Linux Audio

Check our new training course

Loading...
v3.1
 
   1/*
   2 *  linux/fs/ext4/inode.c
   3 *
   4 * Copyright (C) 1992, 1993, 1994, 1995
   5 * Remy Card (card@masi.ibp.fr)
   6 * Laboratoire MASI - Institut Blaise Pascal
   7 * Universite Pierre et Marie Curie (Paris VI)
   8 *
   9 *  from
  10 *
  11 *  linux/fs/minix/inode.c
  12 *
  13 *  Copyright (C) 1991, 1992  Linus Torvalds
  14 *
  15 *  64-bit file support on 64-bit platforms by Jakub Jelinek
  16 *	(jj@sunsite.ms.mff.cuni.cz)
  17 *
  18 *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
  19 */
  20
  21#include <linux/module.h>
  22#include <linux/fs.h>
 
  23#include <linux/time.h>
  24#include <linux/jbd2.h>
  25#include <linux/highuid.h>
  26#include <linux/pagemap.h>
 
  27#include <linux/quotaops.h>
  28#include <linux/string.h>
  29#include <linux/buffer_head.h>
  30#include <linux/writeback.h>
  31#include <linux/pagevec.h>
  32#include <linux/mpage.h>
  33#include <linux/namei.h>
  34#include <linux/uio.h>
  35#include <linux/bio.h>
  36#include <linux/workqueue.h>
  37#include <linux/kernel.h>
  38#include <linux/printk.h>
  39#include <linux/slab.h>
  40#include <linux/ratelimit.h>
 
 
  41
  42#include "ext4_jbd2.h"
  43#include "xattr.h"
  44#include "acl.h"
  45#include "ext4_extents.h"
  46#include "truncate.h"
  47
  48#include <trace/events/ext4.h>
  49
  50#define MPAGE_DA_EXTENT_TAIL 0x01
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  51
  52static inline int ext4_begin_ordered_truncate(struct inode *inode,
  53					      loff_t new_size)
  54{
  55	trace_ext4_begin_ordered_truncate(inode, new_size);
  56	/*
  57	 * If jinode is zero, then we never opened the file for
  58	 * writing, so there's no need to call
  59	 * jbd2_journal_begin_ordered_truncate() since there's no
  60	 * outstanding writes we need to flush.
  61	 */
  62	if (!EXT4_I(inode)->jinode)
  63		return 0;
  64	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
  65						   EXT4_I(inode)->jinode,
  66						   new_size);
  67}
  68
  69static void ext4_invalidatepage(struct page *page, unsigned long offset);
  70static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
  71				   struct buffer_head *bh_result, int create);
  72static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
  73static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
  74static int __ext4_journalled_writepage(struct page *page, unsigned int len);
  75static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
 
 
  76
  77/*
  78 * Test whether an inode is a fast symlink.
 
  79 */
  80static int ext4_inode_is_fast_symlink(struct inode *inode)
  81{
  82	int ea_blocks = EXT4_I(inode)->i_file_acl ?
  83		(inode->i_sb->s_blocksize >> 9) : 0;
 
  84
  85	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
  86}
  87
  88/*
  89 * Restart the transaction associated with *handle.  This does a commit,
  90 * so before we call here everything must be consistently dirtied against
  91 * this transaction.
  92 */
  93int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
  94				 int nblocks)
  95{
  96	int ret;
  97
  98	/*
  99	 * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
 100	 * moment, get_block can be called only for blocks inside i_size since
 101	 * page cache has been already dropped and writes are blocked by
 102	 * i_mutex. So we can safely drop the i_data_sem here.
 103	 */
 104	BUG_ON(EXT4_JOURNAL(inode) == NULL);
 105	jbd_debug(2, "restarting handle %p\n", handle);
 106	up_write(&EXT4_I(inode)->i_data_sem);
 107	ret = ext4_journal_restart(handle, nblocks);
 108	down_write(&EXT4_I(inode)->i_data_sem);
 109	ext4_discard_preallocations(inode);
 110
 111	return ret;
 
 
 
 112}
 113
 114/*
 115 * Called at the last iput() if i_nlink is zero.
 116 */
 117void ext4_evict_inode(struct inode *inode)
 118{
 119	handle_t *handle;
 120	int err;
 
 
 
 
 
 
 
 
 121
 122	trace_ext4_evict_inode(inode);
 123
 124	ext4_ioend_wait(inode);
 125
 126	if (inode->i_nlink) {
 127		/*
 128		 * When journalling data dirty buffers are tracked only in the
 129		 * journal. So although mm thinks everything is clean and
 130		 * ready for reaping the inode might still have some pages to
 131		 * write in the running transaction or waiting to be
 132		 * checkpointed. Thus calling jbd2_journal_invalidatepage()
 133		 * (via truncate_inode_pages()) to discard these buffers can
 134		 * cause data loss. Also even if we did not discard these
 135		 * buffers, we would have no way to find them after the inode
 136		 * is reaped and thus user could see stale data if he tries to
 137		 * read them before the transaction is checkpointed. So be
 138		 * careful and force everything to disk here... We use
 139		 * ei->i_datasync_tid to store the newest transaction
 140		 * containing inode's data.
 141		 *
 142		 * Note that directories do not have this problem because they
 143		 * don't use page cache.
 144		 */
 145		if (ext4_should_journal_data(inode) &&
 146		    (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
 
 
 147			journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
 148			tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
 149
 150			jbd2_log_start_commit(journal, commit_tid);
 151			jbd2_log_wait_commit(journal, commit_tid);
 152			filemap_write_and_wait(&inode->i_data);
 153		}
 154		truncate_inode_pages(&inode->i_data, 0);
 
 155		goto no_delete;
 156	}
 157
 158	if (!is_bad_inode(inode))
 159		dquot_initialize(inode);
 
 160
 161	if (ext4_should_order_data(inode))
 162		ext4_begin_ordered_truncate(inode, 0);
 163	truncate_inode_pages(&inode->i_data, 0);
 164
 165	if (is_bad_inode(inode))
 166		goto no_delete;
 
 
 
 
 
 
 
 167
 168	handle = ext4_journal_start(inode, ext4_blocks_for_truncate(inode)+3);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 169	if (IS_ERR(handle)) {
 170		ext4_std_error(inode->i_sb, PTR_ERR(handle));
 171		/*
 172		 * If we're going to skip the normal cleanup, we still need to
 173		 * make sure that the in-core orphan linked list is properly
 174		 * cleaned up.
 175		 */
 176		ext4_orphan_del(NULL, inode);
 
 
 177		goto no_delete;
 178	}
 179
 180	if (IS_SYNC(inode))
 181		ext4_handle_sync(handle);
 
 
 
 
 
 
 
 
 
 
 182	inode->i_size = 0;
 183	err = ext4_mark_inode_dirty(handle, inode);
 184	if (err) {
 185		ext4_warning(inode->i_sb,
 186			     "couldn't mark inode dirty (err %d)", err);
 187		goto stop_handle;
 188	}
 189	if (inode->i_blocks)
 190		ext4_truncate(inode);
 191
 192	/*
 193	 * ext4_ext_truncate() doesn't reserve any slop when it
 194	 * restarts journal transactions; therefore there may not be
 195	 * enough credits left in the handle to remove the inode from
 196	 * the orphan list and set the dtime field.
 197	 */
 198	if (!ext4_handle_has_enough_credits(handle, 3)) {
 199		err = ext4_journal_extend(handle, 3);
 200		if (err > 0)
 201			err = ext4_journal_restart(handle, 3);
 202		if (err != 0) {
 203			ext4_warning(inode->i_sb,
 204				     "couldn't extend journal (err %d)", err);
 205		stop_handle:
 206			ext4_journal_stop(handle);
 207			ext4_orphan_del(NULL, inode);
 208			goto no_delete;
 209		}
 210	}
 211
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 212	/*
 213	 * Kill off the orphan record which ext4_truncate created.
 214	 * AKPM: I think this can be inside the above `if'.
 215	 * Note that ext4_orphan_del() has to be able to cope with the
 216	 * deletion of a non-existent orphan - this is because we don't
 217	 * know if ext4_truncate() actually created an orphan record.
 218	 * (Well, we could do this if we need to, but heck - it works)
 219	 */
 220	ext4_orphan_del(handle, inode);
 221	EXT4_I(inode)->i_dtime	= get_seconds();
 222
 223	/*
 224	 * One subtle ordering requirement: if anything has gone wrong
 225	 * (transaction abort, IO errors, whatever), then we can still
 226	 * do these next steps (the fs will already have been marked as
 227	 * having errors), but we can't free the inode if the mark_dirty
 228	 * fails.
 229	 */
 230	if (ext4_mark_inode_dirty(handle, inode))
 231		/* If that failed, just do the required in-core inode clear. */
 232		ext4_clear_inode(inode);
 233	else
 234		ext4_free_inode(handle, inode);
 235	ext4_journal_stop(handle);
 
 
 
 236	return;
 237no_delete:
 
 
 238	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
 239}
 240
 241#ifdef CONFIG_QUOTA
 242qsize_t *ext4_get_reserved_space(struct inode *inode)
 243{
 244	return &EXT4_I(inode)->i_reserved_quota;
 245}
 246#endif
 247
 248/*
 249 * Calculate the number of metadata blocks need to reserve
 250 * to allocate a block located at @lblock
 251 */
 252static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
 253{
 254	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
 255		return ext4_ext_calc_metadata_amount(inode, lblock);
 256
 257	return ext4_ind_calc_metadata_amount(inode, lblock);
 258}
 259
 260/*
 261 * Called with i_data_sem down, which is important since we can call
 262 * ext4_discard_preallocations() from here.
 263 */
 264void ext4_da_update_reserve_space(struct inode *inode,
 265					int used, int quota_claim)
 266{
 267	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
 268	struct ext4_inode_info *ei = EXT4_I(inode);
 269
 270	spin_lock(&ei->i_block_reservation_lock);
 271	trace_ext4_da_update_reserve_space(inode, used);
 272	if (unlikely(used > ei->i_reserved_data_blocks)) {
 273		ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
 274			 "with only %d reserved data blocks\n",
 275			 __func__, inode->i_ino, used,
 276			 ei->i_reserved_data_blocks);
 277		WARN_ON(1);
 278		used = ei->i_reserved_data_blocks;
 279	}
 280
 281	/* Update per-inode reservations */
 282	ei->i_reserved_data_blocks -= used;
 283	ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
 284	percpu_counter_sub(&sbi->s_dirtyblocks_counter,
 285			   used + ei->i_allocated_meta_blocks);
 286	ei->i_allocated_meta_blocks = 0;
 287
 288	if (ei->i_reserved_data_blocks == 0) {
 289		/*
 290		 * We can release all of the reserved metadata blocks
 291		 * only when we have written all of the delayed
 292		 * allocation blocks.
 293		 */
 294		percpu_counter_sub(&sbi->s_dirtyblocks_counter,
 295				   ei->i_reserved_meta_blocks);
 296		ei->i_reserved_meta_blocks = 0;
 297		ei->i_da_metadata_calc_len = 0;
 298	}
 299	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
 300
 301	/* Update quota subsystem for data blocks */
 302	if (quota_claim)
 303		dquot_claim_block(inode, used);
 304	else {
 305		/*
 306		 * We did fallocate with an offset that is already delayed
 307		 * allocated. So on delayed allocated writeback we should
 308		 * not re-claim the quota for fallocated blocks.
 309		 */
 310		dquot_release_reservation_block(inode, used);
 311	}
 312
 313	/*
 314	 * If we have done all the pending block allocations and if
 315	 * there aren't any writers on the inode, we can discard the
 316	 * inode's preallocations.
 317	 */
 318	if ((ei->i_reserved_data_blocks == 0) &&
 319	    (atomic_read(&inode->i_writecount) == 0))
 320		ext4_discard_preallocations(inode);
 321}
 322
 323static int __check_block_validity(struct inode *inode, const char *func,
 324				unsigned int line,
 325				struct ext4_map_blocks *map)
 326{
 327	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
 328				   map->m_len)) {
 
 
 
 329		ext4_error_inode(inode, func, line, map->m_pblk,
 330				 "lblock %lu mapped to illegal pblock "
 331				 "(length %d)", (unsigned long) map->m_lblk,
 332				 map->m_len);
 333		return -EIO;
 334	}
 335	return 0;
 336}
 337
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 338#define check_block_validity(inode, map)	\
 339	__check_block_validity((inode), __func__, __LINE__, (map))
 340
 341/*
 342 * Return the number of contiguous dirty pages in a given inode
 343 * starting at page frame idx.
 344 */
 345static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
 346				    unsigned int max_pages)
 347{
 348	struct address_space *mapping = inode->i_mapping;
 349	pgoff_t	index;
 350	struct pagevec pvec;
 351	pgoff_t num = 0;
 352	int i, nr_pages, done = 0;
 353
 354	if (max_pages == 0)
 355		return 0;
 356	pagevec_init(&pvec, 0);
 357	while (!done) {
 358		index = idx;
 359		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
 360					      PAGECACHE_TAG_DIRTY,
 361					      (pgoff_t)PAGEVEC_SIZE);
 362		if (nr_pages == 0)
 363			break;
 364		for (i = 0; i < nr_pages; i++) {
 365			struct page *page = pvec.pages[i];
 366			struct buffer_head *bh, *head;
 
 
 367
 368			lock_page(page);
 369			if (unlikely(page->mapping != mapping) ||
 370			    !PageDirty(page) ||
 371			    PageWriteback(page) ||
 372			    page->index != idx) {
 373				done = 1;
 374				unlock_page(page);
 375				break;
 376			}
 377			if (page_has_buffers(page)) {
 378				bh = head = page_buffers(page);
 379				do {
 380					if (!buffer_delay(bh) &&
 381					    !buffer_unwritten(bh))
 382						done = 1;
 383					bh = bh->b_this_page;
 384				} while (!done && (bh != head));
 385			}
 386			unlock_page(page);
 387			if (done)
 388				break;
 389			idx++;
 390			num++;
 391			if (num >= max_pages) {
 392				done = 1;
 393				break;
 394			}
 395		}
 396		pagevec_release(&pvec);
 397	}
 398	return num;
 399}
 
 400
 401/*
 402 * The ext4_map_blocks() function tries to look up the requested blocks,
 403 * and returns if the blocks are already mapped.
 404 *
 405 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
 406 * and store the allocated blocks in the result buffer head and mark it
 407 * mapped.
 408 *
 409 * If file type is extents based, it will call ext4_ext_map_blocks(),
 410 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
 411 * based files
 412 *
 413 * On success, it returns the number of blocks being mapped or allocate.
 414 * if create==0 and the blocks are pre-allocated and uninitialized block,
 415 * the result buffer head is unmapped. If the create ==1, it will make sure
 416 * the buffer head is mapped.
 417 *
 418 * It returns 0 if plain look up failed (blocks have not been allocated), in
 419 * that casem, buffer head is unmapped
 
 420 *
 421 * It returns the error in case of allocation failure.
 422 */
 423int ext4_map_blocks(handle_t *handle, struct inode *inode,
 424		    struct ext4_map_blocks *map, int flags)
 425{
 
 426	int retval;
 
 
 
 
 
 
 427
 428	map->m_flags = 0;
 429	ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
 430		  "logical block %lu\n", inode->i_ino, flags, map->m_len,
 431		  (unsigned long) map->m_lblk);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 432	/*
 433	 * Try to see if we can get the block without requesting a new
 434	 * file system block.
 435	 */
 436	down_read((&EXT4_I(inode)->i_data_sem));
 437	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
 438		retval = ext4_ext_map_blocks(handle, inode, map, 0);
 439	} else {
 440		retval = ext4_ind_map_blocks(handle, inode, map, 0);
 441	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 442	up_read((&EXT4_I(inode)->i_data_sem));
 443
 
 444	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
 445		int ret = check_block_validity(inode, map);
 446		if (ret != 0)
 447			return ret;
 448	}
 449
 450	/* If it is only a block(s) look up */
 451	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
 452		return retval;
 453
 454	/*
 455	 * Returns if the blocks have already allocated
 456	 *
 457	 * Note that if blocks have been preallocated
 458	 * ext4_ext_get_block() returns th create = 0
 459	 * with buffer head unmapped.
 460	 */
 461	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
 462		return retval;
 
 
 
 
 
 
 463
 464	/*
 465	 * When we call get_blocks without the create flag, the
 466	 * BH_Unwritten flag could have gotten set if the blocks
 467	 * requested were part of a uninitialized extent.  We need to
 468	 * clear this flag now that we are committed to convert all or
 469	 * part of the uninitialized extent to be an initialized
 470	 * extent.  This is because we need to avoid the combination
 471	 * of BH_Unwritten and BH_Mapped flags being simultaneously
 472	 * set on the buffer_head.
 473	 */
 474	map->m_flags &= ~EXT4_MAP_UNWRITTEN;
 475
 476	/*
 477	 * New blocks allocate and/or writing to uninitialized extent
 478	 * will possibly result in updating i_data, so we take
 479	 * the write lock of i_data_sem, and call get_blocks()
 480	 * with create == 1 flag.
 481	 */
 482	down_write((&EXT4_I(inode)->i_data_sem));
 483
 484	/*
 485	 * if the caller is from delayed allocation writeout path
 486	 * we have already reserved fs blocks for allocation
 487	 * let the underlying get_block() function know to
 488	 * avoid double accounting
 489	 */
 490	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
 491		ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
 492	/*
 493	 * We need to check for EXT4 here because migrate
 494	 * could have changed the inode type in between
 495	 */
 496	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
 497		retval = ext4_ext_map_blocks(handle, inode, map, flags);
 498	} else {
 499		retval = ext4_ind_map_blocks(handle, inode, map, flags);
 500
 501		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
 502			/*
 503			 * We allocated new blocks which will result in
 504			 * i_data's format changing.  Force the migrate
 505			 * to fail by clearing migrate flags
 506			 */
 507			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
 508		}
 509
 510		/*
 511		 * Update reserved blocks/metadata blocks after successful
 512		 * block allocation which had been deferred till now. We don't
 513		 * support fallocate for non extent files. So we can update
 514		 * reserve space here.
 515		 */
 516		if ((retval > 0) &&
 517			(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
 518			ext4_da_update_reserve_space(inode, retval, 1);
 519	}
 520	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
 521		ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
 522
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 523	up_write((&EXT4_I(inode)->i_data_sem));
 524	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
 525		int ret = check_block_validity(inode, map);
 526		if (ret != 0)
 527			return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 528	}
 
 
 
 529	return retval;
 530}
 531
 532/* Maximum number of blocks we map for direct IO at once. */
 533#define DIO_MAX_BLOCKS 4096
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 534
 535static int _ext4_get_block(struct inode *inode, sector_t iblock,
 536			   struct buffer_head *bh, int flags)
 537{
 538	handle_t *handle = ext4_journal_current_handle();
 539	struct ext4_map_blocks map;
 540	int ret = 0, started = 0;
 541	int dio_credits;
 
 
 542
 543	map.m_lblk = iblock;
 544	map.m_len = bh->b_size >> inode->i_blkbits;
 545
 546	if (flags && !handle) {
 547		/* Direct IO write... */
 548		if (map.m_len > DIO_MAX_BLOCKS)
 549			map.m_len = DIO_MAX_BLOCKS;
 550		dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
 551		handle = ext4_journal_start(inode, dio_credits);
 552		if (IS_ERR(handle)) {
 553			ret = PTR_ERR(handle);
 554			return ret;
 555		}
 556		started = 1;
 557	}
 558
 559	ret = ext4_map_blocks(handle, inode, &map, flags);
 560	if (ret > 0) {
 561		map_bh(bh, inode->i_sb, map.m_pblk);
 562		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
 563		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
 564		ret = 0;
 
 
 
 565	}
 566	if (started)
 567		ext4_journal_stop(handle);
 568	return ret;
 569}
 570
 571int ext4_get_block(struct inode *inode, sector_t iblock,
 572		   struct buffer_head *bh, int create)
 573{
 574	return _ext4_get_block(inode, iblock, bh,
 575			       create ? EXT4_GET_BLOCKS_CREATE : 0);
 576}
 577
 578/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 579 * `handle' can be NULL if create is zero
 580 */
 581struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
 582				ext4_lblk_t block, int create, int *errp)
 583{
 584	struct ext4_map_blocks map;
 585	struct buffer_head *bh;
 586	int fatal = 0, err;
 
 587
 588	J_ASSERT(handle != NULL || create == 0);
 
 589
 590	map.m_lblk = block;
 591	map.m_len = 1;
 592	err = ext4_map_blocks(handle, inode, &map,
 593			      create ? EXT4_GET_BLOCKS_CREATE : 0);
 594
 
 
 595	if (err < 0)
 596		*errp = err;
 597	if (err <= 0)
 598		return NULL;
 599	*errp = 0;
 600
 601	bh = sb_getblk(inode->i_sb, map.m_pblk);
 602	if (!bh) {
 603		*errp = -EIO;
 604		return NULL;
 605	}
 606	if (map.m_flags & EXT4_MAP_NEW) {
 607		J_ASSERT(create != 0);
 608		J_ASSERT(handle != NULL);
 
 609
 610		/*
 611		 * Now that we do not always journal data, we should
 612		 * keep in mind whether this should always journal the
 613		 * new buffer as metadata.  For now, regular file
 614		 * writes use ext4_get_block instead, so it's not a
 615		 * problem.
 616		 */
 617		lock_buffer(bh);
 618		BUFFER_TRACE(bh, "call get_create_access");
 619		fatal = ext4_journal_get_create_access(handle, bh);
 620		if (!fatal && !buffer_uptodate(bh)) {
 
 
 
 
 621			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
 622			set_buffer_uptodate(bh);
 623		}
 624		unlock_buffer(bh);
 625		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
 626		err = ext4_handle_dirty_metadata(handle, inode, bh);
 627		if (!fatal)
 628			fatal = err;
 629	} else {
 630		BUFFER_TRACE(bh, "not a new buffer");
 631	}
 632	if (fatal) {
 633		*errp = fatal;
 634		brelse(bh);
 635		bh = NULL;
 636	}
 637	return bh;
 
 
 
 638}
 639
 640struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
 641			       ext4_lblk_t block, int create, int *err)
 642{
 643	struct buffer_head *bh;
 
 644
 645	bh = ext4_getblk(handle, inode, block, create, err);
 646	if (!bh)
 647		return bh;
 648	if (buffer_uptodate(bh))
 649		return bh;
 650	ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
 651	wait_on_buffer(bh);
 652	if (buffer_uptodate(bh))
 653		return bh;
 654	put_bh(bh);
 655	*err = -EIO;
 656	return NULL;
 
 
 
 
 657}
 658
 659static int walk_page_buffers(handle_t *handle,
 660			     struct buffer_head *head,
 661			     unsigned from,
 662			     unsigned to,
 663			     int *partial,
 664			     int (*fn)(handle_t *handle,
 665				       struct buffer_head *bh))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 666{
 667	struct buffer_head *bh;
 668	unsigned block_start, block_end;
 669	unsigned blocksize = head->b_size;
 670	int err, ret = 0;
 671	struct buffer_head *next;
 672
 673	for (bh = head, block_start = 0;
 674	     ret == 0 && (bh != head || !block_start);
 675	     block_start = block_end, bh = next) {
 676		next = bh->b_this_page;
 677		block_end = block_start + blocksize;
 678		if (block_end <= from || block_start >= to) {
 679			if (partial && !buffer_uptodate(bh))
 680				*partial = 1;
 681			continue;
 682		}
 683		err = (*fn)(handle, bh);
 684		if (!ret)
 685			ret = err;
 686	}
 687	return ret;
 688}
 689
 690/*
 691 * To preserve ordering, it is essential that the hole instantiation and
 692 * the data write be encapsulated in a single transaction.  We cannot
 693 * close off a transaction and start a new one between the ext4_get_block()
 694 * and the commit_write().  So doing the jbd2_journal_start at the start of
 695 * prepare_write() is the right place.
 696 *
 697 * Also, this function can nest inside ext4_writepage() ->
 698 * block_write_full_page(). In that case, we *know* that ext4_writepage()
 699 * has generated enough buffer credits to do the whole page.  So we won't
 700 * block on the journal in that case, which is good, because the caller may
 701 * be PF_MEMALLOC.
 702 *
 703 * By accident, ext4 can be reentered when a transaction is open via
 704 * quota file writes.  If we were to commit the transaction while thus
 705 * reentered, there can be a deadlock - we would be holding a quota
 706 * lock, and the commit would never complete if another thread had a
 707 * transaction open and was blocking on the quota lock - a ranking
 708 * violation.
 709 *
 710 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
 711 * will _not_ run commit under these circumstances because handle->h_ref
 712 * is elevated.  We'll still have enough credits for the tiny quotafile
 713 * write.
 714 */
 715static int do_journal_get_write_access(handle_t *handle,
 716				       struct buffer_head *bh)
 717{
 718	int dirty = buffer_dirty(bh);
 719	int ret;
 720
 721	if (!buffer_mapped(bh) || buffer_freed(bh))
 722		return 0;
 723	/*
 724	 * __block_write_begin() could have dirtied some buffers. Clean
 725	 * the dirty bit as jbd2_journal_get_write_access() could complain
 726	 * otherwise about fs integrity issues. Setting of the dirty bit
 727	 * by __block_write_begin() isn't a real problem here as we clear
 728	 * the bit before releasing a page lock and thus writeback cannot
 729	 * ever write the buffer.
 730	 */
 731	if (dirty)
 732		clear_buffer_dirty(bh);
 
 733	ret = ext4_journal_get_write_access(handle, bh);
 734	if (!ret && dirty)
 735		ret = ext4_handle_dirty_metadata(handle, NULL, bh);
 736	return ret;
 737}
 738
 739static int ext4_get_block_write(struct inode *inode, sector_t iblock,
 740		   struct buffer_head *bh_result, int create);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 741static int ext4_write_begin(struct file *file, struct address_space *mapping,
 742			    loff_t pos, unsigned len, unsigned flags,
 743			    struct page **pagep, void **fsdata)
 744{
 745	struct inode *inode = mapping->host;
 746	int ret, needed_blocks;
 747	handle_t *handle;
 748	int retries = 0;
 749	struct page *page;
 750	pgoff_t index;
 751	unsigned from, to;
 752
 
 
 
 753	trace_ext4_write_begin(inode, pos, len, flags);
 754	/*
 755	 * Reserve one block more for addition to orphan list in case
 756	 * we allocate blocks but write fails for some reason
 757	 */
 758	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
 759	index = pos >> PAGE_CACHE_SHIFT;
 760	from = pos & (PAGE_CACHE_SIZE - 1);
 761	to = from + len;
 762
 763retry:
 764	handle = ext4_journal_start(inode, needed_blocks);
 765	if (IS_ERR(handle)) {
 766		ret = PTR_ERR(handle);
 767		goto out;
 
 
 768	}
 769
 770	/* We cannot recurse into the filesystem as the transaction is already
 771	 * started */
 772	flags |= AOP_FLAG_NOFS;
 773
 
 
 
 
 774	page = grab_cache_page_write_begin(mapping, index, flags);
 775	if (!page) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 776		ext4_journal_stop(handle);
 777		ret = -ENOMEM;
 778		goto out;
 779	}
 780	*pagep = page;
 
 781
 
 
 
 
 
 
 
 
 782	if (ext4_should_dioread_nolock(inode))
 783		ret = __block_write_begin(page, pos, len, ext4_get_block_write);
 
 784	else
 785		ret = __block_write_begin(page, pos, len, ext4_get_block);
 786
 787	if (!ret && ext4_should_journal_data(inode)) {
 788		ret = walk_page_buffers(handle, page_buffers(page),
 789				from, to, NULL, do_journal_get_write_access);
 
 790	}
 791
 792	if (ret) {
 
 
 
 793		unlock_page(page);
 794		page_cache_release(page);
 795		/*
 796		 * __block_write_begin may have instantiated a few blocks
 797		 * outside i_size.  Trim these off again. Don't need
 798		 * i_size_read because we hold i_mutex.
 799		 *
 800		 * Add inode to orphan list in case we crash before
 801		 * truncate finishes
 802		 */
 803		if (pos + len > inode->i_size && ext4_can_truncate(inode))
 804			ext4_orphan_add(handle, inode);
 805
 806		ext4_journal_stop(handle);
 807		if (pos + len > inode->i_size) {
 808			ext4_truncate_failed_write(inode);
 809			/*
 810			 * If truncate failed early the inode might
 811			 * still be on the orphan list; we need to
 812			 * make sure the inode is removed from the
 813			 * orphan list in that case.
 814			 */
 815			if (inode->i_nlink)
 816				ext4_orphan_del(NULL, inode);
 817		}
 818	}
 819
 820	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
 821		goto retry;
 822out:
 
 
 
 
 823	return ret;
 824}
 825
 826/* For write_end() in data=journal mode */
 827static int write_end_fn(handle_t *handle, struct buffer_head *bh)
 828{
 
 829	if (!buffer_mapped(bh) || buffer_freed(bh))
 830		return 0;
 831	set_buffer_uptodate(bh);
 832	return ext4_handle_dirty_metadata(handle, NULL, bh);
 
 
 
 833}
 834
 835static int ext4_generic_write_end(struct file *file,
 836				  struct address_space *mapping,
 837				  loff_t pos, unsigned len, unsigned copied,
 838				  struct page *page, void *fsdata)
 
 
 
 
 
 
 
 839{
 840	int i_size_changed = 0;
 841	struct inode *inode = mapping->host;
 842	handle_t *handle = ext4_journal_current_handle();
 
 
 
 
 
 
 843
 844	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
 845
 
 
 
 
 
 
 
 
 
 
 
 
 846	/*
 847	 * No need to use i_size_read() here, the i_size
 848	 * cannot change under us because we hold i_mutex.
 849	 *
 850	 * But it's important to update i_size while still holding page lock:
 851	 * page writeout could otherwise come in and zero beyond i_size.
 
 
 
 852	 */
 853	if (pos + copied > inode->i_size) {
 854		i_size_write(inode, pos + copied);
 855		i_size_changed = 1;
 856	}
 857
 858	if (pos + copied >  EXT4_I(inode)->i_disksize) {
 859		/* We need to mark inode dirty even if
 860		 * new_i_size is less that inode->i_size
 861		 * bu greater than i_disksize.(hint delalloc)
 862		 */
 863		ext4_update_i_disksize(inode, (pos + copied));
 864		i_size_changed = 1;
 865	}
 866	unlock_page(page);
 867	page_cache_release(page);
 868
 
 
 869	/*
 870	 * Don't mark the inode dirty under page lock. First, it unnecessarily
 871	 * makes the holding time of page lock longer. Second, it forces lock
 872	 * ordering of page lock and transaction start for journaling
 873	 * filesystems.
 874	 */
 875	if (i_size_changed)
 876		ext4_mark_inode_dirty(handle, inode);
 877
 878	return copied;
 879}
 880
 881/*
 882 * We need to pick up the new inode size which generic_commit_write gave us
 883 * `file' can be NULL - eg, when called from page_symlink().
 884 *
 885 * ext4 never places buffers on inode->i_mapping->private_list.  metadata
 886 * buffers are managed internally.
 887 */
 888static int ext4_ordered_write_end(struct file *file,
 889				  struct address_space *mapping,
 890				  loff_t pos, unsigned len, unsigned copied,
 891				  struct page *page, void *fsdata)
 892{
 893	handle_t *handle = ext4_journal_current_handle();
 894	struct inode *inode = mapping->host;
 895	int ret = 0, ret2;
 896
 897	trace_ext4_ordered_write_end(inode, pos, len, copied);
 898	ret = ext4_jbd2_file_inode(handle, inode);
 
 
 
 
 
 899
 900	if (ret == 0) {
 901		ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
 902							page, fsdata);
 903		copied = ret2;
 904		if (pos + len > inode->i_size && ext4_can_truncate(inode))
 905			/* if we have allocated more blocks and copied
 906			 * less. We will have blocks allocated outside
 907			 * inode->i_size. So truncate them
 908			 */
 909			ext4_orphan_add(handle, inode);
 910		if (ret2 < 0)
 911			ret = ret2;
 912	}
 913	ret2 = ext4_journal_stop(handle);
 914	if (!ret)
 915		ret = ret2;
 916
 917	if (pos + len > inode->i_size) {
 918		ext4_truncate_failed_write(inode);
 919		/*
 920		 * If truncate failed early the inode might still be
 921		 * on the orphan list; we need to make sure the inode
 922		 * is removed from the orphan list in that case.
 923		 */
 924		if (inode->i_nlink)
 925			ext4_orphan_del(NULL, inode);
 926	}
 927
 928
 929	return ret ? ret : copied;
 930}
 931
 932static int ext4_writeback_write_end(struct file *file,
 933				    struct address_space *mapping,
 934				    loff_t pos, unsigned len, unsigned copied,
 935				    struct page *page, void *fsdata)
 
 
 
 
 936{
 937	handle_t *handle = ext4_journal_current_handle();
 938	struct inode *inode = mapping->host;
 939	int ret = 0, ret2;
 940
 941	trace_ext4_writeback_write_end(inode, pos, len, copied);
 942	ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
 943							page, fsdata);
 944	copied = ret2;
 945	if (pos + len > inode->i_size && ext4_can_truncate(inode))
 946		/* if we have allocated more blocks and copied
 947		 * less. We will have blocks allocated outside
 948		 * inode->i_size. So truncate them
 949		 */
 950		ext4_orphan_add(handle, inode);
 951
 952	if (ret2 < 0)
 953		ret = ret2;
 
 
 
 
 
 954
 955	ret2 = ext4_journal_stop(handle);
 956	if (!ret)
 957		ret = ret2;
 958
 959	if (pos + len > inode->i_size) {
 960		ext4_truncate_failed_write(inode);
 961		/*
 962		 * If truncate failed early the inode might still be
 963		 * on the orphan list; we need to make sure the inode
 964		 * is removed from the orphan list in that case.
 965		 */
 966		if (inode->i_nlink)
 967			ext4_orphan_del(NULL, inode);
 968	}
 969
 970	return ret ? ret : copied;
 971}
 972
 973static int ext4_journalled_write_end(struct file *file,
 974				     struct address_space *mapping,
 975				     loff_t pos, unsigned len, unsigned copied,
 976				     struct page *page, void *fsdata)
 977{
 978	handle_t *handle = ext4_journal_current_handle();
 979	struct inode *inode = mapping->host;
 
 980	int ret = 0, ret2;
 981	int partial = 0;
 982	unsigned from, to;
 983	loff_t new_i_size;
 
 
 984
 985	trace_ext4_journalled_write_end(inode, pos, len, copied);
 986	from = pos & (PAGE_CACHE_SIZE - 1);
 987	to = from + len;
 988
 989	BUG_ON(!ext4_handle_valid(handle));
 990
 991	if (copied < len) {
 992		if (!PageUptodate(page))
 993			copied = 0;
 994		page_zero_new_buffers(page, from+copied, to);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 995	}
 996
 997	ret = walk_page_buffers(handle, page_buffers(page), from,
 998				to, &partial, write_end_fn);
 999	if (!partial)
1000		SetPageUptodate(page);
1001	new_i_size = pos + copied;
1002	if (new_i_size > inode->i_size)
1003		i_size_write(inode, pos+copied);
1004	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1005	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1006	if (new_i_size > EXT4_I(inode)->i_disksize) {
1007		ext4_update_i_disksize(inode, new_i_size);
 
 
 
 
 
1008		ret2 = ext4_mark_inode_dirty(handle, inode);
1009		if (!ret)
1010			ret = ret2;
1011	}
1012
1013	unlock_page(page);
1014	page_cache_release(page);
1015	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1016		/* if we have allocated more blocks and copied
1017		 * less. We will have blocks allocated outside
1018		 * inode->i_size. So truncate them
1019		 */
1020		ext4_orphan_add(handle, inode);
1021
1022	ret2 = ext4_journal_stop(handle);
1023	if (!ret)
1024		ret = ret2;
1025	if (pos + len > inode->i_size) {
1026		ext4_truncate_failed_write(inode);
1027		/*
1028		 * If truncate failed early the inode might still be
1029		 * on the orphan list; we need to make sure the inode
1030		 * is removed from the orphan list in that case.
1031		 */
1032		if (inode->i_nlink)
1033			ext4_orphan_del(NULL, inode);
1034	}
1035
1036	return ret ? ret : copied;
1037}
1038
1039/*
1040 * Reserve a single block located at lblock
1041 */
1042static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1043{
1044	int retries = 0;
1045	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1046	struct ext4_inode_info *ei = EXT4_I(inode);
1047	unsigned long md_needed;
1048	int ret;
1049
1050	/*
1051	 * recalculate the amount of metadata blocks to reserve
1052	 * in order to allocate nrblocks
1053	 * worse case is one extent per block
1054	 */
1055repeat:
1056	spin_lock(&ei->i_block_reservation_lock);
1057	md_needed = ext4_calc_metadata_amount(inode, lblock);
1058	trace_ext4_da_reserve_space(inode, md_needed);
1059	spin_unlock(&ei->i_block_reservation_lock);
1060
1061	/*
1062	 * We will charge metadata quota at writeout time; this saves
1063	 * us from metadata over-estimation, though we may go over by
1064	 * a small amount in the end.  Here we just reserve for data.
1065	 */
1066	ret = dquot_reserve_block(inode, 1);
1067	if (ret)
1068		return ret;
1069	/*
1070	 * We do still charge estimated metadata to the sb though;
1071	 * we cannot afford to run out of free blocks.
1072	 */
1073	if (ext4_claim_free_blocks(sbi, md_needed + 1, 0)) {
1074		dquot_release_reservation_block(inode, 1);
1075		if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1076			yield();
1077			goto repeat;
1078		}
1079		return -ENOSPC;
1080	}
1081	spin_lock(&ei->i_block_reservation_lock);
1082	ei->i_reserved_data_blocks++;
1083	ei->i_reserved_meta_blocks += md_needed;
1084	spin_unlock(&ei->i_block_reservation_lock);
1085
1086	return 0;       /* success */
1087}
1088
1089static void ext4_da_release_space(struct inode *inode, int to_free)
1090{
1091	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1092	struct ext4_inode_info *ei = EXT4_I(inode);
1093
1094	if (!to_free)
1095		return;		/* Nothing to release, exit */
1096
1097	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1098
1099	trace_ext4_da_release_space(inode, to_free);
1100	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1101		/*
1102		 * if there aren't enough reserved blocks, then the
1103		 * counter is messed up somewhere.  Since this
1104		 * function is called from invalidate page, it's
1105		 * harmless to return without any action.
1106		 */
1107		ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
1108			 "ino %lu, to_free %d with only %d reserved "
1109			 "data blocks\n", inode->i_ino, to_free,
1110			 ei->i_reserved_data_blocks);
1111		WARN_ON(1);
1112		to_free = ei->i_reserved_data_blocks;
1113	}
1114	ei->i_reserved_data_blocks -= to_free;
1115
1116	if (ei->i_reserved_data_blocks == 0) {
1117		/*
1118		 * We can release all of the reserved metadata blocks
1119		 * only when we have written all of the delayed
1120		 * allocation blocks.
1121		 */
1122		percpu_counter_sub(&sbi->s_dirtyblocks_counter,
1123				   ei->i_reserved_meta_blocks);
1124		ei->i_reserved_meta_blocks = 0;
1125		ei->i_da_metadata_calc_len = 0;
1126	}
1127
1128	/* update fs dirty data blocks counter */
1129	percpu_counter_sub(&sbi->s_dirtyblocks_counter, to_free);
1130
1131	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1132
1133	dquot_release_reservation_block(inode, to_free);
1134}
1135
1136static void ext4_da_page_release_reservation(struct page *page,
1137					     unsigned long offset)
1138{
1139	int to_release = 0;
1140	struct buffer_head *head, *bh;
1141	unsigned int curr_off = 0;
1142
1143	head = page_buffers(page);
1144	bh = head;
1145	do {
1146		unsigned int next_off = curr_off + bh->b_size;
1147
1148		if ((offset <= curr_off) && (buffer_delay(bh))) {
1149			to_release++;
1150			clear_buffer_delay(bh);
1151		}
1152		curr_off = next_off;
1153	} while ((bh = bh->b_this_page) != head);
1154	ext4_da_release_space(page->mapping->host, to_release);
1155}
1156
1157/*
1158 * Delayed allocation stuff
1159 */
1160
1161/*
1162 * mpage_da_submit_io - walks through extent of pages and try to write
1163 * them with writepage() call back
1164 *
1165 * @mpd->inode: inode
1166 * @mpd->first_page: first page of the extent
1167 * @mpd->next_page: page after the last page of the extent
1168 *
1169 * By the time mpage_da_submit_io() is called we expect all blocks
1170 * to be allocated. this may be wrong if allocation failed.
1171 *
1172 * As pages are already locked by write_cache_pages(), we can't use it
1173 */
1174static int mpage_da_submit_io(struct mpage_da_data *mpd,
1175			      struct ext4_map_blocks *map)
1176{
1177	struct pagevec pvec;
1178	unsigned long index, end;
1179	int ret = 0, err, nr_pages, i;
1180	struct inode *inode = mpd->inode;
1181	struct address_space *mapping = inode->i_mapping;
1182	loff_t size = i_size_read(inode);
1183	unsigned int len, block_start;
1184	struct buffer_head *bh, *page_bufs = NULL;
1185	int journal_data = ext4_should_journal_data(inode);
1186	sector_t pblock = 0, cur_logical = 0;
1187	struct ext4_io_submit io_submit;
1188
1189	BUG_ON(mpd->next_page <= mpd->first_page);
1190	memset(&io_submit, 0, sizeof(io_submit));
1191	/*
1192	 * We need to start from the first_page to the next_page - 1
1193	 * to make sure we also write the mapped dirty buffer_heads.
1194	 * If we look at mpd->b_blocknr we would only be looking
1195	 * at the currently mapped buffer_heads.
1196	 */
1197	index = mpd->first_page;
1198	end = mpd->next_page - 1;
1199
1200	pagevec_init(&pvec, 0);
1201	while (index <= end) {
1202		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1203		if (nr_pages == 0)
1204			break;
1205		for (i = 0; i < nr_pages; i++) {
1206			int commit_write = 0, skip_page = 0;
1207			struct page *page = pvec.pages[i];
1208
1209			index = page->index;
1210			if (index > end)
1211				break;
1212
1213			if (index == size >> PAGE_CACHE_SHIFT)
1214				len = size & ~PAGE_CACHE_MASK;
1215			else
1216				len = PAGE_CACHE_SIZE;
1217			if (map) {
1218				cur_logical = index << (PAGE_CACHE_SHIFT -
1219							inode->i_blkbits);
1220				pblock = map->m_pblk + (cur_logical -
1221							map->m_lblk);
1222			}
1223			index++;
1224
1225			BUG_ON(!PageLocked(page));
1226			BUG_ON(PageWriteback(page));
1227
1228			/*
1229			 * If the page does not have buffers (for
1230			 * whatever reason), try to create them using
1231			 * __block_write_begin.  If this fails,
1232			 * skip the page and move on.
1233			 */
1234			if (!page_has_buffers(page)) {
1235				if (__block_write_begin(page, 0, len,
1236						noalloc_get_block_write)) {
1237				skip_page:
1238					unlock_page(page);
1239					continue;
1240				}
1241				commit_write = 1;
1242			}
1243
1244			bh = page_bufs = page_buffers(page);
1245			block_start = 0;
1246			do {
1247				if (!bh)
1248					goto skip_page;
1249				if (map && (cur_logical >= map->m_lblk) &&
1250				    (cur_logical <= (map->m_lblk +
1251						     (map->m_len - 1)))) {
1252					if (buffer_delay(bh)) {
1253						clear_buffer_delay(bh);
1254						bh->b_blocknr = pblock;
1255					}
1256					if (buffer_unwritten(bh) ||
1257					    buffer_mapped(bh))
1258						BUG_ON(bh->b_blocknr != pblock);
1259					if (map->m_flags & EXT4_MAP_UNINIT)
1260						set_buffer_uninit(bh);
1261					clear_buffer_unwritten(bh);
1262				}
1263
1264				/* skip page if block allocation undone */
1265				if (buffer_delay(bh) || buffer_unwritten(bh))
1266					skip_page = 1;
1267				bh = bh->b_this_page;
1268				block_start += bh->b_size;
1269				cur_logical++;
1270				pblock++;
1271			} while (bh != page_bufs);
1272
1273			if (skip_page)
1274				goto skip_page;
1275
1276			if (commit_write)
1277				/* mark the buffer_heads as dirty & uptodate */
1278				block_commit_write(page, 0, len);
1279
1280			clear_page_dirty_for_io(page);
1281			/*
1282			 * Delalloc doesn't support data journalling,
1283			 * but eventually maybe we'll lift this
1284			 * restriction.
1285			 */
1286			if (unlikely(journal_data && PageChecked(page)))
1287				err = __ext4_journalled_writepage(page, len);
1288			else if (test_opt(inode->i_sb, MBLK_IO_SUBMIT))
1289				err = ext4_bio_write_page(&io_submit, page,
1290							  len, mpd->wbc);
1291			else if (buffer_uninit(page_bufs)) {
1292				ext4_set_bh_endio(page_bufs, inode);
1293				err = block_write_full_page_endio(page,
1294					noalloc_get_block_write,
1295					mpd->wbc, ext4_end_io_buffer_write);
1296			} else
1297				err = block_write_full_page(page,
1298					noalloc_get_block_write, mpd->wbc);
1299
1300			if (!err)
1301				mpd->pages_written++;
1302			/*
1303			 * In error case, we have to continue because
1304			 * remaining pages are still locked
1305			 */
1306			if (ret == 0)
1307				ret = err;
1308		}
1309		pagevec_release(&pvec);
1310	}
1311	ext4_io_submit(&io_submit);
1312	return ret;
1313}
1314
1315static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
 
1316{
1317	int nr_pages, i;
1318	pgoff_t index, end;
1319	struct pagevec pvec;
1320	struct inode *inode = mpd->inode;
1321	struct address_space *mapping = inode->i_mapping;
1322
 
 
 
 
 
1323	index = mpd->first_page;
1324	end   = mpd->next_page - 1;
 
 
 
 
 
 
 
 
1325	while (index <= end) {
1326		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1327		if (nr_pages == 0)
1328			break;
1329		for (i = 0; i < nr_pages; i++) {
1330			struct page *page = pvec.pages[i];
1331			if (page->index > end)
1332				break;
1333			BUG_ON(!PageLocked(page));
1334			BUG_ON(PageWriteback(page));
1335			block_invalidatepage(page, 0);
1336			ClearPageUptodate(page);
 
 
 
 
1337			unlock_page(page);
1338		}
1339		index = pvec.pages[nr_pages - 1]->index + 1;
1340		pagevec_release(&pvec);
1341	}
1342	return;
1343}
1344
1345static void ext4_print_free_blocks(struct inode *inode)
1346{
1347	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1348	printk(KERN_CRIT "Total free blocks count %lld\n",
1349	       ext4_count_free_blocks(inode->i_sb));
1350	printk(KERN_CRIT "Free/Dirty block details\n");
1351	printk(KERN_CRIT "free_blocks=%lld\n",
1352	       (long long) percpu_counter_sum(&sbi->s_freeblocks_counter));
1353	printk(KERN_CRIT "dirty_blocks=%lld\n",
1354	       (long long) percpu_counter_sum(&sbi->s_dirtyblocks_counter));
1355	printk(KERN_CRIT "Block reservation details\n");
1356	printk(KERN_CRIT "i_reserved_data_blocks=%u\n",
1357	       EXT4_I(inode)->i_reserved_data_blocks);
1358	printk(KERN_CRIT "i_reserved_meta_blocks=%u\n",
1359	       EXT4_I(inode)->i_reserved_meta_blocks);
 
 
 
 
1360	return;
1361}
1362
 
 
 
 
 
1363/*
1364 * mpage_da_map_and_submit - go through given space, map them
1365 *       if necessary, and then submit them for I/O
 
 
1366 *
1367 * @mpd - bh describing space
1368 *
1369 * The function skips space we know is already mapped to disk blocks.
1370 *
 
1371 */
1372static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
1373{
1374	int err, blks, get_blocks_flags;
1375	struct ext4_map_blocks map, *mapp = NULL;
1376	sector_t next = mpd->b_blocknr;
1377	unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
1378	loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
1379	handle_t *handle = NULL;
1380
1381	/*
1382	 * If the blocks are mapped already, or we couldn't accumulate
1383	 * any blocks, then proceed immediately to the submission stage.
1384	 */
1385	if ((mpd->b_size == 0) ||
1386	    ((mpd->b_state  & (1 << BH_Mapped)) &&
1387	     !(mpd->b_state & (1 << BH_Delay)) &&
1388	     !(mpd->b_state & (1 << BH_Unwritten))))
1389		goto submit_io;
1390
1391	handle = ext4_journal_current_handle();
1392	BUG_ON(!handle);
1393
1394	/*
1395	 * Call ext4_map_blocks() to allocate any delayed allocation
1396	 * blocks, or to convert an uninitialized extent to be
1397	 * initialized (in the case where we have written into
1398	 * one or more preallocated blocks).
1399	 *
1400	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
1401	 * indicate that we are on the delayed allocation path.  This
1402	 * affects functions in many different parts of the allocation
1403	 * call path.  This flag exists primarily because we don't
1404	 * want to change *many* call functions, so ext4_map_blocks()
1405	 * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
1406	 * inode's allocation semaphore is taken.
1407	 *
1408	 * If the blocks in questions were delalloc blocks, set
1409	 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
1410	 * variables are updated after the blocks have been allocated.
1411	 */
1412	map.m_lblk = next;
1413	map.m_len = max_blocks;
1414	get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
1415	if (ext4_should_dioread_nolock(mpd->inode))
1416		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
1417	if (mpd->b_state & (1 << BH_Delay))
1418		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
1419
1420	blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
1421	if (blks < 0) {
1422		struct super_block *sb = mpd->inode->i_sb;
1423
1424		err = blks;
1425		/*
1426		 * If get block returns EAGAIN or ENOSPC and there
1427		 * appears to be free blocks we will just let
1428		 * mpage_da_submit_io() unlock all of the pages.
1429		 */
1430		if (err == -EAGAIN)
1431			goto submit_io;
1432
1433		if (err == -ENOSPC &&
1434		    ext4_count_free_blocks(sb)) {
1435			mpd->retval = err;
1436			goto submit_io;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1437		}
1438
1439		/*
1440		 * get block failure will cause us to loop in
1441		 * writepages, because a_ops->writepage won't be able
1442		 * to make progress. The page will be redirtied by
1443		 * writepage and writepages will again try to write
1444		 * the same.
1445		 */
1446		if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
1447			ext4_msg(sb, KERN_CRIT,
1448				 "delayed block allocation failed for inode %lu "
1449				 "at logical offset %llu with max blocks %zd "
1450				 "with error %d", mpd->inode->i_ino,
1451				 (unsigned long long) next,
1452				 mpd->b_size >> mpd->inode->i_blkbits, err);
1453			ext4_msg(sb, KERN_CRIT,
1454				"This should not happen!! Data will be lost\n");
1455			if (err == -ENOSPC)
1456				ext4_print_free_blocks(mpd->inode);
1457		}
1458		/* invalidate all the pages */
1459		ext4_da_block_invalidatepages(mpd);
1460
1461		/* Mark this page range as having been completed */
1462		mpd->io_done = 1;
1463		return;
1464	}
1465	BUG_ON(blks == 0);
1466
1467	mapp = &map;
1468	if (map.m_flags & EXT4_MAP_NEW) {
1469		struct block_device *bdev = mpd->inode->i_sb->s_bdev;
1470		int i;
1471
1472		for (i = 0; i < map.m_len; i++)
1473			unmap_underlying_metadata(bdev, map.m_pblk + i);
1474	}
 
 
 
1475
1476	if (ext4_should_order_data(mpd->inode)) {
1477		err = ext4_jbd2_file_inode(handle, mpd->inode);
1478		if (err)
1479			/* This only happens if the journal is aborted */
1480			return;
1481	}
1482
1483	/*
1484	 * Update on-disk size along with block allocation.
 
