nr_wait++] = bh;
1081		}
1082	}
1083	/*
1084	 * If we issued read requests, let them complete.
1085	 */
1086	for (i = 0; i < nr_wait; i++) {
1087		wait_on_buffer(wait[i]);
1088		if (!buffer_uptodate(wait[i]))
1089			err = -EIO;
1090	}
1091	if (unlikely(err)) {
1092		folio_zero_new_buffers(folio, from, to);
1093	} else if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
1094		for (i = 0; i < nr_wait; i++) {
1095			int err2;
1096
1097			err2 = fscrypt_decrypt_pagecache_blocks(folio,
1098						blocksize, bh_offset(wait[i]));
1099			if (err2) {
1100				clear_buffer_uptodate(wait[i]);
1101				err = err2;
1102			}
1103		}
1104	}
1105
1106	return err;
1107}
1108#endif
1109
1110/*
1111 * To preserve ordering, it is essential that the hole instantiation and
1112 * the data write be encapsulated in a single transaction.  We cannot
1113 * close off a transaction and start a new one between the ext4_get_block()
1114 * and the ext4_write_end().  So doing the jbd2_journal_start at the start of
1115 * ext4_write_begin() is the right place.
1116 */
1117static int ext4_write_begin(struct file *file, struct address_space *mapping,
1118			    loff_t pos, unsigned len,
1119			    struct page **pagep, void **fsdata)
1120{
1121	struct inode *inode = mapping->host;
1122	int ret, needed_blocks;
1123	handle_t *handle;
1124	int retries = 0;
1125	struct folio *folio;
1126	pgoff_t index;
1127	unsigned from, to;
1128
1129	if (unlikely(ext4_forced_shutdown(inode->i_sb)))
1130		return -EIO;
1131
1132	trace_ext4_write_begin(inode, pos, len);
1133	/*
1134	 * Reserve one block more for addition to orphan list in case
1135	 * we allocate blocks but write fails for some reason
1136	 */
1137	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1138	index = pos >> PAGE_SHIFT;
1139	from = pos & (PAGE_SIZE - 1);
1140	to = from + len;
1141
1142	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1143		ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1144						    pagep);
1145		if (ret < 0)
1146			return ret;
1147		if (ret == 1)
1148			return 0;
1149	}
1150
1151	/*
1152	 * __filemap_get_folio() can take a long time if the
1153	 * system is thrashing due to memory pressure, or if the folio
1154	 * is being written back.  So grab it first before we start
1155	 * the transaction handle.  This also allows us to allocate
1156	 * the folio (if needed) without using GFP_NOFS.
1157	 */
1158retry_grab:
1159	folio = __filemap_get_folio(mapping, index, FGP_WRITEBEGIN,
1160					mapping_gfp_mask(mapping));
1161	if (IS_ERR(folio))
1162		return PTR_ERR(folio);
1163	/*
1164	 * The same as page allocation, we prealloc buffer heads before
1165	 * starting the handle.
1166	 */
1167	if (!folio_buffers(folio))
1168		create_empty_buffers(folio, inode->i_sb->s_blocksize, 0);
1169
1170	folio_unlock(folio);
1171
1172retry_journal:
1173	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1174	if (IS_ERR(handle)) {
1175		folio_put(folio);
1176		return PTR_ERR(handle);
1177	}
1178
1179	folio_lock(folio);
1180	if (folio->mapping != mapping) {
1181		/* The folio got truncated from under us */
1182		folio_unlock(folio);
1183		folio_put(folio);
1184		ext4_journal_stop(handle);
1185		goto retry_grab;
 
1186	}
1187	/* In case writeback began while the folio was unlocked */
1188	folio_wait_stable(folio);
1189
1190#ifdef CONFIG_FS_ENCRYPTION
1191	if (ext4_should_dioread_nolock(inode))
1192		ret = ext4_block_write_begin(folio, pos, len,
1193					     ext4_get_block_unwritten);
1194	else
1195		ret = ext4_block_write_begin(folio, pos, len, ext4_get_block);
1196#else
1197	if (ext4_should_dioread_nolock(inode))
1198		ret = __block_write_begin(&folio->page, pos, len,
1199					  ext4_get_block_unwritten);
1200	else
1201		ret = __block_write_begin(&folio->page, pos, len, ext4_get_block);
1202#endif
1203	if (!ret && ext4_should_journal_data(inode)) {
1204		ret = ext4_walk_page_buffers(handle, inode,
1205					     folio_buffers(folio), from, to,
1206					     NULL, do_journal_get_write_access);
1207	}
1208
1209	if (ret) {
1210		bool extended = (pos + len > inode->i_size) &&
1211				!ext4_verity_in_progress(inode);
1212
1213		folio_unlock(folio);
1214		/*
1215		 * __block_write_begin may have instantiated a few blocks
1216		 * outside i_size.  Trim these off again. Don't need
1217		 * i_size_read because we hold i_rwsem.
1218		 *
1219		 * Add inode to orphan list in case we crash before
1220		 * truncate finishes
1221		 */
1222		if (extended && ext4_can_truncate(inode))
1223			ext4_orphan_add(handle, inode);
1224
1225		ext4_journal_stop(handle);
1226		if (extended) {
1227			ext4_truncate_failed_write(inode);
1228			/*
1229			 * If truncate failed early the inode might
1230			 * still be on the orphan list; we need to
1231			 * make sure the inode is removed from the
1232			 * orphan list in that case.
1233			 */
1234			if (inode->i_nlink)
1235				ext4_orphan_del(NULL, inode);
1236		}
 
1237
1238		if (ret == -ENOSPC &&
1239		    ext4_should_retry_alloc(inode->i_sb, &retries))
1240			goto retry_journal;
1241		folio_put(folio);
1242		return ret;
1243	}
1244	*pagep = &folio->page;
1245	return ret;
1246}
1247
1248/* For write_end() in data=journal mode */
1249static int write_end_fn(handle_t *handle, struct inode *inode,
1250			struct buffer_head *bh)
1251{
1252	int ret;
1253	if (!buffer_mapped(bh) || buffer_freed(bh))
1254		return 0;
1255	set_buffer_uptodate(bh);
1256	ret = ext4_dirty_journalled_data(handle, bh);
1257	clear_buffer_meta(bh);
1258	clear_buffer_prio(bh);
1259	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1260}
1261
1262/*
1263 * We need to pick up the new inode size which generic_commit_write gave us
1264 * `file' can be NULL - eg, when called from page_symlink().
1265 *
1266 * ext4 never places buffers on inode->i_mapping->i_private_list.  metadata
1267 * buffers are managed internally.
1268 */
1269static int ext4_write_end(struct file *file,
1270			  struct address_space *mapping,
1271			  loff_t pos, unsigned len, unsigned copied,
1272			  struct page *page, void *fsdata)
1273{
1274	struct folio *folio = page_folio(page);
1275	handle_t *handle = ext4_journal_current_handle();
1276	struct inode *inode = mapping->host;
1277	loff_t old_size = inode->i_size;
1278	int ret = 0, ret2;
1279	int i_size_changed = 0;
1280	bool verity = ext4_verity_in_progress(inode);
1281
1282	trace_ext4_write_end(inode, pos, len, copied);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1283
1284	if (ext4_has_inline_data(inode) &&
1285	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA))
1286		return ext4_write_inline_data_end(inode, pos, len, copied,
1287						  folio);
1288
1289	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1290	/*
1291	 * it's important to update i_size while still holding folio lock:
1292	 * page writeout could otherwise come in and zero beyond i_size.
1293	 *
1294	 * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree
1295	 * blocks are being written past EOF, so skip the i_size update.
1296	 */
1297	if (!verity)
1298		i_size_changed = ext4_update_inode_size(inode, pos + copied);
1299	folio_unlock(folio);
1300	folio_put(folio);
1301
1302	if (old_size < pos && !verity)
1303		pagecache_isize_extended(inode, old_size, pos);
1304	/*
1305	 * Don't mark the inode dirty under folio lock. First, it unnecessarily
1306	 * makes the holding time of folio lock longer. Second, it forces lock
1307	 * ordering of folio lock and transaction start for journaling
1308	 * filesystems.
1309	 */
1310	if (i_size_changed)
1311		ret = ext4_mark_inode_dirty(handle, inode);
1312
1313	if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
 
 
 
 
1314		/* if we have allocated more blocks and copied
1315		 * less. We will have blocks allocated outside
1316		 * inode->i_size. So truncate them
1317		 */
1318		ext4_orphan_add(handle, inode);
1319
 
 
 
1320	ret2 = ext4_journal_stop(handle);
1321	if (!ret)
1322		ret = ret2;
1323
1324	if (pos + len > inode->i_size && !verity) {
1325		ext4_truncate_failed_write(inode);
1326		/*
1327		 * If truncate failed early the inode might still be
1328		 * on the orphan list; we need to make sure the inode
1329		 * is removed from the orphan list in that case.
1330		 */
1331		if (inode->i_nlink)
1332			ext4_orphan_del(NULL, inode);
1333	}
1334
1335	return ret ? ret : copied;
1336}
1337
1338/*
1339 * This is a private version of folio_zero_new_buffers() which doesn't
1340 * set the buffer to be dirty, since in data=journalled mode we need
1341 * to call ext4_dirty_journalled_data() instead.
1342 */
1343static void ext4_journalled_zero_new_buffers(handle_t *handle,
1344					    struct inode *inode,
1345					    struct folio *folio,
1346					    unsigned from, unsigned to)
1347{
1348	unsigned int block_start = 0, block_end;
1349	struct buffer_head *head, *bh;
1350
1351	bh = head = folio_buffers(folio);
1352	do {
1353		block_end = block_start + bh->b_size;
1354		if (buffer_new(bh)) {
1355			if (block_end > from && block_start < to) {
1356				if (!folio_test_uptodate(folio)) {
1357					unsigned start, size;
1358
1359					start = max(from, block_start);
1360					size = min(to, block_end) - start;
1361
1362					folio_zero_range(folio, start, size);
1363					write_end_fn(handle, inode, bh);
1364				}
1365				clear_buffer_new(bh);
1366			}
1367		}
1368		block_start = block_end;
1369		bh = bh->b_this_page;
1370	} while (bh != head);
1371}
1372
1373static int ext4_journalled_write_end(struct file *file,
1374				     struct address_space *mapping,
1375				     loff_t pos, unsigned len, unsigned copied,
1376				     struct page *page, void *fsdata)
1377{
1378	struct folio *folio = page_folio(page);
1379	handle_t *handle = ext4_journal_current_handle();
1380	struct inode *inode = mapping->host;
1381	loff_t old_size = inode->i_size;
1382	int ret = 0, ret2;
1383	int partial = 0;
1384	unsigned from, to;
1385	int size_changed = 0;
1386	bool verity = ext4_verity_in_progress(inode);
1387
1388	trace_ext4_journalled_write_end(inode, pos, len, copied);
1389	from = pos & (PAGE_SIZE - 1);
1390	to = from + len;
1391
1392	BUG_ON(!ext4_handle_valid(handle));
1393
1394	if (ext4_has_inline_data(inode))
1395		return ext4_write_inline_data_end(inode, pos, len, copied,
1396						  folio);
1397
1398	if (unlikely(copied < len) && !folio_test_uptodate(folio)) {
1399		copied = 0;
1400		ext4_journalled_zero_new_buffers(handle, inode, folio,
1401						 from, to);
1402	} else {
1403		if (unlikely(copied < len))
1404			ext4_journalled_zero_new_buffers(handle, inode, folio,
1405							 from + copied, to);
1406		ret = ext4_walk_page_buffers(handle, inode,
1407					     folio_buffers(folio),
1408					     from, from + copied, &partial,
1409					     write_end_fn);
1410		if (!partial)
1411			folio_mark_uptodate(folio);
1412	}
1413	if (!verity)
1414		size_changed = ext4_update_inode_size(inode, pos + copied);
 
 
 
 
 
 
 
1415	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1416	folio_unlock(folio);
1417	folio_put(folio);
1418
1419	if (old_size < pos && !verity)
1420		pagecache_isize_extended(inode, old_size, pos);
1421
1422	if (size_changed) {
1423		ret2 = ext4_mark_inode_dirty(handle, inode);
1424		if (!ret)
1425			ret = ret2;
1426	}
1427
1428	if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
 
 
1429		/* if we have allocated more blocks and copied
1430		 * less. We will have blocks allocated outside
1431		 * inode->i_size. So truncate them
1432		 */
1433		ext4_orphan_add(handle, inode);
1434
1435	ret2 = ext4_journal_stop(handle);
1436	if (!ret)
1437		ret = ret2;
1438	if (pos + len > inode->i_size && !verity) {
1439		ext4_truncate_failed_write(inode);
1440		/*
1441		 * If truncate failed early the inode might still be
1442		 * on the orphan list; we need to make sure the inode
1443		 * is removed from the orphan list in that case.
1444		 */
1445		if (inode->i_nlink)
1446			ext4_orphan_del(NULL, inode);
1447	}
1448
1449	return ret ? ret : copied;
1450}
1451
1452/*
1453 * Reserve space for a single cluster
1454 */
1455static int ext4_da_reserve_space(struct inode *inode)
1456{
 
1457	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1458	struct ext4_inode_info *ei = EXT4_I(inode);
 
1459	int ret;
1460
1461	/*
 
 
 
 
 
 
 
 
 
 
 
1462	 * We will charge metadata quota at writeout time; this saves
1463	 * us from metadata over-estimation, though we may go over by
1464	 * a small amount in the end.  Here we just reserve for data.
1465	 */
1466	ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1467	if (ret)
1468		return ret;
1469
1470	spin_lock(&ei->i_block_reservation_lock);
1471	if (ext4_claim_free_clusters(sbi, 1, 0)) {
1472		spin_unlock(&ei->i_block_reservation_lock);
1473		dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
 
 
 
 
 
1474		return -ENOSPC;
1475	}
 
1476	ei->i_reserved_data_blocks++;
1477	trace_ext4_da_reserve_space(inode);
1478	spin_unlock(&ei->i_block_reservation_lock);
1479
1480	return 0;       /* success */
1481}
1482
1483void ext4_da_release_space(struct inode *inode, int to_free)
1484{
1485	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1486	struct ext4_inode_info *ei = EXT4_I(inode);
1487
1488	if (!to_free)
1489		return;		/* Nothing to release, exit */
1490
1491	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1492
1493	trace_ext4_da_release_space(inode, to_free);
1494	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1495		/*
1496		 * if there aren't enough reserved blocks, then the
1497		 * counter is messed up somewhere.  Since this
1498		 * function is called from invalidate page, it's
1499		 * harmless to return without any action.
1500		 */
1501		ext4_warning(inode->i_sb, "ext4_da_release_space: "
1502			 "ino %lu, to_free %d with only %d reserved "
1503			 "data blocks", inode->i_ino, to_free,
1504			 ei->i_reserved_data_blocks);
1505		WARN_ON(1);
1506		to_free = ei->i_reserved_data_blocks;
1507	}
1508	ei->i_reserved_data_blocks -= to_free;
1509
 
 
 
 
 
 
 
 
 
 
 
 
1510	/* update fs dirty data blocks counter */
1511	percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1512
1513	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1514
1515	dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1516}
1517
1518/*
1519 * Delayed allocation stuff
1520 */
1521
1522struct mpage_da_data {
1523	/* These are input fields for ext4_do_writepages() */
1524	struct inode *inode;
1525	struct writeback_control *wbc;
1526	unsigned int can_map:1;	/* Can writepages call map blocks? */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1527
1528	/* These are internal state of ext4_do_writepages() */
1529	pgoff_t first_page;	/* The first page to write */
1530	pgoff_t next_page;	/* Current page to examine */
1531	pgoff_t last_page;	/* Last page to examine */
1532	/*
1533	 * Extent to map - this can be after first_page because that can be
1534	 * fully mapped. We somewhat abuse m_flags to store whether the extent
1535	 * is delalloc or unwritten.
1536	 */
1537	struct ext4_map_blocks map;
1538	struct ext4_io_submit io_submit;	/* IO submission data */
1539	unsigned int do_map:1;
1540	unsigned int scanned_until_end:1;
1541	unsigned int journalled_more_data:1;
1542};
1543
1544static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1545				       bool invalidate)
1546{
1547	unsigned nr, i;
1548	pgoff_t index, end;
1549	struct folio_batch fbatch;
1550	struct inode *inode = mpd->inode;
1551	struct address_space *mapping = inode->i_mapping;
1552
1553	/* This is necessary when next_page == 0. */
1554	if (mpd->first_page >= mpd->next_page)
1555		return;
1556
1557	mpd->scanned_until_end = 0;
1558	index = mpd->first_page;
1559	end   = mpd->next_page - 1;
1560	if (invalidate) {
1561		ext4_lblk_t start, last;
1562		start = index << (PAGE_SHIFT - inode->i_blkbits);
1563		last = end << (PAGE_SHIFT - inode->i_blkbits);
1564
1565		/*
1566		 * avoid racing with extent status tree scans made by
1567		 * ext4_insert_delayed_block()
1568		 */
1569		down_write(&EXT4_I(inode)->i_data_sem);
1570		ext4_es_remove_extent(inode, start, last - start + 1);
1571		up_write(&EXT4_I(inode)->i_data_sem);
1572	}
1573
1574	folio_batch_init(&fbatch);
1575	while (index <= end) {
1576		nr = filemap_get_folios(mapping, &index, end, &fbatch);
1577		if (nr == 0)
1578			break;
1579		for (i = 0; i < nr; i++) {
1580			struct folio *folio = fbatch.folios[i];
1581
1582			if (folio->index < mpd->first_page)
1583				continue;
1584			if (folio_next_index(folio) - 1 > end)
1585				continue;
1586			BUG_ON(!folio_test_locked(folio));
1587			BUG_ON(folio_test_writeback(folio));
1588			if (invalidate) {
1589				if (folio_mapped(folio))
1590					folio_clear_dirty_for_io(folio);
1591				block_invalidate_folio(folio, 0,
1592						folio_size(folio));
1593				folio_clear_uptodate(folio);
1594			}
1595			folio_unlock(folio);
1596		}
1597		folio_batch_release(&fbatch);
 
1598	}
 
1599}
1600
1601static void ext4_print_free_blocks(struct inode *inode)
1602{
1603	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1604	struct super_block *sb = inode->i_sb;
1605	struct ext4_inode_info *ei = EXT4_I(inode);
1606
1607	ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1608	       EXT4_C2B(EXT4_SB(inode->i_sb),
1609			ext4_count_free_clusters(sb)));
1610	ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1611	ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1612	       (long long) EXT4_C2B(EXT4_SB(sb),
1613		percpu_counter_sum(&sbi->s_freeclusters_counter)));
1614	ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1615	       (long long) EXT4_C2B(EXT4_SB(sb),
1616		percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1617	ext4_msg(sb, KERN_CRIT, "Block reservation details");
1618	ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1619		 ei->i_reserved_data_blocks);
1620	return;
1621}
1622
1623/*
1624 * ext4_insert_delayed_block - adds a delayed block to the extents status
1625 *                             tree, incrementing the reserved cluster/block
1626 *                             count or making a pending reservation
1627 *                             where needed
1628 *
1629 * @inode - file containing the newly added block
1630 * @lblk - logical block to be added
1631 *
1632 * Returns 0 on success, negative error code on failure.
1633 */
1634static int ext4_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk)
1635{
1636	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1637	int ret;
1638	bool allocated = false;
 
 
 
1639
1640	/*
1641	 * If the cluster containing lblk is shared with a delayed,
1642	 * written, or unwritten extent in a bigalloc file system, it's
1643	 * already been accounted for and does not need to be reserved.
1644	 * A pending reservation must be made for the cluster if it's
1645	 * shared with a written or unwritten extent and doesn't already
1646	 * have one.  Written and unwritten extents can be purged from the
1647	 * extents status tree if the system is under memory pressure, so
1648	 * it's necessary to examine the extent tree if a search of the
1649	 * extents status tree doesn't get a match.
1650	 */
1651	if (sbi->s_cluster_ratio == 1) {
1652		ret = ext4_da_reserve_space(inode);
1653		if (ret != 0)   /* ENOSPC */
1654			return ret;
1655	} else {   /* bigalloc */
1656		if (!ext4_es_scan_clu(inode, &ext4_es_is_delonly, lblk)) {
1657			if (!ext4_es_scan_clu(inode,
1658					      &ext4_es_is_mapped, lblk)) {
1659				ret = ext4_clu_mapped(inode,
1660						      EXT4_B2C(sbi, lblk));
1661				if (ret < 0)
1662					return ret;
1663				if (ret == 0) {
1664					ret = ext4_da_reserve_space(inode);
1665					if (ret != 0)   /* ENOSPC */
1666						return ret;
1667				} else {
1668					allocated = true;
1669				}
1670			} else {
1671				allocated = true;
1672			}
1673		}
1674	}
 
 
 
1675
1676	ext4_es_insert_delayed_block(inode, lblk, allocated);
1677	return 0;
1678}
1679
1680/*
1681 * This function is grabs code from the very beginning of
1682 * ext4_map_blocks, but assumes that the caller is from delayed write
1683 * time. This function looks up the requested blocks and sets the
1684 * buffer delay bit under the protection of i_data_sem.
1685 */
1686static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1687			      struct ext4_map_blocks *map,
1688			      struct buffer_head *bh)
1689{
1690	struct extent_status es;
1691	int retval;
1692	sector_t invalid_block = ~((sector_t) 0xffff);
1693#ifdef ES_AGGRESSIVE_TEST
1694	struct ext4_map_blocks orig_map;
1695
1696	memcpy(&orig_map, map, sizeof(*map));
1697#endif
1698
1699	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1700		invalid_block = ~0;
1701
1702	map->m_flags = 0;
1703	ext_debug(inode, "max_blocks %u, logical block %lu\n", map->m_len,
1704		  (unsigned long) map->m_lblk);
1705
1706	/* Lookup extent status tree firstly */
1707	if (ext4_es_lookup_extent(inode, iblock, NULL, &es)) {
1708		if (ext4_es_is_hole(&es))
1709			goto add_delayed;
1710
1711		/*
1712		 * Delayed extent could be allocated by fallocate.
1713		 * So we need to check it.
 
