Linux Audio

Check our new training course

Loading...
v3.1
 
   1/*
   2 *  linux/fs/ext4/inode.c
   3 *
   4 * Copyright (C) 1992, 1993, 1994, 1995
   5 * Remy Card (card@masi.ibp.fr)
   6 * Laboratoire MASI - Institut Blaise Pascal
   7 * Universite Pierre et Marie Curie (Paris VI)
   8 *
   9 *  from
  10 *
  11 *  linux/fs/minix/inode.c
  12 *
  13 *  Copyright (C) 1991, 1992  Linus Torvalds
  14 *
  15 *  64-bit file support on 64-bit platforms by Jakub Jelinek
  16 *	(jj@sunsite.ms.mff.cuni.cz)
  17 *
  18 *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
  19 */
  20
  21#include <linux/module.h>
  22#include <linux/fs.h>
  23#include <linux/time.h>
  24#include <linux/jbd2.h>
  25#include <linux/highuid.h>
  26#include <linux/pagemap.h>
 
  27#include <linux/quotaops.h>
  28#include <linux/string.h>
  29#include <linux/buffer_head.h>
  30#include <linux/writeback.h>
  31#include <linux/pagevec.h>
  32#include <linux/mpage.h>
  33#include <linux/namei.h>
  34#include <linux/uio.h>
  35#include <linux/bio.h>
  36#include <linux/workqueue.h>
  37#include <linux/kernel.h>
  38#include <linux/printk.h>
  39#include <linux/slab.h>
  40#include <linux/ratelimit.h>
 
 
  41
  42#include "ext4_jbd2.h"
  43#include "xattr.h"
  44#include "acl.h"
  45#include "ext4_extents.h"
  46#include "truncate.h"
  47
  48#include <trace/events/ext4.h>
  49
  50#define MPAGE_DA_EXTENT_TAIL 0x01
  51
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  52static inline int ext4_begin_ordered_truncate(struct inode *inode,
  53					      loff_t new_size)
  54{
  55	trace_ext4_begin_ordered_truncate(inode, new_size);
  56	/*
  57	 * If jinode is zero, then we never opened the file for
  58	 * writing, so there's no need to call
  59	 * jbd2_journal_begin_ordered_truncate() since there's no
  60	 * outstanding writes we need to flush.
  61	 */
  62	if (!EXT4_I(inode)->jinode)
  63		return 0;
  64	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
  65						   EXT4_I(inode)->jinode,
  66						   new_size);
  67}
  68
  69static void ext4_invalidatepage(struct page *page, unsigned long offset);
  70static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
  71				   struct buffer_head *bh_result, int create);
  72static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
  73static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
  74static int __ext4_journalled_writepage(struct page *page, unsigned int len);
  75static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
 
 
  76
  77/*
  78 * Test whether an inode is a fast symlink.
 
  79 */
  80static int ext4_inode_is_fast_symlink(struct inode *inode)
  81{
  82	int ea_blocks = EXT4_I(inode)->i_file_acl ?
  83		(inode->i_sb->s_blocksize >> 9) : 0;
 
  84
  85	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
 
 
 
 
 
 
  86}
  87
  88/*
  89 * Restart the transaction associated with *handle.  This does a commit,
  90 * so before we call here everything must be consistently dirtied against
  91 * this transaction.
  92 */
  93int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
  94				 int nblocks)
  95{
  96	int ret;
  97
  98	/*
  99	 * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
 100	 * moment, get_block can be called only for blocks inside i_size since
 101	 * page cache has been already dropped and writes are blocked by
 102	 * i_mutex. So we can safely drop the i_data_sem here.
 103	 */
 104	BUG_ON(EXT4_JOURNAL(inode) == NULL);
 105	jbd_debug(2, "restarting handle %p\n", handle);
 106	up_write(&EXT4_I(inode)->i_data_sem);
 107	ret = ext4_journal_restart(handle, nblocks);
 108	down_write(&EXT4_I(inode)->i_data_sem);
 109	ext4_discard_preallocations(inode);
 110
 111	return ret;
 112}
 113
 114/*
 115 * Called at the last iput() if i_nlink is zero.
 116 */
 117void ext4_evict_inode(struct inode *inode)
 118{
 119	handle_t *handle;
 120	int err;
 
 
 121
 122	trace_ext4_evict_inode(inode);
 123
 124	ext4_ioend_wait(inode);
 125
 126	if (inode->i_nlink) {
 127		/*
 128		 * When journalling data dirty buffers are tracked only in the
 129		 * journal. So although mm thinks everything is clean and
 130		 * ready for reaping the inode might still have some pages to
 131		 * write in the running transaction or waiting to be
 132		 * checkpointed. Thus calling jbd2_journal_invalidatepage()
 133		 * (via truncate_inode_pages()) to discard these buffers can
 134		 * cause data loss. Also even if we did not discard these
 135		 * buffers, we would have no way to find them after the inode
 136		 * is reaped and thus user could see stale data if he tries to
 137		 * read them before the transaction is checkpointed. So be
 138		 * careful and force everything to disk here... We use
 139		 * ei->i_datasync_tid to store the newest transaction
 140		 * containing inode's data.
 141		 *
 142		 * Note that directories do not have this problem because they
 143		 * don't use page cache.
 144		 */
 145		if (ext4_should_journal_data(inode) &&
 146		    (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
 
 
 147			journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
 148			tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
 149
 150			jbd2_log_start_commit(journal, commit_tid);
 151			jbd2_log_wait_commit(journal, commit_tid);
 152			filemap_write_and_wait(&inode->i_data);
 153		}
 154		truncate_inode_pages(&inode->i_data, 0);
 
 155		goto no_delete;
 156	}
 157
 158	if (!is_bad_inode(inode))
 159		dquot_initialize(inode);
 
 160
 161	if (ext4_should_order_data(inode))
 162		ext4_begin_ordered_truncate(inode, 0);
 163	truncate_inode_pages(&inode->i_data, 0);
 164
 165	if (is_bad_inode(inode))
 166		goto no_delete;
 
 
 
 
 
 
 167
 168	handle = ext4_journal_start(inode, ext4_blocks_for_truncate(inode)+3);
 
 169	if (IS_ERR(handle)) {
 170		ext4_std_error(inode->i_sb, PTR_ERR(handle));
 171		/*
 172		 * If we're going to skip the normal cleanup, we still need to
 173		 * make sure that the in-core orphan linked list is properly
 174		 * cleaned up.
 175		 */
 176		ext4_orphan_del(NULL, inode);
 
 177		goto no_delete;
 178	}
 179
 180	if (IS_SYNC(inode))
 181		ext4_handle_sync(handle);
 
 
 
 
 
 
 
 
 
 
 182	inode->i_size = 0;
 183	err = ext4_mark_inode_dirty(handle, inode);
 184	if (err) {
 185		ext4_warning(inode->i_sb,
 186			     "couldn't mark inode dirty (err %d)", err);
 187		goto stop_handle;
 188	}
 189	if (inode->i_blocks)
 190		ext4_truncate(inode);
 191
 192	/*
 193	 * ext4_ext_truncate() doesn't reserve any slop when it
 194	 * restarts journal transactions; therefore there may not be
 195	 * enough credits left in the handle to remove the inode from
 196	 * the orphan list and set the dtime field.
 197	 */
 198	if (!ext4_handle_has_enough_credits(handle, 3)) {
 199		err = ext4_journal_extend(handle, 3);
 200		if (err > 0)
 201			err = ext4_journal_restart(handle, 3);
 202		if (err != 0) {
 203			ext4_warning(inode->i_sb,
 204				     "couldn't extend journal (err %d)", err);
 205		stop_handle:
 206			ext4_journal_stop(handle);
 207			ext4_orphan_del(NULL, inode);
 208			goto no_delete;
 209		}
 210	}
 211
 
 
 
 
 
 
 
 
 
 
 
 
 
 212	/*
 213	 * Kill off the orphan record which ext4_truncate created.
 214	 * AKPM: I think this can be inside the above `if'.
 215	 * Note that ext4_orphan_del() has to be able to cope with the
 216	 * deletion of a non-existent orphan - this is because we don't
 217	 * know if ext4_truncate() actually created an orphan record.
 218	 * (Well, we could do this if we need to, but heck - it works)
 219	 */
 220	ext4_orphan_del(handle, inode);
 221	EXT4_I(inode)->i_dtime	= get_seconds();
 222
 223	/*
 224	 * One subtle ordering requirement: if anything has gone wrong
 225	 * (transaction abort, IO errors, whatever), then we can still
 226	 * do these next steps (the fs will already have been marked as
 227	 * having errors), but we can't free the inode if the mark_dirty
 228	 * fails.
 229	 */
 230	if (ext4_mark_inode_dirty(handle, inode))
 231		/* If that failed, just do the required in-core inode clear. */
 232		ext4_clear_inode(inode);
 233	else
 234		ext4_free_inode(handle, inode);
 235	ext4_journal_stop(handle);
 
 
 236	return;
 237no_delete:
 238	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
 239}
 240
 241#ifdef CONFIG_QUOTA
 242qsize_t *ext4_get_reserved_space(struct inode *inode)
 243{
 244	return &EXT4_I(inode)->i_reserved_quota;
 245}
 246#endif
 247
 248/*
 249 * Calculate the number of metadata blocks need to reserve
 250 * to allocate a block located at @lblock
 251 */
 252static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
 253{
 254	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
 255		return ext4_ext_calc_metadata_amount(inode, lblock);
 256
 257	return ext4_ind_calc_metadata_amount(inode, lblock);
 258}
 259
 260/*
 261 * Called with i_data_sem down, which is important since we can call
 262 * ext4_discard_preallocations() from here.
 263 */
 264void ext4_da_update_reserve_space(struct inode *inode,
 265					int used, int quota_claim)
 266{
 267	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
 268	struct ext4_inode_info *ei = EXT4_I(inode);
 269
 270	spin_lock(&ei->i_block_reservation_lock);
 271	trace_ext4_da_update_reserve_space(inode, used);
 272	if (unlikely(used > ei->i_reserved_data_blocks)) {
 273		ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
 274			 "with only %d reserved data blocks\n",
 275			 __func__, inode->i_ino, used,
 276			 ei->i_reserved_data_blocks);
 277		WARN_ON(1);
 278		used = ei->i_reserved_data_blocks;
 279	}
 280
 281	/* Update per-inode reservations */
 282	ei->i_reserved_data_blocks -= used;
 283	ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
 284	percpu_counter_sub(&sbi->s_dirtyblocks_counter,
 285			   used + ei->i_allocated_meta_blocks);
 286	ei->i_allocated_meta_blocks = 0;
 287
 288	if (ei->i_reserved_data_blocks == 0) {
 289		/*
 290		 * We can release all of the reserved metadata blocks
 291		 * only when we have written all of the delayed
 292		 * allocation blocks.
 293		 */
 294		percpu_counter_sub(&sbi->s_dirtyblocks_counter,
 295				   ei->i_reserved_meta_blocks);
 296		ei->i_reserved_meta_blocks = 0;
 297		ei->i_da_metadata_calc_len = 0;
 298	}
 299	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
 300
 301	/* Update quota subsystem for data blocks */
 302	if (quota_claim)
 303		dquot_claim_block(inode, used);
 304	else {
 305		/*
 306		 * We did fallocate with an offset that is already delayed
 307		 * allocated. So on delayed allocated writeback we should
 308		 * not re-claim the quota for fallocated blocks.
 309		 */
 310		dquot_release_reservation_block(inode, used);
 311	}
 312
 313	/*
 314	 * If we have done all the pending block allocations and if
 315	 * there aren't any writers on the inode, we can discard the
 316	 * inode's preallocations.
 317	 */
 318	if ((ei->i_reserved_data_blocks == 0) &&
 319	    (atomic_read(&inode->i_writecount) == 0))
 320		ext4_discard_preallocations(inode);
 321}
 322
 323static int __check_block_validity(struct inode *inode, const char *func,
 324				unsigned int line,
 325				struct ext4_map_blocks *map)
 326{
 327	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
 328				   map->m_len)) {
 329		ext4_error_inode(inode, func, line, map->m_pblk,
 330				 "lblock %lu mapped to illegal pblock "
 331				 "(length %d)", (unsigned long) map->m_lblk,
 332				 map->m_len);
 333		return -EIO;
 334	}
 335	return 0;
 336}
 337
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 338#define check_block_validity(inode, map)	\
 339	__check_block_validity((inode), __func__, __LINE__, (map))
 340
 341/*
 342 * Return the number of contiguous dirty pages in a given inode
 343 * starting at page frame idx.
 344 */
 345static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
 346				    unsigned int max_pages)
 347{
 348	struct address_space *mapping = inode->i_mapping;
 349	pgoff_t	index;
 350	struct pagevec pvec;
 351	pgoff_t num = 0;
 352	int i, nr_pages, done = 0;
 353
 354	if (max_pages == 0)
 355		return 0;
 356	pagevec_init(&pvec, 0);
 357	while (!done) {
 358		index = idx;
 359		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
 360					      PAGECACHE_TAG_DIRTY,
 361					      (pgoff_t)PAGEVEC_SIZE);
 362		if (nr_pages == 0)
 363			break;
 364		for (i = 0; i < nr_pages; i++) {
 365			struct page *page = pvec.pages[i];
 366			struct buffer_head *bh, *head;
 
 
 
 
 367
 368			lock_page(page);
 369			if (unlikely(page->mapping != mapping) ||
 370			    !PageDirty(page) ||
 371			    PageWriteback(page) ||
 372			    page->index != idx) {
 373				done = 1;
 374				unlock_page(page);
 375				break;
 376			}
 377			if (page_has_buffers(page)) {
 378				bh = head = page_buffers(page);
 379				do {
 380					if (!buffer_delay(bh) &&
 381					    !buffer_unwritten(bh))
 382						done = 1;
 383					bh = bh->b_this_page;
 384				} while (!done && (bh != head));
 385			}
 386			unlock_page(page);
 387			if (done)
 388				break;
 389			idx++;
 390			num++;
 391			if (num >= max_pages) {
 392				done = 1;
 393				break;
 394			}
 395		}
 396		pagevec_release(&pvec);
 397	}
 398	return num;
 399}
 
 400
 401/*
 402 * The ext4_map_blocks() function tries to look up the requested blocks,
 403 * and returns if the blocks are already mapped.
 404 *
 405 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
 406 * and store the allocated blocks in the result buffer head and mark it
 407 * mapped.
 408 *
 409 * If file type is extents based, it will call ext4_ext_map_blocks(),
 410 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
 411 * based files
 412 *
 413 * On success, it returns the number of blocks being mapped or allocate.
 414 * if create==0 and the blocks are pre-allocated and uninitialized block,
 415 * the result buffer head is unmapped. If the create ==1, it will make sure
 416 * the buffer head is mapped.
 417 *
 418 * It returns 0 if plain look up failed (blocks have not been allocated), in
 419 * that casem, buffer head is unmapped
 
 420 *
 421 * It returns the error in case of allocation failure.
 422 */
 423int ext4_map_blocks(handle_t *handle, struct inode *inode,
 424		    struct ext4_map_blocks *map, int flags)
 425{
 
 426	int retval;
 
 
 
 
 
 
 427
 428	map->m_flags = 0;
 429	ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
 430		  "logical block %lu\n", inode->i_ino, flags, map->m_len,
 431		  (unsigned long) map->m_lblk);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 432	/*
 433	 * Try to see if we can get the block without requesting a new
 434	 * file system block.
 435	 */
 436	down_read((&EXT4_I(inode)->i_data_sem));
 437	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
 438		retval = ext4_ext_map_blocks(handle, inode, map, 0);
 
 439	} else {
 440		retval = ext4_ind_map_blocks(handle, inode, map, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 441	}
 442	up_read((&EXT4_I(inode)->i_data_sem));
 443
 
 444	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
 445		int ret = check_block_validity(inode, map);
 446		if (ret != 0)
 447			return ret;
 448	}
 449
 450	/* If it is only a block(s) look up */
 451	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
 452		return retval;
 453
 454	/*
 455	 * Returns if the blocks have already allocated
 456	 *
 457	 * Note that if blocks have been preallocated
 458	 * ext4_ext_get_block() returns th create = 0
 459	 * with buffer head unmapped.
 460	 */
 461	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
 462		return retval;
 
 
 
 
 
 
 463
 464	/*
 465	 * When we call get_blocks without the create flag, the
 466	 * BH_Unwritten flag could have gotten set if the blocks
 467	 * requested were part of a uninitialized extent.  We need to
 468	 * clear this flag now that we are committed to convert all or
 469	 * part of the uninitialized extent to be an initialized
 470	 * extent.  This is because we need to avoid the combination
 471	 * of BH_Unwritten and BH_Mapped flags being simultaneously
 472	 * set on the buffer_head.
 473	 */
 474	map->m_flags &= ~EXT4_MAP_UNWRITTEN;
 475
 476	/*
 477	 * New blocks allocate and/or writing to uninitialized extent
 478	 * will possibly result in updating i_data, so we take
 479	 * the write lock of i_data_sem, and call get_blocks()
 480	 * with create == 1 flag.
 481	 */
 482	down_write((&EXT4_I(inode)->i_data_sem));
 483
 484	/*
 485	 * if the caller is from delayed allocation writeout path
 486	 * we have already reserved fs blocks for allocation
 487	 * let the underlying get_block() function know to
 488	 * avoid double accounting
 489	 */
 490	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
 491		ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
 492	/*
 493	 * We need to check for EXT4 here because migrate
 494	 * could have changed the inode type in between
 495	 */
 496	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
 497		retval = ext4_ext_map_blocks(handle, inode, map, flags);
 498	} else {
 499		retval = ext4_ind_map_blocks(handle, inode, map, flags);
 500
 501		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
 502			/*
 503			 * We allocated new blocks which will result in
 504			 * i_data's format changing.  Force the migrate
 505			 * to fail by clearing migrate flags
 506			 */
 507			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
 508		}
 509
 510		/*
 511		 * Update reserved blocks/metadata blocks after successful
 512		 * block allocation which had been deferred till now. We don't
 513		 * support fallocate for non extent files. So we can update
 514		 * reserve space here.
 515		 */
 516		if ((retval > 0) &&
 517			(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
 518			ext4_da_update_reserve_space(inode, retval, 1);
 519	}
 520	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
 521		ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
 522
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 523	up_write((&EXT4_I(inode)->i_data_sem));
 524	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
 525		int ret = check_block_validity(inode, map);
 526		if (ret != 0)
 527			return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 528	}
 529	return retval;
 530}
 531
 532/* Maximum number of blocks we map for direct IO at once. */
 533#define DIO_MAX_BLOCKS 4096
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 534
 535static int _ext4_get_block(struct inode *inode, sector_t iblock,
 536			   struct buffer_head *bh, int flags)
 537{
 538	handle_t *handle = ext4_journal_current_handle();
 539	struct ext4_map_blocks map;
 540	int ret = 0, started = 0;
 541	int dio_credits;
 
 
 542
 543	map.m_lblk = iblock;
 544	map.m_len = bh->b_size >> inode->i_blkbits;
 545
 546	if (flags && !handle) {
 547		/* Direct IO write... */
 548		if (map.m_len > DIO_MAX_BLOCKS)
 549			map.m_len = DIO_MAX_BLOCKS;
 550		dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
 551		handle = ext4_journal_start(inode, dio_credits);
 552		if (IS_ERR(handle)) {
 553			ret = PTR_ERR(handle);
 554			return ret;
 555		}
 556		started = 1;
 557	}
 558
 559	ret = ext4_map_blocks(handle, inode, &map, flags);
 560	if (ret > 0) {
 561		map_bh(bh, inode->i_sb, map.m_pblk);
 562		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
 563		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
 564		ret = 0;
 
 
 
 565	}
 566	if (started)
 567		ext4_journal_stop(handle);
 568	return ret;
 569}
 570
 571int ext4_get_block(struct inode *inode, sector_t iblock,
 572		   struct buffer_head *bh, int create)
 573{
 574	return _ext4_get_block(inode, iblock, bh,
 575			       create ? EXT4_GET_BLOCKS_CREATE : 0);
 576}
 577
 578/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 579 * `handle' can be NULL if create is zero
 580 */
 581struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
 582				ext4_lblk_t block, int create, int *errp)
 583{
 584	struct ext4_map_blocks map;
 585	struct buffer_head *bh;
 586	int fatal = 0, err;
 
 587
 588	J_ASSERT(handle != NULL || create == 0);
 589
 590	map.m_lblk = block;
 591	map.m_len = 1;
 592	err = ext4_map_blocks(handle, inode, &map,
 593			      create ? EXT4_GET_BLOCKS_CREATE : 0);
 594
 
 
 595	if (err < 0)
 596		*errp = err;
 597	if (err <= 0)
 598		return NULL;
 599	*errp = 0;
 600
 601	bh = sb_getblk(inode->i_sb, map.m_pblk);
 602	if (!bh) {
 603		*errp = -EIO;
 604		return NULL;
 605	}
 606	if (map.m_flags & EXT4_MAP_NEW) {
 607		J_ASSERT(create != 0);
 608		J_ASSERT(handle != NULL);
 609
 610		/*
 611		 * Now that we do not always journal data, we should
 612		 * keep in mind whether this should always journal the
 613		 * new buffer as metadata.  For now, regular file
 614		 * writes use ext4_get_block instead, so it's not a
 615		 * problem.
 616		 */
 617		lock_buffer(bh);
 618		BUFFER_TRACE(bh, "call get_create_access");
 619		fatal = ext4_journal_get_create_access(handle, bh);
 620		if (!fatal && !buffer_uptodate(bh)) {
 
 
 
 
 621			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
 622			set_buffer_uptodate(bh);
 623		}
 624		unlock_buffer(bh);
 625		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
 626		err = ext4_handle_dirty_metadata(handle, inode, bh);
 627		if (!fatal)
 628			fatal = err;
 629	} else {
 630		BUFFER_TRACE(bh, "not a new buffer");
 631	}
 632	if (fatal) {
 633		*errp = fatal;
 634		brelse(bh);
 635		bh = NULL;
 636	}
 637	return bh;
 
 
 
 638}
 639
 640struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
 641			       ext4_lblk_t block, int create, int *err)
 642{
 643	struct buffer_head *bh;
 644
 645	bh = ext4_getblk(handle, inode, block, create, err);
 646	if (!bh)
 647		return bh;
 648	if (buffer_uptodate(bh))
 649		return bh;
 650	ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
 651	wait_on_buffer(bh);
 652	if (buffer_uptodate(bh))
 653		return bh;
 654	put_bh(bh);
 655	*err = -EIO;
 656	return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 657}
 658
 659static int walk_page_buffers(handle_t *handle,
 660			     struct buffer_head *head,
 661			     unsigned from,
 662			     unsigned to,
 663			     int *partial,
 664			     int (*fn)(handle_t *handle,
 665				       struct buffer_head *bh))
 666{
 667	struct buffer_head *bh;
 668	unsigned block_start, block_end;
 669	unsigned blocksize = head->b_size;
 670	int err, ret = 0;
 671	struct buffer_head *next;
 672
 673	for (bh = head, block_start = 0;
 674	     ret == 0 && (bh != head || !block_start);
 675	     block_start = block_end, bh = next) {
 676		next = bh->b_this_page;
 677		block_end = block_start + blocksize;
 678		if (block_end <= from || block_start >= to) {
 679			if (partial && !buffer_uptodate(bh))
 680				*partial = 1;
 681			continue;
 682		}
 683		err = (*fn)(handle, bh);
 684		if (!ret)
 685			ret = err;
 686	}
 687	return ret;
 688}
 689
 690/*
 691 * To preserve ordering, it is essential that the hole instantiation and
 692 * the data write be encapsulated in a single transaction.  We cannot
 693 * close off a transaction and start a new one between the ext4_get_block()
 694 * and the commit_write().  So doing the jbd2_journal_start at the start of
 695 * prepare_write() is the right place.
 696 *
 697 * Also, this function can nest inside ext4_writepage() ->
 698 * block_write_full_page(). In that case, we *know* that ext4_writepage()
 699 * has generated enough buffer credits to do the whole page.  So we won't
 700 * block on the journal in that case, which is good, because the caller may
 701 * be PF_MEMALLOC.
 702 *
 703 * By accident, ext4 can be reentered when a transaction is open via
 704 * quota file writes.  If we were to commit the transaction while thus
 705 * reentered, there can be a deadlock - we would be holding a quota
 706 * lock, and the commit would never complete if another thread had a
 707 * transaction open and was blocking on the quota lock - a ranking
 708 * violation.
 709 *
 710 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
 711 * will _not_ run commit under these circumstances because handle->h_ref
 712 * is elevated.  We'll still have enough credits for the tiny quotafile
 713 * write.
 714 */
 715static int do_journal_get_write_access(handle_t *handle,
 716				       struct buffer_head *bh)
 717{
 718	int dirty = buffer_dirty(bh);
 719	int ret;
 720
 721	if (!buffer_mapped(bh) || buffer_freed(bh))
 722		return 0;
 723	/*
 724	 * __block_write_begin() could have dirtied some buffers. Clean
 725	 * the dirty bit as jbd2_journal_get_write_access() could complain
 726	 * otherwise about fs integrity issues. Setting of the dirty bit
 727	 * by __block_write_begin() isn't a real problem here as we clear
 728	 * the bit before releasing a page lock and thus writeback cannot
 729	 * ever write the buffer.
 730	 */
 731	if (dirty)
 732		clear_buffer_dirty(bh);
 
 733	ret = ext4_journal_get_write_access(handle, bh);
 734	if (!ret && dirty)
 735		ret = ext4_handle_dirty_metadata(handle, NULL, bh);
 736	return ret;
 737}
 738
 739static int ext4_get_block_write(struct inode *inode, sector_t iblock,
 740		   struct buffer_head *bh_result, int create);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 741static int ext4_write_begin(struct file *file, struct address_space *mapping,
 742			    loff_t pos, unsigned len, unsigned flags,
 743			    struct page **pagep, void **fsdata)
 744{
 745	struct inode *inode = mapping->host;
 746	int ret, needed_blocks;
 747	handle_t *handle;
 748	int retries = 0;
 749	struct page *page;
 750	pgoff_t index;
 751	unsigned from, to;
 752
 
 
 
 753	trace_ext4_write_begin(inode, pos, len, flags);
 754	/*
 755	 * Reserve one block more for addition to orphan list in case
 756	 * we allocate blocks but write fails for some reason
 757	 */
 758	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
 759	index = pos >> PAGE_CACHE_SHIFT;
 760	from = pos & (PAGE_CACHE_SIZE - 1);
 761	to = from + len;
 762
 763retry:
 764	handle = ext4_journal_start(inode, needed_blocks);
 765	if (IS_ERR(handle)) {
 766		ret = PTR_ERR(handle);
 767		goto out;
 
 
 768	}
 769
 770	/* We cannot recurse into the filesystem as the transaction is already
 771	 * started */
 772	flags |= AOP_FLAG_NOFS;
 773
 
 
 
 
 774	page = grab_cache_page_write_begin(mapping, index, flags);
 775	if (!page) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 776		ext4_journal_stop(handle);
 777		ret = -ENOMEM;
 778		goto out;
 779	}
 780	*pagep = page;
 
 781
 
 782	if (ext4_should_dioread_nolock(inode))
 783		ret = __block_write_begin(page, pos, len, ext4_get_block_write);
 
 
 
 
 
 
 
 
 784	else
 785		ret = __block_write_begin(page, pos, len, ext4_get_block);
 786
 787	if (!ret && ext4_should_journal_data(inode)) {
 788		ret = walk_page_buffers(handle, page_buffers(page),
 789				from, to, NULL, do_journal_get_write_access);
 
 790	}
 791
 792	if (ret) {
 793		unlock_page(page);
 794		page_cache_release(page);
 795		/*
 796		 * __block_write_begin may have instantiated a few blocks
 797		 * outside i_size.  Trim these off again. Don't need
 798		 * i_size_read because we hold i_mutex.
 799		 *
 800		 * Add inode to orphan list in case we crash before
 801		 * truncate finishes
 802		 */
 803		if (pos + len > inode->i_size && ext4_can_truncate(inode))
 804			ext4_orphan_add(handle, inode);
 805
 806		ext4_journal_stop(handle);
 807		if (pos + len > inode->i_size) {
 808			ext4_truncate_failed_write(inode);
 809			/*
 810			 * If truncate failed early the inode might
 811			 * still be on the orphan list; we need to
 812			 * make sure the inode is removed from the
 813			 * orphan list in that case.
 814			 */
 815			if (inode->i_nlink)
 816				ext4_orphan_del(NULL, inode);
 817		}
 818	}
 819
 820	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
 821		goto retry;
 822out:
 
 
 
 
 823	return ret;
 824}
 825
 826/* For write_end() in data=journal mode */
 827static int write_end_fn(handle_t *handle, struct buffer_head *bh)
 828{
 
 829	if (!buffer_mapped(bh) || buffer_freed(bh))
 830		return 0;
 831	set_buffer_uptodate(bh);
 832	return ext4_handle_dirty_metadata(handle, NULL, bh);
 
 
 
 833}
 834
 835static int ext4_generic_write_end(struct file *file,
 836				  struct address_space *mapping,
 837				  loff_t pos, unsigned len, unsigned copied,
 838				  struct page *page, void *fsdata)
 
 
 
 
 
 
 
 839{
 840	int i_size_changed = 0;
 841	struct inode *inode = mapping->host;
 842	handle_t *handle = ext4_journal_current_handle();
 
 
 
 
 843
 844	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
 845
 
 
 
 
 
 
 
 
 
 
 
 846	/*
 847	 * No need to use i_size_read() here, the i_size
 848	 * cannot change under us because we hold i_mutex.
 849	 *
 850	 * But it's important to update i_size while still holding page lock:
 851	 * page writeout could otherwise come in and zero beyond i_size.
 852	 */
 853	if (pos + copied > inode->i_size) {
 854		i_size_write(inode, pos + copied);
 855		i_size_changed = 1;
 856	}
 857
 858	if (pos + copied >  EXT4_I(inode)->i_disksize) {
 859		/* We need to mark inode dirty even if
 860		 * new_i_size is less that inode->i_size
 861		 * bu greater than i_disksize.(hint delalloc)
 862		 */
 863		ext4_update_i_disksize(inode, (pos + copied));
 864		i_size_changed = 1;
 865	}
 866	unlock_page(page);
 867	page_cache_release(page);
 868
 
 
 869	/*
 870	 * Don't mark the inode dirty under page lock. First, it unnecessarily
 871	 * makes the holding time of page lock longer. Second, it forces lock
 872	 * ordering of page lock and transaction start for journaling
 873	 * filesystems.
 874	 */
 875	if (i_size_changed)
 876		ext4_mark_inode_dirty(handle, inode);
 877
 878	return copied;
 879}
 880
 881/*
 882 * We need to pick up the new inode size which generic_commit_write gave us
 883 * `file' can be NULL - eg, when called from page_symlink().
 884 *
 885 * ext4 never places buffers on inode->i_mapping->private_list.  metadata
 886 * buffers are managed internally.
 887 */
 888static int ext4_ordered_write_end(struct file *file,
 889				  struct address_space *mapping,
 890				  loff_t pos, unsigned len, unsigned copied,
 891				  struct page *page, void *fsdata)
 892{
 893	handle_t *handle = ext4_journal_current_handle();
 894	struct inode *inode = mapping->host;
 895	int ret = 0, ret2;
 896
 897	trace_ext4_ordered_write_end(inode, pos, len, copied);
 898	ret = ext4_jbd2_file_inode(handle, inode);
 899
 900	if (ret == 0) {
 901		ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
 902							page, fsdata);
 903		copied = ret2;
 904		if (pos + len > inode->i_size && ext4_can_truncate(inode))
 905			/* if we have allocated more blocks and copied
 906			 * less. We will have blocks allocated outside
 907			 * inode->i_size. So truncate them
 908			 */
 909			ext4_orphan_add(handle, inode);
 910		if (ret2 < 0)
 911			ret = ret2;
 912	}
 913	ret2 = ext4_journal_stop(handle);
 914	if (!ret)
 915		ret = ret2;
 916
 917	if (pos + len > inode->i_size) {
 918		ext4_truncate_failed_write(inode);
 919		/*
 920		 * If truncate failed early the inode might still be
 921		 * on the orphan list; we need to make sure the inode
 922		 * is removed from the orphan list in that case.
 923		 */
 924		if (inode->i_nlink)
 925			ext4_orphan_del(NULL, inode);
 926	}
 927
 928
 929	return ret ? ret : copied;
 930}
 931
 932static int ext4_writeback_write_end(struct file *file,
 933				    struct address_space *mapping,
 934				    loff_t pos, unsigned len, unsigned copied,
 935				    struct page *page, void *fsdata)
 936{
 937	handle_t *handle = ext4_journal_current_handle();
 938	struct inode *inode = mapping->host;
 939	int ret = 0, ret2;
 940
 941	trace_ext4_writeback_write_end(inode, pos, len, copied);
 942	ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
 943							page, fsdata);
 944	copied = ret2;
 945	if (pos + len > inode->i_size && ext4_can_truncate(inode))
 946		/* if we have allocated more blocks and copied
 947		 * less. We will have blocks allocated outside
 948		 * inode->i_size. So truncate them
 949		 */
 950		ext4_orphan_add(handle, inode);
 951
 952	if (ret2 < 0)
 953		ret = ret2;
 954
 955	ret2 = ext4_journal_stop(handle);
 956	if (!ret)
 957		ret = ret2;
 958
 959	if (pos + len > inode->i_size) {
 960		ext4_truncate_failed_write(inode);
 961		/*
 962		 * If truncate failed early the inode might still be
 963		 * on the orphan list; we need to make sure the inode
 964		 * is removed from the orphan list in that case.
 965		 */
 966		if (inode->i_nlink)
 967			ext4_orphan_del(NULL, inode);
 968	}
 969
 970	return ret ? ret : copied;
 971}
 972
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 973static int ext4_journalled_write_end(struct file *file,
 974				     struct address_space *mapping,
 975				     loff_t pos, unsigned len, unsigned copied,
 976				     struct page *page, void *fsdata)
 977{
 978	handle_t *handle = ext4_journal_current_handle();
 979	struct inode *inode = mapping->host;
 
 980	int ret = 0, ret2;
 981	int partial = 0;
 982	unsigned from, to;
 983	loff_t new_i_size;
 984
 985	trace_ext4_journalled_write_end(inode, pos, len, copied);
 986	from = pos & (PAGE_CACHE_SIZE - 1);
 987	to = from + len;
 988
 989	BUG_ON(!ext4_handle_valid(handle));
 990
 991	if (copied < len) {
 992		if (!PageUptodate(page))
 993			copied = 0;
 994		page_zero_new_buffers(page, from+copied, to);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 995	}
 996
 997	ret = walk_page_buffers(handle, page_buffers(page), from,
 998				to, &partial, write_end_fn);
 999	if (!partial)
1000		SetPageUptodate(page);
1001	new_i_size = pos + copied;
1002	if (new_i_size > inode->i_size)
1003		i_size_write(inode, pos+copied);
1004	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1005	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1006	if (new_i_size > EXT4_I(inode)->i_disksize) {
1007		ext4_update_i_disksize(inode, new_i_size);
 
 
 
 
 
1008		ret2 = ext4_mark_inode_dirty(handle, inode);
1009		if (!ret)
1010			ret = ret2;
1011	}
1012
1013	unlock_page(page);
1014	page_cache_release(page);
1015	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1016		/* if we have allocated more blocks and copied
1017		 * less. We will have blocks allocated outside
1018		 * inode->i_size. So truncate them
1019		 */
1020		ext4_orphan_add(handle, inode);
1021
 
1022	ret2 = ext4_journal_stop(handle);
1023	if (!ret)
1024		ret = ret2;
1025	if (pos + len > inode->i_size) {
1026		ext4_truncate_failed_write(inode);
1027		/*
1028		 * If truncate failed early the inode might still be
1029		 * on the orphan list; we need to make sure the inode
1030		 * is removed from the orphan list in that case.
1031		 */
1032		if (inode->i_nlink)
1033			ext4_orphan_del(NULL, inode);
1034	}
1035
1036	return ret ? ret : copied;
1037}
1038
1039/*
1040 * Reserve a single block located at lblock
1041 */
1042static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1043{
1044	int retries = 0;
1045	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1046	struct ext4_inode_info *ei = EXT4_I(inode);
1047	unsigned long md_needed;
1048	int ret;
1049
1050	/*
1051	 * recalculate the amount of metadata blocks to reserve
1052	 * in order to allocate nrblocks
1053	 * worse case is one extent per block
1054	 */
1055repeat:
1056	spin_lock(&ei->i_block_reservation_lock);
1057	md_needed = ext4_calc_metadata_amount(inode, lblock);
1058	trace_ext4_da_reserve_space(inode, md_needed);
1059	spin_unlock(&ei->i_block_reservation_lock);
1060
1061	/*
1062	 * We will charge metadata quota at writeout time; this saves
1063	 * us from metadata over-estimation, though we may go over by
1064	 * a small amount in the end.  Here we just reserve for data.
1065	 */
1066	ret = dquot_reserve_block(inode, 1);
1067	if (ret)
1068		return ret;
1069	/*
1070	 * We do still charge estimated metadata to the sb though;
1071	 * we cannot afford to run out of free blocks.
1072	 */
1073	if (ext4_claim_free_blocks(sbi, md_needed + 1, 0)) {
1074		dquot_release_reservation_block(inode, 1);
1075		if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1076			yield();
1077			goto repeat;
1078		}
1079		return -ENOSPC;
1080	}
1081	spin_lock(&ei->i_block_reservation_lock);
1082	ei->i_reserved_data_blocks++;
1083	ei->i_reserved_meta_blocks += md_needed;
1084	spin_unlock(&ei->i_block_reservation_lock);
1085
1086	return 0;       /* success */
1087}
1088
1089static void ext4_da_release_space(struct inode *inode, int to_free)
1090{
1091	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1092	struct ext4_inode_info *ei = EXT4_I(inode);
1093
1094	if (!to_free)
1095		return;		/* Nothing to release, exit */
1096
1097	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1098
1099	trace_ext4_da_release_space(inode, to_free);
1100	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1101		/*
1102		 * if there aren't enough reserved blocks, then the
1103		 * counter is messed up somewhere.  Since this
1104		 * function is called from invalidate page, it's
1105		 * harmless to return without any action.
1106		 */
1107		ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
1108			 "ino %lu, to_free %d with only %d reserved "
1109			 "data blocks\n", inode->i_ino, to_free,
1110			 ei->i_reserved_data_blocks);
1111		WARN_ON(1);
1112		to_free = ei->i_reserved_data_blocks;
1113	}
1114	ei->i_reserved_data_blocks -= to_free;
1115
1116	if (ei->i_reserved_data_blocks == 0) {
1117		/*
1118		 * We can release all of the reserved metadata blocks
1119		 * only when we have written all of the delayed
1120		 * allocation blocks.
1121		 */
1122		percpu_counter_sub(&sbi->s_dirtyblocks_counter,
1123				   ei->i_reserved_meta_blocks);
1124		ei->i_reserved_meta_blocks = 0;
1125		ei->i_da_metadata_calc_len = 0;
1126	}
1127
1128	/* update fs dirty data blocks counter */
1129	percpu_counter_sub(&sbi->s_dirtyblocks_counter, to_free);
1130
1131	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1132
1133	dquot_release_reservation_block(inode, to_free);
1134}
1135
1136static void ext4_da_page_release_reservation(struct page *page,
1137					     unsigned long offset)
 
1138{
1139	int to_release = 0;
1140	struct buffer_head *head, *bh;
1141	unsigned int curr_off = 0;
 
 
 
 
 
 
 
1142
1143	head = page_buffers(page);
1144	bh = head;
1145	do {
1146		unsigned int next_off = curr_off + bh->b_size;
1147
 
 
 
1148		if ((offset <= curr_off) && (buffer_delay(bh))) {
1149			to_release++;
 
1150			clear_buffer_delay(bh);
 
 
 
 
 
 
 
1151		}
1152		curr_off = next_off;
1153	} while ((bh = bh->b_this_page) != head);
1154	ext4_da_release_space(page->mapping->host, to_release);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1155}
1156
1157/*
1158 * Delayed allocation stuff
1159 */
1160
1161/*
1162 * mpage_da_submit_io - walks through extent of pages and try to write
1163 * them with writepage() call back
1164 *
1165 * @mpd->inode: inode
1166 * @mpd->first_page: first page of the extent
1167 * @mpd->next_page: page after the last page of the extent
1168 *
1169 * By the time mpage_da_submit_io() is called we expect all blocks
1170 * to be allocated. this may be wrong if allocation failed.
1171 *
1172 * As pages are already locked by write_cache_pages(), we can't use it
1173 */
1174static int mpage_da_submit_io(struct mpage_da_data *mpd,
1175			      struct ext4_map_blocks *map)
1176{
1177	struct pagevec pvec;
1178	unsigned long index, end;
1179	int ret = 0, err, nr_pages, i;
1180	struct inode *inode = mpd->inode;
1181	struct address_space *mapping = inode->i_mapping;
1182	loff_t size = i_size_read(inode);
1183	unsigned int len, block_start;
1184	struct buffer_head *bh, *page_bufs = NULL;
1185	int journal_data = ext4_should_journal_data(inode);
1186	sector_t pblock = 0, cur_logical = 0;
1187	struct ext4_io_submit io_submit;
1188
1189	BUG_ON(mpd->next_page <= mpd->first_page);
1190	memset(&io_submit, 0, sizeof(io_submit));
1191	/*
1192	 * We need to start from the first_page to the next_page - 1
1193	 * to make sure we also write the mapped dirty buffer_heads.
1194	 * If we look at mpd->b_blocknr we would only be looking
1195	 * at the currently mapped buffer_heads.
1196	 */
1197	index = mpd->first_page;
1198	end = mpd->next_page - 1;
1199
1200	pagevec_init(&pvec, 0);
1201	while (index <= end) {
1202		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1203		if (nr_pages == 0)
1204			break;
1205		for (i = 0; i < nr_pages; i++) {
1206			int commit_write = 0, skip_page = 0;
1207			struct page *page = pvec.pages[i];
1208
1209			index = page->index;
1210			if (index > end)
1211				break;
1212
1213			if (index == size >> PAGE_CACHE_SHIFT)
1214				len = size & ~PAGE_CACHE_MASK;
1215			else
1216				len = PAGE_CACHE_SIZE;
1217			if (map) {
1218				cur_logical = index << (PAGE_CACHE_SHIFT -
1219							inode->i_blkbits);
1220				pblock = map->m_pblk + (cur_logical -
1221							map->m_lblk);
1222			}
1223			index++;
1224
1225			BUG_ON(!PageLocked(page));
1226			BUG_ON(PageWriteback(page));
1227
1228			/*
1229			 * If the page does not have buffers (for
1230			 * whatever reason), try to create them using
1231			 * __block_write_begin.  If this fails,
1232			 * skip the page and move on.
1233			 */
1234			if (!page_has_buffers(page)) {
1235				if (__block_write_begin(page, 0, len,
1236						noalloc_get_block_write)) {
1237				skip_page:
1238					unlock_page(page);
1239					continue;
1240				}
1241				commit_write = 1;
1242			}
1243
1244			bh = page_bufs = page_buffers(page);
1245			block_start = 0;
1246			do {
1247				if (!bh)
1248					goto skip_page;
1249				if (map && (cur_logical >= map->m_lblk) &&
1250				    (cur_logical <= (map->m_lblk +
1251						     (map->m_len - 1)))) {
1252					if (buffer_delay(bh)) {
1253						clear_buffer_delay(bh);
1254						bh->b_blocknr = pblock;
1255					}
1256					if (buffer_unwritten(bh) ||
1257					    buffer_mapped(bh))
1258						BUG_ON(bh->b_blocknr != pblock);
1259					if (map->m_flags & EXT4_MAP_UNINIT)
1260						set_buffer_uninit(bh);
1261					clear_buffer_unwritten(bh);
1262				}
1263
1264				/* skip page if block allocation undone */
1265				if (buffer_delay(bh) || buffer_unwritten(bh))
1266					skip_page = 1;
1267				bh = bh->b_this_page;
1268				block_start += bh->b_size;
1269				cur_logical++;
1270				pblock++;
1271			} while (bh != page_bufs);
1272
1273			if (skip_page)
1274				goto skip_page;
1275
1276			if (commit_write)
1277				/* mark the buffer_heads as dirty & uptodate */
1278				block_commit_write(page, 0, len);
1279
1280			clear_page_dirty_for_io(page);
1281			/*
1282			 * Delalloc doesn't support data journalling,
1283			 * but eventually maybe we'll lift this
1284			 * restriction.
1285			 */
1286			if (unlikely(journal_data && PageChecked(page)))
1287				err = __ext4_journalled_writepage(page, len);
1288			else if (test_opt(inode->i_sb, MBLK_IO_SUBMIT))
1289				err = ext4_bio_write_page(&io_submit, page,
1290							  len, mpd->wbc);
1291			else if (buffer_uninit(page_bufs)) {
1292				ext4_set_bh_endio(page_bufs, inode);
1293				err = block_write_full_page_endio(page,
1294					noalloc_get_block_write,
1295					mpd->wbc, ext4_end_io_buffer_write);
1296			} else
1297				err = block_write_full_page(page,
1298					noalloc_get_block_write, mpd->wbc);
1299
1300			if (!err)
1301				mpd->pages_written++;
1302			/*
1303			 * In error case, we have to continue because
1304			 * remaining pages are still locked
1305			 */
1306			if (ret == 0)
1307				ret = err;
1308		}
1309		pagevec_release(&pvec);
1310	}
1311	ext4_io_submit(&io_submit);
1312	return ret;
1313}
1314
1315static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
 
1316{
1317	int nr_pages, i;
1318	pgoff_t index, end;
1319	struct pagevec pvec;
1320	struct inode *inode = mpd->inode;
1321	struct address_space *mapping = inode->i_mapping;
1322
 
 
 
 
1323	index = mpd->first_page;
1324	end   = mpd->next_page - 1;
 
 
 
 
 
 
 
 
1325	while (index <= end) {
1326		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1327		if (nr_pages == 0)
1328			break;
1329		for (i = 0; i < nr_pages; i++) {
1330			struct page *page = pvec.pages[i];
1331			if (page->index > end)
1332				break;
1333			BUG_ON(!PageLocked(page));
1334			BUG_ON(PageWriteback(page));
1335			block_invalidatepage(page, 0);
1336			ClearPageUptodate(page);
 
 
 
 
1337			unlock_page(page);
1338		}
1339		index = pvec.pages[nr_pages - 1]->index + 1;
1340		pagevec_release(&pvec);
1341	}
1342	return;
1343}
1344
1345static void ext4_print_free_blocks(struct inode *inode)
1346{
1347	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1348	printk(KERN_CRIT "Total free blocks count %lld\n",
1349	       ext4_count_free_blocks(inode->i_sb));
1350	printk(KERN_CRIT "Free/Dirty block details\n");
1351	printk(KERN_CRIT "free_blocks=%lld\n",
1352	       (long long) percpu_counter_sum(&sbi->s_freeblocks_counter));
1353	printk(KERN_CRIT "dirty_blocks=%lld\n",
1354	       (long long) percpu_counter_sum(&sbi->s_dirtyblocks_counter));
1355	printk(KERN_CRIT "Block reservation details\n");
1356	printk(KERN_CRIT "i_reserved_data_blocks=%u\n",
1357	       EXT4_I(inode)->i_reserved_data_blocks);
1358	printk(KERN_CRIT "i_reserved_meta_blocks=%u\n",
1359	       EXT4_I(inode)->i_reserved_meta_blocks);
 
 
 
 
1360	return;
1361}
1362
 
 
 
 
 
1363/*
1364 * mpage_da_map_and_submit - go through given space, map them
1365 *       if necessary, and then submit them for I/O
1366 *
1367 * @mpd - bh describing space
1368 *
1369 * The function skips space we know is already mapped to disk blocks.
1370 *
1371 */
1372static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
1373{
1374	int err, blks, get_blocks_flags;
1375	struct ext4_map_blocks map, *mapp = NULL;
1376	sector_t next = mpd->b_blocknr;
1377	unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
1378	loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
1379	handle_t *handle = NULL;
1380
1381	/*
1382	 * If the blocks are mapped already, or we couldn't accumulate
1383	 * any blocks, then proceed immediately to the submission stage.
1384	 */
1385	if ((mpd->b_size == 0) ||
1386	    ((mpd->b_state  & (1 << BH_Mapped)) &&
1387	     !(mpd->b_state & (1 << BH_Delay)) &&
1388	     !(mpd->b_state & (1 << BH_Unwritten))))
1389		goto submit_io;
1390
1391	handle = ext4_journal_current_handle();
1392	BUG_ON(!handle);
1393
1394	/*
1395	 * Call ext4_map_blocks() to allocate any delayed allocation
1396	 * blocks, or to convert an uninitialized extent to be
1397	 * initialized (in the case where we have written into
1398	 * one or more preallocated blocks).
1399	 *
1400	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
1401	 * indicate that we are on the delayed allocation path.  This
1402	 * affects functions in many different parts of the allocation
1403	 * call path.  This flag exists primarily because we don't
1404	 * want to change *many* call functions, so ext4_map_blocks()
1405	 * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
1406	 * inode's allocation semaphore is taken.
1407	 *
1408	 * If the blocks in questions were delalloc blocks, set
1409	 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
1410	 * variables are updated after the blocks have been allocated.
1411	 */
1412	map.m_lblk = next;
1413	map.m_len = max_blocks;
1414	get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
1415	if (ext4_should_dioread_nolock(mpd->inode))
1416		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
1417	if (mpd->b_state & (1 << BH_Delay))
1418		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
1419
1420	blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
1421	if (blks < 0) {
1422		struct super_block *sb = mpd->inode->i_sb;
1423
1424		err = blks;
1425		/*
1426		 * If get block returns EAGAIN or ENOSPC and there
1427		 * appears to be free blocks we will just let
1428		 * mpage_da_submit_io() unlock all of the pages.
1429		 */
1430		if (err == -EAGAIN)
1431			goto submit_io;
1432
1433		if (err == -ENOSPC &&
1434		    ext4_count_free_blocks(sb)) {
1435			mpd->retval = err;
1436			goto submit_io;
 
 
1437		}
1438
1439		/*
1440		 * get block failure will cause us to loop in
1441		 * writepages, because a_ops->writepage won't be able
1442		 * to make progress. The page will be redirtied by
1443		 * writepage and writepages will again try to write
1444		 * the same.
1445		 */
1446		if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
1447			ext4_msg(sb, KERN_CRIT,
1448				 "delayed block allocation failed for inode %lu "
1449				 "at logical offset %llu with max blocks %zd "
1450				 "with error %d", mpd->inode->i_ino,
1451				 (unsigned long long) next,
1452				 mpd->b_size >> mpd->inode->i_blkbits, err);
1453			ext4_msg(sb, KERN_CRIT,
1454				"This should not happen!! Data will be lost\n");
1455			if (err == -ENOSPC)
1456				ext4_print_free_blocks(mpd->inode);
1457		}
1458		/* invalidate all the pages */
1459		ext4_da_block_invalidatepages(mpd);
1460
1461		/* Mark this page range as having been completed */
1462		mpd->io_done = 1;
1463		return;
1464	}
1465	BUG_ON(blks == 0);
1466
1467	mapp = &map;
1468	if (map.m_flags & EXT4_MAP_NEW) {
1469		struct block_device *bdev = mpd->inode->i_sb->s_bdev;
1470		int i;
1471
1472		for (i = 0; i < map.m_len; i++)
1473			unmap_underlying_metadata(bdev, map.m_pblk + i);
1474	}
1475
1476	if (ext4_should_order_data(mpd->inode)) {
1477		err = ext4_jbd2_file_inode(handle, mpd->inode);
1478		if (err)
1479			/* This only happens if the journal is aborted */
1480			return;
1481	}
1482
1483	/*
1484	 * Update on-disk size along with block allocation.
 