1485	 */
1486	disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
1487	if (disksize > i_size_read(mpd->inode))
1488		disksize = i_size_read(mpd->inode);
1489	if (disksize > EXT4_I(mpd->inode)->i_disksize) {
1490		ext4_update_i_disksize(mpd->inode, disksize);
1491		err = ext4_mark_inode_dirty(handle, mpd->inode);
1492		if (err)
1493			ext4_error(mpd->inode->i_sb,
1494				   "Failed to mark inode %lu dirty",
1495				   mpd->inode->i_ino);
1496	}
1497
1498submit_io:
1499	mpage_da_submit_io(mpd, mapp);
1500	mpd->io_done = 1;
1501}
1502
1503#define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1504		(1 << BH_Delay) | (1 << BH_Unwritten))
 
 
1505
1506/*
1507 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1508 *
1509 * @mpd->lbh - extent of blocks
1510 * @logical - logical number of the block in the file
1511 * @bh - bh of the block (used to access block's state)
1512 *
1513 * the function is used to collect contig. blocks in same state
1514 */
1515static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
1516				   sector_t logical, size_t b_size,
1517				   unsigned long b_state)
1518{
1519	sector_t next;
1520	int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
1521
1522	/*
1523	 * XXX Don't go larger than mballoc is willing to allocate
1524	 * This is a stopgap solution.  We eventually need to fold
1525	 * mpage_da_submit_io() into this function and then call
1526	 * ext4_map_blocks() multiple times in a loop
1527	 */
1528	if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize)
1529		goto flush_it;
1530
1531	/* check if thereserved journal credits might overflow */
1532	if (!(ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS))) {
1533		if (nrblocks >= EXT4_MAX_TRANS_DATA) {
1534			/*
1535			 * With non-extent format we are limited by the journal
1536			 * credit available.  Total credit needed to insert
1537			 * nrblocks contiguous blocks is dependent on the
1538			 * nrblocks.  So limit nrblocks.
1539			 */
1540			goto flush_it;
1541		} else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
1542				EXT4_MAX_TRANS_DATA) {
1543			/*
1544			 * Adding the new buffer_head would make it cross the
1545			 * allowed limit for which we have journal credit
1546			 * reserved. So limit the new bh->b_size
1547			 */
1548			b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
1549						mpd->inode->i_blkbits;
1550			/* we will do mpage_da_submit_io in the next loop */
1551		}
1552	}
1553	/*
1554	 * First block in the extent
1555	 */
1556	if (mpd->b_size == 0) {
1557		mpd->b_blocknr = logical;
1558		mpd->b_size = b_size;
1559		mpd->b_state = b_state & BH_FLAGS;
1560		return;
1561	}
1562
1563	next = mpd->b_blocknr + nrblocks;
1564	/*
1565	 * Can we merge the block to our big extent?
1566	 */
1567	if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
1568		mpd->b_size += b_size;
1569		return;
1570	}
1571
1572flush_it:
1573	/*
1574	 * We couldn't merge the block to our extent, so we
1575	 * need to flush current  extent and start new one
1576	 */
1577	mpage_da_map_and_submit(mpd);
1578	return;
1579}
1580
1581static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1582{
1583	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1584}
1585
1586/*
1587 * This is a special get_blocks_t callback which is used by
1588 * ext4_da_write_begin().  It will either return mapped block or
1589 * reserve space for a single block.
1590 *
1591 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1592 * We also have b_blocknr = -1 and b_bdev initialized properly
1593 *
1594 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1595 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1596 * initialized properly.
1597 */
1598static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1599				  struct buffer_head *bh, int create)
1600{
1601	struct ext4_map_blocks map;
1602	int ret = 0;
1603	sector_t invalid_block = ~((sector_t) 0xffff);
1604
1605	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1606		invalid_block = ~0;
1607
1608	BUG_ON(create == 0);
1609	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1610
1611	map.m_lblk = iblock;
1612	map.m_len = 1;
1613
1614	/*
1615	 * first, we need to know whether the block is allocated already
1616	 * preallocated blocks are unmapped but should treated
1617	 * the same as allocated blocks.
1618	 */
1619	ret = ext4_map_blocks(NULL, inode, &map, 0);
1620	if (ret < 0)
1621		return ret;
1622	if (ret == 0) {
1623		if (buffer_delay(bh))
1624			return 0; /* Not sure this could or should happen */
1625		/*
1626		 * XXX: __block_write_begin() unmaps passed block, is it OK?
1627		 */
1628		ret = ext4_da_reserve_space(inode, iblock);
1629		if (ret)
1630			/* not enough space to reserve */
1631			return ret;
1632
1633		map_bh(bh, inode->i_sb, invalid_block);
1634		set_buffer_new(bh);
1635		set_buffer_delay(bh);
1636		return 0;
1637	}
1638
1639	map_bh(bh, inode->i_sb, map.m_pblk);
1640	bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1641
1642	if (buffer_unwritten(bh)) {
1643		/* A delayed write to unwritten bh should be marked
1644		 * new and mapped.  Mapped ensures that we don't do
1645		 * get_block multiple times when we write to the same
1646		 * offset and new ensures that we do proper zero out
1647		 * for partial write.
1648		 */
1649		set_buffer_new(bh);
1650		set_buffer_mapped(bh);
1651	}
1652	return 0;
1653}
1654
1655/*
1656 * This function is used as a standard get_block_t calback function
1657 * when there is no desire to allocate any blocks.  It is used as a
1658 * callback function for block_write_begin() and block_write_full_page().
1659 * These functions should only try to map a single block at a time.
1660 *
1661 * Since this function doesn't do block allocations even if the caller
1662 * requests it by passing in create=1, it is critically important that
1663 * any caller checks to make sure that any buffer heads are returned
1664 * by this function are either all already mapped or marked for
1665 * delayed allocation before calling  block_write_full_page().  Otherwise,
1666 * b_blocknr could be left unitialized, and the page write functions will
1667 * be taken by surprise.
1668 */
1669static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
1670				   struct buffer_head *bh_result, int create)
1671{
1672	BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
1673	return _ext4_get_block(inode, iblock, bh_result, 0);
1674}
1675
1676static int bget_one(handle_t *handle, struct buffer_head *bh)
1677{
1678	get_bh(bh);
1679	return 0;
1680}
1681
1682static int bput_one(handle_t *handle, struct buffer_head *bh)
1683{
1684	put_bh(bh);
1685	return 0;
1686}
1687
1688static int __ext4_journalled_writepage(struct page *page,
1689				       unsigned int len)
1690{
1691	struct address_space *mapping = page->mapping;
1692	struct inode *inode = mapping->host;
1693	struct buffer_head *page_bufs;
1694	handle_t *handle = NULL;
1695	int ret = 0;
1696	int err;
 
1697
1698	ClearPageChecked(page);
1699	page_bufs = page_buffers(page);
1700	BUG_ON(!page_bufs);
1701	walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
1702	/* As soon as we unlock the page, it can go away, but we have
1703	 * references to buffers so we are safe */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1704	unlock_page(page);
1705
1706	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
 
1707	if (IS_ERR(handle)) {
1708		ret = PTR_ERR(handle);
1709		goto out;
 
1710	}
1711
1712	BUG_ON(!ext4_handle_valid(handle));
1713
1714	ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
1715				do_journal_get_write_access);
 
 
 
 
 
 
 
 
 
 
 
 
1716
1717	err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
1718				write_end_fn);
 
 
 
 
1719	if (ret == 0)
1720		ret = err;
1721	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1722	err = ext4_journal_stop(handle);
1723	if (!ret)
1724		ret = err;
1725
1726	walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
1727	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1728out:
 
 
 
 
 
 
1729	return ret;
1730}
1731
1732static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
1733static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
1734
1735/*
1736 * Note that we don't need to start a transaction unless we're journaling data
1737 * because we should have holes filled from ext4_page_mkwrite(). We even don't
1738 * need to file the inode to the transaction's list in ordered mode because if
1739 * we are writing back data added by write(), the inode is already there and if
1740 * we are writing back data modified via mmap(), no one guarantees in which
1741 * transaction the data will hit the disk. In case we are journaling data, we
1742 * cannot start transaction directly because transaction start ranks above page
1743 * lock so we have to do some magic.
1744 *
1745 * This function can get called via...
1746 *   - ext4_da_writepages after taking page lock (have journal handle)
1747 *   - journal_submit_inode_data_buffers (no journal handle)
1748 *   - shrink_page_list via pdflush (no journal handle)
1749 *   - grab_page_cache when doing write_begin (have journal handle)
1750 *
1751 * We don't do any block allocation in this function. If we have page with
1752 * multiple blocks we need to write those buffer_heads that are mapped. This
1753 * is important for mmaped based write. So if we do with blocksize 1K
1754 * truncate(f, 1024);
1755 * a = mmap(f, 0, 4096);
1756 * a[0] = 'a';
1757 * truncate(f, 4096);
1758 * we have in the page first buffer_head mapped via page_mkwrite call back
1759 * but other bufer_heads would be unmapped but dirty(dirty done via the
1760 * do_wp_page). So writepage should write the first block. If we modify
1761 * the mmap area beyond 1024 we will again get a page_fault and the
1762 * page_mkwrite callback will do the block allocation and mark the
1763 * buffer_heads mapped.
1764 *
1765 * We redirty the page if we have any buffer_heads that is either delay or
1766 * unwritten in the page.
1767 *
1768 * We can get recursively called as show below.
1769 *
1770 *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1771 *		ext4_writepage()
1772 *
1773 * But since we don't do any block allocation we should not deadlock.
1774 * Page also have the dirty flag cleared so we don't get recurive page_lock.
1775 */
1776static int ext4_writepage(struct page *page,
1777			  struct writeback_control *wbc)
1778{
1779	int ret = 0, commit_write = 0;
1780	loff_t size;
1781	unsigned int len;
1782	struct buffer_head *page_bufs = NULL;
1783	struct inode *inode = page->mapping->host;
 
 
 
 
 
 
 
 
1784
1785	trace_ext4_writepage(page);
1786	size = i_size_read(inode);
1787	if (page->index == size >> PAGE_CACHE_SHIFT)
1788		len = size & ~PAGE_CACHE_MASK;
 
1789	else
1790		len = PAGE_CACHE_SIZE;
1791
 
1792	/*
1793	 * If the page does not have buffers (for whatever reason),
1794	 * try to create them using __block_write_begin.  If this
1795	 * fails, redirty the page and move on.
1796	 */
1797	if (!page_has_buffers(page)) {
1798		if (__block_write_begin(page, 0, len,
1799					noalloc_get_block_write)) {
1800		redirty_page:
1801			redirty_page_for_writepage(wbc, page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1802			unlock_page(page);
1803			return 0;
1804		}
1805		commit_write = 1;
1806	}
1807	page_bufs = page_buffers(page);
1808	if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
1809			      ext4_bh_delay_or_unwritten)) {
1810		/*
1811		 * We don't want to do block allocation, so redirty
1812		 * the page and return.  We may reach here when we do
1813		 * a journal commit via journal_submit_inode_data_buffers.
1814		 * We can also reach here via shrink_page_list
1815		 */
1816		goto redirty_page;
1817	}
1818	if (commit_write)
1819		/* now mark the buffer_heads as dirty and uptodate */
1820		block_commit_write(page, 0, len);
1821
1822	if (PageChecked(page) && ext4_should_journal_data(inode))
1823		/*
1824		 * It's mmapped pagecache.  Add buffers and journal it.  There
1825		 * doesn't seem much point in redirtying the page here.
1826		 */
1827		return __ext4_journalled_writepage(page, len);
1828
1829	if (buffer_uninit(page_bufs)) {
1830		ext4_set_bh_endio(page_bufs, inode);
1831		ret = block_write_full_page_endio(page, noalloc_get_block_write,
1832					    wbc, ext4_end_io_buffer_write);
1833	} else
1834		ret = block_write_full_page(page, noalloc_get_block_write,
1835					    wbc);
1836
 
 
 
1837	return ret;
1838}
1839
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1840/*
1841 * This is called via ext4_da_writepages() to
1842 * calculate the total number of credits to reserve to fit
1843 * a single extent allocation into a single transaction,
1844 * ext4_da_writpeages() will loop calling this before
1845 * the block allocation.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1846 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1847
 
 
 
 
 
 
 
1848static int ext4_da_writepages_trans_blocks(struct inode *inode)
1849{
1850	int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
1851
1852	/*
1853	 * With non-extent format the journal credit needed to
1854	 * insert nrblocks contiguous block is dependent on
1855	 * number of contiguous block. So we will limit
1856	 * number of contiguous block to a sane value
1857	 */
1858	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
1859	    (max_blocks > EXT4_MAX_TRANS_DATA))
1860		max_blocks = EXT4_MAX_TRANS_DATA;
1861
1862	return ext4_chunk_trans_blocks(inode, max_blocks);
1863}
1864
1865/*
1866 * write_cache_pages_da - walk the list of dirty pages of the given
1867 * address space and accumulate pages that need writing, and call
1868 * mpage_da_map_and_submit to map a single contiguous memory region
1869 * and then write them.
1870 */
1871static int write_cache_pages_da(struct address_space *mapping,
1872				struct writeback_control *wbc,
1873				struct mpage_da_data *mpd,
1874				pgoff_t *done_index)
1875{
1876	struct buffer_head	*bh, *head;
1877	struct inode		*inode = mapping->host;
1878	struct pagevec		pvec;
1879	unsigned int		nr_pages;
1880	sector_t		logical;
1881	pgoff_t			index, end;
1882	long			nr_to_write = wbc->nr_to_write;
1883	int			i, tag, ret = 0;
1884
1885	memset(mpd, 0, sizeof(struct mpage_da_data));
1886	mpd->wbc = wbc;
1887	mpd->inode = inode;
1888	pagevec_init(&pvec, 0);
1889	index = wbc->range_start >> PAGE_CACHE_SHIFT;
1890	end = wbc->range_end >> PAGE_CACHE_SHIFT;
 
 
 
 
 
1891
1892	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1893		tag = PAGECACHE_TAG_TOWRITE;
1894	else
1895		tag = PAGECACHE_TAG_DIRTY;
1896
1897	*done_index = index;
 
 
1898	while (index <= end) {
1899		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
1900			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1901		if (nr_pages == 0)
1902			return 0;
1903
1904		for (i = 0; i < nr_pages; i++) {
1905			struct page *page = pvec.pages[i];
1906
1907			/*
1908			 * At this point, the page may be truncated or
1909			 * invalidated (changing page->mapping to NULL), or
1910			 * even swizzled back from swapper_space to tmpfs file
1911			 * mapping. However, page->index will not change
1912			 * because we have a reference on the page.
 
1913			 */
1914			if (page->index > end)
1915				goto out;
1916
1917			*done_index = page->index + 1;
1918
1919			/*
1920			 * If we can't merge this page, and we have
1921			 * accumulated an contiguous region, write it
1922			 */
1923			if ((mpd->next_page != page->index) &&
1924			    (mpd->next_page != mpd->first_page)) {
1925				mpage_da_map_and_submit(mpd);
1926				goto ret_extent_tail;
1927			}
1928
1929			lock_page(page);
1930
1931			/*
1932			 * If the page is no longer dirty, or its
1933			 * mapping no longer corresponds to inode we
1934			 * are writing (which means it has been
1935			 * truncated or invalidated), or the page is
1936			 * already under writeback and we are not
1937			 * doing a data integrity writeback, skip the page
1938			 */
1939			if (!PageDirty(page) ||
1940			    (PageWriteback(page) &&
1941			     (wbc->sync_mode == WB_SYNC_NONE)) ||
1942			    unlikely(page->mapping != mapping)) {
1943				unlock_page(page);
1944				continue;
1945			}
1946
1947			wait_on_page_writeback(page);
1948			BUG_ON(PageWriteback(page));
1949
1950			if (mpd->next_page != page->index)
1951				mpd->first_page = page->index;
1952			mpd->next_page = page->index + 1;
1953			logical = (sector_t) page->index <<
1954				(PAGE_CACHE_SHIFT - inode->i_blkbits);
1955
1956			if (!page_has_buffers(page)) {
1957				mpage_add_bh_to_extent(mpd, logical,
1958						       PAGE_CACHE_SIZE,
1959						       (1 << BH_Dirty) | (1 << BH_Uptodate));
1960				if (mpd->io_done)
1961					goto ret_extent_tail;
1962			} else {
1963				/*
1964				 * Page with regular buffer heads,
1965				 * just add all dirty ones
1966				 */
1967				head = page_buffers(page);
1968				bh = head;
1969				do {
1970					BUG_ON(buffer_locked(bh));
1971					/*
1972					 * We need to try to allocate
1973					 * unmapped blocks in the same page.
1974					 * Otherwise we won't make progress
1975					 * with the page in ext4_writepage
1976					 */
1977					if (ext4_bh_delay_or_unwritten(NULL, bh)) {
1978						mpage_add_bh_to_extent(mpd, logical,
1979								       bh->b_size,
1980								       bh->b_state);
1981						if (mpd->io_done)
1982							goto ret_extent_tail;
1983					} else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
1984						/*
1985						 * mapped dirty buffer. We need
1986						 * to update the b_state
1987						 * because we look at b_state
1988						 * in mpage_da_map_blocks.  We
1989						 * don't update b_size because
1990						 * if we find an unmapped
1991						 * buffer_head later we need to
1992						 * use the b_state flag of that
1993						 * buffer_head.
1994						 */
1995						if (mpd->b_size == 0)
1996							mpd->b_state = bh->b_state & BH_FLAGS;
1997					}
1998					logical++;
1999				} while ((bh = bh->b_this_page) != head);
2000			}
2001
2002			if (nr_to_write > 0) {
2003				nr_to_write--;
2004				if (nr_to_write == 0 &&
2005				    wbc->sync_mode == WB_SYNC_NONE)
2006					/*
2007					 * We stop writing back only if we are
2008					 * not doing integrity sync. In case of
2009					 * integrity sync we have to keep going
2010					 * because someone may be concurrently
2011					 * dirtying pages, and we might have
2012					 * synced a lot of newly appeared dirty
2013					 * pages, but have not synced all of the
2014					 * old dirty pages.
2015					 */
2016					goto out;
2017			}
2018		}
2019		pagevec_release(&pvec);
2020		cond_resched();
2021	}
 
2022	return 0;
2023ret_extent_tail:
2024	ret = MPAGE_DA_EXTENT_TAIL;
2025out:
2026	pagevec_release(&pvec);
2027	cond_resched();
2028	return ret;
2029}
2030
2031
2032static int ext4_da_writepages(struct address_space *mapping,
2033			      struct writeback_control *wbc)
2034{
2035	pgoff_t	index;
 
2036	int range_whole = 0;
 
2037	handle_t *handle = NULL;
2038	struct mpage_da_data mpd;
2039	struct inode *inode = mapping->host;
2040	int pages_written = 0;
2041	unsigned int max_pages;
2042	int range_cyclic, cycled = 1, io_done = 0;
2043	int needed_blocks, ret = 0;
2044	long desired_nr_to_write, nr_to_writebump = 0;
2045	loff_t range_start = wbc->range_start;
2046	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2047	pgoff_t done_index = 0;
2048	pgoff_t end;
 
 
 
2049
2050	trace_ext4_da_writepages(inode, wbc);
 
2051
2052	/*
2053	 * No pages to write? This is mainly a kludge to avoid starting
2054	 * a transaction for special inodes like journal inode on last iput()
2055	 * because that could violate lock ordering on umount
2056	 */
2057	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2058		return 0;
 
 
 
 
 
2059
2060	/*
2061	 * If the filesystem has aborted, it is read-only, so return
2062	 * right away instead of dumping stack traces later on that
2063	 * will obscure the real source of the problem.  We test
2064	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2065	 * the latter could be true if the filesystem is mounted
2066	 * read-only, and in that case, ext4_da_writepages should
2067	 * *never* be called, so if that ever happens, we would want
2068	 * the stack trace.
2069	 */
2070	if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2071		return -EROFS;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2072
2073	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2074		range_whole = 1;
2075
2076	range_cyclic = wbc->range_cyclic;
2077	if (wbc->range_cyclic) {
2078		index = mapping->writeback_index;
2079		if (index)
2080			cycled = 0;
2081		wbc->range_start = index << PAGE_CACHE_SHIFT;
2082		wbc->range_end  = LLONG_MAX;
2083		wbc->range_cyclic = 0;
2084		end = -1;
2085	} else {
2086		index = wbc->range_start >> PAGE_CACHE_SHIFT;
2087		end = wbc->range_end >> PAGE_CACHE_SHIFT;
2088	}
2089
2090	/*
2091	 * This works around two forms of stupidity.  The first is in
2092	 * the writeback code, which caps the maximum number of pages
2093	 * written to be 1024 pages.  This is wrong on multiple
2094	 * levels; different architectues have a different page size,
2095	 * which changes the maximum amount of data which gets
2096	 * written.  Secondly, 4 megabytes is way too small.  XFS
2097	 * forces this value to be 16 megabytes by multiplying
2098	 * nr_to_write parameter by four, and then relies on its
2099	 * allocator to allocate larger extents to make them
2100	 * contiguous.  Unfortunately this brings us to the second
2101	 * stupidity, which is that ext4's mballoc code only allocates
2102	 * at most 2048 blocks.  So we force contiguous writes up to
2103	 * the number of dirty blocks in the inode, or
2104	 * sbi->max_writeback_mb_bump whichever is smaller.
2105	 */
2106	max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2107	if (!range_cyclic && range_whole) {
2108		if (wbc->nr_to_write == LONG_MAX)
2109			desired_nr_to_write = wbc->nr_to_write;
2110		else
2111			desired_nr_to_write = wbc->nr_to_write * 8;
2112	} else
2113		desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2114							   max_pages);
2115	if (desired_nr_to_write > max_pages)
2116		desired_nr_to_write = max_pages;
2117
2118	if (wbc->nr_to_write < desired_nr_to_write) {
2119		nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2120		wbc->nr_to_write = desired_nr_to_write;
2121	}
2122
 
 
 
2123retry:
2124	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2125		tag_pages_for_writeback(mapping, index, end);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2126
2127	while (!ret && wbc->nr_to_write > 0) {
 
 
 
 
 
 
2128
2129		/*
2130		 * we  insert one extent at a time. So we need
2131		 * credit needed for single extent allocation.
2132		 * journalled mode is currently not supported
2133		 * by delalloc
 
2134		 */
2135		BUG_ON(ext4_should_journal_data(inode));
2136		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2137
2138		/* start a new transaction*/
2139		handle = ext4_journal_start(inode, needed_blocks);
 
2140		if (IS_ERR(handle)) {
2141			ret = PTR_ERR(handle);
2142			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2143			       "%ld pages, ino %lu; err %d", __func__,
2144				wbc->nr_to_write, inode->i_ino, ret);
2145			goto out_writepages;
 
 
 
2146		}
 
2147
 
 
 
 
 
2148		/*
2149		 * Now call write_cache_pages_da() to find the next
2150		 * contiguous region of logical blocks that need
2151		 * blocks to be allocated by ext4 and submit them.
 
 
 
 
 
2152		 */
2153		ret = write_cache_pages_da(mapping, wbc, &mpd, &done_index);
2154		/*
2155		 * If we have a contiguous extent of pages and we
2156		 * haven't done the I/O yet, map the blocks and submit
2157		 * them for I/O.
2158		 */
2159		if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2160			mpage_da_map_and_submit(&mpd);
2161			ret = MPAGE_DA_EXTENT_TAIL;
2162		}
2163		trace_ext4_da_write_pages(inode, &mpd);
2164		wbc->nr_to_write -= mpd.pages_written;
 
 
2165
2166		ext4_journal_stop(handle);
 
 
 
 
 
 
 
 
 
 
 
 
2167
2168		if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2169			/* commit the transaction which would
 
2170			 * free blocks released in the transaction
2171			 * and try again
2172			 */
2173			jbd2_journal_force_commit_nested(sbi->s_journal);
2174			ret = 0;
2175		} else if (ret == MPAGE_DA_EXTENT_TAIL) {
2176			/*
2177			 * got one extent now try with
2178			 * rest of the pages
2179			 */
2180			pages_written += mpd.pages_written;
2181			ret = 0;
2182			io_done = 1;
2183		} else if (wbc->nr_to_write)
2184			/*
2185			 * There is no more writeout needed
2186			 * or we requested for a noblocking writeout
2187			 * and we found the device congested
2188			 */
2189			break;
2190	}
2191	if (!io_done && !cycled) {
 
 
2192		cycled = 1;
2193		index = 0;
2194		wbc->range_start = index << PAGE_CACHE_SHIFT;
2195		wbc->range_end  = mapping->writeback_index - 1;
2196		goto retry;
2197	}
2198
2199	/* Update index */
2200	wbc->range_cyclic = range_cyclic;
2201	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2202		/*
2203		 * set the writeback_index so that range_cyclic
2204		 * mode will write it back later
2205		 */
2206		mapping->writeback_index = done_index;
2207
2208out_writepages:
2209	wbc->nr_to_write -= nr_to_writebump;
2210	wbc->range_start = range_start;
2211	trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2212	return ret;
2213}
2214
2215#define FALL_BACK_TO_NONDELALLOC 1
2216static int ext4_nonda_switch(struct super_block *sb)
2217{
2218	s64 free_blocks, dirty_blocks;
2219	struct ext4_sb_info *sbi = EXT4_SB(sb);
2220
2221	/*
2222	 * switch to non delalloc mode if we are running low
2223	 * on free block. The free block accounting via percpu
2224	 * counters can get slightly wrong with percpu_counter_batch getting
2225	 * accumulated on each CPU without updating global counters
2226	 * Delalloc need an accurate free block accounting. So switch
2227	 * to non delalloc when we are near to error range.
2228	 */
2229	free_blocks  = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
2230	dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
2231	if (2 * free_blocks < 3 * dirty_blocks ||
2232		free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
 
 
 
 
 
 
 
 
2233		/*
2234		 * free block count is less than 150% of dirty blocks
2235		 * or free blocks is less than watermark
2236		 */
2237		return 1;
2238	}
2239	/*
2240	 * Even if we don't switch but are nearing capacity,
2241	 * start pushing delalloc when 1/2 of free blocks are dirty.
2242	 */
2243	if (free_blocks < 2 * dirty_blocks)
2244		writeback_inodes_sb_if_idle(sb);
2245
2246	return 0;
2247}
2248
 
 
 
 
 
 
 
 
 
 
 
 
 
2249static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2250			       loff_t pos, unsigned len, unsigned flags,
2251			       struct page **pagep, void **fsdata)
2252{
2253	int ret, retries = 0;
2254	struct page *page;
2255	pgoff_t index;
2256	struct inode *inode = mapping->host;
2257	handle_t *handle;
2258
2259	index = pos >> PAGE_CACHE_SHIFT;
 
 
 
2260
2261	if (ext4_nonda_switch(inode->i_sb)) {
 
2262		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2263		return ext4_write_begin(file, mapping, pos,
2264					len, flags, pagep, fsdata);
2265	}
2266	*fsdata = (void *)0;
2267	trace_ext4_da_write_begin(inode, pos, len, flags);
2268retry:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2269	/*
2270	 * With delayed allocation, we don't log the i_disksize update
2271	 * if there is delayed block allocation. But we still need
2272	 * to journalling the i_disksize update if writes to the end
2273	 * of file which has an already mapped buffer.
2274	 */
2275	handle = ext4_journal_start(inode, 1);
 
 
2276	if (IS_ERR(handle)) {
2277		ret = PTR_ERR(handle);
2278		goto out;
2279	}
2280	/* We cannot recurse into the filesystem as the transaction is already
2281	 * started */
2282	flags |= AOP_FLAG_NOFS;
2283
2284	page = grab_cache_page_write_begin(mapping, index, flags);
2285	if (!page) {
 
 
 
2286		ext4_journal_stop(handle);
2287		ret = -ENOMEM;
2288		goto out;
2289	}
2290	*pagep = page;
 
2291
 
 
 
 
2292	ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
 
2293	if (ret < 0) {
2294		unlock_page(page);
2295		ext4_journal_stop(handle);
2296		page_cache_release(page);
2297		/*
2298		 * block_write_begin may have instantiated a few blocks
2299		 * outside i_size.  Trim these off again. Don't need
2300		 * i_size_read because we hold i_mutex.
2301		 */
2302		if (pos + len > inode->i_size)
2303			ext4_truncate_failed_write(inode);
 
 
 
 
 
 
 
2304	}
2305
2306	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
2307		goto retry;
2308out:
2309	return ret;
2310}
2311
2312/*
2313 * Check if we should update i_disksize
2314 * when write to the end of file but not require block allocation
2315 */
2316static int ext4_da_should_update_i_disksize(struct page *page,
2317					    unsigned long offset)
2318{
2319	struct buffer_head *bh;
2320	struct inode *inode = page->mapping->host;
2321	unsigned int idx;
2322	int i;
2323
2324	bh = page_buffers(page);
2325	idx = offset >> inode->i_blkbits;
2326
2327	for (i = 0; i < idx; i++)
2328		bh = bh->b_this_page;
2329
2330	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2331		return 0;
2332	return 1;
2333}
2334
2335static int ext4_da_write_end(struct file *file,
2336			     struct address_space *mapping,
2337			     loff_t pos, unsigned len, unsigned copied,
2338			     struct page *page, void *fsdata)
2339{
2340	struct inode *inode = mapping->host;
2341	int ret = 0, ret2;
2342	handle_t *handle = ext4_journal_current_handle();
2343	loff_t new_i_size;
2344	unsigned long start, end;
2345	int write_mode = (int)(unsigned long)fsdata;
2346
2347	if (write_mode == FALL_BACK_TO_NONDELALLOC) {
2348		if (ext4_should_order_data(inode)) {
2349			return ext4_ordered_write_end(file, mapping, pos,
2350					len, copied, page, fsdata);
2351		} else if (ext4_should_writeback_data(inode)) {
2352			return ext4_writeback_write_end(file, mapping, pos,
2353					len, copied, page, fsdata);
2354		} else {
2355			BUG();
2356		}
2357	}
2358
2359	trace_ext4_da_write_end(inode, pos, len, copied);
2360	start = pos & (PAGE_CACHE_SIZE - 1);
2361	end = start + copied - 1;
2362
2363	/*
2364	 * generic_write_end() will run mark_inode_dirty() if i_size
2365	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
2366	 * into that.
 
 
 
 
 
 
 
 
 
 
2367	 */
2368
2369	new_i_size = pos + copied;
2370	if (new_i_size > EXT4_I(inode)->i_disksize) {
2371		if (ext4_da_should_update_i_disksize(page, end)) {
2372			down_write(&EXT4_I(inode)->i_data_sem);
2373			if (new_i_size > EXT4_I(inode)->i_disksize) {
2374				/*
2375				 * Updating i_disksize when extending file
2376				 * without needing block allocation
2377				 */
2378				if (ext4_should_order_data(inode))
2379					ret = ext4_jbd2_file_inode(handle,
2380								   inode);
2381
2382				EXT4_I(inode)->i_disksize = new_i_size;
2383			}
2384			up_write(&EXT4_I(inode)->i_data_sem);
2385			/* We need to mark inode dirty even if
2386			 * new_i_size is less that inode->i_size
2387			 * bu greater than i_disksize.(hint delalloc)
2388			 */
2389			ext4_mark_inode_dirty(handle, inode);
2390		}
2391	}
2392	ret2 = generic_write_end(file, mapping, pos, len, copied,
 
 
 
 
 
 
 
2393							page, fsdata);
2394	copied = ret2;
2395	if (ret2 < 0)
2396		ret = ret2;
2397	ret2 = ext4_journal_stop(handle);
2398	if (!ret)
2399		ret = ret2;
2400
2401	return ret ? ret : copied;
2402}
2403
2404static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2405{
2406	/*
2407	 * Drop reserved blocks
2408	 */
2409	BUG_ON(!PageLocked(page));
2410	if (!page_has_buffers(page))
2411		goto out;
2412
2413	ext4_da_page_release_reservation(page, offset);
2414
2415out:
2416	ext4_invalidatepage(page, offset);
2417
2418	return;
2419}
2420
2421/*
2422 * Force all delayed allocation blocks to be allocated for a given inode.
2423 */
2424int ext4_alloc_da_blocks(struct inode *inode)
2425{
2426	trace_ext4_alloc_da_blocks(inode);
2427
2428	if (!EXT4_I(inode)->i_reserved_data_blocks &&
2429	    !EXT4_I(inode)->i_reserved_meta_blocks)
2430		return 0;
2431
2432	/*
2433	 * We do something simple for now.  The filemap_flush() will
2434	 * also start triggering a write of the data blocks, which is
2435	 * not strictly speaking necessary (and for users of
2436	 * laptop_mode, not even desirable).  However, to do otherwise
2437	 * would require replicating code paths in:
2438	 *
2439	 * ext4_da_writepages() ->
2440	 *    write_cache_pages() ---> (via passed in callback function)
2441	 *        __mpage_da_writepage() -->
2442	 *           mpage_add_bh_to_extent()
2443	 *           mpage_da_map_blocks()
2444	 *
2445	 * The problem is that write_cache_pages(), located in
2446	 * mm/page-writeback.c, marks pages clean in preparation for
2447	 * doing I/O, which is not desirable if we're not planning on
2448	 * doing I/O at all.
2449	 *
2450	 * We could call write_cache_pages(), and then redirty all of
2451	 * the pages by calling redirty_page_for_writepage() but that
2452	 * would be ugly in the extreme.  So instead we would need to
2453	 * replicate parts of the code in the above functions,
2454	 * simplifying them because we wouldn't actually intend to
2455	 * write out the pages, but rather only collect contiguous
2456	 * logical block extents, call the multi-block allocator, and
2457	 * then update the buffer heads with the block allocations.
2458	 *
2459	 * For now, though, we'll cheat by calling filemap_flush(),
2460	 * which will map the blocks, and start the I/O, but not
2461	 * actually wait for the I/O to complete.
2462	 */
2463	return filemap_flush(inode->i_mapping);
2464}
2465
2466/*
2467 * bmap() is special.  It gets used by applications such as lilo and by
2468 * the swapper to find the on-disk block of a specific piece of data.
2469 *
2470 * Naturally, this is dangerous if the block concerned is still in the
2471 * journal.  If somebody makes a swapfile on an ext4 data-journaling
2472 * filesystem and enables swap, then they may get a nasty shock when the
2473 * data getting swapped to that swapfile suddenly gets overwritten by
2474 * the original zero's written out previously to the journal and
2475 * awaiting writeback in the kernel's buffer cache.
2476 *
2477 * So, if we see any bmap calls here on a modified, data-journaled file,
2478 * take extra steps to flush any blocks which might be in the cache.
2479 */
2480static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2481{
2482	struct inode *inode = mapping->host;
2483	journal_t *journal;
2484	int err;
2485
 
 
 
 
 
 
2486	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2487			test_opt(inode->i_sb, DELALLOC)) {
2488		/*
2489		 * With delalloc we want to sync the file
2490		 * so that we can make sure we allocate
2491		 * blocks for file
2492		 */
2493		filemap_write_and_wait(mapping);
2494	}
2495
2496	if (EXT4_JOURNAL(inode) &&
2497	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2498		/*
2499		 * This is a REALLY heavyweight approach, but the use of
2500		 * bmap on dirty files is expected to be extremely rare:
2501		 * only if we run lilo or swapon on a freshly made file
2502		 * do we expect this to happen.
2503		 *
2504		 * (bmap requires CAP_SYS_RAWIO so this does not
2505		 * represent an unprivileged user DOS attack --- we'd be
2506		 * in trouble if mortal users could trigger this path at
2507		 * will.)
2508		 *
2509		 * NB. EXT4_STATE_JDATA is not set on files other than
2510		 * regular files.  If somebody wants to bmap a directory
2511		 * or symlink and gets confused because the buffer
2512		 * hasn't yet been flushed to disk, they deserve
2513		 * everything they get.
2514		 */
2515
2516		ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2517		journal = EXT4_JOURNAL(inode);
2518		jbd2_journal_lock_updates(journal);
2519		err = jbd2_journal_flush(journal);
2520		jbd2_journal_unlock_updates(journal);
2521
2522		if (err)
2523			return 0;
2524	}
2525
2526	return generic_block_bmap(mapping, block, ext4_get_block);
2527}
2528
2529static int ext4_readpage(struct file *file, struct page *page)
2530{
 
 
 
2531	trace_ext4_readpage(page);
2532	return mpage_readpage(page, ext4_get_block);
 
 
 
 
 
 
 
2533}
2534
2535static int
2536ext4_readpages(struct file *file, struct address_space *mapping,
2537		struct list_head *pages, unsigned nr_pages)
2538{
2539	return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
 
 
 
 
 
 
2540}
2541
2542static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset)
 
2543{
2544	struct buffer_head *head, *bh;
2545	unsigned int curr_off = 0;
2546
2547	if (!page_has_buffers(page))
2548		return;
2549	head = bh = page_buffers(page);
2550	do {
2551		if (offset <= curr_off && test_clear_buffer_uninit(bh)
2552					&& bh->b_private) {
2553			ext4_free_io_end(bh->b_private);
2554			bh->b_private = NULL;
2555			bh->b_end_io = NULL;
2556		}
2557		curr_off = curr_off + bh->b_size;
2558		bh = bh->b_this_page;
2559	} while (bh != head);
2560}
2561
2562static void ext4_invalidatepage(struct page *page, unsigned long offset)
 
 
2563{
2564	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2565
2566	trace_ext4_invalidatepage(page, offset);
2567
2568	/*
2569	 * free any io_end structure allocated for buffers to be discarded
2570	 */
2571	if (ext4_should_dioread_nolock(page->mapping->host))
2572		ext4_invalidatepage_free_endio(page, offset);
2573	/*
2574	 * If it's a full truncate we just forget about the pending dirtying
2575	 */
2576	if (offset == 0)
2577		ClearPageChecked(page);
2578
2579	if (journal)
2580		jbd2_journal_invalidatepage(journal, page, offset);
2581	else
2582		block_invalidatepage(page, offset);
 
 
 
 
 
2583}
2584
2585static int ext4_releasepage(struct page *page, gfp_t wait)
2586{
2587	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2588
2589	trace_ext4_releasepage(page);
2590
2591	WARN_ON(PageChecked(page));
2592	if (!page_has_buffers(page))
2593		return 0;
2594	if (journal)
2595		return jbd2_journal_try_to_free_buffers(journal, page, wait);
2596	else
2597		return try_to_free_buffers(page);
2598}
2599
2600/*
2601 * ext4_get_block used when preparing for a DIO write or buffer write.
2602 * We allocate an uinitialized extent if blocks haven't been allocated.
2603 * The extent will be converted to initialized after the IO is complete.
2604 */
2605static int ext4_get_block_write(struct inode *inode, sector_t iblock,
2606		   struct buffer_head *bh_result, int create)
2607{
2608	ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
2609		   inode->i_ino, create);
2610	return _ext4_get_block(inode, iblock, bh_result,
2611			       EXT4_GET_BLOCKS_IO_CREATE_EXT);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2612}
2613
2614static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
2615			    ssize_t size, void *private, int ret,
2616			    bool is_async)
2617{
2618	struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
2619        ext4_io_end_t *io_end = iocb->private;
2620	struct workqueue_struct *wq;
2621	unsigned long flags;
2622	struct ext4_inode_info *ei;
2623
2624	/* if not async direct IO or dio with 0 bytes write, just return */
2625	if (!io_end || !size)
2626		goto out;
 
 
 
 
2627
2628	ext_debug("ext4_end_io_dio(): io_end 0x%p"
2629		  "for inode %lu, iocb 0x%p, offset %llu, size %llu\n",
2630 		  iocb->private, io_end->inode->i_ino, iocb, offset,
2631		  size);
2632
2633	/* if not aio dio with unwritten extents, just free io and return */
2634	if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
2635		ext4_free_io_end(io_end);
2636		iocb->private = NULL;
2637out:
2638		if (is_async)
2639			aio_complete(iocb, ret, 0);
2640		inode_dio_done(inode);
2641		return;
2642	}
2643
2644	io_end->offset = offset;
2645	io_end->size = size;
2646	if (is_async) {
2647		io_end->iocb = iocb;
2648		io_end->result = ret;
2649	}
2650	wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;
 