 
 
1714		 */
1715		if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1716			map_bh(bh, inode->i_sb, invalid_block);
1717			set_buffer_new(bh);
1718			set_buffer_delay(bh);
1719			return 0;
 
 
 
 
 
 
1720		}
 
 
1721
1722		map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1723		retval = es.es_len - (iblock - es.es_lblk);
1724		if (retval > map->m_len)
1725			retval = map->m_len;
1726		map->m_len = retval;
1727		if (ext4_es_is_written(&es))
1728			map->m_flags |= EXT4_MAP_MAPPED;
1729		else if (ext4_es_is_unwritten(&es))
1730			map->m_flags |= EXT4_MAP_UNWRITTEN;
1731		else
1732			BUG();
 
 
 
1733
1734#ifdef ES_AGGRESSIVE_TEST
1735		ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1736#endif
1737		return retval;
 
1738	}
1739
1740	/*
1741	 * Try to see if we can get the block without requesting a new
1742	 * file system block.
1743	 */
1744	down_read(&EXT4_I(inode)->i_data_sem);
1745	if (ext4_has_inline_data(inode))
1746		retval = 0;
1747	else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1748		retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1749	else
1750		retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1751	if (retval < 0) {
1752		up_read(&EXT4_I(inode)->i_data_sem);
1753		return retval;
1754	}
1755	if (retval > 0) {
1756		unsigned int status;
1757
1758		if (unlikely(retval != map->m_len)) {
1759			ext4_warning(inode->i_sb,
1760				     "ES len assertion failed for inode "
1761				     "%lu: retval %d != map->m_len %d",
1762				     inode->i_ino, retval, map->m_len);
1763			WARN_ON(1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1764		}
 
 
 
 
 
 
 
 
 
 
1765
1766		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1767				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1768		ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1769				      map->m_pblk, status);
1770		up_read(&EXT4_I(inode)->i_data_sem);
1771		return retval;
 
1772	}
1773	up_read(&EXT4_I(inode)->i_data_sem);
1774
1775add_delayed:
1776	down_write(&EXT4_I(inode)->i_data_sem);
1777	retval = ext4_insert_delayed_block(inode, map->m_lblk);
1778	up_write(&EXT4_I(inode)->i_data_sem);
1779	if (retval)
1780		return retval;
 
 
1781
1782	map_bh(bh, inode->i_sb, invalid_block);
1783	set_buffer_new(bh);
1784	set_buffer_delay(bh);
1785	return retval;
1786}
1787
1788/*
1789 * This is a special get_block_t callback which is used by
1790 * ext4_da_write_begin().  It will either return mapped block or
1791 * reserve space for a single block.
1792 *
1793 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1794 * We also have b_blocknr = -1 and b_bdev initialized properly
1795 *
1796 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1797 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1798 * initialized properly.
1799 */
1800int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1801			   struct buffer_head *bh, int create)
1802{
1803	struct ext4_map_blocks map;
1804	int ret = 0;
 
 
 
 
1805
1806	BUG_ON(create == 0);
1807	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1808
1809	map.m_lblk = iblock;
1810	map.m_len = 1;
1811
1812	/*
1813	 * first, we need to know whether the block is allocated already
1814	 * preallocated blocks are unmapped but should treated
1815	 * the same as allocated blocks.
1816	 */
1817	ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1818	if (ret <= 0)
1819		return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1820
1821	map_bh(bh, inode->i_sb, map.m_pblk);
1822	ext4_update_bh_state(bh, map.m_flags);
1823
1824	if (buffer_unwritten(bh)) {
1825		/* A delayed write to unwritten bh should be marked
1826		 * new and mapped.  Mapped ensures that we don't do
1827		 * get_block multiple times when we write to the same
1828		 * offset and new ensures that we do proper zero out
1829		 * for partial write.
1830		 */
1831		set_buffer_new(bh);
1832		set_buffer_mapped(bh);
1833	}
1834	return 0;
1835}
1836
1837static void mpage_folio_done(struct mpage_da_data *mpd, struct folio *folio)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1838{
1839	mpd->first_page += folio_nr_pages(folio);
1840	folio_unlock(folio);
1841}
1842
1843static int mpage_submit_folio(struct mpage_da_data *mpd, struct folio *folio)
1844{
1845	size_t len;
1846	loff_t size;
1847	int err;
1848
1849	BUG_ON(folio->index != mpd->first_page);
1850	folio_clear_dirty_for_io(folio);
1851	/*
1852	 * We have to be very careful here!  Nothing protects writeback path
1853	 * against i_size changes and the page can be writeably mapped into
1854	 * page tables. So an application can be growing i_size and writing
1855	 * data through mmap while writeback runs. folio_clear_dirty_for_io()
1856	 * write-protects our page in page tables and the page cannot get
1857	 * written to again until we release folio lock. So only after
1858	 * folio_clear_dirty_for_io() we are safe to sample i_size for
1859	 * ext4_bio_write_folio() to zero-out tail of the written page. We rely
1860	 * on the barrier provided by folio_test_clear_dirty() in
1861	 * folio_clear_dirty_for_io() to make sure i_size is really sampled only
1862	 * after page tables are updated.
1863	 */
1864	size = i_size_read(mpd->inode);
1865	len = folio_size(folio);
1866	if (folio_pos(folio) + len > size &&
1867	    !ext4_verity_in_progress(mpd->inode))
1868		len = size & ~PAGE_MASK;
1869	err = ext4_bio_write_folio(&mpd->io_submit, folio, len);
1870	if (!err)
1871		mpd->wbc->nr_to_write--;
1872
1873	return err;
1874}
1875
1876#define BH_FLAGS (BIT(BH_Unwritten) | BIT(BH_Delay))
1877
1878/*
1879 * mballoc gives us at most this number of blocks...
1880 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
1881 * The rest of mballoc seems to handle chunks up to full group size.
1882 */
1883#define MAX_WRITEPAGES_EXTENT_LEN 2048
1884
1885/*
1886 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
1887 *
1888 * @mpd - extent of blocks
1889 * @lblk - logical number of the block in the file
1890 * @bh - buffer head we want to add to the extent
1891 *
1892 * The function is used to collect contig. blocks in the same state. If the
1893 * buffer doesn't require mapping for writeback and we haven't started the
1894 * extent of buffers to map yet, the function returns 'true' immediately - the
1895 * caller can write the buffer right away. Otherwise the function returns true
1896 * if the block has been added to the extent, false if the block couldn't be
1897 * added.
1898 */
1899static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
1900				   struct buffer_head *bh)
1901{
1902	struct ext4_map_blocks *map = &mpd->map;
1903
1904	/* Buffer that doesn't need mapping for writeback? */
1905	if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
1906	    (!buffer_delay(bh) && !buffer_unwritten(bh))) {
1907		/* So far no extent to map => we write the buffer right away */
1908		if (map->m_len == 0)
1909			return true;
1910		return false;
1911	}
1912
1913	/* First block in the extent? */
1914	if (map->m_len == 0) {
1915		/* We cannot map unless handle is started... */
1916		if (!mpd->do_map)
1917			return false;
1918		map->m_lblk = lblk;
1919		map->m_len = 1;
1920		map->m_flags = bh->b_state & BH_FLAGS;
1921		return true;
1922	}
1923
1924	/* Don't go larger than mballoc is willing to allocate */
1925	if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
1926		return false;
1927
1928	/* Can we merge the block to our big extent? */
1929	if (lblk == map->m_lblk + map->m_len &&
1930	    (bh->b_state & BH_FLAGS) == map->m_flags) {
1931		map->m_len++;
1932		return true;
1933	}
1934	return false;
1935}
1936
1937/*
1938 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
1939 *
1940 * @mpd - extent of blocks for mapping
1941 * @head - the first buffer in the page
1942 * @bh - buffer we should start processing from
1943 * @lblk - logical number of the block in the file corresponding to @bh
1944 *
1945 * Walk through page buffers from @bh upto @head (exclusive) and either submit
1946 * the page for IO if all buffers in this page were mapped and there's no
1947 * accumulated extent of buffers to map or add buffers in the page to the
1948 * extent of buffers to map. The function returns 1 if the caller can continue
1949 * by processing the next page, 0 if it should stop adding buffers to the
1950 * extent to map because we cannot extend it anymore. It can also return value
1951 * < 0 in case of error during IO submission.
1952 */
1953static int mpage_process_page_bufs(struct mpage_da_data *mpd,
1954				   struct buffer_head *head,
1955				   struct buffer_head *bh,
1956				   ext4_lblk_t lblk)
1957{
1958	struct inode *inode = mpd->inode;
 
 
 
 
1959	int err;
1960	ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
1961							>> inode->i_blkbits;
1962
1963	if (ext4_verity_in_progress(inode))
1964		blocks = EXT_MAX_BLOCKS;
 
 
 
 
 
1965
1966	do {
1967		BUG_ON(buffer_locked(bh));
 
 
 
1968
1969		if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
1970			/* Found extent to map? */
1971			if (mpd->map.m_len)
1972				return 0;
1973			/* Buffer needs mapping and handle is not started? */
1974			if (!mpd->do_map)
1975				return 0;
1976			/* Everything mapped so far and we hit EOF */
1977			break;
1978		}
1979	} while (lblk++, (bh = bh->b_this_page) != head);
1980	/* So far everything mapped? Submit the page for IO. */
1981	if (mpd->map.m_len == 0) {
1982		err = mpage_submit_folio(mpd, head->b_folio);
1983		if (err < 0)
1984			return err;
1985		mpage_folio_done(mpd, head->b_folio);
1986	}
1987	if (lblk >= blocks) {
1988		mpd->scanned_until_end = 1;
1989		return 0;
1990	}
1991	return 1;
1992}
1993
1994/*
1995 * mpage_process_folio - update folio buffers corresponding to changed extent
1996 *			 and may submit fully mapped page for IO
1997 * @mpd: description of extent to map, on return next extent to map
1998 * @folio: Contains these buffers.
1999 * @m_lblk: logical block mapping.
2000 * @m_pblk: corresponding physical mapping.
2001 * @map_bh: determines on return whether this page requires any further
2002 *		  mapping or not.
2003 *
2004 * Scan given folio buffers corresponding to changed extent and update buffer
2005 * state according to new extent state.
2006 * We map delalloc buffers to their physical location, clear unwritten bits.
2007 * If the given folio is not fully mapped, we update @mpd to the next extent in
2008 * the given folio that needs mapping & return @map_bh as true.
2009 */
2010static int mpage_process_folio(struct mpage_da_data *mpd, struct folio *folio,
2011			      ext4_lblk_t *m_lblk, ext4_fsblk_t *m_pblk,
2012			      bool *map_bh)
2013{
2014	struct buffer_head *head, *bh;
2015	ext4_io_end_t *io_end = mpd->io_submit.io_end;
2016	ext4_lblk_t lblk = *m_lblk;
2017	ext4_fsblk_t pblock = *m_pblk;
2018	int err = 0;
2019	int blkbits = mpd->inode->i_blkbits;
2020	ssize_t io_end_size = 0;
2021	struct ext4_io_end_vec *io_end_vec = ext4_last_io_end_vec(io_end);
2022
2023	bh = head = folio_buffers(folio);
2024	do {
2025		if (lblk < mpd->map.m_lblk)
2026			continue;
2027		if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2028			/*
2029			 * Buffer after end of mapped extent.
2030			 * Find next buffer in the folio to map.
2031			 */
2032			mpd->map.m_len = 0;
2033			mpd->map.m_flags = 0;
2034			io_end_vec->size += io_end_size;
2035
2036			err = mpage_process_page_bufs(mpd, head, bh, lblk);
2037			if (err > 0)
2038				err = 0;
2039			if (!err && mpd->map.m_len && mpd->map.m_lblk > lblk) {
2040				io_end_vec = ext4_alloc_io_end_vec(io_end);
2041				if (IS_ERR(io_end_vec)) {
2042					err = PTR_ERR(io_end_vec);
2043					goto out;
2044				}
2045				io_end_vec->offset = (loff_t)mpd->map.m_lblk << blkbits;
2046			}
2047			*map_bh = true;
2048			goto out;
2049		}
2050		if (buffer_delay(bh)) {
2051			clear_buffer_delay(bh);
2052			bh->b_blocknr = pblock++;
2053		}
2054		clear_buffer_unwritten(bh);
2055		io_end_size += (1 << blkbits);
2056	} while (lblk++, (bh = bh->b_this_page) != head);
2057
2058	io_end_vec->size += io_end_size;
2059	*map_bh = false;
2060out:
2061	*m_lblk = lblk;
2062	*m_pblk = pblock;
2063	return err;
2064}
2065
 
 
 
2066/*
2067 * mpage_map_buffers - update buffers corresponding to changed extent and
2068 *		       submit fully mapped pages for IO
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2069 *
2070 * @mpd - description of extent to map, on return next extent to map
2071 *
2072 * Scan buffers corresponding to changed extent (we expect corresponding pages
2073 * to be already locked) and update buffer state according to new extent state.
2074 * We map delalloc buffers to their physical location, clear unwritten bits,
2075 * and mark buffers as uninit when we perform writes to unwritten extents
2076 * and do extent conversion after IO is finished. If the last page is not fully
2077 * mapped, we update @map to the next extent in the last page that needs
2078 * mapping. Otherwise we submit the page for IO.
2079 */
2080static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
 
2081{
2082	struct folio_batch fbatch;
2083	unsigned nr, i;
2084	struct inode *inode = mpd->inode;
2085	int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2086	pgoff_t start, end;
2087	ext4_lblk_t lblk;
2088	ext4_fsblk_t pblock;
2089	int err;
2090	bool map_bh = false;
2091
2092	start = mpd->map.m_lblk >> bpp_bits;
2093	end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2094	lblk = start << bpp_bits;
2095	pblock = mpd->map.m_pblk;
2096
2097	folio_batch_init(&fbatch);
2098	while (start <= end) {
2099		nr = filemap_get_folios(inode->i_mapping, &start, end, &fbatch);
2100		if (nr == 0)
2101			break;
2102		for (i = 0; i < nr; i++) {
2103			struct folio *folio = fbatch.folios[i];
2104
2105			err = mpage_process_folio(mpd, folio, &lblk, &pblock,
2106						 &map_bh);
2107			/*
2108			 * If map_bh is true, means page may require further bh
2109			 * mapping, or maybe the page was submitted for IO.
2110			 * So we return to call further extent mapping.
2111			 */
2112			if (err < 0 || map_bh)
2113				goto out;
2114			/* Page fully mapped - let IO run! */
2115			err = mpage_submit_folio(mpd, folio);
2116			if (err < 0)
2117				goto out;
2118			mpage_folio_done(mpd, folio);
2119		}
2120		folio_batch_release(&fbatch);
2121	}
2122	/* Extent fully mapped and matches with page boundary. We are done. */
2123	mpd->map.m_len = 0;
2124	mpd->map.m_flags = 0;
2125	return 0;
2126out:
2127	folio_batch_release(&fbatch);
2128	return err;
2129}
2130
2131static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2132{
2133	struct inode *inode = mpd->inode;
2134	struct ext4_map_blocks *map = &mpd->map;
2135	int get_blocks_flags;
2136	int err, dioread_nolock;
2137
2138	trace_ext4_da_write_pages_extent(inode, map);
2139	/*
2140	 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2141	 * to convert an unwritten extent to be initialized (in the case
2142	 * where we have written into one or more preallocated blocks).  It is
2143	 * possible that we're going to need more metadata blocks than
2144	 * previously reserved. However we must not fail because we're in
2145	 * writeback and there is nothing we can do about it so it might result
2146	 * in data loss.  So use reserved blocks to allocate metadata if
2147	 * possible.
2148	 *
2149	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2150	 * the blocks in question are delalloc blocks.  This indicates
2151	 * that the blocks and quotas has already been checked when
2152	 * the data was copied into the page cache.
2153	 */
2154	get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2155			   EXT4_GET_BLOCKS_METADATA_NOFAIL |
2156			   EXT4_GET_BLOCKS_IO_SUBMIT;
2157	dioread_nolock = ext4_should_dioread_nolock(inode);
2158	if (dioread_nolock)
2159		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2160	if (map->m_flags & BIT(BH_Delay))
2161		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2162
2163	err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2164	if (err < 0)
2165		return err;
2166	if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2167		if (!mpd->io_submit.io_end->handle &&
2168		    ext4_handle_valid(handle)) {
2169			mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2170			handle->h_rsv_handle = NULL;
2171		}
2172		ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2173	}
 
 
 
2174
2175	BUG_ON(map->m_len == 0);
2176	return 0;
2177}
 
 
 
2178
2179/*
2180 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2181 *				 mpd->len and submit pages underlying it for IO
2182 *
2183 * @handle - handle for journal operations
2184 * @mpd - extent to map
2185 * @give_up_on_write - we set this to true iff there is a fatal error and there
2186 *                     is no hope of writing the data. The caller should discard
2187 *                     dirty pages to avoid infinite loops.
2188 *
2189 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2190 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2191 * them to initialized or split the described range from larger unwritten
2192 * extent. Note that we need not map all the described range since allocation
2193 * can return less blocks or the range is covered by more unwritten extents. We
2194 * cannot map more because we are limited by reserved transaction credits. On
2195 * the other hand we always make sure that the last touched page is fully
2196 * mapped so that it can be written out (and thus forward progress is
2197 * guaranteed). After mapping we submit all mapped pages for IO.
2198 */
2199static int mpage_map_and_submit_extent(handle_t *handle,
2200				       struct mpage_da_data *mpd,
2201				       bool *give_up_on_write)
2202{
2203	struct inode *inode = mpd->inode;
2204	struct ext4_map_blocks *map = &mpd->map;
2205	int err;
2206	loff_t disksize;
2207	int progress = 0;
2208	ext4_io_end_t *io_end = mpd->io_submit.io_end;
2209	struct ext4_io_end_vec *io_end_vec;
2210
2211	io_end_vec = ext4_alloc_io_end_vec(io_end);
2212	if (IS_ERR(io_end_vec))
2213		return PTR_ERR(io_end_vec);
2214	io_end_vec->offset = ((loff_t)map->m_lblk) << inode->i_blkbits;
2215	do {
2216		err = mpage_map_one_extent(handle, mpd);
2217		if (err < 0) {
2218			struct super_block *sb = inode->i_sb;
2219
2220			if (ext4_forced_shutdown(sb))
2221				goto invalidate_dirty_pages;
2222			/*
2223			 * Let the uper layers retry transient errors.
2224			 * In the case of ENOSPC, if ext4_count_free_blocks()
2225			 * is non-zero, a commit should free up blocks.
2226			 */
2227			if ((err == -ENOMEM) ||
2228			    (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2229				if (progress)
2230					goto update_disksize;
2231				return err;
2232			}
2233			ext4_msg(sb, KERN_CRIT,
2234				 "Delayed block allocation failed for "
2235				 "inode %lu at logical offset %llu with"
2236				 " max blocks %u with error %d",
2237				 inode->i_ino,
2238				 (unsigned long long)map->m_lblk,
2239				 (unsigned)map->m_len, -err);
2240			ext4_msg(sb, KERN_CRIT,
2241				 "This should not happen!! Data will "
2242				 "be lost\n");
2243			if (err == -ENOSPC)
2244				ext4_print_free_blocks(inode);
2245		invalidate_dirty_pages:
2246			*give_up_on_write = true;
2247			return err;
2248		}
2249		progress = 1;
2250		/*
2251		 * Update buffer state, submit mapped pages, and get us new
2252		 * extent to map
2253		 */
2254		err = mpage_map_and_submit_buffers(mpd);
2255		if (err < 0)
2256			goto update_disksize;
2257	} while (map->m_len);
2258
2259update_disksize:
2260	/*
2261	 * Update on-disk size after IO is submitted.  Races with
2262	 * truncate are avoided by checking i_size under i_data_sem.
2263	 */
2264	disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2265	if (disksize > READ_ONCE(EXT4_I(inode)->i_disksize)) {
2266		int err2;
2267		loff_t i_size;
2268
2269		down_write(&EXT4_I(inode)->i_data_sem);
2270		i_size = i_size_read(inode);
2271		if (disksize > i_size)
2272			disksize = i_size;
2273		if (disksize > EXT4_I(inode)->i_disksize)
2274			EXT4_I(inode)->i_disksize = disksize;
2275		up_write(&EXT4_I(inode)->i_data_sem);
2276		err2 = ext4_mark_inode_dirty(handle, inode);
2277		if (err2) {
2278			ext4_error_err(inode->i_sb, -err2,
2279				       "Failed to mark inode %lu dirty",
2280				       inode->i_ino);
2281		}
2282		if (!err)
2283			err = err2;
2284	}
2285	return err;
2286}
2287
2288/*
2289 * Calculate the total number of credits to reserve for one writepages
2290 * iteration. This is called from ext4_writepages(). We map an extent of
2291 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2292 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2293 * bpp - 1 blocks in bpp different extents.
2294 */
 