1485	 */
1486	disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
1487	if (disksize > i_size_read(mpd->inode))
1488		disksize = i_size_read(mpd->inode);
1489	if (disksize > EXT4_I(mpd->inode)->i_disksize) {
1490		ext4_update_i_disksize(mpd->inode, disksize);
1491		err = ext4_mark_inode_dirty(handle, mpd->inode);
1492		if (err)
1493			ext4_error(mpd->inode->i_sb,
1494				   "Failed to mark inode %lu dirty",
1495				   mpd->inode->i_ino);
1496	}
1497
1498submit_io:
1499	mpage_da_submit_io(mpd, mapp);
1500	mpd->io_done = 1;
1501}
1502
1503#define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1504		(1 << BH_Delay) | (1 << BH_Unwritten))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1505
1506/*
1507 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1508 *
1509 * @mpd->lbh - extent of blocks
1510 * @logical - logical number of the block in the file
1511 * @bh - bh of the block (used to access block's state)
1512 *
1513 * the function is used to collect contig. blocks in same state
1514 */
1515static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
1516				   sector_t logical, size_t b_size,
1517				   unsigned long b_state)
1518{
1519	sector_t next;
1520	int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
1521
1522	/*
1523	 * XXX Don't go larger than mballoc is willing to allocate
1524	 * This is a stopgap solution.  We eventually need to fold
1525	 * mpage_da_submit_io() into this function and then call
1526	 * ext4_map_blocks() multiple times in a loop
1527	 */
1528	if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize)
1529		goto flush_it;
1530
1531	/* check if thereserved journal credits might overflow */
1532	if (!(ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS))) {
1533		if (nrblocks >= EXT4_MAX_TRANS_DATA) {
1534			/*
1535			 * With non-extent format we are limited by the journal
1536			 * credit available.  Total credit needed to insert
1537			 * nrblocks contiguous blocks is dependent on the
1538			 * nrblocks.  So limit nrblocks.
1539			 */
1540			goto flush_it;
1541		} else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
1542				EXT4_MAX_TRANS_DATA) {
1543			/*
1544			 * Adding the new buffer_head would make it cross the
1545			 * allowed limit for which we have journal credit
1546			 * reserved. So limit the new bh->b_size
1547			 */
1548			b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
1549						mpd->inode->i_blkbits;
1550			/* we will do mpage_da_submit_io in the next loop */
1551		}
1552	}
1553	/*
1554	 * First block in the extent
1555	 */
1556	if (mpd->b_size == 0) {
1557		mpd->b_blocknr = logical;
1558		mpd->b_size = b_size;
1559		mpd->b_state = b_state & BH_FLAGS;
1560		return;
1561	}
1562
1563	next = mpd->b_blocknr + nrblocks;
1564	/*
1565	 * Can we merge the block to our big extent?
1566	 */
1567	if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
1568		mpd->b_size += b_size;
1569		return;
1570	}
1571
1572flush_it:
1573	/*
1574	 * We couldn't merge the block to our extent, so we
1575	 * need to flush current  extent and start new one
1576	 */
1577	mpage_da_map_and_submit(mpd);
1578	return;
1579}
1580
1581static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1582{
1583	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1584}
1585
1586/*
1587 * This is a special get_blocks_t callback which is used by
1588 * ext4_da_write_begin().  It will either return mapped block or
1589 * reserve space for a single block.
1590 *
1591 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1592 * We also have b_blocknr = -1 and b_bdev initialized properly
1593 *
1594 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1595 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1596 * initialized properly.
1597 */
1598static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1599				  struct buffer_head *bh, int create)
1600{
1601	struct ext4_map_blocks map;
1602	int ret = 0;
1603	sector_t invalid_block = ~((sector_t) 0xffff);
1604
1605	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1606		invalid_block = ~0;
1607
1608	BUG_ON(create == 0);
1609	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1610
1611	map.m_lblk = iblock;
1612	map.m_len = 1;
1613
1614	/*
1615	 * first, we need to know whether the block is allocated already
1616	 * preallocated blocks are unmapped but should treated
1617	 * the same as allocated blocks.
1618	 */
1619	ret = ext4_map_blocks(NULL, inode, &map, 0);
1620	if (ret < 0)
1621		return ret;
1622	if (ret == 0) {
1623		if (buffer_delay(bh))
1624			return 0; /* Not sure this could or should happen */
1625		/*
1626		 * XXX: __block_write_begin() unmaps passed block, is it OK?
1627		 */
1628		ret = ext4_da_reserve_space(inode, iblock);
1629		if (ret)
1630			/* not enough space to reserve */
1631			return ret;
1632
1633		map_bh(bh, inode->i_sb, invalid_block);
1634		set_buffer_new(bh);
1635		set_buffer_delay(bh);
1636		return 0;
1637	}
1638
1639	map_bh(bh, inode->i_sb, map.m_pblk);
1640	bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1641
1642	if (buffer_unwritten(bh)) {
1643		/* A delayed write to unwritten bh should be marked
1644		 * new and mapped.  Mapped ensures that we don't do
1645		 * get_block multiple times when we write to the same
1646		 * offset and new ensures that we do proper zero out
1647		 * for partial write.
1648		 */
1649		set_buffer_new(bh);
1650		set_buffer_mapped(bh);
1651	}
1652	return 0;
1653}
1654
1655/*
1656 * This function is used as a standard get_block_t calback function
1657 * when there is no desire to allocate any blocks.  It is used as a
1658 * callback function for block_write_begin() and block_write_full_page().
1659 * These functions should only try to map a single block at a time.
1660 *
1661 * Since this function doesn't do block allocations even if the caller
1662 * requests it by passing in create=1, it is critically important that
1663 * any caller checks to make sure that any buffer heads are returned
1664 * by this function are either all already mapped or marked for
1665 * delayed allocation before calling  block_write_full_page().  Otherwise,
1666 * b_blocknr could be left unitialized, and the page write functions will
1667 * be taken by surprise.
1668 */
1669static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
1670				   struct buffer_head *bh_result, int create)
1671{
1672	BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
1673	return _ext4_get_block(inode, iblock, bh_result, 0);
1674}
1675
1676static int bget_one(handle_t *handle, struct buffer_head *bh)
1677{
1678	get_bh(bh);
1679	return 0;
1680}
1681
1682static int bput_one(handle_t *handle, struct buffer_head *bh)
1683{
1684	put_bh(bh);
1685	return 0;
1686}
1687
1688static int __ext4_journalled_writepage(struct page *page,
1689				       unsigned int len)
1690{
1691	struct address_space *mapping = page->mapping;
1692	struct inode *inode = mapping->host;
1693	struct buffer_head *page_bufs;
1694	handle_t *handle = NULL;
1695	int ret = 0;
1696	int err;
 
1697
1698	ClearPageChecked(page);
1699	page_bufs = page_buffers(page);
1700	BUG_ON(!page_bufs);
1701	walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
1702	/* As soon as we unlock the page, it can go away, but we have
1703	 * references to buffers so we are safe */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1704	unlock_page(page);
1705
1706	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
 
1707	if (IS_ERR(handle)) {
1708		ret = PTR_ERR(handle);
 
 
 
 
 
 
 
 
 
 
 
1709		goto out;
1710	}
1711
1712	BUG_ON(!ext4_handle_valid(handle));
 
 
 
 
1713
1714	ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
1715				do_journal_get_write_access);
 
1716
1717	err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
1718				write_end_fn);
 
1719	if (ret == 0)
1720		ret = err;
1721	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1722	err = ext4_journal_stop(handle);
1723	if (!ret)
1724		ret = err;
1725
1726	walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
 
 
1727	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1728out:
 
 
 
1729	return ret;
1730}
1731
1732static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
1733static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
1734
1735/*
1736 * Note that we don't need to start a transaction unless we're journaling data
1737 * because we should have holes filled from ext4_page_mkwrite(). We even don't
1738 * need to file the inode to the transaction's list in ordered mode because if
1739 * we are writing back data added by write(), the inode is already there and if
1740 * we are writing back data modified via mmap(), no one guarantees in which
1741 * transaction the data will hit the disk. In case we are journaling data, we
1742 * cannot start transaction directly because transaction start ranks above page
1743 * lock so we have to do some magic.
1744 *
1745 * This function can get called via...
1746 *   - ext4_da_writepages after taking page lock (have journal handle)
1747 *   - journal_submit_inode_data_buffers (no journal handle)
1748 *   - shrink_page_list via pdflush (no journal handle)
1749 *   - grab_page_cache when doing write_begin (have journal handle)
1750 *
1751 * We don't do any block allocation in this function. If we have page with
1752 * multiple blocks we need to write those buffer_heads that are mapped. This
1753 * is important for mmaped based write. So if we do with blocksize 1K
1754 * truncate(f, 1024);
1755 * a = mmap(f, 0, 4096);
1756 * a[0] = 'a';
1757 * truncate(f, 4096);
1758 * we have in the page first buffer_head mapped via page_mkwrite call back
1759 * but other bufer_heads would be unmapped but dirty(dirty done via the
1760 * do_wp_page). So writepage should write the first block. If we modify
1761 * the mmap area beyond 1024 we will again get a page_fault and the
1762 * page_mkwrite callback will do the block allocation and mark the
1763 * buffer_heads mapped.
1764 *
1765 * We redirty the page if we have any buffer_heads that is either delay or
1766 * unwritten in the page.
1767 *
1768 * We can get recursively called as show below.
1769 *
1770 *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1771 *		ext4_writepage()
1772 *
1773 * But since we don't do any block allocation we should not deadlock.
1774 * Page also have the dirty flag cleared so we don't get recurive page_lock.
1775 */
1776static int ext4_writepage(struct page *page,
1777			  struct writeback_control *wbc)
1778{
1779	int ret = 0, commit_write = 0;
1780	loff_t size;
1781	unsigned int len;
1782	struct buffer_head *page_bufs = NULL;
1783	struct inode *inode = page->mapping->host;
 
 
 
 
 
 
 
 
1784
1785	trace_ext4_writepage(page);
1786	size = i_size_read(inode);
1787	if (page->index == size >> PAGE_CACHE_SHIFT)
1788		len = size & ~PAGE_CACHE_MASK;
1789	else
1790		len = PAGE_CACHE_SIZE;
1791
 
1792	/*
1793	 * If the page does not have buffers (for whatever reason),
1794	 * try to create them using __block_write_begin.  If this
1795	 * fails, redirty the page and move on.
1796	 */
1797	if (!page_has_buffers(page)) {
1798		if (__block_write_begin(page, 0, len,
1799					noalloc_get_block_write)) {
1800		redirty_page:
1801			redirty_page_for_writepage(wbc, page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1802			unlock_page(page);
1803			return 0;
1804		}
1805		commit_write = 1;
1806	}
1807	page_bufs = page_buffers(page);
1808	if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
1809			      ext4_bh_delay_or_unwritten)) {
1810		/*
1811		 * We don't want to do block allocation, so redirty
1812		 * the page and return.  We may reach here when we do
1813		 * a journal commit via journal_submit_inode_data_buffers.
1814		 * We can also reach here via shrink_page_list
1815		 */
1816		goto redirty_page;
1817	}
1818	if (commit_write)
1819		/* now mark the buffer_heads as dirty and uptodate */
1820		block_commit_write(page, 0, len);
1821
1822	if (PageChecked(page) && ext4_should_journal_data(inode))
1823		/*
1824		 * It's mmapped pagecache.  Add buffers and journal it.  There
1825		 * doesn't seem much point in redirtying the page here.
1826		 */
1827		return __ext4_journalled_writepage(page, len);
1828
1829	if (buffer_uninit(page_bufs)) {
1830		ext4_set_bh_endio(page_bufs, inode);
1831		ret = block_write_full_page_endio(page, noalloc_get_block_write,
1832					    wbc, ext4_end_io_buffer_write);
1833	} else
1834		ret = block_write_full_page(page, noalloc_get_block_write,
1835					    wbc);
1836
 
 
 
1837	return ret;
1838}
1839
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1840/*
1841 * This is called via ext4_da_writepages() to
1842 * calculate the total number of credits to reserve to fit
1843 * a single extent allocation into a single transaction,
1844 * ext4_da_writpeages() will loop calling this before
1845 * the block allocation.
1846 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1847
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1848static int ext4_da_writepages_trans_blocks(struct inode *inode)
1849{
1850	int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
1851
1852	/*
1853	 * With non-extent format the journal credit needed to
1854	 * insert nrblocks contiguous block is dependent on
1855	 * number of contiguous block. So we will limit
1856	 * number of contiguous block to a sane value
1857	 */
1858	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
1859	    (max_blocks > EXT4_MAX_TRANS_DATA))
1860		max_blocks = EXT4_MAX_TRANS_DATA;
1861
1862	return ext4_chunk_trans_blocks(inode, max_blocks);
1863}
1864
1865/*
1866 * write_cache_pages_da - walk the list of dirty pages of the given
1867 * address space and accumulate pages that need writing, and call
1868 * mpage_da_map_and_submit to map a single contiguous memory region
1869 * and then write them.
1870 */
1871static int write_cache_pages_da(struct address_space *mapping,
1872				struct writeback_control *wbc,
1873				struct mpage_da_data *mpd,
1874				pgoff_t *done_index)
1875{
1876	struct buffer_head	*bh, *head;
1877	struct inode		*inode = mapping->host;
1878	struct pagevec		pvec;
1879	unsigned int		nr_pages;
1880	sector_t		logical;
1881	pgoff_t			index, end;
1882	long			nr_to_write = wbc->nr_to_write;
1883	int			i, tag, ret = 0;
1884
1885	memset(mpd, 0, sizeof(struct mpage_da_data));
1886	mpd->wbc = wbc;
1887	mpd->inode = inode;
1888	pagevec_init(&pvec, 0);
1889	index = wbc->range_start >> PAGE_CACHE_SHIFT;
1890	end = wbc->range_end >> PAGE_CACHE_SHIFT;
 
 
 
 
 
1891
1892	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1893		tag = PAGECACHE_TAG_TOWRITE;
1894	else
1895		tag = PAGECACHE_TAG_DIRTY;
1896
1897	*done_index = index;
 
 
1898	while (index <= end) {
1899		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
1900			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1901		if (nr_pages == 0)
1902			return 0;
1903
1904		for (i = 0; i < nr_pages; i++) {
1905			struct page *page = pvec.pages[i];
1906
1907			/*
1908			 * At this point, the page may be truncated or
1909			 * invalidated (changing page->mapping to NULL), or
1910			 * even swizzled back from swapper_space to tmpfs file
1911			 * mapping. However, page->index will not change
1912			 * because we have a reference on the page.
 
1913			 */
1914			if (page->index > end)
1915				goto out;
1916
1917			*done_index = page->index + 1;
1918
1919			/*
1920			 * If we can't merge this page, and we have
1921			 * accumulated an contiguous region, write it
1922			 */
1923			if ((mpd->next_page != page->index) &&
1924			    (mpd->next_page != mpd->first_page)) {
1925				mpage_da_map_and_submit(mpd);
1926				goto ret_extent_tail;
1927			}
1928
1929			lock_page(page);
1930
1931			/*
1932			 * If the page is no longer dirty, or its
1933			 * mapping no longer corresponds to inode we
1934			 * are writing (which means it has been
1935			 * truncated or invalidated), or the page is
1936			 * already under writeback and we are not
1937			 * doing a data integrity writeback, skip the page
1938			 */
1939			if (!PageDirty(page) ||
1940			    (PageWriteback(page) &&
1941			     (wbc->sync_mode == WB_SYNC_NONE)) ||
1942			    unlikely(page->mapping != mapping)) {
1943				unlock_page(page);
1944				continue;
1945			}
1946
1947			wait_on_page_writeback(page);
1948			BUG_ON(PageWriteback(page));
1949
1950			if (mpd->next_page != page->index)
1951				mpd->first_page = page->index;
1952			mpd->next_page = page->index + 1;
1953			logical = (sector_t) page->index <<
1954				(PAGE_CACHE_SHIFT - inode->i_blkbits);
1955
1956			if (!page_has_buffers(page)) {
1957				mpage_add_bh_to_extent(mpd, logical,
1958						       PAGE_CACHE_SIZE,
1959						       (1 << BH_Dirty) | (1 << BH_Uptodate));
1960				if (mpd->io_done)
1961					goto ret_extent_tail;
1962			} else {
1963				/*
1964				 * Page with regular buffer heads,
1965				 * just add all dirty ones
1966				 */
1967				head = page_buffers(page);
1968				bh = head;
1969				do {
1970					BUG_ON(buffer_locked(bh));
1971					/*
1972					 * We need to try to allocate
1973					 * unmapped blocks in the same page.
1974					 * Otherwise we won't make progress
1975					 * with the page in ext4_writepage
1976					 */
1977					if (ext4_bh_delay_or_unwritten(NULL, bh)) {
1978						mpage_add_bh_to_extent(mpd, logical,
1979								       bh->b_size,
1980								       bh->b_state);
1981						if (mpd->io_done)
1982							goto ret_extent_tail;
1983					} else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
1984						/*
1985						 * mapped dirty buffer. We need
1986						 * to update the b_state
1987						 * because we look at b_state
1988						 * in mpage_da_map_blocks.  We
1989						 * don't update b_size because
1990						 * if we find an unmapped
1991						 * buffer_head later we need to
1992						 * use the b_state flag of that
1993						 * buffer_head.
1994						 */
1995						if (mpd->b_size == 0)
1996							mpd->b_state = bh->b_state & BH_FLAGS;
1997					}
1998					logical++;
1999				} while ((bh = bh->b_this_page) != head);
2000			}
2001
2002			if (nr_to_write > 0) {
2003				nr_to_write--;
2004				if (nr_to_write == 0 &&
2005				    wbc->sync_mode == WB_SYNC_NONE)
2006					/*
2007					 * We stop writing back only if we are
2008					 * not doing integrity sync. In case of
2009					 * integrity sync we have to keep going
2010					 * because someone may be concurrently
2011					 * dirtying pages, and we might have
2012					 * synced a lot of newly appeared dirty
2013					 * pages, but have not synced all of the
2014					 * old dirty pages.
2015					 */
2016					goto out;
2017			}
2018		}
2019		pagevec_release(&pvec);
2020		cond_resched();
2021	}
2022	return 0;
2023ret_extent_tail:
2024	ret = MPAGE_DA_EXTENT_TAIL;
2025out:
2026	pagevec_release(&pvec);
2027	cond_resched();
2028	return ret;
2029}
2030
2031
2032static int ext4_da_writepages(struct address_space *mapping,
2033			      struct writeback_control *wbc)
2034{
2035	pgoff_t	index;
 
2036	int range_whole = 0;
 
2037	handle_t *handle = NULL;
2038	struct mpage_da_data mpd;
2039	struct inode *inode = mapping->host;
2040	int pages_written = 0;
2041	unsigned int max_pages;
2042	int range_cyclic, cycled = 1, io_done = 0;
2043	int needed_blocks, ret = 0;
2044	long desired_nr_to_write, nr_to_writebump = 0;
2045	loff_t range_start = wbc->range_start;
2046	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2047	pgoff_t done_index = 0;
2048	pgoff_t end;
 
 
 
 
2049
2050	trace_ext4_da_writepages(inode, wbc);
 
2051
2052	/*
2053	 * No pages to write? This is mainly a kludge to avoid starting
2054	 * a transaction for special inodes like journal inode on last iput()
2055	 * because that could violate lock ordering on umount
2056	 */
2057	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2058		return 0;
 
 
 
 
 
2059
2060	/*
2061	 * If the filesystem has aborted, it is read-only, so return
2062	 * right away instead of dumping stack traces later on that
2063	 * will obscure the real source of the problem.  We test
2064	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2065	 * the latter could be true if the filesystem is mounted
2066	 * read-only, and in that case, ext4_da_writepages should
2067	 * *never* be called, so if that ever happens, we would want
2068	 * the stack trace.
2069	 */
2070	if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2071		return -EROFS;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2072
2073	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2074		range_whole = 1;
2075
2076	range_cyclic = wbc->range_cyclic;
2077	if (wbc->range_cyclic) {
2078		index = mapping->writeback_index;
2079		if (index)
2080			cycled = 0;
2081		wbc->range_start = index << PAGE_CACHE_SHIFT;
2082		wbc->range_end  = LLONG_MAX;
2083		wbc->range_cyclic = 0;
2084		end = -1;
2085	} else {
2086		index = wbc->range_start >> PAGE_CACHE_SHIFT;
2087		end = wbc->range_end >> PAGE_CACHE_SHIFT;
2088	}
2089
2090	/*
2091	 * This works around two forms of stupidity.  The first is in
2092	 * the writeback code, which caps the maximum number of pages
2093	 * written to be 1024 pages.  This is wrong on multiple
2094	 * levels; different architectues have a different page size,
2095	 * which changes the maximum amount of data which gets
2096	 * written.  Secondly, 4 megabytes is way too small.  XFS
2097	 * forces this value to be 16 megabytes by multiplying
2098	 * nr_to_write parameter by four, and then relies on its
2099	 * allocator to allocate larger extents to make them
2100	 * contiguous.  Unfortunately this brings us to the second
2101	 * stupidity, which is that ext4's mballoc code only allocates
2102	 * at most 2048 blocks.  So we force contiguous writes up to
2103	 * the number of dirty blocks in the inode, or
2104	 * sbi->max_writeback_mb_bump whichever is smaller.
2105	 */
2106	max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2107	if (!range_cyclic && range_whole) {
2108		if (wbc->nr_to_write == LONG_MAX)
2109			desired_nr_to_write = wbc->nr_to_write;
2110		else
2111			desired_nr_to_write = wbc->nr_to_write * 8;
2112	} else
2113		desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2114							   max_pages);
2115	if (desired_nr_to_write > max_pages)
2116		desired_nr_to_write = max_pages;
2117
2118	if (wbc->nr_to_write < desired_nr_to_write) {
2119		nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2120		wbc->nr_to_write = desired_nr_to_write;
2121	}
2122
 
 
 
2123retry:
2124	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2125		tag_pages_for_writeback(mapping, index, end);
 
 
2126
2127	while (!ret && wbc->nr_to_write > 0) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2128
2129		/*
2130		 * we  insert one extent at a time. So we need
2131		 * credit needed for single extent allocation.
2132		 * journalled mode is currently not supported
2133		 * by delalloc
 
2134		 */
2135		BUG_ON(ext4_should_journal_data(inode));
2136		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2137
2138		/* start a new transaction*/
2139		handle = ext4_journal_start(inode, needed_blocks);
 
2140		if (IS_ERR(handle)) {
2141			ret = PTR_ERR(handle);
2142			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2143			       "%ld pages, ino %lu; err %d", __func__,
2144				wbc->nr_to_write, inode->i_ino, ret);
2145			goto out_writepages;
 
 
 
2146		}
 
2147
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2148		/*
2149		 * Now call write_cache_pages_da() to find the next
2150		 * contiguous region of logical blocks that need
2151		 * blocks to be allocated by ext4 and submit them.
2152		 */
2153		ret = write_cache_pages_da(mapping, wbc, &mpd, &done_index);
2154		/*
2155		 * If we have a contiguous extent of pages and we
2156		 * haven't done the I/O yet, map the blocks and submit
2157		 * them for I/O.
2158		 */
2159		if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2160			mpage_da_map_and_submit(&mpd);
2161			ret = MPAGE_DA_EXTENT_TAIL;
2162		}
2163		trace_ext4_da_write_pages(inode, &mpd);
2164		wbc->nr_to_write -= mpd.pages_written;
2165
2166		ext4_journal_stop(handle);
 
 
 
 
 
 
 
 
 
 
 
 
 
2167
2168		if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2169			/* commit the transaction which would
 
2170			 * free blocks released in the transaction
2171			 * and try again
2172			 */
2173			jbd2_journal_force_commit_nested(sbi->s_journal);
2174			ret = 0;
2175		} else if (ret == MPAGE_DA_EXTENT_TAIL) {
2176			/*
2177			 * got one extent now try with
2178			 * rest of the pages
2179			 */
2180			pages_written += mpd.pages_written;
2181			ret = 0;
2182			io_done = 1;
2183		} else if (wbc->nr_to_write)
2184			/*
2185			 * There is no more writeout needed
2186			 * or we requested for a noblocking writeout
2187			 * and we found the device congested
2188			 */
2189			break;
2190	}
2191	if (!io_done && !cycled) {
 
 
2192		cycled = 1;
2193		index = 0;
2194		wbc->range_start = index << PAGE_CACHE_SHIFT;
2195		wbc->range_end  = mapping->writeback_index - 1;
2196		goto retry;
2197	}
2198
2199	/* Update index */
2200	wbc->range_cyclic = range_cyclic;
2201	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2202		/*
2203		 * set the writeback_index so that range_cyclic
2204		 * mode will write it back later
2205		 */
2206		mapping->writeback_index = done_index;
2207
2208out_writepages:
2209	wbc->nr_to_write -= nr_to_writebump;
2210	wbc->range_start = range_start;
2211	trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2212	return ret;
2213}
2214
2215#define FALL_BACK_TO_NONDELALLOC 1
2216static int ext4_nonda_switch(struct super_block *sb)
2217{
2218	s64 free_blocks, dirty_blocks;
2219	struct ext4_sb_info *sbi = EXT4_SB(sb);
2220
2221	/*
2222	 * switch to non delalloc mode if we are running low
2223	 * on free block. The free block accounting via percpu
2224	 * counters can get slightly wrong with percpu_counter_batch getting
2225	 * accumulated on each CPU without updating global counters
2226	 * Delalloc need an accurate free block accounting. So switch
2227	 * to non delalloc when we are near to error range.
2228	 */
2229	free_blocks  = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
2230	dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
2231	if (2 * free_blocks < 3 * dirty_blocks ||
2232		free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
 
 
 
 
 
 
 
 
2233		/*
2234		 * free block count is less than 150% of dirty blocks
2235		 * or free blocks is less than watermark
2236		 */
2237		return 1;
2238	}
2239	/*
2240	 * Even if we don't switch but are nearing capacity,
2241	 * start pushing delalloc when 1/2 of free blocks are dirty.
2242	 */
2243	if (free_blocks < 2 * dirty_blocks)
2244		writeback_inodes_sb_if_idle(sb);
2245
2246	return 0;
2247}
2248
 
 
 
 
 
 
 
 
 
 
 
 
 
2249static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2250			       loff_t pos, unsigned len, unsigned flags,
2251			       struct page **pagep, void **fsdata)
2252{
2253	int ret, retries = 0;
2254	struct page *page;
2255	pgoff_t index;
2256	struct inode *inode = mapping->host;
2257	handle_t *handle;
2258
2259	index = pos >> PAGE_CACHE_SHIFT;
 
 
 
2260
2261	if (ext4_nonda_switch(inode->i_sb)) {
 
2262		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2263		return ext4_write_begin(file, mapping, pos,
2264					len, flags, pagep, fsdata);
2265	}
2266	*fsdata = (void *)0;
2267	trace_ext4_da_write_begin(inode, pos, len, flags);
2268retry:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2269	/*
2270	 * With delayed allocation, we don't log the i_disksize update
2271	 * if there is delayed block allocation. But we still need
2272	 * to journalling the i_disksize update if writes to the end
2273	 * of file which has an already mapped buffer.
2274	 */
2275	handle = ext4_journal_start(inode, 1);
 
 
2276	if (IS_ERR(handle)) {
2277		ret = PTR_ERR(handle);
2278		goto out;
2279	}
2280	/* We cannot recurse into the filesystem as the transaction is already
2281	 * started */
2282	flags |= AOP_FLAG_NOFS;
2283
2284	page = grab_cache_page_write_begin(mapping, index, flags);
2285	if (!page) {
 
 
 
2286		ext4_journal_stop(handle);
2287		ret = -ENOMEM;
2288		goto out;
2289	}
2290	*pagep = page;
 
2291
 
 
 
 
2292	ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
 
2293	if (ret < 0) {
2294		unlock_page(page);
2295		ext4_journal_stop(handle);
2296		page_cache_release(page);
2297		/*
2298		 * block_write_begin may have instantiated a few blocks
2299		 * outside i_size.  Trim these off again. Don't need
2300		 * i_size_read because we hold i_mutex.
2301		 */
2302		if (pos + len > inode->i_size)
2303			ext4_truncate_failed_write(inode);
 
 
 
 
 
 
 
2304	}
2305
2306	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
2307		goto retry;
2308out:
2309	return ret;
2310}
2311
2312/*
2313 * Check if we should update i_disksize
2314 * when write to the end of file but not require block allocation
2315 */
2316static int ext4_da_should_update_i_disksize(struct page *page,
2317					    unsigned long offset)
2318{
2319	struct buffer_head *bh;
2320	struct inode *inode = page->mapping->host;
2321	unsigned int idx;
2322	int i;
2323
2324	bh = page_buffers(page);
2325	idx = offset >> inode->i_blkbits;
2326
2327	for (i = 0; i < idx; i++)
2328		bh = bh->b_this_page;
2329
2330	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2331		return 0;
2332	return 1;
2333}
2334
2335static int ext4_da_write_end(struct file *file,
2336			     struct address_space *mapping,
2337			     loff_t pos, unsigned len, unsigned copied,
2338			     struct page *page, void *fsdata)
2339{
2340	struct inode *inode = mapping->host;
2341	int ret = 0, ret2;
2342	handle_t *handle = ext4_journal_current_handle();
2343	loff_t new_i_size;
2344	unsigned long start, end;
2345	int write_mode = (int)(unsigned long)fsdata;
2346
2347	if (write_mode == FALL_BACK_TO_NONDELALLOC) {
2348		if (ext4_should_order_data(inode)) {
2349			return ext4_ordered_write_end(file, mapping, pos,
2350					len, copied, page, fsdata);
2351		} else if (ext4_should_writeback_data(inode)) {
2352			return ext4_writeback_write_end(file, mapping, pos,
2353					len, copied, page, fsdata);
2354		} else {
2355			BUG();
2356		}
2357	}
2358
2359	trace_ext4_da_write_end(inode, pos, len, copied);
2360	start = pos & (PAGE_CACHE_SIZE - 1);
2361	end = start + copied - 1;
2362
2363	/*
2364	 * generic_write_end() will run mark_inode_dirty() if i_size
2365	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
2366	 * into that.
2367	 */
2368
2369	new_i_size = pos + copied;
2370	if (new_i_size > EXT4_I(inode)->i_disksize) {
2371		if (ext4_da_should_update_i_disksize(page, end)) {
2372			down_write(&EXT4_I(inode)->i_data_sem);
2373			if (new_i_size > EXT4_I(inode)->i_disksize) {
2374				/*
2375				 * Updating i_disksize when extending file
2376				 * without needing block allocation
2377				 */
2378				if (ext4_should_order_data(inode))
2379					ret = ext4_jbd2_file_inode(handle,
2380								   inode);
2381
2382				EXT4_I(inode)->i_disksize = new_i_size;
2383			}
2384			up_write(&EXT4_I(inode)->i_data_sem);
2385			/* We need to mark inode dirty even if
2386			 * new_i_size is less that inode->i_size
2387			 * bu greater than i_disksize.(hint delalloc)
2388			 */
2389			ext4_mark_inode_dirty(handle, inode);
2390		}
2391	}
2392	ret2 = generic_write_end(file, mapping, pos, len, copied,
 
 
 
 
 
 
 
2393							page, fsdata);
 
2394	copied = ret2;
2395	if (ret2 < 0)
2396		ret = ret2;
2397	ret2 = ext4_journal_stop(handle);
2398	if (!ret)
2399		ret = ret2;
2400
2401	return ret ? ret : copied;
2402}
2403
2404static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
 
2405{
2406	/*
2407	 * Drop reserved blocks
2408	 */
2409	BUG_ON(!PageLocked(page));
2410	if (!page_has_buffers(page))
2411		goto out;
2412
2413	ext4_da_page_release_reservation(page, offset);
2414
2415out:
2416	ext4_invalidatepage(page, offset);
2417
2418	return;
2419}
2420
2421/*
2422 * Force all delayed allocation blocks to be allocated for a given inode.
2423 */
2424int ext4_alloc_da_blocks(struct inode *inode)
2425{
2426	trace_ext4_alloc_da_blocks(inode);
2427
2428	if (!EXT4_I(inode)->i_reserved_data_blocks &&
2429	    !EXT4_I(inode)->i_reserved_meta_blocks)
2430		return 0;
2431
2432	/*
2433	 * We do something simple for now.  The filemap_flush() will
2434	 * also start triggering a write of the data blocks, which is
2435	 * not strictly speaking necessary (and for users of
2436	 * laptop_mode, not even desirable).  However, to do otherwise
2437	 * would require replicating code paths in:
2438	 *
2439	 * ext4_da_writepages() ->
2440	 *    write_cache_pages() ---> (via passed in callback function)
2441	 *        __mpage_da_writepage() -->
2442	 *           mpage_add_bh_to_extent()
2443	 *           mpage_da_map_blocks()
2444	 *
2445	 * The problem is that write_cache_pages(), located in
2446	 * mm/page-writeback.c, marks pages clean in preparation for
2447	 * doing I/O, which is not desirable if we're not planning on
2448	 * doing I/O at all.
2449	 *
2450	 * We could call write_cache_pages(), and then redirty all of
2451	 * the pages by calling redirty_page_for_writepage() but that
2452	 * would be ugly in the extreme.  So instead we would need to
2453	 * replicate parts of the code in the above functions,
2454	 * simplifying them because we wouldn't actually intend to
2455	 * write out the pages, but rather only collect contiguous
2456	 * logical block extents, call the multi-block allocator, and
2457	 * then update the buffer heads with the block allocations.
2458	 *
2459	 * For now, though, we'll cheat by calling filemap_flush(),
2460	 * which will map the blocks, and start the I/O, but not
2461	 * actually wait for the I/O to complete.
2462	 */
2463	return filemap_flush(inode->i_mapping);
2464}
2465
2466/*
2467 * bmap() is special.  It gets used by applications such as lilo and by
2468 * the swapper to find the on-disk block of a specific piece of data.
2469 *
2470 * Naturally, this is dangerous if the block concerned is still in the
2471 * journal.  If somebody makes a swapfile on an ext4 data-journaling
2472 * filesystem and enables swap, then they may get a nasty shock when the
2473 * data getting swapped to that swapfile suddenly gets overwritten by
2474 * the original zero's written out previously to the journal and
2475 * awaiting writeback in the kernel's buffer cache.
2476 *
2477 * So, if we see any bmap calls here on a modified, data-journaled file,
2478 * take extra steps to flush any blocks which might be in the cache.
2479 */
2480static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2481{
2482	struct inode *inode = mapping->host;
2483	journal_t *journal;
2484	int err;
2485
 
 
 
 
 
 
2486	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2487			test_opt(inode->i_sb, DELALLOC)) {
2488		/*
2489		 * With delalloc we want to sync the file
2490		 * so that we can make sure we allocate
2491		 * blocks for file
2492		 */
2493		filemap_write_and_wait(mapping);
2494	}
2495
2496	if (EXT4_JOURNAL(inode) &&
2497	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2498		/*
2499		 * This is a REALLY heavyweight approach, but the use of
2500		 * bmap on dirty files is expected to be extremely rare:
2501		 * only if we run lilo or swapon on a freshly made file
2502		 * do we expect this to happen.
2503		 *
2504		 * (bmap requires CAP_SYS_RAWIO so this does not
2505		 * represent an unprivileged user DOS attack --- we'd be
2506		 * in trouble if mortal users could trigger this path at
2507		 * will.)
2508		 *
2509		 * NB. EXT4_STATE_JDATA is not set on files other than
2510		 * regular files.  If somebody wants to bmap a directory
2511		 * or symlink and gets confused because the buffer
2512		 * hasn't yet been flushed to disk, they deserve
2513		 * everything they get.
2514		 */
2515
2516		ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2517		journal = EXT4_JOURNAL(inode);
2518		jbd2_journal_lock_updates(journal);
2519		err = jbd2_journal_flush(journal);
2520		jbd2_journal_unlock_updates(journal);
2521
2522		if (err)
2523			return 0;
2524	}
2525
2526	return generic_block_bmap(mapping, block, ext4_get_block);
2527}
2528
2529static int ext4_readpage(struct file *file, struct page *page)
2530{
 
 
 
2531	trace_ext4_readpage(page);
2532	return mpage_readpage(page, ext4_get_block);
 
 
 
 
 
 
 
2533}
2534
2535static int
2536ext4_readpages(struct file *file, struct address_space *mapping,
2537		struct list_head *pages, unsigned nr_pages)
2538{
2539	return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
 
 
 
 
 
 
2540}
2541
2542static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset)
 
2543{
2544	struct buffer_head *head, *bh;
2545	unsigned int curr_off = 0;
2546
2547	if (!page_has_buffers(page))
2548		return;
2549	head = bh = page_buffers(page);
2550	do {
2551		if (offset <= curr_off && test_clear_buffer_uninit(bh)
2552					&& bh->b_private) {
2553			ext4_free_io_end(bh->b_private);
2554			bh->b_private = NULL;
2555			bh->b_end_io = NULL;
2556		}
2557		curr_off = curr_off + bh->b_size;
2558		bh = bh->b_this_page;
2559	} while (bh != head);
2560}
2561
2562static void ext4_invalidatepage(struct page *page, unsigned long offset)
 
 
2563{
2564	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2565
2566	trace_ext4_invalidatepage(page, offset);
2567
2568	/*
2569	 * free any io_end structure allocated for buffers to be discarded
2570	 */
2571	if (ext4_should_dioread_nolock(page->mapping->host))
2572		ext4_invalidatepage_free_endio(page, offset);
2573	/*
2574	 * If it's a full truncate we just forget about the pending dirtying
2575	 */
2576	if (offset == 0)
2577		ClearPageChecked(page);
2578
2579	if (journal)
2580		jbd2_journal_invalidatepage(journal, page, offset);
2581	else
2582		block_invalidatepage(page, offset);
 
 
 
 
 
2583}
2584
2585static int ext4_releasepage(struct page *page, gfp_t wait)
2586{
2587	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2588
2589	trace_ext4_releasepage(page);
2590
2591	WARN_ON(PageChecked(page));
2592	if (!page_has_buffers(page))
2593		return 0;
2594	if (journal)
2595		return jbd2_journal_try_to_free_buffers(journal, page, wait);
2596	else
2597		return try_to_free_buffers(page);
2598}
2599
2600/*
2601 * ext4_get_block used when preparing for a DIO write or buffer write.
2602 * We allocate an uinitialized extent if blocks haven't been allocated.
2603 * The extent will be converted to initialized after the IO is complete.
2604 */
2605static int ext4_get_block_write(struct inode *inode, sector_t iblock,
2606		   struct buffer_head *bh_result, int create)
2607{
2608	ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
2609		   inode->i_ino, create);
2610	return _ext4_get_block(inode, iblock, bh_result,
2611			       EXT4_GET_BLOCKS_IO_CREATE_EXT);
 
 
 
 
 
2612}
2613
2614static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
2615			    ssize_t size, void *private, int ret,
2616			    bool is_async)
2617{
2618	struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
2619        ext4_io_end_t *io_end = iocb->private;
2620	struct workqueue_struct *wq;
2621	unsigned long flags;
2622	struct ext4_inode_info *ei;
 