 
 
 
 
 
 
 
 
 
2651
2652	/* Add the io_end to per-inode completed aio dio list*/
2653	ei = EXT4_I(io_end->inode);
2654	spin_lock_irqsave(&ei->i_completed_io_lock, flags);
2655	list_add_tail(&io_end->list, &ei->i_completed_io_list);
2656	spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
2657
2658	/* queue the work to convert unwritten extents to written */
2659	queue_work(wq, &io_end->work);
2660	iocb->private = NULL;
 
 
 
 
2661
2662	/* XXX: probably should move into the real I/O completion handler */
2663	inode_dio_done(inode);
 
 
 
2664}
2665
2666static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate)
 
 
2667{
2668	ext4_io_end_t *io_end = bh->b_private;
2669	struct workqueue_struct *wq;
2670	struct inode *inode;
2671	unsigned long flags;
2672
2673	if (!test_clear_buffer_uninit(bh) || !io_end)
2674		goto out;
2675
2676	if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) {
2677		printk("sb umounted, discard end_io request for inode %lu\n",
2678			io_end->inode->i_ino);
2679		ext4_free_io_end(io_end);
2680		goto out;
2681	}
2682
2683	/*
2684	 * It may be over-defensive here to check EXT4_IO_END_UNWRITTEN now,
2685	 * but being more careful is always safe for the future change.
2686	 */
2687	inode = io_end->inode;
2688	if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
2689		io_end->flag |= EXT4_IO_END_UNWRITTEN;
2690		atomic_inc(&EXT4_I(inode)->i_aiodio_unwritten);
2691	}
2692
2693	/* Add the io_end to per-inode completed io list*/
2694	spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
2695	list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list);
2696	spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
2697
2698	wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq;
2699	/* queue the work to convert unwritten extents to written */
2700	queue_work(wq, &io_end->work);
 
 
 
 
 
 
 
 
 
2701out:
2702	bh->b_private = NULL;
2703	bh->b_end_io = NULL;
2704	clear_buffer_uninit(bh);
2705	end_buffer_async_write(bh, uptodate);
2706}
2707
2708static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode)
2709{
2710	ext4_io_end_t *io_end;
2711	struct page *page = bh->b_page;
2712	loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT;
2713	size_t size = bh->b_size;
2714
2715retry:
2716	io_end = ext4_init_io_end(inode, GFP_ATOMIC);
2717	if (!io_end) {
2718		pr_warn_ratelimited("%s: allocation fail\n", __func__);
2719		schedule();
2720		goto retry;
2721	}
2722	io_end->offset = offset;
2723	io_end->size = size;
2724	/*
2725	 * We need to hold a reference to the page to make sure it
2726	 * doesn't get evicted before ext4_end_io_work() has a chance
2727	 * to convert the extent from written to unwritten.
2728	 */
2729	io_end->page = page;
2730	get_page(io_end->page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2731
2732	bh->b_private = io_end;
2733	bh->b_end_io = ext4_end_io_buffer_write;
2734	return 0;
2735}
2736
2737/*
2738 * For ext4 extent files, ext4 will do direct-io write to holes,
2739 * preallocated extents, and those write extend the file, no need to
2740 * fall back to buffered IO.
2741 *
2742 * For holes, we fallocate those blocks, mark them as uninitialized
2743 * If those blocks were preallocated, we mark sure they are splited, but
2744 * still keep the range to write as uninitialized.
2745 *
2746 * The unwrritten extents will be converted to written when DIO is completed.
2747 * For async direct IO, since the IO may still pending when return, we
2748 * set up an end_io call back function, which will do the conversion
2749 * when async direct IO completed.
2750 *
2751 * If the O_DIRECT write will extend the file then add this inode to the
2752 * orphan list.  So recovery will truncate it back to the original size
2753 * if the machine crashes during the write.
2754 *
2755 */
2756static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
2757			      const struct iovec *iov, loff_t offset,
2758			      unsigned long nr_segs)
2759{
2760	struct file *file = iocb->ki_filp;
2761	struct inode *inode = file->f_mapping->host;
2762	ssize_t ret;
2763	size_t count = iov_length(iov, nr_segs);
2764
2765	loff_t final_size = offset + count;
2766	if (rw == WRITE && final_size <= inode->i_size) {
2767		/*
2768 		 * We could direct write to holes and fallocate.
2769		 *
2770 		 * Allocated blocks to fill the hole are marked as uninitialized
2771 		 * to prevent parallel buffered read to expose the stale data
2772 		 * before DIO complete the data IO.
2773		 *
2774 		 * As to previously fallocated extents, ext4 get_block
2775 		 * will just simply mark the buffer mapped but still
2776 		 * keep the extents uninitialized.
2777 		 *
2778		 * for non AIO case, we will convert those unwritten extents
2779		 * to written after return back from blockdev_direct_IO.
2780		 *
2781		 * for async DIO, the conversion needs to be defered when
2782		 * the IO is completed. The ext4 end_io callback function
2783		 * will be called to take care of the conversion work.
2784		 * Here for async case, we allocate an io_end structure to
2785		 * hook to the iocb.
2786 		 */
2787		iocb->private = NULL;
2788		EXT4_I(inode)->cur_aio_dio = NULL;
2789		if (!is_sync_kiocb(iocb)) {
2790			iocb->private = ext4_init_io_end(inode, GFP_NOFS);
2791			if (!iocb->private)
2792				return -ENOMEM;
2793			/*
2794			 * we save the io structure for current async
2795			 * direct IO, so that later ext4_map_blocks()
2796			 * could flag the io structure whether there
2797			 * is a unwritten extents needs to be converted
2798			 * when IO is completed.
2799			 */
2800			EXT4_I(inode)->cur_aio_dio = iocb->private;
2801		}
2802
2803		ret = __blockdev_direct_IO(rw, iocb, inode,
2804					 inode->i_sb->s_bdev, iov,
2805					 offset, nr_segs,
2806					 ext4_get_block_write,
2807					 ext4_end_io_dio,
2808					 NULL,
2809					 DIO_LOCKING | DIO_SKIP_HOLES);
2810		if (iocb->private)
2811			EXT4_I(inode)->cur_aio_dio = NULL;
2812		/*
2813		 * The io_end structure takes a reference to the inode,
2814		 * that structure needs to be destroyed and the
2815		 * reference to the inode need to be dropped, when IO is
2816		 * complete, even with 0 byte write, or failed.
2817		 *
2818		 * In the successful AIO DIO case, the io_end structure will be
2819		 * desctroyed and the reference to the inode will be dropped
2820		 * after the end_io call back function is called.
2821		 *
2822		 * In the case there is 0 byte write, or error case, since
2823		 * VFS direct IO won't invoke the end_io call back function,
2824		 * we need to free the end_io structure here.
2825		 */
2826		if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
2827			ext4_free_io_end(iocb->private);
2828			iocb->private = NULL;
2829		} else if (ret > 0 && ext4_test_inode_state(inode,
2830						EXT4_STATE_DIO_UNWRITTEN)) {
2831			int err;
2832			/*
2833			 * for non AIO case, since the IO is already
2834			 * completed, we could do the conversion right here
2835			 */
2836			err = ext4_convert_unwritten_extents(inode,
2837							     offset, ret);
2838			if (err < 0)
2839				ret = err;
2840			ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
2841		}
2842		return ret;
2843	}
2844
2845	/* for write the the end of file case, we fall back to old way */
2846	return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
 
 
2847}
2848
2849static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
2850			      const struct iovec *iov, loff_t offset,
2851			      unsigned long nr_segs)
2852{
2853	struct file *file = iocb->ki_filp;
2854	struct inode *inode = file->f_mapping->host;
2855	ssize_t ret;
 
2856
2857	trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
2858	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
2859		ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
2860	else
2861		ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
2862	trace_ext4_direct_IO_exit(inode, offset,
2863				iov_length(iov, nr_segs), rw, ret);
2864	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2865}
2866
 
 
 
 
2867/*
2868 * Pages can be marked dirty completely asynchronously from ext4's journalling
2869 * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
2870 * much here because ->set_page_dirty is called under VFS locks.  The page is
2871 * not necessarily locked.
2872 *
2873 * We cannot just dirty the page and leave attached buffers clean, because the
2874 * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
2875 * or jbddirty because all the journalling code will explode.
2876 *
2877 * So what we do is to mark the page "pending dirty" and next time writepage
2878 * is called, propagate that into the buffers appropriately.
2879 */
2880static int ext4_journalled_set_page_dirty(struct page *page)
2881{
2882	SetPageChecked(page);
2883	return __set_page_dirty_nobuffers(page);
2884}
2885
2886static const struct address_space_operations ext4_ordered_aops = {
2887	.readpage		= ext4_readpage,
2888	.readpages		= ext4_readpages,
2889	.writepage		= ext4_writepage,
2890	.write_begin		= ext4_write_begin,
2891	.write_end		= ext4_ordered_write_end,
2892	.bmap			= ext4_bmap,
2893	.invalidatepage		= ext4_invalidatepage,
2894	.releasepage		= ext4_releasepage,
2895	.direct_IO		= ext4_direct_IO,
2896	.migratepage		= buffer_migrate_page,
2897	.is_partially_uptodate  = block_is_partially_uptodate,
2898	.error_remove_page	= generic_error_remove_page,
2899};
2900
2901static const struct address_space_operations ext4_writeback_aops = {
2902	.readpage		= ext4_readpage,
2903	.readpages		= ext4_readpages,
2904	.writepage		= ext4_writepage,
 
2905	.write_begin		= ext4_write_begin,
2906	.write_end		= ext4_writeback_write_end,
 
2907	.bmap			= ext4_bmap,
2908	.invalidatepage		= ext4_invalidatepage,
2909	.releasepage		= ext4_releasepage,
2910	.direct_IO		= ext4_direct_IO,
2911	.migratepage		= buffer_migrate_page,
2912	.is_partially_uptodate  = block_is_partially_uptodate,
2913	.error_remove_page	= generic_error_remove_page,
 
2914};
2915
2916static const struct address_space_operations ext4_journalled_aops = {
2917	.readpage		= ext4_readpage,
2918	.readpages		= ext4_readpages,
2919	.writepage		= ext4_writepage,
 
2920	.write_begin		= ext4_write_begin,
2921	.write_end		= ext4_journalled_write_end,
2922	.set_page_dirty		= ext4_journalled_set_page_dirty,
2923	.bmap			= ext4_bmap,
2924	.invalidatepage		= ext4_invalidatepage,
2925	.releasepage		= ext4_releasepage,
 
2926	.is_partially_uptodate  = block_is_partially_uptodate,
2927	.error_remove_page	= generic_error_remove_page,
 
2928};
2929
2930static const struct address_space_operations ext4_da_aops = {
2931	.readpage		= ext4_readpage,
2932	.readpages		= ext4_readpages,
2933	.writepage		= ext4_writepage,
2934	.writepages		= ext4_da_writepages,
2935	.write_begin		= ext4_da_write_begin,
2936	.write_end		= ext4_da_write_end,
 
2937	.bmap			= ext4_bmap,
2938	.invalidatepage		= ext4_da_invalidatepage,
2939	.releasepage		= ext4_releasepage,
2940	.direct_IO		= ext4_direct_IO,
2941	.migratepage		= buffer_migrate_page,
2942	.is_partially_uptodate  = block_is_partially_uptodate,
2943	.error_remove_page	= generic_error_remove_page,
 
 
 
 
 
 
 
 
 
 
2944};
2945
2946void ext4_set_aops(struct inode *inode)
2947{
2948	if (ext4_should_order_data(inode) &&
2949		test_opt(inode->i_sb, DELALLOC))
2950		inode->i_mapping->a_ops = &ext4_da_aops;
2951	else if (ext4_should_order_data(inode))
2952		inode->i_mapping->a_ops = &ext4_ordered_aops;
2953	else if (ext4_should_writeback_data(inode) &&
2954		 test_opt(inode->i_sb, DELALLOC))
 
 
 
 
 
 
2955		inode->i_mapping->a_ops = &ext4_da_aops;
2956	else if (ext4_should_writeback_data(inode))
2957		inode->i_mapping->a_ops = &ext4_writeback_aops;
2958	else
2959		inode->i_mapping->a_ops = &ext4_journalled_aops;
2960}
2961
2962/*
2963 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
2964 * up to the end of the block which corresponds to `from'.
2965 * This required during truncate. We need to physically zero the tail end
2966 * of that block so it doesn't yield old data if the file is later grown.
2967 */
2968int ext4_block_truncate_page(handle_t *handle,
2969		struct address_space *mapping, loff_t from)
2970{
2971	unsigned offset = from & (PAGE_CACHE_SIZE-1);
2972	unsigned length;
2973	unsigned blocksize;
2974	struct inode *inode = mapping->host;
2975
2976	blocksize = inode->i_sb->s_blocksize;
2977	length = blocksize - (offset & (blocksize - 1));
2978
2979	return ext4_block_zero_page_range(handle, mapping, from, length);
2980}
2981
2982/*
2983 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
2984 * starting from file offset 'from'.  The range to be zero'd must
2985 * be contained with in one block.  If the specified range exceeds
2986 * the end of the block it will be shortened to end of the block
2987 * that cooresponds to 'from'
2988 */
2989int ext4_block_zero_page_range(handle_t *handle,
2990		struct address_space *mapping, loff_t from, loff_t length)
2991{
2992	ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
2993	unsigned offset = from & (PAGE_CACHE_SIZE-1);
2994	unsigned blocksize, max, pos;
2995	ext4_lblk_t iblock;
2996	struct inode *inode = mapping->host;
2997	struct buffer_head *bh;
2998	struct page *page;
2999	int err = 0;
3000
3001	page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3002				   mapping_gfp_mask(mapping) & ~__GFP_FS);
3003	if (!page)
3004		return -EINVAL;
3005
3006	blocksize = inode->i_sb->s_blocksize;
3007	max = blocksize - (offset & (blocksize - 1));
3008
3009	/*
3010	 * correct length if it does not fall between
3011	 * 'from' and the end of the block
3012	 */
3013	if (length > max || length < 0)
3014		length = max;
3015
3016	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3017
3018	if (!page_has_buffers(page))
3019		create_empty_buffers(page, blocksize, 0);
3020
3021	/* Find the buffer that contains "offset" */
3022	bh = page_buffers(page);
3023	pos = blocksize;
3024	while (offset >= pos) {
3025		bh = bh->b_this_page;
3026		iblock++;
3027		pos += blocksize;
3028	}
3029
3030	err = 0;
3031	if (buffer_freed(bh)) {
3032		BUFFER_TRACE(bh, "freed: skip");
3033		goto unlock;
3034	}
3035
3036	if (!buffer_mapped(bh)) {
3037		BUFFER_TRACE(bh, "unmapped");
3038		ext4_get_block(inode, iblock, bh, 0);
3039		/* unmapped? It's a hole - nothing to do */
3040		if (!buffer_mapped(bh)) {
3041			BUFFER_TRACE(bh, "still unmapped");
3042			goto unlock;
3043		}
3044	}
3045
3046	/* Ok, it's mapped. Make sure it's up-to-date */
3047	if (PageUptodate(page))
3048		set_buffer_uptodate(bh);
3049
3050	if (!buffer_uptodate(bh)) {
3051		err = -EIO;
3052		ll_rw_block(READ, 1, &bh);
3053		wait_on_buffer(bh);
3054		/* Uhhuh. Read error. Complain and punt. */
3055		if (!buffer_uptodate(bh))
3056			goto unlock;
 
 
 
 
 
 
 
 
 
 
3057	}
3058
3059	if (ext4_should_journal_data(inode)) {
3060		BUFFER_TRACE(bh, "get write access");
3061		err = ext4_journal_get_write_access(handle, bh);
3062		if (err)
3063			goto unlock;
3064	}
3065
3066	zero_user(page, offset, length);
3067
3068	BUFFER_TRACE(bh, "zeroed end of block");
3069
3070	err = 0;
3071	if (ext4_should_journal_data(inode)) {
3072		err = ext4_handle_dirty_metadata(handle, inode, bh);
3073	} else {
3074		if (ext4_should_order_data(inode) && EXT4_I(inode)->jinode)
3075			err = ext4_jbd2_file_inode(handle, inode);
3076		mark_buffer_dirty(bh);
 
 
 
3077	}
3078
3079unlock:
3080	unlock_page(page);
3081	page_cache_release(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3082	return err;
3083}
3084
3085int ext4_can_truncate(struct inode *inode)
3086{
3087	if (S_ISREG(inode->i_mode))
3088		return 1;
3089	if (S_ISDIR(inode->i_mode))
3090		return 1;
3091	if (S_ISLNK(inode->i_mode))
3092		return !ext4_inode_is_fast_symlink(inode);
3093	return 0;
3094}
3095
3096/*
3097 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3098 * associated with the given offset and length
3099 *
3100 * @inode:  File inode
3101 * @offset: The offset where the hole will begin
3102 * @len:    The length of the hole
3103 *
3104 * Returns: 0 on sucess or negative on failure
3105 */
3106
3107int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3108{
3109	struct inode *inode = file->f_path.dentry->d_inode;
3110	if (!S_ISREG(inode->i_mode))
3111		return -ENOTSUPP;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3112
3113	if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
3114		/* TODO: Add support for non extent hole punching */
3115		return -ENOTSUPP;
3116	}
3117
3118	return ext4_ext_punch_hole(file, offset, length);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3119}
3120
3121/*
3122 * ext4_truncate()
3123 *
3124 * We block out ext4_get_block() block instantiations across the entire
3125 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3126 * simultaneously on behalf of the same inode.
3127 *
3128 * As we work through the truncate and commmit bits of it to the journal there
3129 * is one core, guiding principle: the file's tree must always be consistent on
3130 * disk.  We must be able to restart the truncate after a crash.
3131 *
3132 * The file's tree may be transiently inconsistent in memory (although it
3133 * probably isn't), but whenever we close off and commit a journal transaction,
3134 * the contents of (the filesystem + the journal) must be consistent and
3135 * restartable.  It's pretty simple, really: bottom up, right to left (although
3136 * left-to-right works OK too).
3137 *
3138 * Note that at recovery time, journal replay occurs *before* the restart of
3139 * truncate against the orphan inode list.
3140 *
3141 * The committed inode has the new, desired i_size (which is the same as
3142 * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3143 * that this inode's truncate did not complete and it will again call
3144 * ext4_truncate() to have another go.  So there will be instantiated blocks
3145 * to the right of the truncation point in a crashed ext4 filesystem.  But
3146 * that's fine - as long as they are linked from the inode, the post-crash
3147 * ext4_truncate() run will find them and release them.
3148 */
3149void ext4_truncate(struct inode *inode)
3150{
 
 
 
 
 
 
 
 
 
 
 
 
 
3151	trace_ext4_truncate_enter(inode);
3152
3153	if (!ext4_can_truncate(inode))
3154		return;
3155
3156	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3157
3158	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3159		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3160
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3161	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3162		ext4_ext_truncate(inode);
3163	else
3164		ext4_ind_truncate(inode);
 
 
 
 
 
 
 
 
 
3165
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3166	trace_ext4_truncate_exit(inode);
 
3167}
3168
3169/*
3170 * ext4_get_inode_loc returns with an extra refcount against the inode's
3171 * underlying buffer_head on success. If 'in_mem' is true, we have all
3172 * data in memory that is needed to recreate the on-disk version of this
3173 * inode.
3174 */
3175static int __ext4_get_inode_loc(struct inode *inode,
3176				struct ext4_iloc *iloc, int in_mem)
 
3177{
3178	struct ext4_group_desc	*gdp;
3179	struct buffer_head	*bh;
3180	struct super_block	*sb = inode->i_sb;
3181	ext4_fsblk_t		block;
 
3182	int			inodes_per_block, inode_offset;
3183
3184	iloc->bh = NULL;
3185	if (!ext4_valid_inum(sb, inode->i_ino))
3186		return -EIO;
 
3187
3188	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3189	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3190	if (!gdp)
3191		return -EIO;
3192
3193	/*
3194	 * Figure out the offset within the block group inode table
3195	 */
3196	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3197	inode_offset = ((inode->i_ino - 1) %
3198			EXT4_INODES_PER_GROUP(sb));
3199	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3200	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3201
3202	bh = sb_getblk(sb, block);
3203	if (!bh) {
3204		EXT4_ERROR_INODE_BLOCK(inode, block,
3205				       "unable to read itable block");
3206		return -EIO;
3207	}
3208	if (!buffer_uptodate(bh)) {
3209		lock_buffer(bh);
3210
3211		/*
3212		 * If the buffer has the write error flag, we have failed
3213		 * to write out another inode in the same block.  In this
3214		 * case, we don't have to read the block because we may
3215		 * read the old inode data successfully.
3216		 */
3217		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3218			set_buffer_uptodate(bh);
3219
3220		if (buffer_uptodate(bh)) {
3221			/* someone brought it uptodate while we waited */
3222			unlock_buffer(bh);
3223			goto has_buffer;
3224		}
3225
3226		/*
3227		 * If we have all information of the inode in memory and this
3228		 * is the only valid inode in the block, we need not read the
3229		 * block.
3230		 */
3231		if (in_mem) {
3232			struct buffer_head *bitmap_bh;
3233			int i, start;
3234
3235			start = inode_offset & ~(inodes_per_block - 1);
3236
3237			/* Is the inode bitmap in cache? */
3238			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3239			if (!bitmap_bh)
3240				goto make_io;
3241
3242			/*
3243			 * If the inode bitmap isn't in cache then the
3244			 * optimisation may end up performing two reads instead
3245			 * of one, so skip it.
3246			 */
3247			if (!buffer_uptodate(bitmap_bh)) {
3248				brelse(bitmap_bh);
3249				goto make_io;
3250			}
3251			for (i = start; i < start + inodes_per_block; i++) {
3252				if (i == inode_offset)
3253					continue;
3254				if (ext4_test_bit(i, bitmap_bh->b_data))
3255					break;
3256			}
3257			brelse(bitmap_bh);
3258			if (i == start + inodes_per_block) {
3259				/* all other inodes are free, so skip I/O */
3260				memset(bh->b_data, 0, bh->b_size);
3261				set_buffer_uptodate(bh);
3262				unlock_buffer(bh);
3263				goto has_buffer;
3264			}
3265		}
3266
3267make_io:
3268		/*
3269		 * If we need to do any I/O, try to pre-readahead extra
3270		 * blocks from the inode table.
3271		 */
 
3272		if (EXT4_SB(sb)->s_inode_readahead_blks) {
3273			ext4_fsblk_t b, end, table;
3274			unsigned num;
 
3275
3276			table = ext4_inode_table(sb, gdp);
3277			/* s_inode_readahead_blks is always a power of 2 */
3278			b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
3279			if (table > b)
3280				b = table;
3281			end = b + EXT4_SB(sb)->s_inode_readahead_blks;
3282			num = EXT4_INODES_PER_GROUP(sb);
3283			if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3284				       EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
3285				num -= ext4_itable_unused_count(sb, gdp);
3286			table += num / inodes_per_block;
3287			if (end > table)
3288				end = table;
3289			while (b <= end)
3290				sb_breadahead(sb, b++);
3291		}
3292
3293		/*
3294		 * There are other valid inodes in the buffer, this inode
3295		 * has in-inode xattrs, or we don't have this inode in memory.
3296		 * Read the block from disk.
3297		 */
3298		trace_ext4_load_inode(inode);
3299		get_bh(bh);
3300		bh->b_end_io = end_buffer_read_sync;
3301		submit_bh(READ | REQ_META | REQ_PRIO, bh);
3302		wait_on_buffer(bh);
3303		if (!buffer_uptodate(bh)) {
3304			EXT4_ERROR_INODE_BLOCK(inode, block,
3305					       "unable to read itable block");
 
3306			brelse(bh);
3307			return -EIO;
3308		}
3309	}
3310has_buffer:
3311	iloc->bh = bh;
3312	return 0;
3313}
3314
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3315int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3316{
 
 
 
3317	/* We have all inode data except xattrs in memory here. */
3318	return __ext4_get_inode_loc(inode, iloc,
3319		!ext4_test_inode_state(inode, EXT4_STATE_XATTR));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3320}
3321
3322void ext4_set_inode_flags(struct inode *inode)
3323{
3324	unsigned int flags = EXT4_I(inode)->i_flags;
 
 
 
3325
3326	inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3327	if (flags & EXT4_SYNC_FL)
3328		inode->i_flags |= S_SYNC;
3329	if (flags & EXT4_APPEND_FL)
3330		inode->i_flags |= S_APPEND;
3331	if (flags & EXT4_IMMUTABLE_FL)
3332		inode->i_flags |= S_IMMUTABLE;
3333	if (flags & EXT4_NOATIME_FL)
3334		inode->i_flags |= S_NOATIME;
3335	if (flags & EXT4_DIRSYNC_FL)
3336		inode->i_flags |= S_DIRSYNC;
3337}
3338
3339/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3340void ext4_get_inode_flags(struct ext4_inode_info *ei)
3341{
3342	unsigned int vfs_fl;
3343	unsigned long old_fl, new_fl;
3344
3345	do {
3346		vfs_fl = ei->vfs_inode.i_flags;
3347		old_fl = ei->i_flags;
3348		new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3349				EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3350				EXT4_DIRSYNC_FL);
3351		if (vfs_fl & S_SYNC)
3352			new_fl |= EXT4_SYNC_FL;
3353		if (vfs_fl & S_APPEND)
3354			new_fl |= EXT4_APPEND_FL;
3355		if (vfs_fl & S_IMMUTABLE)
3356			new_fl |= EXT4_IMMUTABLE_FL;
3357		if (vfs_fl & S_NOATIME)
3358			new_fl |= EXT4_NOATIME_FL;
3359		if (vfs_fl & S_DIRSYNC)
3360			new_fl |= EXT4_DIRSYNC_FL;
3361	} while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
3362}
3363
3364static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3365				  struct ext4_inode_info *ei)
3366{
3367	blkcnt_t i_blocks ;
3368	struct inode *inode = &(ei->vfs_inode);
3369	struct super_block *sb = inode->i_sb;
3370
3371	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3372				EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3373		/* we are using combined 48 bit field */
3374		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3375					le32_to_cpu(raw_inode->i_blocks_lo);
3376		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
3377			/* i_blocks represent file system block size */
3378			return i_blocks  << (inode->i_blkbits - 9);
3379		} else {
3380			return i_blocks;
3381		}
3382	} else {
3383		return le32_to_cpu(raw_inode->i_blocks_lo);
3384	}
3385}
3386
3387struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3388{
3389	struct ext4_iloc iloc;
3390	struct ext4_inode *raw_inode;
3391	struct ext4_inode_info *ei;
3392	struct inode *inode;
3393	journal_t *journal = EXT4_SB(sb)->s_journal;
3394	long ret;
 
3395	int block;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3396
3397	inode = iget_locked(sb, ino);
3398	if (!inode)
3399		return ERR_PTR(-ENOMEM);
3400	if (!(inode->i_state & I_NEW))
3401		return inode;
3402
3403	ei = EXT4_I(inode);
3404	iloc.bh = NULL;
3405
3406	ret = __ext4_get_inode_loc(inode, &iloc, 0);
3407	if (ret < 0)
3408		goto bad_inode;
3409	raw_inode = ext4_raw_inode(&iloc);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3410	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
3411	inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
3412	inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
 
 
 
 
 
 
 
3413	if (!(test_opt(inode->i_sb, NO_UID32))) {
3414		inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
3415		inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
3416	}
3417	inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
 
 
 
3418
3419	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
 
3420	ei->i_dir_start_lookup = 0;
3421	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
3422	/* We now have enough fields to check if the inode was active or not.
3423	 * This is needed because nfsd might try to access dead inodes
3424	 * the test is that same one that e2fsck uses
3425	 * NeilBrown 1999oct15
3426	 */
3427	if (inode->i_nlink == 0) {
3428		if (inode->i_mode == 0 ||
3429		    !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
 
3430			/* this inode is deleted */
3431			ret = -ESTALE;
3432			goto bad_inode;
3433		}
3434		/* The only unlinked inodes we let through here have
3435		 * valid i_mode and are being read by the orphan
3436		 * recovery code: that's fine, we're about to complete
3437		 * the process of deleting those. */
 
 
3438	}
3439	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
 
3440	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
3441	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
3442	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
3443		ei->i_file_acl |=
3444			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
3445	inode->i_size = ext4_isize(raw_inode);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3446	ei->i_disksize = inode->i_size;
3447#ifdef CONFIG_QUOTA
3448	ei->i_reserved_quota = 0;
3449#endif
3450	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
3451	ei->i_block_group = iloc.block_group;
3452	ei->i_last_alloc_group = ~0;
3453	/*
3454	 * NOTE! The in-memory inode i_data array is in little-endian order
3455	 * even on big-endian machines: we do NOT byteswap the block numbers!
3456	 */
3457	for (block = 0; block < EXT4_N_BLOCKS; block++)
3458		ei->i_data[block] = raw_inode->i_block[block];
3459	INIT_LIST_HEAD(&ei->i_orphan);
 
3460
3461	/*
3462	 * Set transaction id's of transactions that have to be committed
3463	 * to finish f[data]sync. We set them to currently running transaction
3464	 * as we cannot be sure that the inode or some of its metadata isn't
3465	 * part of the transaction - the inode could have been reclaimed and
3466	 * now it is reread from disk.
3467	 */
3468	if (journal) {
3469		transaction_t *transaction;
3470		tid_t tid;
3471
3472		read_lock(&journal->j_state_lock);
3473		if (journal->j_running_transaction)
3474			transaction = journal->j_running_transaction;
3475		else
3476			transaction = journal->j_committing_transaction;
3477		if (transaction)
3478			tid = transaction->t_tid;
3479		else
3480			tid = journal->j_commit_sequence;
3481		read_unlock(&journal->j_state_lock);
3482		ei->i_sync_tid = tid;
3483		ei->i_datasync_tid = tid;
3484	}
3485
3486	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3487		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
3488		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
3489		    EXT4_INODE_SIZE(inode->i_sb)) {
3490			ret = -EIO;
3491			goto bad_inode;
3492		}
3493		if (ei->i_extra_isize == 0) {
3494			/* The extra space is currently unused. Use it. */
 
3495			ei->i_extra_isize = sizeof(struct ext4_inode) -
3496					    EXT4_GOOD_OLD_INODE_SIZE;
3497		} else {
3498			__le32 *magic = (void *)raw_inode +
3499					EXT4_GOOD_OLD_INODE_SIZE +
3500					ei->i_extra_isize;
3501			if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
3502				ext4_set_inode_state(inode, EXT4_STATE_XATTR);
3503		}
3504	} else
3505		ei->i_extra_isize = 0;
3506
3507	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
3508	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
3509	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
3510	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
3511
3512	inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
3513	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3514		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
3515			inode->i_version |=
3516			(__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
 
 
 
 
3517	}
3518
3519	ret = 0;
3520	if (ei->i_file_acl &&
3521	    !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
3522		EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
 
3523				 ei->i_file_acl);
3524		ret = -EIO;
3525		goto bad_inode;
3526	} else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
3527		if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
3528		    (S_ISLNK(inode->i_mode) &&
3529		     !ext4_inode_is_fast_symlink(inode)))
3530			/* Validate extent which is part of inode */
3531			ret = ext4_ext_check_inode(inode);
3532	} else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
3533		   (S_ISLNK(inode->i_mode) &&
3534		    !ext4_inode_is_fast_symlink(inode))) {
3535		/* Validate block references which are part of inode */
3536		ret = ext4_ind_check_inode(inode);
3537	}
3538	if (ret)
3539		goto bad_inode;
3540
3541	if (S_ISREG(inode->i_mode)) {
3542		inode->i_op = &ext4_file_inode_operations;
3543		inode->i_fop = &ext4_file_operations;
3544		ext4_set_aops(inode);
3545	} else if (S_ISDIR(inode->i_mode)) {
3546		inode->i_op = &ext4_dir_inode_operations;
3547		inode->i_fop = &ext4_dir_operations;
3548	} else if (S_ISLNK(inode->i_mode)) {
3549		if (ext4_inode_is_fast_symlink(inode)) {
 
 
 
 
 
 
 
 
 
 
 
 
3550			inode->i_op = &ext4_fast_symlink_inode_operations;
3551			nd_terminate_link(ei->i_data, inode->i_size,
3552				sizeof(ei->i_data) - 1);
3553		} else {
3554			inode->i_op = &ext4_symlink_inode_operations;
3555			ext4_set_aops(inode);
3556		}
 
3557	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
3558	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
3559		inode->i_op = &ext4_special_inode_operations;
3560		if (raw_inode->i_block[0])
3561			init_special_inode(inode, inode->i_mode,
3562			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
3563		else
3564			init_special_inode(inode, inode->i_mode,
3565			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
 
 
3566	} else {
3567		ret = -EIO;
3568		EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
 
3569		goto bad_inode;
3570	}
 
 
 
3571	brelse(iloc.bh);
3572	ext4_set_inode_flags(inode);
3573	unlock_new_inode(inode);
3574	return inode;
3575
3576bad_inode:
3577	brelse(iloc.bh);
3578	iget_failed(inode);
3579	return ERR_PTR(ret);
3580}
3581
3582static int ext4_inode_blocks_set(handle_t *handle,
3583				struct ext4_inode *raw_inode,
3584				struct ext4_inode_info *ei)
3585{
3586	struct inode *inode = &(ei->vfs_inode);
3587	u64 i_blocks = inode->i_blocks;
3588	struct super_block *sb = inode->i_sb;
3589
3590	if (i_blocks <= ~0U) {
3591		/*
3592		 * i_blocks can be represnted in a 32 bit variable
3593		 * as multiple of 512 bytes
3594		 */
3595		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
3596		raw_inode->i_blocks_high = 0;
3597		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3598		return 0;
3599	}
3600	if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
3601		return -EFBIG;
3602
3603	if (i_blocks <= 0xffffffffffffULL) {
3604		/*
3605		 * i_blocks can be represented in a 48 bit variable
3606		 * as multiple of 512 bytes
3607		 */
3608		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
3609		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
3610		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3611	} else {
3612		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3613		/* i_block is stored in file system block size */
3614		i_blocks = i_blocks >> (inode->i_blkbits - 9);
3615		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
3616		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
3617	}
3618	return 0;
3619}
3620
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3621/*
3622 * Post the struct inode info into an on-disk inode location in the
3623 * buffer-cache.  This gobbles the caller's reference to the
3624 * buffer_head in the inode location struct.
3625 *
3626 * The caller must have write access to iloc->bh.
3627 */
3628static int ext4_do_update_inode(handle_t *handle,
3629				struct inode *inode,
3630				struct ext4_iloc *iloc)
3631{
3632	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
3633	struct ext4_inode_info *ei = EXT4_I(inode);
3634	struct buffer_head *bh = iloc->bh;
3635	int err = 0, rc, block;
 
 
 
 
 
 
 
3636
3637	/* For fields not not tracking in the in-memory inode,
3638	 * initialise them to zero for new inodes. */
3639	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
3640		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
3641
3642	ext4_get_inode_flags(ei);
 
 
 
 
 
3643	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
 
 
 
3644	if (!(test_opt(inode->i_sb, NO_UID32))) {
3645		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
3646		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
3647/*
3648 * Fix up interoperability with old kernels. Otherwise, old inodes get
3649 * re-used with the upper 16 bits of the uid/gid intact
3650 */
3651		if (!ei->i_dtime) {
3652			raw_inode->i_uid_high =
3653				cpu_to_le16(high_16_bits(inode->i_uid));
3654			raw_inode->i_gid_high =
3655				cpu_to_le16(high_16_bits(inode->i_gid));
3656		} else {
3657			raw_inode->i_uid_high = 0;
3658			raw_inode->i_gid_high = 0;
 
 
 
 
 
3659		}
3660	} else {
3661		raw_inode->i_uid_low =
3662			cpu_to_le16(fs_high2lowuid(inode->i_uid));
3663		raw_inode->i_gid_low =
3664			cpu_to_le16(fs_high2lowgid(inode->i_gid));
3665		raw_inode->i_uid_high = 0;
3666		raw_inode->i_gid_high = 0;
3667	}
3668	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
3669
3670	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
3671	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
3672	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
3673	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
3674
3675	if (ext4_inode_blocks_set(handle, raw_inode, ei))
3676		goto out_brelse;
3677	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
3678	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
3679	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
3680	    cpu_to_le32(EXT4_OS_HURD))
3681		raw_inode->i_file_acl_high =
3682			cpu_to_le16(ei->i_file_acl >> 32);
3683	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
3684	ext4_isize_set(raw_inode, ei->i_disksize);
 
 
 
3685	if (ei->i_disksize > 0x7fffffffULL) {
3686		struct super_block *sb = inode->i_sb;
3687		if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
3688				EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
3689				EXT4_SB(sb)->s_es->s_rev_level ==
3690				cpu_to_le32(EXT4_GOOD_OLD_REV)) {
3691			/* If this is the first large file
3692			 * created, add a flag to the superblock.
3693			 */
3694			err = ext4_journal_get_write_access(handle,
3695					EXT4_SB(sb)->s_sbh);
3696			if (err)
3697				goto out_brelse;
3698			ext4_update_dynamic_rev(sb);
3699			EXT4_SET_RO_COMPAT_FEATURE(sb,
3700					EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
3701			sb->s_dirt = 1;
3702			ext4_handle_sync(handle);
3703			err = ext4_handle_dirty_metadata(handle, NULL,
3704					EXT4_SB(sb)->s_sbh);
3705		}
3706	}
3707	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
3708	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
3709		if (old_valid_dev(inode->i_rdev)) {
3710			raw_inode->i_block[0] =
3711				cpu_to_le32(old_encode_dev(inode->i_rdev));
3712			raw_inode->i_block[1] = 0;
3713		} else {
3714			raw_inode->i_block[0] = 0;
3715			raw_inode->i_block[1] =
3716				cpu_to_le32(new_encode_dev(inode->i_rdev));
3717			raw_inode->i_block[2] = 0;
3718		}
3719	} else
3720		for (block = 0; block < EXT4_N_BLOCKS; block++)
3721			raw_inode->i_block[block] = ei->i_data[block];
 
3722
3723	raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
3724	if (ei->i_extra_isize) {
3725		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
3726			raw_inode->i_version_hi =
3727			cpu_to_le32(inode->i_version >> 32);
3728		raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
 
 
 
 
 
3729	}
3730
 
 
 
 
 
 
 
 
 
 
 
 
 
3731	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
3732	rc = ext4_handle_dirty_metadata(handle, NULL, bh);
3733	if (!err)
3734		err = rc;
3735	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
3736
3737	ext4_update_inode_fsync_trans(handle, inode, 0);
 
 
 
 
 
 
 
 
 
 
 
 
3738out_brelse:
3739	brelse(bh);
3740	ext4_std_error(inode->i_sb, err);
3741	return err;
3742}
3743
3744/*
3745 * ext4_write_inode()
3746 *
3747 * We are called from a few places:
3748 *
3749 * - Within generic_file_write() for O_SYNC files.
3750 *   Here, there will be no transaction running. We wait for any running
3751 *   trasnaction to commit.
3752 *
3753 * - Within sys_sync(), kupdate and such.
3754 *   We wait on commit, if tol to.
3755 *
3756 * - Within prune_icache() (PF_MEMALLOC == true)
3757 *   Here we simply return.  We can't afford to block kswapd on the
3758 *   journal commit.
3759 *
3760 * In all cases it is actually safe for us to return without doing anything,
3761 * because the inode has been copied into a raw inode buffer in
3762 * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
3763 * knfsd.
3764 *
3765 * Note that we are absolutely dependent upon all inode dirtiers doing the
3766 * right thing: they *must* call mark_inode_dirty() after dirtying info in
3767 * which we are interested.
3768 *
3769 * It would be a bug for them to not do this.  The code:
3770 *
3771 *	mark_inode_dirty(inode)
3772 *	stuff();
3773 *	inode->i_size = expr;
3774 *
3775 * is in error because a kswapd-driven write_inode() could occur while
3776 * `stuff()' is running, and the new i_size will be lost.  Plus the inode
3777 * will no longer be on the superblock's dirty inode list.
3778 */
3779int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
3780{
3781	int err;
3782
3783	if (current->flags & PF_MEMALLOC)
 
3784		return 0;
3785
 
 
 
3786	if (EXT4_SB(inode->i_sb)->s_journal) {
3787		if (ext4_journal_current_handle()) {
3788			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
3789			dump_stack();
3790			return -EIO;
3791		}
3792
3793		if (wbc->sync_mode != WB_SYNC_ALL)
 
 
 
 
 
3794			return 0;
3795
3796		err = ext4_force_commit(inode->i_sb);
 
3797	} else {
3798		struct ext4_iloc iloc;
3799
3800		err = __ext4_get_inode_loc(inode, &iloc, 0);
3801		if (err)
3802			return err;
3803		if (wbc->sync_mode == WB_SYNC_ALL)
 
 
 
 
3804			sync_dirty_buffer(iloc.bh);
3805		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
3806			EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
3807					 "IO error syncing inode");
3808			err = -EIO;
3809		}
3810		brelse(iloc.bh);
3811	}
3812	return err;
3813}
3814
3815/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3816 * ext4_setattr()
3817 *
3818 * Called from notify_change.
3819 *
3820 * We want to trap VFS attempts to truncate the file as soon as
3821 * possible.  In particular, we want to make sure that when the VFS
3822 * shrinks i_size, we put the inode on the orphan list and modify
3823 * i_disksize immediately, so that during the subsequent flushing of
3824 * dirty pages and freeing of disk blocks, we can guarantee that any
3825 * commit will leave the blocks being flushed in an unused state on
3826 * disk.  (On recovery, the inode will get truncated and the blocks will
3827 * be freed, so we have a strong guarantee that no future commit will
3828 * leave these blocks visible to the user.)
3829 *
3830 * Another thing we have to assure is that if we are in ordered mode
3831 * and inode is still attached to the committing transaction, we must
3832 * we start writeout of all the dirty pages which are being truncated.
3833 * This way we are sure that all the data written in the previous
3834 * transaction are already on disk (truncate waits for pages under
3835 * writeback).
3836 *
3837 * Called with inode->i_mutex down.
3838 */
3839int ext4_setattr(struct dentry *dentry, struct iattr *attr)
 
3840{
3841	struct inode *inode = dentry->d_inode;
3842	int error, rc = 0;
3843	int orphan = 0;
3844	const unsigned int ia_valid = attr->ia_valid;
3845
3846	error = inode_change_ok(inode, attr);
 
 
 
 
 
 
 
 
 
 
 
3847	if (error)
3848		return error;
3849
3850	if (is_quota_modification(inode, attr))
3851		dquot_initialize(inode);
3852	if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
3853		(ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
 
 
 
 
 
 
 
 
 
 
 
 
3854		handle_t *handle;
3855
3856		/* (user+group)*(old+new) structure, inode write (sb,
3857		 * inode block, ? - but truncate inode update has it) */
3858		handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
3859					EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
 
3860		if (IS_ERR(handle)) {
3861			error = PTR_ERR(handle);
3862			goto err_out;
3863		}
 
 
 
 
 
3864		error = dquot_transfer(inode, attr);
 
 
3865		if (error) {
3866			ext4_journal_stop(handle);
 
3867			return error;
3868		}
3869		/* Update corresponding info in inode so that everything is in
3870		 * one transaction */
3871		if (attr->ia_valid & ATTR_UID)
3872			inode->i_uid = attr->ia_uid;
3873		if (attr->ia_valid & ATTR_GID)
3874			inode->i_gid = attr->ia_gid;
3875		error = ext4_mark_inode_dirty(handle, inode);
3876		ext4_journal_stop(handle);
 
 
 
 
3877	}
3878
3879	if (attr->ia_valid & ATTR_SIZE) {
3880		inode_dio_wait(inode);
 
 
3881
3882		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
3883			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3884
3885			if (attr->ia_size > sbi->s_bitmap_maxbytes)
 
3886				return -EFBIG;
 
 
 
 
 
3887		}
3888	}
3889
3890	if (S_ISREG(inode->i_mode) &&
3891	    attr->ia_valid & ATTR_SIZE &&
3892	    (attr->ia_size < inode->i_size)) {
3893		handle_t *handle;
3894
3895		handle = ext4_journal_start(inode, 3);
3896		if (IS_ERR(handle)) {
3897			error = PTR_ERR(handle);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3898			goto err_out;
3899		}
3900		if (ext4_handle_valid(handle)) {
3901			error = ext4_orphan_add(handle, inode);
3902			orphan = 1;
3903		}
3904		EXT4_I(inode)->i_disksize = attr->ia_size;
3905		rc = ext4_mark_inode_dirty(handle, inode);
3906		if (!error)
3907			error = rc;
3908		ext4_journal_stop(handle);
3909
3910		if (ext4_should_order_data(inode)) {
3911			error = ext4_begin_ordered_truncate(inode,
3912							    attr->ia_size);
3913			if (error) {
3914				/* Do as much error cleanup as possible */
3915				handle = ext4_journal_start(inode, 3);
3916				if (IS_ERR(handle)) {
3917					ext4_orphan_del(NULL, inode);
3918					goto err_out;
3919				}
3920				ext4_orphan_del(handle, inode);
3921				orphan = 0;
3922				ext4_journal_stop(handle);
3923				goto err_out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3924			}
3925		}
3926	}
3927
3928	if (attr->ia_valid & ATTR_SIZE) {
3929		if (attr->ia_size != i_size_read(inode)) {
3930			truncate_setsize(inode, attr->ia_size);
3931			ext4_truncate(inode);
3932		} else if (ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS))
3933			ext4_truncate(inode);
 
 
 
 
 
 
 
 
 
 
3934	}
3935
3936	if (!rc) {
3937		setattr_copy(inode, attr);
3938		mark_inode_dirty(inode);
3939	}
3940
3941	/*
3942	 * If the call to ext4_truncate failed to get a transaction handle at
3943	 * all, we need to clean up the in-core orphan list manually.
3944	 */
3945	if (orphan && inode->i_nlink)
3946		ext4_orphan_del(NULL, inode);
3947
3948	if (!rc && (ia_valid & ATTR_MODE))
3949		rc = ext4_acl_chmod(inode);
3950
3951err_out:
3952	ext4_std_error(inode->i_sb, error);
 