2295static int ext4_da_writepages_trans_blocks(struct inode *inode)
2296{
2297	int bpp = ext4_journal_blocks_per_page(inode);
2298
2299	return ext4_meta_trans_blocks(inode,
2300				MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2301}
2302
2303static int ext4_journal_folio_buffers(handle_t *handle, struct folio *folio,
2304				     size_t len)
2305{
2306	struct buffer_head *page_bufs = folio_buffers(folio);
2307	struct inode *inode = folio->mapping->host;
2308	int ret, err;
2309
2310	ret = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len,
2311				     NULL, do_journal_get_write_access);
2312	err = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len,
2313				     NULL, write_end_fn);
2314	if (ret == 0)
2315		ret = err;
2316	err = ext4_jbd2_inode_add_write(handle, inode, folio_pos(folio), len);
2317	if (ret == 0)
2318		ret = err;
2319	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
2320
2321	return ret;
2322}
2323
2324static int mpage_journal_page_buffers(handle_t *handle,
2325				      struct mpage_da_data *mpd,
2326				      struct folio *folio)
2327{
2328	struct inode *inode = mpd->inode;
2329	loff_t size = i_size_read(inode);
2330	size_t len = folio_size(folio);
2331
2332	folio_clear_checked(folio);
2333	mpd->wbc->nr_to_write--;
2334
2335	if (folio_pos(folio) + len > size &&
2336	    !ext4_verity_in_progress(inode))
2337		len = size - folio_pos(folio);
2338
2339	return ext4_journal_folio_buffers(handle, folio, len);
2340}
2341
2342/*
2343 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2344 * 				 needing mapping, submit mapped pages
2345 *
2346 * @mpd - where to look for pages
2347 *
2348 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2349 * IO immediately. If we cannot map blocks, we submit just already mapped
2350 * buffers in the page for IO and keep page dirty. When we can map blocks and
2351 * we find a page which isn't mapped we start accumulating extent of buffers
2352 * underlying these pages that needs mapping (formed by either delayed or
2353 * unwritten buffers). We also lock the pages containing these buffers. The
2354 * extent found is returned in @mpd structure (starting at mpd->lblk with
2355 * length mpd->len blocks).
2356 *
2357 * Note that this function can attach bios to one io_end structure which are
2358 * neither logically nor physically contiguous. Although it may seem as an
2359 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2360 * case as we need to track IO to all buffers underlying a page in one io_end.
2361 */
2362static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2363{
2364	struct address_space *mapping = mpd->inode->i_mapping;
2365	struct folio_batch fbatch;
2366	unsigned int nr_folios;
2367	pgoff_t index = mpd->first_page;
2368	pgoff_t end = mpd->last_page;
2369	xa_mark_t tag;
2370	int i, err = 0;
2371	int blkbits = mpd->inode->i_blkbits;
2372	ext4_lblk_t lblk;
2373	struct buffer_head *head;
2374	handle_t *handle = NULL;
2375	int bpp = ext4_journal_blocks_per_page(mpd->inode);
2376
2377	if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2378		tag = PAGECACHE_TAG_TOWRITE;
2379	else
2380		tag = PAGECACHE_TAG_DIRTY;
2381
2382	mpd->map.m_len = 0;
2383	mpd->next_page = index;
2384	if (ext4_should_journal_data(mpd->inode)) {
2385		handle = ext4_journal_start(mpd->inode, EXT4_HT_WRITE_PAGE,
2386					    bpp);
2387		if (IS_ERR(handle))
2388			return PTR_ERR(handle);
2389	}
2390	folio_batch_init(&fbatch);
2391	while (index <= end) {
2392		nr_folios = filemap_get_folios_tag(mapping, &index, end,
2393				tag, &fbatch);
2394		if (nr_folios == 0)
2395			break;
2396
2397		for (i = 0; i < nr_folios; i++) {
2398			struct folio *folio = fbatch.folios[i];
2399
2400			/*
2401			 * Accumulated enough dirty pages? This doesn't apply
2402			 * to WB_SYNC_ALL mode. For integrity sync we have to
2403			 * keep going because someone may be concurrently
2404			 * dirtying pages, and we might have synced a lot of
2405			 * newly appeared dirty pages, but have not synced all
2406			 * of the old dirty pages.
2407			 */
2408			if (mpd->wbc->sync_mode == WB_SYNC_NONE &&
2409			    mpd->wbc->nr_to_write <=
2410			    mpd->map.m_len >> (PAGE_SHIFT - blkbits))
2411				goto out;
2412
2413			/* If we can't merge this page, we are done. */
2414			if (mpd->map.m_len > 0 && mpd->next_page != folio->index)
2415				goto out;
2416
2417			if (handle) {
2418				err = ext4_journal_ensure_credits(handle, bpp,
2419								  0);
2420				if (err < 0)
2421					goto out;
2422			}
2423
2424			folio_lock(folio);
2425			/*
2426			 * If the page is no longer dirty, or its mapping no
2427			 * longer corresponds to inode we are writing (which
2428			 * means it has been truncated or invalidated), or the
2429			 * page is already under writeback and we are not doing
2430			 * a data integrity writeback, skip the page
2431			 */
2432			if (!folio_test_dirty(folio) ||
2433			    (folio_test_writeback(folio) &&
2434			     (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2435			    unlikely(folio->mapping != mapping)) {
2436				folio_unlock(folio);
2437				continue;
2438			}
2439
2440			folio_wait_writeback(folio);
2441			BUG_ON(folio_test_writeback(folio));
2442
2443			/*
2444			 * Should never happen but for buggy code in
2445			 * other subsystems that call
2446			 * set_page_dirty() without properly warning
2447			 * the file system first.  See [1] for more
2448			 * information.
2449			 *
2450			 * [1] https://lore.kernel.org/linux-mm/20180103100430.GE4911@quack2.suse.cz
2451			 */
2452			if (!folio_buffers(folio)) {
2453				ext4_warning_inode(mpd->inode, "page %lu does not have buffers attached", folio->index);
2454				folio_clear_dirty(folio);
2455				folio_unlock(folio);
 
2456				continue;
2457			}
2458
2459			if (mpd->map.m_len == 0)
2460				mpd->first_page = folio->index;
2461			mpd->next_page = folio_next_index(folio);
2462			/*
2463			 * Writeout when we cannot modify metadata is simple.
2464			 * Just submit the page. For data=journal mode we
2465			 * first handle writeout of the page for checkpoint and
2466			 * only after that handle delayed page dirtying. This
2467			 * makes sure current data is checkpointed to the final
2468			 * location before possibly journalling it again which
2469			 * is desirable when the page is frequently dirtied
2470			 * through a pin.
2471			 */
2472			if (!mpd->can_map) {
2473				err = mpage_submit_folio(mpd, folio);
2474				if (err < 0)
2475					goto out;
2476				/* Pending dirtying of journalled data? */
2477				if (folio_test_checked(folio)) {
2478					err = mpage_journal_page_buffers(handle,
2479						mpd, folio);
2480					if (err < 0)
2481						goto out;
2482					mpd->journalled_more_data = 1;
2483				}
2484				mpage_folio_done(mpd, folio);
2485			} else {
2486				/* Add all dirty buffers to mpd */
2487				lblk = ((ext4_lblk_t)folio->index) <<
2488					(PAGE_SHIFT - blkbits);
2489				head = folio_buffers(folio);
2490				err = mpage_process_page_bufs(mpd, head, head,
2491						lblk);
2492				if (err <= 0)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2493					goto out;
2494				err = 0;
2495			}
2496		}
2497		folio_batch_release(&fbatch);
2498		cond_resched();
2499	}
2500	mpd->scanned_until_end = 1;
2501	if (handle)
2502		ext4_journal_stop(handle);
2503	return 0;
 
 
2504out:
2505	folio_batch_release(&fbatch);
2506	if (handle)
2507		ext4_journal_stop(handle);
2508	return err;
2509}
2510
2511static int ext4_do_writepages(struct mpage_da_data *mpd)
 
 
2512{
2513	struct writeback_control *wbc = mpd->wbc;
2514	pgoff_t	writeback_index = 0;
2515	long nr_to_write = wbc->nr_to_write;
2516	int range_whole = 0;
2517	int cycled = 1;
2518	handle_t *handle = NULL;
2519	struct inode *inode = mpd->inode;
2520	struct address_space *mapping = inode->i_mapping;
2521	int needed_blocks, rsv_blocks = 0, ret = 0;
 
 
 
 
 
2522	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2523	struct blk_plug plug;
2524	bool give_up_on_write = false;
2525
2526	trace_ext4_writepages(inode, wbc);
2527
2528	/*
2529	 * No pages to write? This is mainly a kludge to avoid starting
2530	 * a transaction for special inodes like journal inode on last iput()
2531	 * because that could violate lock ordering on umount
2532	 */
2533	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2534		goto out_writepages;
2535
2536	/*
2537	 * If the filesystem has aborted, it is read-only, so return
2538	 * right away instead of dumping stack traces later on that
2539	 * will obscure the real source of the problem.  We test
2540	 * fs shutdown state instead of sb->s_flag's SB_RDONLY because
2541	 * the latter could be true if the filesystem is mounted
2542	 * read-only, and in that case, ext4_writepages should
2543	 * *never* be called, so if that ever happens, we would want
2544	 * the stack trace.
2545	 */
2546	if (unlikely(ext4_forced_shutdown(mapping->host->i_sb))) {
2547		ret = -EROFS;
2548		goto out_writepages;
2549	}
2550
2551	/*
2552	 * If we have inline data and arrive here, it means that
2553	 * we will soon create the block for the 1st page, so
2554	 * we'd better clear the inline data here.
2555	 */
2556	if (ext4_has_inline_data(inode)) {
2557		/* Just inode will be modified... */
2558		handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2559		if (IS_ERR(handle)) {
2560			ret = PTR_ERR(handle);
2561			goto out_writepages;
2562		}
2563		BUG_ON(ext4_test_inode_state(inode,
2564				EXT4_STATE_MAY_INLINE_DATA));
2565		ext4_destroy_inline_data(handle, inode);
2566		ext4_journal_stop(handle);
2567	}
2568
2569	/*
2570	 * data=journal mode does not do delalloc so we just need to writeout /
2571	 * journal already mapped buffers. On the other hand we need to commit
2572	 * transaction to make data stable. We expect all the data to be
2573	 * already in the journal (the only exception are DMA pinned pages
2574	 * dirtied behind our back) so we commit transaction here and run the
2575	 * writeback loop to checkpoint them. The checkpointing is not actually
2576	 * necessary to make data persistent *but* quite a few places (extent
2577	 * shifting operations, fsverity, ...) depend on being able to drop
2578	 * pagecache pages after calling filemap_write_and_wait() and for that
2579	 * checkpointing needs to happen.
2580	 */
2581	if (ext4_should_journal_data(inode)) {
2582		mpd->can_map = 0;
2583		if (wbc->sync_mode == WB_SYNC_ALL)
2584			ext4_fc_commit(sbi->s_journal,
2585				       EXT4_I(inode)->i_datasync_tid);
2586	}
2587	mpd->journalled_more_data = 0;
2588
2589	if (ext4_should_dioread_nolock(inode)) {
2590		/*
2591		 * We may need to convert up to one extent per block in
2592		 * the page and we may dirty the inode.
2593		 */
2594		rsv_blocks = 1 + ext4_chunk_trans_blocks(inode,
2595						PAGE_SIZE >> inode->i_blkbits);
2596	}
2597
2598	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2599		range_whole = 1;
2600
 
2601	if (wbc->range_cyclic) {
2602		writeback_index = mapping->writeback_index;
2603		if (writeback_index)
2604			cycled = 0;
2605		mpd->first_page = writeback_index;
2606		mpd->last_page = -1;
 
 
2607	} else {
2608		mpd->first_page = wbc->range_start >> PAGE_SHIFT;
2609		mpd->last_page = wbc->range_end >> PAGE_SHIFT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2610	}
2611
2612	ext4_io_submit_init(&mpd->io_submit, wbc);
2613retry:
2614	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2615		tag_pages_for_writeback(mapping, mpd->first_page,
2616					mpd->last_page);
2617	blk_start_plug(&plug);
2618
2619	/*
2620	 * First writeback pages that don't need mapping - we can avoid
2621	 * starting a transaction unnecessarily and also avoid being blocked
2622	 * in the block layer on device congestion while having transaction
2623	 * started.
2624	 */
2625	mpd->do_map = 0;
2626	mpd->scanned_until_end = 0;
2627	mpd->io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2628	if (!mpd->io_submit.io_end) {
2629		ret = -ENOMEM;
2630		goto unplug;
2631	}
2632	ret = mpage_prepare_extent_to_map(mpd);
2633	/* Unlock pages we didn't use */
2634	mpage_release_unused_pages(mpd, false);
2635	/* Submit prepared bio */
2636	ext4_io_submit(&mpd->io_submit);
2637	ext4_put_io_end_defer(mpd->io_submit.io_end);
2638	mpd->io_submit.io_end = NULL;
2639	if (ret < 0)
2640		goto unplug;
2641
2642	while (!mpd->scanned_until_end && wbc->nr_to_write > 0) {
2643		/* For each extent of pages we use new io_end */
2644		mpd->io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2645		if (!mpd->io_submit.io_end) {
2646			ret = -ENOMEM;
2647			break;
2648		}
2649
2650		WARN_ON_ONCE(!mpd->can_map);
2651		/*
2652		 * We have two constraints: We find one extent to map and we
2653		 * must always write out whole page (makes a difference when
2654		 * blocksize < pagesize) so that we don't block on IO when we
2655		 * try to write out the rest of the page. Journalled mode is
2656		 * not supported by delalloc.
2657		 */
2658		BUG_ON(ext4_should_journal_data(inode));
2659		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2660
2661		/* start a new transaction */
2662		handle = ext4_journal_start_with_reserve(inode,
2663				EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2664		if (IS_ERR(handle)) {
2665			ret = PTR_ERR(handle);
2666			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2667			       "%ld pages, ino %lu; err %d", __func__,
2668				wbc->nr_to_write, inode->i_ino, ret);
2669			/* Release allocated io_end */
2670			ext4_put_io_end(mpd->io_submit.io_end);
2671			mpd->io_submit.io_end = NULL;
2672			break;
2673		}
2674		mpd->do_map = 1;
2675
2676		trace_ext4_da_write_pages(inode, mpd->first_page, wbc);
2677		ret = mpage_prepare_extent_to_map(mpd);
2678		if (!ret && mpd->map.m_len)
2679			ret = mpage_map_and_submit_extent(handle, mpd,
2680					&give_up_on_write);
2681		/*
2682		 * Caution: If the handle is synchronous,
2683		 * ext4_journal_stop() can wait for transaction commit
2684		 * to finish which may depend on writeback of pages to
2685		 * complete or on page lock to be released.  In that
2686		 * case, we have to wait until after we have
2687		 * submitted all the IO, released page locks we hold,
2688		 * and dropped io_end reference (for extent conversion
2689		 * to be able to complete) before stopping the handle.
2690		 */
2691		if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2692			ext4_journal_stop(handle);
2693			handle = NULL;
2694			mpd->do_map = 0;
 
 
 
 
 
2695		}
2696		/* Unlock pages we didn't use */
2697		mpage_release_unused_pages(mpd, give_up_on_write);
2698		/* Submit prepared bio */
2699		ext4_io_submit(&mpd->io_submit);
2700
2701		/*
2702		 * Drop our io_end reference we got from init. We have
2703		 * to be careful and use deferred io_end finishing if
2704		 * we are still holding the transaction as we can
2705		 * release the last reference to io_end which may end
2706		 * up doing unwritten extent conversion.
2707		 */
2708		if (handle) {
2709			ext4_put_io_end_defer(mpd->io_submit.io_end);
2710			ext4_journal_stop(handle);
2711		} else
2712			ext4_put_io_end(mpd->io_submit.io_end);
2713		mpd->io_submit.io_end = NULL;
2714
2715		if (ret == -ENOSPC && sbi->s_journal) {
2716			/*
2717			 * Commit the transaction which would
2718			 * free blocks released in the transaction
2719			 * and try again
2720			 */
2721			jbd2_journal_force_commit_nested(sbi->s_journal);
2722			ret = 0;
2723			continue;
2724		}
2725		/* Fatal error - ENOMEM, EIO... */
2726		if (ret)
 
 
 
 
 
 
 
 
 
 
2727			break;
2728	}
2729unplug:
2730	blk_finish_plug(&plug);
2731	if (!ret && !cycled && wbc->nr_to_write > 0) {
2732		cycled = 1;
2733		mpd->last_page = writeback_index - 1;
2734		mpd->first_page = 0;
 
2735		goto retry;
2736	}
2737
2738	/* Update index */
 
2739	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2740		/*
2741		 * Set the writeback_index so that range_cyclic
2742		 * mode will write it back later
2743		 */
2744		mapping->writeback_index = mpd->first_page;
2745
2746out_writepages:
2747	trace_ext4_writepages_result(inode, wbc, ret,
2748				     nr_to_write - wbc->nr_to_write);
2749	return ret;
2750}
2751
2752static int ext4_writepages(struct address_space *mapping,
2753			   struct writeback_control *wbc)
2754{
2755	struct super_block *sb = mapping->host->i_sb;
2756	struct mpage_da_data mpd = {
2757		.inode = mapping->host,
2758		.wbc = wbc,
2759		.can_map = 1,
2760	};
2761	int ret;
2762	int alloc_ctx;
2763
2764	if (unlikely(ext4_forced_shutdown(sb)))
2765		return -EIO;
2766
2767	alloc_ctx = ext4_writepages_down_read(sb);
2768	ret = ext4_do_writepages(&mpd);
2769	/*
2770	 * For data=journal writeback we could have come across pages marked
2771	 * for delayed dirtying (PageChecked) which were just added to the
2772	 * running transaction. Try once more to get them to stable storage.
2773	 */
2774	if (!ret && mpd.journalled_more_data)
2775		ret = ext4_do_writepages(&mpd);
2776	ext4_writepages_up_read(sb, alloc_ctx);
2777
2778	return ret;
2779}
2780
2781int ext4_normal_submit_inode_data_buffers(struct jbd2_inode *jinode)
2782{
2783	struct writeback_control wbc = {
2784		.sync_mode = WB_SYNC_ALL,
2785		.nr_to_write = LONG_MAX,
2786		.range_start = jinode->i_dirty_start,
2787		.range_end = jinode->i_dirty_end,
2788	};
2789	struct mpage_da_data mpd = {
2790		.inode = jinode->i_vfs_inode,
2791		.wbc = &wbc,
2792		.can_map = 0,
2793	};
2794	return ext4_do_writepages(&mpd);
2795}
2796
2797static int ext4_dax_writepages(struct address_space *mapping,
2798			       struct writeback_control *wbc)
2799{
2800	int ret;
2801	long nr_to_write = wbc->nr_to_write;
2802	struct inode *inode = mapping->host;
2803	int alloc_ctx;
2804
2805	if (unlikely(ext4_forced_shutdown(inode->i_sb)))
2806		return -EIO;
2807
2808	alloc_ctx = ext4_writepages_down_read(inode->i_sb);
2809	trace_ext4_writepages(inode, wbc);
2810
2811	ret = dax_writeback_mapping_range(mapping,
2812					  EXT4_SB(inode->i_sb)->s_daxdev, wbc);
2813	trace_ext4_writepages_result(inode, wbc, ret,
2814				     nr_to_write - wbc->nr_to_write);
2815	ext4_writepages_up_read(inode->i_sb, alloc_ctx);
2816	return ret;
2817}
2818
 
2819static int ext4_nonda_switch(struct super_block *sb)
2820{
2821	s64 free_clusters, dirty_clusters;
2822	struct ext4_sb_info *sbi = EXT4_SB(sb);
2823
2824	/*
2825	 * switch to non delalloc mode if we are running low
2826	 * on free block. The free block accounting via percpu
2827	 * counters can get slightly wrong with percpu_counter_batch getting
2828	 * accumulated on each CPU without updating global counters
2829	 * Delalloc need an accurate free block accounting. So switch
2830	 * to non delalloc when we are near to error range.
2831	 */
2832	free_clusters =
2833		percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2834	dirty_clusters =
2835		percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2836	/*
2837	 * Start pushing delalloc when 1/2 of free blocks are dirty.
2838	 */
2839	if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2840		try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2841
2842	if (2 * free_clusters < 3 * dirty_clusters ||
2843	    free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2844		/*
2845		 * free block count is less than 150% of dirty blocks
2846		 * or free blocks is less than watermark
2847		 */
2848		return 1;
2849	}
 
 
 
 
 
 
 
2850	return 0;
2851}
2852
2853static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2854			       loff_t pos, unsigned len,
2855			       struct page **pagep, void **fsdata)
2856{
2857	int ret, retries = 0;
2858	struct folio *folio;
2859	pgoff_t index;
2860	struct inode *inode = mapping->host;
 
2861
2862	if (unlikely(ext4_forced_shutdown(inode->i_sb)))
2863		return -EIO;
2864
2865	index = pos >> PAGE_SHIFT;
2866
2867	if (ext4_nonda_switch(inode->i_sb) || ext4_verity_in_progress(inode)) {
2868		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2869		return ext4_write_begin(file, mapping, pos,
2870					len, pagep, fsdata);
2871	}
2872	*fsdata = (void *)0;
2873	trace_ext4_da_write_begin(inode, pos, len);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2874
2875	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2876		ret = ext4_da_write_inline_data_begin(mapping, inode, pos, len,
2877						      pagep, fsdata);
2878		if (ret < 0)
2879			return ret;
2880		if (ret == 1)
2881			return 0;
2882	}
 
2883
2884retry:
2885	folio = __filemap_get_folio(mapping, index, FGP_WRITEBEGIN,
2886			mapping_gfp_mask(mapping));
2887	if (IS_ERR(folio))
2888		return PTR_ERR(folio);
2889
2890#ifdef CONFIG_FS_ENCRYPTION
2891	ret = ext4_block_write_begin(folio, pos, len, ext4_da_get_block_prep);
2892#else
2893	ret = __block_write_begin(&folio->page, pos, len, ext4_da_get_block_prep);
2894#endif
2895	if (ret < 0) {
2896		folio_unlock(folio);
2897		folio_put(folio);
 
2898		/*
2899		 * block_write_begin may have instantiated a few blocks
2900		 * outside i_size.  Trim these off again. Don't need
2901		 * i_size_read because we hold inode lock.
2902		 */
2903		if (pos + len > inode->i_size)
2904			ext4_truncate_failed_write(inode);
2905
2906		if (ret == -ENOSPC &&
2907		    ext4_should_retry_alloc(inode->i_sb, &retries))
2908			goto retry;
2909		return ret;
2910	}
2911
2912	*pagep = &folio->page;
 
 
2913	return ret;
2914}
2915
2916/*
2917 * Check if we should update i_disksize
2918 * when write to the end of file but not require block allocation
2919 */
2920static int ext4_da_should_update_i_disksize(struct folio *folio,
2921					    unsigned long offset)
2922{
2923	struct buffer_head *bh;
2924	struct inode *inode = folio->mapping->host;
2925	unsigned int idx;
2926	int i;
2927
2928	bh = folio_buffers(folio);
2929	idx = offset >> inode->i_blkbits;
2930
2931	for (i = 0; i < idx; i++)
2932		bh = bh->b_this_page;
2933
2934	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2935		return 0;
2936	return 1;
2937}
2938
2939static int ext4_da_do_write_end(struct address_space *mapping,
2940			loff_t pos, unsigned len, unsigned copied,
2941			struct folio *folio)
 
2942{
2943	struct inode *inode = mapping->host;
2944	loff_t old_size = inode->i_size;
2945	bool disksize_changed = false;
2946	loff_t new_i_size;
 
 
2947
2948	/*
2949	 * block_write_end() will mark the inode as dirty with I_DIRTY_PAGES
2950	 * flag, which all that's needed to trigger page writeback.
2951	 */
2952	copied = block_write_end(NULL, mapping, pos, len, copied,
2953			&folio->page, NULL);
2954	new_i_size = pos + copied;
2955
2956	/*
2957	 * It's important to update i_size while still holding folio lock,
2958	 * because folio writeout could otherwise come in and zero beyond
2959	 * i_size.
2960	 *
2961	 * Since we are holding inode lock, we are sure i_disksize <=
2962	 * i_size. We also know that if i_disksize < i_size, there are
2963	 * delalloc writes pending in the range up to i_size. If the end of
2964	 * the current write is <= i_size, there's no need to touch
2965	 * i_disksize since writeback will push i_disksize up to i_size
2966	 * eventually. If the end of the current write is > i_size and
2967	 * inside an allocated block which ext4_da_should_update_i_disksize()
2968	 * checked, we need to update i_disksize here as certain
2969	 * ext4_writepages() paths not allocating blocks and update i_disksize.
2970	 */
2971	if (new_i_size > inode->i_size) {
2972		unsigned long end;
2973
2974		i_size_write(inode, new_i_size);
2975		end = (new_i_size - 1) & (PAGE_SIZE - 1);
2976		if (copied && ext4_da_should_update_i_disksize(folio, end)) {
2977			ext4_update_i_disksize(inode, new_i_size);
2978			disksize_changed = true;
2979		}
2980	}
2981
2982	folio_unlock(folio);
2983	folio_put(folio);
 
2984
2985	if (old_size < pos)
2986		pagecache_isize_extended(inode, old_size, pos);
 
 
 
2987
2988	if (disksize_changed) {
2989		handle_t *handle;
 
 
 