2623
2624	/* if not async direct IO or dio with 0 bytes write, just return */
2625	if (!io_end || !size)
2626		goto out;
2627
2628	ext_debug("ext4_end_io_dio(): io_end 0x%p"
2629		  "for inode %lu, iocb 0x%p, offset %llu, size %llu\n",
2630 		  iocb->private, io_end->inode->i_ino, iocb, offset,
2631		  size);
2632
2633	/* if not aio dio with unwritten extents, just free io and return */
2634	if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
2635		ext4_free_io_end(io_end);
2636		iocb->private = NULL;
2637out:
2638		if (is_async)
2639			aio_complete(iocb, ret, 0);
2640		inode_dio_done(inode);
2641		return;
2642	}
2643
2644	io_end->offset = offset;
2645	io_end->size = size;
2646	if (is_async) {
2647		io_end->iocb = iocb;
2648		io_end->result = ret;
2649	}
2650	wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;
2651
2652	/* Add the io_end to per-inode completed aio dio list*/
2653	ei = EXT4_I(io_end->inode);
2654	spin_lock_irqsave(&ei->i_completed_io_lock, flags);
2655	list_add_tail(&io_end->list, &ei->i_completed_io_list);
2656	spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
2657
2658	/* queue the work to convert unwritten extents to written */
2659	queue_work(wq, &io_end->work);
2660	iocb->private = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2661
2662	/* XXX: probably should move into the real I/O completion handler */
2663	inode_dio_done(inode);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2664}
2665
2666static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate)
 
2667{
2668	ext4_io_end_t *io_end = bh->b_private;
2669	struct workqueue_struct *wq;
2670	struct inode *inode;
2671	unsigned long flags;
2672
2673	if (!test_clear_buffer_uninit(bh) || !io_end)
2674		goto out;
2675
2676	if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) {
2677		printk("sb umounted, discard end_io request for inode %lu\n",
2678			io_end->inode->i_ino);
2679		ext4_free_io_end(io_end);
2680		goto out;
2681	}
 
 
 
 
 
 
 
 
2682
 
 
 
 
 
2683	/*
2684	 * It may be over-defensive here to check EXT4_IO_END_UNWRITTEN now,
2685	 * but being more careful is always safe for the future change.
2686	 */
2687	inode = io_end->inode;
2688	if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
2689		io_end->flag |= EXT4_IO_END_UNWRITTEN;
2690		atomic_inc(&EXT4_I(inode)->i_aiodio_unwritten);
2691	}
2692
2693	/* Add the io_end to per-inode completed io list*/
2694	spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
2695	list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list);
2696	spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
2697
2698	wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq;
2699	/* queue the work to convert unwritten extents to written */
2700	queue_work(wq, &io_end->work);
2701out:
2702	bh->b_private = NULL;
2703	bh->b_end_io = NULL;
2704	clear_buffer_uninit(bh);
2705	end_buffer_async_write(bh, uptodate);
2706}
2707
2708static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode)
2709{
2710	ext4_io_end_t *io_end;
2711	struct page *page = bh->b_page;
2712	loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT;
2713	size_t size = bh->b_size;
2714
2715retry:
2716	io_end = ext4_init_io_end(inode, GFP_ATOMIC);
2717	if (!io_end) {
2718		pr_warn_ratelimited("%s: allocation fail\n", __func__);
2719		schedule();
2720		goto retry;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2721	}
2722	io_end->offset = offset;
2723	io_end->size = size;
2724	/*
2725	 * We need to hold a reference to the page to make sure it
2726	 * doesn't get evicted before ext4_end_io_work() has a chance
2727	 * to convert the extent from written to unwritten.
2728	 */
2729	io_end->page = page;
2730	get_page(io_end->page);
2731
2732	bh->b_private = io_end;
2733	bh->b_end_io = ext4_end_io_buffer_write;
2734	return 0;
2735}
2736
2737/*
2738 * For ext4 extent files, ext4 will do direct-io write to holes,
 
 
2739 * preallocated extents, and those write extend the file, no need to
2740 * fall back to buffered IO.
2741 *
2742 * For holes, we fallocate those blocks, mark them as uninitialized
2743 * If those blocks were preallocated, we mark sure they are splited, but
2744 * still keep the range to write as uninitialized.
2745 *
2746 * The unwrritten extents will be converted to written when DIO is completed.
2747 * For async direct IO, since the IO may still pending when return, we
2748 * set up an end_io call back function, which will do the conversion
2749 * when async direct IO completed.
2750 *
2751 * If the O_DIRECT write will extend the file then add this inode to the
2752 * orphan list.  So recovery will truncate it back to the original size
2753 * if the machine crashes during the write.
2754 *
2755 */
2756static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
2757			      const struct iovec *iov, loff_t offset,
2758			      unsigned long nr_segs)
2759{
2760	struct file *file = iocb->ki_filp;
2761	struct inode *inode = file->f_mapping->host;
 
2762	ssize_t ret;
2763	size_t count = iov_length(iov, nr_segs);
2764
 
 
 
2765	loff_t final_size = offset + count;
2766	if (rw == WRITE && final_size <= inode->i_size) {
2767		/*
2768 		 * We could direct write to holes and fallocate.
2769		 *
2770 		 * Allocated blocks to fill the hole are marked as uninitialized
2771 		 * to prevent parallel buffered read to expose the stale data
2772 		 * before DIO complete the data IO.
2773		 *
2774 		 * As to previously fallocated extents, ext4 get_block
2775 		 * will just simply mark the buffer mapped but still
2776 		 * keep the extents uninitialized.
2777 		 *
2778		 * for non AIO case, we will convert those unwritten extents
2779		 * to written after return back from blockdev_direct_IO.
2780		 *
2781		 * for async DIO, the conversion needs to be defered when
2782		 * the IO is completed. The ext4 end_io callback function
2783		 * will be called to take care of the conversion work.
2784		 * Here for async case, we allocate an io_end structure to
2785		 * hook to the iocb.
2786 		 */
2787		iocb->private = NULL;
2788		EXT4_I(inode)->cur_aio_dio = NULL;
2789		if (!is_sync_kiocb(iocb)) {
2790			iocb->private = ext4_init_io_end(inode, GFP_NOFS);
2791			if (!iocb->private)
2792				return -ENOMEM;
2793			/*
2794			 * we save the io structure for current async
2795			 * direct IO, so that later ext4_map_blocks()
2796			 * could flag the io structure whether there
2797			 * is a unwritten extents needs to be converted
2798			 * when IO is completed.
2799			 */
2800			EXT4_I(inode)->cur_aio_dio = iocb->private;
2801		}
 
 
 
 
 
 
 
 
 
2802
2803		ret = __blockdev_direct_IO(rw, iocb, inode,
2804					 inode->i_sb->s_bdev, iov,
2805					 offset, nr_segs,
2806					 ext4_get_block_write,
2807					 ext4_end_io_dio,
2808					 NULL,
2809					 DIO_LOCKING | DIO_SKIP_HOLES);
2810		if (iocb->private)
2811			EXT4_I(inode)->cur_aio_dio = NULL;
2812		/*
2813		 * The io_end structure takes a reference to the inode,
2814		 * that structure needs to be destroyed and the
2815		 * reference to the inode need to be dropped, when IO is
2816		 * complete, even with 0 byte write, or failed.
2817		 *
2818		 * In the successful AIO DIO case, the io_end structure will be
2819		 * desctroyed and the reference to the inode will be dropped
2820		 * after the end_io call back function is called.
2821		 *
2822		 * In the case there is 0 byte write, or error case, since
2823		 * VFS direct IO won't invoke the end_io call back function,
2824		 * we need to free the end_io structure here.
2825		 */
2826		if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
2827			ext4_free_io_end(iocb->private);
2828			iocb->private = NULL;
2829		} else if (ret > 0 && ext4_test_inode_state(inode,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2830						EXT4_STATE_DIO_UNWRITTEN)) {
2831			int err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2832			/*
2833			 * for non AIO case, since the IO is already
2834			 * completed, we could do the conversion right here
 
 
 
 
 
 
2835			 */
2836			err = ext4_convert_unwritten_extents(inode,
2837							     offset, ret);
2838			if (err < 0)
2839				ret = err;
2840			ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
 
2841		}
2842		return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2843	}
 
 
 
2844
2845	/* for write the the end of file case, we fall back to old way */
2846	return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2847}
2848
2849static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
2850			      const struct iovec *iov, loff_t offset,
2851			      unsigned long nr_segs)
2852{
2853	struct file *file = iocb->ki_filp;
2854	struct inode *inode = file->f_mapping->host;
 
 
2855	ssize_t ret;
2856
2857	trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
2858	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
2859		ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2860	else
2861		ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
2862	trace_ext4_direct_IO_exit(inode, offset,
2863				iov_length(iov, nr_segs), rw, ret);
2864	return ret;
2865}
2866
2867/*
2868 * Pages can be marked dirty completely asynchronously from ext4's journalling
2869 * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
2870 * much here because ->set_page_dirty is called under VFS locks.  The page is
2871 * not necessarily locked.
2872 *
2873 * We cannot just dirty the page and leave attached buffers clean, because the
2874 * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
2875 * or jbddirty because all the journalling code will explode.
2876 *
2877 * So what we do is to mark the page "pending dirty" and next time writepage
2878 * is called, propagate that into the buffers appropriately.
2879 */
2880static int ext4_journalled_set_page_dirty(struct page *page)
2881{
2882	SetPageChecked(page);
2883	return __set_page_dirty_nobuffers(page);
2884}
2885
2886static const struct address_space_operations ext4_ordered_aops = {
2887	.readpage		= ext4_readpage,
2888	.readpages		= ext4_readpages,
2889	.writepage		= ext4_writepage,
2890	.write_begin		= ext4_write_begin,
2891	.write_end		= ext4_ordered_write_end,
2892	.bmap			= ext4_bmap,
2893	.invalidatepage		= ext4_invalidatepage,
2894	.releasepage		= ext4_releasepage,
2895	.direct_IO		= ext4_direct_IO,
2896	.migratepage		= buffer_migrate_page,
2897	.is_partially_uptodate  = block_is_partially_uptodate,
2898	.error_remove_page	= generic_error_remove_page,
2899};
2900
2901static const struct address_space_operations ext4_writeback_aops = {
2902	.readpage		= ext4_readpage,
2903	.readpages		= ext4_readpages,
2904	.writepage		= ext4_writepage,
 
2905	.write_begin		= ext4_write_begin,
2906	.write_end		= ext4_writeback_write_end,
 
2907	.bmap			= ext4_bmap,
2908	.invalidatepage		= ext4_invalidatepage,
2909	.releasepage		= ext4_releasepage,
2910	.direct_IO		= ext4_direct_IO,
2911	.migratepage		= buffer_migrate_page,
2912	.is_partially_uptodate  = block_is_partially_uptodate,
2913	.error_remove_page	= generic_error_remove_page,
2914};
2915
2916static const struct address_space_operations ext4_journalled_aops = {
2917	.readpage		= ext4_readpage,
2918	.readpages		= ext4_readpages,
2919	.writepage		= ext4_writepage,
 
2920	.write_begin		= ext4_write_begin,
2921	.write_end		= ext4_journalled_write_end,
2922	.set_page_dirty		= ext4_journalled_set_page_dirty,
2923	.bmap			= ext4_bmap,
2924	.invalidatepage		= ext4_invalidatepage,
2925	.releasepage		= ext4_releasepage,
 
2926	.is_partially_uptodate  = block_is_partially_uptodate,
2927	.error_remove_page	= generic_error_remove_page,
2928};
2929
2930static const struct address_space_operations ext4_da_aops = {
2931	.readpage		= ext4_readpage,
2932	.readpages		= ext4_readpages,
2933	.writepage		= ext4_writepage,
2934	.writepages		= ext4_da_writepages,
2935	.write_begin		= ext4_da_write_begin,
2936	.write_end		= ext4_da_write_end,
 
2937	.bmap			= ext4_bmap,
2938	.invalidatepage		= ext4_da_invalidatepage,
2939	.releasepage		= ext4_releasepage,
2940	.direct_IO		= ext4_direct_IO,
2941	.migratepage		= buffer_migrate_page,
2942	.is_partially_uptodate  = block_is_partially_uptodate,
2943	.error_remove_page	= generic_error_remove_page,
2944};
2945
 
 
 
 
 
 
 
2946void ext4_set_aops(struct inode *inode)
2947{
2948	if (ext4_should_order_data(inode) &&
2949		test_opt(inode->i_sb, DELALLOC))
2950		inode->i_mapping->a_ops = &ext4_da_aops;
2951	else if (ext4_should_order_data(inode))
2952		inode->i_mapping->a_ops = &ext4_ordered_aops;
2953	else if (ext4_should_writeback_data(inode) &&
2954		 test_opt(inode->i_sb, DELALLOC))
 
 
 
 
 
 
2955		inode->i_mapping->a_ops = &ext4_da_aops;
2956	else if (ext4_should_writeback_data(inode))
2957		inode->i_mapping->a_ops = &ext4_writeback_aops;
2958	else
2959		inode->i_mapping->a_ops = &ext4_journalled_aops;
2960}
2961
2962/*
2963 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
2964 * up to the end of the block which corresponds to `from'.
2965 * This required during truncate. We need to physically zero the tail end
2966 * of that block so it doesn't yield old data if the file is later grown.
2967 */
2968int ext4_block_truncate_page(handle_t *handle,
2969		struct address_space *mapping, loff_t from)
2970{
2971	unsigned offset = from & (PAGE_CACHE_SIZE-1);
2972	unsigned length;
2973	unsigned blocksize;
2974	struct inode *inode = mapping->host;
2975
2976	blocksize = inode->i_sb->s_blocksize;
2977	length = blocksize - (offset & (blocksize - 1));
2978
2979	return ext4_block_zero_page_range(handle, mapping, from, length);
2980}
2981
2982/*
2983 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
2984 * starting from file offset 'from'.  The range to be zero'd must
2985 * be contained with in one block.  If the specified range exceeds
2986 * the end of the block it will be shortened to end of the block
2987 * that cooresponds to 'from'
2988 */
2989int ext4_block_zero_page_range(handle_t *handle,
2990		struct address_space *mapping, loff_t from, loff_t length)
2991{
2992	ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
2993	unsigned offset = from & (PAGE_CACHE_SIZE-1);
2994	unsigned blocksize, max, pos;
2995	ext4_lblk_t iblock;
2996	struct inode *inode = mapping->host;
2997	struct buffer_head *bh;
2998	struct page *page;
2999	int err = 0;
3000
3001	page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3002				   mapping_gfp_mask(mapping) & ~__GFP_FS);
3003	if (!page)
3004		return -EINVAL;
3005
3006	blocksize = inode->i_sb->s_blocksize;
3007	max = blocksize - (offset & (blocksize - 1));
3008
3009	/*
3010	 * correct length if it does not fall between
3011	 * 'from' and the end of the block
3012	 */
3013	if (length > max || length < 0)
3014		length = max;
3015
3016	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3017
3018	if (!page_has_buffers(page))
3019		create_empty_buffers(page, blocksize, 0);
3020
3021	/* Find the buffer that contains "offset" */
3022	bh = page_buffers(page);
3023	pos = blocksize;
3024	while (offset >= pos) {
3025		bh = bh->b_this_page;
3026		iblock++;
3027		pos += blocksize;
3028	}
3029
3030	err = 0;
3031	if (buffer_freed(bh)) {
3032		BUFFER_TRACE(bh, "freed: skip");
3033		goto unlock;
3034	}
3035
3036	if (!buffer_mapped(bh)) {
3037		BUFFER_TRACE(bh, "unmapped");
3038		ext4_get_block(inode, iblock, bh, 0);
3039		/* unmapped? It's a hole - nothing to do */
3040		if (!buffer_mapped(bh)) {
3041			BUFFER_TRACE(bh, "still unmapped");
3042			goto unlock;
3043		}
3044	}
3045
3046	/* Ok, it's mapped. Make sure it's up-to-date */
3047	if (PageUptodate(page))
3048		set_buffer_uptodate(bh);
3049
3050	if (!buffer_uptodate(bh)) {
3051		err = -EIO;
3052		ll_rw_block(READ, 1, &bh);
3053		wait_on_buffer(bh);
3054		/* Uhhuh. Read error. Complain and punt. */
3055		if (!buffer_uptodate(bh))
3056			goto unlock;
 
 
 
 
 
 
 
 
3057	}
3058
3059	if (ext4_should_journal_data(inode)) {
3060		BUFFER_TRACE(bh, "get write access");
3061		err = ext4_journal_get_write_access(handle, bh);
3062		if (err)
3063			goto unlock;
3064	}
3065
3066	zero_user(page, offset, length);
3067
3068	BUFFER_TRACE(bh, "zeroed end of block");
3069
3070	err = 0;
3071	if (ext4_should_journal_data(inode)) {
3072		err = ext4_handle_dirty_metadata(handle, inode, bh);
3073	} else {
3074		if (ext4_should_order_data(inode) && EXT4_I(inode)->jinode)
3075			err = ext4_jbd2_file_inode(handle, inode);
3076		mark_buffer_dirty(bh);
 
 
3077	}
3078
3079unlock:
3080	unlock_page(page);
3081	page_cache_release(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3082	return err;
3083}
3084
3085int ext4_can_truncate(struct inode *inode)
3086{
3087	if (S_ISREG(inode->i_mode))
3088		return 1;
3089	if (S_ISDIR(inode->i_mode))
3090		return 1;
3091	if (S_ISLNK(inode->i_mode))
3092		return !ext4_inode_is_fast_symlink(inode);
3093	return 0;
3094}
3095
3096/*
3097 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3098 * associated with the given offset and length
3099 *
3100 * @inode:  File inode
3101 * @offset: The offset where the hole will begin
3102 * @len:    The length of the hole
3103 *
3104 * Returns: 0 on sucess or negative on failure
3105 */
3106
3107int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3108{
3109	struct inode *inode = file->f_path.dentry->d_inode;
 
 
 
 
 
 
 
3110	if (!S_ISREG(inode->i_mode))
3111		return -ENOTSUPP;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3112
3113	if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
3114		/* TODO: Add support for non extent hole punching */
3115		return -ENOTSUPP;
 
 
 
 
3116	}
3117
3118	return ext4_ext_punch_hole(file, offset, length);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3119}
3120
3121/*
3122 * ext4_truncate()
3123 *
3124 * We block out ext4_get_block() block instantiations across the entire
3125 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3126 * simultaneously on behalf of the same inode.
3127 *
3128 * As we work through the truncate and commmit bits of it to the journal there
3129 * is one core, guiding principle: the file's tree must always be consistent on
3130 * disk.  We must be able to restart the truncate after a crash.
3131 *
3132 * The file's tree may be transiently inconsistent in memory (although it
3133 * probably isn't), but whenever we close off and commit a journal transaction,
3134 * the contents of (the filesystem + the journal) must be consistent and
3135 * restartable.  It's pretty simple, really: bottom up, right to left (although
3136 * left-to-right works OK too).
3137 *
3138 * Note that at recovery time, journal replay occurs *before* the restart of
3139 * truncate against the orphan inode list.
3140 *
3141 * The committed inode has the new, desired i_size (which is the same as
3142 * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3143 * that this inode's truncate did not complete and it will again call
3144 * ext4_truncate() to have another go.  So there will be instantiated blocks
3145 * to the right of the truncation point in a crashed ext4 filesystem.  But
3146 * that's fine - as long as they are linked from the inode, the post-crash
3147 * ext4_truncate() run will find them and release them.
3148 */
3149void ext4_truncate(struct inode *inode)
3150{
 
 
 
 
 
 
 
 
 
 
 
 
 
3151	trace_ext4_truncate_enter(inode);
3152
3153	if (!ext4_can_truncate(inode))
3154		return;
3155
3156	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3157
3158	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3159		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3160
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3161	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3162		ext4_ext_truncate(inode);
3163	else
3164		ext4_ind_truncate(inode);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3165
3166	trace_ext4_truncate_exit(inode);
 
3167}
3168
3169/*
3170 * ext4_get_inode_loc returns with an extra refcount against the inode's
3171 * underlying buffer_head on success. If 'in_mem' is true, we have all
3172 * data in memory that is needed to recreate the on-disk version of this
3173 * inode.
3174 */
3175static int __ext4_get_inode_loc(struct inode *inode,
3176				struct ext4_iloc *iloc, int in_mem)
3177{
3178	struct ext4_group_desc	*gdp;
3179	struct buffer_head	*bh;
3180	struct super_block	*sb = inode->i_sb;
3181	ext4_fsblk_t		block;
3182	int			inodes_per_block, inode_offset;
3183
3184	iloc->bh = NULL;
3185	if (!ext4_valid_inum(sb, inode->i_ino))
3186		return -EIO;
3187
3188	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3189	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3190	if (!gdp)
3191		return -EIO;
3192
3193	/*
3194	 * Figure out the offset within the block group inode table
3195	 */
3196	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3197	inode_offset = ((inode->i_ino - 1) %
3198			EXT4_INODES_PER_GROUP(sb));
3199	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3200	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3201
3202	bh = sb_getblk(sb, block);
3203	if (!bh) {
3204		EXT4_ERROR_INODE_BLOCK(inode, block,
3205				       "unable to read itable block");
3206		return -EIO;
3207	}
3208	if (!buffer_uptodate(bh)) {
3209		lock_buffer(bh);
3210
3211		/*
3212		 * If the buffer has the write error flag, we have failed
3213		 * to write out another inode in the same block.  In this
3214		 * case, we don't have to read the block because we may
3215		 * read the old inode data successfully.
3216		 */
3217		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3218			set_buffer_uptodate(bh);
3219
3220		if (buffer_uptodate(bh)) {
3221			/* someone brought it uptodate while we waited */
3222			unlock_buffer(bh);
3223			goto has_buffer;
3224		}
3225
3226		/*
3227		 * If we have all information of the inode in memory and this
3228		 * is the only valid inode in the block, we need not read the
3229		 * block.
3230		 */
3231		if (in_mem) {
3232			struct buffer_head *bitmap_bh;
3233			int i, start;
3234
3235			start = inode_offset & ~(inodes_per_block - 1);
3236
3237			/* Is the inode bitmap in cache? */
3238			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3239			if (!bitmap_bh)
3240				goto make_io;
3241
3242			/*
3243			 * If the inode bitmap isn't in cache then the
3244			 * optimisation may end up performing two reads instead
3245			 * of one, so skip it.
3246			 */
3247			if (!buffer_uptodate(bitmap_bh)) {
3248				brelse(bitmap_bh);
3249				goto make_io;
3250			}
3251			for (i = start; i < start + inodes_per_block; i++) {
3252				if (i == inode_offset)
3253					continue;
3254				if (ext4_test_bit(i, bitmap_bh->b_data))
3255					break;
3256			}
3257			brelse(bitmap_bh);
3258			if (i == start + inodes_per_block) {
3259				/* all other inodes are free, so skip I/O */
3260				memset(bh->b_data, 0, bh->b_size);
3261				set_buffer_uptodate(bh);
3262				unlock_buffer(bh);
3263				goto has_buffer;
3264			}
3265		}
3266
3267make_io:
3268		/*
3269		 * If we need to do any I/O, try to pre-readahead extra
3270		 * blocks from the inode table.
3271		 */
3272		if (EXT4_SB(sb)->s_inode_readahead_blks) {
3273			ext4_fsblk_t b, end, table;
3274			unsigned num;
 
3275
3276			table = ext4_inode_table(sb, gdp);
3277			/* s_inode_readahead_blks is always a power of 2 */
3278			b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
3279			if (table > b)
3280				b = table;
3281			end = b + EXT4_SB(sb)->s_inode_readahead_blks;
3282			num = EXT4_INODES_PER_GROUP(sb);
3283			if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3284				       EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
3285				num -= ext4_itable_unused_count(sb, gdp);
3286			table += num / inodes_per_block;
3287			if (end > table)
3288				end = table;
3289			while (b <= end)
3290				sb_breadahead(sb, b++);
3291		}
3292
3293		/*
3294		 * There are other valid inodes in the buffer, this inode
3295		 * has in-inode xattrs, or we don't have this inode in memory.
3296		 * Read the block from disk.
3297		 */
3298		trace_ext4_load_inode(inode);
3299		get_bh(bh);
3300		bh->b_end_io = end_buffer_read_sync;
3301		submit_bh(READ | REQ_META | REQ_PRIO, bh);
3302		wait_on_buffer(bh);
3303		if (!buffer_uptodate(bh)) {
3304			EXT4_ERROR_INODE_BLOCK(inode, block,
3305					       "unable to read itable block");
3306			brelse(bh);
3307			return -EIO;
3308		}
3309	}
3310has_buffer:
3311	iloc->bh = bh;
3312	return 0;
3313}
3314
3315int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3316{
3317	/* We have all inode data except xattrs in memory here. */
3318	return __ext4_get_inode_loc(inode, iloc,
3319		!ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3320}
3321
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3322void ext4_set_inode_flags(struct inode *inode)
3323{
3324	unsigned int flags = EXT4_I(inode)->i_flags;
 
3325
3326	inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3327	if (flags & EXT4_SYNC_FL)
3328		inode->i_flags |= S_SYNC;
3329	if (flags & EXT4_APPEND_FL)
3330		inode->i_flags |= S_APPEND;
3331	if (flags & EXT4_IMMUTABLE_FL)
3332		inode->i_flags |= S_IMMUTABLE;
3333	if (flags & EXT4_NOATIME_FL)
3334		inode->i_flags |= S_NOATIME;
3335	if (flags & EXT4_DIRSYNC_FL)
3336		inode->i_flags |= S_DIRSYNC;
3337}
3338
3339/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3340void ext4_get_inode_flags(struct ext4_inode_info *ei)
3341{
3342	unsigned int vfs_fl;
3343	unsigned long old_fl, new_fl;
3344
3345	do {
3346		vfs_fl = ei->vfs_inode.i_flags;
3347		old_fl = ei->i_flags;
3348		new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3349				EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3350				EXT4_DIRSYNC_FL);
3351		if (vfs_fl & S_SYNC)
3352			new_fl |= EXT4_SYNC_FL;
3353		if (vfs_fl & S_APPEND)
3354			new_fl |= EXT4_APPEND_FL;
3355		if (vfs_fl & S_IMMUTABLE)
3356			new_fl |= EXT4_IMMUTABLE_FL;
3357		if (vfs_fl & S_NOATIME)
3358			new_fl |= EXT4_NOATIME_FL;
3359		if (vfs_fl & S_DIRSYNC)
3360			new_fl |= EXT4_DIRSYNC_FL;
3361	} while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
3362}
3363
3364static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3365				  struct ext4_inode_info *ei)
3366{
3367	blkcnt_t i_blocks ;
3368	struct inode *inode = &(ei->vfs_inode);
3369	struct super_block *sb = inode->i_sb;
3370
3371	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3372				EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3373		/* we are using combined 48 bit field */
3374		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3375					le32_to_cpu(raw_inode->i_blocks_lo);
3376		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
3377			/* i_blocks represent file system block size */
3378			return i_blocks  << (inode->i_blkbits - 9);
3379		} else {
3380			return i_blocks;
3381		}
3382	} else {
3383		return le32_to_cpu(raw_inode->i_blocks_lo);
3384	}
3385}
3386
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3387struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
3388{
3389	struct ext4_iloc iloc;
3390	struct ext4_inode *raw_inode;
3391	struct ext4_inode_info *ei;
3392	struct inode *inode;
3393	journal_t *journal = EXT4_SB(sb)->s_journal;
3394	long ret;
 
3395	int block;
 
 
 
3396
3397	inode = iget_locked(sb, ino);
3398	if (!inode)
3399		return ERR_PTR(-ENOMEM);
3400	if (!(inode->i_state & I_NEW))
3401		return inode;
3402
3403	ei = EXT4_I(inode);
3404	iloc.bh = NULL;
3405
3406	ret = __ext4_get_inode_loc(inode, &iloc, 0);
3407	if (ret < 0)
3408		goto bad_inode;
3409	raw_inode = ext4_raw_inode(&iloc);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3410	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
3411	inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
3412	inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
 
 
 
 
 
 
 
3413	if (!(test_opt(inode->i_sb, NO_UID32))) {
3414		inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
3415		inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
3416	}
3417	inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
 
 
 
3418
3419	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
 
3420	ei->i_dir_start_lookup = 0;
3421	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
3422	/* We now have enough fields to check if the inode was active or not.
3423	 * This is needed because nfsd might try to access dead inodes
3424	 * the test is that same one that e2fsck uses
3425	 * NeilBrown 1999oct15
3426	 */
3427	if (inode->i_nlink == 0) {
3428		if (inode->i_mode == 0 ||
3429		    !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
 
3430			/* this inode is deleted */
3431			ret = -ESTALE;
3432			goto bad_inode;
3433		}
3434		/* The only unlinked inodes we let through here have
3435		 * valid i_mode and are being read by the orphan
3436		 * recovery code: that's fine, we're about to complete
3437		 * the process of deleting those. */
 
 
3438	}
3439	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
3440	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
3441	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
3442	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
3443		ei->i_file_acl |=
3444			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
3445	inode->i_size = ext4_isize(raw_inode);
 
 
 
 
 
3446	ei->i_disksize = inode->i_size;
3447#ifdef CONFIG_QUOTA
3448	ei->i_reserved_quota = 0;
3449#endif
3450	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
3451	ei->i_block_group = iloc.block_group;
3452	ei->i_last_alloc_group = ~0;
3453	/*
3454	 * NOTE! The in-memory inode i_data array is in little-endian order
3455	 * even on big-endian machines: we do NOT byteswap the block numbers!
3456	 */
3457	for (block = 0; block < EXT4_N_BLOCKS; block++)
3458		ei->i_data[block] = raw_inode->i_block[block];
3459	INIT_LIST_HEAD(&ei->i_orphan);
3460
3461	/*
3462	 * Set transaction id's of transactions that have to be committed
3463	 * to finish f[data]sync. We set them to currently running transaction
3464	 * as we cannot be sure that the inode or some of its metadata isn't
3465	 * part of the transaction - the inode could have been reclaimed and
3466	 * now it is reread from disk.
3467	 */
3468	if (journal) {
3469		transaction_t *transaction;
3470		tid_t tid;
3471
3472		read_lock(&journal->j_state_lock);
3473		if (journal->j_running_transaction)
3474			transaction = journal->j_running_transaction;
3475		else
3476			transaction = journal->j_committing_transaction;
3477		if (transaction)
3478			tid = transaction->t_tid;
3479		else
3480			tid = journal->j_commit_sequence;
3481		read_unlock(&journal->j_state_lock);
3482		ei->i_sync_tid = tid;
3483		ei->i_datasync_tid = tid;
3484	}
3485
3486	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3487		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
3488		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
3489		    EXT4_INODE_SIZE(inode->i_sb)) {
3490			ret = -EIO;
3491			goto bad_inode;
3492		}
3493		if (ei->i_extra_isize == 0) {
3494			/* The extra space is currently unused. Use it. */
 
3495			ei->i_extra_isize = sizeof(struct ext4_inode) -
3496					    EXT4_GOOD_OLD_INODE_SIZE;
3497		} else {
3498			__le32 *magic = (void *)raw_inode +
3499					EXT4_GOOD_OLD_INODE_SIZE +
3500					ei->i_extra_isize;
3501			if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
3502				ext4_set_inode_state(inode, EXT4_STATE_XATTR);
3503		}
3504	} else
3505		ei->i_extra_isize = 0;
3506
3507	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
3508	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
3509	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
3510	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
3511
3512	inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
3513	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3514		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
3515			inode->i_version |=
3516			(__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
 
 
 
 
3517	}
3518
3519	ret = 0;
3520	if (ei->i_file_acl &&
3521	    !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
3522		EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
3523				 ei->i_file_acl);
3524		ret = -EIO;
3525		goto bad_inode;
3526	} else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
3527		if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
3528		    (S_ISLNK(inode->i_mode) &&
3529		     !ext4_inode_is_fast_symlink(inode)))
3530			/* Validate extent which is part of inode */
3531			ret = ext4_ext_check_inode(inode);
3532	} else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
3533		   (S_ISLNK(inode->i_mode) &&
3534		    !ext4_inode_is_fast_symlink(inode))) {
3535		/* Validate block references which are part of inode */
3536		ret = ext4_ind_check_inode(inode);
 
 
3537	}
3538	if (ret)
3539		goto bad_inode;
3540
3541	if (S_ISREG(inode->i_mode)) {
3542		inode->i_op = &ext4_file_inode_operations;
3543		inode->i_fop = &ext4_file_operations;
3544		ext4_set_aops(inode);
3545	} else if (S_ISDIR(inode->i_mode)) {
3546		inode->i_op = &ext4_dir_inode_operations;
3547		inode->i_fop = &ext4_dir_operations;
3548	} else if (S_ISLNK(inode->i_mode)) {
3549		if (ext4_inode_is_fast_symlink(inode)) {
 
 
 
 
3550			inode->i_op = &ext4_fast_symlink_inode_operations;
3551			nd_terminate_link(ei->i_data, inode->i_size,
3552				sizeof(ei->i_data) - 1);
3553		} else {
3554			inode->i_op = &ext4_symlink_inode_operations;
3555			ext4_set_aops(inode);
3556		}
 
3557	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
3558	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
3559		inode->i_op = &ext4_special_inode_operations;
3560		if (raw_inode->i_block[0])
3561			init_special_inode(inode, inode->i_mode,
3562			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
3563		else
3564			init_special_inode(inode, inode->i_mode,
3565			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
 
 
3566	} else {
3567		ret = -EIO;
3568		EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
3569		goto bad_inode;
3570	}
3571	brelse(iloc.bh);
3572	ext4_set_inode_flags(inode);
 
3573	unlock_new_inode(inode);
3574	return inode;
3575
3576bad_inode:
3577	brelse(iloc.bh);
3578	iget_failed(inode);
3579	return ERR_PTR(ret);
3580}
3581
 
 
 
 
 
 
 
3582static int ext4_inode_blocks_set(handle_t *handle,
3583				struct ext4_inode *raw_inode,
3584				struct ext4_inode_info *ei)
3585{
3586	struct inode *inode = &(ei->vfs_inode);
3587	u64 i_blocks = inode->i_blocks;
3588	struct super_block *sb = inode->i_sb;
3589
3590	if (i_blocks <= ~0U) {
3591		/*
3592		 * i_blocks can be represnted in a 32 bit variable
3593		 * as multiple of 512 bytes
3594		 */
3595		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
3596		raw_inode->i_blocks_high = 0;
3597		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3598		return 0;
3599	}
3600	if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
3601		return -EFBIG;
3602
3603	if (i_blocks <= 0xffffffffffffULL) {
3604		/*
3605		 * i_blocks can be represented in a 48 bit variable
3606		 * as multiple of 512 bytes
3607		 */
3608		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
3609		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
3610		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3611	} else {
3612		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3613		/* i_block is stored in file system block size */
3614		i_blocks = i_blocks >> (inode->i_blkbits - 9);
3615		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
3616		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
3617	}
3618	return 0;
3619}
3620
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3621/*
3622 * Post the struct inode info into an on-disk inode location in the
3623 * buffer-cache.  This gobbles the caller's reference to the
3624 * buffer_head in the inode location struct.
3625 *
3626 * The caller must have write access to iloc->bh.
3627 */
3628static int ext4_do_update_inode(handle_t *handle,
3629				struct inode *inode,
3630				struct ext4_iloc *iloc)
3631{
3632	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
3633	struct ext4_inode_info *ei = EXT4_I(inode);
3634	struct buffer_head *bh = iloc->bh;
 
3635	int err = 0, rc, block;
 
 
 
 
3636
3637	/* For fields not not tracking in the in-memory inode,
 
 
3638	 * initialise them to zero for new inodes. */
3639	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
3640		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
3641
3642	ext4_get_inode_flags(ei);
3643	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
 
 
 
3644	if (!(test_opt(inode->i_sb, NO_UID32))) {
3645		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
3646		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
3647/*
3648 * Fix up interoperability with old kernels. Otherwise, old inodes get
3649 * re-used with the upper 16 bits of the uid/gid intact
3650 */
3651		if (!ei->i_dtime) {
3652			raw_inode->i_uid_high =
3653				cpu_to_le16(high_16_bits(inode->i_uid));
3654			raw_inode->i_gid_high =
3655				cpu_to_le16(high_16_bits(inode->i_gid));
3656		} else {
3657			raw_inode->i_uid_high = 0;
3658			raw_inode->i_gid_high = 0;
 
 
 
 
 
3659		}
3660	} else {
3661		raw_inode->i_uid_low =
3662			cpu_to_le16(fs_high2lowuid(inode->i_uid));
3663		raw_inode->i_gid_low =
3664			cpu_to_le16(fs_high2lowgid(inode->i_gid));
3665		raw_inode->i_uid_high = 0;
3666		raw_inode->i_gid_high = 0;
3667	}
3668	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
3669
3670	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
3671	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
3672	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
3673	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
3674
3675	if (ext4_inode_blocks_set(handle, raw_inode, ei))
 
 
3676		goto out_brelse;
 
3677	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
3678	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
3679	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
3680	    cpu_to_le32(EXT4_OS_HURD))
3681		raw_inode->i_file_acl_high =
3682			cpu_to_le16(ei->i_file_acl >> 32);
3683	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
3684	ext4_isize_set(raw_inode, ei->i_disksize);
 
 
 
3685	if (ei->i_disksize > 0x7fffffffULL) {
3686		struct super_block *sb = inode->i_sb;
3687		if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
3688				EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
3689				EXT4_SB(sb)->s_es->s_rev_level ==
3690				cpu_to_le32(EXT4_GOOD_OLD_REV)) {
3691			/* If this is the first large file
3692			 * created, add a flag to the superblock.
3693			 */
3694			err = ext4_journal_get_write_access(handle,
3695					EXT4_SB(sb)->s_sbh);
3696			if (err)
3697				goto out_brelse;
3698			ext4_update_dynamic_rev(sb);
3699			EXT4_SET_RO_COMPAT_FEATURE(sb,
3700					EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
3701			sb->s_dirt = 1;
3702			ext4_handle_sync(handle);
3703			err = ext4_handle_dirty_metadata(handle, NULL,
3704					EXT4_SB(sb)->s_sbh);
3705		}
3706	}
3707	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
3708	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
3709		if (old_valid_dev(inode->i_rdev)) {
3710			raw_inode->i_block[0] =
3711				cpu_to_le32(old_encode_dev(inode->i_rdev));
3712			raw_inode->i_block[1] = 0;
3713		} else {
3714			raw_inode->i_block[0] = 0;
3715			raw_inode->i_block[1] =
3716				cpu_to_le32(new_encode_dev(inode->i_rdev));
3717			raw_inode->i_block[2] = 0;
3718		}
3719	} else
3720		for (block = 0; block < EXT4_N_BLOCKS; block++)
3721			raw_inode->i_block[block] = ei->i_data[block];
 
 
 
 
3722
3723	raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
3724	if (ei->i_extra_isize) {
3725		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
3726			raw_inode->i_version_hi =
3727			cpu_to_le32(inode->i_version >> 32);
3728		raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
 
 
3729	}
3730
 
 
 
 
 
 
 
 
 
 
 
 
 
3731	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
3732	rc = ext4_handle_dirty_metadata(handle, NULL, bh);
3733	if (!err)
3734		err = rc;
3735	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
3736
3737	ext4_update_inode_fsync_trans(handle, inode, 0);
 
 
 
 
 
 
 
 
 
3738out_brelse:
3739	brelse(bh);
3740	ext4_std_error(inode->i_sb, err);
3741	return err;
3742}
3743
3744/*
3745 * ext4_write_inode()
3746 *
3747 * We are called from a few places:
3748 *
3749 * - Within generic_file_write() for O_SYNC files.
3750 *   Here, there will be no transaction running. We wait for any running
3751 *   trasnaction to commit.
3752 *
3753 * - Within sys_sync(), kupdate and such.
3754 *   We wait on commit, if tol to.
3755 *
3756 * - Within prune_icache() (PF_MEMALLOC == true)
3757 *   Here we simply return.  We can't afford to block kswapd on the
3758 *   journal commit.
3759 *
3760 * In all cases it is actually safe for us to return without doing anything,
3761 * because the inode has been copied into a raw inode buffer in
3762 * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
3763 * knfsd.
3764 *
3765 * Note that we are absolutely dependent upon all inode dirtiers doing the
3766 * right thing: they *must* call mark_inode_dirty() after dirtying info in
3767 * which we are interested.
3768 *
3769 * It would be a bug for them to not do this.  The code:
3770 *
3771 *	mark_inode_dirty(inode)
3772 *	stuff();
3773 *	inode->i_size = expr;
3774 *
3775 * is in error because a kswapd-driven write_inode() could occur while
3776 * `stuff()' is running, and the new i_size will be lost.  Plus the inode
3777 * will no longer be on the superblock's dirty inode list.
3778 */
3779int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
3780{
3781	int err;
3782
3783	if (current->flags & PF_MEMALLOC)
3784		return 0;
3785
3786	if (EXT4_SB(inode->i_sb)->s_journal) {
3787		if (ext4_journal_current_handle()) {
3788			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
3789			dump_stack();
3790			return -EIO;
3791		}
3792
3793		if (wbc->sync_mode != WB_SYNC_ALL)
 
 
 
 
 
3794			return 0;
3795
3796		err = ext4_force_commit(inode->i_sb);
3797	} else {
3798		struct ext4_iloc iloc;
3799
3800		err = __ext4_get_inode_loc(inode, &iloc, 0);
3801		if (err)
3802			return err;
3803		if (wbc->sync_mode == WB_SYNC_ALL)
 
 
 
 
3804			sync_dirty_buffer(iloc.bh);
3805		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
3806			EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
3807					 "IO error syncing inode");
3808			err = -EIO;
3809		}
3810		brelse(iloc.bh);
3811	}
3812	return err;
3813}
3814
3815/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3816 * ext4_setattr()
3817 *
3818 * Called from notify_change.
3819 *
3820 * We want to trap VFS attempts to truncate the file as soon as
3821 * possible.  In particular, we want to make sure that when the VFS
3822 * shrinks i_size, we put the inode on the orphan list and modify
3823 * i_disksize immediately, so that during the subsequent flushing of
3824 * dirty pages and freeing of disk blocks, we can guarantee that any
3825 * commit will leave the blocks being flushed in an unused state on
3826 * disk.  (On recovery, the inode will get truncated and the blocks will
3827 * be freed, so we have a strong guarantee that no future commit will
3828 * leave these blocks visible to the user.)
3829 *
3830 * Another thing we have to assure is that if we are in ordered mode
3831 * and inode is still attached to the committing transaction, we must
3832 * we start writeout of all the dirty pages which are being truncated.
3833 * This way we are sure that all the data written in the previous
3834 * transaction are already on disk (truncate waits for pages under
3835 * writeback).
3836 *
3837 * Called with inode->i_mutex down.
3838 */
3839int ext4_setattr(struct dentry *dentry, struct iattr *attr)
3840{
3841	struct inode *inode = dentry->d_inode;
3842	int error, rc = 0;
3843	int orphan = 0;
3844	const unsigned int ia_valid = attr->ia_valid;
3845
3846	error = inode_change_ok(inode, attr);
 
 
 
 
 
 
 
3847	if (error)
3848		return error;
3849
3850	if (is_quota_modification(inode, attr))
3851		dquot_initialize(inode);
3852	if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
3853		(ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
 
 
 
3854		handle_t *handle;
3855
3856		/* (user+group)*(old+new) structure, inode write (sb,
3857		 * inode block, ? - but truncate inode update has it) */
3858		handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
3859					EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
 
3860		if (IS_ERR(handle)) {
3861			error = PTR_ERR(handle);
3862			goto err_out;
3863		}
 
 
 
 
 
3864		error = dquot_transfer(inode, attr);
 
 
3865		if (error) {
3866			ext4_journal_stop(handle);
3867			return error;
3868		}
3869		/* Update corresponding info in inode so that everything is in
3870		 * one transaction */
3871		if (attr->ia_valid & ATTR_UID)
3872			inode->i_uid = attr->ia_uid;
3873		if (attr->ia_valid & ATTR_GID)
3874			inode->i_gid = attr->ia_gid;
3875		error = ext4_mark_inode_dirty(handle, inode);
3876		ext4_journal_stop(handle);
3877	}
3878
3879	if (attr->ia_valid & ATTR_SIZE) {
3880		inode_dio_wait(inode);
 
 
3881
3882		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
3883			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3884
3885			if (attr->ia_size > sbi->s_bitmap_maxbytes)
3886				return -EFBIG;
3887		}
3888	}
3889
3890	if (S_ISREG(inode->i_mode) &&
3891	    attr->ia_valid & ATTR_SIZE &&
3892	    (attr->ia_size < inode->i_size)) {
3893		handle_t *handle;
3894
3895		handle = ext4_journal_start(inode, 3);
3896		if (IS_ERR(handle)) {
3897			error = PTR_ERR(handle);
3898			goto err_out;
3899		}
3900		if (ext4_handle_valid(handle)) {
3901			error = ext4_orphan_add(handle, inode);
3902			orphan = 1;
3903		}
3904		EXT4_I(inode)->i_disksize = attr->ia_size;
3905		rc = ext4_mark_inode_dirty(handle, inode);
3906		if (!error)
3907			error = rc;
3908		ext4_journal_stop(handle);
3909
3910		if (ext4_should_order_data(inode)) {
 