3953	if (!error)
3954		error = rc;
 
3955	return error;
3956}
3957
3958int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
3959		 struct kstat *stat)
3960{
3961	struct inode *inode;
3962	unsigned long delalloc_blocks;
 
 
 
 
 
 
 
 
 
3963
3964	inode = dentry->d_inode;
3965	generic_fillattr(inode, stat);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3966
3967	/*
3968	 * We can't update i_blocks if the block allocation is delayed
3969	 * otherwise in the case of system crash before the real block
3970	 * allocation is done, we will have i_blocks inconsistent with
3971	 * on-disk file blocks.
3972	 * We always keep i_blocks updated together with real
3973	 * allocation. But to not confuse with user, stat
3974	 * will return the blocks that include the delayed allocation
3975	 * blocks for this file.
3976	 */
3977	delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
3978
3979	stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
3980	return 0;
3981}
3982
3983static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
 
3984{
3985	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
3986		return ext4_ind_trans_blocks(inode, nrblocks, chunk);
3987	return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
3988}
3989
3990/*
3991 * Account for index blocks, block groups bitmaps and block group
3992 * descriptor blocks if modify datablocks and index blocks
3993 * worse case, the indexs blocks spread over different block groups
3994 *
3995 * If datablocks are discontiguous, they are possible to spread over
3996 * different block groups too. If they are contiuguous, with flexbg,
3997 * they could still across block group boundary.
3998 *
3999 * Also account for superblock, inode, quota and xattr blocks
4000 */
4001static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
 
4002{
4003	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4004	int gdpblocks;
4005	int idxblocks;
4006	int ret = 0;
4007
4008	/*
4009	 * How many index blocks need to touch to modify nrblocks?
4010	 * The "Chunk" flag indicating whether the nrblocks is
4011	 * physically contiguous on disk
4012	 *
4013	 * For Direct IO and fallocate, they calls get_block to allocate
4014	 * one single extent at a time, so they could set the "Chunk" flag
4015	 */
4016	idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4017
4018	ret = idxblocks;
4019
4020	/*
4021	 * Now let's see how many group bitmaps and group descriptors need
4022	 * to account
4023	 */
4024	groups = idxblocks;
4025	if (chunk)
4026		groups += 1;
4027	else
4028		groups += nrblocks;
4029
4030	gdpblocks = groups;
4031	if (groups > ngroups)
4032		groups = ngroups;
4033	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4034		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4035
4036	/* bitmaps and block group descriptor blocks */
4037	ret += groups + gdpblocks;
4038
4039	/* Blocks for super block, inode, quota and xattr blocks */
4040	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4041
4042	return ret;
4043}
4044
4045/*
4046 * Calculate the total number of credits to reserve to fit
4047 * the modification of a single pages into a single transaction,
4048 * which may include multiple chunks of block allocations.
4049 *
4050 * This could be called via ext4_write_begin()
4051 *
4052 * We need to consider the worse case, when
4053 * one new block per extent.
4054 */
4055int ext4_writepage_trans_blocks(struct inode *inode)
4056{
4057	int bpp = ext4_journal_blocks_per_page(inode);
4058	int ret;
4059
4060	ret = ext4_meta_trans_blocks(inode, bpp, 0);
4061
4062	/* Account for data blocks for journalled mode */
4063	if (ext4_should_journal_data(inode))
4064		ret += bpp;
4065	return ret;
4066}
4067
4068/*
4069 * Calculate the journal credits for a chunk of data modification.
4070 *
4071 * This is called from DIO, fallocate or whoever calling
4072 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4073 *
4074 * journal buffers for data blocks are not included here, as DIO
4075 * and fallocate do no need to journal data buffers.
4076 */
4077int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4078{
4079	return ext4_meta_trans_blocks(inode, nrblocks, 1);
4080}
4081
4082/*
4083 * The caller must have previously called ext4_reserve_inode_write().
4084 * Give this, we know that the caller already has write access to iloc->bh.
4085 */
4086int ext4_mark_iloc_dirty(handle_t *handle,
4087			 struct inode *inode, struct ext4_iloc *iloc)
4088{
4089	int err = 0;
4090
4091	if (test_opt(inode->i_sb, I_VERSION))
 
 
 
 
 
 
4092		inode_inc_iversion(inode);
4093
4094	/* the do_update_inode consumes one bh->b_count */
4095	get_bh(iloc->bh);
4096
4097	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4098	err = ext4_do_update_inode(handle, inode, iloc);
4099	put_bh(iloc->bh);
4100	return err;
4101}
4102
4103/*
4104 * On success, We end up with an outstanding reference count against
4105 * iloc->bh.  This _must_ be cleaned up later.
4106 */
4107
4108int
4109ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4110			 struct ext4_iloc *iloc)
4111{
4112	int err;
4113
 
 
 
4114	err = ext4_get_inode_loc(inode, iloc);
4115	if (!err) {
4116		BUFFER_TRACE(iloc->bh, "get_write_access");
4117		err = ext4_journal_get_write_access(handle, iloc->bh);
4118		if (err) {
4119			brelse(iloc->bh);
4120			iloc->bh = NULL;
4121		}
4122	}
4123	ext4_std_error(inode->i_sb, err);
4124	return err;
4125}
4126
4127/*
4128 * Expand an inode by new_extra_isize bytes.
4129 * Returns 0 on success or negative error number on failure.
4130 */
4131static int ext4_expand_extra_isize(struct inode *inode,
4132				   unsigned int new_extra_isize,
4133				   struct ext4_iloc iloc,
4134				   handle_t *handle)
4135{
4136	struct ext4_inode *raw_inode;
4137	struct ext4_xattr_ibody_header *header;
 
 
 
4138
4139	if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4140		return 0;
 
 
 
 
 
 
 
 
 
 
4141
4142	raw_inode = ext4_raw_inode(&iloc);
4143
4144	header = IHDR(inode, raw_inode);
4145
4146	/* No extended attributes present */
4147	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4148	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4149		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4150			new_extra_isize);
 
4151		EXT4_I(inode)->i_extra_isize = new_extra_isize;
4152		return 0;
4153	}
4154
4155	/* try to expand with EAs present */
4156	return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4157					  raw_inode, handle);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4158}
4159
4160/*
4161 * What we do here is to mark the in-core inode as clean with respect to inode
4162 * dirtiness (it may still be data-dirty).
4163 * This means that the in-core inode may be reaped by prune_icache
4164 * without having to perform any I/O.  This is a very good thing,
4165 * because *any* task may call prune_icache - even ones which
4166 * have a transaction open against a different journal.
4167 *
4168 * Is this cheating?  Not really.  Sure, we haven't written the
4169 * inode out, but prune_icache isn't a user-visible syncing function.
4170 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4171 * we start and wait on commits.
4172 *
4173 * Is this efficient/effective?  Well, we're being nice to the system
4174 * by cleaning up our inodes proactively so they can be reaped
4175 * without I/O.  But we are potentially leaving up to five seconds'
4176 * worth of inodes floating about which prune_icache wants us to
4177 * write out.  One way to fix that would be to get prune_icache()
4178 * to do a write_super() to free up some memory.  It has the desired
4179 * effect.
4180 */
4181int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
 
4182{
4183	struct ext4_iloc iloc;
4184	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4185	static unsigned int mnt_count;
4186	int err, ret;
4187
4188	might_sleep();
4189	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
4190	err = ext4_reserve_inode_write(handle, inode, &iloc);
4191	if (ext4_handle_valid(handle) &&
4192	    EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4193	    !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
4194		/*
4195		 * We need extra buffer credits since we may write into EA block
4196		 * with this same handle. If journal_extend fails, then it will
4197		 * only result in a minor loss of functionality for that inode.
4198		 * If this is felt to be critical, then e2fsck should be run to
4199		 * force a large enough s_min_extra_isize.
4200		 */
4201		if ((jbd2_journal_extend(handle,
4202			     EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4203			ret = ext4_expand_extra_isize(inode,
4204						      sbi->s_want_extra_isize,
4205						      iloc, handle);
4206			if (ret) {
4207				ext4_set_inode_state(inode,
4208						     EXT4_STATE_NO_EXPAND);
4209				if (mnt_count !=
4210					le16_to_cpu(sbi->s_es->s_mnt_count)) {
4211					ext4_warning(inode->i_sb,
4212					"Unable to expand inode %lu. Delete"
4213					" some EAs or run e2fsck.",
4214					inode->i_ino);
4215					mnt_count =
4216					  le16_to_cpu(sbi->s_es->s_mnt_count);
4217				}
4218			}
4219		}
4220	}
4221	if (!err)
4222		err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4223	return err;
4224}
4225
4226/*
4227 * ext4_dirty_inode() is called from __mark_inode_dirty()
4228 *
4229 * We're really interested in the case where a file is being extended.
4230 * i_size has been changed by generic_commit_write() and we thus need
4231 * to include the updated inode in the current transaction.
4232 *
4233 * Also, dquot_alloc_block() will always dirty the inode when blocks
4234 * are allocated to the file.
4235 *
4236 * If the inode is marked synchronous, we don't honour that here - doing
4237 * so would cause a commit on atime updates, which we don't bother doing.
4238 * We handle synchronous inodes at the highest possible level.
4239 */
4240void ext4_dirty_inode(struct inode *inode, int flags)
4241{
4242	handle_t *handle;
4243
4244	handle = ext4_journal_start(inode, 2);
4245	if (IS_ERR(handle))
4246		goto out;
4247
4248	ext4_mark_inode_dirty(handle, inode);
4249
4250	ext4_journal_stop(handle);
4251out:
4252	return;
4253}
4254
4255#if 0
4256/*
4257 * Bind an inode's backing buffer_head into this transaction, to prevent
4258 * it from being flushed to disk early.  Unlike
4259 * ext4_reserve_inode_write, this leaves behind no bh reference and
4260 * returns no iloc structure, so the caller needs to repeat the iloc
4261 * lookup to mark the inode dirty later.
4262 */
4263static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4264{
4265	struct ext4_iloc iloc;
4266
4267	int err = 0;
4268	if (handle) {
4269		err = ext4_get_inode_loc(inode, &iloc);
4270		if (!err) {
4271			BUFFER_TRACE(iloc.bh, "get_write_access");
4272			err = jbd2_journal_get_write_access(handle, iloc.bh);
4273			if (!err)
4274				err = ext4_handle_dirty_metadata(handle,
4275								 NULL,
4276								 iloc.bh);
4277			brelse(iloc.bh);
4278		}
4279	}
4280	ext4_std_error(inode->i_sb, err);
4281	return err;
4282}
4283#endif
4284
4285int ext4_change_inode_journal_flag(struct inode *inode, int val)
4286{
4287	journal_t *journal;
4288	handle_t *handle;
4289	int err;
 
4290
4291	/*
4292	 * We have to be very careful here: changing a data block's
4293	 * journaling status dynamically is dangerous.  If we write a
4294	 * data block to the journal, change the status and then delete
4295	 * that block, we risk forgetting to revoke the old log record
4296	 * from the journal and so a subsequent replay can corrupt data.
4297	 * So, first we make sure that the journal is empty and that
4298	 * nobody is changing anything.
4299	 */
4300
4301	journal = EXT4_JOURNAL(inode);
4302	if (!journal)
4303		return 0;
4304	if (is_journal_aborted(journal))
4305		return -EROFS;
4306
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4307	jbd2_journal_lock_updates(journal);
4308	jbd2_journal_flush(journal);
4309
4310	/*
4311	 * OK, there are no updates running now, and all cached data is
4312	 * synced to disk.  We are now in a completely consistent state
4313	 * which doesn't have anything in the journal, and we know that
4314	 * no filesystem updates are running, so it is safe to modify
4315	 * the inode's in-core data-journaling state flag now.
4316	 */
4317
4318	if (val)
4319		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4320	else
 
 
 
 
 
 
4321		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
 
4322	ext4_set_aops(inode);
4323
4324	jbd2_journal_unlock_updates(journal);
 
 
 
 
4325
4326	/* Finally we can mark the inode as dirty. */
4327
4328	handle = ext4_journal_start(inode, 1);
4329	if (IS_ERR(handle))
4330		return PTR_ERR(handle);
4331
 
 
4332	err = ext4_mark_inode_dirty(handle, inode);
4333	ext4_handle_sync(handle);
4334	ext4_journal_stop(handle);
4335	ext4_std_error(inode->i_sb, err);
4336
4337	return err;
4338}
4339
4340static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
4341{
4342	return !buffer_mapped(bh);
4343}
4344
4345int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
4346{
 
4347	struct page *page = vmf->page;
4348	loff_t size;
4349	unsigned long len;
4350	int ret;
 
4351	struct file *file = vma->vm_file;
4352	struct inode *inode = file->f_path.dentry->d_inode;
4353	struct address_space *mapping = inode->i_mapping;
4354	handle_t *handle;
4355	get_block_t *get_block;
4356	int retries = 0;
4357
 
 
 
 
 
 
 
 
 
 
 
 
4358	/*
4359	 * This check is racy but catches the common case. We rely on
4360	 * __block_page_mkwrite() to do a reliable check.
 
 
4361	 */
4362	vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
 
 
4363	/* Delalloc case is easy... */
4364	if (test_opt(inode->i_sb, DELALLOC) &&
4365	    !ext4_should_journal_data(inode) &&
4366	    !ext4_nonda_switch(inode->i_sb)) {
4367		do {
4368			ret = __block_page_mkwrite(vma, vmf,
4369						   ext4_da_get_block_prep);
4370		} while (ret == -ENOSPC &&
4371		       ext4_should_retry_alloc(inode->i_sb, &retries));
4372		goto out_ret;
4373	}
4374
4375	lock_page(page);
4376	size = i_size_read(inode);
4377	/* Page got truncated from under us? */
4378	if (page->mapping != mapping || page_offset(page) > size) {
4379		unlock_page(page);
4380		ret = VM_FAULT_NOPAGE;
4381		goto out;
4382	}
4383
4384	if (page->index == size >> PAGE_CACHE_SHIFT)
4385		len = size & ~PAGE_CACHE_MASK;
4386	else
4387		len = PAGE_CACHE_SIZE;
4388	/*
4389	 * Return if we have all the buffers mapped. This avoids the need to do
4390	 * journal_start/journal_stop which can block and take a long time
 
 
 
4391	 */
4392	if (page_has_buffers(page)) {
4393		if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
4394					ext4_bh_unmapped)) {
 
4395			/* Wait so that we don't change page under IO */
4396			wait_on_page_writeback(page);
4397			ret = VM_FAULT_LOCKED;
4398			goto out;
4399		}
4400	}
4401	unlock_page(page);
4402	/* OK, we need to fill the hole... */
4403	if (ext4_should_dioread_nolock(inode))
4404		get_block = ext4_get_block_write;
4405	else
4406		get_block = ext4_get_block;
4407retry_alloc:
4408	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
 
4409	if (IS_ERR(handle)) {
4410		ret = VM_FAULT_SIGBUS;
4411		goto out;
4412	}
4413	ret = __block_page_mkwrite(vma, vmf, get_block);
4414	if (!ret && ext4_should_journal_data(inode)) {
4415		if (walk_page_buffers(handle, page_buffers(page), 0,
4416			  PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
4417			unlock_page(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4418			ret = VM_FAULT_SIGBUS;
4419			goto out;
 
 
 
 
 
 
 
 
 
 
 
4420		}
4421		ext4_set_inode_state(inode, EXT4_STATE_JDATA);
4422	}
4423	ext4_journal_stop(handle);
4424	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
4425		goto retry_alloc;
4426out_ret:
4427	ret = block_page_mkwrite_return(ret);
4428out:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4429	return ret;
4430}
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  linux/fs/ext4/inode.c
   4 *
   5 * Copyright (C) 1992, 1993, 1994, 1995
   6 * Remy Card (card@masi.ibp.fr)
   7 * Laboratoire MASI - Institut Blaise Pascal
   8 * Universite Pierre et Marie Curie (Paris VI)
   9 *
  10 *  from
  11 *
  12 *  linux/fs/minix/inode.c
  13 *
  14 *  Copyright (C) 1991, 1992  Linus Torvalds
  15 *
  16 *  64-bit file support on 64-bit platforms by Jakub Jelinek
  17 *	(jj@sunsite.ms.mff.cuni.cz)
  18 *
  19 *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
  20 */
  21
 
  22#include <linux/fs.h>
  23#include <linux/mount.h>
  24#include <linux/time.h>
 
  25#include <linux/highuid.h>
  26#include <linux/pagemap.h>
  27#include <linux/dax.h>
  28#include <linux/quotaops.h>
  29#include <linux/string.h>
  30#include <linux/buffer_head.h>
  31#include <linux/writeback.h>
  32#include <linux/pagevec.h>
  33#include <linux/mpage.h>
  34#include <linux/namei.h>
  35#include <linux/uio.h>
  36#include <linux/bio.h>
  37#include <linux/workqueue.h>
  38#include <linux/kernel.h>
  39#include <linux/printk.h>
  40#include <linux/slab.h>
  41#include <linux/bitops.h>
  42#include <linux/iomap.h>
  43#include <linux/iversion.h>
  44
  45#include "ext4_jbd2.h"
  46#include "xattr.h"
  47#include "acl.h"
 
  48#include "truncate.h"
  49
  50#include <trace/events/ext4.h>
  51
  52static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
  53			      struct ext4_inode_info *ei)
  54{
  55	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
  56	__u32 csum;
  57	__u16 dummy_csum = 0;
  58	int offset = offsetof(struct ext4_inode, i_checksum_lo);
  59	unsigned int csum_size = sizeof(dummy_csum);
  60
  61	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
  62	csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
  63	offset += csum_size;
  64	csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
  65			   EXT4_GOOD_OLD_INODE_SIZE - offset);
  66
  67	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
  68		offset = offsetof(struct ext4_inode, i_checksum_hi);
  69		csum = ext4_chksum(sbi, csum, (__u8 *)raw +
  70				   EXT4_GOOD_OLD_INODE_SIZE,
  71				   offset - EXT4_GOOD_OLD_INODE_SIZE);
  72		if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
  73			csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
  74					   csum_size);
  75			offset += csum_size;
  76		}
  77		csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
  78				   EXT4_INODE_SIZE(inode->i_sb) - offset);
  79	}
  80
  81	return csum;
  82}
  83
  84static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
  85				  struct ext4_inode_info *ei)
  86{
  87	__u32 provided, calculated;
  88
  89	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
  90	    cpu_to_le32(EXT4_OS_LINUX) ||
  91	    !ext4_has_metadata_csum(inode->i_sb))
  92		return 1;
  93
  94	provided = le16_to_cpu(raw->i_checksum_lo);
  95	calculated = ext4_inode_csum(inode, raw, ei);
  96	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
  97	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
  98		provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
  99	else
 100		calculated &= 0xFFFF;
 101
 102	return provided == calculated;
 103}
 104
 105void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
 106			 struct ext4_inode_info *ei)
 107{
 108	__u32 csum;
 109
 110	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
 111	    cpu_to_le32(EXT4_OS_LINUX) ||
 112	    !ext4_has_metadata_csum(inode->i_sb))
 113		return;
 114
 115	csum = ext4_inode_csum(inode, raw, ei);
 116	raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
 117	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
 118	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
 119		raw->i_checksum_hi = cpu_to_le16(csum >> 16);
 120}
 121
 122static inline int ext4_begin_ordered_truncate(struct inode *inode,
 123					      loff_t new_size)
 124{
 125	trace_ext4_begin_ordered_truncate(inode, new_size);
 126	/*
 127	 * If jinode is zero, then we never opened the file for
 128	 * writing, so there's no need to call
 129	 * jbd2_journal_begin_ordered_truncate() since there's no
 130	 * outstanding writes we need to flush.
 131	 */
 132	if (!EXT4_I(inode)->jinode)
 133		return 0;
 134	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
 135						   EXT4_I(inode)->jinode,
 136						   new_size);
 137}
 138
 139static void ext4_invalidatepage(struct page *page, unsigned int offset,
 140				unsigned int length);
 
 
 
 141static int __ext4_journalled_writepage(struct page *page, unsigned int len);
 142static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
 143static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
 144				  int pextents);
 145
 146/*
 147 * Test whether an inode is a fast symlink.
 148 * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
 149 */
 150int ext4_inode_is_fast_symlink(struct inode *inode)
 151{
 152	if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
 153		int ea_blocks = EXT4_I(inode)->i_file_acl ?
 154				EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
 155
 156		if (ext4_has_inline_data(inode))
 157			return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 158
 159		return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
 160	}
 161	return S_ISLNK(inode->i_mode) && inode->i_size &&
 162	       (inode->i_size < EXT4_N_BLOCKS * 4);
 163}
 164
 165/*
 166 * Called at the last iput() if i_nlink is zero.
 167 */
 168void ext4_evict_inode(struct inode *inode)
 169{
 170	handle_t *handle;
 171	int err;
 172	/*
 173	 * Credits for final inode cleanup and freeing:
 174	 * sb + inode (ext4_orphan_del()), block bitmap, group descriptor
 175	 * (xattr block freeing), bitmap, group descriptor (inode freeing)
 176	 */
 177	int extra_credits = 6;
 178	struct ext4_xattr_inode_array *ea_inode_array = NULL;
 179	bool freeze_protected = false;
 180
 181	trace_ext4_evict_inode(inode);
 182
 
 
 183	if (inode->i_nlink) {
 184		/*
 185		 * When journalling data dirty buffers are tracked only in the
 186		 * journal. So although mm thinks everything is clean and
 187		 * ready for reaping the inode might still have some pages to
 188		 * write in the running transaction or waiting to be
 189		 * checkpointed. Thus calling jbd2_journal_invalidatepage()
 190		 * (via truncate_inode_pages()) to discard these buffers can
 191		 * cause data loss. Also even if we did not discard these
 192		 * buffers, we would have no way to find them after the inode
 193		 * is reaped and thus user could see stale data if he tries to
 194		 * read them before the transaction is checkpointed. So be
 195		 * careful and force everything to disk here... We use
 196		 * ei->i_datasync_tid to store the newest transaction
 197		 * containing inode's data.
 198		 *
 199		 * Note that directories do not have this problem because they
 200		 * don't use page cache.
 201		 */
 202		if (inode->i_ino != EXT4_JOURNAL_INO &&
 203		    ext4_should_journal_data(inode) &&
 204		    (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
 205		    inode->i_data.nrpages) {
 206			journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
 207			tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
 208
 209			jbd2_complete_transaction(journal, commit_tid);
 
 210			filemap_write_and_wait(&inode->i_data);
 211		}
 212		truncate_inode_pages_final(&inode->i_data);
 213
 214		goto no_delete;
 215	}
 216
 217	if (is_bad_inode(inode))
 218		goto no_delete;
 219	dquot_initialize(inode);
 220
 221	if (ext4_should_order_data(inode))
 222		ext4_begin_ordered_truncate(inode, 0);
 223	truncate_inode_pages_final(&inode->i_data);
 224
 225	/*
 226	 * For inodes with journalled data, transaction commit could have
 227	 * dirtied the inode. Flush worker is ignoring it because of I_FREEING
 228	 * flag but we still need to remove the inode from the writeback lists.
 229	 */
 230	if (!list_empty_careful(&inode->i_io_list)) {
 231		WARN_ON_ONCE(!ext4_should_journal_data(inode));
 232		inode_io_list_del(inode);
 233	}
 234
 235	/*
 236	 * Protect us against freezing - iput() caller didn't have to have any
 237	 * protection against it. When we are in a running transaction though,
 238	 * we are already protected against freezing and we cannot grab further
 239	 * protection due to lock ordering constraints.
 240	 */
 241	if (!ext4_journal_current_handle()) {
 242		sb_start_intwrite(inode->i_sb);
 243		freeze_protected = true;
 244	}
 245
 246	if (!IS_NOQUOTA(inode))
 247		extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
 248
 249	/*
 250	 * Block bitmap, group descriptor, and inode are accounted in both
 251	 * ext4_blocks_for_truncate() and extra_credits. So subtract 3.
 252	 */
 253	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
 254			 ext4_blocks_for_truncate(inode) + extra_credits - 3);
 255	if (IS_ERR(handle)) {
 256		ext4_std_error(inode->i_sb, PTR_ERR(handle));
 257		/*
 258		 * If we're going to skip the normal cleanup, we still need to
 259		 * make sure that the in-core orphan linked list is properly
 260		 * cleaned up.
 261		 */
 262		ext4_orphan_del(NULL, inode);
 263		if (freeze_protected)
 264			sb_end_intwrite(inode->i_sb);
 265		goto no_delete;
 266	}
 267
 268	if (IS_SYNC(inode))
 269		ext4_handle_sync(handle);
 270
 271	/*
 272	 * Set inode->i_size to 0 before calling ext4_truncate(). We need
 273	 * special handling of symlinks here because i_size is used to
 274	 * determine whether ext4_inode_info->i_data contains symlink data or
 275	 * block mappings. Setting i_size to 0 will remove its fast symlink
 276	 * status. Erase i_data so that it becomes a valid empty block map.
 277	 */
 278	if (ext4_inode_is_fast_symlink(inode))
 279		memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
 280	inode->i_size = 0;
 281	err = ext4_mark_inode_dirty(handle, inode);
 282	if (err) {
 283		ext4_warning(inode->i_sb,
 284			     "couldn't mark inode dirty (err %d)", err);
 285		goto stop_handle;
 286	}
 287	if (inode->i_blocks) {
 288		err = ext4_truncate(inode);
 289		if (err) {
 290			ext4_error_err(inode->i_sb, -err,
 291				       "couldn't truncate inode %lu (err %d)",
 292				       inode->i_ino, err);
 293			goto stop_handle;
 
 
 
 
 
 
 
 
 
 
 
 
 
 294		}
 295	}
 296
 297	/* Remove xattr references. */
 298	err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
 299				      extra_credits);
 300	if (err) {
 301		ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
 302stop_handle:
 303		ext4_journal_stop(handle);
 304		ext4_orphan_del(NULL, inode);
 305		if (freeze_protected)
 306			sb_end_intwrite(inode->i_sb);
 307		ext4_xattr_inode_array_free(ea_inode_array);
 308		goto no_delete;
 309	}
 310
 311	/*
 312	 * Kill off the orphan record which ext4_truncate created.
 313	 * AKPM: I think this can be inside the above `if'.
 314	 * Note that ext4_orphan_del() has to be able to cope with the
 315	 * deletion of a non-existent orphan - this is because we don't
 316	 * know if ext4_truncate() actually created an orphan record.
 317	 * (Well, we could do this if we need to, but heck - it works)
 318	 */
 319	ext4_orphan_del(handle, inode);
 320	EXT4_I(inode)->i_dtime	= (__u32)ktime_get_real_seconds();
 321
 322	/*
 323	 * One subtle ordering requirement: if anything has gone wrong
 324	 * (transaction abort, IO errors, whatever), then we can still
 325	 * do these next steps (the fs will already have been marked as
 326	 * having errors), but we can't free the inode if the mark_dirty
 327	 * fails.
 328	 */
 329	if (ext4_mark_inode_dirty(handle, inode))
 330		/* If that failed, just do the required in-core inode clear. */
 331		ext4_clear_inode(inode);
 332	else
 333		ext4_free_inode(handle, inode);
 334	ext4_journal_stop(handle);
 335	if (freeze_protected)
 336		sb_end_intwrite(inode->i_sb);
 337	ext4_xattr_inode_array_free(ea_inode_array);
 338	return;
 339no_delete:
 340	if (!list_empty(&EXT4_I(inode)->i_fc_list))
 341		ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_NOMEM);
 342	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
 343}
 344
 345#ifdef CONFIG_QUOTA
 346qsize_t *ext4_get_reserved_space(struct inode *inode)
 347{
 348	return &EXT4_I(inode)->i_reserved_quota;
 349}
 350#endif
 351
 352/*
 
 
 
 
 
 
 
 
 
 
 
 
 353 * Called with i_data_sem down, which is important since we can call
 354 * ext4_discard_preallocations() from here.
 355 */
 356void ext4_da_update_reserve_space(struct inode *inode,
 357					int used, int quota_claim)
 358{
 359	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
 360	struct ext4_inode_info *ei = EXT4_I(inode);
 361
 362	spin_lock(&ei->i_block_reservation_lock);
 363	trace_ext4_da_update_reserve_space(inode, used, quota_claim);
 364	if (unlikely(used > ei->i_reserved_data_blocks)) {
 365		ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
 366			 "with only %d reserved data blocks",
 367			 __func__, inode->i_ino, used,
 368			 ei->i_reserved_data_blocks);
 369		WARN_ON(1);
 370		used = ei->i_reserved_data_blocks;
 371	}
 372
 373	/* Update per-inode reservations */
 374	ei->i_reserved_data_blocks -= used;
 375	percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
 
 
 
 376
 377	spin_unlock(&ei->i_block_reservation_lock);
 
 
 
 
 
 
 
 
 
 
 
 378
 379	/* Update quota subsystem for data blocks */
 380	if (quota_claim)
 381		dquot_claim_block(inode, EXT4_C2B(sbi, used));
 382	else {
 383		/*
 384		 * We did fallocate with an offset that is already delayed
 385		 * allocated. So on delayed allocated writeback we should
 386		 * not re-claim the quota for fallocated blocks.
 387		 */
 388		dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
 389	}
 390
 391	/*
 392	 * If we have done all the pending block allocations and if
 393	 * there aren't any writers on the inode, we can discard the
 394	 * inode's preallocations.
 395	 */
 396	if ((ei->i_reserved_data_blocks == 0) &&
 397	    !inode_is_open_for_write(inode))
 398		ext4_discard_preallocations(inode, 0);
 399}
 400
 401static int __check_block_validity(struct inode *inode, const char *func,
 402				unsigned int line,
 403				struct ext4_map_blocks *map)
 404{
 405	if (ext4_has_feature_journal(inode->i_sb) &&
 406	    (inode->i_ino ==
 407	     le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum)))
 408		return 0;
 409	if (!ext4_inode_block_valid(inode, map->m_pblk, map->m_len)) {
 410		ext4_error_inode(inode, func, line, map->m_pblk,
 411				 "lblock %lu mapped to illegal pblock %llu "
 412				 "(length %d)", (unsigned long) map->m_lblk,
 413				 map->m_pblk, map->m_len);
 414		return -EFSCORRUPTED;
 415	}
 416	return 0;
 417}
 418
 419int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
 420		       ext4_lblk_t len)
 421{
 422	int ret;
 423
 424	if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode))
 425		return fscrypt_zeroout_range(inode, lblk, pblk, len);
 426
 427	ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
 428	if (ret > 0)
 429		ret = 0;
 430
 431	return ret;
 432}
 433
 434#define check_block_validity(inode, map)	\
 435	__check_block_validity((inode), __func__, __LINE__, (map))
 436
 437#ifdef ES_AGGRESSIVE_TEST
 438static void ext4_map_blocks_es_recheck(handle_t *handle,
 439				       struct inode *inode,
 440				       struct ext4_map_blocks *es_map,
 441				       struct ext4_map_blocks *map,
 442				       int flags)
 443{
 444	int retval;
 
 
 
 
 445
 446	map->m_flags = 0;
 447	/*
 448	 * There is a race window that the result is not the same.
 449	 * e.g. xfstests #223 when dioread_nolock enables.  The reason
 450	 * is that we lookup a block mapping in extent status tree with
 451	 * out taking i_data_sem.  So at the time the unwritten extent
 452	 * could be converted.
 453	 */
 454	down_read(&EXT4_I(inode)->i_data_sem);
 455	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
 456		retval = ext4_ext_map_blocks(handle, inode, map, 0);
 457	} else {
 458		retval = ext4_ind_map_blocks(handle, inode, map, 0);
 459	}
 460	up_read((&EXT4_I(inode)->i_data_sem));
 461
 462	/*
 463	 * We don't check m_len because extent will be collpased in status
 464	 * tree.  So the m_len might not equal.
 465	 */
 466	if (es_map->m_lblk != map->m_lblk ||
 467	    es_map->m_flags != map->m_flags ||
 468	    es_map->m_pblk != map->m_pblk) {
 469		printk("ES cache assertion failed for inode: %lu "
 470		       "es_cached ex [%d/%d/%llu/%x] != "
 471		       "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
 472		       inode->i_ino, es_map->m_lblk, es_map->m_len,
 473		       es_map->m_pblk, es_map->m_flags, map->m_lblk,
 474		       map->m_len, map->m_pblk, map->m_flags,
 475		       retval, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 476	}
 
 477}
 478#endif /* ES_AGGRESSIVE_TEST */
 479
 480/*
 481 * The ext4_map_blocks() function tries to look up the requested blocks,
 482 * and returns if the blocks are already mapped.
 483 *
 484 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
 485 * and store the allocated blocks in the result buffer head and mark it
 486 * mapped.
 487 *
 488 * If file type is extents based, it will call ext4_ext_map_blocks(),
 489 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
 490 * based files
 491 *
 492 * On success, it returns the number of blocks being mapped or allocated.  if
 493 * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
 494 * is marked as unwritten. If the create == 1, it will mark @map as mapped.
 
 495 *
 496 * It returns 0 if plain look up failed (blocks have not been allocated), in
 497 * that case, @map is returned as unmapped but we still do fill map->m_len to
 498 * indicate the length of a hole starting at map->m_lblk.
 499 *
 500 * It returns the error in case of allocation failure.
 501 */
 502int ext4_map_blocks(handle_t *handle, struct inode *inode,
 503		    struct ext4_map_blocks *map, int flags)
 504{
 505	struct extent_status es;
 506	int retval;
 507	int ret = 0;
 508#ifdef ES_AGGRESSIVE_TEST
 509	struct ext4_map_blocks orig_map;
 510
 511	memcpy(&orig_map, map, sizeof(*map));
 512#endif
 513
 514	map->m_flags = 0;
 515	ext_debug(inode, "flag 0x%x, max_blocks %u, logical block %lu\n",
 516		  flags, map->m_len, (unsigned long) map->m_lblk);
 517
 518	/*
 519	 * ext4_map_blocks returns an int, and m_len is an unsigned int
 520	 */
 521	if (unlikely(map->m_len > INT_MAX))
 522		map->m_len = INT_MAX;
 523
 524	/* We can handle the block number less than EXT_MAX_BLOCKS */
 525	if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
 526		return -EFSCORRUPTED;
 527
 528	/* Lookup extent status tree firstly */
 529	if (!(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) &&
 530	    ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
 531		if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
 532			map->m_pblk = ext4_es_pblock(&es) +
 533					map->m_lblk - es.es_lblk;
 534			map->m_flags |= ext4_es_is_written(&es) ?
 535					EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
 536			retval = es.es_len - (map->m_lblk - es.es_lblk);
 537			if (retval > map->m_len)
 538				retval = map->m_len;
 539			map->m_len = retval;
 540		} else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
 541			map->m_pblk = 0;
 542			retval = es.es_len - (map->m_lblk - es.es_lblk);
 543			if (retval > map->m_len)
 544				retval = map->m_len;
 545			map->m_len = retval;
 546			retval = 0;
 547		} else {
 548			BUG();
 549		}
 550#ifdef ES_AGGRESSIVE_TEST
 551		ext4_map_blocks_es_recheck(handle, inode, map,
 552					   &orig_map, flags);
 553#endif
 554		goto found;
 555	}
 556
 557	/*
 558	 * Try to see if we can get the block without requesting a new
 559	 * file system block.
 560	 */
 561	down_read(&EXT4_I(inode)->i_data_sem);
 562	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
 563		retval = ext4_ext_map_blocks(handle, inode, map, 0);
 564	} else {
 565		retval = ext4_ind_map_blocks(handle, inode, map, 0);
 566	}
 567	if (retval > 0) {
 568		unsigned int status;
 569
 570		if (unlikely(retval != map->m_len)) {
 571			ext4_warning(inode->i_sb,
 572				     "ES len assertion failed for inode "
 573				     "%lu: retval %d != map->m_len %d",
 574				     inode->i_ino, retval, map->m_len);
 575			WARN_ON(1);
 576		}
 577
 578		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
 579				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
 580		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
 581		    !(status & EXTENT_STATUS_WRITTEN) &&
 582		    ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
 583				       map->m_lblk + map->m_len - 1))
 584			status |= EXTENT_STATUS_DELAYED;
 585		ret = ext4_es_insert_extent(inode, map->m_lblk,
 586					    map->m_len, map->m_pblk, status);
 587		if (ret < 0)
 588			retval = ret;
 589	}
 590	up_read((&EXT4_I(inode)->i_data_sem));
 591
 592found:
 593	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
 594		ret = check_block_validity(inode, map);
 595		if (ret != 0)
 596			return ret;
 597	}
 598
 599	/* If it is only a block(s) look up */
 600	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
 601		return retval;
 602
 603	/*
 604	 * Returns if the blocks have already allocated
 605	 *
 606	 * Note that if blocks have been preallocated
 607	 * ext4_ext_get_block() returns the create = 0
 608	 * with buffer head unmapped.
 609	 */
 610	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
 611		/*
 612		 * If we need to convert extent to unwritten
 613		 * we continue and do the actual work in
 614		 * ext4_ext_map_blocks()
 615		 */
 616		if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
 617			return retval;
 618
 619	/*
 620	 * Here we clear m_flags because after allocating an new extent,
 621	 * it will be set again.
 
 
 
 
 
 
 622	 */
 623	map->m_flags &= ~EXT4_MAP_FLAGS;
 624
 625	/*
 626	 * New blocks allocate and/or writing to unwritten extent
 627	 * will possibly result in updating i_data, so we take
 628	 * the write lock of i_data_sem, and call get_block()
 629	 * with create == 1 flag.
 630	 */
 631	down_write(&EXT4_I(inode)->i_data_sem);
 632
 633	/*
 
 
 
 
 
 
 
 
 634	 * We need to check for EXT4 here because migrate
 635	 * could have changed the inode type in between
 636	 */
 637	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
 638		retval = ext4_ext_map_blocks(handle, inode, map, flags);
 639	} else {
 640		retval = ext4_ind_map_blocks(handle, inode, map, flags);
 641
 642		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
 643			/*
 644			 * We allocated new blocks which will result in
 645			 * i_data's format changing.  Force the migrate
 646			 * to fail by clearing migrate flags
 647			 */
 648			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
 649		}
 650
 651		/*
 652		 * Update reserved blocks/metadata blocks after successful
 653		 * block allocation which had been deferred till now. We don't
 654		 * support fallocate for non extent files. So we can update
 655		 * reserve space here.
 656		 */
 657		if ((retval > 0) &&
 658			(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
 659			ext4_da_update_reserve_space(inode, retval, 1);
 660	}
 
 
 661
 662	if (retval > 0) {
 663		unsigned int status;
 664
 665		if (unlikely(retval != map->m_len)) {
 666			ext4_warning(inode->i_sb,
 667				     "ES len assertion failed for inode "
 668				     "%lu: retval %d != map->m_len %d",
 669				     inode->i_ino, retval, map->m_len);
 670			WARN_ON(1);
 671		}
 672
 673		/*
 674		 * We have to zeroout blocks before inserting them into extent
 675		 * status tree. Otherwise someone could look them up there and
 676		 * use them before they are really zeroed. We also have to
 677		 * unmap metadata before zeroing as otherwise writeback can
 678		 * overwrite zeros with stale data from block device.
 679		 */
 680		if (flags & EXT4_GET_BLOCKS_ZERO &&
 681		    map->m_flags & EXT4_MAP_MAPPED &&
 682		    map->m_flags & EXT4_MAP_NEW) {
 683			ret = ext4_issue_zeroout(inode, map->m_lblk,
 684						 map->m_pblk, map->m_len);
 685			if (ret) {
 686				retval = ret;
 687				goto out_sem;
 688			}
 689		}
 690
 691		/*
 692		 * If the extent has been zeroed out, we don't need to update
 693		 * extent status tree.
 694		 */
 695		if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
 696		    ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
 697			if (ext4_es_is_written(&es))
 698				goto out_sem;
 699		}
 700		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
 701				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
 702		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
 703		    !(status & EXTENT_STATUS_WRITTEN) &&
 704		    ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
 705				       map->m_lblk + map->m_len - 1))
 706			status |= EXTENT_STATUS_DELAYED;
 707		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
 708					    map->m_pblk, status);
 709		if (ret < 0) {
 710			retval = ret;
 711			goto out_sem;
 712		}
 713	}
 714
 715out_sem:
 716	up_write((&EXT4_I(inode)->i_data_sem));
 717	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
 718		ret = check_block_validity(inode, map);
 719		if (ret != 0)
 720			return ret;
 721
 722		/*
 723		 * Inodes with freshly allocated blocks where contents will be
 724		 * visible after transaction commit must be on transaction's
 725		 * ordered data list.
 726		 */
 727		if (map->m_flags & EXT4_MAP_NEW &&
 728		    !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
 729		    !(flags & EXT4_GET_BLOCKS_ZERO) &&
 730		    !ext4_is_quota_file(inode) &&
 731		    ext4_should_order_data(inode)) {
 732			loff_t start_byte =
 733				(loff_t)map->m_lblk << inode->i_blkbits;
 734			loff_t length = (loff_t)map->m_len << inode->i_blkbits;
 735
 736			if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
 737				ret = ext4_jbd2_inode_add_wait(handle, inode,
 738						start_byte, length);
 739			else
 740				ret = ext4_jbd2_inode_add_write(handle, inode,
 741						start_byte, length);
 742			if (ret)
 743				return ret;
 744		}
 745		ext4_fc_track_range(handle, inode, map->m_lblk,
 746			    map->m_lblk + map->m_len - 1);
 747	}
 748
 749	if (retval < 0)
 750		ext_debug(inode, "failed with err %d\n", retval);
 751	return retval;
 752}
 753
 754/*
 755 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
 756 * we have to be careful as someone else may be manipulating b_state as well.
 757 */
 758static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
 759{
 760	unsigned long old_state;
 761	unsigned long new_state;
 762
 763	flags &= EXT4_MAP_FLAGS;
 764
 765	/* Dummy buffer_head? Set non-atomically. */
 766	if (!bh->b_page) {
 767		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
 768		return;
 769	}
 770	/*
 771	 * Someone else may be modifying b_state. Be careful! This is ugly but
 772	 * once we get rid of using bh as a container for mapping information
 773	 * to pass to / from get_block functions, this can go away.
 774	 */
 775	do {
 776		old_state = READ_ONCE(bh->b_state);
 777		new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
 778	} while (unlikely(
 779		 cmpxchg(&bh->b_state, old_state, new_state) != old_state));
 780}
 781
 782static int _ext4_get_block(struct inode *inode, sector_t iblock,
 783			   struct buffer_head *bh, int flags)
 784{
 
 785	struct ext4_map_blocks map;
 786	int ret = 0;
 787
 788	if (ext4_has_inline_data(inode))
 789		return -ERANGE;
 790
 791	map.m_lblk = iblock;
 792	map.m_len = bh->b_size >> inode->i_blkbits;
 793
 794	ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
 795			      flags);
 
 
 
 
 
 
 
 
 
 
 
 
 796	if (ret > 0) {
 797		map_bh(bh, inode->i_sb, map.m_pblk);
 798		ext4_update_bh_state(bh, map.m_flags);
 799		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
 800		ret = 0;
 801	} else if (ret == 0) {
 802		/* hole case, need to fill in bh->b_size */
 803		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
 804	}
 
 
 805	return ret;
 806}
 807
 808int ext4_get_block(struct inode *inode, sector_t iblock,
 809		   struct buffer_head *bh, int create)
 810{
 811	return _ext4_get_block(inode, iblock, bh,
 812			       create ? EXT4_GET_BLOCKS_CREATE : 0);
 813}
 814
 815/*
 816 * Get block function used when preparing for buffered write if we require
 817 * creating an unwritten extent if blocks haven't been allocated.  The extent
 818 * will be converted to written after the IO is complete.
 819 */
 820int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
 821			     struct buffer_head *bh_result, int create)
 822{
 823	ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
 824		   inode->i_ino, create);
 825	return _ext4_get_block(inode, iblock, bh_result,
 826			       EXT4_GET_BLOCKS_IO_CREATE_EXT);
 827}
 828
 829/* Maximum number of blocks we map for direct IO at once. */
 830#define DIO_MAX_BLOCKS 4096
 831
 832/*
 833 * `handle' can be NULL if create is zero
 834 */
 835struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
 836				ext4_lblk_t block, int map_flags)
 837{
 838	struct ext4_map_blocks map;
 839	struct buffer_head *bh;
 840	int create = map_flags & EXT4_GET_BLOCKS_CREATE;
 841	int err;
 842
 843	ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
 844		    || handle != NULL || create == 0);
 845
 846	map.m_lblk = block;
 847	map.m_len = 1;
 848	err = ext4_map_blocks(handle, inode, &map, map_flags);
 
 849
 850	if (err == 0)
 851		return create ? ERR_PTR(-ENOSPC) : NULL;
 852	if (err < 0)
 853		return ERR_PTR(err);
 
 
 
 854
 855	bh = sb_getblk(inode->i_sb, map.m_pblk);
 856	if (unlikely(!bh))
 857		return ERR_PTR(-ENOMEM);
 
 
 858	if (map.m_flags & EXT4_MAP_NEW) {
 859		ASSERT(create != 0);
 860		ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
 861			    || (handle != NULL));
 862
 863		/*
 864		 * Now that we do not always journal data, we should
 865		 * keep in mind whether this should always journal the
 866		 * new buffer as metadata.  For now, regular file
 867		 * writes use ext4_get_block instead, so it's not a
 868		 * problem.
 869		 */
 870		lock_buffer(bh);
 871		BUFFER_TRACE(bh, "call get_create_access");
 872		err = ext4_journal_get_create_access(handle, bh);
 873		if (unlikely(err)) {
 874			unlock_buffer(bh);
 875			goto errout;
 876		}
 877		if (!buffer_uptodate(bh)) {
 878			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
 879			set_buffer_uptodate(bh);
 880		}
 881		unlock_buffer(bh);
 882		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
 883		err = ext4_handle_dirty_metadata(handle, inode, bh);
 884		if (unlikely(err))
 885			goto errout;
 886	} else
 887		BUFFER_TRACE(bh, "not a new buffer");
 
 
 
 
 
 
 888	return bh;
 889errout:
 890	brelse(bh);
 891	return ERR_PTR(err);
 892}
 893
 894struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
 895			       ext4_lblk_t block, int map_flags)
 896{
 897	struct buffer_head *bh;
 898	int ret;
 899
 900	bh = ext4_getblk(handle, inode, block, map_flags);
 901	if (IS_ERR(bh))
 
 
 902		return bh;
 903	if (!bh || ext4_buffer_uptodate(bh))
 
 
 904		return bh;
 905
 906	ret = ext4_read_bh_lock(bh, REQ_META | REQ_PRIO, true);
 907	if (ret) {
 908		put_bh(bh);
 909		return ERR_PTR(ret);
 910	}
 911	return bh;
 912}
 913
 914/* Read a contiguous batch of blocks. */
 915int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
 916		     bool wait, struct buffer_head **bhs)
 917{
 918	int i, err;
 919
 920	for (i = 0; i < bh_count; i++) {
 921		bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
 922		if (IS_ERR(bhs[i])) {
 923			err = PTR_ERR(bhs[i]);
 924			bh_count = i;
 925			goto out_brelse;
 926		}
 927	}
 928
 929	for (i = 0; i < bh_count; i++)
 930		/* Note that NULL bhs[i] is valid because of holes. */
 931		if (bhs[i] && !ext4_buffer_uptodate(bhs[i]))
 932			ext4_read_bh_lock(bhs[i], REQ_META | REQ_PRIO, false);
 933
 934	if (!wait)
 935		return 0;
 936
 937	for (i = 0; i < bh_count; i++)
 938		if (bhs[i])
 939			wait_on_buffer(bhs[i]);
 940
 941	for (i = 0; i < bh_count; i++) {
 942		if (bhs[i] && !buffer_uptodate(bhs[i])) {
 943			err = -EIO;
 944			goto out_brelse;
 945		}
 946	}
 947	return 0;
 948
 949out_brelse:
 950	for (i = 0; i < bh_count; i++) {
 951		brelse(bhs[i]);
 952		bhs[i] = NULL;
 953	}
 954	return err;
 955}
 956
 957int ext4_walk_page_buffers(handle_t *handle,
 958			   struct buffer_head *head,
 959			   unsigned from,
 960			   unsigned to,
 961			   int *partial,
 962			   int (*fn)(handle_t *handle,
 963				     struct buffer_head *bh))
 964{
 965	struct buffer_head *bh;
 966	unsigned block_start, block_end;
 967	unsigned blocksize = head->b_size;
 968	int err, ret = 0;
 969	struct buffer_head *next;
 970
 971	for (bh = head, block_start = 0;
 972	     ret == 0 && (bh != head || !block_start);
 973	     block_start = block_end, bh = next) {
 974		next = bh->b_this_page;
 975		block_end = block_start + blocksize;
 976		if (block_end <= from || block_start >= to) {
 977			if (partial && !buffer_uptodate(bh))
 978				*partial = 1;
 979			continue;
 980		}
 981		err = (*fn)(handle, bh);
 982		if (!ret)
 983			ret = err;
 984	}
 985	return ret;
 986}
 987
 988/*
 989 * To preserve ordering, it is essential that the hole instantiation and
 990 * the data write be encapsulated in a single transaction.  We cannot
 991 * close off a transaction and start a new one between the ext4_get_block()
 992 * and the commit_write().  So doing the jbd2_journal_start at the start of
 993 * prepare_write() is the right place.
 994 *
 995 * Also, this function can nest inside ext4_writepage().  In that case, we
 996 * *know* that ext4_writepage() has generated enough buffer credits to do the
 997 * whole page.  So we won't block on the journal in that case, which is good,
 998 * because the caller may be PF_MEMALLOC.
 