 
 
 
 
 
 
 
2990
2991		handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
2992		if (IS_ERR(handle))
2993			return PTR_ERR(handle);
2994		ext4_mark_inode_dirty(handle, inode);
2995		ext4_journal_stop(handle);
 
 
 
 
2996	}
 
 
 
 
 
 
 
 
2997
2998	return copied;
2999}
3000
3001static int ext4_da_write_end(struct file *file,
3002			     struct address_space *mapping,
3003			     loff_t pos, unsigned len, unsigned copied,
3004			     struct page *page, void *fsdata)
3005{
3006	struct inode *inode = mapping->host;
3007	int write_mode = (int)(unsigned long)fsdata;
3008	struct folio *folio = page_folio(page);
 
 
 
3009
3010	if (write_mode == FALL_BACK_TO_NONDELALLOC)
3011		return ext4_write_end(file, mapping, pos,
3012				      len, copied, &folio->page, fsdata);
3013
3014	trace_ext4_da_write_end(inode, pos, len, copied);
 
3015
3016	if (write_mode != CONVERT_INLINE_DATA &&
3017	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3018	    ext4_has_inline_data(inode))
3019		return ext4_write_inline_data_end(inode, pos, len, copied,
3020						  folio);
3021
3022	if (unlikely(copied < len) && !folio_test_uptodate(folio))
3023		copied = 0;
3024
3025	return ext4_da_do_write_end(mapping, pos, len, copied, folio);
3026}
3027
3028/*
3029 * Force all delayed allocation blocks to be allocated for a given inode.
3030 */
3031int ext4_alloc_da_blocks(struct inode *inode)
3032{
3033	trace_ext4_alloc_da_blocks(inode);
3034
3035	if (!EXT4_I(inode)->i_reserved_data_blocks)
 
3036		return 0;
3037
3038	/*
3039	 * We do something simple for now.  The filemap_flush() will
3040	 * also start triggering a write of the data blocks, which is
3041	 * not strictly speaking necessary (and for users of
3042	 * laptop_mode, not even desirable).  However, to do otherwise
3043	 * would require replicating code paths in:
3044	 *
3045	 * ext4_writepages() ->
3046	 *    write_cache_pages() ---> (via passed in callback function)
3047	 *        __mpage_da_writepage() -->
3048	 *           mpage_add_bh_to_extent()
3049	 *           mpage_da_map_blocks()
3050	 *
3051	 * The problem is that write_cache_pages(), located in
3052	 * mm/page-writeback.c, marks pages clean in preparation for
3053	 * doing I/O, which is not desirable if we're not planning on
3054	 * doing I/O at all.
3055	 *
3056	 * We could call write_cache_pages(), and then redirty all of
3057	 * the pages by calling redirty_page_for_writepage() but that
3058	 * would be ugly in the extreme.  So instead we would need to
3059	 * replicate parts of the code in the above functions,
3060	 * simplifying them because we wouldn't actually intend to
3061	 * write out the pages, but rather only collect contiguous
3062	 * logical block extents, call the multi-block allocator, and
3063	 * then update the buffer heads with the block allocations.
3064	 *
3065	 * For now, though, we'll cheat by calling filemap_flush(),
3066	 * which will map the blocks, and start the I/O, but not
3067	 * actually wait for the I/O to complete.
3068	 */
3069	return filemap_flush(inode->i_mapping);
3070}
3071
3072/*
3073 * bmap() is special.  It gets used by applications such as lilo and by
3074 * the swapper to find the on-disk block of a specific piece of data.
3075 *
3076 * Naturally, this is dangerous if the block concerned is still in the
3077 * journal.  If somebody makes a swapfile on an ext4 data-journaling
3078 * filesystem and enables swap, then they may get a nasty shock when the
3079 * data getting swapped to that swapfile suddenly gets overwritten by
3080 * the original zero's written out previously to the journal and
3081 * awaiting writeback in the kernel's buffer cache.
3082 *
3083 * So, if we see any bmap calls here on a modified, data-journaled file,
3084 * take extra steps to flush any blocks which might be in the cache.
3085 */
3086static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3087{
3088	struct inode *inode = mapping->host;
3089	sector_t ret = 0;
3090
3091	inode_lock_shared(inode);
3092	/*
3093	 * We can get here for an inline file via the FIBMAP ioctl
3094	 */
3095	if (ext4_has_inline_data(inode))
3096		goto out;
3097
3098	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3099	    (test_opt(inode->i_sb, DELALLOC) ||
3100	     ext4_should_journal_data(inode))) {
3101		/*
3102		 * With delalloc or journalled data we want to sync the file so
3103		 * that we can make sure we allocate blocks for file and data
3104		 * is in place for the user to see it
3105		 */
3106		filemap_write_and_wait(mapping);
3107	}
3108
3109	ret = iomap_bmap(mapping, block, &ext4_iomap_ops);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3110
3111out:
3112	inode_unlock_shared(inode);
3113	return ret;
 
 
3114}
3115
3116static int ext4_read_folio(struct file *file, struct folio *folio)
3117{
3118	int ret = -EAGAIN;
3119	struct inode *inode = folio->mapping->host;
3120
3121	trace_ext4_read_folio(inode, folio);
3122
3123	if (ext4_has_inline_data(inode))
3124		ret = ext4_readpage_inline(inode, folio);
3125
3126	if (ret == -EAGAIN)
3127		return ext4_mpage_readpages(inode, NULL, folio);
3128
3129	return ret;
3130}
3131
3132static void ext4_readahead(struct readahead_control *rac)
 
 
3133{
3134	struct inode *inode = rac->mapping->host;
3135
3136	/* If the file has inline data, no need to do readahead. */
3137	if (ext4_has_inline_data(inode))
3138		return;
3139
3140	ext4_mpage_readpages(inode, rac, NULL);
3141}
3142
3143static void ext4_invalidate_folio(struct folio *folio, size_t offset,
3144				size_t length)
3145{
3146	trace_ext4_invalidate_folio(folio, offset, length);
 
3147
3148	/* No journalling happens on data buffers when this function is used */
3149	WARN_ON(folio_buffers(folio) && buffer_jbd(folio_buffers(folio)));
3150
3151	block_invalidate_folio(folio, offset, length);
 
 
 
 
 
 
 
 
 
3152}
3153
3154static int __ext4_journalled_invalidate_folio(struct folio *folio,
3155					    size_t offset, size_t length)
3156{
3157	journal_t *journal = EXT4_JOURNAL(folio->mapping->host);
3158
3159	trace_ext4_journalled_invalidate_folio(folio, offset, length);
3160
3161	/*
 
 
 
 
 
3162	 * If it's a full truncate we just forget about the pending dirtying
3163	 */
3164	if (offset == 0 && length == folio_size(folio))
3165		folio_clear_checked(folio);
3166
3167	return jbd2_journal_invalidate_folio(journal, folio, offset, length);
 
 
 
3168}
3169
3170/* Wrapper for aops... */
3171static void ext4_journalled_invalidate_folio(struct folio *folio,
3172					   size_t offset,
3173					   size_t length)
3174{
3175	WARN_ON(__ext4_journalled_invalidate_folio(folio, offset, length) < 0);
3176}
3177
3178static bool ext4_release_folio(struct folio *folio, gfp_t wait)
3179{
3180	struct inode *inode = folio->mapping->host;
3181	journal_t *journal = EXT4_JOURNAL(inode);
3182
3183	trace_ext4_release_folio(inode, folio);
3184
3185	/* Page has dirty journalled data -> cannot release */
3186	if (folio_test_checked(folio))
3187		return false;
3188	if (journal)
3189		return jbd2_journal_try_to_free_buffers(journal, folio);
3190	else
3191		return try_to_free_buffers(folio);
3192}
3193
3194static bool ext4_inode_datasync_dirty(struct inode *inode)
 
 
 
 
 
 
3195{
3196	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3197
3198	if (journal) {
3199		if (jbd2_transaction_committed(journal,
3200			EXT4_I(inode)->i_datasync_tid))
3201			return false;
3202		if (test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT))
3203			return !list_empty(&EXT4_I(inode)->i_fc_list);
3204		return true;
 
 
 
 
 
 
 
3205	}
3206
3207	/* Any metadata buffers to write? */
3208	if (!list_empty(&inode->i_mapping->i_private_list))
3209		return true;
3210	return inode->i_state & I_DIRTY_DATASYNC;
3211}
 
 
3212
3213static void ext4_set_iomap(struct inode *inode, struct iomap *iomap,
3214			   struct ext4_map_blocks *map, loff_t offset,
3215			   loff_t length, unsigned int flags)
3216{
3217	u8 blkbits = inode->i_blkbits;
3218
3219	/*
3220	 * Writes that span EOF might trigger an I/O size update on completion,
3221	 * so consider them to be dirty for the purpose of O_DSYNC, even if
3222	 * there is no other metadata changes being made or are pending.
3223	 */
3224	iomap->flags = 0;
3225	if (ext4_inode_datasync_dirty(inode) ||
3226	    offset + length > i_size_read(inode))
3227		iomap->flags |= IOMAP_F_DIRTY;
3228
3229	if (map->m_flags & EXT4_MAP_NEW)
3230		iomap->flags |= IOMAP_F_NEW;
3231
3232	if (flags & IOMAP_DAX)
3233		iomap->dax_dev = EXT4_SB(inode->i_sb)->s_daxdev;
3234	else
3235		iomap->bdev = inode->i_sb->s_bdev;
3236	iomap->offset = (u64) map->m_lblk << blkbits;
3237	iomap->length = (u64) map->m_len << blkbits;
3238
3239	if ((map->m_flags & EXT4_MAP_MAPPED) &&
3240	    !ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3241		iomap->flags |= IOMAP_F_MERGED;
3242
3243	/*
3244	 * Flags passed to ext4_map_blocks() for direct I/O writes can result
3245	 * in m_flags having both EXT4_MAP_MAPPED and EXT4_MAP_UNWRITTEN bits
3246	 * set. In order for any allocated unwritten extents to be converted
3247	 * into written extents correctly within the ->end_io() handler, we
3248	 * need to ensure that the iomap->type is set appropriately. Hence, the
3249	 * reason why we need to check whether the EXT4_MAP_UNWRITTEN bit has
3250	 * been set first.
3251	 */
3252	if (map->m_flags & EXT4_MAP_UNWRITTEN) {
3253		iomap->type = IOMAP_UNWRITTEN;
3254		iomap->addr = (u64) map->m_pblk << blkbits;
3255		if (flags & IOMAP_DAX)
3256			iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off;
3257	} else if (map->m_flags & EXT4_MAP_MAPPED) {
3258		iomap->type = IOMAP_MAPPED;
3259		iomap->addr = (u64) map->m_pblk << blkbits;
3260		if (flags & IOMAP_DAX)
3261			iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off;
3262	} else if (map->m_flags & EXT4_MAP_DELAYED) {
3263		iomap->type = IOMAP_DELALLOC;
3264		iomap->addr = IOMAP_NULL_ADDR;
3265	} else {
3266		iomap->type = IOMAP_HOLE;
3267		iomap->addr = IOMAP_NULL_ADDR;
3268	}
3269}
3270
3271static int ext4_iomap_alloc(struct inode *inode, struct ext4_map_blocks *map,
3272			    unsigned int flags)
3273{
3274	handle_t *handle;
3275	u8 blkbits = inode->i_blkbits;
3276	int ret, dio_credits, m_flags = 0, retries = 0;
 
3277
3278	/*
3279	 * Trim the mapping request to the maximum value that we can map at
3280	 * once for direct I/O.
3281	 */
3282	if (map->m_len > DIO_MAX_BLOCKS)
3283		map->m_len = DIO_MAX_BLOCKS;
3284	dio_credits = ext4_chunk_trans_blocks(inode, map->m_len);
3285
3286retry:
3287	/*
3288	 * Either we allocate blocks and then don't get an unwritten extent, so
3289	 * in that case we have reserved enough credits. Or, the blocks are
3290	 * already allocated and unwritten. In that case, the extent conversion
3291	 * fits into the credits as well.
3292	 */
3293	handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
3294	if (IS_ERR(handle))
3295		return PTR_ERR(handle);
3296
3297	/*
3298	 * DAX and direct I/O are the only two operations that are currently
3299	 * supported with IOMAP_WRITE.
3300	 */
3301	WARN_ON(!(flags & (IOMAP_DAX | IOMAP_DIRECT)));
3302	if (flags & IOMAP_DAX)
3303		m_flags = EXT4_GET_BLOCKS_CREATE_ZERO;
3304	/*
3305	 * We use i_size instead of i_disksize here because delalloc writeback
3306	 * can complete at any point during the I/O and subsequently push the
3307	 * i_disksize out to i_size. This could be beyond where direct I/O is
3308	 * happening and thus expose allocated blocks to direct I/O reads.
3309	 */
3310	else if (((loff_t)map->m_lblk << blkbits) >= i_size_read(inode))
3311		m_flags = EXT4_GET_BLOCKS_CREATE;
3312	else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3313		m_flags = EXT4_GET_BLOCKS_IO_CREATE_EXT;
 
 
 
 
 
 
 
3314
3315	ret = ext4_map_blocks(handle, inode, map, m_flags);
 
 
 
 
 
3316
 
 
 
 
 
 
 
 
 
3317	/*
3318	 * We cannot fill holes in indirect tree based inodes as that could
3319	 * expose stale data in the case of a crash. Use the magic error code
3320	 * to fallback to buffered I/O.
3321	 */
3322	if (!m_flags && !ret)
3323		ret = -ENOTBLK;
3324
3325	ext4_journal_stop(handle);
3326	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3327		goto retry;
3328
3329	return ret;
3330}
3331
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3332
3333static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3334		unsigned flags, struct iomap *iomap, struct iomap *srcmap)
3335{
3336	int ret;
3337	struct ext4_map_blocks map;
3338	u8 blkbits = inode->i_blkbits;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3339
3340	if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3341		return -EINVAL;
3342
3343	if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3344		return -ERANGE;
3345
3346	/*
3347	 * Calculate the first and last logical blocks respectively.
3348	 */
3349	map.m_lblk = offset >> blkbits;
3350	map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3351			  EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3352
3353	if (flags & IOMAP_WRITE) {
3354		/*
3355		 * We check here if the blocks are already allocated, then we
3356		 * don't need to start a journal txn and we can directly return
3357		 * the mapping information. This could boost performance
3358		 * especially in multi-threaded overwrite requests.
 
 
 
 
 
 
 
 
3359		 */
3360		if (offset + length <= i_size_read(inode)) {
3361			ret = ext4_map_blocks(NULL, inode, &map, 0);
3362			if (ret > 0 && (map.m_flags & EXT4_MAP_MAPPED))
3363				goto out;
 
 
 
 
 
 
 
 
 
 
 
3364		}
3365		ret = ext4_iomap_alloc(inode, &map, flags);
3366	} else {
3367		ret = ext4_map_blocks(NULL, inode, &map, 0);
3368	}
3369
3370	if (ret < 0)
3371		return ret;
3372out:
3373	/*
3374	 * When inline encryption is enabled, sometimes I/O to an encrypted file
3375	 * has to be broken up to guarantee DUN contiguity.  Handle this by
3376	 * limiting the length of the mapping returned.
3377	 */
3378	map.m_len = fscrypt_limit_io_blocks(inode, map.m_lblk, map.m_len);
3379
3380	ext4_set_iomap(inode, iomap, &map, offset, length, flags);
3381
3382	return 0;
3383}
3384
3385static int ext4_iomap_overwrite_begin(struct inode *inode, loff_t offset,
3386		loff_t length, unsigned flags, struct iomap *iomap,
3387		struct iomap *srcmap)
3388{
3389	int ret;
 
 
3390
3391	/*
3392	 * Even for writes we don't need to allocate blocks, so just pretend
3393	 * we are reading to save overhead of starting a transaction.
3394	 */
3395	flags &= ~IOMAP_WRITE;
3396	ret = ext4_iomap_begin(inode, offset, length, flags, iomap, srcmap);
3397	WARN_ON_ONCE(!ret && iomap->type != IOMAP_MAPPED);
3398	return ret;
3399}
3400
3401static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3402			  ssize_t written, unsigned flags, struct iomap *iomap)
 
 
 
 
 
 
 
 
 
 
 
 
3403{
3404	/*
3405	 * Check to see whether an error occurred while writing out the data to
3406	 * the allocated blocks. If so, return the magic error code so that we
3407	 * fallback to buffered I/O and attempt to complete the remainder of
3408	 * the I/O. Any blocks that may have been allocated in preparation for
3409	 * the direct I/O will be reused during buffered I/O.
3410	 */
3411	if (flags & (IOMAP_WRITE | IOMAP_DIRECT) && written == 0)
3412		return -ENOTBLK;
3413
3414	return 0;
3415}
3416
3417const struct iomap_ops ext4_iomap_ops = {
3418	.iomap_begin		= ext4_iomap_begin,
3419	.iomap_end		= ext4_iomap_end,
3420};
3421
3422const struct iomap_ops ext4_iomap_overwrite_ops = {
3423	.iomap_begin		= ext4_iomap_overwrite_begin,
3424	.iomap_end		= ext4_iomap_end,
3425};
3426
3427static int ext4_iomap_begin_report(struct inode *inode, loff_t offset,
3428				   loff_t length, unsigned int flags,
3429				   struct iomap *iomap, struct iomap *srcmap)
3430{
3431	int ret;
3432	struct ext4_map_blocks map;
3433	u8 blkbits = inode->i_blkbits;
3434
3435	if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3436		return -EINVAL;
3437
3438	if (ext4_has_inline_data(inode)) {
3439		ret = ext4_inline_data_iomap(inode, iomap);
3440		if (ret != -EAGAIN) {
3441			if (ret == 0 && offset >= iomap->length)
3442				ret = -ENOENT;
3443			return ret;
3444		}
3445	}
3446
3447	/*
3448	 * Calculate the first and last logical block respectively.
3449	 */
3450	map.m_lblk = offset >> blkbits;
3451	map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3452			  EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3453
3454	/*
3455	 * Fiemap callers may call for offset beyond s_bitmap_maxbytes.
3456	 * So handle it here itself instead of querying ext4_map_blocks().
3457	 * Since ext4_map_blocks() will warn about it and will return
3458	 * -EIO error.
3459	 */
3460	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
3461		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3462
3463		if (offset >= sbi->s_bitmap_maxbytes) {
3464			map.m_flags = 0;
3465			goto set_iomap;
3466		}
3467	}
3468
3469	ret = ext4_map_blocks(NULL, inode, &map, 0);
3470	if (ret < 0)
3471		return ret;
3472set_iomap:
3473	ext4_set_iomap(inode, iomap, &map, offset, length, flags);
3474
3475	return 0;
3476}
3477
3478const struct iomap_ops ext4_iomap_report_ops = {
3479	.iomap_begin = ext4_iomap_begin_report,
3480};
3481
3482/*
3483 * For data=journal mode, folio should be marked dirty only when it was
3484 * writeably mapped. When that happens, it was already attached to the
3485 * transaction and marked as jbddirty (we take care of this in
3486 * ext4_page_mkwrite()). On transaction commit, we writeprotect page mappings
3487 * so we should have nothing to do here, except for the case when someone
3488 * had the page pinned and dirtied the page through this pin (e.g. by doing
3489 * direct IO to it). In that case we'd need to attach buffers here to the
3490 * transaction but we cannot due to lock ordering.  We cannot just dirty the
3491 * folio and leave attached buffers clean, because the buffers' dirty state is
3492 * "definitive".  We cannot just set the buffers dirty or jbddirty because all
3493 * the journalling code will explode.  So what we do is to mark the folio
3494 * "pending dirty" and next time ext4_writepages() is called, attach buffers
3495 * to the transaction appropriately.
3496 */
3497static bool ext4_journalled_dirty_folio(struct address_space *mapping,
3498		struct folio *folio)
3499{
3500	WARN_ON_ONCE(!folio_buffers(folio));
3501	if (folio_maybe_dma_pinned(folio))
3502		folio_set_checked(folio);
3503	return filemap_dirty_folio(mapping, folio);
3504}
3505
3506static bool ext4_dirty_folio(struct address_space *mapping, struct folio *folio)
3507{
3508	WARN_ON_ONCE(!folio_test_locked(folio) && !folio_test_dirty(folio));
3509	WARN_ON_ONCE(!folio_buffers(folio));
3510	return block_dirty_folio(mapping, folio);
3511}
3512
3513static int ext4_iomap_swap_activate(struct swap_info_struct *sis,
3514				    struct file *file, sector_t *span)
3515{
3516	return iomap_swapfile_activate(sis, file, span,
3517				       &ext4_iomap_report_ops);
3518}
3519
3520static const struct address_space_operations ext4_aops = {
3521	.read_folio		= ext4_read_folio,
3522	.readahead		= ext4_readahead,
3523	.writepages		= ext4_writepages,
3524	.write_begin		= ext4_write_begin,
3525	.write_end		= ext4_write_end,
3526	.dirty_folio		= ext4_dirty_folio,
3527	.bmap			= ext4_bmap,
3528	.invalidate_folio	= ext4_invalidate_folio,
3529	.release_folio		= ext4_release_folio,
3530	.direct_IO		= noop_direct_IO,
3531	.migrate_folio		= buffer_migrate_folio,
3532	.is_partially_uptodate  = block_is_partially_uptodate,
3533	.error_remove_folio	= generic_error_remove_folio,
3534	.swap_activate		= ext4_iomap_swap_activate,
3535};
3536
3537static const struct address_space_operations ext4_journalled_aops = {
3538	.read_folio		= ext4_read_folio,
3539	.readahead		= ext4_readahead,
3540	.writepages		= ext4_writepages,
3541	.write_begin		= ext4_write_begin,
3542	.write_end		= ext4_journalled_write_end,
3543	.dirty_folio		= ext4_journalled_dirty_folio,
3544	.bmap			= ext4_bmap,
3545	.invalidate_folio	= ext4_journalled_invalidate_folio,
3546	.release_folio		= ext4_release_folio,
3547	.direct_IO		= noop_direct_IO,
3548	.migrate_folio		= buffer_migrate_folio_norefs,
3549	.is_partially_uptodate  = block_is_partially_uptodate,
3550	.error_remove_folio	= generic_error_remove_folio,
3551	.swap_activate		= ext4_iomap_swap_activate,
3552};
3553
3554static const struct address_space_operations ext4_da_aops = {
3555	.read_folio		= ext4_read_folio,
3556	.readahead		= ext4_readahead,
3557	.writepages		= ext4_writepages,
 
3558	.write_begin		= ext4_da_write_begin,
3559	.write_end		= ext4_da_write_end,
3560	.dirty_folio		= ext4_dirty_folio,
3561	.bmap			= ext4_bmap,
3562	.invalidate_folio	= ext4_invalidate_folio,
3563	.release_folio		= ext4_release_folio,
3564	.direct_IO		= noop_direct_IO,
3565	.migrate_folio		= buffer_migrate_folio,
3566	.is_partially_uptodate  = block_is_partially_uptodate,
3567	.error_remove_folio	= generic_error_remove_folio,
3568	.swap_activate		= ext4_iomap_swap_activate,
3569};
3570
3571static const struct address_space_operations ext4_dax_aops = {
3572	.writepages		= ext4_dax_writepages,
3573	.direct_IO		= noop_direct_IO,
3574	.dirty_folio		= noop_dirty_folio,
3575	.bmap			= ext4_bmap,
3576	.swap_activate		= ext4_iomap_swap_activate,
3577};
3578
3579void ext4_set_aops(struct inode *inode)
3580{
3581	switch (ext4_inode_journal_mode(inode)) {
3582	case EXT4_INODE_ORDERED_DATA_MODE:
3583	case EXT4_INODE_WRITEBACK_DATA_MODE:
3584		break;
3585	case EXT4_INODE_JOURNAL_DATA_MODE:
3586		inode->i_mapping->a_ops = &ext4_journalled_aops;
3587		return;
3588	default:
3589		BUG();
3590	}
3591	if (IS_DAX(inode))
3592		inode->i_mapping->a_ops = &ext4_dax_aops;
3593	else if (test_opt(inode->i_sb, DELALLOC))
3594		inode->i_mapping->a_ops = &ext4_da_aops;
 
 
3595	else
3596		inode->i_mapping->a_ops = &ext4_aops;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3597}
3598
3599/*
3600 * Here we can't skip an unwritten buffer even though it usually reads zero
3601 * because it might have data in pagecache (eg, if called from ext4_zero_range,
3602 * ext4_punch_hole, etc) which needs to be properly zeroed out. Otherwise a
3603 * racing writeback can come later and flush the stale pagecache to disk.
 