3911			error = ext4_begin_ordered_truncate(inode,
3912							    attr->ia_size);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3913			if (error) {
3914				/* Do as much error cleanup as possible */
3915				handle = ext4_journal_start(inode, 3);
3916				if (IS_ERR(handle)) {
3917					ext4_orphan_del(NULL, inode);
3918					goto err_out;
3919				}
3920				ext4_orphan_del(handle, inode);
3921				orphan = 0;
3922				ext4_journal_stop(handle);
3923				goto err_out;
3924			}
3925		}
3926	}
 
3927
3928	if (attr->ia_valid & ATTR_SIZE) {
3929		if (attr->ia_size != i_size_read(inode)) {
3930			truncate_setsize(inode, attr->ia_size);
3931			ext4_truncate(inode);
3932		} else if (ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS))
3933			ext4_truncate(inode);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3934	}
3935
3936	if (!rc) {
3937		setattr_copy(inode, attr);
3938		mark_inode_dirty(inode);
3939	}
3940
3941	/*
3942	 * If the call to ext4_truncate failed to get a transaction handle at
3943	 * all, we need to clean up the in-core orphan list manually.
3944	 */
3945	if (orphan && inode->i_nlink)
3946		ext4_orphan_del(NULL, inode);
3947
3948	if (!rc && (ia_valid & ATTR_MODE))
3949		rc = ext4_acl_chmod(inode);
3950
3951err_out:
3952	ext4_std_error(inode->i_sb, error);
3953	if (!error)
3954		error = rc;
3955	return error;
3956}
3957
3958int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
3959		 struct kstat *stat)
3960{
3961	struct inode *inode;
3962	unsigned long delalloc_blocks;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3963
3964	inode = dentry->d_inode;
3965	generic_fillattr(inode, stat);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3966
3967	/*
3968	 * We can't update i_blocks if the block allocation is delayed
3969	 * otherwise in the case of system crash before the real block
3970	 * allocation is done, we will have i_blocks inconsistent with
3971	 * on-disk file blocks.
3972	 * We always keep i_blocks updated together with real
3973	 * allocation. But to not confuse with user, stat
3974	 * will return the blocks that include the delayed allocation
3975	 * blocks for this file.
3976	 */
3977	delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
3978
3979	stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
3980	return 0;
3981}
3982
3983static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
 
3984{
3985	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
3986		return ext4_ind_trans_blocks(inode, nrblocks, chunk);
3987	return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
3988}
3989
3990/*
3991 * Account for index blocks, block groups bitmaps and block group
3992 * descriptor blocks if modify datablocks and index blocks
3993 * worse case, the indexs blocks spread over different block groups
3994 *
3995 * If datablocks are discontiguous, they are possible to spread over
3996 * different block groups too. If they are contiuguous, with flexbg,
3997 * they could still across block group boundary.
3998 *
3999 * Also account for superblock, inode, quota and xattr blocks
4000 */
4001static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
 
4002{
4003	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4004	int gdpblocks;
4005	int idxblocks;
4006	int ret = 0;
4007
4008	/*
4009	 * How many index blocks need to touch to modify nrblocks?
4010	 * The "Chunk" flag indicating whether the nrblocks is
4011	 * physically contiguous on disk
4012	 *
4013	 * For Direct IO and fallocate, they calls get_block to allocate
4014	 * one single extent at a time, so they could set the "Chunk" flag
4015	 */
4016	idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4017
4018	ret = idxblocks;
4019
4020	/*
4021	 * Now let's see how many group bitmaps and group descriptors need
4022	 * to account
4023	 */
4024	groups = idxblocks;
4025	if (chunk)
4026		groups += 1;
4027	else
4028		groups += nrblocks;
4029
4030	gdpblocks = groups;
4031	if (groups > ngroups)
4032		groups = ngroups;
4033	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4034		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4035
4036	/* bitmaps and block group descriptor blocks */
4037	ret += groups + gdpblocks;
4038
4039	/* Blocks for super block, inode, quota and xattr blocks */
4040	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4041
4042	return ret;
4043}
4044
4045/*
4046 * Calculate the total number of credits to reserve to fit
4047 * the modification of a single pages into a single transaction,
4048 * which may include multiple chunks of block allocations.
4049 *
4050 * This could be called via ext4_write_begin()
4051 *
4052 * We need to consider the worse case, when
4053 * one new block per extent.
4054 */
4055int ext4_writepage_trans_blocks(struct inode *inode)
4056{
4057	int bpp = ext4_journal_blocks_per_page(inode);
4058	int ret;
4059
4060	ret = ext4_meta_trans_blocks(inode, bpp, 0);
4061
4062	/* Account for data blocks for journalled mode */
4063	if (ext4_should_journal_data(inode))
4064		ret += bpp;
4065	return ret;
4066}
4067
4068/*
4069 * Calculate the journal credits for a chunk of data modification.
4070 *
4071 * This is called from DIO, fallocate or whoever calling
4072 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4073 *
4074 * journal buffers for data blocks are not included here, as DIO
4075 * and fallocate do no need to journal data buffers.
4076 */
4077int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4078{
4079	return ext4_meta_trans_blocks(inode, nrblocks, 1);
4080}
4081
4082/*
4083 * The caller must have previously called ext4_reserve_inode_write().
4084 * Give this, we know that the caller already has write access to iloc->bh.
4085 */
4086int ext4_mark_iloc_dirty(handle_t *handle,
4087			 struct inode *inode, struct ext4_iloc *iloc)
4088{
4089	int err = 0;
4090
4091	if (test_opt(inode->i_sb, I_VERSION))
 
 
 
4092		inode_inc_iversion(inode);
4093
4094	/* the do_update_inode consumes one bh->b_count */
4095	get_bh(iloc->bh);
4096
4097	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4098	err = ext4_do_update_inode(handle, inode, iloc);
4099	put_bh(iloc->bh);
4100	return err;
4101}
4102
4103/*
4104 * On success, We end up with an outstanding reference count against
4105 * iloc->bh.  This _must_ be cleaned up later.
4106 */
4107
4108int
4109ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4110			 struct ext4_iloc *iloc)
4111{
4112	int err;
4113
 
 
 
4114	err = ext4_get_inode_loc(inode, iloc);
4115	if (!err) {
4116		BUFFER_TRACE(iloc->bh, "get_write_access");
4117		err = ext4_journal_get_write_access(handle, iloc->bh);
4118		if (err) {
4119			brelse(iloc->bh);
4120			iloc->bh = NULL;
4121		}
4122	}
4123	ext4_std_error(inode->i_sb, err);
4124	return err;
4125}
4126
4127/*
4128 * Expand an inode by new_extra_isize bytes.
4129 * Returns 0 on success or negative error number on failure.
4130 */
4131static int ext4_expand_extra_isize(struct inode *inode,
4132				   unsigned int new_extra_isize,
4133				   struct ext4_iloc iloc,
4134				   handle_t *handle)
4135{
4136	struct ext4_inode *raw_inode;
4137	struct ext4_xattr_ibody_header *header;
 
4138
4139	if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4140		return 0;
4141
4142	raw_inode = ext4_raw_inode(&iloc);
4143
4144	header = IHDR(inode, raw_inode);
4145
4146	/* No extended attributes present */
4147	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4148	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4149		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4150			new_extra_isize);
 
4151		EXT4_I(inode)->i_extra_isize = new_extra_isize;
4152		return 0;
4153	}
4154
4155	/* try to expand with EAs present */
4156	return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4157					  raw_inode, handle);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4158}
4159
4160/*
4161 * What we do here is to mark the in-core inode as clean with respect to inode
4162 * dirtiness (it may still be data-dirty).
4163 * This means that the in-core inode may be reaped by prune_icache
4164 * without having to perform any I/O.  This is a very good thing,
4165 * because *any* task may call prune_icache - even ones which
4166 * have a transaction open against a different journal.
4167 *
4168 * Is this cheating?  Not really.  Sure, we haven't written the
4169 * inode out, but prune_icache isn't a user-visible syncing function.
4170 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4171 * we start and wait on commits.
4172 *
4173 * Is this efficient/effective?  Well, we're being nice to the system
4174 * by cleaning up our inodes proactively so they can be reaped
4175 * without I/O.  But we are potentially leaving up to five seconds'
4176 * worth of inodes floating about which prune_icache wants us to
4177 * write out.  One way to fix that would be to get prune_icache()
4178 * to do a write_super() to free up some memory.  It has the desired
4179 * effect.
4180 */
4181int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4182{
4183	struct ext4_iloc iloc;
4184	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4185	static unsigned int mnt_count;
4186	int err, ret;
4187
4188	might_sleep();
4189	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
4190	err = ext4_reserve_inode_write(handle, inode, &iloc);
4191	if (ext4_handle_valid(handle) &&
4192	    EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4193	    !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
4194		/*
4195		 * We need extra buffer credits since we may write into EA block
4196		 * with this same handle. If journal_extend fails, then it will
4197		 * only result in a minor loss of functionality for that inode.
4198		 * If this is felt to be critical, then e2fsck should be run to
4199		 * force a large enough s_min_extra_isize.
4200		 */
4201		if ((jbd2_journal_extend(handle,
4202			     EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4203			ret = ext4_expand_extra_isize(inode,
4204						      sbi->s_want_extra_isize,
4205						      iloc, handle);
4206			if (ret) {
4207				ext4_set_inode_state(inode,
4208						     EXT4_STATE_NO_EXPAND);
4209				if (mnt_count !=
4210					le16_to_cpu(sbi->s_es->s_mnt_count)) {
4211					ext4_warning(inode->i_sb,
4212					"Unable to expand inode %lu. Delete"
4213					" some EAs or run e2fsck.",
4214					inode->i_ino);
4215					mnt_count =
4216					  le16_to_cpu(sbi->s_es->s_mnt_count);
4217				}
4218			}
4219		}
4220	}
4221	if (!err)
4222		err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4223	return err;
4224}
4225
4226/*
4227 * ext4_dirty_inode() is called from __mark_inode_dirty()
4228 *
4229 * We're really interested in the case where a file is being extended.
4230 * i_size has been changed by generic_commit_write() and we thus need
4231 * to include the updated inode in the current transaction.
4232 *
4233 * Also, dquot_alloc_block() will always dirty the inode when blocks
4234 * are allocated to the file.
4235 *
4236 * If the inode is marked synchronous, we don't honour that here - doing
4237 * so would cause a commit on atime updates, which we don't bother doing.
4238 * We handle synchronous inodes at the highest possible level.
 
 
 
 
4239 */
4240void ext4_dirty_inode(struct inode *inode, int flags)
4241{
4242	handle_t *handle;
4243
4244	handle = ext4_journal_start(inode, 2);
 
 
4245	if (IS_ERR(handle))
4246		goto out;
4247
4248	ext4_mark_inode_dirty(handle, inode);
4249
4250	ext4_journal_stop(handle);
4251out:
4252	return;
4253}
4254
4255#if 0
4256/*
4257 * Bind an inode's backing buffer_head into this transaction, to prevent
4258 * it from being flushed to disk early.  Unlike
4259 * ext4_reserve_inode_write, this leaves behind no bh reference and
4260 * returns no iloc structure, so the caller needs to repeat the iloc
4261 * lookup to mark the inode dirty later.
4262 */
4263static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4264{
4265	struct ext4_iloc iloc;
4266
4267	int err = 0;
4268	if (handle) {
4269		err = ext4_get_inode_loc(inode, &iloc);
4270		if (!err) {
4271			BUFFER_TRACE(iloc.bh, "get_write_access");
4272			err = jbd2_journal_get_write_access(handle, iloc.bh);
4273			if (!err)
4274				err = ext4_handle_dirty_metadata(handle,
4275								 NULL,
4276								 iloc.bh);
4277			brelse(iloc.bh);
4278		}
4279	}
4280	ext4_std_error(inode->i_sb, err);
4281	return err;
4282}
4283#endif
4284
4285int ext4_change_inode_journal_flag(struct inode *inode, int val)
4286{
4287	journal_t *journal;
4288	handle_t *handle;
4289	int err;
 
4290
4291	/*
4292	 * We have to be very careful here: changing a data block's
4293	 * journaling status dynamically is dangerous.  If we write a
4294	 * data block to the journal, change the status and then delete
4295	 * that block, we risk forgetting to revoke the old log record
4296	 * from the journal and so a subsequent replay can corrupt data.
4297	 * So, first we make sure that the journal is empty and that
4298	 * nobody is changing anything.
4299	 */
4300
4301	journal = EXT4_JOURNAL(inode);
4302	if (!journal)
4303		return 0;
4304	if (is_journal_aborted(journal))
4305		return -EROFS;
4306
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4307	jbd2_journal_lock_updates(journal);
4308	jbd2_journal_flush(journal);
4309
4310	/*
4311	 * OK, there are no updates running now, and all cached data is
4312	 * synced to disk.  We are now in a completely consistent state
4313	 * which doesn't have anything in the journal, and we know that
4314	 * no filesystem updates are running, so it is safe to modify
4315	 * the inode's in-core data-journaling state flag now.
4316	 */
4317
4318	if (val)
4319		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4320	else
 
 
 
 
 
 
4321		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
 
4322	ext4_set_aops(inode);
4323
4324	jbd2_journal_unlock_updates(journal);
 
 
 
 
4325
4326	/* Finally we can mark the inode as dirty. */
4327
4328	handle = ext4_journal_start(inode, 1);
4329	if (IS_ERR(handle))
4330		return PTR_ERR(handle);
4331
4332	err = ext4_mark_inode_dirty(handle, inode);
4333	ext4_handle_sync(handle);
4334	ext4_journal_stop(handle);
4335	ext4_std_error(inode->i_sb, err);
4336
4337	return err;
4338}
4339
4340static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
4341{
4342	return !buffer_mapped(bh);
4343}
4344
4345int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
4346{
 
4347	struct page *page = vmf->page;
4348	loff_t size;
4349	unsigned long len;
4350	int ret;
4351	struct file *file = vma->vm_file;
4352	struct inode *inode = file->f_path.dentry->d_inode;
4353	struct address_space *mapping = inode->i_mapping;
4354	handle_t *handle;
4355	get_block_t *get_block;
4356	int retries = 0;
4357
4358	/*
4359	 * This check is racy but catches the common case. We rely on
4360	 * __block_page_mkwrite() to do a reliable check.
4361	 */
4362	vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
 
 
 
 
4363	/* Delalloc case is easy... */
4364	if (test_opt(inode->i_sb, DELALLOC) &&
4365	    !ext4_should_journal_data(inode) &&
4366	    !ext4_nonda_switch(inode->i_sb)) {
4367		do {
4368			ret = __block_page_mkwrite(vma, vmf,
4369						   ext4_da_get_block_prep);
4370		} while (ret == -ENOSPC &&
4371		       ext4_should_retry_alloc(inode->i_sb, &retries));
4372		goto out_ret;
4373	}
4374
4375	lock_page(page);
4376	size = i_size_read(inode);
4377	/* Page got truncated from under us? */
4378	if (page->mapping != mapping || page_offset(page) > size) {
4379		unlock_page(page);
4380		ret = VM_FAULT_NOPAGE;
4381		goto out;
4382	}
4383
4384	if (page->index == size >> PAGE_CACHE_SHIFT)
4385		len = size & ~PAGE_CACHE_MASK;
4386	else
4387		len = PAGE_CACHE_SIZE;
4388	/*
4389	 * Return if we have all the buffers mapped. This avoids the need to do
4390	 * journal_start/journal_stop which can block and take a long time
4391	 */
4392	if (page_has_buffers(page)) {
4393		if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
4394					ext4_bh_unmapped)) {
 
4395			/* Wait so that we don't change page under IO */
4396			wait_on_page_writeback(page);
4397			ret = VM_FAULT_LOCKED;
4398			goto out;
4399		}
4400	}
4401	unlock_page(page);
4402	/* OK, we need to fill the hole... */
4403	if (ext4_should_dioread_nolock(inode))
4404		get_block = ext4_get_block_write;
4405	else
4406		get_block = ext4_get_block;
4407retry_alloc:
4408	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
 
4409	if (IS_ERR(handle)) {
4410		ret = VM_FAULT_SIGBUS;
4411		goto out;
4412	}
4413	ret = __block_page_mkwrite(vma, vmf, get_block);
4414	if (!ret && ext4_should_journal_data(inode)) {
4415		if (walk_page_buffers(handle, page_buffers(page), 0,
4416			  PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
4417			unlock_page(page);
4418			ret = VM_FAULT_SIGBUS;
 
4419			goto out;
4420		}
4421		ext4_set_inode_state(inode, EXT4_STATE_JDATA);
4422	}
4423	ext4_journal_stop(handle);
4424	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
4425		goto retry_alloc;
4426out_ret:
4427	ret = block_page_mkwrite_return(ret);
4428out:
 
 
4429	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
4430}
v4.17
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  linux/fs/ext4/inode.c
   4 *
   5 * Copyright (C) 1992, 1993, 1994, 1995
   6 * Remy Card (card@masi.ibp.fr)
   7 * Laboratoire MASI - Institut Blaise Pascal
   8 * Universite Pierre et Marie Curie (Paris VI)
   9 *
  10 *  from
  11 *
  12 *  linux/fs/minix/inode.c
  13 *
  14 *  Copyright (C) 1991, 1992  Linus Torvalds
  15 *
  16 *  64-bit file support on 64-bit platforms by Jakub Jelinek
  17 *	(jj@sunsite.ms.mff.cuni.cz)
  18 *
  19 *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
  20 */
  21
 
  22#include <linux/fs.h>
  23#include <linux/time.h>
 
  24#include <linux/highuid.h>
  25#include <linux/pagemap.h>
  26#include <linux/dax.h>
  27#include <linux/quotaops.h>
  28#include <linux/string.h>
  29#include <linux/buffer_head.h>
  30#include <linux/writeback.h>
  31#include <linux/pagevec.h>
  32#include <linux/mpage.h>
  33#include <linux/namei.h>
  34#include <linux/uio.h>
  35#include <linux/bio.h>
  36#include <linux/workqueue.h>
  37#include <linux/kernel.h>
  38#include <linux/printk.h>
  39#include <linux/slab.h>
  40#include <linux/bitops.h>
  41#include <linux/iomap.h>
  42#include <linux/iversion.h>
  43
  44#include "ext4_jbd2.h"
  45#include "xattr.h"
  46#include "acl.h"
 
  47#include "truncate.h"
  48
  49#include <trace/events/ext4.h>
  50
  51#define MPAGE_DA_EXTENT_TAIL 0x01
  52
  53static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
  54			      struct ext4_inode_info *ei)
  55{
  56	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
  57	__u32 csum;
  58	__u16 dummy_csum = 0;
  59	int offset = offsetof(struct ext4_inode, i_checksum_lo);
  60	unsigned int csum_size = sizeof(dummy_csum);
  61
  62	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
  63	csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
  64	offset += csum_size;
  65	csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
  66			   EXT4_GOOD_OLD_INODE_SIZE - offset);
  67
  68	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
  69		offset = offsetof(struct ext4_inode, i_checksum_hi);
  70		csum = ext4_chksum(sbi, csum, (__u8 *)raw +
  71				   EXT4_GOOD_OLD_INODE_SIZE,
  72				   offset - EXT4_GOOD_OLD_INODE_SIZE);
  73		if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
  74			csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
  75					   csum_size);
  76			offset += csum_size;
  77		}
  78		csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
  79				   EXT4_INODE_SIZE(inode->i_sb) - offset);
  80	}
  81
  82	return csum;
  83}
  84
  85static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
  86				  struct ext4_inode_info *ei)
  87{
  88	__u32 provided, calculated;
  89
  90	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
  91	    cpu_to_le32(EXT4_OS_LINUX) ||
  92	    !ext4_has_metadata_csum(inode->i_sb))
  93		return 1;
  94
  95	provided = le16_to_cpu(raw->i_checksum_lo);
  96	calculated = ext4_inode_csum(inode, raw, ei);
  97	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
  98	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
  99		provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
 100	else
 101		calculated &= 0xFFFF;
 102
 103	return provided == calculated;
 104}
 105
 106static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
 107				struct ext4_inode_info *ei)
 108{
 109	__u32 csum;
 110
 111	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
 112	    cpu_to_le32(EXT4_OS_LINUX) ||
 113	    !ext4_has_metadata_csum(inode->i_sb))
 114		return;
 115
 116	csum = ext4_inode_csum(inode, raw, ei);
 117	raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
 118	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
 119	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
 120		raw->i_checksum_hi = cpu_to_le16(csum >> 16);
 121}
 122
 123static inline int ext4_begin_ordered_truncate(struct inode *inode,
 124					      loff_t new_size)
 125{
 126	trace_ext4_begin_ordered_truncate(inode, new_size);
 127	/*
 128	 * If jinode is zero, then we never opened the file for
 129	 * writing, so there's no need to call
 130	 * jbd2_journal_begin_ordered_truncate() since there's no
 131	 * outstanding writes we need to flush.
 132	 */
 133	if (!EXT4_I(inode)->jinode)
 134		return 0;
 135	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
 136						   EXT4_I(inode)->jinode,
 137						   new_size);
 138}
 139
 140static void ext4_invalidatepage(struct page *page, unsigned int offset,
 141				unsigned int length);
 
 
 
 142static int __ext4_journalled_writepage(struct page *page, unsigned int len);
 143static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
 144static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
 145				  int pextents);
 146
 147/*
 148 * Test whether an inode is a fast symlink.
 149 * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
 150 */
 151int ext4_inode_is_fast_symlink(struct inode *inode)
 152{
 153	if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
 154		int ea_blocks = EXT4_I(inode)->i_file_acl ?
 155				EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
 156
 157		if (ext4_has_inline_data(inode))
 158			return 0;
 159
 160		return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
 161	}
 162	return S_ISLNK(inode->i_mode) && inode->i_size &&
 163	       (inode->i_size < EXT4_N_BLOCKS * 4);
 164}
 165
 166/*
 167 * Restart the transaction associated with *handle.  This does a commit,
 168 * so before we call here everything must be consistently dirtied against
 169 * this transaction.
 170 */
 171int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
 172				 int nblocks)
 173{
 174	int ret;
 175
 176	/*
 177	 * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
 178	 * moment, get_block can be called only for blocks inside i_size since
 179	 * page cache has been already dropped and writes are blocked by
 180	 * i_mutex. So we can safely drop the i_data_sem here.
 181	 */
 182	BUG_ON(EXT4_JOURNAL(inode) == NULL);
 183	jbd_debug(2, "restarting handle %p\n", handle);
 184	up_write(&EXT4_I(inode)->i_data_sem);
 185	ret = ext4_journal_restart(handle, nblocks);
 186	down_write(&EXT4_I(inode)->i_data_sem);
 187	ext4_discard_preallocations(inode);
 188
 189	return ret;
 190}
 191
 192/*
 193 * Called at the last iput() if i_nlink is zero.
 194 */
 195void ext4_evict_inode(struct inode *inode)
 196{
 197	handle_t *handle;
 198	int err;
 199	int extra_credits = 3;
 200	struct ext4_xattr_inode_array *ea_inode_array = NULL;
 201
 202	trace_ext4_evict_inode(inode);
 203
 
 
 204	if (inode->i_nlink) {
 205		/*
 206		 * When journalling data dirty buffers are tracked only in the
 207		 * journal. So although mm thinks everything is clean and
 208		 * ready for reaping the inode might still have some pages to
 209		 * write in the running transaction or waiting to be
 210		 * checkpointed. Thus calling jbd2_journal_invalidatepage()
 211		 * (via truncate_inode_pages()) to discard these buffers can
 212		 * cause data loss. Also even if we did not discard these
 213		 * buffers, we would have no way to find them after the inode
 214		 * is reaped and thus user could see stale data if he tries to
 215		 * read them before the transaction is checkpointed. So be
 216		 * careful and force everything to disk here... We use
 217		 * ei->i_datasync_tid to store the newest transaction
 218		 * containing inode's data.
 219		 *
 220		 * Note that directories do not have this problem because they
 221		 * don't use page cache.
 222		 */
 223		if (inode->i_ino != EXT4_JOURNAL_INO &&
 224		    ext4_should_journal_data(inode) &&
 225		    (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
 226		    inode->i_data.nrpages) {
 227			journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
 228			tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
 229
 230			jbd2_complete_transaction(journal, commit_tid);
 
 231			filemap_write_and_wait(&inode->i_data);
 232		}
 233		truncate_inode_pages_final(&inode->i_data);
 234
 235		goto no_delete;
 236	}
 237
 238	if (is_bad_inode(inode))
 239		goto no_delete;
 240	dquot_initialize(inode);
 241
 242	if (ext4_should_order_data(inode))
 243		ext4_begin_ordered_truncate(inode, 0);
 244	truncate_inode_pages_final(&inode->i_data);
 245
 246	/*
 247	 * Protect us against freezing - iput() caller didn't have to have any
 248	 * protection against it
 249	 */
 250	sb_start_intwrite(inode->i_sb);
 251
 252	if (!IS_NOQUOTA(inode))
 253		extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
 254
 255	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
 256				 ext4_blocks_for_truncate(inode)+extra_credits);
 257	if (IS_ERR(handle)) {
 258		ext4_std_error(inode->i_sb, PTR_ERR(handle));
 259		/*
 260		 * If we're going to skip the normal cleanup, we still need to
 261		 * make sure that the in-core orphan linked list is properly
 262		 * cleaned up.
 263		 */
 264		ext4_orphan_del(NULL, inode);
 265		sb_end_intwrite(inode->i_sb);
 266		goto no_delete;
 267	}
 268
 269	if (IS_SYNC(inode))
 270		ext4_handle_sync(handle);
 271
 272	/*
 273	 * Set inode->i_size to 0 before calling ext4_truncate(). We need
 274	 * special handling of symlinks here because i_size is used to
 275	 * determine whether ext4_inode_info->i_data contains symlink data or
 276	 * block mappings. Setting i_size to 0 will remove its fast symlink
 277	 * status. Erase i_data so that it becomes a valid empty block map.
 278	 */
 279	if (ext4_inode_is_fast_symlink(inode))
 280		memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
 281	inode->i_size = 0;
 282	err = ext4_mark_inode_dirty(handle, inode);
 283	if (err) {
 284		ext4_warning(inode->i_sb,
 285			     "couldn't mark inode dirty (err %d)", err);
 286		goto stop_handle;
 287	}
 288	if (inode->i_blocks) {
 289		err = ext4_truncate(inode);
 290		if (err) {
 291			ext4_error(inode->i_sb,
 292				   "couldn't truncate inode %lu (err %d)",
 293				   inode->i_ino, err);
 294			goto stop_handle;
 
 
 
 
 
 
 
 
 
 
 
 
 
 295		}
 296	}
 297
 298	/* Remove xattr references. */
 299	err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
 300				      extra_credits);
 301	if (err) {
 302		ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
 303stop_handle:
 304		ext4_journal_stop(handle);
 305		ext4_orphan_del(NULL, inode);
 306		sb_end_intwrite(inode->i_sb);
 307		ext4_xattr_inode_array_free(ea_inode_array);
 308		goto no_delete;
 309	}
 310
 311	/*
 312	 * Kill off the orphan record which ext4_truncate created.
 313	 * AKPM: I think this can be inside the above `if'.
 314	 * Note that ext4_orphan_del() has to be able to cope with the
 315	 * deletion of a non-existent orphan - this is because we don't
 316	 * know if ext4_truncate() actually created an orphan record.
 317	 * (Well, we could do this if we need to, but heck - it works)
 318	 */
 319	ext4_orphan_del(handle, inode);
 320	EXT4_I(inode)->i_dtime	= get_seconds();
 321
 322	/*
 323	 * One subtle ordering requirement: if anything has gone wrong
 324	 * (transaction abort, IO errors, whatever), then we can still
 325	 * do these next steps (the fs will already have been marked as
 326	 * having errors), but we can't free the inode if the mark_dirty
 327	 * fails.
 328	 */
 329	if (ext4_mark_inode_dirty(handle, inode))
 330		/* If that failed, just do the required in-core inode clear. */
 331		ext4_clear_inode(inode);
 332	else
 333		ext4_free_inode(handle, inode);
 334	ext4_journal_stop(handle);
 335	sb_end_intwrite(inode->i_sb);
 336	ext4_xattr_inode_array_free(ea_inode_array);
 337	return;
 338no_delete:
 339	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
 340}
 341
 342#ifdef CONFIG_QUOTA
 343qsize_t *ext4_get_reserved_space(struct inode *inode)
 344{
 345	return &EXT4_I(inode)->i_reserved_quota;
 346}
 347#endif
 348
 349/*
 
 
 
 
 
 
 
 
 
 
 
 
 350 * Called with i_data_sem down, which is important since we can call
 351 * ext4_discard_preallocations() from here.
 352 */
 353void ext4_da_update_reserve_space(struct inode *inode,
 354					int used, int quota_claim)
 355{
 356	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
 357	struct ext4_inode_info *ei = EXT4_I(inode);
 358
 359	spin_lock(&ei->i_block_reservation_lock);
 360	trace_ext4_da_update_reserve_space(inode, used, quota_claim);
 361	if (unlikely(used > ei->i_reserved_data_blocks)) {
 362		ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
 363			 "with only %d reserved data blocks",
 364			 __func__, inode->i_ino, used,
 365			 ei->i_reserved_data_blocks);
 366		WARN_ON(1);
 367		used = ei->i_reserved_data_blocks;
 368	}
 369
 370	/* Update per-inode reservations */
 371	ei->i_reserved_data_blocks -= used;
 372	percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
 373
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 374	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
 375
 376	/* Update quota subsystem for data blocks */
 377	if (quota_claim)
 378		dquot_claim_block(inode, EXT4_C2B(sbi, used));
 379	else {
 380		/*
 381		 * We did fallocate with an offset that is already delayed
 382		 * allocated. So on delayed allocated writeback we should
 383		 * not re-claim the quota for fallocated blocks.
 384		 */
 385		dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
 386	}
 387
 388	/*
 389	 * If we have done all the pending block allocations and if
 390	 * there aren't any writers on the inode, we can discard the
 391	 * inode's preallocations.
 392	 */
 393	if ((ei->i_reserved_data_blocks == 0) &&
 394	    (atomic_read(&inode->i_writecount) == 0))
 395		ext4_discard_preallocations(inode);
 396}
 397
 398static int __check_block_validity(struct inode *inode, const char *func,
 399				unsigned int line,
 400				struct ext4_map_blocks *map)
 401{
 402	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
 403				   map->m_len)) {
 404		ext4_error_inode(inode, func, line, map->m_pblk,
 405				 "lblock %lu mapped to illegal pblock "
 406				 "(length %d)", (unsigned long) map->m_lblk,
 407				 map->m_len);
 408		return -EFSCORRUPTED;
 409	}
 410	return 0;
 411}
 412
 413int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
 414		       ext4_lblk_t len)
 415{
 416	int ret;
 417
 418	if (ext4_encrypted_inode(inode))
 419		return fscrypt_zeroout_range(inode, lblk, pblk, len);
 420
 421	ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
 422	if (ret > 0)
 423		ret = 0;
 424
 425	return ret;
 426}
 427
 428#define check_block_validity(inode, map)	\
 429	__check_block_validity((inode), __func__, __LINE__, (map))
 430
 431#ifdef ES_AGGRESSIVE_TEST
 432static void ext4_map_blocks_es_recheck(handle_t *handle,
 433				       struct inode *inode,
 434				       struct ext4_map_blocks *es_map,
 435				       struct ext4_map_blocks *map,
 436				       int flags)
 437{
 438	int retval;
 
 
 
 
 439
 440	map->m_flags = 0;
 441	/*
 442	 * There is a race window that the result is not the same.
 443	 * e.g. xfstests #223 when dioread_nolock enables.  The reason
 444	 * is that we lookup a block mapping in extent status tree with
 445	 * out taking i_data_sem.  So at the time the unwritten extent
 446	 * could be converted.
 447	 */
 448	down_read(&EXT4_I(inode)->i_data_sem);
 449	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
 450		retval = ext4_ext_map_blocks(handle, inode, map, flags &
 451					     EXT4_GET_BLOCKS_KEEP_SIZE);
 452	} else {
 453		retval = ext4_ind_map_blocks(handle, inode, map, flags &
 454					     EXT4_GET_BLOCKS_KEEP_SIZE);
 455	}
 456	up_read((&EXT4_I(inode)->i_data_sem));
 457
 458	/*
 459	 * We don't check m_len because extent will be collpased in status
 460	 * tree.  So the m_len might not equal.
 461	 */
 462	if (es_map->m_lblk != map->m_lblk ||
 463	    es_map->m_flags != map->m_flags ||
 464	    es_map->m_pblk != map->m_pblk) {
 465		printk("ES cache assertion failed for inode: %lu "
 466		       "es_cached ex [%d/%d/%llu/%x] != "
 467		       "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
 468		       inode->i_ino, es_map->m_lblk, es_map->m_len,
 469		       es_map->m_pblk, es_map->m_flags, map->m_lblk,
 470		       map->m_len, map->m_pblk, map->m_flags,
 471		       retval, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 472	}
 
 473}
 474#endif /* ES_AGGRESSIVE_TEST */
 475
 476/*
 477 * The ext4_map_blocks() function tries to look up the requested blocks,
 478 * and returns if the blocks are already mapped.
 479 *
 480 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
 481 * and store the allocated blocks in the result buffer head and mark it
 482 * mapped.
 483 *
 484 * If file type is extents based, it will call ext4_ext_map_blocks(),
 485 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
 486 * based files
 487 *
 488 * On success, it returns the number of blocks being mapped or allocated.  if
 489 * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
 490 * is marked as unwritten. If the create == 1, it will mark @map as mapped.
 
 491 *
 492 * It returns 0 if plain look up failed (blocks have not been allocated), in
 493 * that case, @map is returned as unmapped but we still do fill map->m_len to
 494 * indicate the length of a hole starting at map->m_lblk.
 495 *
 496 * It returns the error in case of allocation failure.
 497 */
 498int ext4_map_blocks(handle_t *handle, struct inode *inode,
 499		    struct ext4_map_blocks *map, int flags)
 500{
 501	struct extent_status es;
 502	int retval;
 503	int ret = 0;
 504#ifdef ES_AGGRESSIVE_TEST
 505	struct ext4_map_blocks orig_map;
 506
 507	memcpy(&orig_map, map, sizeof(*map));
 508#endif
 509
 510	map->m_flags = 0;
 511	ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
 512		  "logical block %lu\n", inode->i_ino, flags, map->m_len,
 513		  (unsigned long) map->m_lblk);
 514
 515	/*
 516	 * ext4_map_blocks returns an int, and m_len is an unsigned int
 517	 */
 518	if (unlikely(map->m_len > INT_MAX))
 519		map->m_len = INT_MAX;
 520
 521	/* We can handle the block number less than EXT_MAX_BLOCKS */
 522	if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
 523		return -EFSCORRUPTED;
 524
 525	/* Lookup extent status tree firstly */
 526	if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
 527		if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
 528			map->m_pblk = ext4_es_pblock(&es) +
 529					map->m_lblk - es.es_lblk;
 530			map->m_flags |= ext4_es_is_written(&es) ?
 531					EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
 532			retval = es.es_len - (map->m_lblk - es.es_lblk);
 533			if (retval > map->m_len)
 534				retval = map->m_len;
 535			map->m_len = retval;
 536		} else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
 537			map->m_pblk = 0;
 538			retval = es.es_len - (map->m_lblk - es.es_lblk);
 539			if (retval > map->m_len)
 540				retval = map->m_len;
 541			map->m_len = retval;
 542			retval = 0;
 543		} else {
 544			BUG_ON(1);
 545		}
 546#ifdef ES_AGGRESSIVE_TEST
 547		ext4_map_blocks_es_recheck(handle, inode, map,
 548					   &orig_map, flags);
 549#endif
 550		goto found;
 551	}
 552
 553	/*
 554	 * Try to see if we can get the block without requesting a new
 555	 * file system block.
 556	 */
 557	down_read(&EXT4_I(inode)->i_data_sem);
 558	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
 559		retval = ext4_ext_map_blocks(handle, inode, map, flags &
 560					     EXT4_GET_BLOCKS_KEEP_SIZE);
 561	} else {
 562		retval = ext4_ind_map_blocks(handle, inode, map, flags &
 563					     EXT4_GET_BLOCKS_KEEP_SIZE);
 564	}
 565	if (retval > 0) {
 566		unsigned int status;
 567
 568		if (unlikely(retval != map->m_len)) {
 569			ext4_warning(inode->i_sb,
 570				     "ES len assertion failed for inode "
 571				     "%lu: retval %d != map->m_len %d",
 572				     inode->i_ino, retval, map->m_len);
 573			WARN_ON(1);
 574		}
 575
 576		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
 577				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
 578		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
 579		    !(status & EXTENT_STATUS_WRITTEN) &&
 580		    ext4_find_delalloc_range(inode, map->m_lblk,
 581					     map->m_lblk + map->m_len - 1))
 582			status |= EXTENT_STATUS_DELAYED;
 583		ret = ext4_es_insert_extent(inode, map->m_lblk,
 584					    map->m_len, map->m_pblk, status);
 585		if (ret < 0)
 586			retval = ret;
 587	}
 588	up_read((&EXT4_I(inode)->i_data_sem));
 589
 590found:
 591	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
 592		ret = check_block_validity(inode, map);
 593		if (ret != 0)
 594			return ret;
 595	}
 596
 597	/* If it is only a block(s) look up */
 598	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
 599		return retval;
 600
 601	/*
 602	 * Returns if the blocks have already allocated
 603	 *
 604	 * Note that if blocks have been preallocated
 605	 * ext4_ext_get_block() returns the create = 0
 606	 * with buffer head unmapped.
 607	 */
 608	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
 609		/*
 610		 * If we need to convert extent to unwritten
 611		 * we continue and do the actual work in
 612		 * ext4_ext_map_blocks()
 613		 */
 614		if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
 615			return retval;
 616
 617	/*
 618	 * Here we clear m_flags because after allocating an new extent,
 619	 * it will be set again.
 
 
 
 
 
 
 620	 */
 621	map->m_flags &= ~EXT4_MAP_FLAGS;
 622
 623	/*
 624	 * New blocks allocate and/or writing to unwritten extent
 625	 * will possibly result in updating i_data, so we take
 626	 * the write lock of i_data_sem, and call get_block()
 627	 * with create == 1 flag.
 628	 */
 629	down_write(&EXT4_I(inode)->i_data_sem);
 630
 631	/*
 
 
 
 
 
 
 
 
 632	 * We need to check for EXT4 here because migrate
 633	 * could have changed the inode type in between
 634	 */
 635	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
 636		retval = ext4_ext_map_blocks(handle, inode, map, flags);
 637	} else {
 638		retval = ext4_ind_map_blocks(handle, inode, map, flags);
 639
 640		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
 641			/*
 642			 * We allocated new blocks which will result in
 643			 * i_data's format changing.  Force the migrate
 644			 * to fail by clearing migrate flags
 645			 */
 646			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
 647		}
 648
 649		/*
 650		 * Update reserved blocks/metadata blocks after successful
 651		 * block allocation which had been deferred till now. We don't
 652		 * support fallocate for non extent files. So we can update
 653		 * reserve space here.
 654		 */
 655		if ((retval > 0) &&
 656			(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
 657			ext4_da_update_reserve_space(inode, retval, 1);
 658	}
 
 
 659
 660	if (retval > 0) {
 661		unsigned int status;
 662
 663		if (unlikely(retval != map->m_len)) {
 664			ext4_warning(inode->i_sb,
 665				     "ES len assertion failed for inode "
 666				     "%lu: retval %d != map->m_len %d",
 667				     inode->i_ino, retval, map->m_len);
 668			WARN_ON(1);
 669		}
 670
 671		/*
 672		 * We have to zeroout blocks before inserting them into extent
 673		 * status tree. Otherwise someone could look them up there and
 674		 * use them before they are really zeroed. We also have to
 675		 * unmap metadata before zeroing as otherwise writeback can
 676		 * overwrite zeros with stale data from block device.
 677		 */
 678		if (flags & EXT4_GET_BLOCKS_ZERO &&
 679		    map->m_flags & EXT4_MAP_MAPPED &&
 680		    map->m_flags & EXT4_MAP_NEW) {
 681			clean_bdev_aliases(inode->i_sb->s_bdev, map->m_pblk,
 682					   map->m_len);
 683			ret = ext4_issue_zeroout(inode, map->m_lblk,
 684						 map->m_pblk, map->m_len);
 685			if (ret) {
 686				retval = ret;
 687				goto out_sem;
 688			}
 689		}
 690
 691		/*
 692		 * If the extent has been zeroed out, we don't need to update
 693		 * extent status tree.
 694		 */
 695		if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
 696		    ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
 697			if (ext4_es_is_written(&es))
 698				goto out_sem;
 699		}
 700		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
 701				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
 702		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
 703		    !(status & EXTENT_STATUS_WRITTEN) &&
 704		    ext4_find_delalloc_range(inode, map->m_lblk,
 705					     map->m_lblk + map->m_len - 1))
 706			status |= EXTENT_STATUS_DELAYED;
 707		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
 708					    map->m_pblk, status);
 709		if (ret < 0) {
 710			retval = ret;
 711			goto out_sem;
 712		}
 713	}
 714
 715out_sem:
 716	up_write((&EXT4_I(inode)->i_data_sem));
 717	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
 718		ret = check_block_validity(inode, map);
 719		if (ret != 0)
 720			return ret;
 721
 722		/*
 723		 * Inodes with freshly allocated blocks where contents will be
 724		 * visible after transaction commit must be on transaction's
 725		 * ordered data list.
 726		 */
 727		if (map->m_flags & EXT4_MAP_NEW &&
 728		    !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
 729		    !(flags & EXT4_GET_BLOCKS_ZERO) &&
 730		    !ext4_is_quota_file(inode) &&
 731		    ext4_should_order_data(inode)) {
 732			if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
 733				ret = ext4_jbd2_inode_add_wait(handle, inode);
 734			else
 735				ret = ext4_jbd2_inode_add_write(handle, inode);
 736			if (ret)
 737				return ret;
 738		}
 739	}
 740	return retval;
 741}
 742
 743/*
 744 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
 745 * we have to be careful as someone else may be manipulating b_state as well.
 746 */
 747static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
 748{
 749	unsigned long old_state;
 750	unsigned long new_state;
 751
 752	flags &= EXT4_MAP_FLAGS;
 753
 754	/* Dummy buffer_head? Set non-atomically. */
 755	if (!bh->b_page) {
 756		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
 757		return;
 758	}
 759	/*
 760	 * Someone else may be modifying b_state. Be careful! This is ugly but
 761	 * once we get rid of using bh as a container for mapping information
 762	 * to pass to / from get_block functions, this can go away.
 763	 */
 764	do {
 765		old_state = READ_ONCE(bh->b_state);
 766		new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
 767	} while (unlikely(
 768		 cmpxchg(&bh->b_state, old_state, new_state) != old_state));
 769}
 770
 771static int _ext4_get_block(struct inode *inode, sector_t iblock,
 772			   struct buffer_head *bh, int flags)
 773{
 
 774	struct ext4_map_blocks map;
 775	int ret = 0;
 776
 777	if (ext4_has_inline_data(inode))
 778		return -ERANGE;
 779
 780	map.m_lblk = iblock;
 781	map.m_len = bh->b_size >> inode->i_blkbits;
 782
 783	ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
 784			      flags);
 
 
 
 
 
 
 
 
 
 
 
 
 785	if (ret > 0) {
 786		map_bh(bh, inode->i_sb, map.m_pblk);
 787		ext4_update_bh_state(bh, map.m_flags);
 788		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
 789		ret = 0;
 790	} else if (ret == 0) {
 791		/* hole case, need to fill in bh->b_size */
 792		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
 793	}
 