 999 *
1000 * By accident, ext4 can be reentered when a transaction is open via
1001 * quota file writes.  If we were to commit the transaction while thus
1002 * reentered, there can be a deadlock - we would be holding a quota
1003 * lock, and the commit would never complete if another thread had a
1004 * transaction open and was blocking on the quota lock - a ranking
1005 * violation.
1006 *
1007 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1008 * will _not_ run commit under these circumstances because handle->h_ref
1009 * is elevated.  We'll still have enough credits for the tiny quotafile
1010 * write.
1011 */
1012int do_journal_get_write_access(handle_t *handle,
1013				struct buffer_head *bh)
1014{
1015	int dirty = buffer_dirty(bh);
1016	int ret;
1017
1018	if (!buffer_mapped(bh) || buffer_freed(bh))
1019		return 0;
1020	/*
1021	 * __block_write_begin() could have dirtied some buffers. Clean
1022	 * the dirty bit as jbd2_journal_get_write_access() could complain
1023	 * otherwise about fs integrity issues. Setting of the dirty bit
1024	 * by __block_write_begin() isn't a real problem here as we clear
1025	 * the bit before releasing a page lock and thus writeback cannot
1026	 * ever write the buffer.
1027	 */
1028	if (dirty)
1029		clear_buffer_dirty(bh);
1030	BUFFER_TRACE(bh, "get write access");
1031	ret = ext4_journal_get_write_access(handle, bh);
1032	if (!ret && dirty)
1033		ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1034	return ret;
1035}
1036
1037#ifdef CONFIG_FS_ENCRYPTION
1038static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1039				  get_block_t *get_block)
1040{
1041	unsigned from = pos & (PAGE_SIZE - 1);
1042	unsigned to = from + len;
1043	struct inode *inode = page->mapping->host;
1044	unsigned block_start, block_end;
1045	sector_t block;
1046	int err = 0;
1047	unsigned blocksize = inode->i_sb->s_blocksize;
1048	unsigned bbits;
1049	struct buffer_head *bh, *head, *wait[2];
1050	int nr_wait = 0;
1051	int i;
1052
1053	BUG_ON(!PageLocked(page));
1054	BUG_ON(from > PAGE_SIZE);
1055	BUG_ON(to > PAGE_SIZE);
1056	BUG_ON(from > to);
1057
1058	if (!page_has_buffers(page))
1059		create_empty_buffers(page, blocksize, 0);
1060	head = page_buffers(page);
1061	bbits = ilog2(blocksize);
1062	block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1063
1064	for (bh = head, block_start = 0; bh != head || !block_start;
1065	    block++, block_start = block_end, bh = bh->b_this_page) {
1066		block_end = block_start + blocksize;
1067		if (block_end <= from || block_start >= to) {
1068			if (PageUptodate(page)) {
1069				set_buffer_uptodate(bh);
1070			}
1071			continue;
1072		}
1073		if (buffer_new(bh))
1074			clear_buffer_new(bh);
1075		if (!buffer_mapped(bh)) {
1076			WARN_ON(bh->b_size != blocksize);
1077			err = get_block(inode, block, bh, 1);
1078			if (err)
1079				break;
1080			if (buffer_new(bh)) {
1081				if (PageUptodate(page)) {
1082					clear_buffer_new(bh);
1083					set_buffer_uptodate(bh);
1084					mark_buffer_dirty(bh);
1085					continue;
1086				}
1087				if (block_end > to || block_start < from)
1088					zero_user_segments(page, to, block_end,
1089							   block_start, from);
1090				continue;
1091			}
1092		}
1093		if (PageUptodate(page)) {
1094			set_buffer_uptodate(bh);
1095			continue;
1096		}
1097		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1098		    !buffer_unwritten(bh) &&
1099		    (block_start < from || block_end > to)) {
1100			ext4_read_bh_lock(bh, 0, false);
1101			wait[nr_wait++] = bh;
1102		}
1103	}
1104	/*
1105	 * If we issued read requests, let them complete.
1106	 */
1107	for (i = 0; i < nr_wait; i++) {
1108		wait_on_buffer(wait[i]);
1109		if (!buffer_uptodate(wait[i]))
1110			err = -EIO;
1111	}
1112	if (unlikely(err)) {
1113		page_zero_new_buffers(page, from, to);
1114	} else if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
1115		for (i = 0; i < nr_wait; i++) {
1116			int err2;
1117
1118			err2 = fscrypt_decrypt_pagecache_blocks(page, blocksize,
1119								bh_offset(wait[i]));
1120			if (err2) {
1121				clear_buffer_uptodate(wait[i]);
1122				err = err2;
1123			}
1124		}
1125	}
1126
1127	return err;
1128}
1129#endif
1130
1131static int ext4_write_begin(struct file *file, struct address_space *mapping,
1132			    loff_t pos, unsigned len, unsigned flags,
1133			    struct page **pagep, void **fsdata)
1134{
1135	struct inode *inode = mapping->host;
1136	int ret, needed_blocks;
1137	handle_t *handle;
1138	int retries = 0;
1139	struct page *page;
1140	pgoff_t index;
1141	unsigned from, to;
1142
1143	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
1144		return -EIO;
1145
1146	trace_ext4_write_begin(inode, pos, len, flags);
1147	/*
1148	 * Reserve one block more for addition to orphan list in case
1149	 * we allocate blocks but write fails for some reason
1150	 */
1151	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1152	index = pos >> PAGE_SHIFT;
1153	from = pos & (PAGE_SIZE - 1);
1154	to = from + len;
1155
1156	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1157		ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1158						    flags, pagep);
1159		if (ret < 0)
1160			return ret;
1161		if (ret == 1)
1162			return 0;
1163	}
1164
1165	/*
1166	 * grab_cache_page_write_begin() can take a long time if the
1167	 * system is thrashing due to memory pressure, or if the page
1168	 * is being written back.  So grab it first before we start
1169	 * the transaction handle.  This also allows us to allocate
1170	 * the page (if needed) without using GFP_NOFS.
1171	 */
1172retry_grab:
1173	page = grab_cache_page_write_begin(mapping, index, flags);
1174	if (!page)
1175		return -ENOMEM;
1176	unlock_page(page);
1177
1178retry_journal:
1179	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1180	if (IS_ERR(handle)) {
1181		put_page(page);
1182		return PTR_ERR(handle);
1183	}
1184
1185	lock_page(page);
1186	if (page->mapping != mapping) {
1187		/* The page got truncated from under us */
1188		unlock_page(page);
1189		put_page(page);
1190		ext4_journal_stop(handle);
1191		goto retry_grab;
 
1192	}
1193	/* In case writeback began while the page was unlocked */
1194	wait_for_stable_page(page);
1195
1196#ifdef CONFIG_FS_ENCRYPTION
1197	if (ext4_should_dioread_nolock(inode))
1198		ret = ext4_block_write_begin(page, pos, len,
1199					     ext4_get_block_unwritten);
1200	else
1201		ret = ext4_block_write_begin(page, pos, len,
1202					     ext4_get_block);
1203#else
1204	if (ext4_should_dioread_nolock(inode))
1205		ret = __block_write_begin(page, pos, len,
1206					  ext4_get_block_unwritten);
1207	else
1208		ret = __block_write_begin(page, pos, len, ext4_get_block);
1209#endif
1210	if (!ret && ext4_should_journal_data(inode)) {
1211		ret = ext4_walk_page_buffers(handle, page_buffers(page),
1212					     from, to, NULL,
1213					     do_journal_get_write_access);
1214	}
1215
1216	if (ret) {
1217		bool extended = (pos + len > inode->i_size) &&
1218				!ext4_verity_in_progress(inode);
1219
1220		unlock_page(page);
 
1221		/*
1222		 * __block_write_begin may have instantiated a few blocks
1223		 * outside i_size.  Trim these off again. Don't need
1224		 * i_size_read because we hold i_mutex.
1225		 *
1226		 * Add inode to orphan list in case we crash before
1227		 * truncate finishes
1228		 */
1229		if (extended && ext4_can_truncate(inode))
1230			ext4_orphan_add(handle, inode);
1231
1232		ext4_journal_stop(handle);
1233		if (extended) {
1234			ext4_truncate_failed_write(inode);
1235			/*
1236			 * If truncate failed early the inode might
1237			 * still be on the orphan list; we need to
1238			 * make sure the inode is removed from the
1239			 * orphan list in that case.
1240			 */
1241			if (inode->i_nlink)
1242				ext4_orphan_del(NULL, inode);
1243		}
 
1244
1245		if (ret == -ENOSPC &&
1246		    ext4_should_retry_alloc(inode->i_sb, &retries))
1247			goto retry_journal;
1248		put_page(page);
1249		return ret;
1250	}
1251	*pagep = page;
1252	return ret;
1253}
1254
1255/* For write_end() in data=journal mode */
1256static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1257{
1258	int ret;
1259	if (!buffer_mapped(bh) || buffer_freed(bh))
1260		return 0;
1261	set_buffer_uptodate(bh);
1262	ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1263	clear_buffer_meta(bh);
1264	clear_buffer_prio(bh);
1265	return ret;
1266}
1267
1268/*
1269 * We need to pick up the new inode size which generic_commit_write gave us
1270 * `file' can be NULL - eg, when called from page_symlink().
1271 *
1272 * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1273 * buffers are managed internally.
1274 */
1275static int ext4_write_end(struct file *file,
1276			  struct address_space *mapping,
1277			  loff_t pos, unsigned len, unsigned copied,
1278			  struct page *page, void *fsdata)
1279{
 
 
1280	handle_t *handle = ext4_journal_current_handle();
1281	struct inode *inode = mapping->host;
1282	loff_t old_size = inode->i_size;
1283	int ret = 0, ret2;
1284	int i_size_changed = 0;
1285	int inline_data = ext4_has_inline_data(inode);
1286	bool verity = ext4_verity_in_progress(inode);
1287
1288	trace_ext4_write_end(inode, pos, len, copied);
1289	if (inline_data) {
1290		ret = ext4_write_inline_data_end(inode, pos, len,
1291						 copied, page);
1292		if (ret < 0) {
1293			unlock_page(page);
1294			put_page(page);
1295			goto errout;
1296		}
1297		copied = ret;
1298		ret = 0;
1299	} else
1300		copied = block_write_end(file, mapping, pos,
1301					 len, copied, page, fsdata);
1302	/*
1303	 * it's important to update i_size while still holding page lock:
 
 
 
1304	 * page writeout could otherwise come in and zero beyond i_size.
1305	 *
1306	 * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree
1307	 * blocks are being written past EOF, so skip the i_size update.
1308	 */
1309	if (!verity)
1310		i_size_changed = ext4_update_inode_size(inode, pos + copied);
 
 
 
 
 
 
 
 
 
 
 
1311	unlock_page(page);
1312	put_page(page);
1313
1314	if (old_size < pos && !verity)
1315		pagecache_isize_extended(inode, old_size, pos);
1316	/*
1317	 * Don't mark the inode dirty under page lock. First, it unnecessarily
1318	 * makes the holding time of page lock longer. Second, it forces lock
1319	 * ordering of page lock and transaction start for journaling
1320	 * filesystems.
1321	 */
1322	if (i_size_changed || inline_data)
1323		ret = ext4_mark_inode_dirty(handle, inode);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1324
1325errout:
1326	if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1327		/* if we have allocated more blocks and copied
1328		 * less. We will have blocks allocated outside
1329		 * inode->i_size. So truncate them
1330		 */
1331		ext4_orphan_add(handle, inode);
1332
 
 
 
 
 
 
 
 
 
 
 
 
 
1333	ret2 = ext4_journal_stop(handle);
1334	if (!ret)
1335		ret = ret2;
1336
1337	if (pos + len > inode->i_size && !verity) {
1338		ext4_truncate_failed_write(inode);
1339		/*
1340		 * If truncate failed early the inode might still be
1341		 * on the orphan list; we need to make sure the inode
1342		 * is removed from the orphan list in that case.
1343		 */
1344		if (inode->i_nlink)
1345			ext4_orphan_del(NULL, inode);
1346	}
1347
 
1348	return ret ? ret : copied;
1349}
1350
1351/*
1352 * This is a private version of page_zero_new_buffers() which doesn't
1353 * set the buffer to be dirty, since in data=journalled mode we need
1354 * to call ext4_handle_dirty_metadata() instead.
1355 */
1356static void ext4_journalled_zero_new_buffers(handle_t *handle,
1357					    struct page *page,
1358					    unsigned from, unsigned to)
1359{
1360	unsigned int block_start = 0, block_end;
1361	struct buffer_head *head, *bh;
 
 
 
 
 
 
 
 
 
 
 
 
1362
1363	bh = head = page_buffers(page);
1364	do {
1365		block_end = block_start + bh->b_size;
1366		if (buffer_new(bh)) {
1367			if (block_end > from && block_start < to) {
1368				if (!PageUptodate(page)) {
1369					unsigned start, size;
1370
1371					start = max(from, block_start);
1372					size = min(to, block_end) - start;
 
1373
1374					zero_user(page, start, size);
1375					write_end_fn(handle, bh);
1376				}
1377				clear_buffer_new(bh);
1378			}
1379		}
1380		block_start = block_end;
1381		bh = bh->b_this_page;
1382	} while (bh != head);
 
 
 
1383}
1384
1385static int ext4_journalled_write_end(struct file *file,
1386				     struct address_space *mapping,
1387				     loff_t pos, unsigned len, unsigned copied,
1388				     struct page *page, void *fsdata)
1389{
1390	handle_t *handle = ext4_journal_current_handle();
1391	struct inode *inode = mapping->host;
1392	loff_t old_size = inode->i_size;
1393	int ret = 0, ret2;
1394	int partial = 0;
1395	unsigned from, to;
1396	int size_changed = 0;
1397	int inline_data = ext4_has_inline_data(inode);
1398	bool verity = ext4_verity_in_progress(inode);
1399
1400	trace_ext4_journalled_write_end(inode, pos, len, copied);
1401	from = pos & (PAGE_SIZE - 1);
1402	to = from + len;
1403
1404	BUG_ON(!ext4_handle_valid(handle));
1405
1406	if (inline_data) {
1407		ret = ext4_write_inline_data_end(inode, pos, len,
1408						 copied, page);
1409		if (ret < 0) {
1410			unlock_page(page);
1411			put_page(page);
1412			goto errout;
1413		}
1414		copied = ret;
1415		ret = 0;
1416	} else if (unlikely(copied < len) && !PageUptodate(page)) {
1417		copied = 0;
1418		ext4_journalled_zero_new_buffers(handle, page, from, to);
1419	} else {
1420		if (unlikely(copied < len))
1421			ext4_journalled_zero_new_buffers(handle, page,
1422							 from + copied, to);
1423		ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1424					     from + copied, &partial,
1425					     write_end_fn);
1426		if (!partial)
1427			SetPageUptodate(page);
1428	}
1429	if (!verity)
1430		size_changed = ext4_update_inode_size(inode, pos + copied);
 
 
 
 
 
 
1431	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1432	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1433	unlock_page(page);
1434	put_page(page);
1435
1436	if (old_size < pos && !verity)
1437		pagecache_isize_extended(inode, old_size, pos);
1438
1439	if (size_changed || inline_data) {
1440		ret2 = ext4_mark_inode_dirty(handle, inode);
1441		if (!ret)
1442			ret = ret2;
1443	}
1444
1445errout:
1446	if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
 
1447		/* if we have allocated more blocks and copied
1448		 * less. We will have blocks allocated outside
1449		 * inode->i_size. So truncate them
1450		 */
1451		ext4_orphan_add(handle, inode);
1452
1453	ret2 = ext4_journal_stop(handle);
1454	if (!ret)
1455		ret = ret2;
1456	if (pos + len > inode->i_size && !verity) {
1457		ext4_truncate_failed_write(inode);
1458		/*
1459		 * If truncate failed early the inode might still be
1460		 * on the orphan list; we need to make sure the inode
1461		 * is removed from the orphan list in that case.
1462		 */
1463		if (inode->i_nlink)
1464			ext4_orphan_del(NULL, inode);
1465	}
1466
1467	return ret ? ret : copied;
1468}
1469
1470/*
1471 * Reserve space for a single cluster
1472 */
1473static int ext4_da_reserve_space(struct inode *inode)
1474{
 
1475	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1476	struct ext4_inode_info *ei = EXT4_I(inode);
 
1477	int ret;
1478
1479	/*
 
 
 
 
 
 
 
 
 
 
 
1480	 * We will charge metadata quota at writeout time; this saves
1481	 * us from metadata over-estimation, though we may go over by
1482	 * a small amount in the end.  Here we just reserve for data.
1483	 */
1484	ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1485	if (ret)
1486		return ret;
1487
1488	spin_lock(&ei->i_block_reservation_lock);
1489	if (ext4_claim_free_clusters(sbi, 1, 0)) {
1490		spin_unlock(&ei->i_block_reservation_lock);
1491		dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
 
 
 
 
 
1492		return -ENOSPC;
1493	}
 
1494	ei->i_reserved_data_blocks++;
1495	trace_ext4_da_reserve_space(inode);
1496	spin_unlock(&ei->i_block_reservation_lock);
1497
1498	return 0;       /* success */
1499}
1500
1501void ext4_da_release_space(struct inode *inode, int to_free)
1502{
1503	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1504	struct ext4_inode_info *ei = EXT4_I(inode);
1505
1506	if (!to_free)
1507		return;		/* Nothing to release, exit */
1508
1509	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1510
1511	trace_ext4_da_release_space(inode, to_free);
1512	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1513		/*
1514		 * if there aren't enough reserved blocks, then the
1515		 * counter is messed up somewhere.  Since this
1516		 * function is called from invalidate page, it's
1517		 * harmless to return without any action.
1518		 */
1519		ext4_warning(inode->i_sb, "ext4_da_release_space: "
1520			 "ino %lu, to_free %d with only %d reserved "
1521			 "data blocks", inode->i_ino, to_free,
1522			 ei->i_reserved_data_blocks);
1523		WARN_ON(1);
1524		to_free = ei->i_reserved_data_blocks;
1525	}
1526	ei->i_reserved_data_blocks -= to_free;
1527
 
 
 
 
 
 
 
 
 
 
 
 
1528	/* update fs dirty data blocks counter */
1529	percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1530
1531	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1532
1533	dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1534}
1535
1536/*
1537 * Delayed allocation stuff
1538 */
1539
1540struct mpage_da_data {
1541	struct inode *inode;
1542	struct writeback_control *wbc;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1543
1544	pgoff_t first_page;	/* The first page to write */
1545	pgoff_t next_page;	/* Current page to examine */
1546	pgoff_t last_page;	/* Last page to examine */
1547	/*
1548	 * Extent to map - this can be after first_page because that can be
1549	 * fully mapped. We somewhat abuse m_flags to store whether the extent
1550	 * is delalloc or unwritten.
1551	 */
1552	struct ext4_map_blocks map;
1553	struct ext4_io_submit io_submit;	/* IO submission data */
1554	unsigned int do_map:1;
1555	unsigned int scanned_until_end:1;
1556};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1557
1558static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1559				       bool invalidate)
1560{
1561	int nr_pages, i;
1562	pgoff_t index, end;
1563	struct pagevec pvec;
1564	struct inode *inode = mpd->inode;
1565	struct address_space *mapping = inode->i_mapping;
1566
1567	/* This is necessary when next_page == 0. */
1568	if (mpd->first_page >= mpd->next_page)
1569		return;
1570
1571	mpd->scanned_until_end = 0;
1572	index = mpd->first_page;
1573	end   = mpd->next_page - 1;
1574	if (invalidate) {
1575		ext4_lblk_t start, last;
1576		start = index << (PAGE_SHIFT - inode->i_blkbits);
1577		last = end << (PAGE_SHIFT - inode->i_blkbits);
1578		ext4_es_remove_extent(inode, start, last - start + 1);
1579	}
1580
1581	pagevec_init(&pvec);
1582	while (index <= end) {
1583		nr_pages = pagevec_lookup_range(&pvec, mapping, &index, end);
1584		if (nr_pages == 0)
1585			break;
1586		for (i = 0; i < nr_pages; i++) {
1587			struct page *page = pvec.pages[i];
1588
 
1589			BUG_ON(!PageLocked(page));
1590			BUG_ON(PageWriteback(page));
1591			if (invalidate) {
1592				if (page_mapped(page))
1593					clear_page_dirty_for_io(page);
1594				block_invalidatepage(page, 0, PAGE_SIZE);
1595				ClearPageUptodate(page);
1596			}
1597			unlock_page(page);
1598		}
 
1599		pagevec_release(&pvec);
1600	}
 
1601}
1602
1603static void ext4_print_free_blocks(struct inode *inode)
1604{
1605	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1606	struct super_block *sb = inode->i_sb;
1607	struct ext4_inode_info *ei = EXT4_I(inode);
1608
1609	ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1610	       EXT4_C2B(EXT4_SB(inode->i_sb),
1611			ext4_count_free_clusters(sb)));
1612	ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1613	ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1614	       (long long) EXT4_C2B(EXT4_SB(sb),
1615		percpu_counter_sum(&sbi->s_freeclusters_counter)));
1616	ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1617	       (long long) EXT4_C2B(EXT4_SB(sb),
1618		percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1619	ext4_msg(sb, KERN_CRIT, "Block reservation details");
1620	ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1621		 ei->i_reserved_data_blocks);
1622	return;
1623}
1624
1625static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1626{
1627	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1628}
1629
1630/*
1631 * ext4_insert_delayed_block - adds a delayed block to the extents status
1632 *                             tree, incrementing the reserved cluster/block
1633 *                             count or making a pending reservation
1634 *                             where needed
1635 *
1636 * @inode - file containing the newly added block
1637 * @lblk - logical block to be added
 
1638 *
1639 * Returns 0 on success, negative error code on failure.
1640 */
1641static int ext4_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk)
1642{
1643	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1644	int ret;
1645	bool allocated = false;
1646	bool reserved = false;
 
 
1647
1648	/*
1649	 * If the cluster containing lblk is shared with a delayed,
1650	 * written, or unwritten extent in a bigalloc file system, it's
1651	 * already been accounted for and does not need to be reserved.
1652	 * A pending reservation must be made for the cluster if it's
1653	 * shared with a written or unwritten extent and doesn't already
1654	 * have one.  Written and unwritten extents can be purged from the
1655	 * extents status tree if the system is under memory pressure, so
1656	 * it's necessary to examine the extent tree if a search of the
1657	 * extents status tree doesn't get a match.
1658	 */
1659	if (sbi->s_cluster_ratio == 1) {
1660		ret = ext4_da_reserve_space(inode);
1661		if (ret != 0)   /* ENOSPC */
1662			goto errout;
1663		reserved = true;
1664	} else {   /* bigalloc */
1665		if (!ext4_es_scan_clu(inode, &ext4_es_is_delonly, lblk)) {
1666			if (!ext4_es_scan_clu(inode,
1667					      &ext4_es_is_mapped, lblk)) {
1668				ret = ext4_clu_mapped(inode,
1669						      EXT4_B2C(sbi, lblk));
1670				if (ret < 0)
1671					goto errout;
1672				if (ret == 0) {
1673					ret = ext4_da_reserve_space(inode);
1674					if (ret != 0)   /* ENOSPC */
1675						goto errout;
1676					reserved = true;
1677				} else {
1678					allocated = true;
1679				}
1680			} else {
1681				allocated = true;
1682			}
1683		}
1684	}
 
1685
1686	ret = ext4_es_insert_delayed_block(inode, lblk, allocated);
1687	if (ret && reserved)
1688		ext4_da_release_space(inode, 1);
1689
1690errout:
1691	return ret;
1692}
1693
1694/*
1695 * This function is grabs code from the very beginning of
1696 * ext4_map_blocks, but assumes that the caller is from delayed write
1697 * time. This function looks up the requested blocks and sets the
1698 * buffer delay bit under the protection of i_data_sem.
1699 */
1700static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1701			      struct ext4_map_blocks *map,
1702			      struct buffer_head *bh)
1703{
1704	struct extent_status es;
1705	int retval;
1706	sector_t invalid_block = ~((sector_t) 0xffff);
1707#ifdef ES_AGGRESSIVE_TEST
1708	struct ext4_map_blocks orig_map;
1709
1710	memcpy(&orig_map, map, sizeof(*map));
1711#endif
1712
1713	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1714		invalid_block = ~0;
1715
1716	map->m_flags = 0;
1717	ext_debug(inode, "max_blocks %u, logical block %lu\n", map->m_len,
1718		  (unsigned long) map->m_lblk);
1719
1720	/* Lookup extent status tree firstly */
1721	if (ext4_es_lookup_extent(inode, iblock, NULL, &es)) {
1722		if (ext4_es_is_hole(&es)) {
1723			retval = 0;
1724			down_read(&EXT4_I(inode)->i_data_sem);
1725			goto add_delayed;
1726		}
1727
1728		/*
1729		 * Delayed extent could be allocated by fallocate.
1730		 * So we need to check it.
 
 
 
1731		 */
1732		if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1733			map_bh(bh, inode->i_sb, invalid_block);
1734			set_buffer_new(bh);
1735			set_buffer_delay(bh);
1736			return 0;
 
 
 
 
 
 
1737		}
 
 
 
 
 
 
 
 
1738
1739		map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1740		retval = es.es_len - (iblock - es.es_lblk);
1741		if (retval > map->m_len)
1742			retval = map->m_len;
1743		map->m_len = retval;
1744		if (ext4_es_is_written(&es))
1745			map->m_flags |= EXT4_MAP_MAPPED;
1746		else if (ext4_es_is_unwritten(&es))
1747			map->m_flags |= EXT4_MAP_UNWRITTEN;
1748		else
1749			BUG();
1750
1751#ifdef ES_AGGRESSIVE_TEST
1752		ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1753#endif
1754		return retval;
 
1755	}
1756
1757	/*
1758	 * Try to see if we can get the block without requesting a new
1759	 * file system block.
1760	 */
1761	down_read(&EXT4_I(inode)->i_data_sem);
1762	if (ext4_has_inline_data(inode))
1763		retval = 0;
1764	else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1765		retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1766	else
1767		retval = ext4_ind_map_blocks(NULL, inode, map, 0);
 
 
 
 
1768
1769add_delayed:
1770	if (retval == 0) {
1771		int ret;
 
1772
1773		/*
1774		 * XXX: __block_prepare_write() unmaps passed block,
1775		 * is it OK?
1776		 */
1777
1778		ret = ext4_insert_delayed_block(inode, map->m_lblk);
1779		if (ret != 0) {
1780			retval = ret;
1781			goto out_unlock;
1782		}
 
 
 
 
 
 
 
 
 
 
1783
1784		map_bh(bh, inode->i_sb, invalid_block);
1785		set_buffer_new(bh);
1786		set_buffer_delay(bh);
1787	} else if (retval > 0) {
1788		int ret;
1789		unsigned int status;
 
 
1790
1791		if (unlikely(retval != map->m_len)) {
1792			ext4_warning(inode->i_sb,
1793				     "ES len assertion failed for inode "
1794				     "%lu: retval %d != map->m_len %d",
1795				     inode->i_ino, retval, map->m_len);
1796			WARN_ON(1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1797		}
 
 
 
 
 
 
 
 
 
 
1798
1799		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1800				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1801		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1802					    map->m_pblk, status);
1803		if (ret != 0)
1804			retval = ret;
 
1805	}
1806
1807out_unlock:
1808	up_read((&EXT4_I(inode)->i_data_sem));
 
 
 
 
 
 
1809
1810	return retval;
 
 
1811}
1812
1813/*
1814 * This is a special get_block_t callback which is used by
1815 * ext4_da_write_begin().  It will either return mapped block or
1816 * reserve space for a single block.
1817 *
1818 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1819 * We also have b_blocknr = -1 and b_bdev initialized properly
1820 *
1821 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1822 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1823 * initialized properly.
1824 */
1825int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1826			   struct buffer_head *bh, int create)
1827{
1828	struct ext4_map_blocks map;
1829	int ret = 0;
 
 
 
 
1830
1831	BUG_ON(create == 0);
1832	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1833
1834	map.m_lblk = iblock;
1835	map.m_len = 1;
1836
1837	/*
1838	 * first, we need to know whether the block is allocated already
1839	 * preallocated blocks are unmapped but should treated
1840	 * the same as allocated blocks.
1841	 */
1842	ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1843	if (ret <= 0)
1844		return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1845
1846	map_bh(bh, inode->i_sb, map.m_pblk);
1847	ext4_update_bh_state(bh, map.m_flags);
1848
1849	if (buffer_unwritten(bh)) {
1850		/* A delayed write to unwritten bh should be marked
1851		 * new and mapped.  Mapped ensures that we don't do
1852		 * get_block multiple times when we write to the same
1853		 * offset and new ensures that we do proper zero out
1854		 * for partial write.
1855		 */
1856		set_buffer_new(bh);
1857		set_buffer_mapped(bh);
1858	}
1859	return 0;
1860}
1861
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1862static int bget_one(handle_t *handle, struct buffer_head *bh)
1863{
1864	get_bh(bh);
1865	return 0;
1866}
1867
1868static int bput_one(handle_t *handle, struct buffer_head *bh)
1869{
1870	put_bh(bh);
1871	return 0;
1872}
1873
1874static int __ext4_journalled_writepage(struct page *page,
1875				       unsigned int len)
1876{
1877	struct address_space *mapping = page->mapping;
1878	struct inode *inode = mapping->host;
1879	struct buffer_head *page_bufs = NULL;
1880	handle_t *handle = NULL;
1881	int ret = 0, err = 0;
1882	int inline_data = ext4_has_inline_data(inode);
1883	struct buffer_head *inode_bh = NULL;
1884
1885	ClearPageChecked(page);
1886
1887	if (inline_data) {
1888		BUG_ON(page->index != 0);
1889		BUG_ON(len > ext4_get_max_inline_size(inode));
1890		inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1891		if (inode_bh == NULL)
1892			goto out;
1893	} else {
1894		page_bufs = page_buffers(page);
1895		if (!page_bufs) {
1896			BUG();
1897			goto out;
1898		}
1899		ext4_walk_page_buffers(handle, page_bufs, 0, len,
1900				       NULL, bget_one);
1901	}
1902	/*
1903	 * We need to release the page lock before we start the
1904	 * journal, so grab a reference so the page won't disappear
1905	 * out from under us.
1906	 */
1907	get_page(page);
1908	unlock_page(page);
1909
1910	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1911				    ext4_writepage_trans_blocks(inode));
1912	if (IS_ERR(handle)) {
1913		ret = PTR_ERR(handle);
1914		put_page(page);
1915		goto out_no_pagelock;
1916	}
 
1917	BUG_ON(!ext4_handle_valid(handle));
1918
1919	lock_page(page);
1920	put_page(page);
1921	if (page->mapping != mapping) {
1922		/* The page got truncated from under us */
1923		ext4_journal_stop(handle);
1924		ret = 0;
1925		goto out;
1926	}
1927
1928	if (inline_data) {
1929		ret = ext4_mark_inode_dirty(handle, inode);
1930	} else {
1931		ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1932					     do_journal_get_write_access);
1933
1934		err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1935					     write_end_fn);
1936	}
1937	if (ret == 0)
1938		ret = err;
1939	err = ext4_jbd2_inode_add_write(handle, inode, page_offset(page), len);
1940	if (ret == 0)
1941		ret = err;
1942	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1943	err = ext4_journal_stop(handle);
1944	if (!ret)
1945		ret = err;
1946
 
1947	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1948out:
1949	unlock_page(page);
1950out_no_pagelock:
1951	if (!inline_data && page_bufs)
1952		ext4_walk_page_buffers(NULL, page_bufs, 0, len,
1953				       NULL, bput_one);
1954	brelse(inode_bh);
1955	return ret;
1956}
1957
 
 
 