3604 */
3605static int __ext4_block_zero_page_range(handle_t *handle,
3606		struct address_space *mapping, loff_t from, loff_t length)
3607{
3608	ext4_fsblk_t index = from >> PAGE_SHIFT;
3609	unsigned offset = from & (PAGE_SIZE-1);
3610	unsigned blocksize, pos;
3611	ext4_lblk_t iblock;
3612	struct inode *inode = mapping->host;
3613	struct buffer_head *bh;
3614	struct folio *folio;
3615	int err = 0;
3616
3617	folio = __filemap_get_folio(mapping, from >> PAGE_SHIFT,
3618				    FGP_LOCK | FGP_ACCESSED | FGP_CREAT,
3619				    mapping_gfp_constraint(mapping, ~__GFP_FS));
3620	if (IS_ERR(folio))
3621		return PTR_ERR(folio);
3622
3623	blocksize = inode->i_sb->s_blocksize;
 
3624
3625	iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
 
 
 
 
 
 
 
3626
3627	bh = folio_buffers(folio);
3628	if (!bh)
3629		bh = create_empty_buffers(folio, blocksize, 0);
3630
3631	/* Find the buffer that contains "offset" */
 
3632	pos = blocksize;
3633	while (offset >= pos) {
3634		bh = bh->b_this_page;
3635		iblock++;
3636		pos += blocksize;
3637	}
 
 
3638	if (buffer_freed(bh)) {
3639		BUFFER_TRACE(bh, "freed: skip");
3640		goto unlock;
3641	}
 
3642	if (!buffer_mapped(bh)) {
3643		BUFFER_TRACE(bh, "unmapped");
3644		ext4_get_block(inode, iblock, bh, 0);
3645		/* unmapped? It's a hole - nothing to do */
3646		if (!buffer_mapped(bh)) {
3647			BUFFER_TRACE(bh, "still unmapped");
3648			goto unlock;
3649		}
3650	}
3651
3652	/* Ok, it's mapped. Make sure it's up-to-date */
3653	if (folio_test_uptodate(folio))
3654		set_buffer_uptodate(bh);
3655
3656	if (!buffer_uptodate(bh)) {
3657		err = ext4_read_bh_lock(bh, 0, true);
3658		if (err)
 
 
 
3659			goto unlock;
3660		if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
3661			/* We expect the key to be set. */
3662			BUG_ON(!fscrypt_has_encryption_key(inode));
3663			err = fscrypt_decrypt_pagecache_blocks(folio,
3664							       blocksize,
3665							       bh_offset(bh));
3666			if (err) {
3667				clear_buffer_uptodate(bh);
3668				goto unlock;
3669			}
3670		}
3671	}
 
3672	if (ext4_should_journal_data(inode)) {
3673		BUFFER_TRACE(bh, "get write access");
3674		err = ext4_journal_get_write_access(handle, inode->i_sb, bh,
3675						    EXT4_JTR_NONE);
3676		if (err)
3677			goto unlock;
3678	}
3679	folio_zero_range(folio, offset, length);
 
 
3680	BUFFER_TRACE(bh, "zeroed end of block");
3681
 
3682	if (ext4_should_journal_data(inode)) {
3683		err = ext4_dirty_journalled_data(handle, bh);
3684	} else {
3685		err = 0;
 
3686		mark_buffer_dirty(bh);
3687		if (ext4_should_order_data(inode))
3688			err = ext4_jbd2_inode_add_write(handle, inode, from,
3689					length);
3690	}
3691
3692unlock:
3693	folio_unlock(folio);
3694	folio_put(folio);
3695	return err;
3696}
3697
3698/*
3699 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3700 * starting from file offset 'from'.  The range to be zero'd must
3701 * be contained with in one block.  If the specified range exceeds
3702 * the end of the block it will be shortened to end of the block
3703 * that corresponds to 'from'
3704 */
3705static int ext4_block_zero_page_range(handle_t *handle,
3706		struct address_space *mapping, loff_t from, loff_t length)
3707{
3708	struct inode *inode = mapping->host;
3709	unsigned offset = from & (PAGE_SIZE-1);
3710	unsigned blocksize = inode->i_sb->s_blocksize;
3711	unsigned max = blocksize - (offset & (blocksize - 1));
3712
3713	/*
3714	 * correct length if it does not fall between
3715	 * 'from' and the end of the block
3716	 */
3717	if (length > max || length < 0)
3718		length = max;
3719
3720	if (IS_DAX(inode)) {
3721		return dax_zero_range(inode, from, length, NULL,
3722				      &ext4_iomap_ops);
3723	}
3724	return __ext4_block_zero_page_range(handle, mapping, from, length);
3725}
3726
3727/*
3728 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3729 * up to the end of the block which corresponds to `from'.
3730 * This required during truncate. We need to physically zero the tail end
3731 * of that block so it doesn't yield old data if the file is later grown.
3732 */
3733static int ext4_block_truncate_page(handle_t *handle,
3734		struct address_space *mapping, loff_t from)
3735{
3736	unsigned offset = from & (PAGE_SIZE-1);
3737	unsigned length;
3738	unsigned blocksize;
3739	struct inode *inode = mapping->host;
3740
3741	/* If we are processing an encrypted inode during orphan list handling */
3742	if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode))
3743		return 0;
3744
3745	blocksize = inode->i_sb->s_blocksize;
3746	length = blocksize - (offset & (blocksize - 1));
3747
3748	return ext4_block_zero_page_range(handle, mapping, from, length);
3749}
3750
3751int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3752			     loff_t lstart, loff_t length)
3753{
3754	struct super_block *sb = inode->i_sb;
3755	struct address_space *mapping = inode->i_mapping;
3756	unsigned partial_start, partial_end;
3757	ext4_fsblk_t start, end;
3758	loff_t byte_end = (lstart + length - 1);
3759	int err = 0;
3760
3761	partial_start = lstart & (sb->s_blocksize - 1);
3762	partial_end = byte_end & (sb->s_blocksize - 1);
3763
3764	start = lstart >> sb->s_blocksize_bits;
3765	end = byte_end >> sb->s_blocksize_bits;
3766
3767	/* Handle partial zero within the single block */
3768	if (start == end &&
3769	    (partial_start || (partial_end != sb->s_blocksize - 1))) {
3770		err = ext4_block_zero_page_range(handle, mapping,
3771						 lstart, length);
3772		return err;
3773	}
3774	/* Handle partial zero out on the start of the range */
3775	if (partial_start) {
3776		err = ext4_block_zero_page_range(handle, mapping,
3777						 lstart, sb->s_blocksize);
3778		if (err)
3779			return err;
3780	}
3781	/* Handle partial zero out on the end of the range */
3782	if (partial_end != sb->s_blocksize - 1)
3783		err = ext4_block_zero_page_range(handle, mapping,
3784						 byte_end - partial_end,
3785						 partial_end + 1);
3786	return err;
3787}
3788
3789int ext4_can_truncate(struct inode *inode)
3790{
3791	if (S_ISREG(inode->i_mode))
3792		return 1;
3793	if (S_ISDIR(inode->i_mode))
3794		return 1;
3795	if (S_ISLNK(inode->i_mode))
3796		return !ext4_inode_is_fast_symlink(inode);
3797	return 0;
3798}
3799
3800/*
3801 * We have to make sure i_disksize gets properly updated before we truncate
3802 * page cache due to hole punching or zero range. Otherwise i_disksize update
3803 * can get lost as it may have been postponed to submission of writeback but
3804 * that will never happen after we truncate page cache.
3805 */
3806int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3807				      loff_t len)
3808{
3809	handle_t *handle;
3810	int ret;
3811
3812	loff_t size = i_size_read(inode);
3813
3814	WARN_ON(!inode_is_locked(inode));
3815	if (offset > size || offset + len < size)
3816		return 0;
3817
3818	if (EXT4_I(inode)->i_disksize >= size)
3819		return 0;
3820
3821	handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
3822	if (IS_ERR(handle))
3823		return PTR_ERR(handle);
3824	ext4_update_i_disksize(inode, size);
3825	ret = ext4_mark_inode_dirty(handle, inode);
3826	ext4_journal_stop(handle);
3827
3828	return ret;
3829}
3830
3831static void ext4_wait_dax_page(struct inode *inode)
3832{
3833	filemap_invalidate_unlock(inode->i_mapping);
3834	schedule();
3835	filemap_invalidate_lock(inode->i_mapping);
3836}
3837
3838int ext4_break_layouts(struct inode *inode)
3839{
3840	struct page *page;
3841	int error;
3842
3843	if (WARN_ON_ONCE(!rwsem_is_locked(&inode->i_mapping->invalidate_lock)))
3844		return -EINVAL;
3845
3846	do {
3847		page = dax_layout_busy_page(inode->i_mapping);
3848		if (!page)
3849			return 0;
3850
3851		error = ___wait_var_event(&page->_refcount,
3852				atomic_read(&page->_refcount) == 1,
3853				TASK_INTERRUPTIBLE, 0, 0,
3854				ext4_wait_dax_page(inode));
3855	} while (error == 0);
3856
3857	return error;
3858}
3859
3860/*
3861 * ext4_punch_hole: punches a hole in a file by releasing the blocks
3862 * associated with the given offset and length
3863 *
3864 * @inode:  File inode
3865 * @offset: The offset where the hole will begin
3866 * @len:    The length of the hole
3867 *
3868 * Returns: 0 on success or negative on failure
3869 */
3870
3871int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3872{
3873	struct inode *inode = file_inode(file);
3874	struct super_block *sb = inode->i_sb;
3875	ext4_lblk_t first_block, stop_block;
3876	struct address_space *mapping = inode->i_mapping;
3877	loff_t first_block_offset, last_block_offset, max_length;
3878	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3879	handle_t *handle;
3880	unsigned int credits;
3881	int ret = 0, ret2 = 0;
3882
3883	trace_ext4_punch_hole(inode, offset, length, 0);
3884
3885	/*
3886	 * Write out all dirty pages to avoid race conditions
3887	 * Then release them.
3888	 */
3889	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3890		ret = filemap_write_and_wait_range(mapping, offset,
3891						   offset + length - 1);
3892		if (ret)
3893			return ret;
3894	}
3895
3896	inode_lock(inode);
3897
3898	/* No need to punch hole beyond i_size */
3899	if (offset >= inode->i_size)
3900		goto out_mutex;
3901
3902	/*
3903	 * If the hole extends beyond i_size, set the hole
3904	 * to end after the page that contains i_size
3905	 */
3906	if (offset + length > inode->i_size) {
3907		length = inode->i_size +
3908		   PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
3909		   offset;
3910	}
3911
3912	/*
3913	 * For punch hole the length + offset needs to be within one block
3914	 * before last range. Adjust the length if it goes beyond that limit.
3915	 */
3916	max_length = sbi->s_bitmap_maxbytes - inode->i_sb->s_blocksize;
3917	if (offset + length > max_length)
3918		length = max_length - offset;
3919
3920	if (offset & (sb->s_blocksize - 1) ||
3921	    (offset + length) & (sb->s_blocksize - 1)) {
3922		/*
3923		 * Attach jinode to inode for jbd2 if we do any zeroing of
3924		 * partial block
3925		 */
3926		ret = ext4_inode_attach_jinode(inode);
3927		if (ret < 0)
3928			goto out_mutex;
3929
3930	}
3931
3932	/* Wait all existing dio workers, newcomers will block on i_rwsem */
3933	inode_dio_wait(inode);
3934
3935	ret = file_modified(file);
3936	if (ret)
3937		goto out_mutex;
3938
3939	/*
3940	 * Prevent page faults from reinstantiating pages we have released from
3941	 * page cache.
3942	 */
3943	filemap_invalidate_lock(mapping);
3944
3945	ret = ext4_break_layouts(inode);
3946	if (ret)
3947		goto out_dio;
3948
3949	first_block_offset = round_up(offset, sb->s_blocksize);
3950	last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
3951
3952	/* Now release the pages and zero block aligned part of pages*/
3953	if (last_block_offset > first_block_offset) {
3954		ret = ext4_update_disksize_before_punch(inode, offset, length);
3955		if (ret)
3956			goto out_dio;
3957		truncate_pagecache_range(inode, first_block_offset,
3958					 last_block_offset);
3959	}
3960
3961	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3962		credits = ext4_writepage_trans_blocks(inode);
3963	else
3964		credits = ext4_blocks_for_truncate(inode);
3965	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3966	if (IS_ERR(handle)) {
3967		ret = PTR_ERR(handle);
3968		ext4_std_error(sb, ret);
3969		goto out_dio;
3970	}
3971
3972	ret = ext4_zero_partial_blocks(handle, inode, offset,
3973				       length);
3974	if (ret)
3975		goto out_stop;
3976
3977	first_block = (offset + sb->s_blocksize - 1) >>
3978		EXT4_BLOCK_SIZE_BITS(sb);
3979	stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3980
3981	/* If there are blocks to remove, do it */
3982	if (stop_block > first_block) {
3983		ext4_lblk_t hole_len = stop_block - first_block;
3984
3985		down_write(&EXT4_I(inode)->i_data_sem);
3986		ext4_discard_preallocations(inode);
3987
3988		ext4_es_remove_extent(inode, first_block, hole_len);
3989
3990		if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3991			ret = ext4_ext_remove_space(inode, first_block,
3992						    stop_block - 1);
3993		else
3994			ret = ext4_ind_remove_space(handle, inode, first_block,
3995						    stop_block);
3996
3997		ext4_es_insert_extent(inode, first_block, hole_len, ~0,
3998				      EXTENT_STATUS_HOLE);
3999		up_write(&EXT4_I(inode)->i_data_sem);
4000	}
4001	ext4_fc_track_range(handle, inode, first_block, stop_block);
4002	if (IS_SYNC(inode))
4003		ext4_handle_sync(handle);
4004
4005	inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
4006	ret2 = ext4_mark_inode_dirty(handle, inode);
4007	if (unlikely(ret2))
4008		ret = ret2;
4009	if (ret >= 0)
4010		ext4_update_inode_fsync_trans(handle, inode, 1);
4011out_stop:
4012	ext4_journal_stop(handle);
4013out_dio:
4014	filemap_invalidate_unlock(mapping);
4015out_mutex:
4016	inode_unlock(inode);
4017	return ret;
4018}
4019
4020int ext4_inode_attach_jinode(struct inode *inode)
4021{
4022	struct ext4_inode_info *ei = EXT4_I(inode);
4023	struct jbd2_inode *jinode;
4024
4025	if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4026		return 0;
4027
4028	jinode = jbd2_alloc_inode(GFP_KERNEL);
4029	spin_lock(&inode->i_lock);
4030	if (!ei->jinode) {
4031		if (!jinode) {
4032			spin_unlock(&inode->i_lock);
4033			return -ENOMEM;
4034		}
4035		ei->jinode = jinode;
4036		jbd2_journal_init_jbd_inode(ei->jinode, inode);
4037		jinode = NULL;
4038	}
4039	spin_unlock(&inode->i_lock);
4040	if (unlikely(jinode != NULL))
4041		jbd2_free_inode(jinode);
4042	return 0;
4043}
4044
4045/*
4046 * ext4_truncate()
4047 *
4048 * We block out ext4_get_block() block instantiations across the entire
4049 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4050 * simultaneously on behalf of the same inode.
4051 *
4052 * As we work through the truncate and commit bits of it to the journal there
4053 * is one core, guiding principle: the file's tree must always be consistent on
4054 * disk.  We must be able to restart the truncate after a crash.
4055 *
4056 * The file's tree may be transiently inconsistent in memory (although it
4057 * probably isn't), but whenever we close off and commit a journal transaction,
4058 * the contents of (the filesystem + the journal) must be consistent and
4059 * restartable.  It's pretty simple, really: bottom up, right to left (although
4060 * left-to-right works OK too).
4061 *
4062 * Note that at recovery time, journal replay occurs *before* the restart of
4063 * truncate against the orphan inode list.
4064 *
4065 * The committed inode has the new, desired i_size (which is the same as
4066 * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4067 * that this inode's truncate did not complete and it will again call
4068 * ext4_truncate() to have another go.  So there will be instantiated blocks
4069 * to the right of the truncation point in a crashed ext4 filesystem.  But
4070 * that's fine - as long as they are linked from the inode, the post-crash
4071 * ext4_truncate() run will find them and release them.
4072 */
4073int ext4_truncate(struct inode *inode)
4074{
4075	struct ext4_inode_info *ei = EXT4_I(inode);
4076	unsigned int credits;
4077	int err = 0, err2;
4078	handle_t *handle;
4079	struct address_space *mapping = inode->i_mapping;
4080
4081	/*
4082	 * There is a possibility that we're either freeing the inode
4083	 * or it's a completely new inode. In those cases we might not
4084	 * have i_rwsem locked because it's not necessary.
4085	 */
4086	if (!(inode->i_state & (I_NEW|I_FREEING)))
4087		WARN_ON(!inode_is_locked(inode));
4088	trace_ext4_truncate_enter(inode);
4089
4090	if (!ext4_can_truncate(inode))
4091		goto out_trace;
 
 
4092
4093	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4094		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4095
4096	if (ext4_has_inline_data(inode)) {
4097		int has_inline = 1;
4098
4099		err = ext4_inline_data_truncate(inode, &has_inline);
4100		if (err || has_inline)
4101			goto out_trace;
4102	}
4103
4104	/* If we zero-out tail of the page, we have to create jinode for jbd2 */
4105	if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4106		err = ext4_inode_attach_jinode(inode);
4107		if (err)
4108			goto out_trace;
4109	}
4110
4111	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4112		credits = ext4_writepage_trans_blocks(inode);
4113	else
4114		credits = ext4_blocks_for_truncate(inode);
4115
4116	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4117	if (IS_ERR(handle)) {
4118		err = PTR_ERR(handle);
4119		goto out_trace;
4120	}
4121
4122	if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4123		ext4_block_truncate_page(handle, mapping, inode->i_size);
4124
4125	/*
4126	 * We add the inode to the orphan list, so that if this
4127	 * truncate spans multiple transactions, and we crash, we will
4128	 * resume the truncate when the filesystem recovers.  It also
4129	 * marks the inode dirty, to catch the new size.
4130	 *
4131	 * Implication: the file must always be in a sane, consistent
4132	 * truncatable state while each transaction commits.
4133	 */
4134	err = ext4_orphan_add(handle, inode);
4135	if (err)
4136		goto out_stop;
4137
4138	down_write(&EXT4_I(inode)->i_data_sem);
4139
4140	ext4_discard_preallocations(inode);
4141
4142	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4143		err = ext4_ext_truncate(handle, inode);
4144	else
4145		ext4_ind_truncate(handle, inode);
4146
4147	up_write(&ei->i_data_sem);
4148	if (err)
4149		goto out_stop;
4150
4151	if (IS_SYNC(inode))
4152		ext4_handle_sync(handle);
4153
4154out_stop:
4155	/*
4156	 * If this was a simple ftruncate() and the file will remain alive,
4157	 * then we need to clear up the orphan record which we created above.
4158	 * However, if this was a real unlink then we were called by
4159	 * ext4_evict_inode(), and we allow that function to clean up the
4160	 * orphan info for us.
4161	 */
4162	if (inode->i_nlink)
4163		ext4_orphan_del(handle, inode);
4164
4165	inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
4166	err2 = ext4_mark_inode_dirty(handle, inode);
4167	if (unlikely(err2 && !err))
4168		err = err2;
4169	ext4_journal_stop(handle);
4170
4171out_trace:
4172	trace_ext4_truncate_exit(inode);
4173	return err;
4174}
4175
4176static inline u64 ext4_inode_peek_iversion(const struct inode *inode)
4177{
4178	if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4179		return inode_peek_iversion_raw(inode);
4180	else
4181		return inode_peek_iversion(inode);
4182}
4183
4184static int ext4_inode_blocks_set(struct ext4_inode *raw_inode,
4185				 struct ext4_inode_info *ei)
4186{
4187	struct inode *inode = &(ei->vfs_inode);
4188	u64 i_blocks = READ_ONCE(inode->i_blocks);
4189	struct super_block *sb = inode->i_sb;
4190
4191	if (i_blocks <= ~0U) {
4192		/*
4193		 * i_blocks can be represented in a 32 bit variable
4194		 * as multiple of 512 bytes
4195		 */
4196		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4197		raw_inode->i_blocks_high = 0;
4198		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4199		return 0;
4200	}
4201
4202	/*
4203	 * This should never happen since sb->s_maxbytes should not have
4204	 * allowed this, sb->s_maxbytes was set according to the huge_file
4205	 * feature in ext4_fill_super().
4206	 */
4207	if (!ext4_has_feature_huge_file(sb))
4208		return -EFSCORRUPTED;
4209
4210	if (i_blocks <= 0xffffffffffffULL) {
4211		/*
4212		 * i_blocks can be represented in a 48 bit variable
4213		 * as multiple of 512 bytes
4214		 */
4215		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4216		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4217		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4218	} else {
4219		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4220		/* i_block is stored in file system block size */
4221		i_blocks = i_blocks >> (inode->i_blkbits - 9);
4222		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4223		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4224	}
4225	return 0;
4226}
4227
4228static int ext4_fill_raw_inode(struct inode *inode, struct ext4_inode *raw_inode)
4229{
4230	struct ext4_inode_info *ei = EXT4_I(inode);
4231	uid_t i_uid;
4232	gid_t i_gid;
4233	projid_t i_projid;
4234	int block;
4235	int err;
4236
4237	err = ext4_inode_blocks_set(raw_inode, ei);
4238
4239	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4240	i_uid = i_uid_read(inode);
4241	i_gid = i_gid_read(inode);
4242	i_projid = from_kprojid(&init_user_ns, ei->i_projid);
4243	if (!(test_opt(inode->i_sb, NO_UID32))) {
4244		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4245		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4246		/*
4247		 * Fix up interoperability with old kernels. Otherwise,
4248		 * old inodes get re-used with the upper 16 bits of the
4249		 * uid/gid intact.
4250		 */
4251		if (ei->i_dtime && list_empty(&ei->i_orphan)) {
4252			raw_inode->i_uid_high = 0;
4253			raw_inode->i_gid_high = 0;
4254		} else {
4255			raw_inode->i_uid_high =
4256				cpu_to_le16(high_16_bits(i_uid));
4257			raw_inode->i_gid_high =
4258				cpu_to_le16(high_16_bits(i_gid));
4259		}
4260	} else {
4261		raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4262		raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4263		raw_inode->i_uid_high = 0;
4264		raw_inode->i_gid_high = 0;
4265	}
4266	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4267
4268	EXT4_INODE_SET_CTIME(inode, raw_inode);
4269	EXT4_INODE_SET_MTIME(inode, raw_inode);
4270	EXT4_INODE_SET_ATIME(inode, raw_inode);
4271	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4272
4273	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4274	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4275	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4276		raw_inode->i_file_acl_high =
4277			cpu_to_le16(ei->i_file_acl >> 32);
4278	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4279	ext4_isize_set(raw_inode, ei->i_disksize);
4280
4281	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4282	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4283		if (old_valid_dev(inode->i_rdev)) {
4284			raw_inode->i_block[0] =
4285				cpu_to_le32(old_encode_dev(inode->i_rdev));
4286			raw_inode->i_block[1] = 0;
4287		} else {
4288			raw_inode->i_block[0] = 0;
4289			raw_inode->i_block[1] =
4290				cpu_to_le32(new_encode_dev(inode->i_rdev));
4291			raw_inode->i_block[2] = 0;
4292		}
4293	} else if (!ext4_has_inline_data(inode)) {
4294		for (block = 0; block < EXT4_N_BLOCKS; block++)
4295			raw_inode->i_block[block] = ei->i_data[block];
4296	}
4297
4298	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4299		u64 ivers = ext4_inode_peek_iversion(inode);
4300
4301		raw_inode->i_disk_version = cpu_to_le32(ivers);
4302		if (ei->i_extra_isize) {
4303			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4304				raw_inode->i_version_hi =
4305					cpu_to_le32(ivers >> 32);
4306			raw_inode->i_extra_isize =
4307				cpu_to_le16(ei->i_extra_isize);
4308		}
4309	}
4310
4311	if (i_projid != EXT4_DEF_PROJID &&
4312	    !ext4_has_feature_project(inode->i_sb))
4313		err = err ?: -EFSCORRUPTED;
4314
4315	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4316	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4317		raw_inode->i_projid = cpu_to_le32(i_projid);
4318
4319	ext4_inode_csum_set(inode, raw_inode, ei);
4320	return err;
4321}
4322
4323/*
4324 * ext4_get_inode_loc returns with an extra refcount against the inode's
4325 * underlying buffer_head on success. If we pass 'inode' and it does not
4326 * have in-inode xattr, we have all inode data in memory that is needed
4327 * to recreate the on-disk version of this inode.
4328 */
4329static int __ext4_get_inode_loc(struct super_block *sb, unsigned long ino,
4330				struct inode *inode, struct ext4_iloc *iloc,
4331				ext4_fsblk_t *ret_block)
4332{
4333	struct ext4_group_desc	*gdp;
4334	struct buffer_head	*bh;
 