 
 794	return ret;
 795}
 796
 797int ext4_get_block(struct inode *inode, sector_t iblock,
 798		   struct buffer_head *bh, int create)
 799{
 800	return _ext4_get_block(inode, iblock, bh,
 801			       create ? EXT4_GET_BLOCKS_CREATE : 0);
 802}
 803
 804/*
 805 * Get block function used when preparing for buffered write if we require
 806 * creating an unwritten extent if blocks haven't been allocated.  The extent
 807 * will be converted to written after the IO is complete.
 808 */
 809int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
 810			     struct buffer_head *bh_result, int create)
 811{
 812	ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
 813		   inode->i_ino, create);
 814	return _ext4_get_block(inode, iblock, bh_result,
 815			       EXT4_GET_BLOCKS_IO_CREATE_EXT);
 816}
 817
 818/* Maximum number of blocks we map for direct IO at once. */
 819#define DIO_MAX_BLOCKS 4096
 820
 821/*
 822 * Get blocks function for the cases that need to start a transaction -
 823 * generally difference cases of direct IO and DAX IO. It also handles retries
 824 * in case of ENOSPC.
 825 */
 826static int ext4_get_block_trans(struct inode *inode, sector_t iblock,
 827				struct buffer_head *bh_result, int flags)
 828{
 829	int dio_credits;
 830	handle_t *handle;
 831	int retries = 0;
 832	int ret;
 833
 834	/* Trim mapping request to maximum we can map at once for DIO */
 835	if (bh_result->b_size >> inode->i_blkbits > DIO_MAX_BLOCKS)
 836		bh_result->b_size = DIO_MAX_BLOCKS << inode->i_blkbits;
 837	dio_credits = ext4_chunk_trans_blocks(inode,
 838				      bh_result->b_size >> inode->i_blkbits);
 839retry:
 840	handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
 841	if (IS_ERR(handle))
 842		return PTR_ERR(handle);
 843
 844	ret = _ext4_get_block(inode, iblock, bh_result, flags);
 845	ext4_journal_stop(handle);
 846
 847	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
 848		goto retry;
 849	return ret;
 850}
 851
 852/* Get block function for DIO reads and writes to inodes without extents */
 853int ext4_dio_get_block(struct inode *inode, sector_t iblock,
 854		       struct buffer_head *bh, int create)
 855{
 856	/* We don't expect handle for direct IO */
 857	WARN_ON_ONCE(ext4_journal_current_handle());
 858
 859	if (!create)
 860		return _ext4_get_block(inode, iblock, bh, 0);
 861	return ext4_get_block_trans(inode, iblock, bh, EXT4_GET_BLOCKS_CREATE);
 862}
 863
 864/*
 865 * Get block function for AIO DIO writes when we create unwritten extent if
 866 * blocks are not allocated yet. The extent will be converted to written
 867 * after IO is complete.
 868 */
 869static int ext4_dio_get_block_unwritten_async(struct inode *inode,
 870		sector_t iblock, struct buffer_head *bh_result,	int create)
 871{
 872	int ret;
 873
 874	/* We don't expect handle for direct IO */
 875	WARN_ON_ONCE(ext4_journal_current_handle());
 876
 877	ret = ext4_get_block_trans(inode, iblock, bh_result,
 878				   EXT4_GET_BLOCKS_IO_CREATE_EXT);
 879
 880	/*
 881	 * When doing DIO using unwritten extents, we need io_end to convert
 882	 * unwritten extents to written on IO completion. We allocate io_end
 883	 * once we spot unwritten extent and store it in b_private. Generic
 884	 * DIO code keeps b_private set and furthermore passes the value to
 885	 * our completion callback in 'private' argument.
 886	 */
 887	if (!ret && buffer_unwritten(bh_result)) {
 888		if (!bh_result->b_private) {
 889			ext4_io_end_t *io_end;
 890
 891			io_end = ext4_init_io_end(inode, GFP_KERNEL);
 892			if (!io_end)
 893				return -ENOMEM;
 894			bh_result->b_private = io_end;
 895			ext4_set_io_unwritten_flag(inode, io_end);
 896		}
 897		set_buffer_defer_completion(bh_result);
 898	}
 899
 900	return ret;
 901}
 902
 903/*
 904 * Get block function for non-AIO DIO writes when we create unwritten extent if
 905 * blocks are not allocated yet. The extent will be converted to written
 906 * after IO is complete by ext4_direct_IO_write().
 907 */
 908static int ext4_dio_get_block_unwritten_sync(struct inode *inode,
 909		sector_t iblock, struct buffer_head *bh_result,	int create)
 910{
 911	int ret;
 912
 913	/* We don't expect handle for direct IO */
 914	WARN_ON_ONCE(ext4_journal_current_handle());
 915
 916	ret = ext4_get_block_trans(inode, iblock, bh_result,
 917				   EXT4_GET_BLOCKS_IO_CREATE_EXT);
 918
 919	/*
 920	 * Mark inode as having pending DIO writes to unwritten extents.
 921	 * ext4_direct_IO_write() checks this flag and converts extents to
 922	 * written.
 923	 */
 924	if (!ret && buffer_unwritten(bh_result))
 925		ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
 926
 927	return ret;
 928}
 929
 930static int ext4_dio_get_block_overwrite(struct inode *inode, sector_t iblock,
 931		   struct buffer_head *bh_result, int create)
 932{
 933	int ret;
 934
 935	ext4_debug("ext4_dio_get_block_overwrite: inode %lu, create flag %d\n",
 936		   inode->i_ino, create);
 937	/* We don't expect handle for direct IO */
 938	WARN_ON_ONCE(ext4_journal_current_handle());
 939
 940	ret = _ext4_get_block(inode, iblock, bh_result, 0);
 941	/*
 942	 * Blocks should have been preallocated! ext4_file_write_iter() checks
 943	 * that.
 944	 */
 945	WARN_ON_ONCE(!buffer_mapped(bh_result) || buffer_unwritten(bh_result));
 946
 947	return ret;
 948}
 949
 950
 951/*
 952 * `handle' can be NULL if create is zero
 953 */
 954struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
 955				ext4_lblk_t block, int map_flags)
 956{
 957	struct ext4_map_blocks map;
 958	struct buffer_head *bh;
 959	int create = map_flags & EXT4_GET_BLOCKS_CREATE;
 960	int err;
 961
 962	J_ASSERT(handle != NULL || create == 0);
 963
 964	map.m_lblk = block;
 965	map.m_len = 1;
 966	err = ext4_map_blocks(handle, inode, &map, map_flags);
 
 967
 968	if (err == 0)
 969		return create ? ERR_PTR(-ENOSPC) : NULL;
 970	if (err < 0)
 971		return ERR_PTR(err);
 
 
 
 972
 973	bh = sb_getblk(inode->i_sb, map.m_pblk);
 974	if (unlikely(!bh))
 975		return ERR_PTR(-ENOMEM);
 
 
 976	if (map.m_flags & EXT4_MAP_NEW) {
 977		J_ASSERT(create != 0);
 978		J_ASSERT(handle != NULL);
 979
 980		/*
 981		 * Now that we do not always journal data, we should
 982		 * keep in mind whether this should always journal the
 983		 * new buffer as metadata.  For now, regular file
 984		 * writes use ext4_get_block instead, so it's not a
 985		 * problem.
 986		 */
 987		lock_buffer(bh);
 988		BUFFER_TRACE(bh, "call get_create_access");
 989		err = ext4_journal_get_create_access(handle, bh);
 990		if (unlikely(err)) {
 991			unlock_buffer(bh);
 992			goto errout;
 993		}
 994		if (!buffer_uptodate(bh)) {
 995			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
 996			set_buffer_uptodate(bh);
 997		}
 998		unlock_buffer(bh);
 999		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1000		err = ext4_handle_dirty_metadata(handle, inode, bh);
1001		if (unlikely(err))
1002			goto errout;
1003	} else
1004		BUFFER_TRACE(bh, "not a new buffer");
 
 
 
 
 
 
1005	return bh;
1006errout:
1007	brelse(bh);
1008	return ERR_PTR(err);
1009}
1010
1011struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1012			       ext4_lblk_t block, int map_flags)
1013{
1014	struct buffer_head *bh;
1015
1016	bh = ext4_getblk(handle, inode, block, map_flags);
1017	if (IS_ERR(bh))
1018		return bh;
1019	if (!bh || buffer_uptodate(bh))
1020		return bh;
1021	ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &bh);
1022	wait_on_buffer(bh);
1023	if (buffer_uptodate(bh))
1024		return bh;
1025	put_bh(bh);
1026	return ERR_PTR(-EIO);
1027}
1028
1029/* Read a contiguous batch of blocks. */
1030int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
1031		     bool wait, struct buffer_head **bhs)
1032{
1033	int i, err;
1034
1035	for (i = 0; i < bh_count; i++) {
1036		bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
1037		if (IS_ERR(bhs[i])) {
1038			err = PTR_ERR(bhs[i]);
1039			bh_count = i;
1040			goto out_brelse;
1041		}
1042	}
1043
1044	for (i = 0; i < bh_count; i++)
1045		/* Note that NULL bhs[i] is valid because of holes. */
1046		if (bhs[i] && !buffer_uptodate(bhs[i]))
1047			ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1,
1048				    &bhs[i]);
1049
1050	if (!wait)
1051		return 0;
1052
1053	for (i = 0; i < bh_count; i++)
1054		if (bhs[i])
1055			wait_on_buffer(bhs[i]);
1056
1057	for (i = 0; i < bh_count; i++) {
1058		if (bhs[i] && !buffer_uptodate(bhs[i])) {
1059			err = -EIO;
1060			goto out_brelse;
1061		}
1062	}
1063	return 0;
1064
1065out_brelse:
1066	for (i = 0; i < bh_count; i++) {
1067		brelse(bhs[i]);
1068		bhs[i] = NULL;
1069	}
1070	return err;
1071}
1072
1073int ext4_walk_page_buffers(handle_t *handle,
1074			   struct buffer_head *head,
1075			   unsigned from,
1076			   unsigned to,
1077			   int *partial,
1078			   int (*fn)(handle_t *handle,
1079				     struct buffer_head *bh))
1080{
1081	struct buffer_head *bh;
1082	unsigned block_start, block_end;
1083	unsigned blocksize = head->b_size;
1084	int err, ret = 0;
1085	struct buffer_head *next;
1086
1087	for (bh = head, block_start = 0;
1088	     ret == 0 && (bh != head || !block_start);
1089	     block_start = block_end, bh = next) {
1090		next = bh->b_this_page;
1091		block_end = block_start + blocksize;
1092		if (block_end <= from || block_start >= to) {
1093			if (partial && !buffer_uptodate(bh))
1094				*partial = 1;
1095			continue;
1096		}
1097		err = (*fn)(handle, bh);
1098		if (!ret)
1099			ret = err;
1100	}
1101	return ret;
1102}
1103
1104/*
1105 * To preserve ordering, it is essential that the hole instantiation and
1106 * the data write be encapsulated in a single transaction.  We cannot
1107 * close off a transaction and start a new one between the ext4_get_block()
1108 * and the commit_write().  So doing the jbd2_journal_start at the start of
1109 * prepare_write() is the right place.
1110 *
1111 * Also, this function can nest inside ext4_writepage().  In that case, we
1112 * *know* that ext4_writepage() has generated enough buffer credits to do the
1113 * whole page.  So we won't block on the journal in that case, which is good,
1114 * because the caller may be PF_MEMALLOC.
 
1115 *
1116 * By accident, ext4 can be reentered when a transaction is open via
1117 * quota file writes.  If we were to commit the transaction while thus
1118 * reentered, there can be a deadlock - we would be holding a quota
1119 * lock, and the commit would never complete if another thread had a
1120 * transaction open and was blocking on the quota lock - a ranking
1121 * violation.
1122 *
1123 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1124 * will _not_ run commit under these circumstances because handle->h_ref
1125 * is elevated.  We'll still have enough credits for the tiny quotafile
1126 * write.
1127 */
1128int do_journal_get_write_access(handle_t *handle,
1129				struct buffer_head *bh)
1130{
1131	int dirty = buffer_dirty(bh);
1132	int ret;
1133
1134	if (!buffer_mapped(bh) || buffer_freed(bh))
1135		return 0;
1136	/*
1137	 * __block_write_begin() could have dirtied some buffers. Clean
1138	 * the dirty bit as jbd2_journal_get_write_access() could complain
1139	 * otherwise about fs integrity issues. Setting of the dirty bit
1140	 * by __block_write_begin() isn't a real problem here as we clear
1141	 * the bit before releasing a page lock and thus writeback cannot
1142	 * ever write the buffer.
1143	 */
1144	if (dirty)
1145		clear_buffer_dirty(bh);
1146	BUFFER_TRACE(bh, "get write access");
1147	ret = ext4_journal_get_write_access(handle, bh);
1148	if (!ret && dirty)
1149		ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1150	return ret;
1151}
1152
1153#ifdef CONFIG_EXT4_FS_ENCRYPTION
1154static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1155				  get_block_t *get_block)
1156{
1157	unsigned from = pos & (PAGE_SIZE - 1);
1158	unsigned to = from + len;
1159	struct inode *inode = page->mapping->host;
1160	unsigned block_start, block_end;
1161	sector_t block;
1162	int err = 0;
1163	unsigned blocksize = inode->i_sb->s_blocksize;
1164	unsigned bbits;
1165	struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
1166	bool decrypt = false;
1167
1168	BUG_ON(!PageLocked(page));
1169	BUG_ON(from > PAGE_SIZE);
1170	BUG_ON(to > PAGE_SIZE);
1171	BUG_ON(from > to);
1172
1173	if (!page_has_buffers(page))
1174		create_empty_buffers(page, blocksize, 0);
1175	head = page_buffers(page);
1176	bbits = ilog2(blocksize);
1177	block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1178
1179	for (bh = head, block_start = 0; bh != head || !block_start;
1180	    block++, block_start = block_end, bh = bh->b_this_page) {
1181		block_end = block_start + blocksize;
1182		if (block_end <= from || block_start >= to) {
1183			if (PageUptodate(page)) {
1184				if (!buffer_uptodate(bh))
1185					set_buffer_uptodate(bh);
1186			}
1187			continue;
1188		}
1189		if (buffer_new(bh))
1190			clear_buffer_new(bh);
1191		if (!buffer_mapped(bh)) {
1192			WARN_ON(bh->b_size != blocksize);
1193			err = get_block(inode, block, bh, 1);
1194			if (err)
1195				break;
1196			if (buffer_new(bh)) {
1197				clean_bdev_bh_alias(bh);
1198				if (PageUptodate(page)) {
1199					clear_buffer_new(bh);
1200					set_buffer_uptodate(bh);
1201					mark_buffer_dirty(bh);
1202					continue;
1203				}
1204				if (block_end > to || block_start < from)
1205					zero_user_segments(page, to, block_end,
1206							   block_start, from);
1207				continue;
1208			}
1209		}
1210		if (PageUptodate(page)) {
1211			if (!buffer_uptodate(bh))
1212				set_buffer_uptodate(bh);
1213			continue;
1214		}
1215		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1216		    !buffer_unwritten(bh) &&
1217		    (block_start < from || block_end > to)) {
1218			ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1219			*wait_bh++ = bh;
1220			decrypt = ext4_encrypted_inode(inode) &&
1221				S_ISREG(inode->i_mode);
1222		}
1223	}
1224	/*
1225	 * If we issued read requests, let them complete.
1226	 */
1227	while (wait_bh > wait) {
1228		wait_on_buffer(*--wait_bh);
1229		if (!buffer_uptodate(*wait_bh))
1230			err = -EIO;
1231	}
1232	if (unlikely(err))
1233		page_zero_new_buffers(page, from, to);
1234	else if (decrypt)
1235		err = fscrypt_decrypt_page(page->mapping->host, page,
1236				PAGE_SIZE, 0, page->index);
1237	return err;
1238}
1239#endif
1240
1241static int ext4_write_begin(struct file *file, struct address_space *mapping,
1242			    loff_t pos, unsigned len, unsigned flags,
1243			    struct page **pagep, void **fsdata)
1244{
1245	struct inode *inode = mapping->host;
1246	int ret, needed_blocks;
1247	handle_t *handle;
1248	int retries = 0;
1249	struct page *page;
1250	pgoff_t index;
1251	unsigned from, to;
1252
1253	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
1254		return -EIO;
1255
1256	trace_ext4_write_begin(inode, pos, len, flags);
1257	/*
1258	 * Reserve one block more for addition to orphan list in case
1259	 * we allocate blocks but write fails for some reason
1260	 */
1261	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1262	index = pos >> PAGE_SHIFT;
1263	from = pos & (PAGE_SIZE - 1);
1264	to = from + len;
1265
1266	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1267		ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1268						    flags, pagep);
1269		if (ret < 0)
1270			return ret;
1271		if (ret == 1)
1272			return 0;
1273	}
1274
1275	/*
1276	 * grab_cache_page_write_begin() can take a long time if the
1277	 * system is thrashing due to memory pressure, or if the page
1278	 * is being written back.  So grab it first before we start
1279	 * the transaction handle.  This also allows us to allocate
1280	 * the page (if needed) without using GFP_NOFS.
1281	 */
1282retry_grab:
1283	page = grab_cache_page_write_begin(mapping, index, flags);
1284	if (!page)
1285		return -ENOMEM;
1286	unlock_page(page);
1287
1288retry_journal:
1289	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1290	if (IS_ERR(handle)) {
1291		put_page(page);
1292		return PTR_ERR(handle);
1293	}
1294
1295	lock_page(page);
1296	if (page->mapping != mapping) {
1297		/* The page got truncated from under us */
1298		unlock_page(page);
1299		put_page(page);
1300		ext4_journal_stop(handle);
1301		goto retry_grab;
 
1302	}
1303	/* In case writeback began while the page was unlocked */
1304	wait_for_stable_page(page);
1305
1306#ifdef CONFIG_EXT4_FS_ENCRYPTION
1307	if (ext4_should_dioread_nolock(inode))
1308		ret = ext4_block_write_begin(page, pos, len,
1309					     ext4_get_block_unwritten);
1310	else
1311		ret = ext4_block_write_begin(page, pos, len,
1312					     ext4_get_block);
1313#else
1314	if (ext4_should_dioread_nolock(inode))
1315		ret = __block_write_begin(page, pos, len,
1316					  ext4_get_block_unwritten);
1317	else
1318		ret = __block_write_begin(page, pos, len, ext4_get_block);
1319#endif
1320	if (!ret && ext4_should_journal_data(inode)) {
1321		ret = ext4_walk_page_buffers(handle, page_buffers(page),
1322					     from, to, NULL,
1323					     do_journal_get_write_access);
1324	}
1325
1326	if (ret) {
1327		unlock_page(page);
 
1328		/*
1329		 * __block_write_begin may have instantiated a few blocks
1330		 * outside i_size.  Trim these off again. Don't need
1331		 * i_size_read because we hold i_mutex.
1332		 *
1333		 * Add inode to orphan list in case we crash before
1334		 * truncate finishes
1335		 */
1336		if (pos + len > inode->i_size && ext4_can_truncate(inode))
1337			ext4_orphan_add(handle, inode);
1338
1339		ext4_journal_stop(handle);
1340		if (pos + len > inode->i_size) {
1341			ext4_truncate_failed_write(inode);
1342			/*
1343			 * If truncate failed early the inode might
1344			 * still be on the orphan list; we need to
1345			 * make sure the inode is removed from the
1346			 * orphan list in that case.
1347			 */
1348			if (inode->i_nlink)
1349				ext4_orphan_del(NULL, inode);
1350		}
 
1351
1352		if (ret == -ENOSPC &&
1353		    ext4_should_retry_alloc(inode->i_sb, &retries))
1354			goto retry_journal;
1355		put_page(page);
1356		return ret;
1357	}
1358	*pagep = page;
1359	return ret;
1360}
1361
1362/* For write_end() in data=journal mode */
1363static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1364{
1365	int ret;
1366	if (!buffer_mapped(bh) || buffer_freed(bh))
1367		return 0;
1368	set_buffer_uptodate(bh);
1369	ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1370	clear_buffer_meta(bh);
1371	clear_buffer_prio(bh);
1372	return ret;
1373}
1374
1375/*
1376 * We need to pick up the new inode size which generic_commit_write gave us
1377 * `file' can be NULL - eg, when called from page_symlink().
1378 *
1379 * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1380 * buffers are managed internally.
1381 */
1382static int ext4_write_end(struct file *file,
1383			  struct address_space *mapping,
1384			  loff_t pos, unsigned len, unsigned copied,
1385			  struct page *page, void *fsdata)
1386{
 
 
1387	handle_t *handle = ext4_journal_current_handle();
1388	struct inode *inode = mapping->host;
1389	loff_t old_size = inode->i_size;
1390	int ret = 0, ret2;
1391	int i_size_changed = 0;
1392
1393	trace_ext4_write_end(inode, pos, len, copied);
1394	if (ext4_has_inline_data(inode)) {
1395		ret = ext4_write_inline_data_end(inode, pos, len,
1396						 copied, page);
1397		if (ret < 0) {
1398			unlock_page(page);
1399			put_page(page);
1400			goto errout;
1401		}
1402		copied = ret;
1403	} else
1404		copied = block_write_end(file, mapping, pos,
1405					 len, copied, page, fsdata);
1406	/*
1407	 * it's important to update i_size while still holding page lock:
 
 
 
1408	 * page writeout could otherwise come in and zero beyond i_size.
1409	 */
1410	i_size_changed = ext4_update_inode_size(inode, pos + copied);
 
 
 
 
 
 
 
 
 
 
 
 
1411	unlock_page(page);
1412	put_page(page);
1413
1414	if (old_size < pos)
1415		pagecache_isize_extended(inode, old_size, pos);
1416	/*
1417	 * Don't mark the inode dirty under page lock. First, it unnecessarily
1418	 * makes the holding time of page lock longer. Second, it forces lock
1419	 * ordering of page lock and transaction start for journaling
1420	 * filesystems.
1421	 */
1422	if (i_size_changed)
1423		ext4_mark_inode_dirty(handle, inode);
1424
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1425	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1426		/* if we have allocated more blocks and copied
1427		 * less. We will have blocks allocated outside
1428		 * inode->i_size. So truncate them
1429		 */
1430		ext4_orphan_add(handle, inode);
1431errout:
 
 
 
1432	ret2 = ext4_journal_stop(handle);
1433	if (!ret)
1434		ret = ret2;
1435
1436	if (pos + len > inode->i_size) {
1437		ext4_truncate_failed_write(inode);
1438		/*
1439		 * If truncate failed early the inode might still be
1440		 * on the orphan list; we need to make sure the inode
1441		 * is removed from the orphan list in that case.
1442		 */
1443		if (inode->i_nlink)
1444			ext4_orphan_del(NULL, inode);
1445	}
1446
1447	return ret ? ret : copied;
1448}
1449
1450/*
1451 * This is a private version of page_zero_new_buffers() which doesn't
1452 * set the buffer to be dirty, since in data=journalled mode we need
1453 * to call ext4_handle_dirty_metadata() instead.
1454 */
1455static void ext4_journalled_zero_new_buffers(handle_t *handle,
1456					    struct page *page,
1457					    unsigned from, unsigned to)
1458{
1459	unsigned int block_start = 0, block_end;
1460	struct buffer_head *head, *bh;
1461
1462	bh = head = page_buffers(page);
1463	do {
1464		block_end = block_start + bh->b_size;
1465		if (buffer_new(bh)) {
1466			if (block_end > from && block_start < to) {
1467				if (!PageUptodate(page)) {
1468					unsigned start, size;
1469
1470					start = max(from, block_start);
1471					size = min(to, block_end) - start;
1472
1473					zero_user(page, start, size);
1474					write_end_fn(handle, bh);
1475				}
1476				clear_buffer_new(bh);
1477			}
1478		}
1479		block_start = block_end;
1480		bh = bh->b_this_page;
1481	} while (bh != head);
1482}
1483
1484static int ext4_journalled_write_end(struct file *file,
1485				     struct address_space *mapping,
1486				     loff_t pos, unsigned len, unsigned copied,
1487				     struct page *page, void *fsdata)
1488{
1489	handle_t *handle = ext4_journal_current_handle();
1490	struct inode *inode = mapping->host;
1491	loff_t old_size = inode->i_size;
1492	int ret = 0, ret2;
1493	int partial = 0;
1494	unsigned from, to;
1495	int size_changed = 0;
1496
1497	trace_ext4_journalled_write_end(inode, pos, len, copied);
1498	from = pos & (PAGE_SIZE - 1);
1499	to = from + len;
1500
1501	BUG_ON(!ext4_handle_valid(handle));
1502
1503	if (ext4_has_inline_data(inode)) {
1504		ret = ext4_write_inline_data_end(inode, pos, len,
1505						 copied, page);
1506		if (ret < 0) {
1507			unlock_page(page);
1508			put_page(page);
1509			goto errout;
1510		}
1511		copied = ret;
1512	} else if (unlikely(copied < len) && !PageUptodate(page)) {
1513		copied = 0;
1514		ext4_journalled_zero_new_buffers(handle, page, from, to);
1515	} else {
1516		if (unlikely(copied < len))
1517			ext4_journalled_zero_new_buffers(handle, page,
1518							 from + copied, to);
1519		ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1520					     from + copied, &partial,
1521					     write_end_fn);
1522		if (!partial)
1523			SetPageUptodate(page);
1524	}
1525	size_changed = ext4_update_inode_size(inode, pos + copied);
 
 
 
 
 
 
 
1526	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1527	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1528	unlock_page(page);
1529	put_page(page);
1530
1531	if (old_size < pos)
1532		pagecache_isize_extended(inode, old_size, pos);
1533
1534	if (size_changed) {
1535		ret2 = ext4_mark_inode_dirty(handle, inode);
1536		if (!ret)
1537			ret = ret2;
1538	}
1539
 
 
1540	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1541		/* if we have allocated more blocks and copied
1542		 * less. We will have blocks allocated outside
1543		 * inode->i_size. So truncate them
1544		 */
1545		ext4_orphan_add(handle, inode);
1546
1547errout:
1548	ret2 = ext4_journal_stop(handle);
1549	if (!ret)
1550		ret = ret2;
1551	if (pos + len > inode->i_size) {
1552		ext4_truncate_failed_write(inode);
1553		/*
1554		 * If truncate failed early the inode might still be
1555		 * on the orphan list; we need to make sure the inode
1556		 * is removed from the orphan list in that case.
1557		 */
1558		if (inode->i_nlink)
1559			ext4_orphan_del(NULL, inode);
1560	}
1561
1562	return ret ? ret : copied;
1563}
1564
1565/*
1566 * Reserve space for a single cluster
1567 */
1568static int ext4_da_reserve_space(struct inode *inode)
1569{
 
1570	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1571	struct ext4_inode_info *ei = EXT4_I(inode);
 
1572	int ret;
1573
1574	/*
 
 
 
 
 
 
 
 
 
 
 
1575	 * We will charge metadata quota at writeout time; this saves
1576	 * us from metadata over-estimation, though we may go over by
1577	 * a small amount in the end.  Here we just reserve for data.
1578	 */
1579	ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1580	if (ret)
1581		return ret;
1582
1583	spin_lock(&ei->i_block_reservation_lock);
1584	if (ext4_claim_free_clusters(sbi, 1, 0)) {
1585		spin_unlock(&ei->i_block_reservation_lock);
1586		dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
 
 
 
 
 
1587		return -ENOSPC;
1588	}
 
1589	ei->i_reserved_data_blocks++;
1590	trace_ext4_da_reserve_space(inode);
1591	spin_unlock(&ei->i_block_reservation_lock);
1592
1593	return 0;       /* success */
1594}
1595
1596static void ext4_da_release_space(struct inode *inode, int to_free)
1597{
1598	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1599	struct ext4_inode_info *ei = EXT4_I(inode);
1600
1601	if (!to_free)
1602		return;		/* Nothing to release, exit */
1603
1604	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1605
1606	trace_ext4_da_release_space(inode, to_free);
1607	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1608		/*
1609		 * if there aren't enough reserved blocks, then the
1610		 * counter is messed up somewhere.  Since this
1611		 * function is called from invalidate page, it's
1612		 * harmless to return without any action.
1613		 */
1614		ext4_warning(inode->i_sb, "ext4_da_release_space: "
1615			 "ino %lu, to_free %d with only %d reserved "
1616			 "data blocks", inode->i_ino, to_free,
1617			 ei->i_reserved_data_blocks);
1618		WARN_ON(1);
1619		to_free = ei->i_reserved_data_blocks;
1620	}
1621	ei->i_reserved_data_blocks -= to_free;
1622
 
 
 
 
 
 
 
 
 
 
 
 
1623	/* update fs dirty data blocks counter */
1624	percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1625
1626	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1627
1628	dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1629}
1630
1631static void ext4_da_page_release_reservation(struct page *page,
1632					     unsigned int offset,
1633					     unsigned int length)
1634{
1635	int to_release = 0, contiguous_blks = 0;
1636	struct buffer_head *head, *bh;
1637	unsigned int curr_off = 0;
1638	struct inode *inode = page->mapping->host;
1639	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1640	unsigned int stop = offset + length;
1641	int num_clusters;
1642	ext4_fsblk_t lblk;
1643
1644	BUG_ON(stop > PAGE_SIZE || stop < length);
1645
1646	head = page_buffers(page);
1647	bh = head;
1648	do {
1649		unsigned int next_off = curr_off + bh->b_size;
1650
1651		if (next_off > stop)
1652			break;
1653
1654		if ((offset <= curr_off) && (buffer_delay(bh))) {
1655			to_release++;
1656			contiguous_blks++;
1657			clear_buffer_delay(bh);
1658		} else if (contiguous_blks) {
1659			lblk = page->index <<
1660			       (PAGE_SHIFT - inode->i_blkbits);
1661			lblk += (curr_off >> inode->i_blkbits) -
1662				contiguous_blks;
1663			ext4_es_remove_extent(inode, lblk, contiguous_blks);
1664			contiguous_blks = 0;
1665		}
1666		curr_off = next_off;
1667	} while ((bh = bh->b_this_page) != head);
1668
1669	if (contiguous_blks) {
1670		lblk = page->index << (PAGE_SHIFT - inode->i_blkbits);
1671		lblk += (curr_off >> inode->i_blkbits) - contiguous_blks;
1672		ext4_es_remove_extent(inode, lblk, contiguous_blks);
1673	}
1674
1675	/* If we have released all the blocks belonging to a cluster, then we
1676	 * need to release the reserved space for that cluster. */
1677	num_clusters = EXT4_NUM_B2C(sbi, to_release);
1678	while (num_clusters > 0) {
1679		lblk = (page->index << (PAGE_SHIFT - inode->i_blkbits)) +
1680			((num_clusters - 1) << sbi->s_cluster_bits);
1681		if (sbi->s_cluster_ratio == 1 ||
1682		    !ext4_find_delalloc_cluster(inode, lblk))
1683			ext4_da_release_space(inode, 1);
1684
1685		num_clusters--;
1686	}
1687}
1688
1689/*
1690 * Delayed allocation stuff
1691 */
1692
1693struct mpage_da_data {
1694	struct inode *inode;
1695	struct writeback_control *wbc;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1696
1697	pgoff_t first_page;	/* The first page to write */
1698	pgoff_t next_page;	/* Current page to examine */
1699	pgoff_t last_page;	/* Last page to examine */
1700	/*
1701	 * Extent to map - this can be after first_page because that can be
1702	 * fully mapped. We somewhat abuse m_flags to store whether the extent
1703	 * is delalloc or unwritten.
1704	 */
1705	struct ext4_map_blocks map;
1706	struct ext4_io_submit io_submit;	/* IO submission data */
1707	unsigned int do_map:1;
1708};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1709
1710static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1711				       bool invalidate)
1712{
1713	int nr_pages, i;
1714	pgoff_t index, end;
1715	struct pagevec pvec;
1716	struct inode *inode = mpd->inode;
1717	struct address_space *mapping = inode->i_mapping;
1718
1719	/* This is necessary when next_page == 0. */
1720	if (mpd->first_page >= mpd->next_page)
1721		return;
1722
1723	index = mpd->first_page;
1724	end   = mpd->next_page - 1;
1725	if (invalidate) {
1726		ext4_lblk_t start, last;
1727		start = index << (PAGE_SHIFT - inode->i_blkbits);
1728		last = end << (PAGE_SHIFT - inode->i_blkbits);
1729		ext4_es_remove_extent(inode, start, last - start + 1);
1730	}
1731
1732	pagevec_init(&pvec);
1733	while (index <= end) {
1734		nr_pages = pagevec_lookup_range(&pvec, mapping, &index, end);
1735		if (nr_pages == 0)
1736			break;
1737		for (i = 0; i < nr_pages; i++) {
1738			struct page *page = pvec.pages[i];
1739
 
1740			BUG_ON(!PageLocked(page));
1741			BUG_ON(PageWriteback(page));
1742			if (invalidate) {
1743				if (page_mapped(page))
1744					clear_page_dirty_for_io(page);
1745				block_invalidatepage(page, 0, PAGE_SIZE);
1746				ClearPageUptodate(page);
1747			}
1748			unlock_page(page);
1749		}
 
1750		pagevec_release(&pvec);
1751	}
 
1752}
1753
1754static void ext4_print_free_blocks(struct inode *inode)
1755{
1756	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1757	struct super_block *sb = inode->i_sb;
1758	struct ext4_inode_info *ei = EXT4_I(inode);
1759
1760	ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1761	       EXT4_C2B(EXT4_SB(inode->i_sb),
1762			ext4_count_free_clusters(sb)));
1763	ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1764	ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1765	       (long long) EXT4_C2B(EXT4_SB(sb),
1766		percpu_counter_sum(&sbi->s_freeclusters_counter)));
1767	ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1768	       (long long) EXT4_C2B(EXT4_SB(sb),
1769		percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1770	ext4_msg(sb, KERN_CRIT, "Block reservation details");
1771	ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1772		 ei->i_reserved_data_blocks);
1773	return;
1774}
1775
1776static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1777{
1778	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1779}
1780
1781/*
1782 * This function is grabs code from the very beginning of
1783 * ext4_map_blocks, but assumes that the caller is from delayed write
1784 * time. This function looks up the requested blocks and sets the
1785 * buffer delay bit under the protection of i_data_sem.
1786 */
1787static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1788			      struct ext4_map_blocks *map,
1789			      struct buffer_head *bh)
 
1790{
1791	struct extent_status es;
1792	int retval;
1793	sector_t invalid_block = ~((sector_t) 0xffff);
1794#ifdef ES_AGGRESSIVE_TEST
1795	struct ext4_map_blocks orig_map;
 
1796
1797	memcpy(&orig_map, map, sizeof(*map));
1798#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1799
1800	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1801		invalid_block = ~0;
 
1802
1803	map->m_flags = 0;
1804	ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1805		  "logical block %lu\n", inode->i_ino, map->m_len,
1806		  (unsigned long) map->m_lblk);
 
 
 
 
1807
1808	/* Lookup extent status tree firstly */
1809	if (ext4_es_lookup_extent(inode, iblock, &es)) {
1810		if (ext4_es_is_hole(&es)) {
1811			retval = 0;
1812			down_read(&EXT4_I(inode)->i_data_sem);
1813			goto add_delayed;
1814		}
1815
1816		/*
1817		 * Delayed extent could be allocated by fallocate.
1818		 * So we need to check it.
 
 
 
1819		 */
1820		if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1821			map_bh(bh, inode->i_sb, invalid_block);
1822			set_buffer_new(bh);
1823			set_buffer_delay(bh);
1824			return 0;
 
 
 
 
 
 
1825		}
 
 
1826
1827		map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1828		retval = es.es_len - (iblock - es.es_lblk);
1829		if (retval > map->m_len)
1830			retval = map->m_len;
1831		map->m_len = retval;
1832		if (ext4_es_is_written(&es))
1833			map->m_flags |= EXT4_MAP_MAPPED;
1834		else if (ext4_es_is_unwritten(&es))
1835			map->m_flags |= EXT4_MAP_UNWRITTEN;
1836		else
1837			BUG_ON(1);
 
 
 
1838
1839#ifdef ES_AGGRESSIVE_TEST
1840		ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1841#endif
1842		return retval;
 
1843	}
1844
1845	/*
1846	 * Try to see if we can get the block without requesting a new
1847	 * file system block.
1848	 */
1849	down_read(&EXT4_I(inode)->i_data_sem);
1850	if (ext4_has_inline_data(inode))
1851		retval = 0;
1852	else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1853		retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1854	else
1855		retval = ext4_ind_map_blocks(NULL, inode, map, 0);
 
 
 
 
 
 
 
 
 
1856
1857add_delayed:
1858	if (retval == 0) {
1859		int ret;
1860		/*
1861		 * XXX: __block_prepare_write() unmaps passed block,
1862		 * is it OK?
1863		 */
1864		/*
1865		 * If the block was allocated from previously allocated cluster,
1866		 * then we don't need to reserve it again. However we still need
1867		 * to reserve metadata for every block we're going to write.
1868		 */
1869		if (EXT4_SB(inode->i_sb)->s_cluster_ratio == 1 ||
1870		    !ext4_find_delalloc_cluster(inode, map->m_lblk)) {
1871			ret = ext4_da_reserve_space(inode);
1872			if (ret) {
1873				/* not enough space to reserve */
1874				retval = ret;
1875				goto out_unlock;
1876			}
1877		}
1878
1879		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1880					    ~0, EXTENT_STATUS_DELAYED);
1881		if (ret) {
1882			retval = ret;
1883			goto out_unlock;
1884		}
 
 
 
 
 
 
 
 
 
1885
1886		map_bh(bh, inode->i_sb, invalid_block);
1887		set_buffer_new(bh);
1888		set_buffer_delay(bh);
1889	} else if (retval > 0) {
1890		int ret;
1891		unsigned int status;
 
 
1892
1893		if (unlikely(retval != map->m_len)) {
1894			ext4_warning(inode->i_sb,
1895				     "ES len assertion failed for inode "
1896				     "%lu: retval %d != map->m_len %d",
1897				     inode->i_ino, retval, map->m_len);
1898			WARN_ON(1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1899		}
 
 
 
 
 
 
 
 
 
 
1900
1901		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1902				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1903		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1904					    map->m_pblk, status);
1905		if (ret != 0)
1906			retval = ret;
 
1907	}
1908
1909out_unlock:
1910	up_read((&EXT4_I(inode)->i_data_sem));
 
 
 
 
 
 
1911
1912	return retval;
 
 
1913}
1914
1915/*
1916 * This is a special get_block_t callback which is used by
1917 * ext4_da_write_begin().  It will either return mapped block or
1918 * reserve space for a single block.
1919 *
1920 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1921 * We also have b_blocknr = -1 and b_bdev initialized properly
1922 *
1923 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1924 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1925 * initialized properly.
1926 */
1927int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1928			   struct buffer_head *bh, int create)
1929{
1930	struct ext4_map_blocks map;
1931	int ret = 0;
 
 
 
 
1932
1933	BUG_ON(create == 0);
1934	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1935
1936	map.m_lblk = iblock;
1937	map.m_len = 1;
1938
1939	/*
1940	 * first, we need to know whether the block is allocated already
1941	 * preallocated blocks are unmapped but should treated
1942	 * the same as allocated blocks.
1943	 */
1944	ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1945	if (ret <= 0)
1946		return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1947
1948	map_bh(bh, inode->i_sb, map.m_pblk);
1949	ext4_update_bh_state(bh, map.m_flags);
1950
1951	if (buffer_unwritten(bh)) {
1952		/* A delayed write to unwritten bh should be marked
1953		 * new and mapped.  Mapped ensures that we don't do
1954		 * get_block multiple times when we write to the same
1955		 * offset and new ensures that we do proper zero out
1956		 * for partial write.
1957		 */
1958		set_buffer_new(bh);
1959		set_buffer_mapped(bh);
1960	}
1961	return 0;
1962}
1963
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1964static int bget_one(handle_t *handle, struct buffer_head *bh)
1965{
1966	get_bh(bh);
1967	return 0;
1968}
1969
1970static int bput_one(handle_t *handle, struct buffer_head *bh)
1971{
1972	put_bh(bh);
1973	return 0;
1974}
1975
1976static int __ext4_journalled_writepage(struct page *page,
1977				       unsigned int len)
1978{
1979	struct address_space *mapping = page->mapping;
1980	struct inode *inode = mapping->host;
1981	struct buffer_head *page_bufs = NULL;
1982	handle_t *handle = NULL;
1983	int ret = 0, err = 0;
1984	int inline_data = ext4_has_inline_data(inode);
1985	struct buffer_head *inode_bh = NULL;
1986
1987	ClearPageChecked(page);
1988
1989	if (inline_data) {
1990		BUG_ON(page->index != 0);
1991		BUG_ON(len > ext4_get_max_inline_size(inode));
1992		inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1993		if (inode_bh == NULL)
1994			goto out;
1995	} else {
1996		page_bufs = page_buffers(page);
1997		if (!page_bufs) {
1998			BUG();
1999			goto out;
2000		}
2001		ext4_walk_page_buffers(handle, page_bufs, 0, len,
2002				       NULL, bget_one);
2003	}
2004	/*
2005	 * We need to release the page lock before we start the
2006	 * journal, so grab a reference so the page won't disappear
2007	 * out from under us.
2008	 */
2009	get_page(page);
2010	unlock_page(page);
2011
2012	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2013				    ext4_writepage_trans_blocks(inode));
2014	if (IS_ERR(handle)) {
2015		ret = PTR_ERR(handle);
2016		put_page(page);
2017		goto out_no_pagelock;
2018	}
2019	BUG_ON(!ext4_handle_valid(handle));
2020
2021	lock_page(page);
2022	put_page(page);
2023	if (page->mapping != mapping) {
2024		/* The page got truncated from under us */
2025		ext4_journal_stop(handle);
2026		ret = 0;
2027		goto out;
2028	}
2029
2030	if (inline_data) {
2031		BUFFER_TRACE(inode_bh, "get write access");
2032		ret = ext4_journal_get_write_access(handle, inode_bh);
2033
2034		err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
2035
2036	} else {
2037		ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2038					     do_journal_get_write_access);
2039
2040		err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2041					     write_end_fn);
2042	}
2043	if (ret == 0)
2044		ret = err;
2045	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
2046	err = ext4_journal_stop(handle);
2047	if (!ret)
2048		ret = err;
2049
2050	if (!ext4_has_inline_data(inode))
2051		ext4_walk_page_buffers(NULL, page_bufs, 0, len,
2052				       NULL, bput_one);
2053	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2054out:
2055	unlock_page(page);
2056out_no_pagelock:
2057	brelse(inode_bh);
2058	return ret;
2059}
2060
 
 
 
2061/*
2062 * Note that we don't need to start a transaction unless we're journaling data
2063 * because we should have holes filled from ext4_page_mkwrite(). We even don't
2064 * need to file the inode to the transaction's list in ordered mode because if
2065 * we are writing back data added by write(), the inode is already there and if
2066 * we are writing back data modified via mmap(), no one guarantees in which
2067 * transaction the data will hit the disk. In case we are journaling data, we
2068 * cannot start transaction directly because transaction start ranks above page
2069 * lock so we have to do some magic.
2070 *
2071 * This function can get called via...
2072 *   - ext4_writepages after taking page lock (have journal handle)
2073 *   - journal_submit_inode_data_buffers (no journal handle)
2074 *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
2075 *   - grab_page_cache when doing write_begin (have journal handle)
2076 *
2077 * We don't do any block allocation in this function. If we have page with
2078 * multiple blocks we need to write those buffer_heads that are mapped. This
2079 * is important for mmaped based write. So if we do with blocksize 1K
2080 * truncate(f, 1024);
2081 * a = mmap(f, 0, 4096);
2082 * a[0] = 'a';
2083 * truncate(f, 4096);
2084 * we have in the page first buffer_head mapped via page_mkwrite call back
2085 * but other buffer_heads would be unmapped but dirty (dirty done via the
2086 * do_wp_page). So writepage should write the first block. If we modify
2087 * the mmap area beyond 1024 we will again get a page_fault and the
2088 * page_mkwrite callback will do the block allocation and mark the
2089 * buffer_heads mapped.
2090 *
2091 * We redirty the page if we have any buffer_heads that is either delay or
2092 * unwritten in the page.
2093 *
2094 * We can get recursively called as show below.
2095 *
2096 *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2097 *		ext4_writepage()
2098 *
2099 * But since we don't do any block allocation we should not deadlock.
2100 * Page also have the dirty flag cleared so we don't get recurive page_lock.
2101 */
2102static int ext4_writepage(struct page *page,
2103			  struct writeback_control *wbc)
2104{
2105	int ret = 0;
2106	loff_t size;
2107	unsigned int len;
2108	struct buffer_head *page_bufs = NULL;
2109	struct inode *inode = page->mapping->host;
2110	struct ext4_io_submit io_submit;
2111	bool keep_towrite = false;
2112
2113	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
2114		ext4_invalidatepage(page, 0, PAGE_SIZE);
2115		unlock_page(page);
2116		return -EIO;
2117	}
2118
2119	trace_ext4_writepage(page);
2120	size = i_size_read(inode);
2121	if (page->index == size >> PAGE_SHIFT)
2122		len = size & ~PAGE_MASK;
2123	else
2124		len = PAGE_SIZE;
2125
2126	page_bufs = page_buffers(page);
2127	/*
2128	 * We cannot do block allocation or other extent handling in this
2129	 * function. If there are buffers needing that, we have to redirty
2130	 * the page. But we may reach here when we do a journal commit via
2131	 * journal_submit_inode_data_buffers() and in that case we must write
2132	 * allocated buffers to achieve data=ordered mode guarantees.
2133	 *
2134	 * Also, if there is only one buffer per page (the fs block
2135	 * size == the page size), if one buffer needs block
2136	 * allocation or needs to modify the extent tree to clear the
2137	 * unwritten flag, we know that the page can't be written at
2138	 * all, so we might as well refuse the write immediately.
2139	 * Unfortunately if the block size != page size, we can't as
2140	 * easily detect this case using ext4_walk_page_buffers(), but
2141	 * for the extremely common case, this is an optimization that
2142	 * skips a useless round trip through ext4_bio_write_page().
2143	 */
2144	if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2145				   ext4_bh_delay_or_unwritten)) {
2146		redirty_page_for_writepage(wbc, page);
2147		if ((current->flags & PF_MEMALLOC) ||
2148		    (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2149			/*
2150			 * For memory cleaning there's no point in writing only
2151			 * some buffers. So just bail out. Warn if we came here
2152			 * from direct reclaim.
2153			 */
2154			WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2155							== PF_MEMALLOC);
2156			unlock_page(page);
2157			return 0;
2158		}
2159		keep_towrite = true;
2160	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2161
2162	if (PageChecked(page) && ext4_should_journal_data(inode))
2163		/*
2164		 * It's mmapped pagecache.  Add buffers and journal it.  There
2165		 * doesn't seem much point in redirtying the page here.
2166		 */
2167		return __ext4_journalled_writepage(page, len);
2168
2169	ext4_io_submit_init(&io_submit, wbc);
2170	io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2171	if (!io_submit.io_end) {
2172		redirty_page_for_writepage(wbc, page);
2173		unlock_page(page);
2174		return -ENOMEM;
2175	}
2176	ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
2177	ext4_io_submit(&io_submit);
2178	/* Drop io_end reference we got from init */
2179	ext4_put_io_end_defer(io_submit.io_end);
2180	return ret;
2181}
2182
2183static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2184{
2185	int len;
2186	loff_t size;
2187	int err;
2188
2189	BUG_ON(page->index != mpd->first_page);
2190	clear_page_dirty_for_io(page);
2191	/*
2192	 * We have to be very careful here!  Nothing protects writeback path
2193	 * against i_size changes and the page can be writeably mapped into
2194	 * page tables. So an application can be growing i_size and writing
2195	 * data through mmap while writeback runs. clear_page_dirty_for_io()
2196	 * write-protects our page in page tables and the page cannot get
2197	 * written to again until we release page lock. So only after
2198	 * clear_page_dirty_for_io() we are safe to sample i_size for
2199	 * ext4_bio_write_page() to zero-out tail of the written page. We rely
2200	 * on the barrier provided by TestClearPageDirty in
2201	 * clear_page_dirty_for_io() to make sure i_size is really sampled only
2202	 * after page tables are updated.
2203	 */
2204	size = i_size_read(mpd->inode);
2205	if (page->index == size >> PAGE_SHIFT)
2206		len = size & ~PAGE_MASK;
2207	else
2208		len = PAGE_SIZE;
2209	err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
2210	if (!err)
2211		mpd->wbc->nr_to_write--;
2212	mpd->first_page++;
2213
2214	return err;
2215}
2216
2217#define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
2218
2219/*
2220 * mballoc gives us at most this number of blocks...
2221 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2222 * The rest of mballoc seems to handle chunks up to full group size.
 