1958/*
1959 * Note that we don't need to start a transaction unless we're journaling data
1960 * because we should have holes filled from ext4_page_mkwrite(). We even don't
1961 * need to file the inode to the transaction's list in ordered mode because if
1962 * we are writing back data added by write(), the inode is already there and if
1963 * we are writing back data modified via mmap(), no one guarantees in which
1964 * transaction the data will hit the disk. In case we are journaling data, we
1965 * cannot start transaction directly because transaction start ranks above page
1966 * lock so we have to do some magic.
1967 *
1968 * This function can get called via...
1969 *   - ext4_writepages after taking page lock (have journal handle)
1970 *   - journal_submit_inode_data_buffers (no journal handle)
1971 *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1972 *   - grab_page_cache when doing write_begin (have journal handle)
1973 *
1974 * We don't do any block allocation in this function. If we have page with
1975 * multiple blocks we need to write those buffer_heads that are mapped. This
1976 * is important for mmaped based write. So if we do with blocksize 1K
1977 * truncate(f, 1024);
1978 * a = mmap(f, 0, 4096);
1979 * a[0] = 'a';
1980 * truncate(f, 4096);
1981 * we have in the page first buffer_head mapped via page_mkwrite call back
1982 * but other buffer_heads would be unmapped but dirty (dirty done via the
1983 * do_wp_page). So writepage should write the first block. If we modify
1984 * the mmap area beyond 1024 we will again get a page_fault and the
1985 * page_mkwrite callback will do the block allocation and mark the
1986 * buffer_heads mapped.
1987 *
1988 * We redirty the page if we have any buffer_heads that is either delay or
1989 * unwritten in the page.
1990 *
1991 * We can get recursively called as show below.
1992 *
1993 *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1994 *		ext4_writepage()
1995 *
1996 * But since we don't do any block allocation we should not deadlock.
1997 * Page also have the dirty flag cleared so we don't get recurive page_lock.
1998 */
1999static int ext4_writepage(struct page *page,
2000			  struct writeback_control *wbc)
2001{
2002	int ret = 0;
2003	loff_t size;
2004	unsigned int len;
2005	struct buffer_head *page_bufs = NULL;
2006	struct inode *inode = page->mapping->host;
2007	struct ext4_io_submit io_submit;
2008	bool keep_towrite = false;
2009
2010	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
2011		inode->i_mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
2012		unlock_page(page);
2013		return -EIO;
2014	}
2015
2016	trace_ext4_writepage(page);
2017	size = i_size_read(inode);
2018	if (page->index == size >> PAGE_SHIFT &&
2019	    !ext4_verity_in_progress(inode))
2020		len = size & ~PAGE_MASK;
2021	else
2022		len = PAGE_SIZE;
2023
2024	page_bufs = page_buffers(page);
2025	/*
2026	 * We cannot do block allocation or other extent handling in this
2027	 * function. If there are buffers needing that, we have to redirty
2028	 * the page. But we may reach here when we do a journal commit via
2029	 * journal_submit_inode_data_buffers() and in that case we must write
2030	 * allocated buffers to achieve data=ordered mode guarantees.
2031	 *
2032	 * Also, if there is only one buffer per page (the fs block
2033	 * size == the page size), if one buffer needs block
2034	 * allocation or needs to modify the extent tree to clear the
2035	 * unwritten flag, we know that the page can't be written at
2036	 * all, so we might as well refuse the write immediately.
2037	 * Unfortunately if the block size != page size, we can't as
2038	 * easily detect this case using ext4_walk_page_buffers(), but
2039	 * for the extremely common case, this is an optimization that
2040	 * skips a useless round trip through ext4_bio_write_page().
2041	 */
2042	if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2043				   ext4_bh_delay_or_unwritten)) {
2044		redirty_page_for_writepage(wbc, page);
2045		if ((current->flags & PF_MEMALLOC) ||
2046		    (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2047			/*
2048			 * For memory cleaning there's no point in writing only
2049			 * some buffers. So just bail out. Warn if we came here
2050			 * from direct reclaim.
2051			 */
2052			WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2053							== PF_MEMALLOC);
2054			unlock_page(page);
2055			return 0;
2056		}
2057		keep_towrite = true;
2058	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2059
2060	if (PageChecked(page) && ext4_should_journal_data(inode))
2061		/*
2062		 * It's mmapped pagecache.  Add buffers and journal it.  There
2063		 * doesn't seem much point in redirtying the page here.
2064		 */
2065		return __ext4_journalled_writepage(page, len);
2066
2067	ext4_io_submit_init(&io_submit, wbc);
2068	io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2069	if (!io_submit.io_end) {
2070		redirty_page_for_writepage(wbc, page);
2071		unlock_page(page);
2072		return -ENOMEM;
2073	}
2074	ret = ext4_bio_write_page(&io_submit, page, len, keep_towrite);
2075	ext4_io_submit(&io_submit);
2076	/* Drop io_end reference we got from init */
2077	ext4_put_io_end_defer(io_submit.io_end);
2078	return ret;
2079}
2080
2081static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2082{
2083	int len;
2084	loff_t size;
2085	int err;
2086
2087	BUG_ON(page->index != mpd->first_page);
2088	clear_page_dirty_for_io(page);
2089	/*
2090	 * We have to be very careful here!  Nothing protects writeback path
2091	 * against i_size changes and the page can be writeably mapped into
2092	 * page tables. So an application can be growing i_size and writing
2093	 * data through mmap while writeback runs. clear_page_dirty_for_io()
2094	 * write-protects our page in page tables and the page cannot get
2095	 * written to again until we release page lock. So only after
2096	 * clear_page_dirty_for_io() we are safe to sample i_size for
2097	 * ext4_bio_write_page() to zero-out tail of the written page. We rely
2098	 * on the barrier provided by TestClearPageDirty in
2099	 * clear_page_dirty_for_io() to make sure i_size is really sampled only
2100	 * after page tables are updated.
2101	 */
2102	size = i_size_read(mpd->inode);
2103	if (page->index == size >> PAGE_SHIFT &&
2104	    !ext4_verity_in_progress(mpd->inode))
2105		len = size & ~PAGE_MASK;
2106	else
2107		len = PAGE_SIZE;
2108	err = ext4_bio_write_page(&mpd->io_submit, page, len, false);
2109	if (!err)
2110		mpd->wbc->nr_to_write--;
2111	mpd->first_page++;
2112
2113	return err;
2114}
2115
2116#define BH_FLAGS (BIT(BH_Unwritten) | BIT(BH_Delay))
2117
2118/*
2119 * mballoc gives us at most this number of blocks...
2120 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2121 * The rest of mballoc seems to handle chunks up to full group size.
2122 */
2123#define MAX_WRITEPAGES_EXTENT_LEN 2048
2124
2125/*
2126 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2127 *
2128 * @mpd - extent of blocks
2129 * @lblk - logical number of the block in the file
2130 * @bh - buffer head we want to add to the extent
2131 *
2132 * The function is used to collect contig. blocks in the same state. If the
2133 * buffer doesn't require mapping for writeback and we haven't started the
2134 * extent of buffers to map yet, the function returns 'true' immediately - the
2135 * caller can write the buffer right away. Otherwise the function returns true
2136 * if the block has been added to the extent, false if the block couldn't be
2137 * added.
2138 */
2139static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2140				   struct buffer_head *bh)
2141{
2142	struct ext4_map_blocks *map = &mpd->map;
2143
2144	/* Buffer that doesn't need mapping for writeback? */
2145	if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2146	    (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2147		/* So far no extent to map => we write the buffer right away */
2148		if (map->m_len == 0)
2149			return true;
2150		return false;
2151	}
2152
2153	/* First block in the extent? */
2154	if (map->m_len == 0) {
2155		/* We cannot map unless handle is started... */
2156		if (!mpd->do_map)
2157			return false;
2158		map->m_lblk = lblk;
2159		map->m_len = 1;
2160		map->m_flags = bh->b_state & BH_FLAGS;
2161		return true;
2162	}
2163
2164	/* Don't go larger than mballoc is willing to allocate */
2165	if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2166		return false;
2167
2168	/* Can we merge the block to our big extent? */
2169	if (lblk == map->m_lblk + map->m_len &&
2170	    (bh->b_state & BH_FLAGS) == map->m_flags) {
2171		map->m_len++;
2172		return true;
2173	}
2174	return false;
2175}
2176
2177/*
2178 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2179 *
2180 * @mpd - extent of blocks for mapping
2181 * @head - the first buffer in the page
2182 * @bh - buffer we should start processing from
2183 * @lblk - logical number of the block in the file corresponding to @bh
2184 *
2185 * Walk through page buffers from @bh upto @head (exclusive) and either submit
2186 * the page for IO if all buffers in this page were mapped and there's no
2187 * accumulated extent of buffers to map or add buffers in the page to the
2188 * extent of buffers to map. The function returns 1 if the caller can continue
2189 * by processing the next page, 0 if it should stop adding buffers to the
2190 * extent to map because we cannot extend it anymore. It can also return value
2191 * < 0 in case of error during IO submission.
2192 */
2193static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2194				   struct buffer_head *head,
2195				   struct buffer_head *bh,
2196				   ext4_lblk_t lblk)
2197{
2198	struct inode *inode = mpd->inode;
2199	int err;
2200	ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2201							>> inode->i_blkbits;
2202
2203	if (ext4_verity_in_progress(inode))
2204		blocks = EXT_MAX_BLOCKS;
2205
2206	do {
2207		BUG_ON(buffer_locked(bh));
2208
2209		if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2210			/* Found extent to map? */
2211			if (mpd->map.m_len)
2212				return 0;
2213			/* Buffer needs mapping and handle is not started? */
2214			if (!mpd->do_map)
2215				return 0;
2216			/* Everything mapped so far and we hit EOF */
2217			break;
2218		}
2219	} while (lblk++, (bh = bh->b_this_page) != head);
2220	/* So far everything mapped? Submit the page for IO. */
2221	if (mpd->map.m_len == 0) {
2222		err = mpage_submit_page(mpd, head->b_page);
2223		if (err < 0)
2224			return err;
2225	}
2226	if (lblk >= blocks) {
2227		mpd->scanned_until_end = 1;
2228		return 0;
2229	}
2230	return 1;
2231}
2232
2233/*
2234 * mpage_process_page - update page buffers corresponding to changed extent and
2235 *		       may submit fully mapped page for IO
2236 *
2237 * @mpd		- description of extent to map, on return next extent to map
2238 * @m_lblk	- logical block mapping.
2239 * @m_pblk	- corresponding physical mapping.
2240 * @map_bh	- determines on return whether this page requires any further
2241 *		  mapping or not.
2242 * Scan given page buffers corresponding to changed extent and update buffer
2243 * state according to new extent state.
2244 * We map delalloc buffers to their physical location, clear unwritten bits.
2245 * If the given page is not fully mapped, we update @map to the next extent in
2246 * the given page that needs mapping & return @map_bh as true.
2247 */
2248static int mpage_process_page(struct mpage_da_data *mpd, struct page *page,
2249			      ext4_lblk_t *m_lblk, ext4_fsblk_t *m_pblk,
2250			      bool *map_bh)
2251{
2252	struct buffer_head *head, *bh;
2253	ext4_io_end_t *io_end = mpd->io_submit.io_end;
2254	ext4_lblk_t lblk = *m_lblk;
2255	ext4_fsblk_t pblock = *m_pblk;
2256	int err = 0;
2257	int blkbits = mpd->inode->i_blkbits;
2258	ssize_t io_end_size = 0;
2259	struct ext4_io_end_vec *io_end_vec = ext4_last_io_end_vec(io_end);
2260
2261	bh = head = page_buffers(page);
2262	do {
2263		if (lblk < mpd->map.m_lblk)
2264			continue;
2265		if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2266			/*
2267			 * Buffer after end of mapped extent.
2268			 * Find next buffer in the page to map.
2269			 */
2270			mpd->map.m_len = 0;
2271			mpd->map.m_flags = 0;
2272			io_end_vec->size += io_end_size;
2273			io_end_size = 0;
2274
2275			err = mpage_process_page_bufs(mpd, head, bh, lblk);
2276			if (err > 0)
2277				err = 0;
2278			if (!err && mpd->map.m_len && mpd->map.m_lblk > lblk) {
2279				io_end_vec = ext4_alloc_io_end_vec(io_end);
2280				if (IS_ERR(io_end_vec)) {
2281					err = PTR_ERR(io_end_vec);
2282					goto out;
2283				}
2284				io_end_vec->offset = (loff_t)mpd->map.m_lblk << blkbits;
2285			}
2286			*map_bh = true;
2287			goto out;
2288		}
2289		if (buffer_delay(bh)) {
2290			clear_buffer_delay(bh);
2291			bh->b_blocknr = pblock++;
2292		}
2293		clear_buffer_unwritten(bh);
2294		io_end_size += (1 << blkbits);
2295	} while (lblk++, (bh = bh->b_this_page) != head);
2296
2297	io_end_vec->size += io_end_size;
2298	io_end_size = 0;
2299	*map_bh = false;
2300out:
2301	*m_lblk = lblk;
2302	*m_pblk = pblock;
2303	return err;
2304}
2305
2306/*
2307 * mpage_map_buffers - update buffers corresponding to changed extent and
2308 *		       submit fully mapped pages for IO
2309 *
2310 * @mpd - description of extent to map, on return next extent to map
2311 *
2312 * Scan buffers corresponding to changed extent (we expect corresponding pages
2313 * to be already locked) and update buffer state according to new extent state.
2314 * We map delalloc buffers to their physical location, clear unwritten bits,
2315 * and mark buffers as uninit when we perform writes to unwritten extents
2316 * and do extent conversion after IO is finished. If the last page is not fully
2317 * mapped, we update @map to the next extent in the last page that needs
2318 * mapping. Otherwise we submit the page for IO.
2319 */
2320static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2321{
2322	struct pagevec pvec;
2323	int nr_pages, i;
2324	struct inode *inode = mpd->inode;
2325	int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2326	pgoff_t start, end;
2327	ext4_lblk_t lblk;
2328	ext4_fsblk_t pblock;
2329	int err;
2330	bool map_bh = false;
2331
2332	start = mpd->map.m_lblk >> bpp_bits;
2333	end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2334	lblk = start << bpp_bits;
2335	pblock = mpd->map.m_pblk;
2336
2337	pagevec_init(&pvec);
2338	while (start <= end) {
2339		nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping,
2340						&start, end);
2341		if (nr_pages == 0)
2342			break;
2343		for (i = 0; i < nr_pages; i++) {
2344			struct page *page = pvec.pages[i];
2345
2346			err = mpage_process_page(mpd, page, &lblk, &pblock,
2347						 &map_bh);
2348			/*
2349			 * If map_bh is true, means page may require further bh
2350			 * mapping, or maybe the page was submitted for IO.
2351			 * So we return to call further extent mapping.
2352			 */
2353			if (err < 0 || map_bh)
2354				goto out;
2355			/* Page fully mapped - let IO run! */
2356			err = mpage_submit_page(mpd, page);
2357			if (err < 0)
2358				goto out;
2359		}
2360		pagevec_release(&pvec);
2361	}
2362	/* Extent fully mapped and matches with page boundary. We are done. */
2363	mpd->map.m_len = 0;
2364	mpd->map.m_flags = 0;
2365	return 0;
2366out:
2367	pagevec_release(&pvec);
2368	return err;
2369}
2370
2371static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2372{
2373	struct inode *inode = mpd->inode;
2374	struct ext4_map_blocks *map = &mpd->map;
2375	int get_blocks_flags;
2376	int err, dioread_nolock;
2377
2378	trace_ext4_da_write_pages_extent(inode, map);
2379	/*
2380	 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2381	 * to convert an unwritten extent to be initialized (in the case
2382	 * where we have written into one or more preallocated blocks).  It is
2383	 * possible that we're going to need more metadata blocks than
2384	 * previously reserved. However we must not fail because we're in
2385	 * writeback and there is nothing we can do about it so it might result
2386	 * in data loss.  So use reserved blocks to allocate metadata if
2387	 * possible.
2388	 *
2389	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2390	 * the blocks in question are delalloc blocks.  This indicates
2391	 * that the blocks and quotas has already been checked when
2392	 * the data was copied into the page cache.
2393	 */
2394	get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2395			   EXT4_GET_BLOCKS_METADATA_NOFAIL |
2396			   EXT4_GET_BLOCKS_IO_SUBMIT;
2397	dioread_nolock = ext4_should_dioread_nolock(inode);
2398	if (dioread_nolock)
2399		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2400	if (map->m_flags & BIT(BH_Delay))
2401		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2402
2403	err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2404	if (err < 0)
2405		return err;
2406	if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2407		if (!mpd->io_submit.io_end->handle &&
2408		    ext4_handle_valid(handle)) {
2409			mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2410			handle->h_rsv_handle = NULL;
2411		}
2412		ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2413	}
2414
2415	BUG_ON(map->m_len == 0);
2416	return 0;
2417}
2418
2419/*
2420 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2421 *				 mpd->len and submit pages underlying it for IO
2422 *
2423 * @handle - handle for journal operations
2424 * @mpd - extent to map
2425 * @give_up_on_write - we set this to true iff there is a fatal error and there
2426 *                     is no hope of writing the data. The caller should discard
2427 *                     dirty pages to avoid infinite loops.
2428 *
2429 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2430 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2431 * them to initialized or split the described range from larger unwritten
2432 * extent. Note that we need not map all the described range since allocation
2433 * can return less blocks or the range is covered by more unwritten extents. We
2434 * cannot map more because we are limited by reserved transaction credits. On
2435 * the other hand we always make sure that the last touched page is fully
2436 * mapped so that it can be written out (and thus forward progress is
2437 * guaranteed). After mapping we submit all mapped pages for IO.
2438 */
2439static int mpage_map_and_submit_extent(handle_t *handle,
2440				       struct mpage_da_data *mpd,
2441				       bool *give_up_on_write)
2442{
2443	struct inode *inode = mpd->inode;
2444	struct ext4_map_blocks *map = &mpd->map;
2445	int err;
2446	loff_t disksize;
2447	int progress = 0;
2448	ext4_io_end_t *io_end = mpd->io_submit.io_end;
2449	struct ext4_io_end_vec *io_end_vec;
2450
2451	io_end_vec = ext4_alloc_io_end_vec(io_end);
2452	if (IS_ERR(io_end_vec))
2453		return PTR_ERR(io_end_vec);
2454	io_end_vec->offset = ((loff_t)map->m_lblk) << inode->i_blkbits;
2455	do {
2456		err = mpage_map_one_extent(handle, mpd);
2457		if (err < 0) {
2458			struct super_block *sb = inode->i_sb;
2459
2460			if (ext4_forced_shutdown(EXT4_SB(sb)) ||
2461			    ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED))
2462				goto invalidate_dirty_pages;
2463			/*
2464			 * Let the uper layers retry transient errors.
2465			 * In the case of ENOSPC, if ext4_count_free_blocks()
2466			 * is non-zero, a commit should free up blocks.
2467			 */
2468			if ((err == -ENOMEM) ||
2469			    (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2470				if (progress)
2471					goto update_disksize;
2472				return err;
2473			}
2474			ext4_msg(sb, KERN_CRIT,
2475				 "Delayed block allocation failed for "
2476				 "inode %lu at logical offset %llu with"
2477				 " max blocks %u with error %d",
2478				 inode->i_ino,
2479				 (unsigned long long)map->m_lblk,
2480				 (unsigned)map->m_len, -err);
2481			ext4_msg(sb, KERN_CRIT,
2482				 "This should not happen!! Data will "
2483				 "be lost\n");
2484			if (err == -ENOSPC)
2485				ext4_print_free_blocks(inode);
2486		invalidate_dirty_pages:
2487			*give_up_on_write = true;
2488			return err;
2489		}
2490		progress = 1;
2491		/*
2492		 * Update buffer state, submit mapped pages, and get us new
2493		 * extent to map
2494		 */
2495		err = mpage_map_and_submit_buffers(mpd);
2496		if (err < 0)
2497			goto update_disksize;
2498	} while (map->m_len);
2499
2500update_disksize:
2501	/*
2502	 * Update on-disk size after IO is submitted.  Races with
2503	 * truncate are avoided by checking i_size under i_data_sem.
2504	 */
2505	disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2506	if (disksize > READ_ONCE(EXT4_I(inode)->i_disksize)) {
2507		int err2;
2508		loff_t i_size;
2509
2510		down_write(&EXT4_I(inode)->i_data_sem);
2511		i_size = i_size_read(inode);
2512		if (disksize > i_size)
2513			disksize = i_size;
2514		if (disksize > EXT4_I(inode)->i_disksize)
2515			EXT4_I(inode)->i_disksize = disksize;
2516		up_write(&EXT4_I(inode)->i_data_sem);
2517		err2 = ext4_mark_inode_dirty(handle, inode);
2518		if (err2) {
2519			ext4_error_err(inode->i_sb, -err2,
2520				       "Failed to mark inode %lu dirty",
2521				       inode->i_ino);
2522		}
2523		if (!err)
2524			err = err2;
2525	}
2526	return err;
2527}
2528
2529/*
2530 * Calculate the total number of credits to reserve for one writepages
2531 * iteration. This is called from ext4_writepages(). We map an extent of
2532 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2533 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2534 * bpp - 1 blocks in bpp different extents.
2535 */
2536static int ext4_da_writepages_trans_blocks(struct inode *inode)
2537{
2538	int bpp = ext4_journal_blocks_per_page(inode);
2539
2540	return ext4_meta_trans_blocks(inode,
2541				MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
 
 
 
 
 
 
 
 
 
2542}
2543
2544/*
2545 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2546 * 				 and underlying extent to map
2547 *
2548 * @mpd - where to look for pages
2549 *
2550 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2551 * IO immediately. When we find a page which isn't mapped we start accumulating
2552 * extent of buffers underlying these pages that needs mapping (formed by
2553 * either delayed or unwritten buffers). We also lock the pages containing
2554 * these buffers. The extent found is returned in @mpd structure (starting at
2555 * mpd->lblk with length mpd->len blocks).
2556 *
2557 * Note that this function can attach bios to one io_end structure which are
2558 * neither logically nor physically contiguous. Although it may seem as an
2559 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2560 * case as we need to track IO to all buffers underlying a page in one io_end.
2561 */
2562static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2563{
2564	struct address_space *mapping = mpd->inode->i_mapping;
2565	struct pagevec pvec;
2566	unsigned int nr_pages;
2567	long left = mpd->wbc->nr_to_write;
2568	pgoff_t index = mpd->first_page;
2569	pgoff_t end = mpd->last_page;
2570	xa_mark_t tag;
2571	int i, err = 0;
2572	int blkbits = mpd->inode->i_blkbits;
2573	ext4_lblk_t lblk;
2574	struct buffer_head *head;
2575
2576	if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2577		tag = PAGECACHE_TAG_TOWRITE;
2578	else
2579		tag = PAGECACHE_TAG_DIRTY;
2580
2581	pagevec_init(&pvec);
2582	mpd->map.m_len = 0;
2583	mpd->next_page = index;
2584	while (index <= end) {
2585		nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2586				tag);
2587		if (nr_pages == 0)
2588			break;
2589
2590		for (i = 0; i < nr_pages; i++) {
2591			struct page *page = pvec.pages[i];
2592
2593			/*
2594			 * Accumulated enough dirty pages? This doesn't apply
2595			 * to WB_SYNC_ALL mode. For integrity sync we have to
2596			 * keep going because someone may be concurrently
2597			 * dirtying pages, and we might have synced a lot of
2598			 * newly appeared dirty pages, but have not synced all
2599			 * of the old dirty pages.
2600			 */
2601			if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2602				goto out;
2603
2604			/* If we can't merge this page, we are done. */
2605			if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2606				goto out;
 
 
 
 
 
 
 
 
2607
2608			lock_page(page);
 
2609			/*
2610			 * If the page is no longer dirty, or its mapping no
2611			 * longer corresponds to inode we are writing (which
2612			 * means it has been truncated or invalidated), or the
2613			 * page is already under writeback and we are not doing
2614			 * a data integrity writeback, skip the page
 
2615			 */
2616			if (!PageDirty(page) ||
2617			    (PageWriteback(page) &&
2618			     (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2619			    unlikely(page->mapping != mapping)) {
2620				unlock_page(page);
2621				continue;
2622			}
2623
2624			wait_on_page_writeback(page);
2625			BUG_ON(PageWriteback(page));
2626
2627			if (mpd->map.m_len == 0)
2628				mpd->first_page = page->index;
2629			mpd->next_page = page->index + 1;
2630			/* Add all dirty buffers to mpd */
2631			lblk = ((ext4_lblk_t)page->index) <<
2632				(PAGE_SHIFT - blkbits);
2633			head = page_buffers(page);
2634			err = mpage_process_page_bufs(mpd, head, head, lblk);
2635			if (err <= 0)
2636				goto out;
2637			err = 0;
2638			left--;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2639		}
2640		pagevec_release(&pvec);
2641		cond_resched();
2642	}
2643	mpd->scanned_until_end = 1;
2644	return 0;
 
 
2645out:
2646	pagevec_release(&pvec);
2647	return err;
 
2648}
2649
2650static int ext4_writepages(struct address_space *mapping,
2651			   struct writeback_control *wbc)
 
2652{
2653	pgoff_t	writeback_index = 0;
2654	long nr_to_write = wbc->nr_to_write;
2655	int range_whole = 0;
2656	int cycled = 1;
2657	handle_t *handle = NULL;
2658	struct mpage_da_data mpd;
2659	struct inode *inode = mapping->host;
2660	int needed_blocks, rsv_blocks = 0, ret = 0;
 
 
 
 
 
2661	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2662	struct blk_plug plug;
2663	bool give_up_on_write = false;
2664
2665	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2666		return -EIO;
2667
2668	percpu_down_read(&sbi->s_writepages_rwsem);
2669	trace_ext4_writepages(inode, wbc);
2670
2671	/*
2672	 * No pages to write? This is mainly a kludge to avoid starting
2673	 * a transaction for special inodes like journal inode on last iput()
2674	 * because that could violate lock ordering on umount
2675	 */
2676	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2677		goto out_writepages;
2678
2679	if (ext4_should_journal_data(inode)) {
2680		ret = generic_writepages(mapping, wbc);
2681		goto out_writepages;
2682	}
2683
2684	/*
2685	 * If the filesystem has aborted, it is read-only, so return
2686	 * right away instead of dumping stack traces later on that
2687	 * will obscure the real source of the problem.  We test
2688	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's SB_RDONLY because
2689	 * the latter could be true if the filesystem is mounted
2690	 * read-only, and in that case, ext4_writepages should
2691	 * *never* be called, so if that ever happens, we would want
2692	 * the stack trace.
2693	 */
2694	if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) ||
2695		     ext4_test_mount_flag(inode->i_sb, EXT4_MF_FS_ABORTED))) {
2696		ret = -EROFS;
2697		goto out_writepages;
2698	}
2699
2700	/*
2701	 * If we have inline data and arrive here, it means that
2702	 * we will soon create the block for the 1st page, so
2703	 * we'd better clear the inline data here.
2704	 */
2705	if (ext4_has_inline_data(inode)) {
2706		/* Just inode will be modified... */
2707		handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2708		if (IS_ERR(handle)) {
2709			ret = PTR_ERR(handle);
2710			goto out_writepages;
2711		}
2712		BUG_ON(ext4_test_inode_state(inode,
2713				EXT4_STATE_MAY_INLINE_DATA));
2714		ext4_destroy_inline_data(handle, inode);
2715		ext4_journal_stop(handle);
2716	}
2717
2718	if (ext4_should_dioread_nolock(inode)) {
2719		/*
2720		 * We may need to convert up to one extent per block in
2721		 * the page and we may dirty the inode.
2722		 */
2723		rsv_blocks = 1 + ext4_chunk_trans_blocks(inode,
2724						PAGE_SIZE >> inode->i_blkbits);
2725	}
2726
2727	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2728		range_whole = 1;
2729
 
2730	if (wbc->range_cyclic) {
2731		writeback_index = mapping->writeback_index;
2732		if (writeback_index)
2733			cycled = 0;
2734		mpd.first_page = writeback_index;
2735		mpd.last_page = -1;
 
 
2736	} else {
2737		mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2738		mpd.last_page = wbc->range_end >> PAGE_SHIFT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2739	}
2740
2741	mpd.inode = inode;
2742	mpd.wbc = wbc;
2743	ext4_io_submit_init(&mpd.io_submit, wbc);
2744retry:
2745	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2746		tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2747	blk_start_plug(&plug);
2748
2749	/*
2750	 * First writeback pages that don't need mapping - we can avoid
2751	 * starting a transaction unnecessarily and also avoid being blocked
2752	 * in the block layer on device congestion while having transaction
2753	 * started.
2754	 */
2755	mpd.do_map = 0;
2756	mpd.scanned_until_end = 0;
2757	mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2758	if (!mpd.io_submit.io_end) {
2759		ret = -ENOMEM;
2760		goto unplug;
2761	}
2762	ret = mpage_prepare_extent_to_map(&mpd);
2763	/* Unlock pages we didn't use */
2764	mpage_release_unused_pages(&mpd, false);
2765	/* Submit prepared bio */
2766	ext4_io_submit(&mpd.io_submit);
2767	ext4_put_io_end_defer(mpd.io_submit.io_end);
2768	mpd.io_submit.io_end = NULL;
2769	if (ret < 0)
2770		goto unplug;
2771
2772	while (!mpd.scanned_until_end && wbc->nr_to_write > 0) {
2773		/* For each extent of pages we use new io_end */
2774		mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2775		if (!mpd.io_submit.io_end) {
2776			ret = -ENOMEM;
2777			break;
2778		}
2779
2780		/*
2781		 * We have two constraints: We find one extent to map and we
2782		 * must always write out whole page (makes a difference when
2783		 * blocksize < pagesize) so that we don't block on IO when we
2784		 * try to write out the rest of the page. Journalled mode is
2785		 * not supported by delalloc.
2786		 */
2787		BUG_ON(ext4_should_journal_data(inode));
2788		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2789
2790		/* start a new transaction */
2791		handle = ext4_journal_start_with_reserve(inode,
2792				EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2793		if (IS_ERR(handle)) {
2794			ret = PTR_ERR(handle);
2795			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2796			       "%ld pages, ino %lu; err %d", __func__,
2797				wbc->nr_to_write, inode->i_ino, ret);
2798			/* Release allocated io_end */
2799			ext4_put_io_end(mpd.io_submit.io_end);
2800			mpd.io_submit.io_end = NULL;
2801			break;
2802		}
2803		mpd.do_map = 1;
2804
2805		trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2806		ret = mpage_prepare_extent_to_map(&mpd);
2807		if (!ret && mpd.map.m_len)
2808			ret = mpage_map_and_submit_extent(handle, &mpd,
2809					&give_up_on_write);
2810		/*
2811		 * Caution: If the handle is synchronous,
2812		 * ext4_journal_stop() can wait for transaction commit
2813		 * to finish which may depend on writeback of pages to
2814		 * complete or on page lock to be released.  In that
2815		 * case, we have to wait until after we have
2816		 * submitted all the IO, released page locks we hold,
2817		 * and dropped io_end reference (for extent conversion
2818		 * to be able to complete) before stopping the handle.
2819		 */
2820		if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2821			ext4_journal_stop(handle);
2822			handle = NULL;
2823			mpd.do_map = 0;
 
 
 
 
 
2824		}
2825		/* Unlock pages we didn't use */
2826		mpage_release_unused_pages(&mpd, give_up_on_write);
2827		/* Submit prepared bio */
2828		ext4_io_submit(&mpd.io_submit);
2829
2830		/*
2831		 * Drop our io_end reference we got from init. We have
2832		 * to be careful and use deferred io_end finishing if
2833		 * we are still holding the transaction as we can
2834		 * release the last reference to io_end which may end
2835		 * up doing unwritten extent conversion.
2836		 */
2837		if (handle) {
2838			ext4_put_io_end_defer(mpd.io_submit.io_end);
2839			ext4_journal_stop(handle);
2840		} else
2841			ext4_put_io_end(mpd.io_submit.io_end);
2842		mpd.io_submit.io_end = NULL;
2843
2844		if (ret == -ENOSPC && sbi->s_journal) {
2845			/*
2846			 * Commit the transaction which would
2847			 * free blocks released in the transaction
2848			 * and try again
2849			 */
2850			jbd2_journal_force_commit_nested(sbi->s_journal);
2851			ret = 0;
2852			continue;
2853		}
2854		/* Fatal error - ENOMEM, EIO... */
2855		if (ret)
 
 
 
 
 
 
 
 
 
 
2856			break;
2857	}
2858unplug:
2859	blk_finish_plug(&plug);
2860	if (!ret && !cycled && wbc->nr_to_write > 0) {
2861		cycled = 1;
2862		mpd.last_page = writeback_index - 1;
2863		mpd.first_page = 0;
 
2864		goto retry;
2865	}
2866
2867	/* Update index */
 
2868	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2869		/*
2870		 * Set the writeback_index so that range_cyclic
2871		 * mode will write it back later
2872		 */
2873		mapping->writeback_index = mpd.first_page;
2874
2875out_writepages:
2876	trace_ext4_writepages_result(inode, wbc, ret,
2877				     nr_to_write - wbc->nr_to_write);
2878	percpu_up_read(&sbi->s_writepages_rwsem);
2879	return ret;
2880}
2881
2882static int ext4_dax_writepages(struct address_space *mapping,
2883			       struct writeback_control *wbc)
2884{
2885	int ret;
2886	long nr_to_write = wbc->nr_to_write;
2887	struct inode *inode = mapping->host;
2888	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2889
2890	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2891		return -EIO;
2892
2893	percpu_down_read(&sbi->s_writepages_rwsem);
2894	trace_ext4_writepages(inode, wbc);
2895
2896	ret = dax_writeback_mapping_range(mapping, sbi->s_daxdev, wbc);
2897	trace_ext4_writepages_result(inode, wbc, ret,
2898				     nr_to_write - wbc->nr_to_write);
2899	percpu_up_read(&sbi->s_writepages_rwsem);
2900	return ret;
2901}
2902
 
2903static int ext4_nonda_switch(struct super_block *sb)
2904{
2905	s64 free_clusters, dirty_clusters;
2906	struct ext4_sb_info *sbi = EXT4_SB(sb);
2907
2908	/*
2909	 * switch to non delalloc mode if we are running low
2910	 * on free block. The free block accounting via percpu
2911	 * counters can get slightly wrong with percpu_counter_batch getting
2912	 * accumulated on each CPU without updating global counters
2913	 * Delalloc need an accurate free block accounting. So switch
2914	 * to non delalloc when we are near to error range.
2915	 */
2916	free_clusters =
2917		percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2918	dirty_clusters =
2919		percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2920	/*
2921	 * Start pushing delalloc when 1/2 of free blocks are dirty.
2922	 */
2923	if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2924		try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2925
2926	if (2 * free_clusters < 3 * dirty_clusters ||
2927	    free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2928		/*
2929		 * free block count is less than 150% of dirty blocks
2930		 * or free blocks is less than watermark
2931		 */
2932		return 1;
2933	}
 
 
 
 
 
 
 
2934	return 0;
2935}
2936
2937/* We always reserve for an inode update; the superblock could be there too */
2938static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2939{
2940	if (likely(ext4_has_feature_large_file(inode->i_sb)))
2941		return 1;
2942
2943	if (pos + len <= 0x7fffffffULL)
2944		return 1;
2945
2946	/* We might need to update the superblock to set LARGE_FILE */
2947	return 2;
2948}
2949
2950static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2951			       loff_t pos, unsigned len, unsigned flags,
2952			       struct page **pagep, void **fsdata)
2953{
2954	int ret, retries = 0;
2955	struct page *page;
2956	pgoff_t index;
2957	struct inode *inode = mapping->host;
2958	handle_t *handle;
2959
2960	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2961		return -EIO;
2962
2963	index = pos >> PAGE_SHIFT;
2964
2965	if (ext4_nonda_switch(inode->i_sb) || S_ISLNK(inode->i_mode) ||
2966	    ext4_verity_in_progress(inode)) {
2967		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2968		return ext4_write_begin(file, mapping, pos,
2969					len, flags, pagep, fsdata);
2970	}
2971	*fsdata = (void *)0;
2972	trace_ext4_da_write_begin(inode, pos, len, flags);
2973
2974	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2975		ret = ext4_da_write_inline_data_begin(mapping, inode,
2976						      pos, len, flags,
2977						      pagep, fsdata);
2978		if (ret < 0)
2979			return ret;
2980		if (ret == 1)
2981			return 0;
2982	}
2983
2984	/*
2985	 * grab_cache_page_write_begin() can take a long time if the
2986	 * system is thrashing due to memory pressure, or if the page
2987	 * is being written back.  So grab it first before we start
2988	 * the transaction handle.  This also allows us to allocate
2989	 * the page (if needed) without using GFP_NOFS.
2990	 */
2991retry_grab:
2992	page = grab_cache_page_write_begin(mapping, index, flags);
2993	if (!page)
2994		return -ENOMEM;
2995	unlock_page(page);
2996
2997	/*
2998	 * With delayed allocation, we don't log the i_disksize update
2999	 * if there is delayed block allocation. But we still need
3000	 * to journalling the i_disksize update if writes to the end
3001	 * of file which has an already mapped buffer.
3002	 */
3003retry_journal:
3004	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
3005				ext4_da_write_credits(inode, pos, len));
3006	if (IS_ERR(handle)) {
3007		put_page(page);
3008		return PTR_ERR(handle);
3009	}
 
 
 
3010
3011	lock_page(page);
3012	if (page->mapping != mapping) {
3013		/* The page got truncated from under us */
3014		unlock_page(page);
3015		put_page(page);
3016		ext4_journal_stop(handle);
3017		goto retry_grab;
 
3018	}
3019	/* In case writeback began while the page was unlocked */
3020	wait_for_stable_page(page);
3021
3022#ifdef CONFIG_FS_ENCRYPTION
3023	ret = ext4_block_write_begin(page, pos, len,
3024				     ext4_da_get_block_prep);
3025#else
3026	ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
3027#endif
3028	if (ret < 0) {
3029		unlock_page(page);
3030		ext4_journal_stop(handle);
 
3031		/*
3032		 * block_write_begin may have instantiated a few blocks
3033		 * outside i_size.  Trim these off again. Don't need
3034		 * i_size_read because we hold i_mutex.
3035		 */
3036		if (pos + len > inode->i_size)
3037			ext4_truncate_failed_write(inode);
3038
3039		if (ret == -ENOSPC &&
3040		    ext4_should_retry_alloc(inode->i_sb, &retries))
3041			goto retry_journal;
3042
3043		put_page(page);
3044		return ret;
3045	}
3046
3047	*pagep = page;
 
 
3048	return ret;
3049}
3050
3051/*
3052 * Check if we should update i_disksize
3053 * when write to the end of file but not require block allocation
3054 */
3055static int ext4_da_should_update_i_disksize(struct page *page,
3056					    unsigned long offset)
3057{
3058	struct buffer_head *bh;
3059	struct inode *inode = page->mapping->host;
3060	unsigned int idx;
3061	int i;
3062
3063	bh = page_buffers(page);
3064	idx = offset >> inode->i_blkbits;
3065
3066	for (i = 0; i < idx; i++)
3067		bh = bh->b_this_page;
3068
3069	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3070		return 0;
3071	return 1;
3072}
3073
3074static int ext4_da_write_end(struct file *file,
3075			     struct address_space *mapping,
3076			     loff_t pos, unsigned len, unsigned copied,
3077			     struct page *page, void *fsdata)
3078{
3079	struct inode *inode = mapping->host;
3080	int ret = 0, ret2;
3081	handle_t *handle = ext4_journal_current_handle();
3082	loff_t new_i_size;
3083	unsigned long start, end;
3084	int write_mode = (int)(unsigned long)fsdata;
3085
3086	if (write_mode == FALL_BACK_TO_NONDELALLOC)
3087		return ext4_write_end(file, mapping, pos,
3088				      len, copied, page, fsdata);
 
 
 
 
 
 
 
 
3089
3090	trace_ext4_da_write_end(inode, pos, len, copied);
3091	start = pos & (PAGE_SIZE - 1);
3092	end = start + copied - 1;
3093
3094	/*
3095	 * Since we are holding inode lock, we are sure i_disksize <=
3096	 * i_size. We also know that if i_disksize < i_size, there are
3097	 * delalloc writes pending in the range upto i_size. If the end of
3098	 * the current write is <= i_size, there's no need to touch
3099	 * i_disksize since writeback will push i_disksize upto i_size
3100	 * eventually. If the end of the current write is > i_size and
3101	 * inside an allocated block (ext4_da_should_update_i_disksize()
3102	 * check), we need to update i_disksize here as neither
3103	 * ext4_writepage() nor certain ext4_writepages() paths not
3104	 * allocating blocks update i_disksize.
3105	 *
3106	 * Note that we defer inode dirtying to generic_write_end() /
3107	 * ext4_da_write_inline_data_end().
3108	 */
 
3109	new_i_size = pos + copied;
3110	if (copied && new_i_size > inode->i_size) {
3111		if (ext4_has_inline_data(inode) ||
3112		    ext4_da_should_update_i_disksize(page, end))
3113			ext4_update_i_disksize(inode, new_i_size);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3114	}
3115
3116	if (write_mode != CONVERT_INLINE_DATA &&
3117	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3118	    ext4_has_inline_data(inode))
3119		ret = ext4_da_write_inline_data_end(inode, pos, len, copied,
3120						     page);
3121	else
3122		ret = generic_write_end(file, mapping, pos, len, copied,
3123							page, fsdata);
3124
3125	copied = ret;
 
3126	ret2 = ext4_journal_stop(handle);
3127	if (unlikely(ret2 && !ret))
3128		ret = ret2;
3129
3130	return ret ? ret : copied;
3131}
3132
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3133/*
3134 * Force all delayed allocation blocks to be allocated for a given inode.
3135 */
3136int ext4_alloc_da_blocks(struct inode *inode)
3137{
3138	trace_ext4_alloc_da_blocks(inode);
3139
3140	if (!EXT4_I(inode)->i_reserved_data_blocks)
 
3141		return 0;
3142
3143	/*
3144	 * We do something simple for now.  The filemap_flush() will
3145	 * also start triggering a write of the data blocks, which is
3146	 * not strictly speaking necessary (and for users of
3147	 * laptop_mode, not even desirable).  However, to do otherwise
3148	 * would require replicating code paths in:
3149	 *
3150	 * ext4_writepages() ->
3151	 *    write_cache_pages() ---> (via passed in callback function)
3152	 *        __mpage_da_writepage() -->
3153	 *           mpage_add_bh_to_extent()
3154	 *           mpage_da_map_blocks()
3155	 *
3156	 * The problem is that write_cache_pages(), located in
3157	 * mm/page-writeback.c, marks pages clean in preparation for
3158	 * doing I/O, which is not desirable if we're not planning on
3159	 * doing I/O at all.
3160	 *
3161	 * We could call write_cache_pages(), and then redirty all of
3162	 * the pages by calling redirty_page_for_writepage() but that
3163	 * would be ugly in the extreme.  So instead we would need to
3164	 * replicate parts of the code in the above functions,
3165	 * simplifying them because we wouldn't actually intend to
3166	 * write out the pages, but rather only collect contiguous
3167	 * logical block extents, call the multi-block allocator, and
3168	 * then update the buffer heads with the block allocations.
3169	 *
3170	 * For now, though, we'll cheat by calling filemap_flush(),
3171	 * which will map the blocks, and start the I/O, but not
3172	 * actually wait for the I/O to complete.
3173	 */
3174	return filemap_flush(inode->i_mapping);
3175}
3176
3177/*
3178 * bmap() is special.  It gets used by applications such as lilo and by
3179 * the swapper to find the on-disk block of a specific piece of data.
3180 *
3181 * Naturally, this is dangerous if the block concerned is still in the
3182 * journal.  If somebody makes a swapfile on an ext4 data-journaling
3183 * filesystem and enables swap, then they may get a nasty shock when the
3184 * data getting swapped to that swapfile suddenly gets overwritten by
3185 * the original zero's written out previously to the journal and
3186 * awaiting writeback in the kernel's buffer cache.
3187 *
3188 * So, if we see any bmap calls here on a modified, data-journaled file,
3189 * take extra steps to flush any blocks which might be in the cache.
3190 */
3191static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3192{
3193	struct inode *inode = mapping->host;
3194	journal_t *journal;
3195	int err;
3196
3197	/*
3198	 * We can get here for an inline file via the FIBMAP ioctl
3199	 */
3200	if (ext4_has_inline_data(inode))
3201		return 0;
3202
3203	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3204			test_opt(inode->i_sb, DELALLOC)) {
3205		/*
3206		 * With delalloc we want to sync the file
3207		 * so that we can make sure we allocate
3208		 * blocks for file
3209		 */
3210		filemap_write_and_wait(mapping);
3211	}
3212
3213	if (EXT4_JOURNAL(inode) &&
3214	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3215		/*
3216		 * This is a REALLY heavyweight approach, but the use of
3217		 * bmap on dirty files is expected to be extremely rare:
3218		 * only if we run lilo or swapon on a freshly made file
3219		 * do we expect this to happen.
3220		 *
3221		 * (bmap requires CAP_SYS_RAWIO so this does not
3222		 * represent an unprivileged user DOS attack --- we'd be
3223		 * in trouble if mortal users could trigger this path at
3224		 * will.)
3225		 *
3226		 * NB. EXT4_STATE_JDATA is not set on files other than
3227		 * regular files.  If somebody wants to bmap a directory
3228		 * or symlink and gets confused because the buffer
3229		 * hasn't yet been flushed to disk, they deserve
3230		 * everything they get.
3231		 */
3232
3233		ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3234		journal = EXT4_JOURNAL(inode);
3235		jbd2_journal_lock_updates(journal);
3236		err = jbd2_journal_flush(journal, 0);
3237		jbd2_journal_unlock_updates(journal);
3238
3239		if (err)
3240			return 0;
3241	}
3242
3243	return iomap_bmap(mapping, block, &ext4_iomap_ops);
3244}
3245
3246static int ext4_readpage(struct file *file, struct page *page)
3247{
3248	int ret = -EAGAIN;
3249	struct inode *inode = page->mapping->host;
3250
3251	trace_ext4_readpage(page);
3252
3253	if (ext4_has_inline_data(inode))
3254		ret = ext4_readpage_inline(inode, page);
3255
3256	if (ret == -EAGAIN)
3257		return ext4_mpage_readpages(inode, NULL, page);
3258
3259	return ret;
3260}
3261
3262static void ext4_readahead(struct readahead_control *rac)
 
 
3263{
3264	struct inode *inode = rac->mapping->host;
3265
3266	/* If the file has inline data, no need to do readahead. */
3267	if (ext4_has_inline_data(inode))
3268		return;
3269
3270	ext4_mpage_readpages(inode, rac, NULL);
3271}
3272
3273static void ext4_invalidatepage(struct page *page, unsigned int offset,
3274				unsigned int length)
3275{
3276	trace_ext4_invalidatepage(page, offset, length);
 
3277
3278	/* No journalling happens on data buffers when this function is used */
3279	WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3280
3281	block_invalidatepage(page, offset, length);
 
 
 
 
 
 
 
 
 
3282}
3283
3284static int __ext4_journalled_invalidatepage(struct page *page,
3285					    unsigned int offset,
3286					    unsigned int length)
3287{
3288	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3289
3290	trace_ext4_journalled_invalidatepage(page, offset, length);
3291
3292	/*
 
 
 
 
 
3293	 * If it's a full truncate we just forget about the pending dirtying
3294	 */
3295	if (offset == 0 && length == PAGE_SIZE)
3296		ClearPageChecked(page);
3297
3298	return jbd2_journal_invalidatepage(journal, page, offset, length);
3299}
3300
3301/* Wrapper for aops... */
3302static void ext4_journalled_invalidatepage(struct page *page,
3303					   unsigned int offset,
3304					   unsigned int length)
3305{
3306	WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3307}
3308
3309static int ext4_releasepage(struct page *page, gfp_t wait)
3310{
3311	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3312
3313	trace_ext4_releasepage(page);
3314
3315	/* Page has dirty journalled data -> cannot release */
3316	if (PageChecked(page))
3317		return 0;
3318	if (journal)
3319		return jbd2_journal_try_to_free_buffers(journal, page);
3320	else
3321		return try_to_free_buffers(page);
3322}
3323
3324static bool ext4_inode_datasync_dirty(struct inode *inode)
 
 
 
 
 
 
3325{
3326	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
3327
3328	if (journal) {
3329		if (jbd2_transaction_committed(journal,
3330			EXT4_I(inode)->i_datasync_tid))
3331			return false;
3332		if (test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT))
3333			return !list_empty(&EXT4_I(inode)->i_fc_list);
3334		return true;
3335	}
3336
3337	/* Any metadata buffers to write? */
3338	if (!list_empty(&inode->i_mapping->private_list))
3339		return true;
3340	return inode->i_state & I_DIRTY_DATASYNC;
3341}
3342
3343static void ext4_set_iomap(struct inode *inode, struct iomap *iomap,
3344			   struct ext4_map_blocks *map, loff_t offset,
3345			   loff_t length)
3346{
3347	u8 blkbits = inode->i_blkbits;
3348
3349	/*
3350	 * Writes that span EOF might trigger an I/O size update on completion,
3351	 * so consider them to be dirty for the purpose of O_DSYNC, even if
3352	 * there is no other metadata changes being made or are pending.
3353	 */
3354	iomap->flags = 0;
3355	if (ext4_inode_datasync_dirty(inode) ||
3356	    offset + length > i_size_read(inode))
3357		iomap->flags |= IOMAP_F_DIRTY;
3358
3359	if (map->m_flags & EXT4_MAP_NEW)
3360		iomap->flags |= IOMAP_F_NEW;
3361
3362	iomap->bdev = inode->i_sb->s_bdev;
3363	iomap->dax_dev = EXT4_SB(inode->i_sb)->s_daxdev;
3364	iomap->offset = (u64) map->m_lblk << blkbits;
3365	iomap->length = (u64) map->m_len << blkbits;
3366
3367	if ((map->m_flags & EXT4_MAP_MAPPED) &&
3368	    !ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3369		iomap->flags |= IOMAP_F_MERGED;
3370
3371	/*
3372	 * Flags passed to ext4_map_blocks() for direct I/O writes can result
3373	 * in m_flags having both EXT4_MAP_MAPPED and EXT4_MAP_UNWRITTEN bits
3374	 * set. In order for any allocated unwritten extents to be converted
3375	 * into written extents correctly within the ->end_io() handler, we
3376	 * need to ensure that the iomap->type is set appropriately. Hence, the
3377	 * reason why we need to check whether the EXT4_MAP_UNWRITTEN bit has
3378	 * been set first.
3379	 */
3380	if (map->m_flags & EXT4_MAP_UNWRITTEN) {
3381		iomap->type = IOMAP_UNWRITTEN;
3382		iomap->addr = (u64) map->m_pblk << blkbits;
3383	} else if (map->m_flags & EXT4_MAP_MAPPED) {
3384		iomap->type = IOMAP_MAPPED;
3385		iomap->addr = (u64) map->m_pblk << blkbits;
3386	} else {
3387		iomap->type = IOMAP_HOLE;
3388		iomap->addr = IOMAP_NULL_ADDR;
3389	}
3390}
3391
3392static int ext4_iomap_alloc(struct inode *inode, struct ext4_map_blocks *map,
3393			    unsigned int flags)
3394{
3395	handle_t *handle;
3396	u8 blkbits = inode->i_blkbits;
3397	int ret, dio_credits, m_flags = 0, retries = 0;
 
 
 
3398
3399	/*
3400	 * Trim the mapping request to the maximum value that we can map at
3401	 * once for direct I/O.
3402	 */
3403	if (map->m_len > DIO_MAX_BLOCKS)
3404		map->m_len = DIO_MAX_BLOCKS;
3405	dio_credits = ext4_chunk_trans_blocks(inode, map->m_len);
3406
3407retry:
3408	/*
3409	 * Either we allocate blocks and then don't get an unwritten extent, so
3410	 * in that case we have reserved enough credits. Or, the blocks are
3411	 * already allocated and unwritten. In that case, the extent conversion
3412	 * fits into the credits as well.
3413	 */
3414	handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
3415	if (IS_ERR(handle))
3416		return PTR_ERR(handle);
 
 
 
 
 
3417
3418	/*
3419	 * DAX and direct I/O are the only two operations that are currently
3420	 * supported with IOMAP_WRITE.
3421	 */
3422	WARN_ON(!IS_DAX(inode) && !(flags & IOMAP_DIRECT));
3423	if (IS_DAX(inode))
3424		m_flags = EXT4_GET_BLOCKS_CREATE_ZERO;
3425	/*
3426	 * We use i_size instead of i_disksize here because delalloc writeback
3427	 * can complete at any point during the I/O and subsequently push the
3428	 * i_disksize out to i_size. This could be beyond where direct I/O is
3429	 * happening and thus expose allocated blocks to direct I/O reads.
3430	 */
3431	else if (((loff_t)map->m_lblk << blkbits) >= i_size_read(inode))
3432		m_flags = EXT4_GET_BLOCKS_CREATE;
3433	else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3434		m_flags = EXT4_GET_BLOCKS_IO_CREATE_EXT;
3435
3436	ret = ext4_map_blocks(handle, inode, map, m_flags);
 
 
 
 
3437
3438	/*
3439	 * We cannot fill holes in indirect tree based inodes as that could
3440	 * expose stale data in the case of a crash. Use the magic error code
3441	 * to fallback to buffered I/O.
3442	 */
3443	if (!m_flags && !ret)
3444		ret = -ENOTBLK;
3445
3446	ext4_journal_stop(handle);
3447	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3448		goto retry;
3449
3450	return ret;
3451}
3452
3453
3454static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3455		unsigned flags, struct iomap *iomap, struct iomap *srcmap)
3456{
3457	int ret;
3458	struct ext4_map_blocks map;
3459	u8 blkbits = inode->i_blkbits;
 
3460
3461	if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3462		return -EINVAL;
3463
3464	if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3465		return -ERANGE;
 
 
 
 
3466
3467	/*
3468	 * Calculate the first and last logical blocks respectively.
 
3469	 */
3470	map.m_lblk = offset >> blkbits;
3471	map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3472			  EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3473
3474	if (flags & IOMAP_WRITE) {
3475		/*
3476		 * We check here if the blocks are already allocated, then we
3477		 * don't need to start a journal txn and we can directly return
3478		 * the mapping information. This could boost performance
3479		 * especially in multi-threaded overwrite requests.
3480		 */
3481		if (offset + length <= i_size_read(inode)) {
3482			ret = ext4_map_blocks(NULL, inode, &map, 0);
3483			if (ret > 0 && (map.m_flags & EXT4_MAP_MAPPED))
3484				goto out;
3485		}
3486		ret = ext4_iomap_alloc(inode, &map, flags);
3487	} else {
3488		ret = ext4_map_blocks(NULL, inode, &map, 0);
3489	}
3490
3491	if (ret < 0)
3492		return ret;
3493out:
3494	ext4_set_iomap(inode, iomap, &map, offset, length);
3495
3496	return 0;
 
3497}
3498
3499static int ext4_iomap_overwrite_begin(struct inode *inode, loff_t offset,
3500		loff_t length, unsigned flags, struct iomap *iomap,
3501		struct iomap *srcmap)
3502{
3503	int ret;
 
3504
 
 
 
 
 
 
 
 
 
3505	/*
3506	 * Even for writes we don't need to allocate blocks, so just pretend
3507	 * we are reading to save overhead of starting a transaction.
 