4335	ext4_fsblk_t		block;
4336	struct blk_plug		plug;
4337	int			inodes_per_block, inode_offset;
4338
4339	iloc->bh = NULL;
4340	if (ino < EXT4_ROOT_INO ||
4341	    ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
4342		return -EFSCORRUPTED;
4343
4344	iloc->block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
4345	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4346	if (!gdp)
4347		return -EIO;
4348
4349	/*
4350	 * Figure out the offset within the block group inode table
4351	 */
4352	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4353	inode_offset = ((ino - 1) %
4354			EXT4_INODES_PER_GROUP(sb));
 
4355	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4356
4357	block = ext4_inode_table(sb, gdp);
4358	if ((block <= le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block)) ||
4359	    (block >= ext4_blocks_count(EXT4_SB(sb)->s_es))) {
4360		ext4_error(sb, "Invalid inode table block %llu in "
4361			   "block_group %u", block, iloc->block_group);
4362		return -EFSCORRUPTED;
4363	}
4364	block += (inode_offset / inodes_per_block);
4365
4366	bh = sb_getblk(sb, block);
4367	if (unlikely(!bh))
4368		return -ENOMEM;
4369	if (ext4_buffer_uptodate(bh))
4370		goto has_buffer;
4371
4372	lock_buffer(bh);
4373	if (ext4_buffer_uptodate(bh)) {
4374		/* Someone brought it uptodate while we waited */
4375		unlock_buffer(bh);
4376		goto has_buffer;
4377	}
 
 
4378
4379	/*
4380	 * If we have all information of the inode in memory and this
4381	 * is the only valid inode in the block, we need not read the
4382	 * block.
4383	 */
4384	if (inode && !ext4_test_inode_state(inode, EXT4_STATE_XATTR)) {
4385		struct buffer_head *bitmap_bh;
4386		int i, start;
4387
4388		start = inode_offset & ~(inodes_per_block - 1);
4389
4390		/* Is the inode bitmap in cache? */
4391		bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4392		if (unlikely(!bitmap_bh))
4393			goto make_io;
4394
4395		/*
4396		 * If the inode bitmap isn't in cache then the
4397		 * optimisation may end up performing two reads instead
4398		 * of one, so skip it.
4399		 */
4400		if (!buffer_uptodate(bitmap_bh)) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4401			brelse(bitmap_bh);
4402			goto make_io;
4403		}
4404		for (i = start; i < start + inodes_per_block; i++) {
4405			if (i == inode_offset)
4406				continue;
4407			if (ext4_test_bit(i, bitmap_bh->b_data))
4408				break;
4409		}
4410		brelse(bitmap_bh);
4411		if (i == start + inodes_per_block) {
4412			struct ext4_inode *raw_inode =
4413				(struct ext4_inode *) (bh->b_data + iloc->offset);
4414
4415			/* all other inodes are free, so skip I/O */
4416			memset(bh->b_data, 0, bh->b_size);
4417			if (!ext4_test_inode_state(inode, EXT4_STATE_NEW))
4418				ext4_fill_raw_inode(inode, raw_inode);
4419			set_buffer_uptodate(bh);
4420			unlock_buffer(bh);
4421			goto has_buffer;
4422		}
4423	}
4424
4425make_io:
4426	/*
4427	 * If we need to do any I/O, try to pre-readahead extra
4428	 * blocks from the inode table.
4429	 */
4430	blk_start_plug(&plug);
4431	if (EXT4_SB(sb)->s_inode_readahead_blks) {
4432		ext4_fsblk_t b, end, table;
4433		unsigned num;
4434		__u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4435
4436		table = ext4_inode_table(sb, gdp);
4437		/* s_inode_readahead_blks is always a power of 2 */
4438		b = block & ~((ext4_fsblk_t) ra_blks - 1);
4439		if (table > b)
4440			b = table;
4441		end = b + ra_blks;
4442		num = EXT4_INODES_PER_GROUP(sb);
4443		if (ext4_has_group_desc_csum(sb))
4444			num -= ext4_itable_unused_count(sb, gdp);
4445		table += num / inodes_per_block;
4446		if (end > table)
4447			end = table;
4448		while (b <= end)
4449			ext4_sb_breadahead_unmovable(sb, b++);
4450	}
4451
4452	/*
4453	 * There are other valid inodes in the buffer, this inode
4454	 * has in-inode xattrs, or we don't have this inode in memory.
4455	 * Read the block from disk.
4456	 */
4457	trace_ext4_load_inode(sb, ino);
4458	ext4_read_bh_nowait(bh, REQ_META | REQ_PRIO, NULL);
4459	blk_finish_plug(&plug);
4460	wait_on_buffer(bh);
4461	ext4_simulate_fail_bh(sb, bh, EXT4_SIM_INODE_EIO);
4462	if (!buffer_uptodate(bh)) {
4463		if (ret_block)
4464			*ret_block = block;
4465		brelse(bh);
4466		return -EIO;
 
4467	}
4468has_buffer:
4469	iloc->bh = bh;
4470	return 0;
4471}
4472
4473static int __ext4_get_inode_loc_noinmem(struct inode *inode,
4474					struct ext4_iloc *iloc)
4475{
4476	ext4_fsblk_t err_blk = 0;
4477	int ret;
4478
4479	ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, NULL, iloc,
4480					&err_blk);
4481
4482	if (ret == -EIO)
4483		ext4_error_inode_block(inode, err_blk, EIO,
4484					"unable to read itable block");
4485
4486	return ret;
4487}
4488
4489int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4490{
4491	ext4_fsblk_t err_blk = 0;
4492	int ret;
4493
4494	ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, inode, iloc,
4495					&err_blk);
4496
4497	if (ret == -EIO)
4498		ext4_error_inode_block(inode, err_blk, EIO,
4499					"unable to read itable block");
4500
4501	return ret;
4502}
4503
4504
4505int ext4_get_fc_inode_loc(struct super_block *sb, unsigned long ino,
4506			  struct ext4_iloc *iloc)
4507{
4508	return __ext4_get_inode_loc(sb, ino, NULL, iloc, NULL);
4509}
4510
4511static bool ext4_should_enable_dax(struct inode *inode)
4512{
4513	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4514
4515	if (test_opt2(inode->i_sb, DAX_NEVER))
4516		return false;
4517	if (!S_ISREG(inode->i_mode))
4518		return false;
4519	if (ext4_should_journal_data(inode))
4520		return false;
4521	if (ext4_has_inline_data(inode))
4522		return false;
4523	if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT))
4524		return false;
4525	if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY))
4526		return false;
4527	if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags))
4528		return false;
4529	if (test_opt(inode->i_sb, DAX_ALWAYS))
4530		return true;
4531
4532	return ext4_test_inode_flag(inode, EXT4_INODE_DAX);
4533}
4534
4535void ext4_set_inode_flags(struct inode *inode, bool init)
4536{
4537	unsigned int flags = EXT4_I(inode)->i_flags;
4538	unsigned int new_fl = 0;
4539
4540	WARN_ON_ONCE(IS_DAX(inode) && init);
4541
 
4542	if (flags & EXT4_SYNC_FL)
4543		new_fl |= S_SYNC;
4544	if (flags & EXT4_APPEND_FL)
4545		new_fl |= S_APPEND;
4546	if (flags & EXT4_IMMUTABLE_FL)
4547		new_fl |= S_IMMUTABLE;
4548	if (flags & EXT4_NOATIME_FL)
4549		new_fl |= S_NOATIME;
4550	if (flags & EXT4_DIRSYNC_FL)
4551		new_fl |= S_DIRSYNC;
 
4552
4553	/* Because of the way inode_set_flags() works we must preserve S_DAX
4554	 * here if already set. */
4555	new_fl |= (inode->i_flags & S_DAX);
4556	if (init && ext4_should_enable_dax(inode))
4557		new_fl |= S_DAX;
4558
4559	if (flags & EXT4_ENCRYPT_FL)
4560		new_fl |= S_ENCRYPTED;
4561	if (flags & EXT4_CASEFOLD_FL)
4562		new_fl |= S_CASEFOLD;
4563	if (flags & EXT4_VERITY_FL)
4564		new_fl |= S_VERITY;
4565	inode_set_flags(inode, new_fl,
4566			S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
4567			S_ENCRYPTED|S_CASEFOLD|S_VERITY);
 
 
 
 
 
 
 
 
4568}
4569
4570static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4571				  struct ext4_inode_info *ei)
4572{
4573	blkcnt_t i_blocks ;
4574	struct inode *inode = &(ei->vfs_inode);
4575	struct super_block *sb = inode->i_sb;
4576
4577	if (ext4_has_feature_huge_file(sb)) {
 
4578		/* we are using combined 48 bit field */
4579		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4580					le32_to_cpu(raw_inode->i_blocks_lo);
4581		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4582			/* i_blocks represent file system block size */
4583			return i_blocks  << (inode->i_blkbits - 9);
4584		} else {
4585			return i_blocks;
4586		}
4587	} else {
4588		return le32_to_cpu(raw_inode->i_blocks_lo);
4589	}
4590}
4591
4592static inline int ext4_iget_extra_inode(struct inode *inode,
4593					 struct ext4_inode *raw_inode,
4594					 struct ext4_inode_info *ei)
4595{
4596	__le32 *magic = (void *)raw_inode +
4597			EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4598
4599	if (EXT4_INODE_HAS_XATTR_SPACE(inode)  &&
4600	    *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4601		int err;
4602
4603		ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4604		err = ext4_find_inline_data_nolock(inode);
4605		if (!err && ext4_has_inline_data(inode))
4606			ext4_set_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
4607		return err;
4608	} else
4609		EXT4_I(inode)->i_inline_off = 0;
4610	return 0;
4611}
4612
4613int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4614{
4615	if (!ext4_has_feature_project(inode->i_sb))
4616		return -EOPNOTSUPP;
4617	*projid = EXT4_I(inode)->i_projid;
4618	return 0;
4619}
4620
4621/*
4622 * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of
4623 * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag
4624 * set.
4625 */
4626static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val)
4627{
4628	if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4629		inode_set_iversion_raw(inode, val);
4630	else
4631		inode_set_iversion_queried(inode, val);
4632}
4633
4634static const char *check_igot_inode(struct inode *inode, ext4_iget_flags flags)
4635
4636{
4637	if (flags & EXT4_IGET_EA_INODE) {
4638		if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4639			return "missing EA_INODE flag";
4640		if (ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4641		    EXT4_I(inode)->i_file_acl)
4642			return "ea_inode with extended attributes";
4643	} else {
4644		if ((EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4645			return "unexpected EA_INODE flag";
4646	}
4647	if (is_bad_inode(inode) && !(flags & EXT4_IGET_BAD))
4648		return "unexpected bad inode w/o EXT4_IGET_BAD";
4649	return NULL;
4650}
4651
4652struct inode *__ext4_iget(struct super_block *sb, unsigned long ino,
4653			  ext4_iget_flags flags, const char *function,
4654			  unsigned int line)
4655{
4656	struct ext4_iloc iloc;
4657	struct ext4_inode *raw_inode;
4658	struct ext4_inode_info *ei;
4659	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4660	struct inode *inode;
4661	const char *err_str;
4662	journal_t *journal = EXT4_SB(sb)->s_journal;
4663	long ret;
4664	loff_t size;
4665	int block;
4666	uid_t i_uid;
4667	gid_t i_gid;
4668	projid_t i_projid;
4669
4670	if ((!(flags & EXT4_IGET_SPECIAL) &&
4671	     ((ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) ||
4672	      ino == le32_to_cpu(es->s_usr_quota_inum) ||
4673	      ino == le32_to_cpu(es->s_grp_quota_inum) ||
4674	      ino == le32_to_cpu(es->s_prj_quota_inum) ||
4675	      ino == le32_to_cpu(es->s_orphan_file_inum))) ||
4676	    (ino < EXT4_ROOT_INO) ||
4677	    (ino > le32_to_cpu(es->s_inodes_count))) {
4678		if (flags & EXT4_IGET_HANDLE)
4679			return ERR_PTR(-ESTALE);
4680		__ext4_error(sb, function, line, false, EFSCORRUPTED, 0,
4681			     "inode #%lu: comm %s: iget: illegal inode #",
4682			     ino, current->comm);
4683		return ERR_PTR(-EFSCORRUPTED);
4684	}
4685
4686	inode = iget_locked(sb, ino);
4687	if (!inode)
4688		return ERR_PTR(-ENOMEM);
4689	if (!(inode->i_state & I_NEW)) {
4690		if ((err_str = check_igot_inode(inode, flags)) != NULL) {
4691			ext4_error_inode(inode, function, line, 0, err_str);
4692			iput(inode);
4693			return ERR_PTR(-EFSCORRUPTED);
4694		}
4695		return inode;
4696	}
4697
4698	ei = EXT4_I(inode);
4699	iloc.bh = NULL;
4700
4701	ret = __ext4_get_inode_loc_noinmem(inode, &iloc);
4702	if (ret < 0)
4703		goto bad_inode;
4704	raw_inode = ext4_raw_inode(&iloc);
4705
4706	if ((flags & EXT4_IGET_HANDLE) &&
4707	    (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) {
4708		ret = -ESTALE;
4709		goto bad_inode;
4710	}
4711
4712	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4713		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4714		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4715			EXT4_INODE_SIZE(inode->i_sb) ||
4716		    (ei->i_extra_isize & 3)) {
4717			ext4_error_inode(inode, function, line, 0,
4718					 "iget: bad extra_isize %u "
4719					 "(inode size %u)",
4720					 ei->i_extra_isize,
4721					 EXT4_INODE_SIZE(inode->i_sb));
4722			ret = -EFSCORRUPTED;
4723			goto bad_inode;
4724		}
4725	} else
4726		ei->i_extra_isize = 0;
4727
4728	/* Precompute checksum seed for inode metadata */
4729	if (ext4_has_metadata_csum(sb)) {
4730		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4731		__u32 csum;
4732		__le32 inum = cpu_to_le32(inode->i_ino);
4733		__le32 gen = raw_inode->i_generation;
4734		csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4735				   sizeof(inum));
4736		ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4737					      sizeof(gen));
4738	}
4739
4740	if ((!ext4_inode_csum_verify(inode, raw_inode, ei) ||
4741	    ext4_simulate_fail(sb, EXT4_SIM_INODE_CRC)) &&
4742	     (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))) {
4743		ext4_error_inode_err(inode, function, line, 0,
4744				EFSBADCRC, "iget: checksum invalid");
4745		ret = -EFSBADCRC;
4746		goto bad_inode;
4747	}
4748
4749	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4750	i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4751	i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4752	if (ext4_has_feature_project(sb) &&
4753	    EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4754	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4755		i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4756	else
4757		i_projid = EXT4_DEF_PROJID;
4758
4759	if (!(test_opt(inode->i_sb, NO_UID32))) {
4760		i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4761		i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4762	}
4763	i_uid_write(inode, i_uid);
4764	i_gid_write(inode, i_gid);
4765	ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4766	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4767
4768	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
4769	ei->i_inline_off = 0;
4770	ei->i_dir_start_lookup = 0;
4771	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4772	/* We now have enough fields to check if the inode was active or not.
4773	 * This is needed because nfsd might try to access dead inodes
4774	 * the test is that same one that e2fsck uses
4775	 * NeilBrown 1999oct15
4776	 */
4777	if (inode->i_nlink == 0) {
4778		if ((inode->i_mode == 0 || flags & EXT4_IGET_SPECIAL ||
4779		     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4780		    ino != EXT4_BOOT_LOADER_INO) {
4781			/* this inode is deleted or unallocated */
4782			if (flags & EXT4_IGET_SPECIAL) {
4783				ext4_error_inode(inode, function, line, 0,
4784						 "iget: special inode unallocated");
4785				ret = -EFSCORRUPTED;
4786			} else
4787				ret = -ESTALE;
4788			goto bad_inode;
4789		}
4790		/* The only unlinked inodes we let through here have
4791		 * valid i_mode and are being read by the orphan
4792		 * recovery code: that's fine, we're about to complete
4793		 * the process of deleting those.
4794		 * OR it is the EXT4_BOOT_LOADER_INO which is
4795		 * not initialized on a new filesystem. */
4796	}
4797	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4798	ext4_set_inode_flags(inode, true);
4799	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4800	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4801	if (ext4_has_feature_64bit(sb))
4802		ei->i_file_acl |=
4803			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4804	inode->i_size = ext4_isize(sb, raw_inode);
4805	if ((size = i_size_read(inode)) < 0) {
4806		ext4_error_inode(inode, function, line, 0,
4807				 "iget: bad i_size value: %lld", size);
4808		ret = -EFSCORRUPTED;
4809		goto bad_inode;
4810	}
4811	/*
4812	 * If dir_index is not enabled but there's dir with INDEX flag set,
4813	 * we'd normally treat htree data as empty space. But with metadata
4814	 * checksumming that corrupts checksums so forbid that.
4815	 */
4816	if (!ext4_has_feature_dir_index(sb) && ext4_has_metadata_csum(sb) &&
4817	    ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) {
4818		ext4_error_inode(inode, function, line, 0,
4819			 "iget: Dir with htree data on filesystem without dir_index feature.");
4820		ret = -EFSCORRUPTED;
4821		goto bad_inode;
4822	}
4823	ei->i_disksize = inode->i_size;
4824#ifdef CONFIG_QUOTA
4825	ei->i_reserved_quota = 0;
4826#endif
4827	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4828	ei->i_block_group = iloc.block_group;
4829	ei->i_last_alloc_group = ~0;
4830	/*
4831	 * NOTE! The in-memory inode i_data array is in little-endian order
4832	 * even on big-endian machines: we do NOT byteswap the block numbers!
4833	 */
4834	for (block = 0; block < EXT4_N_BLOCKS; block++)
4835		ei->i_data[block] = raw_inode->i_block[block];
4836	INIT_LIST_HEAD(&ei->i_orphan);
4837	ext4_fc_init_inode(&ei->vfs_inode);
4838
4839	/*
4840	 * Set transaction id's of transactions that have to be committed
4841	 * to finish f[data]sync. We set them to currently running transaction
4842	 * as we cannot be sure that the inode or some of its metadata isn't
4843	 * part of the transaction - the inode could have been reclaimed and
4844	 * now it is reread from disk.
4845	 */
4846	if (journal) {
4847		transaction_t *transaction;
4848		tid_t tid;
4849
4850		read_lock(&journal->j_state_lock);
4851		if (journal->j_running_transaction)
4852			transaction = journal->j_running_transaction;
4853		else
4854			transaction = journal->j_committing_transaction;
4855		if (transaction)
4856			tid = transaction->t_tid;
4857		else
4858			tid = journal->j_commit_sequence;
4859		read_unlock(&journal->j_state_lock);
4860		ei->i_sync_tid = tid;
4861		ei->i_datasync_tid = tid;
4862	}
4863
4864	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
 
 
 
 
 