 
2223 */
2224#define MAX_WRITEPAGES_EXTENT_LEN 2048
2225
2226/*
2227 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2228 *
2229 * @mpd - extent of blocks
2230 * @lblk - logical number of the block in the file
2231 * @bh - buffer head we want to add to the extent
2232 *
2233 * The function is used to collect contig. blocks in the same state. If the
2234 * buffer doesn't require mapping for writeback and we haven't started the
2235 * extent of buffers to map yet, the function returns 'true' immediately - the
2236 * caller can write the buffer right away. Otherwise the function returns true
2237 * if the block has been added to the extent, false if the block couldn't be
2238 * added.
2239 */
2240static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2241				   struct buffer_head *bh)
2242{
2243	struct ext4_map_blocks *map = &mpd->map;
2244
2245	/* Buffer that doesn't need mapping for writeback? */
2246	if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2247	    (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2248		/* So far no extent to map => we write the buffer right away */
2249		if (map->m_len == 0)
2250			return true;
2251		return false;
2252	}
2253
2254	/* First block in the extent? */
2255	if (map->m_len == 0) {
2256		/* We cannot map unless handle is started... */
2257		if (!mpd->do_map)
2258			return false;
2259		map->m_lblk = lblk;
2260		map->m_len = 1;
2261		map->m_flags = bh->b_state & BH_FLAGS;
2262		return true;
2263	}
2264
2265	/* Don't go larger than mballoc is willing to allocate */
2266	if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2267		return false;
2268
2269	/* Can we merge the block to our big extent? */
2270	if (lblk == map->m_lblk + map->m_len &&
2271	    (bh->b_state & BH_FLAGS) == map->m_flags) {
2272		map->m_len++;
2273		return true;
2274	}
2275	return false;
2276}
2277
2278/*
2279 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2280 *
2281 * @mpd - extent of blocks for mapping
2282 * @head - the first buffer in the page
2283 * @bh - buffer we should start processing from
2284 * @lblk - logical number of the block in the file corresponding to @bh
2285 *
2286 * Walk through page buffers from @bh upto @head (exclusive) and either submit
2287 * the page for IO if all buffers in this page were mapped and there's no
2288 * accumulated extent of buffers to map or add buffers in the page to the
2289 * extent of buffers to map. The function returns 1 if the caller can continue
2290 * by processing the next page, 0 if it should stop adding buffers to the
2291 * extent to map because we cannot extend it anymore. It can also return value
2292 * < 0 in case of error during IO submission.
2293 */
2294static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2295				   struct buffer_head *head,
2296				   struct buffer_head *bh,
2297				   ext4_lblk_t lblk)
2298{
2299	struct inode *inode = mpd->inode;
2300	int err;
2301	ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2302							>> inode->i_blkbits;
2303
2304	do {
2305		BUG_ON(buffer_locked(bh));
2306
2307		if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2308			/* Found extent to map? */
2309			if (mpd->map.m_len)
2310				return 0;
2311			/* Buffer needs mapping and handle is not started? */
2312			if (!mpd->do_map)
2313				return 0;
2314			/* Everything mapped so far and we hit EOF */
2315			break;
2316		}
2317	} while (lblk++, (bh = bh->b_this_page) != head);
2318	/* So far everything mapped? Submit the page for IO. */
2319	if (mpd->map.m_len == 0) {
2320		err = mpage_submit_page(mpd, head->b_page);
2321		if (err < 0)
2322			return err;
2323	}
2324	return lblk < blocks;
2325}
2326
2327/*
2328 * mpage_map_buffers - update buffers corresponding to changed extent and
2329 *		       submit fully mapped pages for IO
2330 *
2331 * @mpd - description of extent to map, on return next extent to map
2332 *
2333 * Scan buffers corresponding to changed extent (we expect corresponding pages
2334 * to be already locked) and update buffer state according to new extent state.
2335 * We map delalloc buffers to their physical location, clear unwritten bits,
2336 * and mark buffers as uninit when we perform writes to unwritten extents
2337 * and do extent conversion after IO is finished. If the last page is not fully
2338 * mapped, we update @map to the next extent in the last page that needs
2339 * mapping. Otherwise we submit the page for IO.
2340 */
2341static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2342{
2343	struct pagevec pvec;
2344	int nr_pages, i;
2345	struct inode *inode = mpd->inode;
2346	struct buffer_head *head, *bh;
2347	int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2348	pgoff_t start, end;
2349	ext4_lblk_t lblk;
2350	sector_t pblock;
2351	int err;
2352
2353	start = mpd->map.m_lblk >> bpp_bits;
2354	end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2355	lblk = start << bpp_bits;
2356	pblock = mpd->map.m_pblk;
2357
2358	pagevec_init(&pvec);
2359	while (start <= end) {
2360		nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping,
2361						&start, end);
2362		if (nr_pages == 0)
2363			break;
2364		for (i = 0; i < nr_pages; i++) {
2365			struct page *page = pvec.pages[i];
2366
2367			bh = head = page_buffers(page);
2368			do {
2369				if (lblk < mpd->map.m_lblk)
2370					continue;
2371				if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2372					/*
2373					 * Buffer after end of mapped extent.
2374					 * Find next buffer in the page to map.
2375					 */
2376					mpd->map.m_len = 0;
2377					mpd->map.m_flags = 0;
2378					/*
2379					 * FIXME: If dioread_nolock supports
2380					 * blocksize < pagesize, we need to make
2381					 * sure we add size mapped so far to
2382					 * io_end->size as the following call
2383					 * can submit the page for IO.
2384					 */
2385					err = mpage_process_page_bufs(mpd, head,
2386								      bh, lblk);
2387					pagevec_release(&pvec);
2388					if (err > 0)
2389						err = 0;
2390					return err;
2391				}
2392				if (buffer_delay(bh)) {
2393					clear_buffer_delay(bh);
2394					bh->b_blocknr = pblock++;
2395				}
2396				clear_buffer_unwritten(bh);
2397			} while (lblk++, (bh = bh->b_this_page) != head);
2398
2399			/*
2400			 * FIXME: This is going to break if dioread_nolock
2401			 * supports blocksize < pagesize as we will try to
2402			 * convert potentially unmapped parts of inode.
2403			 */
2404			mpd->io_submit.io_end->size += PAGE_SIZE;
2405			/* Page fully mapped - let IO run! */
2406			err = mpage_submit_page(mpd, page);
2407			if (err < 0) {
2408				pagevec_release(&pvec);
2409				return err;
2410			}
2411		}
2412		pagevec_release(&pvec);
2413	}
2414	/* Extent fully mapped and matches with page boundary. We are done. */
2415	mpd->map.m_len = 0;
2416	mpd->map.m_flags = 0;
2417	return 0;
2418}
2419
2420static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2421{
2422	struct inode *inode = mpd->inode;
2423	struct ext4_map_blocks *map = &mpd->map;
2424	int get_blocks_flags;
2425	int err, dioread_nolock;
2426
2427	trace_ext4_da_write_pages_extent(inode, map);
2428	/*
2429	 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2430	 * to convert an unwritten extent to be initialized (in the case
2431	 * where we have written into one or more preallocated blocks).  It is
2432	 * possible that we're going to need more metadata blocks than
2433	 * previously reserved. However we must not fail because we're in
2434	 * writeback and there is nothing we can do about it so it might result
2435	 * in data loss.  So use reserved blocks to allocate metadata if
2436	 * possible.
2437	 *
2438	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2439	 * the blocks in question are delalloc blocks.  This indicates
2440	 * that the blocks and quotas has already been checked when
2441	 * the data was copied into the page cache.
2442	 */
2443	get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2444			   EXT4_GET_BLOCKS_METADATA_NOFAIL |
2445			   EXT4_GET_BLOCKS_IO_SUBMIT;
2446	dioread_nolock = ext4_should_dioread_nolock(inode);
2447	if (dioread_nolock)
2448		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2449	if (map->m_flags & (1 << BH_Delay))
2450		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2451
2452	err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2453	if (err < 0)
2454		return err;
2455	if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2456		if (!mpd->io_submit.io_end->handle &&
2457		    ext4_handle_valid(handle)) {
2458			mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2459			handle->h_rsv_handle = NULL;
2460		}
2461		ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2462	}
2463
2464	BUG_ON(map->m_len == 0);
2465	if (map->m_flags & EXT4_MAP_NEW) {
2466		clean_bdev_aliases(inode->i_sb->s_bdev, map->m_pblk,
2467				   map->m_len);
2468	}
2469	return 0;
2470}
2471
2472/*
2473 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2474 *				 mpd->len and submit pages underlying it for IO
2475 *
2476 * @handle - handle for journal operations
2477 * @mpd - extent to map
2478 * @give_up_on_write - we set this to true iff there is a fatal error and there
2479 *                     is no hope of writing the data. The caller should discard
2480 *                     dirty pages to avoid infinite loops.
2481 *
2482 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2483 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2484 * them to initialized or split the described range from larger unwritten
2485 * extent. Note that we need not map all the described range since allocation
2486 * can return less blocks or the range is covered by more unwritten extents. We
2487 * cannot map more because we are limited by reserved transaction credits. On
2488 * the other hand we always make sure that the last touched page is fully
2489 * mapped so that it can be written out (and thus forward progress is
2490 * guaranteed). After mapping we submit all mapped pages for IO.
2491 */
2492static int mpage_map_and_submit_extent(handle_t *handle,
2493				       struct mpage_da_data *mpd,
2494				       bool *give_up_on_write)
2495{
2496	struct inode *inode = mpd->inode;
2497	struct ext4_map_blocks *map = &mpd->map;
2498	int err;
2499	loff_t disksize;
2500	int progress = 0;
2501
2502	mpd->io_submit.io_end->offset =
2503				((loff_t)map->m_lblk) << inode->i_blkbits;
2504	do {
2505		err = mpage_map_one_extent(handle, mpd);
2506		if (err < 0) {
2507			struct super_block *sb = inode->i_sb;
2508
2509			if (ext4_forced_shutdown(EXT4_SB(sb)) ||
2510			    EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2511				goto invalidate_dirty_pages;
2512			/*
2513			 * Let the uper layers retry transient errors.
2514			 * In the case of ENOSPC, if ext4_count_free_blocks()
2515			 * is non-zero, a commit should free up blocks.
2516			 */
2517			if ((err == -ENOMEM) ||
2518			    (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2519				if (progress)
2520					goto update_disksize;
2521				return err;
2522			}
2523			ext4_msg(sb, KERN_CRIT,
2524				 "Delayed block allocation failed for "
2525				 "inode %lu at logical offset %llu with"
2526				 " max blocks %u with error %d",
2527				 inode->i_ino,
2528				 (unsigned long long)map->m_lblk,
2529				 (unsigned)map->m_len, -err);
2530			ext4_msg(sb, KERN_CRIT,
2531				 "This should not happen!! Data will "
2532				 "be lost\n");
2533			if (err == -ENOSPC)
2534				ext4_print_free_blocks(inode);
2535		invalidate_dirty_pages:
2536			*give_up_on_write = true;
2537			return err;
2538		}
2539		progress = 1;
2540		/*
2541		 * Update buffer state, submit mapped pages, and get us new
2542		 * extent to map
2543		 */
2544		err = mpage_map_and_submit_buffers(mpd);
2545		if (err < 0)
2546			goto update_disksize;
2547	} while (map->m_len);
2548
2549update_disksize:
2550	/*
2551	 * Update on-disk size after IO is submitted.  Races with
2552	 * truncate are avoided by checking i_size under i_data_sem.
2553	 */
2554	disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2555	if (disksize > EXT4_I(inode)->i_disksize) {
2556		int err2;
2557		loff_t i_size;
2558
2559		down_write(&EXT4_I(inode)->i_data_sem);
2560		i_size = i_size_read(inode);
2561		if (disksize > i_size)
2562			disksize = i_size;
2563		if (disksize > EXT4_I(inode)->i_disksize)
2564			EXT4_I(inode)->i_disksize = disksize;
2565		up_write(&EXT4_I(inode)->i_data_sem);
2566		err2 = ext4_mark_inode_dirty(handle, inode);
2567		if (err2)
2568			ext4_error(inode->i_sb,
2569				   "Failed to mark inode %lu dirty",
2570				   inode->i_ino);
2571		if (!err)
2572			err = err2;
2573	}
2574	return err;
2575}
2576
2577/*
2578 * Calculate the total number of credits to reserve for one writepages
2579 * iteration. This is called from ext4_writepages(). We map an extent of
2580 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2581 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2582 * bpp - 1 blocks in bpp different extents.
2583 */
2584static int ext4_da_writepages_trans_blocks(struct inode *inode)
2585{
2586	int bpp = ext4_journal_blocks_per_page(inode);
2587
2588	return ext4_meta_trans_blocks(inode,
2589				MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
 
 
 
 
 
 
 
 
 
2590}
2591
2592/*
2593 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2594 * 				 and underlying extent to map
2595 *
2596 * @mpd - where to look for pages
2597 *
2598 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2599 * IO immediately. When we find a page which isn't mapped we start accumulating
2600 * extent of buffers underlying these pages that needs mapping (formed by
2601 * either delayed or unwritten buffers). We also lock the pages containing
2602 * these buffers. The extent found is returned in @mpd structure (starting at
2603 * mpd->lblk with length mpd->len blocks).
2604 *
2605 * Note that this function can attach bios to one io_end structure which are
2606 * neither logically nor physically contiguous. Although it may seem as an
2607 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2608 * case as we need to track IO to all buffers underlying a page in one io_end.
2609 */
2610static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2611{
2612	struct address_space *mapping = mpd->inode->i_mapping;
2613	struct pagevec pvec;
2614	unsigned int nr_pages;
2615	long left = mpd->wbc->nr_to_write;
2616	pgoff_t index = mpd->first_page;
2617	pgoff_t end = mpd->last_page;
2618	int tag;
2619	int i, err = 0;
2620	int blkbits = mpd->inode->i_blkbits;
2621	ext4_lblk_t lblk;
2622	struct buffer_head *head;
2623
2624	if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2625		tag = PAGECACHE_TAG_TOWRITE;
2626	else
2627		tag = PAGECACHE_TAG_DIRTY;
2628
2629	pagevec_init(&pvec);
2630	mpd->map.m_len = 0;
2631	mpd->next_page = index;
2632	while (index <= end) {
2633		nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2634				tag);
2635		if (nr_pages == 0)
2636			goto out;
2637
2638		for (i = 0; i < nr_pages; i++) {
2639			struct page *page = pvec.pages[i];
2640
2641			/*
2642			 * Accumulated enough dirty pages? This doesn't apply
2643			 * to WB_SYNC_ALL mode. For integrity sync we have to
2644			 * keep going because someone may be concurrently
2645			 * dirtying pages, and we might have synced a lot of
2646			 * newly appeared dirty pages, but have not synced all
2647			 * of the old dirty pages.
2648			 */
2649			if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2650				goto out;
2651
2652			/* If we can't merge this page, we are done. */
2653			if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2654				goto out;
 
 
 
 
 
 
 
 
2655
2656			lock_page(page);
 
2657			/*
2658			 * If the page is no longer dirty, or its mapping no
2659			 * longer corresponds to inode we are writing (which
2660			 * means it has been truncated or invalidated), or the
2661			 * page is already under writeback and we are not doing
2662			 * a data integrity writeback, skip the page
 
2663			 */
2664			if (!PageDirty(page) ||
2665			    (PageWriteback(page) &&
2666			     (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2667			    unlikely(page->mapping != mapping)) {
2668				unlock_page(page);
2669				continue;
2670			}
2671
2672			wait_on_page_writeback(page);
2673			BUG_ON(PageWriteback(page));
2674
2675			if (mpd->map.m_len == 0)
2676				mpd->first_page = page->index;
2677			mpd->next_page = page->index + 1;
2678			/* Add all dirty buffers to mpd */
2679			lblk = ((ext4_lblk_t)page->index) <<
2680				(PAGE_SHIFT - blkbits);
2681			head = page_buffers(page);
2682			err = mpage_process_page_bufs(mpd, head, head, lblk);
2683			if (err <= 0)
2684				goto out;
2685			err = 0;
2686			left--;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2687		}
2688		pagevec_release(&pvec);
2689		cond_resched();
2690	}
2691	return 0;
 
 
2692out:
2693	pagevec_release(&pvec);
2694	return err;
 
2695}
2696
2697static int ext4_writepages(struct address_space *mapping,
2698			   struct writeback_control *wbc)
 
2699{
2700	pgoff_t	writeback_index = 0;
2701	long nr_to_write = wbc->nr_to_write;
2702	int range_whole = 0;
2703	int cycled = 1;
2704	handle_t *handle = NULL;
2705	struct mpage_da_data mpd;
2706	struct inode *inode = mapping->host;
2707	int needed_blocks, rsv_blocks = 0, ret = 0;
 
 
 
 
 
2708	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2709	bool done;
2710	struct blk_plug plug;
2711	bool give_up_on_write = false;
2712
2713	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2714		return -EIO;
2715
2716	percpu_down_read(&sbi->s_journal_flag_rwsem);
2717	trace_ext4_writepages(inode, wbc);
2718
2719	/*
2720	 * No pages to write? This is mainly a kludge to avoid starting
2721	 * a transaction for special inodes like journal inode on last iput()
2722	 * because that could violate lock ordering on umount
2723	 */
2724	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2725		goto out_writepages;
2726
2727	if (ext4_should_journal_data(inode)) {
2728		ret = generic_writepages(mapping, wbc);
2729		goto out_writepages;
2730	}
2731
2732	/*
2733	 * If the filesystem has aborted, it is read-only, so return
2734	 * right away instead of dumping stack traces later on that
2735	 * will obscure the real source of the problem.  We test
2736	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's SB_RDONLY because
2737	 * the latter could be true if the filesystem is mounted
2738	 * read-only, and in that case, ext4_writepages should
2739	 * *never* be called, so if that ever happens, we would want
2740	 * the stack trace.
2741	 */
2742	if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) ||
2743		     sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2744		ret = -EROFS;
2745		goto out_writepages;
2746	}
2747
2748	if (ext4_should_dioread_nolock(inode)) {
2749		/*
2750		 * We may need to convert up to one extent per block in
2751		 * the page and we may dirty the inode.
2752		 */
2753		rsv_blocks = 1 + (PAGE_SIZE >> inode->i_blkbits);
2754	}
2755
2756	/*
2757	 * If we have inline data and arrive here, it means that
2758	 * we will soon create the block for the 1st page, so
2759	 * we'd better clear the inline data here.
2760	 */
2761	if (ext4_has_inline_data(inode)) {
2762		/* Just inode will be modified... */
2763		handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2764		if (IS_ERR(handle)) {
2765			ret = PTR_ERR(handle);
2766			goto out_writepages;
2767		}
2768		BUG_ON(ext4_test_inode_state(inode,
2769				EXT4_STATE_MAY_INLINE_DATA));
2770		ext4_destroy_inline_data(handle, inode);
2771		ext4_journal_stop(handle);
2772	}
2773
2774	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2775		range_whole = 1;
2776
 
2777	if (wbc->range_cyclic) {
2778		writeback_index = mapping->writeback_index;
2779		if (writeback_index)
2780			cycled = 0;
2781		mpd.first_page = writeback_index;
2782		mpd.last_page = -1;
 
 
2783	} else {
2784		mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2785		mpd.last_page = wbc->range_end >> PAGE_SHIFT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2786	}
2787
2788	mpd.inode = inode;
2789	mpd.wbc = wbc;
2790	ext4_io_submit_init(&mpd.io_submit, wbc);
2791retry:
2792	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2793		tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2794	done = false;
2795	blk_start_plug(&plug);
2796
2797	/*
2798	 * First writeback pages that don't need mapping - we can avoid
2799	 * starting a transaction unnecessarily and also avoid being blocked
2800	 * in the block layer on device congestion while having transaction
2801	 * started.
2802	 */
2803	mpd.do_map = 0;
2804	mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2805	if (!mpd.io_submit.io_end) {
2806		ret = -ENOMEM;
2807		goto unplug;
2808	}
2809	ret = mpage_prepare_extent_to_map(&mpd);
2810	/* Submit prepared bio */
2811	ext4_io_submit(&mpd.io_submit);
2812	ext4_put_io_end_defer(mpd.io_submit.io_end);
2813	mpd.io_submit.io_end = NULL;
2814	/* Unlock pages we didn't use */
2815	mpage_release_unused_pages(&mpd, false);
2816	if (ret < 0)
2817		goto unplug;
2818
2819	while (!done && mpd.first_page <= mpd.last_page) {
2820		/* For each extent of pages we use new io_end */
2821		mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2822		if (!mpd.io_submit.io_end) {
2823			ret = -ENOMEM;
2824			break;
2825		}
2826
2827		/*
2828		 * We have two constraints: We find one extent to map and we
2829		 * must always write out whole page (makes a difference when
2830		 * blocksize < pagesize) so that we don't block on IO when we
2831		 * try to write out the rest of the page. Journalled mode is
2832		 * not supported by delalloc.
2833		 */
2834		BUG_ON(ext4_should_journal_data(inode));
2835		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2836
2837		/* start a new transaction */
2838		handle = ext4_journal_start_with_reserve(inode,
2839				EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2840		if (IS_ERR(handle)) {
2841			ret = PTR_ERR(handle);
2842			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2843			       "%ld pages, ino %lu; err %d", __func__,
2844				wbc->nr_to_write, inode->i_ino, ret);
2845			/* Release allocated io_end */
2846			ext4_put_io_end(mpd.io_submit.io_end);
2847			mpd.io_submit.io_end = NULL;
2848			break;
2849		}
2850		mpd.do_map = 1;
2851
2852		trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2853		ret = mpage_prepare_extent_to_map(&mpd);
2854		if (!ret) {
2855			if (mpd.map.m_len)
2856				ret = mpage_map_and_submit_extent(handle, &mpd,
2857					&give_up_on_write);
2858			else {
2859				/*
2860				 * We scanned the whole range (or exhausted
2861				 * nr_to_write), submitted what was mapped and
2862				 * didn't find anything needing mapping. We are
2863				 * done.
2864				 */
2865				done = true;
2866			}
2867		}
2868		/*
2869		 * Caution: If the handle is synchronous,
2870		 * ext4_journal_stop() can wait for transaction commit
2871		 * to finish which may depend on writeback of pages to
2872		 * complete or on page lock to be released.  In that
2873		 * case, we have to wait until after after we have
2874		 * submitted all the IO, released page locks we hold,
2875		 * and dropped io_end reference (for extent conversion
2876		 * to be able to complete) before stopping the handle.
2877		 */
2878		if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2879			ext4_journal_stop(handle);
2880			handle = NULL;
2881			mpd.do_map = 0;
2882		}
2883		/* Submit prepared bio */
2884		ext4_io_submit(&mpd.io_submit);
2885		/* Unlock pages we didn't use */
2886		mpage_release_unused_pages(&mpd, give_up_on_write);
2887		/*
2888		 * Drop our io_end reference we got from init. We have
2889		 * to be careful and use deferred io_end finishing if
2890		 * we are still holding the transaction as we can
2891		 * release the last reference to io_end which may end
2892		 * up doing unwritten extent conversion.
2893		 */
2894		if (handle) {
2895			ext4_put_io_end_defer(mpd.io_submit.io_end);
2896			ext4_journal_stop(handle);
2897		} else
2898			ext4_put_io_end(mpd.io_submit.io_end);
2899		mpd.io_submit.io_end = NULL;
2900
2901		if (ret == -ENOSPC && sbi->s_journal) {
2902			/*
2903			 * Commit the transaction which would
2904			 * free blocks released in the transaction
2905			 * and try again
2906			 */
2907			jbd2_journal_force_commit_nested(sbi->s_journal);
2908			ret = 0;
2909			continue;
2910		}
2911		/* Fatal error - ENOMEM, EIO... */
2912		if (ret)
 
 
 
 
 
 
 
 
 
 
2913			break;
2914	}
2915unplug:
2916	blk_finish_plug(&plug);
2917	if (!ret && !cycled && wbc->nr_to_write > 0) {
2918		cycled = 1;
2919		mpd.last_page = writeback_index - 1;
2920		mpd.first_page = 0;
 
2921		goto retry;
2922	}
2923
2924	/* Update index */
 
2925	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2926		/*
2927		 * Set the writeback_index so that range_cyclic
2928		 * mode will write it back later
2929		 */
2930		mapping->writeback_index = mpd.first_page;
2931
2932out_writepages:
2933	trace_ext4_writepages_result(inode, wbc, ret,
2934				     nr_to_write - wbc->nr_to_write);
2935	percpu_up_read(&sbi->s_journal_flag_rwsem);
2936	return ret;
2937}
2938
2939static int ext4_dax_writepages(struct address_space *mapping,
2940			       struct writeback_control *wbc)
2941{
2942	int ret;
2943	long nr_to_write = wbc->nr_to_write;
2944	struct inode *inode = mapping->host;
2945	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2946
2947	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2948		return -EIO;
2949
2950	percpu_down_read(&sbi->s_journal_flag_rwsem);
2951	trace_ext4_writepages(inode, wbc);
2952
2953	ret = dax_writeback_mapping_range(mapping, inode->i_sb->s_bdev, wbc);
2954	trace_ext4_writepages_result(inode, wbc, ret,
2955				     nr_to_write - wbc->nr_to_write);
2956	percpu_up_read(&sbi->s_journal_flag_rwsem);
2957	return ret;
2958}
2959
 
2960static int ext4_nonda_switch(struct super_block *sb)
2961{
2962	s64 free_clusters, dirty_clusters;
2963	struct ext4_sb_info *sbi = EXT4_SB(sb);
2964
2965	/*
2966	 * switch to non delalloc mode if we are running low
2967	 * on free block. The free block accounting via percpu
2968	 * counters can get slightly wrong with percpu_counter_batch getting
2969	 * accumulated on each CPU without updating global counters
2970	 * Delalloc need an accurate free block accounting. So switch
2971	 * to non delalloc when we are near to error range.
2972	 */
2973	free_clusters =
2974		percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2975	dirty_clusters =
2976		percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2977	/*
2978	 * Start pushing delalloc when 1/2 of free blocks are dirty.
2979	 */
2980	if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2981		try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2982
2983	if (2 * free_clusters < 3 * dirty_clusters ||
2984	    free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2985		/*
2986		 * free block count is less than 150% of dirty blocks
2987		 * or free blocks is less than watermark
2988		 */
2989		return 1;
2990	}
 
 
 
 
 
 
 
2991	return 0;
2992}
2993
2994/* We always reserve for an inode update; the superblock could be there too */
2995static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2996{
2997	if (likely(ext4_has_feature_large_file(inode->i_sb)))
2998		return 1;
2999
3000	if (pos + len <= 0x7fffffffULL)
3001		return 1;
3002
3003	/* We might need to update the superblock to set LARGE_FILE */
3004	return 2;
3005}
3006
3007static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
3008			       loff_t pos, unsigned len, unsigned flags,
3009			       struct page **pagep, void **fsdata)
3010{
3011	int ret, retries = 0;
3012	struct page *page;
3013	pgoff_t index;
3014	struct inode *inode = mapping->host;
3015	handle_t *handle;
3016
3017	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
3018		return -EIO;
3019
3020	index = pos >> PAGE_SHIFT;
3021
3022	if (ext4_nonda_switch(inode->i_sb) ||
3023	    S_ISLNK(inode->i_mode)) {
3024		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
3025		return ext4_write_begin(file, mapping, pos,
3026					len, flags, pagep, fsdata);
3027	}
3028	*fsdata = (void *)0;
3029	trace_ext4_da_write_begin(inode, pos, len, flags);
3030
3031	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
3032		ret = ext4_da_write_inline_data_begin(mapping, inode,
3033						      pos, len, flags,
3034						      pagep, fsdata);
3035		if (ret < 0)
3036			return ret;
3037		if (ret == 1)
3038			return 0;
3039	}
3040
3041	/*
3042	 * grab_cache_page_write_begin() can take a long time if the
3043	 * system is thrashing due to memory pressure, or if the page
3044	 * is being written back.  So grab it first before we start
3045	 * the transaction handle.  This also allows us to allocate
3046	 * the page (if needed) without using GFP_NOFS.
3047	 */
3048retry_grab:
3049	page = grab_cache_page_write_begin(mapping, index, flags);
3050	if (!page)
3051		return -ENOMEM;
3052	unlock_page(page);
3053
3054	/*
3055	 * With delayed allocation, we don't log the i_disksize update
3056	 * if there is delayed block allocation. But we still need
3057	 * to journalling the i_disksize update if writes to the end
3058	 * of file which has an already mapped buffer.
3059	 */
3060retry_journal:
3061	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
3062				ext4_da_write_credits(inode, pos, len));
3063	if (IS_ERR(handle)) {
3064		put_page(page);
3065		return PTR_ERR(handle);
3066	}
 
 
 
3067
3068	lock_page(page);
3069	if (page->mapping != mapping) {
3070		/* The page got truncated from under us */
3071		unlock_page(page);
3072		put_page(page);
3073		ext4_journal_stop(handle);
3074		goto retry_grab;
 
3075	}
3076	/* In case writeback began while the page was unlocked */
3077	wait_for_stable_page(page);
3078
3079#ifdef CONFIG_EXT4_FS_ENCRYPTION
3080	ret = ext4_block_write_begin(page, pos, len,
3081				     ext4_da_get_block_prep);
3082#else
3083	ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
3084#endif
3085	if (ret < 0) {
3086		unlock_page(page);
3087		ext4_journal_stop(handle);
 
3088		/*
3089		 * block_write_begin may have instantiated a few blocks
3090		 * outside i_size.  Trim these off again. Don't need
3091		 * i_size_read because we hold i_mutex.
3092		 */
3093		if (pos + len > inode->i_size)
3094			ext4_truncate_failed_write(inode);
3095
3096		if (ret == -ENOSPC &&
3097		    ext4_should_retry_alloc(inode->i_sb, &retries))
3098			goto retry_journal;
3099
3100		put_page(page);
3101		return ret;
3102	}
3103
3104	*pagep = page;
 
 
3105	return ret;
3106}
3107
3108/*
3109 * Check if we should update i_disksize
3110 * when write to the end of file but not require block allocation
3111 */
3112static int ext4_da_should_update_i_disksize(struct page *page,
3113					    unsigned long offset)
3114{
3115	struct buffer_head *bh;
3116	struct inode *inode = page->mapping->host;
3117	unsigned int idx;
3118	int i;
3119
3120	bh = page_buffers(page);
3121	idx = offset >> inode->i_blkbits;
3122
3123	for (i = 0; i < idx; i++)
3124		bh = bh->b_this_page;
3125
3126	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3127		return 0;
3128	return 1;
3129}
3130
3131static int ext4_da_write_end(struct file *file,
3132			     struct address_space *mapping,
3133			     loff_t pos, unsigned len, unsigned copied,
3134			     struct page *page, void *fsdata)
3135{
3136	struct inode *inode = mapping->host;
3137	int ret = 0, ret2;
3138	handle_t *handle = ext4_journal_current_handle();
3139	loff_t new_i_size;
3140	unsigned long start, end;
3141	int write_mode = (int)(unsigned long)fsdata;
3142
3143	if (write_mode == FALL_BACK_TO_NONDELALLOC)
3144		return ext4_write_end(file, mapping, pos,
3145				      len, copied, page, fsdata);
 
 
 
 
 
 
 
 
3146
3147	trace_ext4_da_write_end(inode, pos, len, copied);
3148	start = pos & (PAGE_SIZE - 1);
3149	end = start + copied - 1;
3150
3151	/*
3152	 * generic_write_end() will run mark_inode_dirty() if i_size
3153	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
3154	 * into that.
3155	 */
 
3156	new_i_size = pos + copied;
3157	if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
3158		if (ext4_has_inline_data(inode) ||
3159		    ext4_da_should_update_i_disksize(page, end)) {
3160			ext4_update_i_disksize(inode, new_i_size);
 
 
 
 
 
 
 
 
 
 
 
3161			/* We need to mark inode dirty even if
3162			 * new_i_size is less that inode->i_size
3163			 * bu greater than i_disksize.(hint delalloc)
3164			 */
3165			ext4_mark_inode_dirty(handle, inode);
3166		}
3167	}
3168
3169	if (write_mode != CONVERT_INLINE_DATA &&
3170	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3171	    ext4_has_inline_data(inode))
3172		ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
3173						     page);
3174	else
3175		ret2 = generic_write_end(file, mapping, pos, len, copied,
3176							page, fsdata);
3177
3178	copied = ret2;
3179	if (ret2 < 0)
3180		ret = ret2;
3181	ret2 = ext4_journal_stop(handle);
3182	if (!ret)
3183		ret = ret2;
3184
3185	return ret ? ret : copied;
3186}
3187
3188static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
3189				   unsigned int length)
3190{
3191	/*
3192	 * Drop reserved blocks
3193	 */
3194	BUG_ON(!PageLocked(page));
3195	if (!page_has_buffers(page))
3196		goto out;
3197
3198	ext4_da_page_release_reservation(page, offset, length);
3199
3200out:
3201	ext4_invalidatepage(page, offset, length);
3202
3203	return;
3204}
3205
3206/*
3207 * Force all delayed allocation blocks to be allocated for a given inode.
3208 */
3209int ext4_alloc_da_blocks(struct inode *inode)
3210{
3211	trace_ext4_alloc_da_blocks(inode);
3212
3213	if (!EXT4_I(inode)->i_reserved_data_blocks)
 
3214		return 0;
3215
3216	/*
3217	 * We do something simple for now.  The filemap_flush() will
3218	 * also start triggering a write of the data blocks, which is
3219	 * not strictly speaking necessary (and for users of
3220	 * laptop_mode, not even desirable).  However, to do otherwise
3221	 * would require replicating code paths in:
3222	 *
3223	 * ext4_writepages() ->
3224	 *    write_cache_pages() ---> (via passed in callback function)
3225	 *        __mpage_da_writepage() -->
3226	 *           mpage_add_bh_to_extent()
3227	 *           mpage_da_map_blocks()
3228	 *
3229	 * The problem is that write_cache_pages(), located in
3230	 * mm/page-writeback.c, marks pages clean in preparation for
3231	 * doing I/O, which is not desirable if we're not planning on
3232	 * doing I/O at all.
3233	 *
3234	 * We could call write_cache_pages(), and then redirty all of
3235	 * the pages by calling redirty_page_for_writepage() but that
3236	 * would be ugly in the extreme.  So instead we would need to
3237	 * replicate parts of the code in the above functions,
3238	 * simplifying them because we wouldn't actually intend to
3239	 * write out the pages, but rather only collect contiguous
3240	 * logical block extents, call the multi-block allocator, and
3241	 * then update the buffer heads with the block allocations.
3242	 *
3243	 * For now, though, we'll cheat by calling filemap_flush(),
3244	 * which will map the blocks, and start the I/O, but not
3245	 * actually wait for the I/O to complete.
3246	 */
3247	return filemap_flush(inode->i_mapping);
3248}
3249
3250/*
3251 * bmap() is special.  It gets used by applications such as lilo and by
3252 * the swapper to find the on-disk block of a specific piece of data.
3253 *
3254 * Naturally, this is dangerous if the block concerned is still in the
3255 * journal.  If somebody makes a swapfile on an ext4 data-journaling
3256 * filesystem and enables swap, then they may get a nasty shock when the
3257 * data getting swapped to that swapfile suddenly gets overwritten by
3258 * the original zero's written out previously to the journal and
3259 * awaiting writeback in the kernel's buffer cache.
3260 *
3261 * So, if we see any bmap calls here on a modified, data-journaled file,
3262 * take extra steps to flush any blocks which might be in the cache.
3263 */
3264static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3265{
3266	struct inode *inode = mapping->host;
3267	journal_t *journal;
3268	int err;
3269
3270	/*
3271	 * We can get here for an inline file via the FIBMAP ioctl
3272	 */
3273	if (ext4_has_inline_data(inode))
3274		return 0;
3275
3276	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3277			test_opt(inode->i_sb, DELALLOC)) {
3278		/*
3279		 * With delalloc we want to sync the file
3280		 * so that we can make sure we allocate
3281		 * blocks for file
3282		 */
3283		filemap_write_and_wait(mapping);
3284	}
3285
3286	if (EXT4_JOURNAL(inode) &&
3287	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3288		/*
3289		 * This is a REALLY heavyweight approach, but the use of
3290		 * bmap on dirty files is expected to be extremely rare:
3291		 * only if we run lilo or swapon on a freshly made file
3292		 * do we expect this to happen.
3293		 *
3294		 * (bmap requires CAP_SYS_RAWIO so this does not
3295		 * represent an unprivileged user DOS attack --- we'd be
3296		 * in trouble if mortal users could trigger this path at
3297		 * will.)
3298		 *
3299		 * NB. EXT4_STATE_JDATA is not set on files other than
3300		 * regular files.  If somebody wants to bmap a directory
3301		 * or symlink and gets confused because the buffer
3302		 * hasn't yet been flushed to disk, they deserve
3303		 * everything they get.
3304		 */
3305
3306		ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3307		journal = EXT4_JOURNAL(inode);
3308		jbd2_journal_lock_updates(journal);
3309		err = jbd2_journal_flush(journal);
3310		jbd2_journal_unlock_updates(journal);
3311
3312		if (err)
3313			return 0;
3314	}
3315
3316	return generic_block_bmap(mapping, block, ext4_get_block);
3317}
3318
3319static int ext4_readpage(struct file *file, struct page *page)
3320{
3321	int ret = -EAGAIN;
3322	struct inode *inode = page->mapping->host;
3323
3324	trace_ext4_readpage(page);
3325
3326	if (ext4_has_inline_data(inode))
3327		ret = ext4_readpage_inline(inode, page);
3328
3329	if (ret == -EAGAIN)
3330		return ext4_mpage_readpages(page->mapping, NULL, page, 1);
3331
3332	return ret;
3333}
3334
3335static int
3336ext4_readpages(struct file *file, struct address_space *mapping,
3337		struct list_head *pages, unsigned nr_pages)
3338{
3339	struct inode *inode = mapping->host;
3340
3341	/* If the file has inline data, no need to do readpages. */
3342	if (ext4_has_inline_data(inode))
3343		return 0;
3344
3345	return ext4_mpage_readpages(mapping, pages, NULL, nr_pages);
3346}
3347
3348static void ext4_invalidatepage(struct page *page, unsigned int offset,
3349				unsigned int length)
3350{
3351	trace_ext4_invalidatepage(page, offset, length);
 
3352
3353	/* No journalling happens on data buffers when this function is used */
3354	WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3355
3356	block_invalidatepage(page, offset, length);
 
 
 
 
 
 
 
 
 
3357}
3358
3359static int __ext4_journalled_invalidatepage(struct page *page,
3360					    unsigned int offset,
3361					    unsigned int length)
3362{
3363	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3364
3365	trace_ext4_journalled_invalidatepage(page, offset, length);
3366
3367	/*
 
 
 
 
 
3368	 * If it's a full truncate we just forget about the pending dirtying
3369	 */
3370	if (offset == 0 && length == PAGE_SIZE)
3371		ClearPageChecked(page);
3372
3373	return jbd2_journal_invalidatepage(journal, page, offset, length);
3374}
3375
3376/* Wrapper for aops... */
3377static void ext4_journalled_invalidatepage(struct page *page,
3378					   unsigned int offset,
3379					   unsigned int length)
3380{
3381	WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3382}
3383
3384static int ext4_releasepage(struct page *page, gfp_t wait)
3385{
3386	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3387
3388	trace_ext4_releasepage(page);
3389
3390	/* Page has dirty journalled data -> cannot release */
3391	if (PageChecked(page))
3392		return 0;
3393	if (journal)
3394		return jbd2_journal_try_to_free_buffers(journal, page, wait);
3395	else
3396		return try_to_free_buffers(page);
3397}
3398
3399static bool ext4_inode_datasync_dirty(struct inode *inode)
 
 
 
 
 
 
3400{
3401	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
3402
3403	if (journal)
3404		return !jbd2_transaction_committed(journal,
3405					EXT4_I(inode)->i_datasync_tid);
3406	/* Any metadata buffers to write? */
3407	if (!list_empty(&inode->i_mapping->private_list))
3408		return true;
3409	return inode->i_state & I_DIRTY_DATASYNC;
3410}
3411
3412static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3413			    unsigned flags, struct iomap *iomap)
3414{
3415	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3416	unsigned int blkbits = inode->i_blkbits;
3417	unsigned long first_block = offset >> blkbits;
3418	unsigned long last_block = (offset + length - 1) >> blkbits;
3419	struct ext4_map_blocks map;
3420	bool delalloc = false;
3421	int ret;
3422
 
 
 
3423
3424	if (flags & IOMAP_REPORT) {
3425		if (ext4_has_inline_data(inode)) {
3426			ret = ext4_inline_data_iomap(inode, iomap);
3427			if (ret != -EAGAIN) {
3428				if (ret == 0 && offset >= iomap->length)
3429					ret = -ENOENT;
3430				return ret;
3431			}
3432		}
3433	} else {
3434		if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3435			return -ERANGE;
 
 
3436	}
3437
3438	map.m_lblk = first_block;
3439	map.m_len = last_block - first_block + 1;
 
 
 
 
 
 
 
 
 
 
 
3440
3441	if (flags & IOMAP_REPORT) {
3442		ret = ext4_map_blocks(NULL, inode, &map, 0);
3443		if (ret < 0)
3444			return ret;
3445
3446		if (ret == 0) {
3447			ext4_lblk_t end = map.m_lblk + map.m_len - 1;
3448			struct extent_status es;
3449
3450			ext4_es_find_delayed_extent_range(inode, map.m_lblk, end, &es);
3451
3452			if (!es.es_len || es.es_lblk > end) {
3453				/* entire range is a hole */
3454			} else if (es.es_lblk > map.m_lblk) {
3455				/* range starts with a hole */
3456				map.m_len = es.es_lblk - map.m_lblk;
3457			} else {
3458				ext4_lblk_t offs = 0;
3459
3460				if (es.es_lblk < map.m_lblk)
3461					offs = map.m_lblk - es.es_lblk;
3462				map.m_lblk = es.es_lblk + offs;
3463				map.m_len = es.es_len - offs;
3464				delalloc = true;
3465			}
3466		}
3467	} else if (flags & IOMAP_WRITE) {
3468		int dio_credits;
3469		handle_t *handle;
3470		int retries = 0;
3471
3472		/* Trim mapping request to maximum we can map at once for DIO */
3473		if (map.m_len > DIO_MAX_BLOCKS)
3474			map.m_len = DIO_MAX_BLOCKS;
3475		dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
3476retry:
3477		/*
3478		 * Either we allocate blocks and then we don't get unwritten
3479		 * extent so we have reserved enough credits, or the blocks
3480		 * are already allocated and unwritten and in that case
3481		 * extent conversion fits in the credits as well.
3482		 */
3483		handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
3484					    dio_credits);
3485		if (IS_ERR(handle))
3486			return PTR_ERR(handle);
3487
3488		ret = ext4_map_blocks(handle, inode, &map,
3489				      EXT4_GET_BLOCKS_CREATE_ZERO);
3490		if (ret < 0) {
3491			ext4_journal_stop(handle);
3492			if (ret == -ENOSPC &&
3493			    ext4_should_retry_alloc(inode->i_sb, &retries))
3494				goto retry;
3495			return ret;
3496		}
3497
3498		/*
3499		 * If we added blocks beyond i_size, we need to make sure they
3500		 * will get truncated if we crash before updating i_size in
3501		 * ext4_iomap_end(). For faults we don't need to do that (and
3502		 * even cannot because for orphan list operations inode_lock is
3503		 * required) - if we happen to instantiate block beyond i_size,
3504		 * it is because we race with truncate which has already added
3505		 * the inode to the orphan list.
3506		 */
3507		if (!(flags & IOMAP_FAULT) && first_block + map.m_len >
3508		    (i_size_read(inode) + (1 << blkbits) - 1) >> blkbits) {
3509			int err;
3510
3511			err = ext4_orphan_add(handle, inode);
3512			if (err < 0) {
3513				ext4_journal_stop(handle);
3514				return err;
3515			}
3516		}
3517		ext4_journal_stop(handle);
3518	} else {
3519		ret = ext4_map_blocks(NULL, inode, &map, 0);
3520		if (ret < 0)
3521			return ret;
3522	}
3523
3524	iomap->flags = 0;
3525	if (ext4_inode_datasync_dirty(inode))
3526		iomap->flags |= IOMAP_F_DIRTY;
3527	iomap->bdev = inode->i_sb->s_bdev;
3528	iomap->dax_dev = sbi->s_daxdev;
3529	iomap->offset = (u64)first_block << blkbits;
3530	iomap->length = (u64)map.m_len << blkbits;
3531
3532	if (ret == 0) {
3533		iomap->type = delalloc ? IOMAP_DELALLOC : IOMAP_HOLE;
3534		iomap->addr = IOMAP_NULL_ADDR;
3535	} else {
3536		if (map.m_flags & EXT4_MAP_MAPPED) {
3537			iomap->type = IOMAP_MAPPED;
3538		} else if (map.m_flags & EXT4_MAP_UNWRITTEN) {
3539			iomap->type = IOMAP_UNWRITTEN;
3540		} else {
3541			WARN_ON_ONCE(1);
3542			return -EIO;
3543		}
3544		iomap->addr = (u64)map.m_pblk << blkbits;
3545	}
3546
3547	if (map.m_flags & EXT4_MAP_NEW)
3548		iomap->flags |= IOMAP_F_NEW;
3549
3550	return 0;
3551}
3552
3553static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3554			  ssize_t written, unsigned flags, struct iomap *iomap)
3555{
3556	int ret = 0;
3557	handle_t *handle;
3558	int blkbits = inode->i_blkbits;
3559	bool truncate = false;
3560
3561	if (!(flags & IOMAP_WRITE) || (flags & IOMAP_FAULT))
3562		return 0;
3563
3564	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3565	if (IS_ERR(handle)) {
3566		ret = PTR_ERR(handle);
3567		goto orphan_del;
 