3508	 */
3509	flags &= ~IOMAP_WRITE;
3510	ret = ext4_iomap_begin(inode, offset, length, flags, iomap, srcmap);
3511	WARN_ON_ONCE(iomap->type != IOMAP_MAPPED);
3512	return ret;
3513}
3514
3515static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3516			  ssize_t written, unsigned flags, struct iomap *iomap)
3517{
3518	/*
3519	 * Check to see whether an error occurred while writing out the data to
3520	 * the allocated blocks. If so, return the magic error code so that we
3521	 * fallback to buffered I/O and attempt to complete the remainder of
3522	 * the I/O. Any blocks that may have been allocated in preparation for
3523	 * the direct I/O will be reused during buffered I/O.
3524	 */
3525	if (flags & (IOMAP_WRITE | IOMAP_DIRECT) && written == 0)
3526		return -ENOTBLK;
3527
 
 
3528	return 0;
3529}
3530
3531const struct iomap_ops ext4_iomap_ops = {
3532	.iomap_begin		= ext4_iomap_begin,
3533	.iomap_end		= ext4_iomap_end,
3534};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3535
3536const struct iomap_ops ext4_iomap_overwrite_ops = {
3537	.iomap_begin		= ext4_iomap_overwrite_begin,
3538	.iomap_end		= ext4_iomap_end,
3539};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3540
3541static bool ext4_iomap_is_delalloc(struct inode *inode,
3542				   struct ext4_map_blocks *map)
3543{
3544	struct extent_status es;
3545	ext4_lblk_t offset = 0, end = map->m_lblk + map->m_len - 1;
3546
3547	ext4_es_find_extent_range(inode, &ext4_es_is_delayed,
3548				  map->m_lblk, end, &es);
3549
3550	if (!es.es_len || es.es_lblk > end)
3551		return false;
3552
3553	if (es.es_lblk > map->m_lblk) {
3554		map->m_len = es.es_lblk - map->m_lblk;
3555		return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3556	}
3557
3558	offset = map->m_lblk - es.es_lblk;
3559	map->m_len = es.es_len - offset;
3560
3561	return true;
3562}
3563
3564static int ext4_iomap_begin_report(struct inode *inode, loff_t offset,
3565				   loff_t length, unsigned int flags,
3566				   struct iomap *iomap, struct iomap *srcmap)
3567{
3568	int ret;
3569	bool delalloc = false;
3570	struct ext4_map_blocks map;
3571	u8 blkbits = inode->i_blkbits;
3572
3573	if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3574		return -EINVAL;
3575
3576	if (ext4_has_inline_data(inode)) {
3577		ret = ext4_inline_data_iomap(inode, iomap);
3578		if (ret != -EAGAIN) {
3579			if (ret == 0 && offset >= iomap->length)
3580				ret = -ENOENT;
3581			return ret;
3582		}
3583	}
3584
3585	/*
3586	 * Calculate the first and last logical block respectively.
3587	 */
3588	map.m_lblk = offset >> blkbits;
3589	map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3590			  EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3591
3592	/*
3593	 * Fiemap callers may call for offset beyond s_bitmap_maxbytes.
3594	 * So handle it here itself instead of querying ext4_map_blocks().
3595	 * Since ext4_map_blocks() will warn about it and will return
3596	 * -EIO error.
3597	 */
3598	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
3599		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3600
3601		if (offset >= sbi->s_bitmap_maxbytes) {
3602			map.m_flags = 0;
3603			goto set_iomap;
3604		}
3605	}
3606
3607	ret = ext4_map_blocks(NULL, inode, &map, 0);
3608	if (ret < 0)
3609		return ret;
3610	if (ret == 0)
3611		delalloc = ext4_iomap_is_delalloc(inode, &map);
3612
3613set_iomap:
3614	ext4_set_iomap(inode, iomap, &map, offset, length);
3615	if (delalloc && iomap->type == IOMAP_HOLE)
3616		iomap->type = IOMAP_DELALLOC;
3617
3618	return 0;
3619}
3620
3621const struct iomap_ops ext4_iomap_report_ops = {
3622	.iomap_begin = ext4_iomap_begin_report,
3623};
3624
3625/*
3626 * Pages can be marked dirty completely asynchronously from ext4's journalling
3627 * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3628 * much here because ->set_page_dirty is called under VFS locks.  The page is
3629 * not necessarily locked.
3630 *
3631 * We cannot just dirty the page and leave attached buffers clean, because the
3632 * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3633 * or jbddirty because all the journalling code will explode.
3634 *
3635 * So what we do is to mark the page "pending dirty" and next time writepage
3636 * is called, propagate that into the buffers appropriately.
3637 */
3638static int ext4_journalled_set_page_dirty(struct page *page)
3639{
3640	SetPageChecked(page);
3641	return __set_page_dirty_nobuffers(page);
3642}
3643
3644static int ext4_set_page_dirty(struct page *page)
3645{
3646	WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page));
3647	WARN_ON_ONCE(!page_has_buffers(page));
3648	return __set_page_dirty_buffers(page);
3649}
3650
3651static int ext4_iomap_swap_activate(struct swap_info_struct *sis,
3652				    struct file *file, sector_t *span)
3653{
3654	return iomap_swapfile_activate(sis, file, span,
3655				       &ext4_iomap_report_ops);
3656}
 
3657
3658static const struct address_space_operations ext4_aops = {
3659	.readpage		= ext4_readpage,
3660	.readahead		= ext4_readahead,
3661	.writepage		= ext4_writepage,
3662	.writepages		= ext4_writepages,
3663	.write_begin		= ext4_write_begin,
3664	.write_end		= ext4_write_end,
3665	.set_page_dirty		= ext4_set_page_dirty,
3666	.bmap			= ext4_bmap,
3667	.invalidatepage		= ext4_invalidatepage,
3668	.releasepage		= ext4_releasepage,
3669	.direct_IO		= noop_direct_IO,
3670	.migratepage		= buffer_migrate_page,
3671	.is_partially_uptodate  = block_is_partially_uptodate,
3672	.error_remove_page	= generic_error_remove_page,
3673	.swap_activate		= ext4_iomap_swap_activate,
3674};
3675
3676static const struct address_space_operations ext4_journalled_aops = {
3677	.readpage		= ext4_readpage,
3678	.readahead		= ext4_readahead,
3679	.writepage		= ext4_writepage,
3680	.writepages		= ext4_writepages,
3681	.write_begin		= ext4_write_begin,
3682	.write_end		= ext4_journalled_write_end,
3683	.set_page_dirty		= ext4_journalled_set_page_dirty,
3684	.bmap			= ext4_bmap,
3685	.invalidatepage		= ext4_journalled_invalidatepage,
3686	.releasepage		= ext4_releasepage,
3687	.direct_IO		= noop_direct_IO,
3688	.is_partially_uptodate  = block_is_partially_uptodate,
3689	.error_remove_page	= generic_error_remove_page,
3690	.swap_activate		= ext4_iomap_swap_activate,
3691};
3692
3693static const struct address_space_operations ext4_da_aops = {
3694	.readpage		= ext4_readpage,
3695	.readahead		= ext4_readahead,
3696	.writepage		= ext4_writepage,
3697	.writepages		= ext4_writepages,
3698	.write_begin		= ext4_da_write_begin,
3699	.write_end		= ext4_da_write_end,
3700	.set_page_dirty		= ext4_set_page_dirty,
3701	.bmap			= ext4_bmap,
3702	.invalidatepage		= ext4_invalidatepage,
3703	.releasepage		= ext4_releasepage,
3704	.direct_IO		= noop_direct_IO,
3705	.migratepage		= buffer_migrate_page,
3706	.is_partially_uptodate  = block_is_partially_uptodate,
3707	.error_remove_page	= generic_error_remove_page,
3708	.swap_activate		= ext4_iomap_swap_activate,
3709};
3710
3711static const struct address_space_operations ext4_dax_aops = {
3712	.writepages		= ext4_dax_writepages,
3713	.direct_IO		= noop_direct_IO,
3714	.set_page_dirty		= __set_page_dirty_no_writeback,
3715	.bmap			= ext4_bmap,
3716	.invalidatepage		= noop_invalidatepage,
3717	.swap_activate		= ext4_iomap_swap_activate,
3718};
3719
3720void ext4_set_aops(struct inode *inode)
3721{
3722	switch (ext4_inode_journal_mode(inode)) {
3723	case EXT4_INODE_ORDERED_DATA_MODE:
3724	case EXT4_INODE_WRITEBACK_DATA_MODE:
3725		break;
3726	case EXT4_INODE_JOURNAL_DATA_MODE:
3727		inode->i_mapping->a_ops = &ext4_journalled_aops;
3728		return;
3729	default:
3730		BUG();
3731	}
3732	if (IS_DAX(inode))
3733		inode->i_mapping->a_ops = &ext4_dax_aops;
3734	else if (test_opt(inode->i_sb, DELALLOC))
3735		inode->i_mapping->a_ops = &ext4_da_aops;
 
 
3736	else
3737		inode->i_mapping->a_ops = &ext4_aops;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3738}
3739
3740static int __ext4_block_zero_page_range(handle_t *handle,
 
 
 
 
 
 
 
3741		struct address_space *mapping, loff_t from, loff_t length)
3742{
3743	ext4_fsblk_t index = from >> PAGE_SHIFT;
3744	unsigned offset = from & (PAGE_SIZE-1);
3745	unsigned blocksize, pos;
3746	ext4_lblk_t iblock;
3747	struct inode *inode = mapping->host;
3748	struct buffer_head *bh;
3749	struct page *page;
3750	int err = 0;
3751
3752	page = find_or_create_page(mapping, from >> PAGE_SHIFT,
3753				   mapping_gfp_constraint(mapping, ~__GFP_FS));
3754	if (!page)
3755		return -ENOMEM;
3756
3757	blocksize = inode->i_sb->s_blocksize;
 
3758
3759	iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
 
 
 
 
 
 
 
3760
3761	if (!page_has_buffers(page))
3762		create_empty_buffers(page, blocksize, 0);
3763
3764	/* Find the buffer that contains "offset" */
3765	bh = page_buffers(page);
3766	pos = blocksize;
3767	while (offset >= pos) {
3768		bh = bh->b_this_page;
3769		iblock++;
3770		pos += blocksize;
3771	}
 
 
3772	if (buffer_freed(bh)) {
3773		BUFFER_TRACE(bh, "freed: skip");
3774		goto unlock;
3775	}
 
3776	if (!buffer_mapped(bh)) {
3777		BUFFER_TRACE(bh, "unmapped");
3778		ext4_get_block(inode, iblock, bh, 0);
3779		/* unmapped? It's a hole - nothing to do */
3780		if (!buffer_mapped(bh)) {
3781			BUFFER_TRACE(bh, "still unmapped");
3782			goto unlock;
3783		}
3784	}
3785
3786	/* Ok, it's mapped. Make sure it's up-to-date */
3787	if (PageUptodate(page))
3788		set_buffer_uptodate(bh);
3789
3790	if (!buffer_uptodate(bh)) {
3791		err = ext4_read_bh_lock(bh, 0, true);
3792		if (err)
 
 
 
3793			goto unlock;
3794		if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
3795			/* We expect the key to be set. */
3796			BUG_ON(!fscrypt_has_encryption_key(inode));
3797			err = fscrypt_decrypt_pagecache_blocks(page, blocksize,
3798							       bh_offset(bh));
3799			if (err) {
3800				clear_buffer_uptodate(bh);
3801				goto unlock;
3802			}
3803		}
3804	}
 
3805	if (ext4_should_journal_data(inode)) {
3806		BUFFER_TRACE(bh, "get write access");
3807		err = ext4_journal_get_write_access(handle, bh);
3808		if (err)
3809			goto unlock;
3810	}
 
3811	zero_user(page, offset, length);
 
3812	BUFFER_TRACE(bh, "zeroed end of block");
3813
 
3814	if (ext4_should_journal_data(inode)) {
3815		err = ext4_handle_dirty_metadata(handle, inode, bh);
3816	} else {
3817		err = 0;
 
3818		mark_buffer_dirty(bh);
3819		if (ext4_should_order_data(inode))
3820			err = ext4_jbd2_inode_add_write(handle, inode, from,
3821					length);
3822	}
3823
3824unlock:
3825	unlock_page(page);
3826	put_page(page);
3827	return err;
3828}
3829
3830/*
3831 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3832 * starting from file offset 'from'.  The range to be zero'd must
3833 * be contained with in one block.  If the specified range exceeds
3834 * the end of the block it will be shortened to end of the block
3835 * that corresponds to 'from'
3836 */
3837static int ext4_block_zero_page_range(handle_t *handle,
3838		struct address_space *mapping, loff_t from, loff_t length)
3839{
3840	struct inode *inode = mapping->host;
3841	unsigned offset = from & (PAGE_SIZE-1);
3842	unsigned blocksize = inode->i_sb->s_blocksize;
3843	unsigned max = blocksize - (offset & (blocksize - 1));
3844
3845	/*
3846	 * correct length if it does not fall between
3847	 * 'from' and the end of the block
3848	 */
3849	if (length > max || length < 0)
3850		length = max;
3851
3852	if (IS_DAX(inode)) {
3853		return iomap_zero_range(inode, from, length, NULL,
3854					&ext4_iomap_ops);
3855	}
3856	return __ext4_block_zero_page_range(handle, mapping, from, length);
3857}
3858
3859/*
3860 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3861 * up to the end of the block which corresponds to `from'.
3862 * This required during truncate. We need to physically zero the tail end
3863 * of that block so it doesn't yield old data if the file is later grown.
3864 */
3865static int ext4_block_truncate_page(handle_t *handle,
3866		struct address_space *mapping, loff_t from)
3867{
3868	unsigned offset = from & (PAGE_SIZE-1);
3869	unsigned length;
3870	unsigned blocksize;
3871	struct inode *inode = mapping->host;
3872
3873	/* If we are processing an encrypted inode during orphan list handling */
3874	if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode))
3875		return 0;
3876
3877	blocksize = inode->i_sb->s_blocksize;
3878	length = blocksize - (offset & (blocksize - 1));
3879
3880	return ext4_block_zero_page_range(handle, mapping, from, length);
3881}
3882
3883int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3884			     loff_t lstart, loff_t length)
3885{
3886	struct super_block *sb = inode->i_sb;
3887	struct address_space *mapping = inode->i_mapping;
3888	unsigned partial_start, partial_end;
3889	ext4_fsblk_t start, end;
3890	loff_t byte_end = (lstart + length - 1);
3891	int err = 0;
3892
3893	partial_start = lstart & (sb->s_blocksize - 1);
3894	partial_end = byte_end & (sb->s_blocksize - 1);
3895
3896	start = lstart >> sb->s_blocksize_bits;
3897	end = byte_end >> sb->s_blocksize_bits;
3898
3899	/* Handle partial zero within the single block */
3900	if (start == end &&
3901	    (partial_start || (partial_end != sb->s_blocksize - 1))) {
3902		err = ext4_block_zero_page_range(handle, mapping,
3903						 lstart, length);
3904		return err;
3905	}
3906	/* Handle partial zero out on the start of the range */
3907	if (partial_start) {
3908		err = ext4_block_zero_page_range(handle, mapping,
3909						 lstart, sb->s_blocksize);
3910		if (err)
3911			return err;
3912	}
3913	/* Handle partial zero out on the end of the range */
3914	if (partial_end != sb->s_blocksize - 1)
3915		err = ext4_block_zero_page_range(handle, mapping,
3916						 byte_end - partial_end,
3917						 partial_end + 1);
3918	return err;
3919}
3920
3921int ext4_can_truncate(struct inode *inode)
3922{
3923	if (S_ISREG(inode->i_mode))
3924		return 1;
3925	if (S_ISDIR(inode->i_mode))
3926		return 1;
3927	if (S_ISLNK(inode->i_mode))
3928		return !ext4_inode_is_fast_symlink(inode);
3929	return 0;
3930}
3931
3932/*
3933 * We have to make sure i_disksize gets properly updated before we truncate
3934 * page cache due to hole punching or zero range. Otherwise i_disksize update
3935 * can get lost as it may have been postponed to submission of writeback but
3936 * that will never happen after we truncate page cache.
3937 */
3938int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3939				      loff_t len)
3940{
3941	handle_t *handle;
3942	int ret;
3943
3944	loff_t size = i_size_read(inode);
3945
3946	WARN_ON(!inode_is_locked(inode));
3947	if (offset > size || offset + len < size)
3948		return 0;
3949
3950	if (EXT4_I(inode)->i_disksize >= size)
3951		return 0;
3952
3953	handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
3954	if (IS_ERR(handle))
3955		return PTR_ERR(handle);
3956	ext4_update_i_disksize(inode, size);
3957	ret = ext4_mark_inode_dirty(handle, inode);
3958	ext4_journal_stop(handle);
3959
3960	return ret;
3961}
3962
3963static void ext4_wait_dax_page(struct ext4_inode_info *ei)
3964{
3965	up_write(&ei->i_mmap_sem);
3966	schedule();
3967	down_write(&ei->i_mmap_sem);
3968}
3969
3970int ext4_break_layouts(struct inode *inode)
3971{
3972	struct ext4_inode_info *ei = EXT4_I(inode);
3973	struct page *page;
3974	int error;
3975
3976	if (WARN_ON_ONCE(!rwsem_is_locked(&ei->i_mmap_sem)))
3977		return -EINVAL;
3978
3979	do {
3980		page = dax_layout_busy_page(inode->i_mapping);
3981		if (!page)
3982			return 0;
3983
3984		error = ___wait_var_event(&page->_refcount,
3985				atomic_read(&page->_refcount) == 1,
3986				TASK_INTERRUPTIBLE, 0, 0,
3987				ext4_wait_dax_page(ei));
3988	} while (error == 0);
3989
3990	return error;
3991}
3992
3993/*
3994 * ext4_punch_hole: punches a hole in a file by releasing the blocks
3995 * associated with the given offset and length
3996 *
3997 * @inode:  File inode
3998 * @offset: The offset where the hole will begin
3999 * @len:    The length of the hole
4000 *
4001 * Returns: 0 on success or negative on failure
4002 */
4003
4004int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
4005{
4006	struct super_block *sb = inode->i_sb;
4007	ext4_lblk_t first_block, stop_block;
4008	struct address_space *mapping = inode->i_mapping;
4009	loff_t first_block_offset, last_block_offset;
4010	handle_t *handle;
4011	unsigned int credits;
4012	int ret = 0, ret2 = 0;
4013
4014	trace_ext4_punch_hole(inode, offset, length, 0);
4015
4016	ext4_clear_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
4017	if (ext4_has_inline_data(inode)) {
4018		down_write(&EXT4_I(inode)->i_mmap_sem);
4019		ret = ext4_convert_inline_data(inode);
4020		up_write(&EXT4_I(inode)->i_mmap_sem);
4021		if (ret)
4022			return ret;
4023	}
4024
4025	/*
4026	 * Write out all dirty pages to avoid race conditions
4027	 * Then release them.
4028	 */
4029	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4030		ret = filemap_write_and_wait_range(mapping, offset,
4031						   offset + length - 1);
4032		if (ret)
4033			return ret;
4034	}
4035
4036	inode_lock(inode);
4037
4038	/* No need to punch hole beyond i_size */
4039	if (offset >= inode->i_size)
4040		goto out_mutex;
4041
4042	/*
4043	 * If the hole extends beyond i_size, set the hole
4044	 * to end after the page that contains i_size
4045	 */
4046	if (offset + length > inode->i_size) {
4047		length = inode->i_size +
4048		   PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
4049		   offset;
4050	}
4051
4052	if (offset & (sb->s_blocksize - 1) ||
4053	    (offset + length) & (sb->s_blocksize - 1)) {
4054		/*
4055		 * Attach jinode to inode for jbd2 if we do any zeroing of
4056		 * partial block
4057		 */
4058		ret = ext4_inode_attach_jinode(inode);
4059		if (ret < 0)
4060			goto out_mutex;
4061
 
 
 
4062	}
4063
4064	/* Wait all existing dio workers, newcomers will block on i_mutex */
4065	inode_dio_wait(inode);
4066
4067	/*
4068	 * Prevent page faults from reinstantiating pages we have released from
4069	 * page cache.
4070	 */
4071	down_write(&EXT4_I(inode)->i_mmap_sem);
4072
4073	ret = ext4_break_layouts(inode);
4074	if (ret)
4075		goto out_dio;
4076
4077	first_block_offset = round_up(offset, sb->s_blocksize);
4078	last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
4079
4080	/* Now release the pages and zero block aligned part of pages*/
4081	if (last_block_offset > first_block_offset) {
4082		ret = ext4_update_disksize_before_punch(inode, offset, length);
4083		if (ret)
4084			goto out_dio;
4085		truncate_pagecache_range(inode, first_block_offset,
4086					 last_block_offset);
4087	}
4088
4089	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4090		credits = ext4_writepage_trans_blocks(inode);
4091	else
4092		credits = ext4_blocks_for_truncate(inode);
4093	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4094	if (IS_ERR(handle)) {
4095		ret = PTR_ERR(handle);
4096		ext4_std_error(sb, ret);
4097		goto out_dio;
4098	}
4099
4100	ret = ext4_zero_partial_blocks(handle, inode, offset,
4101				       length);
4102	if (ret)
4103		goto out_stop;
4104
4105	first_block = (offset + sb->s_blocksize - 1) >>
4106		EXT4_BLOCK_SIZE_BITS(sb);
4107	stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4108
4109	/* If there are blocks to remove, do it */
4110	if (stop_block > first_block) {
4111
4112		down_write(&EXT4_I(inode)->i_data_sem);
4113		ext4_discard_preallocations(inode, 0);
4114
4115		ret = ext4_es_remove_extent(inode, first_block,
4116					    stop_block - first_block);
4117		if (ret) {
4118			up_write(&EXT4_I(inode)->i_data_sem);
4119			goto out_stop;
4120		}
4121
4122		if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4123			ret = ext4_ext_remove_space(inode, first_block,
4124						    stop_block - 1);
4125		else
4126			ret = ext4_ind_remove_space(handle, inode, first_block,
4127						    stop_block);
4128
4129		up_write(&EXT4_I(inode)->i_data_sem);
4130	}
4131	ext4_fc_track_range(handle, inode, first_block, stop_block);
4132	if (IS_SYNC(inode))
4133		ext4_handle_sync(handle);
4134
4135	inode->i_mtime = inode->i_ctime = current_time(inode);
4136	ret2 = ext4_mark_inode_dirty(handle, inode);
4137	if (unlikely(ret2))
4138		ret = ret2;
4139	if (ret >= 0)
4140		ext4_update_inode_fsync_trans(handle, inode, 1);
4141out_stop:
4142	ext4_journal_stop(handle);
4143out_dio:
4144	up_write(&EXT4_I(inode)->i_mmap_sem);
4145out_mutex:
4146	inode_unlock(inode);
4147	return ret;
4148}
4149
4150int ext4_inode_attach_jinode(struct inode *inode)
4151{
4152	struct ext4_inode_info *ei = EXT4_I(inode);
4153	struct jbd2_inode *jinode;
4154
4155	if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4156		return 0;
4157
4158	jinode = jbd2_alloc_inode(GFP_KERNEL);
4159	spin_lock(&inode->i_lock);
4160	if (!ei->jinode) {
4161		if (!jinode) {
4162			spin_unlock(&inode->i_lock);
4163			return -ENOMEM;
4164		}
4165		ei->jinode = jinode;
4166		jbd2_journal_init_jbd_inode(ei->jinode, inode);
4167		jinode = NULL;
4168	}
4169	spin_unlock(&inode->i_lock);
4170	if (unlikely(jinode != NULL))
4171		jbd2_free_inode(jinode);
4172	return 0;
4173}
4174
4175/*
4176 * ext4_truncate()
4177 *
4178 * We block out ext4_get_block() block instantiations across the entire
4179 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4180 * simultaneously on behalf of the same inode.
4181 *
4182 * As we work through the truncate and commit bits of it to the journal there
4183 * is one core, guiding principle: the file's tree must always be consistent on
4184 * disk.  We must be able to restart the truncate after a crash.
4185 *
4186 * The file's tree may be transiently inconsistent in memory (although it
4187 * probably isn't), but whenever we close off and commit a journal transaction,
4188 * the contents of (the filesystem + the journal) must be consistent and
4189 * restartable.  It's pretty simple, really: bottom up, right to left (although
4190 * left-to-right works OK too).
4191 *
4192 * Note that at recovery time, journal replay occurs *before* the restart of
4193 * truncate against the orphan inode list.
4194 *
4195 * The committed inode has the new, desired i_size (which is the same as
4196 * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4197 * that this inode's truncate did not complete and it will again call
4198 * ext4_truncate() to have another go.  So there will be instantiated blocks
4199 * to the right of the truncation point in a crashed ext4 filesystem.  But
4200 * that's fine - as long as they are linked from the inode, the post-crash
4201 * ext4_truncate() run will find them and release them.
4202 */
4203int ext4_truncate(struct inode *inode)
4204{
4205	struct ext4_inode_info *ei = EXT4_I(inode);
4206	unsigned int credits;
4207	int err = 0, err2;
4208	handle_t *handle;
4209	struct address_space *mapping = inode->i_mapping;
4210
4211	/*
4212	 * There is a possibility that we're either freeing the inode
4213	 * or it's a completely new inode. In those cases we might not
4214	 * have i_mutex locked because it's not necessary.
4215	 */
4216	if (!(inode->i_state & (I_NEW|I_FREEING)))
4217		WARN_ON(!inode_is_locked(inode));
4218	trace_ext4_truncate_enter(inode);
4219
4220	if (!ext4_can_truncate(inode))
4221		goto out_trace;
 
 
4222
4223	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4224		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4225
4226	if (ext4_has_inline_data(inode)) {
4227		int has_inline = 1;
4228
4229		err = ext4_inline_data_truncate(inode, &has_inline);
4230		if (err || has_inline)
4231			goto out_trace;
4232	}
4233
4234	/* If we zero-out tail of the page, we have to create jinode for jbd2 */
4235	if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4236		if (ext4_inode_attach_jinode(inode) < 0)
4237			goto out_trace;
4238	}
4239
4240	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4241		credits = ext4_writepage_trans_blocks(inode);
4242	else
4243		credits = ext4_blocks_for_truncate(inode);
4244
4245	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4246	if (IS_ERR(handle)) {
4247		err = PTR_ERR(handle);
4248		goto out_trace;
4249	}
4250
4251	if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4252		ext4_block_truncate_page(handle, mapping, inode->i_size);
4253
4254	/*
4255	 * We add the inode to the orphan list, so that if this
4256	 * truncate spans multiple transactions, and we crash, we will
4257	 * resume the truncate when the filesystem recovers.  It also
4258	 * marks the inode dirty, to catch the new size.
4259	 *
4260	 * Implication: the file must always be in a sane, consistent
4261	 * truncatable state while each transaction commits.
4262	 */
4263	err = ext4_orphan_add(handle, inode);
4264	if (err)
4265		goto out_stop;
4266
4267	down_write(&EXT4_I(inode)->i_data_sem);
4268
4269	ext4_discard_preallocations(inode, 0);
4270
4271	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4272		err = ext4_ext_truncate(handle, inode);
4273	else
4274		ext4_ind_truncate(handle, inode);
4275
4276	up_write(&ei->i_data_sem);
4277	if (err)
4278		goto out_stop;
4279
4280	if (IS_SYNC(inode))
4281		ext4_handle_sync(handle);
4282
4283out_stop:
4284	/*
4285	 * If this was a simple ftruncate() and the file will remain alive,
4286	 * then we need to clear up the orphan record which we created above.
4287	 * However, if this was a real unlink then we were called by
4288	 * ext4_evict_inode(), and we allow that function to clean up the
4289	 * orphan info for us.
4290	 */
4291	if (inode->i_nlink)
4292		ext4_orphan_del(handle, inode);
4293
4294	inode->i_mtime = inode->i_ctime = current_time(inode);
4295	err2 = ext4_mark_inode_dirty(handle, inode);
4296	if (unlikely(err2 && !err))
4297		err = err2;
4298	ext4_journal_stop(handle);
4299
4300out_trace:
4301	trace_ext4_truncate_exit(inode);
4302	return err;
4303}
4304
4305/*
4306 * ext4_get_inode_loc returns with an extra refcount against the inode's
4307 * underlying buffer_head on success. If 'in_mem' is true, we have all
4308 * data in memory that is needed to recreate the on-disk version of this
4309 * inode.
4310 */
4311static int __ext4_get_inode_loc(struct super_block *sb, unsigned long ino,
4312				struct ext4_iloc *iloc, int in_mem,
4313				ext4_fsblk_t *ret_block)
4314{
4315	struct ext4_group_desc	*gdp;
4316	struct buffer_head	*bh;
 
4317	ext4_fsblk_t		block;
4318	struct blk_plug		plug;
4319	int			inodes_per_block, inode_offset;
4320
4321	iloc->bh = NULL;
4322	if (ino < EXT4_ROOT_INO ||
4323	    ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
4324		return -EFSCORRUPTED;
4325
4326	iloc->block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
4327	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4328	if (!gdp)
4329		return -EIO;
4330
4331	/*
4332	 * Figure out the offset within the block group inode table
4333	 */
4334	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4335	inode_offset = ((ino - 1) %
4336			EXT4_INODES_PER_GROUP(sb));
4337	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4338	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4339
4340	bh = sb_getblk(sb, block);
4341	if (unlikely(!bh))
4342		return -ENOMEM;
4343	if (ext4_simulate_fail(sb, EXT4_SIM_INODE_EIO))
4344		goto simulate_eio;
 
4345	if (!buffer_uptodate(bh)) {
4346		lock_buffer(bh);
4347
4348		if (ext4_buffer_uptodate(bh)) {
 
 
 
 
 
 
 
 
 
4349			/* someone brought it uptodate while we waited */
4350			unlock_buffer(bh);
4351			goto has_buffer;
4352		}
4353
4354		/*
4355		 * If we have all information of the inode in memory and this
4356		 * is the only valid inode in the block, we need not read the
4357		 * block.
4358		 */
4359		if (in_mem) {
4360			struct buffer_head *bitmap_bh;
4361			int i, start;
4362
4363			start = inode_offset & ~(inodes_per_block - 1);
4364
4365			/* Is the inode bitmap in cache? */
4366			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4367			if (unlikely(!bitmap_bh))
4368				goto make_io;
4369
4370			/*
4371			 * If the inode bitmap isn't in cache then the
4372			 * optimisation may end up performing two reads instead
4373			 * of one, so skip it.
4374			 */
4375			if (!buffer_uptodate(bitmap_bh)) {
4376				brelse(bitmap_bh);
4377				goto make_io;
4378			}
4379			for (i = start; i < start + inodes_per_block; i++) {
4380				if (i == inode_offset)
4381					continue;
4382				if (ext4_test_bit(i, bitmap_bh->b_data))
4383					break;
4384			}
4385			brelse(bitmap_bh);
4386			if (i == start + inodes_per_block) {
4387				/* all other inodes are free, so skip I/O */
4388				memset(bh->b_data, 0, bh->b_size);
4389				set_buffer_uptodate(bh);
4390				unlock_buffer(bh);
4391				goto has_buffer;
4392			}
4393		}
4394
4395make_io:
4396		/*
4397		 * If we need to do any I/O, try to pre-readahead extra
4398		 * blocks from the inode table.
4399		 */
4400		blk_start_plug(&plug);
4401		if (EXT4_SB(sb)->s_inode_readahead_blks) {
4402			ext4_fsblk_t b, end, table;
4403			unsigned num;
4404			__u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4405
4406			table = ext4_inode_table(sb, gdp);
4407			/* s_inode_readahead_blks is always a power of 2 */
4408			b = block & ~((ext4_fsblk_t) ra_blks - 1);
4409			if (table > b)
4410				b = table;
4411			end = b + ra_blks;
4412			num = EXT4_INODES_PER_GROUP(sb);
4413			if (ext4_has_group_desc_csum(sb))
 
4414				num -= ext4_itable_unused_count(sb, gdp);
4415			table += num / inodes_per_block;
4416			if (end > table)
4417				end = table;
4418			while (b <= end)
4419				ext4_sb_breadahead_unmovable(sb, b++);
4420		}
4421
4422		/*
4423		 * There are other valid inodes in the buffer, this inode
4424		 * has in-inode xattrs, or we don't have this inode in memory.
4425		 * Read the block from disk.
4426		 */
4427		trace_ext4_load_inode(sb, ino);
4428		ext4_read_bh_nowait(bh, REQ_META | REQ_PRIO, NULL);
4429		blk_finish_plug(&plug);
 
4430		wait_on_buffer(bh);
4431		if (!buffer_uptodate(bh)) {
4432		simulate_eio:
4433			if (ret_block)
4434				*ret_block = block;
4435			brelse(bh);
4436			return -EIO;
4437		}
4438	}
4439has_buffer:
4440	iloc->bh = bh;
4441	return 0;
4442}
4443
4444static int __ext4_get_inode_loc_noinmem(struct inode *inode,
4445					struct ext4_iloc *iloc)
4446{
4447	ext4_fsblk_t err_blk;
4448	int ret;
4449
4450	ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, iloc, 0,
4451					&err_blk);
4452
4453	if (ret == -EIO)
4454		ext4_error_inode_block(inode, err_blk, EIO,
4455					"unable to read itable block");
4456
4457	return ret;
4458}
4459
4460int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4461{
4462	ext4_fsblk_t err_blk;
4463	int ret;
4464
4465	/* We have all inode data except xattrs in memory here. */
4466	ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, iloc,
4467		!ext4_test_inode_state(inode, EXT4_STATE_XATTR), &err_blk);
4468
4469	if (ret == -EIO)
4470		ext4_error_inode_block(inode, err_blk, EIO,
4471					"unable to read itable block");
4472
4473	return ret;
4474}
4475
4476
4477int ext4_get_fc_inode_loc(struct super_block *sb, unsigned long ino,
4478			  struct ext4_iloc *iloc)
4479{
4480	return __ext4_get_inode_loc(sb, ino, iloc, 0, NULL);
4481}
4482
4483static bool ext4_should_enable_dax(struct inode *inode)
4484{
4485	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4486
4487	if (test_opt2(inode->i_sb, DAX_NEVER))
4488		return false;
4489	if (!S_ISREG(inode->i_mode))
4490		return false;
4491	if (ext4_should_journal_data(inode))
4492		return false;
4493	if (ext4_has_inline_data(inode))
4494		return false;
4495	if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT))
4496		return false;
4497	if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY))
4498		return false;
4499	if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags))
4500		return false;
4501	if (test_opt(inode->i_sb, DAX_ALWAYS))
4502		return true;
4503
4504	return ext4_test_inode_flag(inode, EXT4_INODE_DAX);
4505}
4506
4507void ext4_set_inode_flags(struct inode *inode, bool init)
4508{
4509	unsigned int flags = EXT4_I(inode)->i_flags;
4510	unsigned int new_fl = 0;
4511
4512	WARN_ON_ONCE(IS_DAX(inode) && init);
4513
 
4514	if (flags & EXT4_SYNC_FL)
4515		new_fl |= S_SYNC;
4516	if (flags & EXT4_APPEND_FL)
4517		new_fl |= S_APPEND;
4518	if (flags & EXT4_IMMUTABLE_FL)
4519		new_fl |= S_IMMUTABLE;
4520	if (flags & EXT4_NOATIME_FL)
4521		new_fl |= S_NOATIME;
4522	if (flags & EXT4_DIRSYNC_FL)
4523		new_fl |= S_DIRSYNC;
 
4524
4525	/* Because of the way inode_set_flags() works we must preserve S_DAX
4526	 * here if already set. */
4527	new_fl |= (inode->i_flags & S_DAX);
4528	if (init && ext4_should_enable_dax(inode))
4529		new_fl |= S_DAX;
4530
4531	if (flags & EXT4_ENCRYPT_FL)
4532		new_fl |= S_ENCRYPTED;
4533	if (flags & EXT4_CASEFOLD_FL)
4534		new_fl |= S_CASEFOLD;
4535	if (flags & EXT4_VERITY_FL)
4536		new_fl |= S_VERITY;
4537	inode_set_flags(inode, new_fl,
4538			S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
4539			S_ENCRYPTED|S_CASEFOLD|S_VERITY);
 
 
 
 
 
 
 
 
4540}
4541
4542static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4543				  struct ext4_inode_info *ei)
4544{
4545	blkcnt_t i_blocks ;
4546	struct inode *inode = &(ei->vfs_inode);
4547	struct super_block *sb = inode->i_sb;
4548
4549	if (ext4_has_feature_huge_file(sb)) {
 
4550		/* we are using combined 48 bit field */
4551		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4552					le32_to_cpu(raw_inode->i_blocks_lo);
4553		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4554			/* i_blocks represent file system block size */
4555			return i_blocks  << (inode->i_blkbits - 9);
4556		} else {
4557			return i_blocks;
4558		}
4559	} else {
4560		return le32_to_cpu(raw_inode->i_blocks_lo);
4561	}
4562}
4563
4564static inline int ext4_iget_extra_inode(struct inode *inode,
4565					 struct ext4_inode *raw_inode,
4566					 struct ext4_inode_info *ei)
4567{
4568	__le32 *magic = (void *)raw_inode +
4569			EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4570
4571	if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <=
4572	    EXT4_INODE_SIZE(inode->i_sb) &&
4573	    *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4574		ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4575		return ext4_find_inline_data_nolock(inode);
4576	} else
4577		EXT4_I(inode)->i_inline_off = 0;
4578	return 0;
4579}
4580
4581int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4582{
4583	if (!ext4_has_feature_project(inode->i_sb))
4584		return -EOPNOTSUPP;
4585	*projid = EXT4_I(inode)->i_projid;
4586	return 0;
4587}
4588
4589/*
4590 * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of
4591 * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag
4592 * set.
4593 */
4594static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val)
4595{
4596	if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4597		inode_set_iversion_raw(inode, val);
4598	else
4599		inode_set_iversion_queried(inode, val);
4600}
4601static inline u64 ext4_inode_peek_iversion(const struct inode *inode)
4602{
4603	if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4604		return inode_peek_iversion_raw(inode);
4605	else
4606		return inode_peek_iversion(inode);
4607}
4608
4609struct inode *__ext4_iget(struct super_block *sb, unsigned long ino,
4610			  ext4_iget_flags flags, const char *function,
4611			  unsigned int line)
4612{
4613	struct ext4_iloc iloc;
4614	struct ext4_inode *raw_inode;
4615	struct ext4_inode_info *ei;
4616	struct inode *inode;
4617	journal_t *journal = EXT4_SB(sb)->s_journal;
4618	long ret;
4619	loff_t size;
4620	int block;
4621	uid_t i_uid;
4622	gid_t i_gid;
4623	projid_t i_projid;
4624
4625	if ((!(flags & EXT4_IGET_SPECIAL) &&
4626	     (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)) ||
4627	    (ino < EXT4_ROOT_INO) ||
4628	    (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))) {
4629		if (flags & EXT4_IGET_HANDLE)
4630			return ERR_PTR(-ESTALE);
4631		__ext4_error(sb, function, line, false, EFSCORRUPTED, 0,
4632			     "inode #%lu: comm %s: iget: illegal inode #",
4633			     ino, current->comm);
4634		return ERR_PTR(-EFSCORRUPTED);
4635	}
4636
4637	inode = iget_locked(sb, ino);
4638	if (!inode)
4639		return ERR_PTR(-ENOMEM);
4640	if (!(inode->i_state & I_NEW))
4641		return inode;
4642
4643	ei = EXT4_I(inode);
4644	iloc.bh = NULL;
4645
4646	ret = __ext4_get_inode_loc_noinmem(inode, &iloc);
4647	if (ret < 0)
4648		goto bad_inode;
4649	raw_inode = ext4_raw_inode(&iloc);
4650
4651	if ((ino == EXT4_ROOT_INO) && (raw_inode->i_links_count == 0)) {
4652		ext4_error_inode(inode, function, line, 0,
4653				 "iget: root inode unallocated");
4654		ret = -EFSCORRUPTED;
4655		goto bad_inode;
4656	}
4657
4658	if ((flags & EXT4_IGET_HANDLE) &&
4659	    (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) {
4660		ret = -ESTALE;
4661		goto bad_inode;
4662	}
4663
4664	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4665		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4666		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4667			EXT4_INODE_SIZE(inode->i_sb) ||
4668		    (ei->i_extra_isize & 3)) {
4669			ext4_error_inode(inode, function, line, 0,
4670					 "iget: bad extra_isize %u "
4671					 "(inode size %u)",
4672					 ei->i_extra_isize,
4673					 EXT4_INODE_SIZE(inode->i_sb));
4674			ret = -EFSCORRUPTED;
4675			goto bad_inode;
4676		}
4677	} else
4678		ei->i_extra_isize = 0;
4679
4680	/* Precompute checksum seed for inode metadata */
4681	if (ext4_has_metadata_csum(sb)) {
4682		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4683		__u32 csum;
4684		__le32 inum = cpu_to_le32(inode->i_ino);
4685		__le32 gen = raw_inode->i_generation;
4686		csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4687				   sizeof(inum));
4688		ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4689					      sizeof(gen));
4690	}
4691
4692	if ((!ext4_inode_csum_verify(inode, raw_inode, ei) ||
4693	    ext4_simulate_fail(sb, EXT4_SIM_INODE_CRC)) &&
4694	     (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))) {
4695		ext4_error_inode_err(inode, function, line, 0,
4696				EFSBADCRC, "iget: checksum invalid");
4697		ret = -EFSBADCRC;
4698		goto bad_inode;
4699	}
4700
4701	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4702	i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4703	i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4704	if (ext4_has_feature_project(sb) &&
4705	    EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4706	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4707		i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4708	else
4709		i_projid = EXT4_DEF_PROJID;
4710
4711	if (!(test_opt(inode->i_sb, NO_UID32))) {
4712		i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4713		i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4714	}
4715	i_uid_write(inode, i_uid);
4716	i_gid_write(inode, i_gid);
4717	ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4718	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4719
4720	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
4721	ei->i_inline_off = 0;
4722	ei->i_dir_start_lookup = 0;
4723	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4724	/* We now have enough fields to check if the inode was active or not.
4725	 * This is needed because nfsd might try to access dead inodes
4726	 * the test is that same one that e2fsck uses
4727	 * NeilBrown 1999oct15
4728	 */
4729	if (inode->i_nlink == 0) {
4730		if ((inode->i_mode == 0 ||
4731		     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4732		    ino != EXT4_BOOT_LOADER_INO) {
4733			/* this inode is deleted */
4734			ret = -ESTALE;
4735			goto bad_inode;
4736		}
4737		/* The only unlinked inodes we let through here have
4738		 * valid i_mode and are being read by the orphan
4739		 * recovery code: that's fine, we're about to complete
4740		 * the process of deleting those.
4741		 * OR it is the EXT4_BOOT_LOADER_INO which is
4742		 * not initialized on a new filesystem. */
4743	}
4744	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4745	ext4_set_inode_flags(inode, true);
4746	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4747	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4748	if (ext4_has_feature_64bit(sb))
4749		ei->i_file_acl |=
4750			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4751	inode->i_size = ext4_isize(sb, raw_inode);
4752	if ((size = i_size_read(inode)) < 0) {
4753		ext4_error_inode(inode, function, line, 0,
4754				 "iget: bad i_size value: %lld", size);
4755		ret = -EFSCORRUPTED;
4756		goto bad_inode;
4757	}
4758	/*
4759	 * If dir_index is not enabled but there's dir with INDEX flag set,
4760	 * we'd normally treat htree data as empty space. But with metadata
4761	 * checksumming that corrupts checksums so forbid that.
4762	 */
4763	if (!ext4_has_feature_dir_index(sb) && ext4_has_metadata_csum(sb) &&
4764	    ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) {
4765		ext4_error_inode(inode, function, line, 0,
4766			 "iget: Dir with htree data on filesystem without dir_index feature.");
4767		ret = -EFSCORRUPTED;
4768		goto bad_inode;
4769	}
4770	ei->i_disksize = inode->i_size;
4771#ifdef CONFIG_QUOTA
4772	ei->i_reserved_quota = 0;
4773#endif
4774	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4775	ei->i_block_group = iloc.block_group;
4776	ei->i_last_alloc_group = ~0;
4777	/*
4778	 * NOTE! The in-memory inode i_data array is in little-endian order
4779	 * even on big-endian machines: we do NOT byteswap the block numbers!
4780	 */
4781	for (block = 0; block < EXT4_N_BLOCKS; block++)
4782		ei->i_data[block] = raw_inode->i_block[block];
4783	INIT_LIST_HEAD(&ei->i_orphan);
4784	ext4_fc_init_inode(&ei->vfs_inode);
4785
4786	/*
4787	 * Set transaction id's of transactions that have to be committed
4788	 * to finish f[data]sync. We set them to currently running transaction
4789	 * as we cannot be sure that the inode or some of its metadata isn't
4790	 * part of the transaction - the inode could have been reclaimed and
4791	 * now it is reread from disk.
4792	 */
4793	if (journal) {
4794		transaction_t *transaction;
4795		tid_t tid;
4796
4797		read_lock(&journal->j_state_lock);
4798		if (journal->j_running_transaction)
4799			transaction = journal->j_running_transaction;
4800		else
4801			transaction = journal->j_committing_transaction;
4802		if (transaction)
4803			tid = transaction->t_tid;
4804		else
4805			tid = journal->j_commit_sequence;
4806		read_unlock(&journal->j_state_lock);
4807		ei->i_sync_tid = tid;
4808		ei->i_datasync_tid = tid;
4809	}
4810
4811	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
 
 
 
 
 
 
4812		if (ei->i_extra_isize == 0) {
4813			/* The extra space is currently unused. Use it. */
4814			BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
4815			ei->i_extra_isize = sizeof(struct ext4_inode) -
4816					    EXT4_GOOD_OLD_INODE_SIZE;
4817		} else {
4818			ret = ext4_iget_extra_inode(inode, raw_inode, ei);
4819			if (ret)
4820				goto bad_inode;
 