 
4865		if (ei->i_extra_isize == 0) {
4866			/* The extra space is currently unused. Use it. */
4867			BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
4868			ei->i_extra_isize = sizeof(struct ext4_inode) -
4869					    EXT4_GOOD_OLD_INODE_SIZE;
4870		} else {
4871			ret = ext4_iget_extra_inode(inode, raw_inode, ei);
4872			if (ret)
4873				goto bad_inode;
 
 
4874		}
4875	}
 
4876
4877	EXT4_INODE_GET_CTIME(inode, raw_inode);
4878	EXT4_INODE_GET_ATIME(inode, raw_inode);
4879	EXT4_INODE_GET_MTIME(inode, raw_inode);
4880	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4881
4882	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4883		u64 ivers = le32_to_cpu(raw_inode->i_disk_version);
4884
4885		if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4886			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4887				ivers |=
4888		    (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4889		}
4890		ext4_inode_set_iversion_queried(inode, ivers);
4891	}
4892
4893	ret = 0;
4894	if (ei->i_file_acl &&
4895	    !ext4_inode_block_valid(inode, ei->i_file_acl, 1)) {
4896		ext4_error_inode(inode, function, line, 0,
4897				 "iget: bad extended attribute block %llu",
4898				 ei->i_file_acl);
4899		ret = -EFSCORRUPTED;
4900		goto bad_inode;
4901	} else if (!ext4_has_inline_data(inode)) {
4902		/* validate the block references in the inode */
4903		if (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY) &&
4904			(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4905			(S_ISLNK(inode->i_mode) &&
4906			!ext4_inode_is_fast_symlink(inode)))) {
4907			if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4908				ret = ext4_ext_check_inode(inode);
4909			else
4910				ret = ext4_ind_check_inode(inode);
4911		}
4912	}
4913	if (ret)
4914		goto bad_inode;
4915
4916	if (S_ISREG(inode->i_mode)) {
4917		inode->i_op = &ext4_file_inode_operations;
4918		inode->i_fop = &ext4_file_operations;
4919		ext4_set_aops(inode);
4920	} else if (S_ISDIR(inode->i_mode)) {
4921		inode->i_op = &ext4_dir_inode_operations;
4922		inode->i_fop = &ext4_dir_operations;
4923	} else if (S_ISLNK(inode->i_mode)) {
4924		/* VFS does not allow setting these so must be corruption */
4925		if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
4926			ext4_error_inode(inode, function, line, 0,
4927					 "iget: immutable or append flags "
4928					 "not allowed on symlinks");
4929			ret = -EFSCORRUPTED;
4930			goto bad_inode;
4931		}
4932		if (IS_ENCRYPTED(inode)) {
4933			inode->i_op = &ext4_encrypted_symlink_inode_operations;
4934		} else if (ext4_inode_is_fast_symlink(inode)) {
4935			inode->i_link = (char *)ei->i_data;
4936			inode->i_op = &ext4_fast_symlink_inode_operations;
4937			nd_terminate_link(ei->i_data, inode->i_size,
4938				sizeof(ei->i_data) - 1);
4939		} else {
4940			inode->i_op = &ext4_symlink_inode_operations;
 
4941		}
4942	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4943	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4944		inode->i_op = &ext4_special_inode_operations;
4945		if (raw_inode->i_block[0])
4946			init_special_inode(inode, inode->i_mode,
4947			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4948		else
4949			init_special_inode(inode, inode->i_mode,
4950			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4951	} else if (ino == EXT4_BOOT_LOADER_INO) {
4952		make_bad_inode(inode);
4953	} else {
4954		ret = -EFSCORRUPTED;
4955		ext4_error_inode(inode, function, line, 0,
4956				 "iget: bogus i_mode (%o)", inode->i_mode);
4957		goto bad_inode;
4958	}
4959	if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb)) {
4960		ext4_error_inode(inode, function, line, 0,
4961				 "casefold flag without casefold feature");
4962		ret = -EFSCORRUPTED;
4963		goto bad_inode;
4964	}
4965	if ((err_str = check_igot_inode(inode, flags)) != NULL) {
4966		ext4_error_inode(inode, function, line, 0, err_str);
4967		ret = -EFSCORRUPTED;
4968		goto bad_inode;
4969	}
4970
4971	brelse(iloc.bh);
 
4972	unlock_new_inode(inode);
4973	return inode;
4974
4975bad_inode:
4976	brelse(iloc.bh);
4977	iget_failed(inode);
4978	return ERR_PTR(ret);
4979}
4980
4981static void __ext4_update_other_inode_time(struct super_block *sb,
4982					   unsigned long orig_ino,
4983					   unsigned long ino,
4984					   struct ext4_inode *raw_inode)
4985{
4986	struct inode *inode;
 
 
4987
4988	inode = find_inode_by_ino_rcu(sb, ino);
4989	if (!inode)
4990		return;
4991
4992	if (!inode_is_dirtytime_only(inode))
4993		return;
4994
4995	spin_lock(&inode->i_lock);
4996	if (inode_is_dirtytime_only(inode)) {
4997		struct ext4_inode_info	*ei = EXT4_I(inode);
4998
4999		inode->i_state &= ~I_DIRTY_TIME;
5000		spin_unlock(&inode->i_lock);
5001
5002		spin_lock(&ei->i_raw_lock);
5003		EXT4_INODE_SET_CTIME(inode, raw_inode);
5004		EXT4_INODE_SET_MTIME(inode, raw_inode);
5005		EXT4_INODE_SET_ATIME(inode, raw_inode);
5006		ext4_inode_csum_set(inode, raw_inode, ei);
5007		spin_unlock(&ei->i_raw_lock);
5008		trace_ext4_other_inode_update_time(inode, orig_ino);
5009		return;
5010	}
5011	spin_unlock(&inode->i_lock);
5012}
5013
5014/*
5015 * Opportunistically update the other time fields for other inodes in
5016 * the same inode table block.
5017 */
5018static void ext4_update_other_inodes_time(struct super_block *sb,
5019					  unsigned long orig_ino, char *buf)
5020{
5021	unsigned long ino;
5022	int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
5023	int inode_size = EXT4_INODE_SIZE(sb);
5024
5025	/*
5026	 * Calculate the first inode in the inode table block.  Inode
5027	 * numbers are one-based.  That is, the first inode in a block
5028	 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
5029	 */
5030	ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
5031	rcu_read_lock();
5032	for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
5033		if (ino == orig_ino)
5034			continue;
5035		__ext4_update_other_inode_time(sb, orig_ino, ino,
5036					       (struct ext4_inode *)buf);
5037	}
5038	rcu_read_unlock();
5039}
5040
5041/*
5042 * Post the struct inode info into an on-disk inode location in the
5043 * buffer-cache.  This gobbles the caller's reference to the
5044 * buffer_head in the inode location struct.
5045 *
5046 * The caller must have write access to iloc->bh.
5047 */
5048static int ext4_do_update_inode(handle_t *handle,
5049				struct inode *inode,
5050				struct ext4_iloc *iloc)
5051{
5052	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5053	struct ext4_inode_info *ei = EXT4_I(inode);
5054	struct buffer_head *bh = iloc->bh;
5055	struct super_block *sb = inode->i_sb;
5056	int err;
5057	int need_datasync = 0, set_large_file = 0;
5058
5059	spin_lock(&ei->i_raw_lock);
5060
5061	/*
5062	 * For fields not tracked in the in-memory inode, initialise them
5063	 * to zero for new inodes.
5064	 */
5065	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5066		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5067
5068	if (READ_ONCE(ei->i_disksize) != ext4_isize(inode->i_sb, raw_inode))
5069		need_datasync = 1;
5070	if (ei->i_disksize > 0x7fffffffULL) {
5071		if (!ext4_has_feature_large_file(sb) ||
5072		    EXT4_SB(sb)->s_es->s_rev_level == cpu_to_le32(EXT4_GOOD_OLD_REV))
5073			set_large_file = 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5074	}
 
5075
5076	err = ext4_fill_raw_inode(inode, raw_inode);
5077	spin_unlock(&ei->i_raw_lock);
5078	if (err) {
5079		EXT4_ERROR_INODE(inode, "corrupted inode contents");
 
 
5080		goto out_brelse;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5081	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5082
5083	if (inode->i_sb->s_flags & SB_LAZYTIME)
5084		ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5085					      bh->b_data);
 
 
 
 
5086
5087	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5088	err = ext4_handle_dirty_metadata(handle, NULL, bh);
5089	if (err)
5090		goto out_error;
5091	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5092	if (set_large_file) {
5093		BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5094		err = ext4_journal_get_write_access(handle, sb,
5095						    EXT4_SB(sb)->s_sbh,
5096						    EXT4_JTR_NONE);
5097		if (err)
5098			goto out_error;
5099		lock_buffer(EXT4_SB(sb)->s_sbh);
5100		ext4_set_feature_large_file(sb);
5101		ext4_superblock_csum_set(sb);
5102		unlock_buffer(EXT4_SB(sb)->s_sbh);
5103		ext4_handle_sync(handle);
5104		err = ext4_handle_dirty_metadata(handle, NULL,
5105						 EXT4_SB(sb)->s_sbh);
5106	}
5107	ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5108out_error:
5109	ext4_std_error(inode->i_sb, err);
5110out_brelse:
5111	brelse(bh);
 
5112	return err;
5113}
5114
5115/*
5116 * ext4_write_inode()
5117 *
5118 * We are called from a few places:
5119 *
5120 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5121 *   Here, there will be no transaction running. We wait for any running
5122 *   transaction to commit.
5123 *
5124 * - Within flush work (sys_sync(), kupdate and such).
5125 *   We wait on commit, if told to.
5126 *
5127 * - Within iput_final() -> write_inode_now()
5128 *   We wait on commit, if told to.
 
5129 *
5130 * In all cases it is actually safe for us to return without doing anything,
5131 * because the inode has been copied into a raw inode buffer in
5132 * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
5133 * writeback.
5134 *
5135 * Note that we are absolutely dependent upon all inode dirtiers doing the
5136 * right thing: they *must* call mark_inode_dirty() after dirtying info in
5137 * which we are interested.
5138 *
5139 * It would be a bug for them to not do this.  The code:
5140 *
5141 *	mark_inode_dirty(inode)
5142 *	stuff();
5143 *	inode->i_size = expr;
5144 *
5145 * is in error because write_inode() could occur while `stuff()' is running,
5146 * and the new i_size will be lost.  Plus the inode will no longer be on the
5147 * superblock's dirty inode list.
5148 */
5149int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5150{
5151	int err;
5152
5153	if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
5154		return 0;
5155
5156	if (unlikely(ext4_forced_shutdown(inode->i_sb)))
5157		return -EIO;
5158
5159	if (EXT4_SB(inode->i_sb)->s_journal) {
5160		if (ext4_journal_current_handle()) {
5161			ext4_debug("called recursively, non-PF_MEMALLOC!\n");
5162			dump_stack();
5163			return -EIO;
5164		}
5165
5166		/*
5167		 * No need to force transaction in WB_SYNC_NONE mode. Also
5168		 * ext4_sync_fs() will force the commit after everything is
5169		 * written.
5170		 */
5171		if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5172			return 0;
5173
5174		err = ext4_fc_commit(EXT4_SB(inode->i_sb)->s_journal,
5175						EXT4_I(inode)->i_sync_tid);
5176	} else {
5177		struct ext4_iloc iloc;
5178
5179		err = __ext4_get_inode_loc_noinmem(inode, &iloc);
5180		if (err)
5181			return err;
5182		/*
5183		 * sync(2) will flush the whole buffer cache. No need to do
5184		 * it here separately for each inode.
5185		 */
5186		if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5187			sync_dirty_buffer(iloc.bh);
5188		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5189			ext4_error_inode_block(inode, iloc.bh->b_blocknr, EIO,
5190					       "IO error syncing inode");
5191			err = -EIO;
5192		}
5193		brelse(iloc.bh);
5194	}
5195	return err;
5196}
5197
5198/*
5199 * In data=journal mode ext4_journalled_invalidate_folio() may fail to invalidate
5200 * buffers that are attached to a folio straddling i_size and are undergoing
5201 * commit. In that case we have to wait for commit to finish and try again.
5202 */
5203static void ext4_wait_for_tail_page_commit(struct inode *inode)
5204{
5205	unsigned offset;
5206	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5207	tid_t commit_tid = 0;
5208	int ret;
5209
5210	offset = inode->i_size & (PAGE_SIZE - 1);
5211	/*
5212	 * If the folio is fully truncated, we don't need to wait for any commit
5213	 * (and we even should not as __ext4_journalled_invalidate_folio() may
5214	 * strip all buffers from the folio but keep the folio dirty which can then
5215	 * confuse e.g. concurrent ext4_writepages() seeing dirty folio without
5216	 * buffers). Also we don't need to wait for any commit if all buffers in
5217	 * the folio remain valid. This is most beneficial for the common case of
5218	 * blocksize == PAGESIZE.
5219	 */
5220	if (!offset || offset > (PAGE_SIZE - i_blocksize(inode)))
5221		return;
5222	while (1) {
5223		struct folio *folio = filemap_lock_folio(inode->i_mapping,
5224				      inode->i_size >> PAGE_SHIFT);
5225		if (IS_ERR(folio))
5226			return;
5227		ret = __ext4_journalled_invalidate_folio(folio, offset,
5228						folio_size(folio) - offset);
5229		folio_unlock(folio);
5230		folio_put(folio);
5231		if (ret != -EBUSY)
5232			return;
5233		commit_tid = 0;
5234		read_lock(&journal->j_state_lock);
5235		if (journal->j_committing_transaction)
5236			commit_tid = journal->j_committing_transaction->t_tid;
5237		read_unlock(&journal->j_state_lock);
5238		if (commit_tid)
5239			jbd2_log_wait_commit(journal, commit_tid);
5240	}
5241}
5242
5243/*
5244 * ext4_setattr()
5245 *
5246 * Called from notify_change.
5247 *
5248 * We want to trap VFS attempts to truncate the file as soon as
5249 * possible.  In particular, we want to make sure that when the VFS
5250 * shrinks i_size, we put the inode on the orphan list and modify
5251 * i_disksize immediately, so that during the subsequent flushing of
5252 * dirty pages and freeing of disk blocks, we can guarantee that any
5253 * commit will leave the blocks being flushed in an unused state on
5254 * disk.  (On recovery, the inode will get truncated and the blocks will
5255 * be freed, so we have a strong guarantee that no future commit will
5256 * leave these blocks visible to the user.)
5257 *
5258 * Another thing we have to assure is that if we are in ordered mode
5259 * and inode is still attached to the committing transaction, we must
5260 * we start writeout of all the dirty pages which are being truncated.
5261 * This way we are sure that all the data written in the previous
5262 * transaction are already on disk (truncate waits for pages under
5263 * writeback).
5264 *
5265 * Called with inode->i_rwsem down.
5266 */
5267int ext4_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
5268		 struct iattr *attr)
5269{
5270	struct inode *inode = d_inode(dentry);
5271	int error, rc = 0;
5272	int orphan = 0;
5273	const unsigned int ia_valid = attr->ia_valid;
5274	bool inc_ivers = true;
5275
5276	if (unlikely(ext4_forced_shutdown(inode->i_sb)))
5277		return -EIO;
5278
5279	if (unlikely(IS_IMMUTABLE(inode)))
5280		return -EPERM;
5281
5282	if (unlikely(IS_APPEND(inode) &&
5283		     (ia_valid & (ATTR_MODE | ATTR_UID |
5284				  ATTR_GID | ATTR_TIMES_SET))))
5285		return -EPERM;
5286
5287	error = setattr_prepare(idmap, dentry, attr);
5288	if (error)
5289		return error;
5290
5291	error = fscrypt_prepare_setattr(dentry, attr);
5292	if (error)
5293		return error;
5294
5295	error = fsverity_prepare_setattr(dentry, attr);
5296	if (error)
5297		return error;
5298
5299	if (is_quota_modification(idmap, inode, attr)) {
5300		error = dquot_initialize(inode);
5301		if (error)
5302			return error;
5303	}
5304
5305	if (i_uid_needs_update(idmap, attr, inode) ||
5306	    i_gid_needs_update(idmap, attr, inode)) {
5307		handle_t *handle;
5308
5309		/* (user+group)*(old+new) structure, inode write (sb,
5310		 * inode block, ? - but truncate inode update has it) */
5311		handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5312			(EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5313			 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5314		if (IS_ERR(handle)) {
5315			error = PTR_ERR(handle);
5316			goto err_out;
5317		}
5318
5319		/* dquot_transfer() calls back ext4_get_inode_usage() which
5320		 * counts xattr inode references.
5321		 */
5322		down_read(&EXT4_I(inode)->xattr_sem);
5323		error = dquot_transfer(idmap, inode, attr);
5324		up_read(&EXT4_I(inode)->xattr_sem);
5325
5326		if (error) {
5327			ext4_journal_stop(handle);
5328			return error;
5329		}
5330		/* Update corresponding info in inode so that everything is in
5331		 * one transaction */
5332		i_uid_update(idmap, attr, inode);
5333		i_gid_update(idmap, attr, inode);
 
 
5334		error = ext4_mark_inode_dirty(handle, inode);
5335		ext4_journal_stop(handle);
5336		if (unlikely(error)) {
5337			return error;
5338		}
5339	}
5340
5341	if (attr->ia_valid & ATTR_SIZE) {
5342		handle_t *handle;
5343		loff_t oldsize = inode->i_size;
5344		loff_t old_disksize;
5345		int shrink = (attr->ia_size < inode->i_size);
5346
5347		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5348			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5349
5350			if (attr->ia_size > sbi->s_bitmap_maxbytes) {
5351				return -EFBIG;
5352			}
5353		}
5354		if (!S_ISREG(inode->i_mode)) {
5355			return -EINVAL;
5356		}
 
5357
5358		if (attr->ia_size == inode->i_size)
5359			inc_ivers = false;
 
 
5360
5361		if (shrink) {
5362			if (ext4_should_order_data(inode)) {
5363				error = ext4_begin_ordered_truncate(inode,
5364							    attr->ia_size);
5365				if (error)
5366					goto err_out;
5367			}
5368			/*
5369			 * Blocks are going to be removed from the inode. Wait
5370			 * for dio in flight.
5371			 */
5372			inode_dio_wait(inode);
5373		}
5374
5375		filemap_invalidate_lock(inode->i_mapping);
5376
5377		rc = ext4_break_layouts(inode);
5378		if (rc) {
5379			filemap_invalidate_unlock(inode->i_mapping);
5380			goto err_out;
5381		}
 
 
 
 
 
 
 
 
 
5382
5383		if (attr->ia_size != inode->i_size) {
5384			handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5385			if (IS_ERR(handle)) {
5386				error = PTR_ERR(handle);
5387				goto out_mmap_sem;
5388			}
5389			if (ext4_handle_valid(handle) && shrink) {
5390				error = ext4_orphan_add(handle, inode);
5391				orphan = 1;
5392			}
5393			/*
5394			 * Update c/mtime on truncate up, ext4_truncate() will
5395			 * update c/mtime in shrink case below
5396			 */
5397			if (!shrink)
5398				inode_set_mtime_to_ts(inode,
5399						      inode_set_ctime_current(inode));
5400
5401			if (shrink)
5402				ext4_fc_track_range(handle, inode,
5403					(attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5404					inode->i_sb->s_blocksize_bits,
5405					EXT_MAX_BLOCKS - 1);
5406			else
5407				ext4_fc_track_range(
5408					handle, inode,
5409					(oldsize > 0 ? oldsize - 1 : oldsize) >>
5410					inode->i_sb->s_blocksize_bits,
5411					(attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5412					inode->i_sb->s_blocksize_bits);
5413
5414			down_write(&EXT4_I(inode)->i_data_sem);
5415			old_disksize = EXT4_I(inode)->i_disksize;
5416			EXT4_I(inode)->i_disksize = attr->ia_size;
5417			rc = ext4_mark_inode_dirty(handle, inode);
5418			if (!error)
5419				error = rc;
5420			/*
5421			 * We have to update i_size under i_data_sem together
5422			 * with i_disksize to avoid races with writeback code
5423			 * running ext4_wb_update_i_disksize().
5424			 */
5425			if (!error)
5426				i_size_write(inode, attr->ia_size);
5427			else
5428				EXT4_I(inode)->i_disksize = old_disksize;
5429			up_write(&EXT4_I(inode)->i_data_sem);
5430			ext4_journal_stop(handle);
5431			if (error)
5432				goto out_mmap_sem;
5433			if (!shrink) {
5434				pagecache_isize_extended(inode, oldsize,
5435							 inode->i_size);
5436			} else if (ext4_should_journal_data(inode)) {
5437				ext4_wait_for_tail_page_commit(inode);
5438			}
5439		}
 
5440
5441		/*
5442		 * Truncate pagecache after we've waited for commit
5443		 * in data=journal mode to make pages freeable.
5444		 */
5445		truncate_pagecache(inode, inode->i_size);
5446		/*
5447		 * Call ext4_truncate() even if i_size didn't change to
5448		 * truncate possible preallocated blocks.
5449		 */
5450		if (attr->ia_size <= oldsize) {
5451			rc = ext4_truncate(inode);
5452			if (rc)
5453				error = rc;
5454		}
5455out_mmap_sem:
5456		filemap_invalidate_unlock(inode->i_mapping);
5457	}
5458
5459	if (!error) {
5460		if (inc_ivers)
5461			inode_inc_iversion(inode);
5462		setattr_copy(idmap, inode, attr);
5463		mark_inode_dirty(inode);
5464	}
5465
5466	/*
5467	 * If the call to ext4_truncate failed to get a transaction handle at
5468	 * all, we need to clean up the in-core orphan list manually.
5469	 */
5470	if (orphan && inode->i_nlink)
5471		ext4_orphan_del(NULL, inode);
5472
5473	if (!error && (ia_valid & ATTR_MODE))
5474		rc = posix_acl_chmod(idmap, dentry, inode->i_mode);
5475
5476err_out:
5477	if  (error)
5478		ext4_std_error(inode->i_sb, error);
5479	if (!error)
5480		error = rc;
5481	return error;
5482}
5483
5484u32 ext4_dio_alignment(struct inode *inode)
 