3568	}
3569	if (ext4_update_inode_size(inode, offset + written))
3570		ext4_mark_inode_dirty(handle, inode);
3571	/*
3572	 * We may need to truncate allocated but not written blocks beyond EOF.
3573	 */
3574	if (iomap->offset + iomap->length > 
3575	    ALIGN(inode->i_size, 1 << blkbits)) {
3576		ext4_lblk_t written_blk, end_blk;
3577
3578		written_blk = (offset + written) >> blkbits;
3579		end_blk = (offset + length) >> blkbits;
3580		if (written_blk < end_blk && ext4_can_truncate(inode))
3581			truncate = true;
3582	}
3583	/*
3584	 * Remove inode from orphan list if we were extending a inode and
3585	 * everything went fine.
3586	 */
3587	if (!truncate && inode->i_nlink &&
3588	    !list_empty(&EXT4_I(inode)->i_orphan))
3589		ext4_orphan_del(handle, inode);
3590	ext4_journal_stop(handle);
3591	if (truncate) {
3592		ext4_truncate_failed_write(inode);
3593orphan_del:
3594		/*
3595		 * If truncate failed early the inode might still be on the
3596		 * orphan list; we need to make sure the inode is removed from
3597		 * the orphan list in that case.
3598		 */
3599		if (inode->i_nlink)
3600			ext4_orphan_del(NULL, inode);
3601	}
3602	return ret;
 
 
 
3603}
3604
3605const struct iomap_ops ext4_iomap_ops = {
3606	.iomap_begin		= ext4_iomap_begin,
3607	.iomap_end		= ext4_iomap_end,
3608};
 
 
3609
3610static int ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3611			    ssize_t size, void *private)
3612{
3613        ext4_io_end_t *io_end = private;
3614
3615	/* if not async direct IO just return */
3616	if (!io_end)
3617		return 0;
3618
3619	ext_debug("ext4_end_io_dio(): io_end 0x%p "
3620		  "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3621		  io_end, io_end->inode->i_ino, iocb, offset, size);
3622
3623	/*
3624	 * Error during AIO DIO. We cannot convert unwritten extents as the
3625	 * data was not written. Just clear the unwritten flag and drop io_end.
3626	 */
3627	if (size <= 0) {
3628		ext4_clear_io_unwritten_flag(io_end);
3629		size = 0;
3630	}
3631	io_end->offset = offset;
3632	io_end->size = size;
3633	ext4_put_io_end(io_end);
 
 
 
 
 
 
3634
 
 
3635	return 0;
3636}
3637
3638/*
3639 * Handling of direct IO writes.
3640 *
3641 * For ext4 extent files, ext4 will do direct-io write even to holes,
3642 * preallocated extents, and those write extend the file, no need to
3643 * fall back to buffered IO.
3644 *
3645 * For holes, we fallocate those blocks, mark them as unwritten
3646 * If those blocks were preallocated, we mark sure they are split, but
3647 * still keep the range to write as unwritten.
3648 *
3649 * The unwritten extents will be converted to written when DIO is completed.
3650 * For async direct IO, since the IO may still pending when return, we
3651 * set up an end_io call back function, which will do the conversion
3652 * when async direct IO completed.
3653 *
3654 * If the O_DIRECT write will extend the file then add this inode to the
3655 * orphan list.  So recovery will truncate it back to the original size
3656 * if the machine crashes during the write.
3657 *
3658 */
3659static ssize_t ext4_direct_IO_write(struct kiocb *iocb, struct iov_iter *iter)
 
 
3660{
3661	struct file *file = iocb->ki_filp;
3662	struct inode *inode = file->f_mapping->host;
3663	struct ext4_inode_info *ei = EXT4_I(inode);
3664	ssize_t ret;
3665	loff_t offset = iocb->ki_pos;
3666	size_t count = iov_iter_count(iter);
3667	int overwrite = 0;
3668	get_block_t *get_block_func = NULL;
3669	int dio_flags = 0;
3670	loff_t final_size = offset + count;
3671	int orphan = 0;
3672	handle_t *handle;
3673
3674	if (final_size > inode->i_size || final_size > ei->i_disksize) {
3675		/* Credits for sb + inode write */
3676		handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3677		if (IS_ERR(handle)) {
3678			ret = PTR_ERR(handle);
3679			goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3680		}
3681		ret = ext4_orphan_add(handle, inode);
3682		if (ret) {
3683			ext4_journal_stop(handle);
3684			goto out;
3685		}
3686		orphan = 1;
3687		ext4_update_i_disksize(inode, inode->i_size);
3688		ext4_journal_stop(handle);
3689	}
3690
3691	BUG_ON(iocb->private == NULL);
3692
3693	/*
3694	 * Make all waiters for direct IO properly wait also for extent
3695	 * conversion. This also disallows race between truncate() and
3696	 * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3697	 */
3698	inode_dio_begin(inode);
3699
3700	/* If we do a overwrite dio, i_mutex locking can be released */
3701	overwrite = *((int *)iocb->private);
3702
3703	if (overwrite)
3704		inode_unlock(inode);
3705
3706	/*
3707	 * For extent mapped files we could direct write to holes and fallocate.
3708	 *
3709	 * Allocated blocks to fill the hole are marked as unwritten to prevent
3710	 * parallel buffered read to expose the stale data before DIO complete
3711	 * the data IO.
3712	 *
3713	 * As to previously fallocated extents, ext4 get_block will just simply
3714	 * mark the buffer mapped but still keep the extents unwritten.
3715	 *
3716	 * For non AIO case, we will convert those unwritten extents to written
3717	 * after return back from blockdev_direct_IO. That way we save us from
3718	 * allocating io_end structure and also the overhead of offloading
3719	 * the extent convertion to a workqueue.
3720	 *
3721	 * For async DIO, the conversion needs to be deferred when the
3722	 * IO is completed. The ext4 end_io callback function will be
3723	 * called to take care of the conversion work.  Here for async
3724	 * case, we allocate an io_end structure to hook to the iocb.
3725	 */
3726	iocb->private = NULL;
3727	if (overwrite)
3728		get_block_func = ext4_dio_get_block_overwrite;
3729	else if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) ||
3730		   round_down(offset, i_blocksize(inode)) >= inode->i_size) {
3731		get_block_func = ext4_dio_get_block;
3732		dio_flags = DIO_LOCKING | DIO_SKIP_HOLES;
3733	} else if (is_sync_kiocb(iocb)) {
3734		get_block_func = ext4_dio_get_block_unwritten_sync;
3735		dio_flags = DIO_LOCKING;
3736	} else {
3737		get_block_func = ext4_dio_get_block_unwritten_async;
3738		dio_flags = DIO_LOCKING;
3739	}
3740	ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter,
3741				   get_block_func, ext4_end_io_dio, NULL,
3742				   dio_flags);
3743
3744	if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3745						EXT4_STATE_DIO_UNWRITTEN)) {
3746		int err;
3747		/*
3748		 * for non AIO case, since the IO is already
3749		 * completed, we could do the conversion right here
3750		 */
3751		err = ext4_convert_unwritten_extents(NULL, inode,
3752						     offset, ret);
3753		if (err < 0)
3754			ret = err;
3755		ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3756	}
3757
3758	inode_dio_end(inode);
3759	/* take i_mutex locking again if we do a ovewrite dio */
3760	if (overwrite)
3761		inode_lock(inode);
3762
3763	if (ret < 0 && final_size > inode->i_size)
3764		ext4_truncate_failed_write(inode);
3765
3766	/* Handle extending of i_size after direct IO write */
3767	if (orphan) {
3768		int err;
3769
3770		/* Credits for sb + inode write */
3771		handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3772		if (IS_ERR(handle)) {
3773			/*
3774			 * We wrote the data but cannot extend
3775			 * i_size. Bail out. In async io case, we do
3776			 * not return error here because we have
3777			 * already submmitted the corresponding
3778			 * bio. Returning error here makes the caller
3779			 * think that this IO is done and failed
3780			 * resulting in race with bio's completion
3781			 * handler.
3782			 */
3783			if (!ret)
3784				ret = PTR_ERR(handle);
3785			if (inode->i_nlink)
3786				ext4_orphan_del(NULL, inode);
3787
3788			goto out;
3789		}
3790		if (inode->i_nlink)
3791			ext4_orphan_del(handle, inode);
3792		if (ret > 0) {
3793			loff_t end = offset + ret;
3794			if (end > inode->i_size || end > ei->i_disksize) {
3795				ext4_update_i_disksize(inode, end);
3796				if (end > inode->i_size)
3797					i_size_write(inode, end);
3798				/*
3799				 * We're going to return a positive `ret'
3800				 * here due to non-zero-length I/O, so there's
3801				 * no way of reporting error returns from
3802				 * ext4_mark_inode_dirty() to userspace.  So
3803				 * ignore it.
3804				 */
3805				ext4_mark_inode_dirty(handle, inode);
3806			}
3807		}
3808		err = ext4_journal_stop(handle);
3809		if (ret == 0)
3810			ret = err;
3811	}
3812out:
3813	return ret;
3814}
3815
3816static ssize_t ext4_direct_IO_read(struct kiocb *iocb, struct iov_iter *iter)
3817{
3818	struct address_space *mapping = iocb->ki_filp->f_mapping;
3819	struct inode *inode = mapping->host;
3820	size_t count = iov_iter_count(iter);
3821	ssize_t ret;
3822
3823	/*
3824	 * Shared inode_lock is enough for us - it protects against concurrent
3825	 * writes & truncates and since we take care of writing back page cache,
3826	 * we are protected against page writeback as well.
3827	 */
3828	inode_lock_shared(inode);
3829	ret = filemap_write_and_wait_range(mapping, iocb->ki_pos,
3830					   iocb->ki_pos + count - 1);
3831	if (ret)
3832		goto out_unlock;
3833	ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
3834				   iter, ext4_dio_get_block, NULL, NULL, 0);
3835out_unlock:
3836	inode_unlock_shared(inode);
3837	return ret;
3838}
3839
3840static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
 
 
3841{
3842	struct file *file = iocb->ki_filp;
3843	struct inode *inode = file->f_mapping->host;
3844	size_t count = iov_iter_count(iter);
3845	loff_t offset = iocb->ki_pos;
3846	ssize_t ret;
3847
3848#ifdef CONFIG_EXT4_FS_ENCRYPTION
3849	if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode))
3850		return 0;
3851#endif
3852
3853	/*
3854	 * If we are doing data journalling we don't support O_DIRECT
3855	 */
3856	if (ext4_should_journal_data(inode))
3857		return 0;
3858
3859	/* Let buffer I/O handle the inline data case. */
3860	if (ext4_has_inline_data(inode))
3861		return 0;
3862
3863	trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
3864	if (iov_iter_rw(iter) == READ)
3865		ret = ext4_direct_IO_read(iocb, iter);
3866	else
3867		ret = ext4_direct_IO_write(iocb, iter);
3868	trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret);
 
3869	return ret;
3870}
3871
3872/*
3873 * Pages can be marked dirty completely asynchronously from ext4's journalling
3874 * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3875 * much here because ->set_page_dirty is called under VFS locks.  The page is
3876 * not necessarily locked.
3877 *
3878 * We cannot just dirty the page and leave attached buffers clean, because the
3879 * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3880 * or jbddirty because all the journalling code will explode.
3881 *
3882 * So what we do is to mark the page "pending dirty" and next time writepage
3883 * is called, propagate that into the buffers appropriately.
3884 */
3885static int ext4_journalled_set_page_dirty(struct page *page)
3886{
3887	SetPageChecked(page);
3888	return __set_page_dirty_nobuffers(page);
3889}
3890
3891static int ext4_set_page_dirty(struct page *page)
3892{
3893	WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page));
3894	WARN_ON_ONCE(!page_has_buffers(page));
3895	return __set_page_dirty_buffers(page);
3896}
 
 
 
 
 
 
 
 
3897
3898static const struct address_space_operations ext4_aops = {
3899	.readpage		= ext4_readpage,
3900	.readpages		= ext4_readpages,
3901	.writepage		= ext4_writepage,
3902	.writepages		= ext4_writepages,
3903	.write_begin		= ext4_write_begin,
3904	.write_end		= ext4_write_end,
3905	.set_page_dirty		= ext4_set_page_dirty,
3906	.bmap			= ext4_bmap,
3907	.invalidatepage		= ext4_invalidatepage,
3908	.releasepage		= ext4_releasepage,
3909	.direct_IO		= ext4_direct_IO,
3910	.migratepage		= buffer_migrate_page,
3911	.is_partially_uptodate  = block_is_partially_uptodate,
3912	.error_remove_page	= generic_error_remove_page,
3913};
3914
3915static const struct address_space_operations ext4_journalled_aops = {
3916	.readpage		= ext4_readpage,
3917	.readpages		= ext4_readpages,
3918	.writepage		= ext4_writepage,
3919	.writepages		= ext4_writepages,
3920	.write_begin		= ext4_write_begin,
3921	.write_end		= ext4_journalled_write_end,
3922	.set_page_dirty		= ext4_journalled_set_page_dirty,
3923	.bmap			= ext4_bmap,
3924	.invalidatepage		= ext4_journalled_invalidatepage,
3925	.releasepage		= ext4_releasepage,
3926	.direct_IO		= ext4_direct_IO,
3927	.is_partially_uptodate  = block_is_partially_uptodate,
3928	.error_remove_page	= generic_error_remove_page,
3929};
3930
3931static const struct address_space_operations ext4_da_aops = {
3932	.readpage		= ext4_readpage,
3933	.readpages		= ext4_readpages,
3934	.writepage		= ext4_writepage,
3935	.writepages		= ext4_writepages,
3936	.write_begin		= ext4_da_write_begin,
3937	.write_end		= ext4_da_write_end,
3938	.set_page_dirty		= ext4_set_page_dirty,
3939	.bmap			= ext4_bmap,
3940	.invalidatepage		= ext4_da_invalidatepage,
3941	.releasepage		= ext4_releasepage,
3942	.direct_IO		= ext4_direct_IO,
3943	.migratepage		= buffer_migrate_page,
3944	.is_partially_uptodate  = block_is_partially_uptodate,
3945	.error_remove_page	= generic_error_remove_page,
3946};
3947
3948static const struct address_space_operations ext4_dax_aops = {
3949	.writepages		= ext4_dax_writepages,
3950	.direct_IO		= noop_direct_IO,
3951	.set_page_dirty		= noop_set_page_dirty,
3952	.invalidatepage		= noop_invalidatepage,
3953};
3954
3955void ext4_set_aops(struct inode *inode)
3956{
3957	switch (ext4_inode_journal_mode(inode)) {
3958	case EXT4_INODE_ORDERED_DATA_MODE:
3959	case EXT4_INODE_WRITEBACK_DATA_MODE:
3960		break;
3961	case EXT4_INODE_JOURNAL_DATA_MODE:
3962		inode->i_mapping->a_ops = &ext4_journalled_aops;
3963		return;
3964	default:
3965		BUG();
3966	}
3967	if (IS_DAX(inode))
3968		inode->i_mapping->a_ops = &ext4_dax_aops;
3969	else if (test_opt(inode->i_sb, DELALLOC))
3970		inode->i_mapping->a_ops = &ext4_da_aops;
 
 
3971	else
3972		inode->i_mapping->a_ops = &ext4_aops;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3973}
3974
3975static int __ext4_block_zero_page_range(handle_t *handle,
 
 
 
 
 
 
 
3976		struct address_space *mapping, loff_t from, loff_t length)
3977{
3978	ext4_fsblk_t index = from >> PAGE_SHIFT;
3979	unsigned offset = from & (PAGE_SIZE-1);
3980	unsigned blocksize, pos;
3981	ext4_lblk_t iblock;
3982	struct inode *inode = mapping->host;
3983	struct buffer_head *bh;
3984	struct page *page;
3985	int err = 0;
3986
3987	page = find_or_create_page(mapping, from >> PAGE_SHIFT,
3988				   mapping_gfp_constraint(mapping, ~__GFP_FS));
3989	if (!page)
3990		return -ENOMEM;
3991
3992	blocksize = inode->i_sb->s_blocksize;
 
3993
3994	iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
 
 
 
 
 
 
 
3995
3996	if (!page_has_buffers(page))
3997		create_empty_buffers(page, blocksize, 0);
3998
3999	/* Find the buffer that contains "offset" */
4000	bh = page_buffers(page);
4001	pos = blocksize;
4002	while (offset >= pos) {
4003		bh = bh->b_this_page;
4004		iblock++;
4005		pos += blocksize;
4006	}
 
 
4007	if (buffer_freed(bh)) {
4008		BUFFER_TRACE(bh, "freed: skip");
4009		goto unlock;
4010	}
 
4011	if (!buffer_mapped(bh)) {
4012		BUFFER_TRACE(bh, "unmapped");
4013		ext4_get_block(inode, iblock, bh, 0);
4014		/* unmapped? It's a hole - nothing to do */
4015		if (!buffer_mapped(bh)) {
4016			BUFFER_TRACE(bh, "still unmapped");
4017			goto unlock;
4018		}
4019	}
4020
4021	/* Ok, it's mapped. Make sure it's up-to-date */
4022	if (PageUptodate(page))
4023		set_buffer_uptodate(bh);
4024
4025	if (!buffer_uptodate(bh)) {
4026		err = -EIO;
4027		ll_rw_block(REQ_OP_READ, 0, 1, &bh);
4028		wait_on_buffer(bh);
4029		/* Uhhuh. Read error. Complain and punt. */
4030		if (!buffer_uptodate(bh))
4031			goto unlock;
4032		if (S_ISREG(inode->i_mode) &&
4033		    ext4_encrypted_inode(inode)) {
4034			/* We expect the key to be set. */
4035			BUG_ON(!fscrypt_has_encryption_key(inode));
4036			BUG_ON(blocksize != PAGE_SIZE);
4037			WARN_ON_ONCE(fscrypt_decrypt_page(page->mapping->host,
4038						page, PAGE_SIZE, 0, page->index));
4039		}
4040	}
 
4041	if (ext4_should_journal_data(inode)) {
4042		BUFFER_TRACE(bh, "get write access");
4043		err = ext4_journal_get_write_access(handle, bh);
4044		if (err)
4045			goto unlock;
4046	}
 
4047	zero_user(page, offset, length);
 
4048	BUFFER_TRACE(bh, "zeroed end of block");
4049
 
4050	if (ext4_should_journal_data(inode)) {
4051		err = ext4_handle_dirty_metadata(handle, inode, bh);
4052	} else {
4053		err = 0;
 
4054		mark_buffer_dirty(bh);
4055		if (ext4_should_order_data(inode))
4056			err = ext4_jbd2_inode_add_write(handle, inode);
4057	}
4058
4059unlock:
4060	unlock_page(page);
4061	put_page(page);
4062	return err;
4063}
4064
4065/*
4066 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
4067 * starting from file offset 'from'.  The range to be zero'd must
4068 * be contained with in one block.  If the specified range exceeds
4069 * the end of the block it will be shortened to end of the block
4070 * that cooresponds to 'from'
4071 */
4072static int ext4_block_zero_page_range(handle_t *handle,
4073		struct address_space *mapping, loff_t from, loff_t length)
4074{
4075	struct inode *inode = mapping->host;
4076	unsigned offset = from & (PAGE_SIZE-1);
4077	unsigned blocksize = inode->i_sb->s_blocksize;
4078	unsigned max = blocksize - (offset & (blocksize - 1));
4079
4080	/*
4081	 * correct length if it does not fall between
4082	 * 'from' and the end of the block
4083	 */
4084	if (length > max || length < 0)
4085		length = max;
4086
4087	if (IS_DAX(inode)) {
4088		return iomap_zero_range(inode, from, length, NULL,
4089					&ext4_iomap_ops);
4090	}
4091	return __ext4_block_zero_page_range(handle, mapping, from, length);
4092}
4093
4094/*
4095 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
4096 * up to the end of the block which corresponds to `from'.
4097 * This required during truncate. We need to physically zero the tail end
4098 * of that block so it doesn't yield old data if the file is later grown.
4099 */
4100static int ext4_block_truncate_page(handle_t *handle,
4101		struct address_space *mapping, loff_t from)
4102{
4103	unsigned offset = from & (PAGE_SIZE-1);
4104	unsigned length;
4105	unsigned blocksize;
4106	struct inode *inode = mapping->host;
4107
4108	/* If we are processing an encrypted inode during orphan list handling */
4109	if (ext4_encrypted_inode(inode) && !fscrypt_has_encryption_key(inode))
4110		return 0;
4111
4112	blocksize = inode->i_sb->s_blocksize;
4113	length = blocksize - (offset & (blocksize - 1));
4114
4115	return ext4_block_zero_page_range(handle, mapping, from, length);
4116}
4117
4118int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
4119			     loff_t lstart, loff_t length)
4120{
4121	struct super_block *sb = inode->i_sb;
4122	struct address_space *mapping = inode->i_mapping;
4123	unsigned partial_start, partial_end;
4124	ext4_fsblk_t start, end;
4125	loff_t byte_end = (lstart + length - 1);
4126	int err = 0;
4127
4128	partial_start = lstart & (sb->s_blocksize - 1);
4129	partial_end = byte_end & (sb->s_blocksize - 1);
4130
4131	start = lstart >> sb->s_blocksize_bits;
4132	end = byte_end >> sb->s_blocksize_bits;
4133
4134	/* Handle partial zero within the single block */
4135	if (start == end &&
4136	    (partial_start || (partial_end != sb->s_blocksize - 1))) {
4137		err = ext4_block_zero_page_range(handle, mapping,
4138						 lstart, length);
4139		return err;
4140	}
4141	/* Handle partial zero out on the start of the range */
4142	if (partial_start) {
4143		err = ext4_block_zero_page_range(handle, mapping,
4144						 lstart, sb->s_blocksize);
4145		if (err)
4146			return err;
4147	}
4148	/* Handle partial zero out on the end of the range */
4149	if (partial_end != sb->s_blocksize - 1)
4150		err = ext4_block_zero_page_range(handle, mapping,
4151						 byte_end - partial_end,
4152						 partial_end + 1);
4153	return err;
4154}
4155
4156int ext4_can_truncate(struct inode *inode)
4157{
4158	if (S_ISREG(inode->i_mode))
4159		return 1;
4160	if (S_ISDIR(inode->i_mode))
4161		return 1;
4162	if (S_ISLNK(inode->i_mode))
4163		return !ext4_inode_is_fast_symlink(inode);
4164	return 0;
4165}
4166
4167/*
4168 * We have to make sure i_disksize gets properly updated before we truncate
4169 * page cache due to hole punching or zero range. Otherwise i_disksize update
4170 * can get lost as it may have been postponed to submission of writeback but
4171 * that will never happen after we truncate page cache.
4172 */
4173int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
4174				      loff_t len)
4175{
4176	handle_t *handle;
4177	loff_t size = i_size_read(inode);
4178
4179	WARN_ON(!inode_is_locked(inode));
4180	if (offset > size || offset + len < size)
4181		return 0;
4182
4183	if (EXT4_I(inode)->i_disksize >= size)
4184		return 0;
4185
4186	handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
4187	if (IS_ERR(handle))
4188		return PTR_ERR(handle);
4189	ext4_update_i_disksize(inode, size);
4190	ext4_mark_inode_dirty(handle, inode);
4191	ext4_journal_stop(handle);
4192
4193	return 0;
4194}
4195
4196/*
4197 * ext4_punch_hole: punches a hole in a file by releasing the blocks
4198 * associated with the given offset and length
4199 *
4200 * @inode:  File inode
4201 * @offset: The offset where the hole will begin
4202 * @len:    The length of the hole
4203 *
4204 * Returns: 0 on success or negative on failure
4205 */
4206
4207int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
4208{
4209	struct super_block *sb = inode->i_sb;
4210	ext4_lblk_t first_block, stop_block;
4211	struct address_space *mapping = inode->i_mapping;
4212	loff_t first_block_offset, last_block_offset;
4213	handle_t *handle;
4214	unsigned int credits;
4215	int ret = 0;
4216
4217	if (!S_ISREG(inode->i_mode))
4218		return -EOPNOTSUPP;
4219
4220	trace_ext4_punch_hole(inode, offset, length, 0);
4221
4222	/*
4223	 * Write out all dirty pages to avoid race conditions
4224	 * Then release them.
4225	 */
4226	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4227		ret = filemap_write_and_wait_range(mapping, offset,
4228						   offset + length - 1);
4229		if (ret)
4230			return ret;
4231	}
4232
4233	inode_lock(inode);
4234
4235	/* No need to punch hole beyond i_size */
4236	if (offset >= inode->i_size)
4237		goto out_mutex;
4238
4239	/*
4240	 * If the hole extends beyond i_size, set the hole
4241	 * to end after the page that contains i_size
4242	 */
4243	if (offset + length > inode->i_size) {
4244		length = inode->i_size +
4245		   PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
4246		   offset;
4247	}
4248
4249	if (offset & (sb->s_blocksize - 1) ||
4250	    (offset + length) & (sb->s_blocksize - 1)) {
4251		/*
4252		 * Attach jinode to inode for jbd2 if we do any zeroing of
4253		 * partial block
4254		 */
4255		ret = ext4_inode_attach_jinode(inode);
4256		if (ret < 0)
4257			goto out_mutex;
4258
4259	}
4260
4261	/* Wait all existing dio workers, newcomers will block on i_mutex */
4262	inode_dio_wait(inode);
4263
4264	/*
4265	 * Prevent page faults from reinstantiating pages we have released from
4266	 * page cache.
4267	 */
4268	down_write(&EXT4_I(inode)->i_mmap_sem);
4269	first_block_offset = round_up(offset, sb->s_blocksize);
4270	last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
4271
4272	/* Now release the pages and zero block aligned part of pages*/
4273	if (last_block_offset > first_block_offset) {
4274		ret = ext4_update_disksize_before_punch(inode, offset, length);
4275		if (ret)
4276			goto out_dio;
4277		truncate_pagecache_range(inode, first_block_offset,
4278					 last_block_offset);
4279	}
4280
4281	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4282		credits = ext4_writepage_trans_blocks(inode);
4283	else
4284		credits = ext4_blocks_for_truncate(inode);
4285	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4286	if (IS_ERR(handle)) {
4287		ret = PTR_ERR(handle);
4288		ext4_std_error(sb, ret);
4289		goto out_dio;
4290	}
4291
4292	ret = ext4_zero_partial_blocks(handle, inode, offset,
4293				       length);
4294	if (ret)
4295		goto out_stop;
4296
4297	first_block = (offset + sb->s_blocksize - 1) >>
4298		EXT4_BLOCK_SIZE_BITS(sb);
4299	stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4300
4301	/* If there are no blocks to remove, return now */
4302	if (first_block >= stop_block)
4303		goto out_stop;
4304
4305	down_write(&EXT4_I(inode)->i_data_sem);
4306	ext4_discard_preallocations(inode);
4307
4308	ret = ext4_es_remove_extent(inode, first_block,
4309				    stop_block - first_block);
4310	if (ret) {
4311		up_write(&EXT4_I(inode)->i_data_sem);
4312		goto out_stop;
4313	}
4314
4315	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4316		ret = ext4_ext_remove_space(inode, first_block,
4317					    stop_block - 1);
4318	else
4319		ret = ext4_ind_remove_space(handle, inode, first_block,
4320					    stop_block);
4321
4322	up_write(&EXT4_I(inode)->i_data_sem);
4323	if (IS_SYNC(inode))
4324		ext4_handle_sync(handle);
4325
4326	inode->i_mtime = inode->i_ctime = current_time(inode);
4327	ext4_mark_inode_dirty(handle, inode);
4328	if (ret >= 0)
4329		ext4_update_inode_fsync_trans(handle, inode, 1);
4330out_stop:
4331	ext4_journal_stop(handle);
4332out_dio:
4333	up_write(&EXT4_I(inode)->i_mmap_sem);
4334out_mutex:
4335	inode_unlock(inode);
4336	return ret;
4337}
4338
4339int ext4_inode_attach_jinode(struct inode *inode)
4340{
4341	struct ext4_inode_info *ei = EXT4_I(inode);
4342	struct jbd2_inode *jinode;
4343
4344	if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4345		return 0;
4346
4347	jinode = jbd2_alloc_inode(GFP_KERNEL);
4348	spin_lock(&inode->i_lock);
4349	if (!ei->jinode) {
4350		if (!jinode) {
4351			spin_unlock(&inode->i_lock);
4352			return -ENOMEM;
4353		}
4354		ei->jinode = jinode;
4355		jbd2_journal_init_jbd_inode(ei->jinode, inode);
4356		jinode = NULL;
4357	}
4358	spin_unlock(&inode->i_lock);
4359	if (unlikely(jinode != NULL))
4360		jbd2_free_inode(jinode);
4361	return 0;
4362}
4363
4364/*
4365 * ext4_truncate()
4366 *
4367 * We block out ext4_get_block() block instantiations across the entire
4368 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4369 * simultaneously on behalf of the same inode.
4370 *
4371 * As we work through the truncate and commit bits of it to the journal there
4372 * is one core, guiding principle: the file's tree must always be consistent on
4373 * disk.  We must be able to restart the truncate after a crash.
4374 *
4375 * The file's tree may be transiently inconsistent in memory (although it
4376 * probably isn't), but whenever we close off and commit a journal transaction,
4377 * the contents of (the filesystem + the journal) must be consistent and
4378 * restartable.  It's pretty simple, really: bottom up, right to left (although
4379 * left-to-right works OK too).
4380 *
4381 * Note that at recovery time, journal replay occurs *before* the restart of
4382 * truncate against the orphan inode list.
4383 *
4384 * The committed inode has the new, desired i_size (which is the same as
4385 * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4386 * that this inode's truncate did not complete and it will again call
4387 * ext4_truncate() to have another go.  So there will be instantiated blocks
4388 * to the right of the truncation point in a crashed ext4 filesystem.  But
4389 * that's fine - as long as they are linked from the inode, the post-crash
4390 * ext4_truncate() run will find them and release them.
4391 */
4392int ext4_truncate(struct inode *inode)
4393{
4394	struct ext4_inode_info *ei = EXT4_I(inode);
4395	unsigned int credits;
4396	int err = 0;
4397	handle_t *handle;
4398	struct address_space *mapping = inode->i_mapping;
4399
4400	/*
4401	 * There is a possibility that we're either freeing the inode
4402	 * or it's a completely new inode. In those cases we might not
4403	 * have i_mutex locked because it's not necessary.
4404	 */
4405	if (!(inode->i_state & (I_NEW|I_FREEING)))
4406		WARN_ON(!inode_is_locked(inode));
4407	trace_ext4_truncate_enter(inode);
4408
4409	if (!ext4_can_truncate(inode))
4410		return 0;
4411
4412	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4413
4414	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4415		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4416
4417	if (ext4_has_inline_data(inode)) {
4418		int has_inline = 1;
4419
4420		err = ext4_inline_data_truncate(inode, &has_inline);
4421		if (err)
4422			return err;
4423		if (has_inline)
4424			return 0;
4425	}
4426
4427	/* If we zero-out tail of the page, we have to create jinode for jbd2 */
4428	if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4429		if (ext4_inode_attach_jinode(inode) < 0)
4430			return 0;
4431	}
4432
4433	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4434		credits = ext4_writepage_trans_blocks(inode);
4435	else
4436		credits = ext4_blocks_for_truncate(inode);
4437
4438	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4439	if (IS_ERR(handle))
4440		return PTR_ERR(handle);
4441
4442	if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4443		ext4_block_truncate_page(handle, mapping, inode->i_size);
4444
4445	/*
4446	 * We add the inode to the orphan list, so that if this
4447	 * truncate spans multiple transactions, and we crash, we will
4448	 * resume the truncate when the filesystem recovers.  It also
4449	 * marks the inode dirty, to catch the new size.
4450	 *
4451	 * Implication: the file must always be in a sane, consistent
4452	 * truncatable state while each transaction commits.
4453	 */
4454	err = ext4_orphan_add(handle, inode);
4455	if (err)
4456		goto out_stop;
4457
4458	down_write(&EXT4_I(inode)->i_data_sem);
4459
4460	ext4_discard_preallocations(inode);
4461
4462	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4463		err = ext4_ext_truncate(handle, inode);
4464	else
4465		ext4_ind_truncate(handle, inode);
4466
4467	up_write(&ei->i_data_sem);
4468	if (err)
4469		goto out_stop;
4470
4471	if (IS_SYNC(inode))
4472		ext4_handle_sync(handle);
4473
4474out_stop:
4475	/*
4476	 * If this was a simple ftruncate() and the file will remain alive,
4477	 * then we need to clear up the orphan record which we created above.
4478	 * However, if this was a real unlink then we were called by
4479	 * ext4_evict_inode(), and we allow that function to clean up the
4480	 * orphan info for us.
4481	 */
4482	if (inode->i_nlink)
4483		ext4_orphan_del(handle, inode);
4484
4485	inode->i_mtime = inode->i_ctime = current_time(inode);
4486	ext4_mark_inode_dirty(handle, inode);
4487	ext4_journal_stop(handle);
4488
4489	trace_ext4_truncate_exit(inode);
4490	return err;
4491}
4492
4493/*
4494 * ext4_get_inode_loc returns with an extra refcount against the inode's
4495 * underlying buffer_head on success. If 'in_mem' is true, we have all
4496 * data in memory that is needed to recreate the on-disk version of this
4497 * inode.
4498 */
4499static int __ext4_get_inode_loc(struct inode *inode,
4500				struct ext4_iloc *iloc, int in_mem)
4501{
4502	struct ext4_group_desc	*gdp;
4503	struct buffer_head	*bh;
4504	struct super_block	*sb = inode->i_sb;
4505	ext4_fsblk_t		block;
4506	int			inodes_per_block, inode_offset;
4507
4508	iloc->bh = NULL;
4509	if (!ext4_valid_inum(sb, inode->i_ino))
4510		return -EFSCORRUPTED;
4511
4512	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4513	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4514	if (!gdp)
4515		return -EIO;
4516
4517	/*
4518	 * Figure out the offset within the block group inode table
4519	 */
4520	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4521	inode_offset = ((inode->i_ino - 1) %
4522			EXT4_INODES_PER_GROUP(sb));
4523	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4524	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4525
4526	bh = sb_getblk(sb, block);
4527	if (unlikely(!bh))
4528		return -ENOMEM;
 
 
 
4529	if (!buffer_uptodate(bh)) {
4530		lock_buffer(bh);
4531
4532		/*
4533		 * If the buffer has the write error flag, we have failed
4534		 * to write out another inode in the same block.  In this
4535		 * case, we don't have to read the block because we may
4536		 * read the old inode data successfully.
4537		 */
4538		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4539			set_buffer_uptodate(bh);
4540
4541		if (buffer_uptodate(bh)) {
4542			/* someone brought it uptodate while we waited */
4543			unlock_buffer(bh);
4544			goto has_buffer;
4545		}
4546
4547		/*
4548		 * If we have all information of the inode in memory and this
4549		 * is the only valid inode in the block, we need not read the
4550		 * block.
4551		 */
4552		if (in_mem) {
4553			struct buffer_head *bitmap_bh;
4554			int i, start;
4555
4556			start = inode_offset & ~(inodes_per_block - 1);
4557
4558			/* Is the inode bitmap in cache? */
4559			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4560			if (unlikely(!bitmap_bh))
4561				goto make_io;
4562
4563			/*
4564			 * If the inode bitmap isn't in cache then the
4565			 * optimisation may end up performing two reads instead
4566			 * of one, so skip it.
4567			 */
4568			if (!buffer_uptodate(bitmap_bh)) {
4569				brelse(bitmap_bh);
4570				goto make_io;
4571			}
4572			for (i = start; i < start + inodes_per_block; i++) {
4573				if (i == inode_offset)
4574					continue;
4575				if (ext4_test_bit(i, bitmap_bh->b_data))
4576					break;
4577			}
4578			brelse(bitmap_bh);
4579			if (i == start + inodes_per_block) {
4580				/* all other inodes are free, so skip I/O */
4581				memset(bh->b_data, 0, bh->b_size);
4582				set_buffer_uptodate(bh);
4583				unlock_buffer(bh);
4584				goto has_buffer;
4585			}
4586		}
4587
4588make_io:
4589		/*
4590		 * If we need to do any I/O, try to pre-readahead extra
4591		 * blocks from the inode table.
4592		 */
4593		if (EXT4_SB(sb)->s_inode_readahead_blks) {
4594			ext4_fsblk_t b, end, table;
4595			unsigned num;
4596			__u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4597
4598			table = ext4_inode_table(sb, gdp);
4599			/* s_inode_readahead_blks is always a power of 2 */
4600			b = block & ~((ext4_fsblk_t) ra_blks - 1);
4601			if (table > b)
4602				b = table;
4603			end = b + ra_blks;
4604			num = EXT4_INODES_PER_GROUP(sb);
4605			if (ext4_has_group_desc_csum(sb))
 
4606				num -= ext4_itable_unused_count(sb, gdp);
4607			table += num / inodes_per_block;
4608			if (end > table)
4609				end = table;
4610			while (b <= end)
4611				sb_breadahead(sb, b++);
4612		}
4613
4614		/*
4615		 * There are other valid inodes in the buffer, this inode
4616		 * has in-inode xattrs, or we don't have this inode in memory.
4617		 * Read the block from disk.
4618		 */
4619		trace_ext4_load_inode(inode);
4620		get_bh(bh);
4621		bh->b_end_io = end_buffer_read_sync;
4622		submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh);
4623		wait_on_buffer(bh);
4624		if (!buffer_uptodate(bh)) {
4625			EXT4_ERROR_INODE_BLOCK(inode, block,
4626					       "unable to read itable block");
4627			brelse(bh);
4628			return -EIO;
4629		}
4630	}
4631has_buffer:
4632	iloc->bh = bh;
4633	return 0;
4634}
4635
4636int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4637{
4638	/* We have all inode data except xattrs in memory here. */
4639	return __ext4_get_inode_loc(inode, iloc,
4640		!ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4641}
4642
4643static bool ext4_should_use_dax(struct inode *inode)
4644{
4645	if (!test_opt(inode->i_sb, DAX))
4646		return false;
4647	if (!S_ISREG(inode->i_mode))
4648		return false;
4649	if (ext4_should_journal_data(inode))
4650		return false;
4651	if (ext4_has_inline_data(inode))
4652		return false;
4653	if (ext4_encrypted_inode(inode))
4654		return false;
4655	return true;
4656}
4657
4658void ext4_set_inode_flags(struct inode *inode)
4659{
4660	unsigned int flags = EXT4_I(inode)->i_flags;
4661	unsigned int new_fl = 0;
4662
 
4663	if (flags & EXT4_SYNC_FL)
4664		new_fl |= S_SYNC;
4665	if (flags & EXT4_APPEND_FL)
4666		new_fl |= S_APPEND;
4667	if (flags & EXT4_IMMUTABLE_FL)
4668		new_fl |= S_IMMUTABLE;
4669	if (flags & EXT4_NOATIME_FL)
4670		new_fl |= S_NOATIME;
4671	if (flags & EXT4_DIRSYNC_FL)
4672		new_fl |= S_DIRSYNC;
4673	if (ext4_should_use_dax(inode))
4674		new_fl |= S_DAX;
4675	if (flags & EXT4_ENCRYPT_FL)
4676		new_fl |= S_ENCRYPTED;
4677	inode_set_flags(inode, new_fl,
4678			S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
4679			S_ENCRYPTED);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4680}
4681
4682static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4683				  struct ext4_inode_info *ei)
4684{
4685	blkcnt_t i_blocks ;
4686	struct inode *inode = &(ei->vfs_inode);
4687	struct super_block *sb = inode->i_sb;
4688
4689	if (ext4_has_feature_huge_file(sb)) {
 
4690		/* we are using combined 48 bit field */
4691		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4692					le32_to_cpu(raw_inode->i_blocks_lo);
4693		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4694			/* i_blocks represent file system block size */
4695			return i_blocks  << (inode->i_blkbits - 9);
4696		} else {
4697			return i_blocks;
4698		}
4699	} else {
4700		return le32_to_cpu(raw_inode->i_blocks_lo);
4701	}
4702}
4703
4704static inline void ext4_iget_extra_inode(struct inode *inode,
4705					 struct ext4_inode *raw_inode,
4706					 struct ext4_inode_info *ei)
4707{
4708	__le32 *magic = (void *)raw_inode +
4709			EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4710	if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <=
4711	    EXT4_INODE_SIZE(inode->i_sb) &&
4712	    *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4713		ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4714		ext4_find_inline_data_nolock(inode);
4715	} else
4716		EXT4_I(inode)->i_inline_off = 0;
4717}
4718
4719int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4720{
4721	if (!ext4_has_feature_project(inode->i_sb))
4722		return -EOPNOTSUPP;
4723	*projid = EXT4_I(inode)->i_projid;
4724	return 0;
4725}
4726
4727struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4728{
4729	struct ext4_iloc iloc;
4730	struct ext4_inode *raw_inode;
4731	struct ext4_inode_info *ei;
4732	struct inode *inode;
4733	journal_t *journal = EXT4_SB(sb)->s_journal;
4734	long ret;
4735	loff_t size;
4736	int block;
4737	uid_t i_uid;
4738	gid_t i_gid;
4739	projid_t i_projid;
4740
4741	inode = iget_locked(sb, ino);
4742	if (!inode)
4743		return ERR_PTR(-ENOMEM);
4744	if (!(inode->i_state & I_NEW))
4745		return inode;
4746
4747	ei = EXT4_I(inode);
4748	iloc.bh = NULL;
4749
4750	ret = __ext4_get_inode_loc(inode, &iloc, 0);
4751	if (ret < 0)
4752		goto bad_inode;
4753	raw_inode = ext4_raw_inode(&iloc);
4754
4755	if ((ino == EXT4_ROOT_INO) && (raw_inode->i_links_count == 0)) {
4756		EXT4_ERROR_INODE(inode, "root inode unallocated");
4757		ret = -EFSCORRUPTED;
4758		goto bad_inode;
4759	}
4760
4761	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4762		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4763		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4764			EXT4_INODE_SIZE(inode->i_sb) ||
4765		    (ei->i_extra_isize & 3)) {
4766			EXT4_ERROR_INODE(inode,
4767					 "bad extra_isize %u (inode size %u)",
4768					 ei->i_extra_isize,
4769					 EXT4_INODE_SIZE(inode->i_sb));
4770			ret = -EFSCORRUPTED;
4771			goto bad_inode;
4772		}
4773	} else
4774		ei->i_extra_isize = 0;
4775
4776	/* Precompute checksum seed for inode metadata */
4777	if (ext4_has_metadata_csum(sb)) {
4778		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4779		__u32 csum;
4780		__le32 inum = cpu_to_le32(inode->i_ino);
4781		__le32 gen = raw_inode->i_generation;
4782		csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4783				   sizeof(inum));
4784		ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4785					      sizeof(gen));
4786	}
4787
4788	if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4789		EXT4_ERROR_INODE(inode, "checksum invalid");
4790		ret = -EFSBADCRC;
4791		goto bad_inode;
4792	}
4793
4794	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4795	i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4796	i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4797	if (ext4_has_feature_project(sb) &&
4798	    EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4799	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4800		i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4801	else
4802		i_projid = EXT4_DEF_PROJID;
4803
4804	if (!(test_opt(inode->i_sb, NO_UID32))) {
4805		i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4806		i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4807	}
4808	i_uid_write(inode, i_uid);
4809	i_gid_write(inode, i_gid);
4810	ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4811	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4812
4813	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
4814	ei->i_inline_off = 0;
4815	ei->i_dir_start_lookup = 0;
4816	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4817	/* We now have enough fields to check if the inode was active or not.
4818	 * This is needed because nfsd might try to access dead inodes
4819	 * the test is that same one that e2fsck uses
4820	 * NeilBrown 1999oct15
4821	 */
4822	if (inode->i_nlink == 0) {
4823		if ((inode->i_mode == 0 ||
4824		     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4825		    ino != EXT4_BOOT_LOADER_INO) {
4826			/* this inode is deleted */
4827			ret = -ESTALE;
4828			goto bad_inode;
4829		}
4830		/* The only unlinked inodes we let through here have
4831		 * valid i_mode and are being read by the orphan
4832		 * recovery code: that's fine, we're about to complete
4833		 * the process of deleting those.
4834		 * OR it is the EXT4_BOOT_LOADER_INO which is
4835		 * not initialized on a new filesystem. */
4836	}
4837	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4838	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4839	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4840	if (ext4_has_feature_64bit(sb))
4841		ei->i_file_acl |=
4842			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4843	inode->i_size = ext4_isize(sb, raw_inode);
4844	if ((size = i_size_read(inode)) < 0) {
4845		EXT4_ERROR_INODE(inode, "bad i_size value: %lld", size);
4846		ret = -EFSCORRUPTED;
4847		goto bad_inode;
4848	}
4849	ei->i_disksize = inode->i_size;
4850#ifdef CONFIG_QUOTA
4851	ei->i_reserved_quota = 0;
4852#endif
4853	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4854	ei->i_block_group = iloc.block_group;
4855	ei->i_last_alloc_group = ~0;
4856	/*
4857	 * NOTE! The in-memory inode i_data array is in little-endian order
4858	 * even on big-endian machines: we do NOT byteswap the block numbers!
4859	 */
4860	for (block = 0; block < EXT4_N_BLOCKS; block++)
4861		ei->i_data[block] = raw_inode->i_block[block];
4862	INIT_LIST_HEAD(&ei->i_orphan);
4863
4864	/*
4865	 * Set transaction id's of transactions that have to be committed
4866	 * to finish f[data]sync. We set them to currently running transaction
4867	 * as we cannot be sure that the inode or some of its metadata isn't
4868	 * part of the transaction - the inode could have been reclaimed and
4869	 * now it is reread from disk.
4870	 */
4871	if (journal) {
4872		transaction_t *transaction;
4873		tid_t tid;
4874
4875		read_lock(&journal->j_state_lock);
4876		if (journal->j_running_transaction)
4877			transaction = journal->j_running_transaction;
4878		else
4879			transaction = journal->j_committing_transaction;
4880		if (transaction)
4881			tid = transaction->t_tid;
4882		else
4883			tid = journal->j_commit_sequence;
4884		read_unlock(&journal->j_state_lock);
4885		ei->i_sync_tid = tid;
4886		ei->i_datasync_tid = tid;
4887	}
4888
4889	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
 