 
4821		}
4822	}
 
4823
4824	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4825	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4826	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4827	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4828
4829	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4830		u64 ivers = le32_to_cpu(raw_inode->i_disk_version);
4831
4832		if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4833			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4834				ivers |=
4835		    (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4836		}
4837		ext4_inode_set_iversion_queried(inode, ivers);
4838	}
4839
4840	ret = 0;
4841	if (ei->i_file_acl &&
4842	    !ext4_inode_block_valid(inode, ei->i_file_acl, 1)) {
4843		ext4_error_inode(inode, function, line, 0,
4844				 "iget: bad extended attribute block %llu",
4845				 ei->i_file_acl);
4846		ret = -EFSCORRUPTED;
4847		goto bad_inode;
4848	} else if (!ext4_has_inline_data(inode)) {
4849		/* validate the block references in the inode */
4850		if (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY) &&
4851			(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4852			(S_ISLNK(inode->i_mode) &&
4853			!ext4_inode_is_fast_symlink(inode)))) {
4854			if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4855				ret = ext4_ext_check_inode(inode);
4856			else
4857				ret = ext4_ind_check_inode(inode);
4858		}
4859	}
4860	if (ret)
4861		goto bad_inode;
4862
4863	if (S_ISREG(inode->i_mode)) {
4864		inode->i_op = &ext4_file_inode_operations;
4865		inode->i_fop = &ext4_file_operations;
4866		ext4_set_aops(inode);
4867	} else if (S_ISDIR(inode->i_mode)) {
4868		inode->i_op = &ext4_dir_inode_operations;
4869		inode->i_fop = &ext4_dir_operations;
4870	} else if (S_ISLNK(inode->i_mode)) {
4871		/* VFS does not allow setting these so must be corruption */
4872		if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
4873			ext4_error_inode(inode, function, line, 0,
4874					 "iget: immutable or append flags "
4875					 "not allowed on symlinks");
4876			ret = -EFSCORRUPTED;
4877			goto bad_inode;
4878		}
4879		if (IS_ENCRYPTED(inode)) {
4880			inode->i_op = &ext4_encrypted_symlink_inode_operations;
4881			ext4_set_aops(inode);
4882		} else if (ext4_inode_is_fast_symlink(inode)) {
4883			inode->i_link = (char *)ei->i_data;
4884			inode->i_op = &ext4_fast_symlink_inode_operations;
4885			nd_terminate_link(ei->i_data, inode->i_size,
4886				sizeof(ei->i_data) - 1);
4887		} else {
4888			inode->i_op = &ext4_symlink_inode_operations;
4889			ext4_set_aops(inode);
4890		}
4891		inode_nohighmem(inode);
4892	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4893	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4894		inode->i_op = &ext4_special_inode_operations;
4895		if (raw_inode->i_block[0])
4896			init_special_inode(inode, inode->i_mode,
4897			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4898		else
4899			init_special_inode(inode, inode->i_mode,
4900			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4901	} else if (ino == EXT4_BOOT_LOADER_INO) {
4902		make_bad_inode(inode);
4903	} else {
4904		ret = -EFSCORRUPTED;
4905		ext4_error_inode(inode, function, line, 0,
4906				 "iget: bogus i_mode (%o)", inode->i_mode);
4907		goto bad_inode;
4908	}
4909	if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb))
4910		ext4_error_inode(inode, function, line, 0,
4911				 "casefold flag without casefold feature");
4912	brelse(iloc.bh);
4913
4914	unlock_new_inode(inode);
4915	return inode;
4916
4917bad_inode:
4918	brelse(iloc.bh);
4919	iget_failed(inode);
4920	return ERR_PTR(ret);
4921}
4922
4923static int ext4_inode_blocks_set(handle_t *handle,
4924				struct ext4_inode *raw_inode,
4925				struct ext4_inode_info *ei)
4926{
4927	struct inode *inode = &(ei->vfs_inode);
4928	u64 i_blocks = READ_ONCE(inode->i_blocks);
4929	struct super_block *sb = inode->i_sb;
4930
4931	if (i_blocks <= ~0U) {
4932		/*
4933		 * i_blocks can be represented in a 32 bit variable
4934		 * as multiple of 512 bytes
4935		 */
4936		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4937		raw_inode->i_blocks_high = 0;
4938		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4939		return 0;
4940	}
4941	if (!ext4_has_feature_huge_file(sb))
4942		return -EFBIG;
4943
4944	if (i_blocks <= 0xffffffffffffULL) {
4945		/*
4946		 * i_blocks can be represented in a 48 bit variable
4947		 * as multiple of 512 bytes
4948		 */
4949		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4950		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4951		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4952	} else {
4953		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4954		/* i_block is stored in file system block size */
4955		i_blocks = i_blocks >> (inode->i_blkbits - 9);
4956		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4957		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4958	}
4959	return 0;
4960}
4961
4962static void __ext4_update_other_inode_time(struct super_block *sb,
4963					   unsigned long orig_ino,
4964					   unsigned long ino,
4965					   struct ext4_inode *raw_inode)
4966{
4967	struct inode *inode;
4968
4969	inode = find_inode_by_ino_rcu(sb, ino);
4970	if (!inode)
4971		return;
4972
4973	if (!inode_is_dirtytime_only(inode))
4974		return;
4975
4976	spin_lock(&inode->i_lock);
4977	if (inode_is_dirtytime_only(inode)) {
4978		struct ext4_inode_info	*ei = EXT4_I(inode);
4979
4980		inode->i_state &= ~I_DIRTY_TIME;
4981		spin_unlock(&inode->i_lock);
4982
4983		spin_lock(&ei->i_raw_lock);
4984		EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4985		EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4986		EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4987		ext4_inode_csum_set(inode, raw_inode, ei);
4988		spin_unlock(&ei->i_raw_lock);
4989		trace_ext4_other_inode_update_time(inode, orig_ino);
4990		return;
4991	}
4992	spin_unlock(&inode->i_lock);
4993}
4994
4995/*
4996 * Opportunistically update the other time fields for other inodes in
4997 * the same inode table block.
4998 */
4999static void ext4_update_other_inodes_time(struct super_block *sb,
5000					  unsigned long orig_ino, char *buf)
5001{
5002	unsigned long ino;
5003	int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
5004	int inode_size = EXT4_INODE_SIZE(sb);
5005
5006	/*
5007	 * Calculate the first inode in the inode table block.  Inode
5008	 * numbers are one-based.  That is, the first inode in a block
5009	 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
5010	 */
5011	ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
5012	rcu_read_lock();
5013	for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
5014		if (ino == orig_ino)
5015			continue;
5016		__ext4_update_other_inode_time(sb, orig_ino, ino,
5017					       (struct ext4_inode *)buf);
5018	}
5019	rcu_read_unlock();
5020}
5021
5022/*
5023 * Post the struct inode info into an on-disk inode location in the
5024 * buffer-cache.  This gobbles the caller's reference to the
5025 * buffer_head in the inode location struct.
5026 *
5027 * The caller must have write access to iloc->bh.
5028 */
5029static int ext4_do_update_inode(handle_t *handle,
5030				struct inode *inode,
5031				struct ext4_iloc *iloc)
5032{
5033	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5034	struct ext4_inode_info *ei = EXT4_I(inode);
5035	struct buffer_head *bh = iloc->bh;
5036	struct super_block *sb = inode->i_sb;
5037	int err = 0, block;
5038	int need_datasync = 0, set_large_file = 0;
5039	uid_t i_uid;
5040	gid_t i_gid;
5041	projid_t i_projid;
5042
5043	spin_lock(&ei->i_raw_lock);
5044
5045	/* For fields not tracked in the in-memory inode,
5046	 * initialise them to zero for new inodes. */
5047	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5048		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5049
5050	err = ext4_inode_blocks_set(handle, raw_inode, ei);
5051	if (err) {
5052		spin_unlock(&ei->i_raw_lock);
5053		goto out_brelse;
5054	}
5055
5056	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
5057	i_uid = i_uid_read(inode);
5058	i_gid = i_gid_read(inode);
5059	i_projid = from_kprojid(&init_user_ns, ei->i_projid);
5060	if (!(test_opt(inode->i_sb, NO_UID32))) {
5061		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
5062		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
5063/*
5064 * Fix up interoperability with old kernels. Otherwise, old inodes get
5065 * re-used with the upper 16 bits of the uid/gid intact
5066 */
5067		if (ei->i_dtime && list_empty(&ei->i_orphan)) {
 
 
 
 
 
5068			raw_inode->i_uid_high = 0;
5069			raw_inode->i_gid_high = 0;
5070		} else {
5071			raw_inode->i_uid_high =
5072				cpu_to_le16(high_16_bits(i_uid));
5073			raw_inode->i_gid_high =
5074				cpu_to_le16(high_16_bits(i_gid));
5075		}
5076	} else {
5077		raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
5078		raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
 
 
5079		raw_inode->i_uid_high = 0;
5080		raw_inode->i_gid_high = 0;
5081	}
5082	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
5083
5084	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5085	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5086	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5087	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5088
 
 
5089	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5090	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
5091	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
 
5092		raw_inode->i_file_acl_high =
5093			cpu_to_le16(ei->i_file_acl >> 32);
5094	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5095	if (READ_ONCE(ei->i_disksize) != ext4_isize(inode->i_sb, raw_inode)) {
5096		ext4_isize_set(raw_inode, ei->i_disksize);
5097		need_datasync = 1;
5098	}
5099	if (ei->i_disksize > 0x7fffffffULL) {
5100		if (!ext4_has_feature_large_file(sb) ||
 
 
5101				EXT4_SB(sb)->s_es->s_rev_level ==
5102		    cpu_to_le32(EXT4_GOOD_OLD_REV))
5103			set_large_file = 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5104	}
5105	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5106	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5107		if (old_valid_dev(inode->i_rdev)) {
5108			raw_inode->i_block[0] =
5109				cpu_to_le32(old_encode_dev(inode->i_rdev));
5110			raw_inode->i_block[1] = 0;
5111		} else {
5112			raw_inode->i_block[0] = 0;
5113			raw_inode->i_block[1] =
5114				cpu_to_le32(new_encode_dev(inode->i_rdev));
5115			raw_inode->i_block[2] = 0;
5116		}
5117	} else if (!ext4_has_inline_data(inode)) {
5118		for (block = 0; block < EXT4_N_BLOCKS; block++)
5119			raw_inode->i_block[block] = ei->i_data[block];
5120	}
5121
5122	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
5123		u64 ivers = ext4_inode_peek_iversion(inode);
5124
5125		raw_inode->i_disk_version = cpu_to_le32(ivers);
5126		if (ei->i_extra_isize) {
5127			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5128				raw_inode->i_version_hi =
5129					cpu_to_le32(ivers >> 32);
5130			raw_inode->i_extra_isize =
5131				cpu_to_le16(ei->i_extra_isize);
5132		}
5133	}
5134
5135	BUG_ON(!ext4_has_feature_project(inode->i_sb) &&
5136	       i_projid != EXT4_DEF_PROJID);
5137
5138	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
5139	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
5140		raw_inode->i_projid = cpu_to_le32(i_projid);
5141
5142	ext4_inode_csum_set(inode, raw_inode, ei);
5143	spin_unlock(&ei->i_raw_lock);
5144	if (inode->i_sb->s_flags & SB_LAZYTIME)
5145		ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5146					      bh->b_data);
5147
5148	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5149	err = ext4_handle_dirty_metadata(handle, NULL, bh);
5150	if (err)
5151		goto out_brelse;
5152	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5153	if (set_large_file) {
5154		BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5155		err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
5156		if (err)
5157			goto out_brelse;
5158		lock_buffer(EXT4_SB(sb)->s_sbh);
5159		ext4_set_feature_large_file(sb);
5160		ext4_superblock_csum_set(sb);
5161		unlock_buffer(EXT4_SB(sb)->s_sbh);
5162		ext4_handle_sync(handle);
5163		err = ext4_handle_dirty_metadata(handle, NULL,
5164						 EXT4_SB(sb)->s_sbh);
5165	}
5166	ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5167out_brelse:
5168	brelse(bh);
5169	ext4_std_error(inode->i_sb, err);
5170	return err;
5171}
5172
5173/*
5174 * ext4_write_inode()
5175 *
5176 * We are called from a few places:
5177 *
5178 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5179 *   Here, there will be no transaction running. We wait for any running
5180 *   transaction to commit.
5181 *
5182 * - Within flush work (sys_sync(), kupdate and such).
5183 *   We wait on commit, if told to.
5184 *
5185 * - Within iput_final() -> write_inode_now()
5186 *   We wait on commit, if told to.
 
5187 *
5188 * In all cases it is actually safe for us to return without doing anything,
5189 * because the inode has been copied into a raw inode buffer in
5190 * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
5191 * writeback.
5192 *
5193 * Note that we are absolutely dependent upon all inode dirtiers doing the
5194 * right thing: they *must* call mark_inode_dirty() after dirtying info in
5195 * which we are interested.
5196 *
5197 * It would be a bug for them to not do this.  The code:
5198 *
5199 *	mark_inode_dirty(inode)
5200 *	stuff();
5201 *	inode->i_size = expr;
5202 *
5203 * is in error because write_inode() could occur while `stuff()' is running,
5204 * and the new i_size will be lost.  Plus the inode will no longer be on the
5205 * superblock's dirty inode list.
5206 */
5207int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5208{
5209	int err;
5210
5211	if (WARN_ON_ONCE(current->flags & PF_MEMALLOC) ||
5212	    sb_rdonly(inode->i_sb))
5213		return 0;
5214
5215	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5216		return -EIO;
5217
5218	if (EXT4_SB(inode->i_sb)->s_journal) {
5219		if (ext4_journal_current_handle()) {
5220			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5221			dump_stack();
5222			return -EIO;
5223		}
5224
5225		/*
5226		 * No need to force transaction in WB_SYNC_NONE mode. Also
5227		 * ext4_sync_fs() will force the commit after everything is
5228		 * written.
5229		 */
5230		if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5231			return 0;
5232
5233		err = ext4_fc_commit(EXT4_SB(inode->i_sb)->s_journal,
5234						EXT4_I(inode)->i_sync_tid);
5235	} else {
5236		struct ext4_iloc iloc;
5237
5238		err = __ext4_get_inode_loc_noinmem(inode, &iloc);
5239		if (err)
5240			return err;
5241		/*
5242		 * sync(2) will flush the whole buffer cache. No need to do
5243		 * it here separately for each inode.
5244		 */
5245		if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5246			sync_dirty_buffer(iloc.bh);
5247		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5248			ext4_error_inode_block(inode, iloc.bh->b_blocknr, EIO,
5249					       "IO error syncing inode");
5250			err = -EIO;
5251		}
5252		brelse(iloc.bh);
5253	}
5254	return err;
5255}
5256
5257/*
5258 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
5259 * buffers that are attached to a page stradding i_size and are undergoing
5260 * commit. In that case we have to wait for commit to finish and try again.
5261 */
5262static void ext4_wait_for_tail_page_commit(struct inode *inode)
5263{
5264	struct page *page;
5265	unsigned offset;
5266	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5267	tid_t commit_tid = 0;
5268	int ret;
5269
5270	offset = inode->i_size & (PAGE_SIZE - 1);
5271	/*
5272	 * If the page is fully truncated, we don't need to wait for any commit
5273	 * (and we even should not as __ext4_journalled_invalidatepage() may
5274	 * strip all buffers from the page but keep the page dirty which can then
5275	 * confuse e.g. concurrent ext4_writepage() seeing dirty page without
5276	 * buffers). Also we don't need to wait for any commit if all buffers in
5277	 * the page remain valid. This is most beneficial for the common case of
5278	 * blocksize == PAGESIZE.
5279	 */
5280	if (!offset || offset > (PAGE_SIZE - i_blocksize(inode)))
5281		return;
5282	while (1) {
5283		page = find_lock_page(inode->i_mapping,
5284				      inode->i_size >> PAGE_SHIFT);
5285		if (!page)
5286			return;
5287		ret = __ext4_journalled_invalidatepage(page, offset,
5288						PAGE_SIZE - offset);
5289		unlock_page(page);
5290		put_page(page);
5291		if (ret != -EBUSY)
5292			return;
5293		commit_tid = 0;
5294		read_lock(&journal->j_state_lock);
5295		if (journal->j_committing_transaction)
5296			commit_tid = journal->j_committing_transaction->t_tid;
5297		read_unlock(&journal->j_state_lock);
5298		if (commit_tid)
5299			jbd2_log_wait_commit(journal, commit_tid);
5300	}
5301}
5302
5303/*
5304 * ext4_setattr()
5305 *
5306 * Called from notify_change.
5307 *
5308 * We want to trap VFS attempts to truncate the file as soon as
5309 * possible.  In particular, we want to make sure that when the VFS
5310 * shrinks i_size, we put the inode on the orphan list and modify
5311 * i_disksize immediately, so that during the subsequent flushing of
5312 * dirty pages and freeing of disk blocks, we can guarantee that any
5313 * commit will leave the blocks being flushed in an unused state on
5314 * disk.  (On recovery, the inode will get truncated and the blocks will
5315 * be freed, so we have a strong guarantee that no future commit will
5316 * leave these blocks visible to the user.)
5317 *
5318 * Another thing we have to assure is that if we are in ordered mode
5319 * and inode is still attached to the committing transaction, we must
5320 * we start writeout of all the dirty pages which are being truncated.
5321 * This way we are sure that all the data written in the previous
5322 * transaction are already on disk (truncate waits for pages under
5323 * writeback).
5324 *
5325 * Called with inode->i_mutex down.
5326 */
5327int ext4_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
5328		 struct iattr *attr)
5329{
5330	struct inode *inode = d_inode(dentry);
5331	int error, rc = 0;
5332	int orphan = 0;
5333	const unsigned int ia_valid = attr->ia_valid;
5334
5335	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5336		return -EIO;
5337
5338	if (unlikely(IS_IMMUTABLE(inode)))
5339		return -EPERM;
5340
5341	if (unlikely(IS_APPEND(inode) &&
5342		     (ia_valid & (ATTR_MODE | ATTR_UID |
5343				  ATTR_GID | ATTR_TIMES_SET))))
5344		return -EPERM;
5345
5346	error = setattr_prepare(mnt_userns, dentry, attr);
5347	if (error)
5348		return error;
5349
5350	error = fscrypt_prepare_setattr(dentry, attr);
5351	if (error)
5352		return error;
5353
5354	error = fsverity_prepare_setattr(dentry, attr);
5355	if (error)
5356		return error;
5357
5358	if (is_quota_modification(inode, attr)) {
5359		error = dquot_initialize(inode);
5360		if (error)
5361			return error;
5362	}
5363	ext4_fc_start_update(inode);
5364	if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5365	    (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
5366		handle_t *handle;
5367
5368		/* (user+group)*(old+new) structure, inode write (sb,
5369		 * inode block, ? - but truncate inode update has it) */
5370		handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5371			(EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5372			 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5373		if (IS_ERR(handle)) {
5374			error = PTR_ERR(handle);
5375			goto err_out;
5376		}
5377
5378		/* dquot_transfer() calls back ext4_get_inode_usage() which
5379		 * counts xattr inode references.
5380		 */
5381		down_read(&EXT4_I(inode)->xattr_sem);
5382		error = dquot_transfer(inode, attr);
5383		up_read(&EXT4_I(inode)->xattr_sem);
5384
5385		if (error) {
5386			ext4_journal_stop(handle);
5387			ext4_fc_stop_update(inode);
5388			return error;
5389		}
5390		/* Update corresponding info in inode so that everything is in
5391		 * one transaction */
5392		if (attr->ia_valid & ATTR_UID)
5393			inode->i_uid = attr->ia_uid;
5394		if (attr->ia_valid & ATTR_GID)
5395			inode->i_gid = attr->ia_gid;
5396		error = ext4_mark_inode_dirty(handle, inode);
5397		ext4_journal_stop(handle);
5398		if (unlikely(error)) {
5399			ext4_fc_stop_update(inode);
5400			return error;
5401		}
5402	}
5403
5404	if (attr->ia_valid & ATTR_SIZE) {
5405		handle_t *handle;
5406		loff_t oldsize = inode->i_size;
5407		int shrink = (attr->ia_size < inode->i_size);
5408
5409		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5410			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5411
5412			if (attr->ia_size > sbi->s_bitmap_maxbytes) {
5413				ext4_fc_stop_update(inode);
5414				return -EFBIG;
5415			}
5416		}
5417		if (!S_ISREG(inode->i_mode)) {
5418			ext4_fc_stop_update(inode);
5419			return -EINVAL;
5420		}
 
5421
5422		if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5423			inode_inc_iversion(inode);
 
 
5424
5425		if (shrink) {
5426			if (ext4_should_order_data(inode)) {
5427				error = ext4_begin_ordered_truncate(inode,
5428							    attr->ia_size);
5429				if (error)
5430					goto err_out;
5431			}
5432			/*
5433			 * Blocks are going to be removed from the inode. Wait
5434			 * for dio in flight.
5435			 */
5436			inode_dio_wait(inode);
5437		}
5438
5439		down_write(&EXT4_I(inode)->i_mmap_sem);
5440
5441		rc = ext4_break_layouts(inode);
5442		if (rc) {
5443			up_write(&EXT4_I(inode)->i_mmap_sem);
5444			goto err_out;
5445		}
 
 
 
 
 
 
 
 
 
5446
5447		if (attr->ia_size != inode->i_size) {
5448			handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5449			if (IS_ERR(handle)) {
5450				error = PTR_ERR(handle);
5451				goto out_mmap_sem;
5452			}
5453			if (ext4_handle_valid(handle) && shrink) {
5454				error = ext4_orphan_add(handle, inode);
5455				orphan = 1;
5456			}
5457			/*
5458			 * Update c/mtime on truncate up, ext4_truncate() will
5459			 * update c/mtime in shrink case below
5460			 */
5461			if (!shrink) {
5462				inode->i_mtime = current_time(inode);
5463				inode->i_ctime = inode->i_mtime;
5464			}
5465
5466			if (shrink)
5467				ext4_fc_track_range(handle, inode,
5468					(attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5469					inode->i_sb->s_blocksize_bits,
5470					(oldsize > 0 ? oldsize - 1 : 0) >>
5471					inode->i_sb->s_blocksize_bits);
5472			else
5473				ext4_fc_track_range(
5474					handle, inode,
5475					(oldsize > 0 ? oldsize - 1 : oldsize) >>
5476					inode->i_sb->s_blocksize_bits,
5477					(attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5478					inode->i_sb->s_blocksize_bits);
5479
5480			down_write(&EXT4_I(inode)->i_data_sem);
5481			EXT4_I(inode)->i_disksize = attr->ia_size;
5482			rc = ext4_mark_inode_dirty(handle, inode);
5483			if (!error)
5484				error = rc;
5485			/*
5486			 * We have to update i_size under i_data_sem together
5487			 * with i_disksize to avoid races with writeback code
5488			 * running ext4_wb_update_i_disksize().
5489			 */
5490			if (!error)
5491				i_size_write(inode, attr->ia_size);
5492			up_write(&EXT4_I(inode)->i_data_sem);
5493			ext4_journal_stop(handle);
5494			if (error)
5495				goto out_mmap_sem;
5496			if (!shrink) {
5497				pagecache_isize_extended(inode, oldsize,
5498							 inode->i_size);
5499			} else if (ext4_should_journal_data(inode)) {
5500				ext4_wait_for_tail_page_commit(inode);
5501			}
5502		}
 
5503
5504		/*
5505		 * Truncate pagecache after we've waited for commit
5506		 * in data=journal mode to make pages freeable.
5507		 */
5508		truncate_pagecache(inode, inode->i_size);
5509		/*
5510		 * Call ext4_truncate() even if i_size didn't change to
5511		 * truncate possible preallocated blocks.
5512		 */
5513		if (attr->ia_size <= oldsize) {
5514			rc = ext4_truncate(inode);
5515			if (rc)
5516				error = rc;
5517		}
5518out_mmap_sem:
5519		up_write(&EXT4_I(inode)->i_mmap_sem);
5520	}
5521
5522	if (!error) {
5523		setattr_copy(mnt_userns, inode, attr);
5524		mark_inode_dirty(inode);
5525	}
5526
5527	/*
5528	 * If the call to ext4_truncate failed to get a transaction handle at
5529	 * all, we need to clean up the in-core orphan list manually.
5530	 */
5531	if (orphan && inode->i_nlink)
5532		ext4_orphan_del(NULL, inode);
5533
5534	if (!error && (ia_valid & ATTR_MODE))
5535		rc = posix_acl_chmod(mnt_userns, inode, inode->i_mode);
5536
5537err_out:
5538	if  (error)
5539		ext4_std_error(inode->i_sb, error);
5540	if (!error)
5541		error = rc;
5542	ext4_fc_stop_update(inode);
5543	return error;
5544}
5545
5546int ext4_getattr(struct user_namespace *mnt_userns, const struct path *path,
5547		 struct kstat *stat, u32 request_mask, unsigned int query_flags)
5548{
5549	struct inode *inode = d_inode(path->dentry);
5550	struct ext4_inode *raw_inode;
5551	struct ext4_inode_info *ei = EXT4_I(inode);
5552	unsigned int flags;
5553
5554	if ((request_mask & STATX_BTIME) &&
5555	    EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5556		stat->result_mask |= STATX_BTIME;
5557		stat->btime.tv_sec = ei->i_crtime.tv_sec;
5558		stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5559	}
5560
5561	flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5562	if (flags & EXT4_APPEND_FL)
5563		stat->attributes |= STATX_ATTR_APPEND;
5564	if (flags & EXT4_COMPR_FL)
5565		stat->attributes |= STATX_ATTR_COMPRESSED;
5566	if (flags & EXT4_ENCRYPT_FL)
5567		stat->attributes |= STATX_ATTR_ENCRYPTED;
5568	if (flags & EXT4_IMMUTABLE_FL)
5569		stat->attributes |= STATX_ATTR_IMMUTABLE;
5570	if (flags & EXT4_NODUMP_FL)
5571		stat->attributes |= STATX_ATTR_NODUMP;
5572	if (flags & EXT4_VERITY_FL)
5573		stat->attributes |= STATX_ATTR_VERITY;
5574
5575	stat->attributes_mask |= (STATX_ATTR_APPEND |
5576				  STATX_ATTR_COMPRESSED |
5577				  STATX_ATTR_ENCRYPTED |
5578				  STATX_ATTR_IMMUTABLE |
5579				  STATX_ATTR_NODUMP |
5580				  STATX_ATTR_VERITY);
5581
5582	generic_fillattr(mnt_userns, inode, stat);
5583	return 0;
5584}
5585
5586int ext4_file_getattr(struct user_namespace *mnt_userns,
5587		      const struct path *path, struct kstat *stat,
5588		      u32 request_mask, unsigned int query_flags)
5589{
5590	struct inode *inode = d_inode(path->dentry);
5591	u64 delalloc_blocks;
5592
5593	ext4_getattr(mnt_userns, path, stat, request_mask, query_flags);
5594
5595	/*
5596	 * If there is inline data in the inode, the inode will normally not
5597	 * have data blocks allocated (it may have an external xattr block).
5598	 * Report at least one sector for such files, so tools like tar, rsync,
5599	 * others don't incorrectly think the file is completely sparse.
5600	 */
5601	if (unlikely(ext4_has_inline_data(inode)))
5602		stat->blocks += (stat->size + 511) >> 9;
5603
5604	/*
5605	 * We can't update i_blocks if the block allocation is delayed
5606	 * otherwise in the case of system crash before the real block
5607	 * allocation is done, we will have i_blocks inconsistent with
5608	 * on-disk file blocks.
5609	 * We always keep i_blocks updated together with real
5610	 * allocation. But to not confuse with user, stat
5611	 * will return the blocks that include the delayed allocation
5612	 * blocks for this file.
5613	 */
5614	delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5615				   EXT4_I(inode)->i_reserved_data_blocks);
5616	stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5617	return 0;
5618}
5619
5620static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5621				   int pextents)
5622{
5623	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5624		return ext4_ind_trans_blocks(inode, lblocks);
5625	return ext4_ext_index_trans_blocks(inode, pextents);
5626}
5627
5628/*
5629 * Account for index blocks, block groups bitmaps and block group
5630 * descriptor blocks if modify datablocks and index blocks
5631 * worse case, the indexs blocks spread over different block groups
5632 *
5633 * If datablocks are discontiguous, they are possible to spread over
5634 * different block groups too. If they are contiguous, with flexbg,
5635 * they could still across block group boundary.
5636 *
5637 * Also account for superblock, inode, quota and xattr blocks
5638 */
5639static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5640				  int pextents)
5641{
5642	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5643	int gdpblocks;
5644	int idxblocks;
5645	int ret = 0;
5646
5647	/*
5648	 * How many index blocks need to touch to map @lblocks logical blocks
5649	 * to @pextents physical extents?
 
 
 
 
5650	 */
5651	idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5652
5653	ret = idxblocks;
5654
5655	/*
5656	 * Now let's see how many group bitmaps and group descriptors need
5657	 * to account
5658	 */
5659	groups = idxblocks + pextents;
 
 
 
 
 
5660	gdpblocks = groups;
5661	if (groups > ngroups)
5662		groups = ngroups;
5663	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5664		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5665
5666	/* bitmaps and block group descriptor blocks */
5667	ret += groups + gdpblocks;
5668
5669	/* Blocks for super block, inode, quota and xattr blocks */
5670	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5671
5672	return ret;
5673}
5674
5675/*
5676 * Calculate the total number of credits to reserve to fit
5677 * the modification of a single pages into a single transaction,
5678 * which may include multiple chunks of block allocations.
5679 *
5680 * This could be called via ext4_write_begin()
5681 *
5682 * We need to consider the worse case, when
5683 * one new block per extent.
5684 */
5685int ext4_writepage_trans_blocks(struct inode *inode)
5686{
5687	int bpp = ext4_journal_blocks_per_page(inode);
5688	int ret;
5689
5690	ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5691
5692	/* Account for data blocks for journalled mode */
5693	if (ext4_should_journal_data(inode))
5694		ret += bpp;
5695	return ret;
5696}
5697
5698/*
5699 * Calculate the journal credits for a chunk of data modification.
5700 *
5701 * This is called from DIO, fallocate or whoever calling
5702 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5703 *
5704 * journal buffers for data blocks are not included here, as DIO
5705 * and fallocate do no need to journal data buffers.
5706 */
5707int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5708{
5709	return ext4_meta_trans_blocks(inode, nrblocks, 1);
5710}
5711
5712/*
5713 * The caller must have previously called ext4_reserve_inode_write().
5714 * Give this, we know that the caller already has write access to iloc->bh.
5715 */
5716int ext4_mark_iloc_dirty(handle_t *handle,
5717			 struct inode *inode, struct ext4_iloc *iloc)
5718{
5719	int err = 0;
5720
5721	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
5722		put_bh(iloc->bh);
5723		return -EIO;
5724	}
5725	ext4_fc_track_inode(handle, inode);
5726
5727	if (IS_I_VERSION(inode))
5728		inode_inc_iversion(inode);
5729
5730	/* the do_update_inode consumes one bh->b_count */
5731	get_bh(iloc->bh);
5732
5733	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5734	err = ext4_do_update_inode(handle, inode, iloc);
5735	put_bh(iloc->bh);
5736	return err;
5737}
5738
5739/*
5740 * On success, We end up with an outstanding reference count against
5741 * iloc->bh.  This _must_ be cleaned up later.
5742 */
5743
5744int
5745ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5746			 struct ext4_iloc *iloc)
5747{
5748	int err;
5749
5750	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5751		return -EIO;
5752
5753	err = ext4_get_inode_loc(inode, iloc);
5754	if (!err) {
5755		BUFFER_TRACE(iloc->bh, "get_write_access");
5756		err = ext4_journal_get_write_access(handle, iloc->bh);
5757		if (err) {
5758			brelse(iloc->bh);
5759			iloc->bh = NULL;
5760		}
5761	}
5762	ext4_std_error(inode->i_sb, err);
5763	return err;
5764}
5765
5766static int __ext4_expand_extra_isize(struct inode *inode,
5767				     unsigned int new_extra_isize,
5768				     struct ext4_iloc *iloc,
5769				     handle_t *handle, int *no_expand)
 
 
 
 
5770{
5771	struct ext4_inode *raw_inode;
5772	struct ext4_xattr_ibody_header *header;
5773	unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb);
5774	struct ext4_inode_info *ei = EXT4_I(inode);
5775	int error;
5776
5777	/* this was checked at iget time, but double check for good measure */
5778	if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) ||
5779	    (ei->i_extra_isize & 3)) {
5780		EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)",
5781				 ei->i_extra_isize,
5782				 EXT4_INODE_SIZE(inode->i_sb));
5783		return -EFSCORRUPTED;
5784	}
5785	if ((new_extra_isize < ei->i_extra_isize) ||
5786	    (new_extra_isize < 4) ||
5787	    (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE))
5788		return -EINVAL;	/* Should never happen */
5789
5790	raw_inode = ext4_raw_inode(iloc);
5791
5792	header = IHDR(inode, raw_inode);
5793
5794	/* No extended attributes present */
5795	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5796	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5797		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5798		       EXT4_I(inode)->i_extra_isize, 0,
5799		       new_extra_isize - EXT4_I(inode)->i_extra_isize);
5800		EXT4_I(inode)->i_extra_isize = new_extra_isize;
5801		return 0;
5802	}
5803
5804	/* try to expand with EAs present */
5805	error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
5806					   raw_inode, handle);
5807	if (error) {
5808		/*
5809		 * Inode size expansion failed; don't try again
5810		 */
5811		*no_expand = 1;
5812	}
5813
5814	return error;
5815}
5816
5817/*
5818 * Expand an inode by new_extra_isize bytes.
5819 * Returns 0 on success or negative error number on failure.
5820 */
5821static int ext4_try_to_expand_extra_isize(struct inode *inode,
5822					  unsigned int new_extra_isize,
5823					  struct ext4_iloc iloc,
5824					  handle_t *handle)
5825{
5826	int no_expand;
5827	int error;
5828
5829	if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
5830		return -EOVERFLOW;
5831
5832	/*
5833	 * In nojournal mode, we can immediately attempt to expand
5834	 * the inode.  When journaled, we first need to obtain extra
5835	 * buffer credits since we may write into the EA block
5836	 * with this same handle. If journal_extend fails, then it will
5837	 * only result in a minor loss of functionality for that inode.
5838	 * If this is felt to be critical, then e2fsck should be run to
5839	 * force a large enough s_min_extra_isize.
5840	 */
5841	if (ext4_journal_extend(handle,
5842				EXT4_DATA_TRANS_BLOCKS(inode->i_sb), 0) != 0)
5843		return -ENOSPC;
5844
5845	if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
5846		return -EBUSY;
5847
5848	error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
5849					  handle, &no_expand);
5850	ext4_write_unlock_xattr(inode, &no_expand);
5851
5852	return error;
5853}
5854
5855int ext4_expand_extra_isize(struct inode *inode,
5856			    unsigned int new_extra_isize,
5857			    struct ext4_iloc *iloc)
5858{
5859	handle_t *handle;
5860	int no_expand;
5861	int error, rc;
5862
5863	if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5864		brelse(iloc->bh);
5865		return -EOVERFLOW;
5866	}
5867
5868	handle = ext4_journal_start(inode, EXT4_HT_INODE,
5869				    EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
5870	if (IS_ERR(handle)) {
5871		error = PTR_ERR(handle);
5872		brelse(iloc->bh);
5873		return error;
5874	}
5875
5876	ext4_write_lock_xattr(inode, &no_expand);
5877
5878	BUFFER_TRACE(iloc->bh, "get_write_access");
5879	error = ext4_journal_get_write_access(handle, iloc->bh);
5880	if (error) {
5881		brelse(iloc->bh);
5882		goto out_unlock;
5883	}
5884
5885	error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
5886					  handle, &no_expand);
5887
5888	rc = ext4_mark_iloc_dirty(handle, inode, iloc);
5889	if (!error)
5890		error = rc;
5891
5892out_unlock:
5893	ext4_write_unlock_xattr(inode, &no_expand);
5894	ext4_journal_stop(handle);
5895	return error;
5896}
5897
5898/*
5899 * What we do here is to mark the in-core inode as clean with respect to inode
5900 * dirtiness (it may still be data-dirty).
5901 * This means that the in-core inode may be reaped by prune_icache
5902 * without having to perform any I/O.  This is a very good thing,
5903 * because *any* task may call prune_icache - even ones which
5904 * have a transaction open against a different journal.
5905 *
5906 * Is this cheating?  Not really.  Sure, we haven't written the
5907 * inode out, but prune_icache isn't a user-visible syncing function.
5908 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5909 * we start and wait on commits.
 
 
 
 
 
 
 
 
5910 */
5911int __ext4_mark_inode_dirty(handle_t *handle, struct inode *inode,
5912				const char *func, unsigned int line)
5913{
5914	struct ext4_iloc iloc;
5915	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5916	int err;
 
5917
5918	might_sleep();
5919	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5920	err = ext4_reserve_inode_write(handle, inode, &iloc);
5921	if (err)
5922		goto out;
5923
5924	if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
5925		ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
5926					       iloc, handle);
5927
5928	err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5929out:
5930	if (unlikely(err))
5931		ext4_error_inode_err(inode, func, line, 0, err,
5932					"mark_inode_dirty error");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5933	return err;
5934}
5935
5936/*
5937 * ext4_dirty_inode() is called from __mark_inode_dirty()
5938 *
5939 * We're really interested in the case where a file is being extended.
5940 * i_size has been changed by generic_commit_write() and we thus need
5941 * to include the updated inode in the current transaction.
5942 *
5943 * Also, dquot_alloc_block() will always dirty the inode when blocks
5944 * are allocated to the file.
5945 *
5946 * If the inode is marked synchronous, we don't honour that here - doing
5947 * so would cause a commit on atime updates, which we don't bother doing.
5948 * We handle synchronous inodes at the highest possible level.
5949 */
5950void ext4_dirty_inode(struct inode *inode, int flags)
5951{
5952	handle_t *handle;
5953
5954	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5955	if (IS_ERR(handle))
5956		return;
 
5957	ext4_mark_inode_dirty(handle, inode);
 
5958	ext4_journal_stop(handle);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5959}
 
5960
5961int ext4_change_inode_journal_flag(struct inode *inode, int val)
5962{
5963	journal_t *journal;
5964	handle_t *handle;
5965	int err;
5966	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5967
5968	/*
5969	 * We have to be very careful here: changing a data block's
5970	 * journaling status dynamically is dangerous.  If we write a
5971	 * data block to the journal, change the status and then delete
5972	 * that block, we risk forgetting to revoke the old log record
5973	 * from the journal and so a subsequent replay can corrupt data.
5974	 * So, first we make sure that the journal is empty and that
5975	 * nobody is changing anything.
5976	 */
5977
5978	journal = EXT4_JOURNAL(inode);
5979	if (!journal)
5980		return 0;
5981	if (is_journal_aborted(journal))
5982		return -EROFS;
5983
5984	/* Wait for all existing dio workers */
5985	inode_dio_wait(inode);
5986
5987	/*
5988	 * Before flushing the journal and switching inode's aops, we have
5989	 * to flush all dirty data the inode has. There can be outstanding
5990	 * delayed allocations, there can be unwritten extents created by
5991	 * fallocate or buffered writes in dioread_nolock mode covered by
5992	 * dirty data which can be converted only after flushing the dirty
5993	 * data (and journalled aops don't know how to handle these cases).
5994	 */
5995	if (val) {
5996		down_write(&EXT4_I(inode)->i_mmap_sem);
5997		err = filemap_write_and_wait(inode->i_mapping);
5998		if (err < 0) {
5999			up_write(&EXT4_I(inode)->i_mmap_sem);
6000			return err;
6001		}
6002	}
6003
6004	percpu_down_write(&sbi->s_writepages_rwsem);
6005	jbd2_journal_lock_updates(journal);
 
6006
6007	/*
6008	 * OK, there are no updates running now, and all cached data is
6009	 * synced to disk.  We are now in a completely consistent state
6010	 * which doesn't have anything in the journal, and we know that
6011	 * no filesystem updates are running, so it is safe to modify
6012	 * the inode's in-core data-journaling state flag now.
6013	 */
6014
6015	if (val)
6016		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6017	else {
6018		err = jbd2_journal_flush(journal, 0);
6019		if (err < 0) {
6020			jbd2_journal_unlock_updates(journal);
6021			percpu_up_write(&sbi->s_writepages_rwsem);
6022			return err;
6023		}
6024		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6025	}
6026	ext4_set_aops(inode);
6027
6028	jbd2_journal_unlock_updates(journal);
6029	percpu_up_write(&sbi->s_writepages_rwsem);
6030
6031	if (val)
6032		up_write(&EXT4_I(inode)->i_mmap_sem);
6033
6034	/* Finally we can mark the inode as dirty. */
6035
6036	handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
6037	if (IS_ERR(handle))
6038		return PTR_ERR(handle);
6039
6040	ext4_fc_mark_ineligible(inode->i_sb,
6041		EXT4_FC_REASON_JOURNAL_FLAG_CHANGE);
6042	err = ext4_mark_inode_dirty(handle, inode);
6043	ext4_handle_sync(handle);
6044	ext4_journal_stop(handle);
6045	ext4_std_error(inode->i_sb, err);
6046
6047	return err;
6048}
6049
6050static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
6051{
6052	return !buffer_mapped(bh);
6053}
6054
6055vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf)
6056{
6057	struct vm_area_struct *vma = vmf->vma;
6058	struct page *page = vmf->page;
6059	loff_t size;
6060	unsigned long len;
6061	int err;
6062	vm_fault_t ret;
6063	struct file *file = vma->vm_file;
6064	struct inode *inode = file_inode(file);
6065	struct address_space *mapping = inode->i_mapping;
6066	handle_t *handle;
6067	get_block_t *get_block;
6068	int retries = 0;
6069
6070	if (unlikely(IS_IMMUTABLE(inode)))
6071		return VM_FAULT_SIGBUS;
6072
6073	sb_start_pagefault(inode->i_sb);
6074	file_update_time(vma->vm_file);
6075
6076	down_read(&EXT4_I(inode)->i_mmap_sem);
6077
6078	err = ext4_convert_inline_data(inode);
6079	if (err)
6080		goto out_ret;
6081
6082	/*
6083	 * On data journalling we skip straight to the transaction handle:
6084	 * there's no delalloc; page truncated will be checked later; the
6085	 * early return w/ all buffers mapped (calculates size/len) can't
6086	 * be used; and there's no dioread_nolock, so only ext4_get_block.
6087	 */
6088	if (ext4_should_journal_data(inode))
6089		goto retry_alloc;
6090
6091	/* Delalloc case is easy... */
6092	if (test_opt(inode->i_sb, DELALLOC) &&
 
6093	    !ext4_nonda_switch(inode->i_sb)) {
6094		do {
6095			err = block_page_mkwrite(vma, vmf,
6096						   ext4_da_get_block_prep);
6097		} while (err == -ENOSPC &&
6098		       ext4_should_retry_alloc(inode->i_sb, &retries));
6099		goto out_ret;
6100	}
6101
6102	lock_page(page);
6103	size = i_size_read(inode);
6104	/* Page got truncated from under us? */
6105	if (page->mapping != mapping || page_offset(page) > size) {
6106		unlock_page(page);
6107		ret = VM_FAULT_NOPAGE;
6108		goto out;
6109	}
6110
6111	if (page->index == size >> PAGE_SHIFT)
6112		len = size & ~PAGE_MASK;
6113	else
6114		len = PAGE_SIZE;
6115	/*
6116	 * Return if we have all the buffers mapped. This avoids the need to do
6117	 * journal_start/journal_stop which can block and take a long time
6118	 *
6119	 * This cannot be done for data journalling, as we have to add the
6120	 * inode to the transaction's list to writeprotect pages on commit.
6121	 */
6122	if (page_has_buffers(page)) {
6123		if (!ext4_walk_page_buffers(NULL, page_buffers(page),
6124					    0, len, NULL,
6125					    ext4_bh_unmapped)) {
6126			/* Wait so that we don't change page under IO */
6127			wait_for_stable_page(page);
6128			ret = VM_FAULT_LOCKED;
6129			goto out;
6130		}
6131	}
6132	unlock_page(page);
6133	/* OK, we need to fill the hole... */
6134	if (ext4_should_dioread_nolock(inode))
6135		get_block = ext4_get_block_unwritten;
6136	else
6137		get_block = ext4_get_block;
6138retry_alloc:
6139	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
6140				    ext4_writepage_trans_blocks(inode));
6141	if (IS_ERR(handle)) {
6142		ret = VM_FAULT_SIGBUS;
6143		goto out;
6144	}
6145	/*
6146	 * Data journalling can't use block_page_mkwrite() because it
6147	 * will set_buffer_dirty() before do_journal_get_write_access()
6148	 * thus might hit warning messages for dirty metadata buffers.
6149	 */
6150	if (!ext4_should_journal_data(inode)) {
6151		err = block_page_mkwrite(vma, vmf, get_block);
6152	} else {
6153		lock_page(page);
6154		size = i_size_read(inode);
6155		/* Page got truncated from under us? */
6156		if (page->mapping != mapping || page_offset(page) > size) {
6157			ret = VM_FAULT_NOPAGE;
6158			goto out_error;
6159		}
6160
6161		if (page->index == size >> PAGE_SHIFT)
6162			len = size & ~PAGE_MASK;
6163		else
6164			len = PAGE_SIZE;
6165
6166		err = __block_write_begin(page, 0, len, ext4_get_block);
6167		if (!err) {
6168			ret = VM_FAULT_SIGBUS;
6169			if (ext4_walk_page_buffers(handle, page_buffers(page),
6170					0, len, NULL, do_journal_get_write_access))
6171				goto out_error;
6172			if (ext4_walk_page_buffers(handle, page_buffers(page),
6173					0, len, NULL, write_end_fn))
6174				goto out_error;
6175			if (ext4_jbd2_inode_add_write(handle, inode,
6176						      page_offset(page), len))
6177				goto out_error;
6178			ext4_set_inode_state(inode, EXT4_STATE_JDATA);
6179		} else {
6180			unlock_page(page);
6181		}
 
6182	}
6183	ext4_journal_stop(handle);
6184	if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
6185		goto retry_alloc;
6186out_ret:
6187	ret = block_page_mkwrite_return(err);
6188out:
6189	up_read(&EXT4_I(inode)->i_mmap_sem);
6190	sb_end_pagefault(inode->i_sb);
6191	return ret;
6192out_error:
6193	unlock_page(page);
6194	ext4_journal_stop(handle);
6195	goto out;
6196}
6197
6198vm_fault_t ext4_filemap_fault(struct vm_fault *vmf)
6199{
6200	struct inode *inode = file_inode(vmf->vma->vm_file);
6201	vm_fault_t ret;
6202
6203	down_read(&EXT4_I(inode)->i_mmap_sem);
6204	ret = filemap_fault(vmf);
6205	up_read(&EXT4_I(inode)->i_mmap_sem);
6206
6207	return ret;
6208}