5485{
5486	if (fsverity_active(inode))
5487		return 0;
5488	if (ext4_should_journal_data(inode))
5489		return 0;
5490	if (ext4_has_inline_data(inode))
5491		return 0;
5492	if (IS_ENCRYPTED(inode)) {
5493		if (!fscrypt_dio_supported(inode))
5494			return 0;
5495		return i_blocksize(inode);
5496	}
5497	return 1; /* use the iomap defaults */
5498}
5499
5500int ext4_getattr(struct mnt_idmap *idmap, const struct path *path,
5501		 struct kstat *stat, u32 request_mask, unsigned int query_flags)
5502{
5503	struct inode *inode = d_inode(path->dentry);
5504	struct ext4_inode *raw_inode;
5505	struct ext4_inode_info *ei = EXT4_I(inode);
5506	unsigned int flags;
5507
5508	if ((request_mask & STATX_BTIME) &&
5509	    EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5510		stat->result_mask |= STATX_BTIME;
5511		stat->btime.tv_sec = ei->i_crtime.tv_sec;
5512		stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5513	}
5514
5515	/*
5516	 * Return the DIO alignment restrictions if requested.  We only return
5517	 * this information when requested, since on encrypted files it might
5518	 * take a fair bit of work to get if the file wasn't opened recently.
5519	 */
5520	if ((request_mask & STATX_DIOALIGN) && S_ISREG(inode->i_mode)) {
5521		u32 dio_align = ext4_dio_alignment(inode);
5522
5523		stat->result_mask |= STATX_DIOALIGN;
5524		if (dio_align == 1) {
5525			struct block_device *bdev = inode->i_sb->s_bdev;
5526
5527			/* iomap defaults */
5528			stat->dio_mem_align = bdev_dma_alignment(bdev) + 1;
5529			stat->dio_offset_align = bdev_logical_block_size(bdev);
5530		} else {
5531			stat->dio_mem_align = dio_align;
5532			stat->dio_offset_align = dio_align;
5533		}
5534	}
5535
5536	flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5537	if (flags & EXT4_APPEND_FL)
5538		stat->attributes |= STATX_ATTR_APPEND;
5539	if (flags & EXT4_COMPR_FL)
5540		stat->attributes |= STATX_ATTR_COMPRESSED;
5541	if (flags & EXT4_ENCRYPT_FL)
5542		stat->attributes |= STATX_ATTR_ENCRYPTED;
5543	if (flags & EXT4_IMMUTABLE_FL)
5544		stat->attributes |= STATX_ATTR_IMMUTABLE;
5545	if (flags & EXT4_NODUMP_FL)
5546		stat->attributes |= STATX_ATTR_NODUMP;
5547	if (flags & EXT4_VERITY_FL)
5548		stat->attributes |= STATX_ATTR_VERITY;
5549
5550	stat->attributes_mask |= (STATX_ATTR_APPEND |
5551				  STATX_ATTR_COMPRESSED |
5552				  STATX_ATTR_ENCRYPTED |
5553				  STATX_ATTR_IMMUTABLE |
5554				  STATX_ATTR_NODUMP |
5555				  STATX_ATTR_VERITY);
5556
5557	generic_fillattr(idmap, request_mask, inode, stat);
5558	return 0;
5559}
5560
5561int ext4_file_getattr(struct mnt_idmap *idmap,
5562		      const struct path *path, struct kstat *stat,
5563		      u32 request_mask, unsigned int query_flags)
5564{
5565	struct inode *inode = d_inode(path->dentry);
5566	u64 delalloc_blocks;
5567
5568	ext4_getattr(idmap, path, stat, request_mask, query_flags);
5569
5570	/*
5571	 * If there is inline data in the inode, the inode will normally not
5572	 * have data blocks allocated (it may have an external xattr block).
5573	 * Report at least one sector for such files, so tools like tar, rsync,
5574	 * others don't incorrectly think the file is completely sparse.
5575	 */
5576	if (unlikely(ext4_has_inline_data(inode)))
5577		stat->blocks += (stat->size + 511) >> 9;
5578
5579	/*
5580	 * We can't update i_blocks if the block allocation is delayed
5581	 * otherwise in the case of system crash before the real block
5582	 * allocation is done, we will have i_blocks inconsistent with
5583	 * on-disk file blocks.
5584	 * We always keep i_blocks updated together with real
5585	 * allocation. But to not confuse with user, stat
5586	 * will return the blocks that include the delayed allocation
5587	 * blocks for this file.
5588	 */
5589	delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5590				   EXT4_I(inode)->i_reserved_data_blocks);
5591	stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5592	return 0;
5593}
5594
5595static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5596				   int pextents)
5597{
5598	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5599		return ext4_ind_trans_blocks(inode, lblocks);
5600	return ext4_ext_index_trans_blocks(inode, pextents);
5601}
5602
5603/*
5604 * Account for index blocks, block groups bitmaps and block group
5605 * descriptor blocks if modify datablocks and index blocks
5606 * worse case, the indexs blocks spread over different block groups
5607 *
5608 * If datablocks are discontiguous, they are possible to spread over
5609 * different block groups too. If they are contiguous, with flexbg,
5610 * they could still across block group boundary.
5611 *
5612 * Also account for superblock, inode, quota and xattr blocks
5613 */
5614static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5615				  int pextents)
5616{
5617	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5618	int gdpblocks;
5619	int idxblocks;
5620	int ret;
5621
5622	/*
5623	 * How many index blocks need to touch to map @lblocks logical blocks
5624	 * to @pextents physical extents?
 
 
 
 
5625	 */
5626	idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5627
5628	ret = idxblocks;
5629
5630	/*
5631	 * Now let's see how many group bitmaps and group descriptors need
5632	 * to account
5633	 */
5634	groups = idxblocks + pextents;
 
 
 
 
 
5635	gdpblocks = groups;
5636	if (groups > ngroups)
5637		groups = ngroups;
5638	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5639		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5640
5641	/* bitmaps and block group descriptor blocks */
5642	ret += groups + gdpblocks;
5643
5644	/* Blocks for super block, inode, quota and xattr blocks */
5645	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5646
5647	return ret;
5648}
5649
5650/*
5651 * Calculate the total number of credits to reserve to fit
5652 * the modification of a single pages into a single transaction,
5653 * which may include multiple chunks of block allocations.
5654 *
5655 * This could be called via ext4_write_begin()
5656 *
5657 * We need to consider the worse case, when
5658 * one new block per extent.
5659 */
5660int ext4_writepage_trans_blocks(struct inode *inode)
5661{
5662	int bpp = ext4_journal_blocks_per_page(inode);
5663	int ret;
5664
5665	ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5666
5667	/* Account for data blocks for journalled mode */
5668	if (ext4_should_journal_data(inode))
5669		ret += bpp;
5670	return ret;
5671}
5672
5673/*
5674 * Calculate the journal credits for a chunk of data modification.
5675 *
5676 * This is called from DIO, fallocate or whoever calling
5677 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5678 *
5679 * journal buffers for data blocks are not included here, as DIO
5680 * and fallocate do no need to journal data buffers.
5681 */
5682int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5683{
5684	return ext4_meta_trans_blocks(inode, nrblocks, 1);
5685}
5686
5687/*
5688 * The caller must have previously called ext4_reserve_inode_write().
5689 * Give this, we know that the caller already has write access to iloc->bh.
5690 */
5691int ext4_mark_iloc_dirty(handle_t *handle,
5692			 struct inode *inode, struct ext4_iloc *iloc)
5693{
5694	int err = 0;
5695
5696	if (unlikely(ext4_forced_shutdown(inode->i_sb))) {
5697		put_bh(iloc->bh);
5698		return -EIO;
5699	}
5700	ext4_fc_track_inode(handle, inode);
5701
5702	/* the do_update_inode consumes one bh->b_count */
5703	get_bh(iloc->bh);
5704
5705	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5706	err = ext4_do_update_inode(handle, inode, iloc);
5707	put_bh(iloc->bh);
5708	return err;
5709}
5710
5711/*
5712 * On success, We end up with an outstanding reference count against
5713 * iloc->bh.  This _must_ be cleaned up later.
5714 */
5715
5716int
5717ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5718			 struct ext4_iloc *iloc)
5719{
5720	int err;
5721
5722	if (unlikely(ext4_forced_shutdown(inode->i_sb)))
5723		return -EIO;
5724
5725	err = ext4_get_inode_loc(inode, iloc);
5726	if (!err) {
5727		BUFFER_TRACE(iloc->bh, "get_write_access");
5728		err = ext4_journal_get_write_access(handle, inode->i_sb,
5729						    iloc->bh, EXT4_JTR_NONE);
5730		if (err) {
5731			brelse(iloc->bh);
5732			iloc->bh = NULL;
5733		}
5734	}
5735	ext4_std_error(inode->i_sb, err);
5736	return err;
5737}
5738
5739static int __ext4_expand_extra_isize(struct inode *inode,
5740				     unsigned int new_extra_isize,
5741				     struct ext4_iloc *iloc,
5742				     handle_t *handle, int *no_expand)
 
 
 
 
5743{
5744	struct ext4_inode *raw_inode;
5745	struct ext4_xattr_ibody_header *header;
5746	unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb);
5747	struct ext4_inode_info *ei = EXT4_I(inode);
5748	int error;
5749
5750	/* this was checked at iget time, but double check for good measure */
5751	if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) ||
5752	    (ei->i_extra_isize & 3)) {
5753		EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)",
5754				 ei->i_extra_isize,
5755				 EXT4_INODE_SIZE(inode->i_sb));
5756		return -EFSCORRUPTED;
5757	}
5758	if ((new_extra_isize < ei->i_extra_isize) ||
5759	    (new_extra_isize < 4) ||
5760	    (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE))
5761		return -EINVAL;	/* Should never happen */
5762
5763	raw_inode = ext4_raw_inode(iloc);
5764
5765	header = IHDR(inode, raw_inode);
5766
5767	/* No extended attributes present */
5768	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5769	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5770		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5771		       EXT4_I(inode)->i_extra_isize, 0,
5772		       new_extra_isize - EXT4_I(inode)->i_extra_isize);
5773		EXT4_I(inode)->i_extra_isize = new_extra_isize;
5774		return 0;
5775	}
5776
5777	/*
5778	 * We may need to allocate external xattr block so we need quotas
5779	 * initialized. Here we can be called with various locks held so we
5780	 * cannot affort to initialize quotas ourselves. So just bail.
5781	 */
5782	if (dquot_initialize_needed(inode))
5783		return -EAGAIN;
5784
5785	/* try to expand with EAs present */
5786	error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
5787					   raw_inode, handle);
5788	if (error) {
5789		/*
5790		 * Inode size expansion failed; don't try again
5791		 */
5792		*no_expand = 1;
5793	}
5794
5795	return error;
5796}
5797
5798/*
5799 * Expand an inode by new_extra_isize bytes.
5800 * Returns 0 on success or negative error number on failure.
5801 */
5802static int ext4_try_to_expand_extra_isize(struct inode *inode,
5803					  unsigned int new_extra_isize,
5804					  struct ext4_iloc iloc,
5805					  handle_t *handle)
5806{
5807	int no_expand;
5808	int error;
5809
5810	if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
5811		return -EOVERFLOW;
5812
5813	/*
5814	 * In nojournal mode, we can immediately attempt to expand
5815	 * the inode.  When journaled, we first need to obtain extra
5816	 * buffer credits since we may write into the EA block
5817	 * with this same handle. If journal_extend fails, then it will
5818	 * only result in a minor loss of functionality for that inode.
5819	 * If this is felt to be critical, then e2fsck should be run to
5820	 * force a large enough s_min_extra_isize.
5821	 */
5822	if (ext4_journal_extend(handle,
5823				EXT4_DATA_TRANS_BLOCKS(inode->i_sb), 0) != 0)
5824		return -ENOSPC;
5825
5826	if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
5827		return -EBUSY;
5828
5829	error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
5830					  handle, &no_expand);
5831	ext4_write_unlock_xattr(inode, &no_expand);
5832
5833	return error;
5834}
5835
5836int ext4_expand_extra_isize(struct inode *inode,
5837			    unsigned int new_extra_isize,
5838			    struct ext4_iloc *iloc)
5839{
5840	handle_t *handle;
5841	int no_expand;
5842	int error, rc;
5843
5844	if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5845		brelse(iloc->bh);
5846		return -EOVERFLOW;
5847	}
5848
5849	handle = ext4_journal_start(inode, EXT4_HT_INODE,
5850				    EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
5851	if (IS_ERR(handle)) {
5852		error = PTR_ERR(handle);
5853		brelse(iloc->bh);
5854		return error;
5855	}
5856
5857	ext4_write_lock_xattr(inode, &no_expand);
5858
5859	BUFFER_TRACE(iloc->bh, "get_write_access");
5860	error = ext4_journal_get_write_access(handle, inode->i_sb, iloc->bh,
5861					      EXT4_JTR_NONE);
5862	if (error) {
5863		brelse(iloc->bh);
5864		goto out_unlock;
5865	}
5866
5867	error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
5868					  handle, &no_expand);
5869
5870	rc = ext4_mark_iloc_dirty(handle, inode, iloc);
5871	if (!error)
5872		error = rc;
5873
5874out_unlock:
5875	ext4_write_unlock_xattr(inode, &no_expand);
5876	ext4_journal_stop(handle);
5877	return error;
5878}
5879
5880/*
5881 * What we do here is to mark the in-core inode as clean with respect to inode
5882 * dirtiness (it may still be data-dirty).
5883 * This means that the in-core inode may be reaped by prune_icache
5884 * without having to perform any I/O.  This is a very good thing,
5885 * because *any* task may call prune_icache - even ones which
5886 * have a transaction open against a different journal.
5887 *
5888 * Is this cheating?  Not really.  Sure, we haven't written the
5889 * inode out, but prune_icache isn't a user-visible syncing function.
5890 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5891 * we start and wait on commits.
 
 
 
 
 
 
 
 
5892 */
5893int __ext4_mark_inode_dirty(handle_t *handle, struct inode *inode,
5894				const char *func, unsigned int line)
5895{
5896	struct ext4_iloc iloc;
5897	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5898	int err;
 
5899
5900	might_sleep();
5901	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5902	err = ext4_reserve_inode_write(handle, inode, &iloc);
5903	if (err)
5904		goto out;
5905
5906	if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
5907		ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
5908					       iloc, handle);
5909
5910	err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5911out:
5912	if (unlikely(err))
5913		ext4_error_inode_err(inode, func, line, 0, err,
5914					"mark_inode_dirty error");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5915	return err;
5916}
5917
5918/*
5919 * ext4_dirty_inode() is called from __mark_inode_dirty()
5920 *
5921 * We're really interested in the case where a file is being extended.
5922 * i_size has been changed by generic_commit_write() and we thus need
5923 * to include the updated inode in the current transaction.
5924 *
5925 * Also, dquot_alloc_block() will always dirty the inode when blocks
5926 * are allocated to the file.
5927 *
5928 * If the inode is marked synchronous, we don't honour that here - doing
5929 * so would cause a commit on atime updates, which we don't bother doing.
5930 * We handle synchronous inodes at the highest possible level.
5931 */
5932void ext4_dirty_inode(struct inode *inode, int flags)
5933{
5934	handle_t *handle;
5935
5936	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5937	if (IS_ERR(handle))
5938		return;
 
5939	ext4_mark_inode_dirty(handle, inode);
 
5940	ext4_journal_stop(handle);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5941}
 
5942
5943int ext4_change_inode_journal_flag(struct inode *inode, int val)
5944{
5945	journal_t *journal;
5946	handle_t *handle;
5947	int err;
5948	int alloc_ctx;
5949
5950	/*
5951	 * We have to be very careful here: changing a data block's
5952	 * journaling status dynamically is dangerous.  If we write a
5953	 * data block to the journal, change the status and then delete
5954	 * that block, we risk forgetting to revoke the old log record
5955	 * from the journal and so a subsequent replay can corrupt data.
5956	 * So, first we make sure that the journal is empty and that
5957	 * nobody is changing anything.
5958	 */
5959
5960	journal = EXT4_JOURNAL(inode);
5961	if (!journal)
5962		return 0;
5963	if (is_journal_aborted(journal))
5964		return -EROFS;
5965
5966	/* Wait for all existing dio workers */
5967	inode_dio_wait(inode);
5968
5969	/*
5970	 * Before flushing the journal and switching inode's aops, we have
5971	 * to flush all dirty data the inode has. There can be outstanding
5972	 * delayed allocations, there can be unwritten extents created by
5973	 * fallocate or buffered writes in dioread_nolock mode covered by
5974	 * dirty data which can be converted only after flushing the dirty
5975	 * data (and journalled aops don't know how to handle these cases).
5976	 */
5977	if (val) {
5978		filemap_invalidate_lock(inode->i_mapping);
5979		err = filemap_write_and_wait(inode->i_mapping);
5980		if (err < 0) {
5981			filemap_invalidate_unlock(inode->i_mapping);
5982			return err;
5983		}
5984	}
5985
5986	alloc_ctx = ext4_writepages_down_write(inode->i_sb);
5987	jbd2_journal_lock_updates(journal);
 
5988
5989	/*
5990	 * OK, there are no updates running now, and all cached data is
5991	 * synced to disk.  We are now in a completely consistent state
5992	 * which doesn't have anything in the journal, and we know that
5993	 * no filesystem updates are running, so it is safe to modify
5994	 * the inode's in-core data-journaling state flag now.
5995	 */
5996
5997	if (val)
5998		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5999	else {
6000		err = jbd2_journal_flush(journal, 0);
6001		if (err < 0) {
6002			jbd2_journal_unlock_updates(journal);
6003			ext4_writepages_up_write(inode->i_sb, alloc_ctx);
6004			return err;
6005		}
6006		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6007	}
6008	ext4_set_aops(inode);
6009
6010	jbd2_journal_unlock_updates(journal);
6011	ext4_writepages_up_write(inode->i_sb, alloc_ctx);
6012
6013	if (val)
6014		filemap_invalidate_unlock(inode->i_mapping);
6015
6016	/* Finally we can mark the inode as dirty. */
6017
6018	handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
6019	if (IS_ERR(handle))
6020		return PTR_ERR(handle);
6021
6022	ext4_fc_mark_ineligible(inode->i_sb,
6023		EXT4_FC_REASON_JOURNAL_FLAG_CHANGE, handle);
6024	err = ext4_mark_inode_dirty(handle, inode);
6025	ext4_handle_sync(handle);
6026	ext4_journal_stop(handle);
6027	ext4_std_error(inode->i_sb, err);
6028
6029	return err;
6030}
6031
6032static int ext4_bh_unmapped(handle_t *handle, struct inode *inode,
6033			    struct buffer_head *bh)
6034{
6035	return !buffer_mapped(bh);
6036}
6037
6038vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf)
6039{
6040	struct vm_area_struct *vma = vmf->vma;
6041	struct folio *folio = page_folio(vmf->page);
6042	loff_t size;
6043	unsigned long len;
6044	int err;
6045	vm_fault_t ret;
6046	struct file *file = vma->vm_file;
6047	struct inode *inode = file_inode(file);
6048	struct address_space *mapping = inode->i_mapping;
6049	handle_t *handle;
6050	get_block_t *get_block;
6051	int retries = 0;
6052
6053	if (unlikely(IS_IMMUTABLE(inode)))
6054		return VM_FAULT_SIGBUS;
6055
6056	sb_start_pagefault(inode->i_sb);
6057	file_update_time(vma->vm_file);
6058
6059	filemap_invalidate_lock_shared(mapping);
6060
6061	err = ext4_convert_inline_data(inode);
6062	if (err)
6063		goto out_ret;
6064
6065	/*
6066	 * On data journalling we skip straight to the transaction handle:
6067	 * there's no delalloc; page truncated will be checked later; the
6068	 * early return w/ all buffers mapped (calculates size/len) can't
6069	 * be used; and there's no dioread_nolock, so only ext4_get_block.
6070	 */
6071	if (ext4_should_journal_data(inode))
6072		goto retry_alloc;
6073
6074	/* Delalloc case is easy... */
6075	if (test_opt(inode->i_sb, DELALLOC) &&
 
6076	    !ext4_nonda_switch(inode->i_sb)) {
6077		do {
6078			err = block_page_mkwrite(vma, vmf,
6079						   ext4_da_get_block_prep);
6080		} while (err == -ENOSPC &&
6081		       ext4_should_retry_alloc(inode->i_sb, &retries));
6082		goto out_ret;
6083	}
6084
6085	folio_lock(folio);
6086	size = i_size_read(inode);
6087	/* Page got truncated from under us? */
6088	if (folio->mapping != mapping || folio_pos(folio) > size) {
6089		folio_unlock(folio);
6090		ret = VM_FAULT_NOPAGE;
6091		goto out;
6092	}
6093
6094	len = folio_size(folio);
6095	if (folio_pos(folio) + len > size)
6096		len = size - folio_pos(folio);
 
6097	/*
6098	 * Return if we have all the buffers mapped. This avoids the need to do
6099	 * journal_start/journal_stop which can block and take a long time
6100	 *
6101	 * This cannot be done for data journalling, as we have to add the
6102	 * inode to the transaction's list to writeprotect pages on commit.
6103	 */
6104	if (folio_buffers(folio)) {
6105		if (!ext4_walk_page_buffers(NULL, inode, folio_buffers(folio),
6106					    0, len, NULL,
6107					    ext4_bh_unmapped)) {
6108			/* Wait so that we don't change page under IO */
6109			folio_wait_stable(folio);
6110			ret = VM_FAULT_LOCKED;
6111			goto out;
6112		}
6113	}
6114	folio_unlock(folio);
6115	/* OK, we need to fill the hole... */
6116	if (ext4_should_dioread_nolock(inode))
6117		get_block = ext4_get_block_unwritten;
6118	else
6119		get_block = ext4_get_block;
6120retry_alloc:
6121	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
6122				    ext4_writepage_trans_blocks(inode));
6123	if (IS_ERR(handle)) {
6124		ret = VM_FAULT_SIGBUS;
6125		goto out;
6126	}
6127	/*
6128	 * Data journalling can't use block_page_mkwrite() because it
6129	 * will set_buffer_dirty() before do_journal_get_write_access()
6130	 * thus might hit warning messages for dirty metadata buffers.
6131	 */
6132	if (!ext4_should_journal_data(inode)) {
6133		err = block_page_mkwrite(vma, vmf, get_block);
6134	} else {
6135		folio_lock(folio);
6136		size = i_size_read(inode);
6137		/* Page got truncated from under us? */
6138		if (folio->mapping != mapping || folio_pos(folio) > size) {
6139			ret = VM_FAULT_NOPAGE;
6140			goto out_error;
6141		}
6142
6143		len = folio_size(folio);
6144		if (folio_pos(folio) + len > size)
6145			len = size - folio_pos(folio);
6146
6147		err = __block_write_begin(&folio->page, 0, len, ext4_get_block);
6148		if (!err) {
6149			ret = VM_FAULT_SIGBUS;
6150			if (ext4_journal_folio_buffers(handle, folio, len))
6151				goto out_error;
6152		} else {
6153			folio_unlock(folio);
6154		}
 
6155	}
6156	ext4_journal_stop(handle);
6157	if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
6158		goto retry_alloc;
6159out_ret:
6160	ret = vmf_fs_error(err);
6161out:
6162	filemap_invalidate_unlock_shared(mapping);
6163	sb_end_pagefault(inode->i_sb);
6164	return ret;
6165out_error:
6166	folio_unlock(folio);
6167	ext4_journal_stop(handle);
6168	goto out;
6169}