 
 
 
 
 
4890		if (ei->i_extra_isize == 0) {
4891			/* The extra space is currently unused. Use it. */
4892			BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
4893			ei->i_extra_isize = sizeof(struct ext4_inode) -
4894					    EXT4_GOOD_OLD_INODE_SIZE;
4895		} else {
4896			ext4_iget_extra_inode(inode, raw_inode, ei);
 
 
 
 
4897		}
4898	}
 
4899
4900	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4901	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4902	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4903	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4904
4905	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4906		u64 ivers = le32_to_cpu(raw_inode->i_disk_version);
4907
4908		if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4909			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4910				ivers |=
4911		    (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4912		}
4913		inode_set_iversion_queried(inode, ivers);
4914	}
4915
4916	ret = 0;
4917	if (ei->i_file_acl &&
4918	    !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4919		EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4920				 ei->i_file_acl);
4921		ret = -EFSCORRUPTED;
4922		goto bad_inode;
4923	} else if (!ext4_has_inline_data(inode)) {
4924		if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4925			if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4926			    (S_ISLNK(inode->i_mode) &&
4927			     !ext4_inode_is_fast_symlink(inode))))
4928				/* Validate extent which is part of inode */
4929				ret = ext4_ext_check_inode(inode);
4930		} else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4931			   (S_ISLNK(inode->i_mode) &&
4932			    !ext4_inode_is_fast_symlink(inode))) {
4933			/* Validate block references which are part of inode */
4934			ret = ext4_ind_check_inode(inode);
4935		}
4936	}
4937	if (ret)
4938		goto bad_inode;
4939
4940	if (S_ISREG(inode->i_mode)) {
4941		inode->i_op = &ext4_file_inode_operations;
4942		inode->i_fop = &ext4_file_operations;
4943		ext4_set_aops(inode);
4944	} else if (S_ISDIR(inode->i_mode)) {
4945		inode->i_op = &ext4_dir_inode_operations;
4946		inode->i_fop = &ext4_dir_operations;
4947	} else if (S_ISLNK(inode->i_mode)) {
4948		if (ext4_encrypted_inode(inode)) {
4949			inode->i_op = &ext4_encrypted_symlink_inode_operations;
4950			ext4_set_aops(inode);
4951		} else if (ext4_inode_is_fast_symlink(inode)) {
4952			inode->i_link = (char *)ei->i_data;
4953			inode->i_op = &ext4_fast_symlink_inode_operations;
4954			nd_terminate_link(ei->i_data, inode->i_size,
4955				sizeof(ei->i_data) - 1);
4956		} else {
4957			inode->i_op = &ext4_symlink_inode_operations;
4958			ext4_set_aops(inode);
4959		}
4960		inode_nohighmem(inode);
4961	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4962	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4963		inode->i_op = &ext4_special_inode_operations;
4964		if (raw_inode->i_block[0])
4965			init_special_inode(inode, inode->i_mode,
4966			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4967		else
4968			init_special_inode(inode, inode->i_mode,
4969			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4970	} else if (ino == EXT4_BOOT_LOADER_INO) {
4971		make_bad_inode(inode);
4972	} else {
4973		ret = -EFSCORRUPTED;
4974		EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4975		goto bad_inode;
4976	}
4977	brelse(iloc.bh);
4978	ext4_set_inode_flags(inode);
4979
4980	unlock_new_inode(inode);
4981	return inode;
4982
4983bad_inode:
4984	brelse(iloc.bh);
4985	iget_failed(inode);
4986	return ERR_PTR(ret);
4987}
4988
4989struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino)
4990{
4991	if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
4992		return ERR_PTR(-EFSCORRUPTED);
4993	return ext4_iget(sb, ino);
4994}
4995
4996static int ext4_inode_blocks_set(handle_t *handle,
4997				struct ext4_inode *raw_inode,
4998				struct ext4_inode_info *ei)
4999{
5000	struct inode *inode = &(ei->vfs_inode);
5001	u64 i_blocks = inode->i_blocks;
5002	struct super_block *sb = inode->i_sb;
5003
5004	if (i_blocks <= ~0U) {
5005		/*
5006		 * i_blocks can be represented in a 32 bit variable
5007		 * as multiple of 512 bytes
5008		 */
5009		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5010		raw_inode->i_blocks_high = 0;
5011		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5012		return 0;
5013	}
5014	if (!ext4_has_feature_huge_file(sb))
5015		return -EFBIG;
5016
5017	if (i_blocks <= 0xffffffffffffULL) {
5018		/*
5019		 * i_blocks can be represented in a 48 bit variable
5020		 * as multiple of 512 bytes
5021		 */
5022		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5023		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5024		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5025	} else {
5026		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5027		/* i_block is stored in file system block size */
5028		i_blocks = i_blocks >> (inode->i_blkbits - 9);
5029		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5030		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5031	}
5032	return 0;
5033}
5034
5035struct other_inode {
5036	unsigned long		orig_ino;
5037	struct ext4_inode	*raw_inode;
5038};
5039
5040static int other_inode_match(struct inode * inode, unsigned long ino,
5041			     void *data)
5042{
5043	struct other_inode *oi = (struct other_inode *) data;
5044
5045	if ((inode->i_ino != ino) ||
5046	    (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
5047			       I_DIRTY_INODE)) ||
5048	    ((inode->i_state & I_DIRTY_TIME) == 0))
5049		return 0;
5050	spin_lock(&inode->i_lock);
5051	if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
5052				I_DIRTY_INODE)) == 0) &&
5053	    (inode->i_state & I_DIRTY_TIME)) {
5054		struct ext4_inode_info	*ei = EXT4_I(inode);
5055
5056		inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
5057		spin_unlock(&inode->i_lock);
5058
5059		spin_lock(&ei->i_raw_lock);
5060		EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
5061		EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
5062		EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
5063		ext4_inode_csum_set(inode, oi->raw_inode, ei);
5064		spin_unlock(&ei->i_raw_lock);
5065		trace_ext4_other_inode_update_time(inode, oi->orig_ino);
5066		return -1;
5067	}
5068	spin_unlock(&inode->i_lock);
5069	return -1;
5070}
5071
5072/*
5073 * Opportunistically update the other time fields for other inodes in
5074 * the same inode table block.
5075 */
5076static void ext4_update_other_inodes_time(struct super_block *sb,
5077					  unsigned long orig_ino, char *buf)
5078{
5079	struct other_inode oi;
5080	unsigned long ino;
5081	int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
5082	int inode_size = EXT4_INODE_SIZE(sb);
5083
5084	oi.orig_ino = orig_ino;
5085	/*
5086	 * Calculate the first inode in the inode table block.  Inode
5087	 * numbers are one-based.  That is, the first inode in a block
5088	 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
5089	 */
5090	ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
5091	for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
5092		if (ino == orig_ino)
5093			continue;
5094		oi.raw_inode = (struct ext4_inode *) buf;
5095		(void) find_inode_nowait(sb, ino, other_inode_match, &oi);
5096	}
5097}
5098
5099/*
5100 * Post the struct inode info into an on-disk inode location in the
5101 * buffer-cache.  This gobbles the caller's reference to the
5102 * buffer_head in the inode location struct.
5103 *
5104 * The caller must have write access to iloc->bh.
5105 */
5106static int ext4_do_update_inode(handle_t *handle,
5107				struct inode *inode,
5108				struct ext4_iloc *iloc)
5109{
5110	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5111	struct ext4_inode_info *ei = EXT4_I(inode);
5112	struct buffer_head *bh = iloc->bh;
5113	struct super_block *sb = inode->i_sb;
5114	int err = 0, rc, block;
5115	int need_datasync = 0, set_large_file = 0;
5116	uid_t i_uid;
5117	gid_t i_gid;
5118	projid_t i_projid;
5119
5120	spin_lock(&ei->i_raw_lock);
5121
5122	/* For fields not tracked in the in-memory inode,
5123	 * initialise them to zero for new inodes. */
5124	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5125		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5126
 
5127	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
5128	i_uid = i_uid_read(inode);
5129	i_gid = i_gid_read(inode);
5130	i_projid = from_kprojid(&init_user_ns, ei->i_projid);
5131	if (!(test_opt(inode->i_sb, NO_UID32))) {
5132		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
5133		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
5134/*
5135 * Fix up interoperability with old kernels. Otherwise, old inodes get
5136 * re-used with the upper 16 bits of the uid/gid intact
5137 */
5138		if (ei->i_dtime && list_empty(&ei->i_orphan)) {
 
 
 
 
 
5139			raw_inode->i_uid_high = 0;
5140			raw_inode->i_gid_high = 0;
5141		} else {
5142			raw_inode->i_uid_high =
5143				cpu_to_le16(high_16_bits(i_uid));
5144			raw_inode->i_gid_high =
5145				cpu_to_le16(high_16_bits(i_gid));
5146		}
5147	} else {
5148		raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
5149		raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
 
 
5150		raw_inode->i_uid_high = 0;
5151		raw_inode->i_gid_high = 0;
5152	}
5153	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
5154
5155	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5156	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5157	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5158	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5159
5160	err = ext4_inode_blocks_set(handle, raw_inode, ei);
5161	if (err) {
5162		spin_unlock(&ei->i_raw_lock);
5163		goto out_brelse;
5164	}
5165	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5166	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
5167	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
 
5168		raw_inode->i_file_acl_high =
5169			cpu_to_le16(ei->i_file_acl >> 32);
5170	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5171	if (ei->i_disksize != ext4_isize(inode->i_sb, raw_inode)) {
5172		ext4_isize_set(raw_inode, ei->i_disksize);
5173		need_datasync = 1;
5174	}
5175	if (ei->i_disksize > 0x7fffffffULL) {
5176		if (!ext4_has_feature_large_file(sb) ||
 
 
5177				EXT4_SB(sb)->s_es->s_rev_level ==
5178		    cpu_to_le32(EXT4_GOOD_OLD_REV))
5179			set_large_file = 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5180	}
5181	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5182	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5183		if (old_valid_dev(inode->i_rdev)) {
5184			raw_inode->i_block[0] =
5185				cpu_to_le32(old_encode_dev(inode->i_rdev));
5186			raw_inode->i_block[1] = 0;
5187		} else {
5188			raw_inode->i_block[0] = 0;
5189			raw_inode->i_block[1] =
5190				cpu_to_le32(new_encode_dev(inode->i_rdev));
5191			raw_inode->i_block[2] = 0;
5192		}
5193	} else if (!ext4_has_inline_data(inode)) {
5194		for (block = 0; block < EXT4_N_BLOCKS; block++)
5195			raw_inode->i_block[block] = ei->i_data[block];
5196	}
5197
5198	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
5199		u64 ivers = inode_peek_iversion(inode);
5200
5201		raw_inode->i_disk_version = cpu_to_le32(ivers);
5202		if (ei->i_extra_isize) {
5203			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5204				raw_inode->i_version_hi =
5205					cpu_to_le32(ivers >> 32);
5206			raw_inode->i_extra_isize =
5207				cpu_to_le16(ei->i_extra_isize);
5208		}
5209	}
5210
5211	BUG_ON(!ext4_has_feature_project(inode->i_sb) &&
5212	       i_projid != EXT4_DEF_PROJID);
5213
5214	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
5215	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
5216		raw_inode->i_projid = cpu_to_le32(i_projid);
5217
5218	ext4_inode_csum_set(inode, raw_inode, ei);
5219	spin_unlock(&ei->i_raw_lock);
5220	if (inode->i_sb->s_flags & SB_LAZYTIME)
5221		ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5222					      bh->b_data);
5223
5224	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5225	rc = ext4_handle_dirty_metadata(handle, NULL, bh);
5226	if (!err)
5227		err = rc;
5228	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5229	if (set_large_file) {
5230		BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5231		err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
5232		if (err)
5233			goto out_brelse;
5234		ext4_update_dynamic_rev(sb);
5235		ext4_set_feature_large_file(sb);
5236		ext4_handle_sync(handle);
5237		err = ext4_handle_dirty_super(handle, sb);
5238	}
5239	ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5240out_brelse:
5241	brelse(bh);
5242	ext4_std_error(inode->i_sb, err);
5243	return err;
5244}
5245
5246/*
5247 * ext4_write_inode()
5248 *
5249 * We are called from a few places:
5250 *
5251 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5252 *   Here, there will be no transaction running. We wait for any running
5253 *   transaction to commit.
5254 *
5255 * - Within flush work (sys_sync(), kupdate and such).
5256 *   We wait on commit, if told to.
5257 *
5258 * - Within iput_final() -> write_inode_now()
5259 *   We wait on commit, if told to.
 
5260 *
5261 * In all cases it is actually safe for us to return without doing anything,
5262 * because the inode has been copied into a raw inode buffer in
5263 * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
5264 * writeback.
5265 *
5266 * Note that we are absolutely dependent upon all inode dirtiers doing the
5267 * right thing: they *must* call mark_inode_dirty() after dirtying info in
5268 * which we are interested.
5269 *
5270 * It would be a bug for them to not do this.  The code:
5271 *
5272 *	mark_inode_dirty(inode)
5273 *	stuff();
5274 *	inode->i_size = expr;
5275 *
5276 * is in error because write_inode() could occur while `stuff()' is running,
5277 * and the new i_size will be lost.  Plus the inode will no longer be on the
5278 * superblock's dirty inode list.
5279 */
5280int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5281{
5282	int err;
5283
5284	if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
5285		return 0;
5286
5287	if (EXT4_SB(inode->i_sb)->s_journal) {
5288		if (ext4_journal_current_handle()) {
5289			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5290			dump_stack();
5291			return -EIO;
5292		}
5293
5294		/*
5295		 * No need to force transaction in WB_SYNC_NONE mode. Also
5296		 * ext4_sync_fs() will force the commit after everything is
5297		 * written.
5298		 */
5299		if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5300			return 0;
5301
5302		err = ext4_force_commit(inode->i_sb);
5303	} else {
5304		struct ext4_iloc iloc;
5305
5306		err = __ext4_get_inode_loc(inode, &iloc, 0);
5307		if (err)
5308			return err;
5309		/*
5310		 * sync(2) will flush the whole buffer cache. No need to do
5311		 * it here separately for each inode.
5312		 */
5313		if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5314			sync_dirty_buffer(iloc.bh);
5315		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5316			EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
5317					 "IO error syncing inode");
5318			err = -EIO;
5319		}
5320		brelse(iloc.bh);
5321	}
5322	return err;
5323}
5324
5325/*
5326 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
5327 * buffers that are attached to a page stradding i_size and are undergoing
5328 * commit. In that case we have to wait for commit to finish and try again.
5329 */
5330static void ext4_wait_for_tail_page_commit(struct inode *inode)
5331{
5332	struct page *page;
5333	unsigned offset;
5334	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5335	tid_t commit_tid = 0;
5336	int ret;
5337
5338	offset = inode->i_size & (PAGE_SIZE - 1);
5339	/*
5340	 * All buffers in the last page remain valid? Then there's nothing to
5341	 * do. We do the check mainly to optimize the common PAGE_SIZE ==
5342	 * blocksize case
5343	 */
5344	if (offset > PAGE_SIZE - i_blocksize(inode))
5345		return;
5346	while (1) {
5347		page = find_lock_page(inode->i_mapping,
5348				      inode->i_size >> PAGE_SHIFT);
5349		if (!page)
5350			return;
5351		ret = __ext4_journalled_invalidatepage(page, offset,
5352						PAGE_SIZE - offset);
5353		unlock_page(page);
5354		put_page(page);
5355		if (ret != -EBUSY)
5356			return;
5357		commit_tid = 0;
5358		read_lock(&journal->j_state_lock);
5359		if (journal->j_committing_transaction)
5360			commit_tid = journal->j_committing_transaction->t_tid;
5361		read_unlock(&journal->j_state_lock);
5362		if (commit_tid)
5363			jbd2_log_wait_commit(journal, commit_tid);
5364	}
5365}
5366
5367/*
5368 * ext4_setattr()
5369 *
5370 * Called from notify_change.
5371 *
5372 * We want to trap VFS attempts to truncate the file as soon as
5373 * possible.  In particular, we want to make sure that when the VFS
5374 * shrinks i_size, we put the inode on the orphan list and modify
5375 * i_disksize immediately, so that during the subsequent flushing of
5376 * dirty pages and freeing of disk blocks, we can guarantee that any
5377 * commit will leave the blocks being flushed in an unused state on
5378 * disk.  (On recovery, the inode will get truncated and the blocks will
5379 * be freed, so we have a strong guarantee that no future commit will
5380 * leave these blocks visible to the user.)
5381 *
5382 * Another thing we have to assure is that if we are in ordered mode
5383 * and inode is still attached to the committing transaction, we must
5384 * we start writeout of all the dirty pages which are being truncated.
5385 * This way we are sure that all the data written in the previous
5386 * transaction are already on disk (truncate waits for pages under
5387 * writeback).
5388 *
5389 * Called with inode->i_mutex down.
5390 */
5391int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5392{
5393	struct inode *inode = d_inode(dentry);
5394	int error, rc = 0;
5395	int orphan = 0;
5396	const unsigned int ia_valid = attr->ia_valid;
5397
5398	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5399		return -EIO;
5400
5401	error = setattr_prepare(dentry, attr);
5402	if (error)
5403		return error;
5404
5405	error = fscrypt_prepare_setattr(dentry, attr);
5406	if (error)
5407		return error;
5408
5409	if (is_quota_modification(inode, attr)) {
5410		error = dquot_initialize(inode);
5411		if (error)
5412			return error;
5413	}
5414	if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5415	    (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
5416		handle_t *handle;
5417
5418		/* (user+group)*(old+new) structure, inode write (sb,
5419		 * inode block, ? - but truncate inode update has it) */
5420		handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5421			(EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5422			 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5423		if (IS_ERR(handle)) {
5424			error = PTR_ERR(handle);
5425			goto err_out;
5426		}
5427
5428		/* dquot_transfer() calls back ext4_get_inode_usage() which
5429		 * counts xattr inode references.
5430		 */
5431		down_read(&EXT4_I(inode)->xattr_sem);
5432		error = dquot_transfer(inode, attr);
5433		up_read(&EXT4_I(inode)->xattr_sem);
5434
5435		if (error) {
5436			ext4_journal_stop(handle);
5437			return error;
5438		}
5439		/* Update corresponding info in inode so that everything is in
5440		 * one transaction */
5441		if (attr->ia_valid & ATTR_UID)
5442			inode->i_uid = attr->ia_uid;
5443		if (attr->ia_valid & ATTR_GID)
5444			inode->i_gid = attr->ia_gid;
5445		error = ext4_mark_inode_dirty(handle, inode);
5446		ext4_journal_stop(handle);
5447	}
5448
5449	if (attr->ia_valid & ATTR_SIZE) {
5450		handle_t *handle;
5451		loff_t oldsize = inode->i_size;
5452		int shrink = (attr->ia_size <= inode->i_size);
5453
5454		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5455			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5456
5457			if (attr->ia_size > sbi->s_bitmap_maxbytes)
5458				return -EFBIG;
5459		}
5460		if (!S_ISREG(inode->i_mode))
5461			return -EINVAL;
 
 
 
 
5462
5463		if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5464			inode_inc_iversion(inode);
 
 
 
 
 
 
 
 
 
 
 
 
5465
5466		if (ext4_should_order_data(inode) &&
5467		    (attr->ia_size < inode->i_size)) {
5468			error = ext4_begin_ordered_truncate(inode,
5469							    attr->ia_size);
5470			if (error)
5471				goto err_out;
5472		}
5473		if (attr->ia_size != inode->i_size) {
5474			handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5475			if (IS_ERR(handle)) {
5476				error = PTR_ERR(handle);
5477				goto err_out;
5478			}
5479			if (ext4_handle_valid(handle) && shrink) {
5480				error = ext4_orphan_add(handle, inode);
5481				orphan = 1;
5482			}
5483			/*
5484			 * Update c/mtime on truncate up, ext4_truncate() will
5485			 * update c/mtime in shrink case below
5486			 */
5487			if (!shrink) {
5488				inode->i_mtime = current_time(inode);
5489				inode->i_ctime = inode->i_mtime;
5490			}
5491			down_write(&EXT4_I(inode)->i_data_sem);
5492			EXT4_I(inode)->i_disksize = attr->ia_size;
5493			rc = ext4_mark_inode_dirty(handle, inode);
5494			if (!error)
5495				error = rc;
5496			/*
5497			 * We have to update i_size under i_data_sem together
5498			 * with i_disksize to avoid races with writeback code
5499			 * running ext4_wb_update_i_disksize().
5500			 */
5501			if (!error)
5502				i_size_write(inode, attr->ia_size);
5503			up_write(&EXT4_I(inode)->i_data_sem);
5504			ext4_journal_stop(handle);
5505			if (error) {
5506				if (orphan)
 
 
5507					ext4_orphan_del(NULL, inode);
 
 
 
 
 
5508				goto err_out;
5509			}
5510		}
5511		if (!shrink)
5512			pagecache_isize_extended(inode, oldsize, inode->i_size);
5513
5514		/*
5515		 * Blocks are going to be removed from the inode. Wait
5516		 * for dio in flight.  Temporarily disable
5517		 * dioread_nolock to prevent livelock.
5518		 */
5519		if (orphan) {
5520			if (!ext4_should_journal_data(inode)) {
5521				inode_dio_wait(inode);
5522			} else
5523				ext4_wait_for_tail_page_commit(inode);
5524		}
5525		down_write(&EXT4_I(inode)->i_mmap_sem);
5526		/*
5527		 * Truncate pagecache after we've waited for commit
5528		 * in data=journal mode to make pages freeable.
5529		 */
5530		truncate_pagecache(inode, inode->i_size);
5531		if (shrink) {
5532			rc = ext4_truncate(inode);
5533			if (rc)
5534				error = rc;
5535		}
5536		up_write(&EXT4_I(inode)->i_mmap_sem);
5537	}
5538
5539	if (!error) {
5540		setattr_copy(inode, attr);
5541		mark_inode_dirty(inode);
5542	}
5543
5544	/*
5545	 * If the call to ext4_truncate failed to get a transaction handle at
5546	 * all, we need to clean up the in-core orphan list manually.
5547	 */
5548	if (orphan && inode->i_nlink)
5549		ext4_orphan_del(NULL, inode);
5550
5551	if (!error && (ia_valid & ATTR_MODE))
5552		rc = posix_acl_chmod(inode, inode->i_mode);
5553
5554err_out:
5555	ext4_std_error(inode->i_sb, error);
5556	if (!error)
5557		error = rc;
5558	return error;
5559}
5560
5561int ext4_getattr(const struct path *path, struct kstat *stat,
5562		 u32 request_mask, unsigned int query_flags)
5563{
5564	struct inode *inode = d_inode(path->dentry);
5565	struct ext4_inode *raw_inode;
5566	struct ext4_inode_info *ei = EXT4_I(inode);
5567	unsigned int flags;
5568
5569	if (EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5570		stat->result_mask |= STATX_BTIME;
5571		stat->btime.tv_sec = ei->i_crtime.tv_sec;
5572		stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5573	}
5574
5575	flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5576	if (flags & EXT4_APPEND_FL)
5577		stat->attributes |= STATX_ATTR_APPEND;
5578	if (flags & EXT4_COMPR_FL)
5579		stat->attributes |= STATX_ATTR_COMPRESSED;
5580	if (flags & EXT4_ENCRYPT_FL)
5581		stat->attributes |= STATX_ATTR_ENCRYPTED;
5582	if (flags & EXT4_IMMUTABLE_FL)
5583		stat->attributes |= STATX_ATTR_IMMUTABLE;
5584	if (flags & EXT4_NODUMP_FL)
5585		stat->attributes |= STATX_ATTR_NODUMP;
5586
5587	stat->attributes_mask |= (STATX_ATTR_APPEND |
5588				  STATX_ATTR_COMPRESSED |
5589				  STATX_ATTR_ENCRYPTED |
5590				  STATX_ATTR_IMMUTABLE |
5591				  STATX_ATTR_NODUMP);
5592
 
5593	generic_fillattr(inode, stat);
5594	return 0;
5595}
5596
5597int ext4_file_getattr(const struct path *path, struct kstat *stat,
5598		      u32 request_mask, unsigned int query_flags)
5599{
5600	struct inode *inode = d_inode(path->dentry);
5601	u64 delalloc_blocks;
5602
5603	ext4_getattr(path, stat, request_mask, query_flags);
5604
5605	/*
5606	 * If there is inline data in the inode, the inode will normally not
5607	 * have data blocks allocated (it may have an external xattr block).
5608	 * Report at least one sector for such files, so tools like tar, rsync,
5609	 * others don't incorrectly think the file is completely sparse.
5610	 */
5611	if (unlikely(ext4_has_inline_data(inode)))
5612		stat->blocks += (stat->size + 511) >> 9;
5613
5614	/*
5615	 * We can't update i_blocks if the block allocation is delayed
5616	 * otherwise in the case of system crash before the real block
5617	 * allocation is done, we will have i_blocks inconsistent with
5618	 * on-disk file blocks.
5619	 * We always keep i_blocks updated together with real
5620	 * allocation. But to not confuse with user, stat
5621	 * will return the blocks that include the delayed allocation
5622	 * blocks for this file.
5623	 */
5624	delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5625				   EXT4_I(inode)->i_reserved_data_blocks);
5626	stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5627	return 0;
5628}
5629
5630static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5631				   int pextents)
5632{
5633	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5634		return ext4_ind_trans_blocks(inode, lblocks);
5635	return ext4_ext_index_trans_blocks(inode, pextents);
5636}
5637
5638/*
5639 * Account for index blocks, block groups bitmaps and block group
5640 * descriptor blocks if modify datablocks and index blocks
5641 * worse case, the indexs blocks spread over different block groups
5642 *
5643 * If datablocks are discontiguous, they are possible to spread over
5644 * different block groups too. If they are contiguous, with flexbg,
5645 * they could still across block group boundary.
5646 *
5647 * Also account for superblock, inode, quota and xattr blocks
5648 */
5649static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5650				  int pextents)
5651{
5652	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5653	int gdpblocks;
5654	int idxblocks;
5655	int ret = 0;
5656
5657	/*
5658	 * How many index blocks need to touch to map @lblocks logical blocks
5659	 * to @pextents physical extents?
 
 
 
 
5660	 */
5661	idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5662
5663	ret = idxblocks;
5664
5665	/*
5666	 * Now let's see how many group bitmaps and group descriptors need
5667	 * to account
5668	 */
5669	groups = idxblocks + pextents;
 
 
 
 
 
5670	gdpblocks = groups;
5671	if (groups > ngroups)
5672		groups = ngroups;
5673	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5674		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5675
5676	/* bitmaps and block group descriptor blocks */
5677	ret += groups + gdpblocks;
5678
5679	/* Blocks for super block, inode, quota and xattr blocks */
5680	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5681
5682	return ret;
5683}
5684
5685/*
5686 * Calculate the total number of credits to reserve to fit
5687 * the modification of a single pages into a single transaction,
5688 * which may include multiple chunks of block allocations.
5689 *
5690 * This could be called via ext4_write_begin()
5691 *
5692 * We need to consider the worse case, when
5693 * one new block per extent.
5694 */
5695int ext4_writepage_trans_blocks(struct inode *inode)
5696{
5697	int bpp = ext4_journal_blocks_per_page(inode);
5698	int ret;
5699
5700	ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5701
5702	/* Account for data blocks for journalled mode */
5703	if (ext4_should_journal_data(inode))
5704		ret += bpp;
5705	return ret;
5706}
5707
5708/*
5709 * Calculate the journal credits for a chunk of data modification.
5710 *
5711 * This is called from DIO, fallocate or whoever calling
5712 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5713 *
5714 * journal buffers for data blocks are not included here, as DIO
5715 * and fallocate do no need to journal data buffers.
5716 */
5717int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5718{
5719	return ext4_meta_trans_blocks(inode, nrblocks, 1);
5720}
5721
5722/*
5723 * The caller must have previously called ext4_reserve_inode_write().
5724 * Give this, we know that the caller already has write access to iloc->bh.
5725 */
5726int ext4_mark_iloc_dirty(handle_t *handle,
5727			 struct inode *inode, struct ext4_iloc *iloc)
5728{
5729	int err = 0;
5730
5731	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5732		return -EIO;
5733
5734	if (IS_I_VERSION(inode))
5735		inode_inc_iversion(inode);
5736
5737	/* the do_update_inode consumes one bh->b_count */
5738	get_bh(iloc->bh);
5739
5740	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5741	err = ext4_do_update_inode(handle, inode, iloc);
5742	put_bh(iloc->bh);
5743	return err;
5744}
5745
5746/*
5747 * On success, We end up with an outstanding reference count against
5748 * iloc->bh.  This _must_ be cleaned up later.
5749 */
5750
5751int
5752ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5753			 struct ext4_iloc *iloc)
5754{
5755	int err;
5756
5757	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5758		return -EIO;
5759
5760	err = ext4_get_inode_loc(inode, iloc);
5761	if (!err) {
5762		BUFFER_TRACE(iloc->bh, "get_write_access");
5763		err = ext4_journal_get_write_access(handle, iloc->bh);
5764		if (err) {
5765			brelse(iloc->bh);
5766			iloc->bh = NULL;
5767		}
5768	}
5769	ext4_std_error(inode->i_sb, err);
5770	return err;
5771}
5772
5773static int __ext4_expand_extra_isize(struct inode *inode,
5774				     unsigned int new_extra_isize,
5775				     struct ext4_iloc *iloc,
5776				     handle_t *handle, int *no_expand)
 
 
 
 
5777{
5778	struct ext4_inode *raw_inode;
5779	struct ext4_xattr_ibody_header *header;
5780	int error;
5781
5782	raw_inode = ext4_raw_inode(iloc);
 
 
 
5783
5784	header = IHDR(inode, raw_inode);
5785
5786	/* No extended attributes present */
5787	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5788	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5789		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5790		       EXT4_I(inode)->i_extra_isize, 0,
5791		       new_extra_isize - EXT4_I(inode)->i_extra_isize);
5792		EXT4_I(inode)->i_extra_isize = new_extra_isize;
5793		return 0;
5794	}
5795
5796	/* try to expand with EAs present */
5797	error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
5798					   raw_inode, handle);
5799	if (error) {
5800		/*
5801		 * Inode size expansion failed; don't try again
5802		 */
5803		*no_expand = 1;
5804	}
5805
5806	return error;
5807}
5808
5809/*
5810 * Expand an inode by new_extra_isize bytes.
5811 * Returns 0 on success or negative error number on failure.
5812 */
5813static int ext4_try_to_expand_extra_isize(struct inode *inode,
5814					  unsigned int new_extra_isize,
5815					  struct ext4_iloc iloc,
5816					  handle_t *handle)
5817{
5818	int no_expand;
5819	int error;
5820
5821	if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
5822		return -EOVERFLOW;
5823
5824	/*
5825	 * In nojournal mode, we can immediately attempt to expand
5826	 * the inode.  When journaled, we first need to obtain extra
5827	 * buffer credits since we may write into the EA block
5828	 * with this same handle. If journal_extend fails, then it will
5829	 * only result in a minor loss of functionality for that inode.
5830	 * If this is felt to be critical, then e2fsck should be run to
5831	 * force a large enough s_min_extra_isize.
5832	 */
5833	if (ext4_handle_valid(handle) &&
5834	    jbd2_journal_extend(handle,
5835				EXT4_DATA_TRANS_BLOCKS(inode->i_sb)) != 0)
5836		return -ENOSPC;
5837
5838	if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
5839		return -EBUSY;
5840
5841	error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
5842					  handle, &no_expand);
5843	ext4_write_unlock_xattr(inode, &no_expand);
5844
5845	return error;
5846}
5847
5848int ext4_expand_extra_isize(struct inode *inode,
5849			    unsigned int new_extra_isize,
5850			    struct ext4_iloc *iloc)
5851{
5852	handle_t *handle;
5853	int no_expand;
5854	int error, rc;
5855
5856	if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5857		brelse(iloc->bh);
5858		return -EOVERFLOW;
5859	}
5860
5861	handle = ext4_journal_start(inode, EXT4_HT_INODE,
5862				    EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
5863	if (IS_ERR(handle)) {
5864		error = PTR_ERR(handle);
5865		brelse(iloc->bh);
5866		return error;
5867	}
5868
5869	ext4_write_lock_xattr(inode, &no_expand);
5870
5871	BUFFER_TRACE(iloc.bh, "get_write_access");
5872	error = ext4_journal_get_write_access(handle, iloc->bh);
5873	if (error) {
5874		brelse(iloc->bh);
5875		goto out_stop;
5876	}
5877
5878	error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
5879					  handle, &no_expand);
5880
5881	rc = ext4_mark_iloc_dirty(handle, inode, iloc);
5882	if (!error)
5883		error = rc;
5884
5885	ext4_write_unlock_xattr(inode, &no_expand);
5886out_stop:
5887	ext4_journal_stop(handle);
5888	return error;
5889}
5890
5891/*
5892 * What we do here is to mark the in-core inode as clean with respect to inode
5893 * dirtiness (it may still be data-dirty).
5894 * This means that the in-core inode may be reaped by prune_icache
5895 * without having to perform any I/O.  This is a very good thing,
5896 * because *any* task may call prune_icache - even ones which
5897 * have a transaction open against a different journal.
5898 *
5899 * Is this cheating?  Not really.  Sure, we haven't written the
5900 * inode out, but prune_icache isn't a user-visible syncing function.
5901 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5902 * we start and wait on commits.
 
 
 
 
 
 
 
 
5903 */
5904int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5905{
5906	struct ext4_iloc iloc;
5907	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5908	int err;
 
5909
5910	might_sleep();
5911	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5912	err = ext4_reserve_inode_write(handle, inode, &iloc);
5913	if (err)
5914		return err;
5915
5916	if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
5917		ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
5918					       iloc, handle);
5919
5920	return ext4_mark_iloc_dirty(handle, inode, &iloc);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5921}
5922
5923/*
5924 * ext4_dirty_inode() is called from __mark_inode_dirty()
5925 *
5926 * We're really interested in the case where a file is being extended.
5927 * i_size has been changed by generic_commit_write() and we thus need
5928 * to include the updated inode in the current transaction.
5929 *
5930 * Also, dquot_alloc_block() will always dirty the inode when blocks
5931 * are allocated to the file.
5932 *
5933 * If the inode is marked synchronous, we don't honour that here - doing
5934 * so would cause a commit on atime updates, which we don't bother doing.
5935 * We handle synchronous inodes at the highest possible level.
5936 *
5937 * If only the I_DIRTY_TIME flag is set, we can skip everything.  If
5938 * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
5939 * to copy into the on-disk inode structure are the timestamp files.
5940 */
5941void ext4_dirty_inode(struct inode *inode, int flags)
5942{
5943	handle_t *handle;
5944
5945	if (flags == I_DIRTY_TIME)
5946		return;
5947	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5948	if (IS_ERR(handle))
5949		goto out;
5950
5951	ext4_mark_inode_dirty(handle, inode);
5952
5953	ext4_journal_stop(handle);
5954out:
5955	return;
5956}
5957
5958#if 0
5959/*
5960 * Bind an inode's backing buffer_head into this transaction, to prevent
5961 * it from being flushed to disk early.  Unlike
5962 * ext4_reserve_inode_write, this leaves behind no bh reference and
5963 * returns no iloc structure, so the caller needs to repeat the iloc
5964 * lookup to mark the inode dirty later.
5965 */
5966static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5967{
5968	struct ext4_iloc iloc;
5969
5970	int err = 0;
5971	if (handle) {
5972		err = ext4_get_inode_loc(inode, &iloc);
5973		if (!err) {
5974			BUFFER_TRACE(iloc.bh, "get_write_access");
5975			err = jbd2_journal_get_write_access(handle, iloc.bh);
5976			if (!err)
5977				err = ext4_handle_dirty_metadata(handle,
5978								 NULL,
5979								 iloc.bh);
5980			brelse(iloc.bh);
5981		}
5982	}
5983	ext4_std_error(inode->i_sb, err);
5984	return err;
5985}
5986#endif
5987
5988int ext4_change_inode_journal_flag(struct inode *inode, int val)
5989{
5990	journal_t *journal;
5991	handle_t *handle;
5992	int err;
5993	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5994
5995	/*
5996	 * We have to be very careful here: changing a data block's
5997	 * journaling status dynamically is dangerous.  If we write a
5998	 * data block to the journal, change the status and then delete
5999	 * that block, we risk forgetting to revoke the old log record
6000	 * from the journal and so a subsequent replay can corrupt data.
6001	 * So, first we make sure that the journal is empty and that
6002	 * nobody is changing anything.
6003	 */
6004
6005	journal = EXT4_JOURNAL(inode);
6006	if (!journal)
6007		return 0;
6008	if (is_journal_aborted(journal))
6009		return -EROFS;
6010
6011	/* Wait for all existing dio workers */
6012	inode_dio_wait(inode);
6013
6014	/*
6015	 * Before flushing the journal and switching inode's aops, we have
6016	 * to flush all dirty data the inode has. There can be outstanding
6017	 * delayed allocations, there can be unwritten extents created by
6018	 * fallocate or buffered writes in dioread_nolock mode covered by
6019	 * dirty data which can be converted only after flushing the dirty
6020	 * data (and journalled aops don't know how to handle these cases).
6021	 */
6022	if (val) {
6023		down_write(&EXT4_I(inode)->i_mmap_sem);
6024		err = filemap_write_and_wait(inode->i_mapping);
6025		if (err < 0) {
6026			up_write(&EXT4_I(inode)->i_mmap_sem);
6027			return err;
6028		}
6029	}
6030
6031	percpu_down_write(&sbi->s_journal_flag_rwsem);
6032	jbd2_journal_lock_updates(journal);
 
6033
6034	/*
6035	 * OK, there are no updates running now, and all cached data is
6036	 * synced to disk.  We are now in a completely consistent state
6037	 * which doesn't have anything in the journal, and we know that
6038	 * no filesystem updates are running, so it is safe to modify
6039	 * the inode's in-core data-journaling state flag now.
6040	 */
6041
6042	if (val)
6043		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6044	else {
6045		err = jbd2_journal_flush(journal);
6046		if (err < 0) {
6047			jbd2_journal_unlock_updates(journal);
6048			percpu_up_write(&sbi->s_journal_flag_rwsem);
6049			return err;
6050		}
6051		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6052	}
6053	ext4_set_aops(inode);
6054
6055	jbd2_journal_unlock_updates(journal);
6056	percpu_up_write(&sbi->s_journal_flag_rwsem);
6057
6058	if (val)
6059		up_write(&EXT4_I(inode)->i_mmap_sem);
6060
6061	/* Finally we can mark the inode as dirty. */
6062
6063	handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
6064	if (IS_ERR(handle))
6065		return PTR_ERR(handle);
6066
6067	err = ext4_mark_inode_dirty(handle, inode);
6068	ext4_handle_sync(handle);
6069	ext4_journal_stop(handle);
6070	ext4_std_error(inode->i_sb, err);
6071
6072	return err;
6073}
6074
6075static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
6076{
6077	return !buffer_mapped(bh);
6078}
6079
6080int ext4_page_mkwrite(struct vm_fault *vmf)
6081{
6082	struct vm_area_struct *vma = vmf->vma;
6083	struct page *page = vmf->page;
6084	loff_t size;
6085	unsigned long len;
6086	int ret;
6087	struct file *file = vma->vm_file;
6088	struct inode *inode = file_inode(file);
6089	struct address_space *mapping = inode->i_mapping;
6090	handle_t *handle;
6091	get_block_t *get_block;
6092	int retries = 0;
6093
6094	sb_start_pagefault(inode->i_sb);
6095	file_update_time(vma->vm_file);
6096
6097	down_read(&EXT4_I(inode)->i_mmap_sem);
6098
6099	ret = ext4_convert_inline_data(inode);
6100	if (ret)
6101		goto out_ret;
6102
6103	/* Delalloc case is easy... */
6104	if (test_opt(inode->i_sb, DELALLOC) &&
6105	    !ext4_should_journal_data(inode) &&
6106	    !ext4_nonda_switch(inode->i_sb)) {
6107		do {
6108			ret = block_page_mkwrite(vma, vmf,
6109						   ext4_da_get_block_prep);
6110		} while (ret == -ENOSPC &&
6111		       ext4_should_retry_alloc(inode->i_sb, &retries));
6112		goto out_ret;
6113	}
6114
6115	lock_page(page);
6116	size = i_size_read(inode);
6117	/* Page got truncated from under us? */
6118	if (page->mapping != mapping || page_offset(page) > size) {
6119		unlock_page(page);
6120		ret = VM_FAULT_NOPAGE;
6121		goto out;
6122	}
6123
6124	if (page->index == size >> PAGE_SHIFT)
6125		len = size & ~PAGE_MASK;
6126	else
6127		len = PAGE_SIZE;
6128	/*
6129	 * Return if we have all the buffers mapped. This avoids the need to do
6130	 * journal_start/journal_stop which can block and take a long time
6131	 */
6132	if (page_has_buffers(page)) {
6133		if (!ext4_walk_page_buffers(NULL, page_buffers(page),
6134					    0, len, NULL,
6135					    ext4_bh_unmapped)) {
6136			/* Wait so that we don't change page under IO */
6137			wait_for_stable_page(page);
6138			ret = VM_FAULT_LOCKED;
6139			goto out;
6140		}
6141	}
6142	unlock_page(page);
6143	/* OK, we need to fill the hole... */
6144	if (ext4_should_dioread_nolock(inode))
6145		get_block = ext4_get_block_unwritten;
6146	else
6147		get_block = ext4_get_block;
6148retry_alloc:
6149	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
6150				    ext4_writepage_trans_blocks(inode));
6151	if (IS_ERR(handle)) {
6152		ret = VM_FAULT_SIGBUS;
6153		goto out;
6154	}
6155	ret = block_page_mkwrite(vma, vmf, get_block);
6156	if (!ret && ext4_should_journal_data(inode)) {
6157		if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
6158			  PAGE_SIZE, NULL, do_journal_get_write_access)) {
6159			unlock_page(page);
6160			ret = VM_FAULT_SIGBUS;
6161			ext4_journal_stop(handle);
6162			goto out;
6163		}
6164		ext4_set_inode_state(inode, EXT4_STATE_JDATA);
6165	}
6166	ext4_journal_stop(handle);
6167	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
6168		goto retry_alloc;
6169out_ret:
6170	ret = block_page_mkwrite_return(ret);
6171out:
6172	up_read(&EXT4_I(inode)->i_mmap_sem);
6173	sb_end_pagefault(inode->i_sb);
6174	return ret;
6175}
6176
6177int ext4_filemap_fault(struct vm_fault *vmf)
6178{
6179	struct inode *inode = file_inode(vmf->vma->vm_file);
6180	int err;
6181
6182	down_read(&EXT4_I(inode)->i_mmap_sem);
6183	err = filemap_fault(vmf);
6184	up_read(&EXT4_I(inode)->i_mmap_sem);
6185
6186	return err;
6187}